
Technical Report - Musical Features for

Automatic Music Transcription Evaluation

Adrien Ycart, Lele Liu, Emmanouil Benetos, Marcus T. Pearce

1 Introduction

Automatic Music Transcription (AMT) is most often evaluated with metrics
that penalise all mistakes equally (see [1] for a description of common AMT
metrics). However, all mistakes are not equally salient to human listeners: for
instance, out-of-key false positives tend to be very noticeable. In order to get
more insights into the types of mistakes made by a system, we define new, lower-
level metrics that can be computed on pairs (target, AMT output). We aim to
define these metrics so that they capture musical aspects that are reported as
important by human raters, and mistakes commonly made by AMT systems.

These metrics are defined with polyphonic piano music transcription as the
main application. However, most of them are more general and can be applied
in other contexts with minor modifications.

In what follows, we describe the notations we use throughout this document
in Section 2.

2 Data format

The AMT output and target are usually represented either as a piano roll or a
list of notes.

A piano roll is a Np× T binary matrix, where T corresponds to the number
of timesteps, and Np to the number of considered pitches (88 in the case of

piano). We notate the estimated and ground-truth piano rolls as M̂ and M
respectively. Roughly, M [p, t] = 1 if and only if pitch p is active at timestep t.
We notate Mt the binary Np-vector, which corresponds to the t-th frame of M .

The AMT output and target can also be represented as a list of notes. We
notate them N̂ and N respectively. They are lists of potentially different lengths
n̂ and n respectively. Each element of N is a tuple (s, e, p, v) where s and e are
the start and end times, p is the MIDI pitch, and v is the original velocity of
the note. Each element of N̂ is a tuple (s, e, p) (same, without velocity, as it is
often not estimated by AMT systems).

1

ar
X

iv
:2

00
4.

07
17

1v
1

 [
cs

.S
D

]
 1

5
A

pr
 2

02
0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/384445236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3 Features

3.1 Benchmark Framewise Precision, Recall, F-measure

These framewise metrics are computed on piano-roll outputs, with a frame du-
ration of 10ms. We notate for each frame t the number of true positives, false
positives and false negatives as respectively, TP (t), FP (t) and FN(t). A true
positive is counted when M [p, t] = 1 and M̂ [p, t] = 1. We define the framewise
Precision, Recall and F-measure as:

P =

∑T
t=0 TP (t)∑T

t=0 TP (t) + FP (t)
(1)

R =

∑T
t=0 TP (t)∑T

t=0 TP (t) + FN(t)
(2)

F =
2 · P ·R
P +R

(3)

3.2 Benchmark Onset-only Notewise Precision, Recall, F-
measure

These notewise metrics are computed on lists of note outputs. We count a true
positive when a note (ŝ, ê, p̂) is detected and there is a reference note (s, n, p)
such that:

|ŝ− s| < 50ms ∧ p̂ = p (4)

Each reference note must be matched to at most one estimated note.
We then compute the Precision, Recall and F-Measure as above. The max-

imum matching between target and output is computed using mir eval1.
In what follows, we use this definition to determine whether a detected note

is a true positive, unless stated otherwise, as it was shown in [7] that onset-
only F-measure is the benchmark evaluation metric that correlates best with
human perception (in the case of piano). When used for other instruments, the
onset-offset definition might be preferred.

3.3 Benchmark Onset-offset Notewise Precision, Recall,
F-measure

These metrics are the same as above, with the difference that a true positive is
counted when:

|ŝ− s| < 50ms ∧ p̂ = p ∧ |ê− e| < max(50ms, 0.2 ∗ (e− s)) (5)

1https://github.com/craffel/mir_eval

2

https://github.com/craffel/mir_eval

We then compute Precision, Recall and F-Measure as above.

3.4 Number of mistakes in highest and lowest voice

The general idea is that very often, mistakes in the melody or the bassline are
more salient than mistakes in middle voices. We use the highest and lowest
voice as a proxy for the melody and the bassline, respectively. The highest and
lowest voices can be defined both framewise or notewise.

Usually, the ground truth is defined so that it corresponds as much as pos-
sible to what is contained in the audio signal. In particular, when the sustain
pedal is used, the offsets of notes are usually extended to correspond to the
actual duration for which they sound. When defining the highest and lowest
voice, we choose to not take the sustain pedal into account, in order to stick as
much as possible to the original partition, and avoid excessive overlapping of
notes. We assume that this is accessible, as most of the time, the sustain pedal
is given as an external MIDI control-change parameter, that can either be taken
into account or not.

3.4.1 Framewise

The highest voice HM is a time series such that:

HM (t) = max
p∈[0,Np[

(p |M [p, t] = 1) (6)

If Mt is all zeros, we define by default HM (t) = −1.

• A true positive is counted for each (p, t) such that p = HM (t) and HM (t) 6=
−1 and M̂ [p, t] = 1.

• A false negative is counted for each (p, t) such that p = HM (t) and
HM (t) 6= −1 and M̂ [p, t] = 0.

• A false positive is counted for each (p, t) such that M̂ [p, t] = 1 and p >
HM (t). We count all false positives above the highest pitch in the target.

With these definitions, we can compute Precision, Recall, and F-measure as
before.

The lowest voice can be defined similarly.

3.4.2 Notewise

The highest voice HN is a list of notes such that for all (s, e, p) in HN :

∃t ∈ [s, e] | ∀(s′, e′, p′) ∈ N, t 6∈ [s′, e′] ∨ p′ < p (7)

In other words, it is the set of notes that are the highest sounding note at
some point in time. In order to account for cases when, for instance, a chord
is slightly arpeggiated and a middle note is played before the highest note,

3

we include a minimum duration dH for which the note has to be the highest
sounding one:

∃t1, t2 ∈ [s, e] | t2 − t1 > dH ∧ ∀(s′, e′, p′) ∈ N, [t1, t2] ∩ [s′, e′] = ∅ ∨ p′ < p (8)

• A true positive is counted for each note that is a true positive and that is
matched to a note in HN .

• A false negative is counted for each note in HN that is left unmatched.

• A false positive is counted for each note (s, e, p) in N̂ that is left unmatched
and such that

∃t ∈]s, e[,∀(s′, e′, p′) ∈ N, t 6∈]s′, e′[∨p′ < p

or with a threshold:

∃t1, t2 ∈ [s, e] | t2 − t1 > dH ∧ ∀(s′, e′, p′) ∈ N, [t1, t2] ∩ [s′, e′] = ∅ ∨ p′ < p

We count all false positives above the highest pitch in the target.

We set dH = 0.5, this value is set heuristically, in accordance with the usual
threshold for benchmark notewise metrics.

With these definitions, we can compute Precision, Recall, and F-measure as
before.

The lowest voice can be defined similarly.

3.5 Loudness of false negatives

The idea is that a missed note will be less noticed if it was played very softly in
the input than if it was very loud originally. It will be even less noticed if there
are some louder notes played at the same time.

Similar metrics could be defined with false positives, but since most current
AMT systems do not estimate note velocities, we do not take them into account.

We define two such metrics: the normalised false negative loudness, and the
false negative loudness ratio.

3.5.1 Normalised false negative loudness

For each false negative, we normalise its loudness by the average loudness in a
2-seconds window centered on the onset of the false negative. In other words,
for a given false negative (s, e, p, v) in N define V as:

V = {(s′, e′, p′, v′) | |s− s′| < dL} (9)

where dL is set as 1 second. we then compute the normalised loudness as:

NormLoud =
v × |V |∑

(s′,e′,p′,v′)∈V v
′ (10)

4

where |V | denotes the cardinal of V . We then compute the average normalised
loudness for all false positives. It has to be noted that V is never empty; it
always contains at least (s, e, p, v). When (s, e, p, v) is the only note in V , the
ratio is equal to 1.

3.5.2 False negative loudness ratio

We also compute the ratio between the missed note velocity and the loudest
note sounding in the ground truth at the time of the attack of the missed note.
This ratio is necessarily smaller than 1. In particular, it is equal to 1 when the
missed note is the only one at that time. We could then average this ratio for
all the false negatives.

To do so, we assume an exponential decay of the amplitude of notes, to
reflect cases where a loud note is held while other notes are played. We use
an exponential decay rate, applied to the velocities directly. We stop the decay
after 1 second, to avoid notes fading out completely. Given a(p) the decay rate
of a note given its pitch, we define the time varying velocity v(t) of a note
(s,e,p,v) as:

v(t) =

 ve−a(p)(t−s) if t ∈ [s, s+ 1]
ve−a(p) if t ∈ [s+ 1, e]
0 otherwise

(11)

The decay rate is obtained from the values presented in Figure 1, taken
from [2]. For each pitch, we average the decay rates across velocities (this
has little influence for lower pitches). Then, we do a linear regression on the
averaged decay rates, in order to have smoother, less piano-dependent decay
rates estimates. Using that, we can then compute the velocity of notes through
time. The formula we obtain for a(p) is:

a(p) = 0.050532 + 0.021292 ∗ p (12)

The loudness ratio of a false negative (s, e, p, v) is then defined as:

LoudRatio =
v

max
(s′,e′,p′,v′)∈N,t∈[s−dR,s+dR]

v′(t)
(13)

where dR is a parameter that we set to 50ms.

3.6 Out-of-key false positives

The idea is that out-of-key inserted notes are particularly salient. However, we
do not want to rely on key annotations to evaluate that. Instead, we rely on
a pitch profile that is automatically computed from the target. We propose
two versions of this metric, one based on a binary pitch profile, and one on a
non-binary pitch profile.

The following definitions assume that the tonality is constant throughout
the considered music excerpt. Behaviour is undefined if that is not the case.

5

30 40 50 60 70 80 90 100

MIDI index

0

10

20

30

40

50

60

D
e

c
a

y
 r

a
te

 [
d

B
/s

]

F
M
P

Figure 1: Decay rates per note, for various velocities (taken from [2]).

3.6.1 Binary pitch profile

We define the binary pitch profile as the set of pitch classes that are active
more than 10% of the time in the target. This threshold is set heuristically.
Generally-speaking, the higher threshold, the more notes will be considered as
out-of-key. It remains to be seen to what extent varying this threshold influences
the metrics.

More precisely, we define an active-pitch-class time series Ap(t) such that:

Ap(t) = 1⇐⇒ ∃(s, e, q) ∈ N | q ≡ p (mod 12) ∧ t ∈ [s, e] (14)

Ap(t) is defined using the target without pedal, similarly to Section 3.4.
We write Pb the set of in-key pitches such that:

p ∈ Pb ⇐⇒ p ≡ q (mod 12) ∧ 1

T

∑
t∈[0,T [

Aq(t) > 0.1 (15)

We write FPN̂ the total number of false positive notes in N̂ , FPPb,N̂
the

number of out-of-key false positives (i.e. the false positives such that p 6∈ Pb),
and |N̂ | the total number of notes in N̂ . We then define two ratios:

Ob,t =
FPPb,N̂

|N̂ |
and Ob,p =

FPPb,N̂

FPN̂

(16)

Ob,t is the proportion of out-of-key mistakes among all detected notes (and is
thus correlated with notewise recall), while Ob,p is the proportion of out-of-key
mistakes among all false positives.

6

3.6.2 Non-Binary pitch profile

For each pitch class q, we define its fitness to the tonality F (q) as the proportion
of the time this pitch class is active:

F (q) =
1

T

∑
t∈[0,T [

Aq(t) (17)

Then, we define the key-disagreement of a false positive (s, e, p) as: 1−F (q)
for q such that q ≡ p (mod 12)

We then compute 2 values: Ob,t the average key-disagreement of false pos-
itives divided by the average key-disagreement of all detected notes, and Ob,p

the un-normalised average key-disagreement of false positives.

3.7 Specific Pitch Errors

A common type of AMT mistake is to have false positives in specific pitch
intervals compared to ground-truth notes: semitone errors (neighbouring notes),
octave errors (first partial), and 19 semitone errors (second partial). We define
errors for specific pitches pe with pe ∈ {1, 12, 19}. We define these metrics both
framewise and notewise.

3.7.1 Framewise

M̂ [p, t] is a specific pitch error if and only if the following conditions are all true:

• M̂ [p, t] = 1

• M [p, t] = 0

• M [p− pe, t] = 1 ∨M [p+ pe, t] = 1

• ∀i ∈ [t− δ, t[,M [p, i] = 0

where δ is a parameter that we set heuristically to 50ms, in accordance with the
threshold used for benchmark notewise metrics. The last condition is to ensure
that erroneous continuations of correct notes are not penalised if there was also
a target note pe semitones apart right after.

For pe = 19, we only consider ground-truth notes 19 semitones below, as
second partial mistakes usually only happen above the ground truth notes. The
third condition becomes simply: M [p− pe, t] = 1

We then compute two different ratios: let Ns be the number of specific pitch
errors, Nf the number of frames, and Ne the total number of false positives:

Spe,f,t =
Ns

Nf
and Spe,f,p =

Ns

Ne
(18)

The first is correlated to P, while the second can be biased when P is very
high (an output with only 1 error that happens to be a specific pitch error will
have Sf,p = 1)

7

3.7.2 Notewise

A note (s, e, p) is a specific pitch false positive if:

• (s, e, p) is a false positive

• ∃(s′, e′, p′) ∈ N | |p− p′| = pe ∧ min(e,e′)−max(s,s′)
e−s > 0.8

The last condition boils down to saying that there is a ground truth note
pe semitones apart from (s, e, p) that overlaps with (s, e, p) for 80% of (s, e, p)’s
duration. The value 80% was set heuristically, and echoes the benchmark onset-
offset notewise metrics condition requiring that the offset of a note is within 20%
of its duration.

For pe = 19, we only consider ground truth notes 19 semitones below (s, e, p),
for the same reason as above.

Similarly as framewise metrics, we compute 2 ratios: the proportion of spe-
cific pitch mistakes among all detected notes, and among false positives.

3.8 Repeated and merged notes

Another common type of mistake in AMT is to have repeated (i.e. fragmented)
notes, or incorrectly merged notes.

3.8.1 Repeated notes

A note (s, e, p) ∈ N̂ is counted as a repeated note when it fulfills the following
conditions:

• It is an Onset-only false positive

• ∃(s′, e′, p′) ∈ N | p = p′ ∧ min(e,e′)−max(s,s′)
e−s > 0.8

• ∃(s′′, e′′, p′′) ∈ N̂ such that:

– (s′′, e′′, p′′) 6= (s, e, p)

– p′′ = p′

– min(e′′,e′)−max(s′′,s′)
e′′−s′′ > 0.8

– e′′ < s

Put more simply, a note is considered as a repeated note if it is a false
positive, if it overlaps with a ground-truth note, and if there is another previous
detected note that overlaps with the same ground-truth note.

We can then compute either the proportion of repeated notes among false
positives, or among all notes, as with the previous metrics. Once again, for
both of these metrics, the threshold 80% was set heuristically, and echoes the
benchmark onset-offset notewise metrics condition requiring that the offset of a
note is within 20% of its duration.

8

3.8.2 Merged notes

A note (s, e, p) ∈ N is counted as a merged note when it fulfills the following
conditions:

• It is an Onset-only false negative

• ∃(s′, e′, p′) ∈ N̂ | p = p′ ∧ min(e,e′)−max(s,s′)
e−s > 0.8

• ∃(s′′, e′′, p′′) ∈ N such that:

– (s′′, e′′, p′′) 6= (s, e, p)

– p′′ = p′

– min(e′′,e′)−max(s′′,s′)
e′′−s′′ > 0.8

– e′′ < s

A note is thus considered as a merged note if it is a false negative, if it
overlaps with a detected note, and if there is another previous ground-truth
note that overlaps with the same detected note.

We can then compute either the proportion of merged notes among false
negatives, or among all notes, as with the previous metrics.

3.9 Rhythm features

3.9.1 Rhythm histogram spectral flatness

Rhythm is an important aspect of music. We thus define a metric to account
for rhythmic imprecision as follows. We define O and Ô the (ordered) list of
note onsets of N and N̂ respectively, potentially with repetition. O is of same
size as N .

Based on these, we compute inter-onset-intervals (IOI and ˆIOI) as the first
derivative of O and Ô respectively. Let n be the number of notes:

∀0 ≤ i < n− 1, IOI(i) = O(i+ 1)−O(i) (19)

We then compute a normalised histogram of the IOIs, with bins as follows:
from 0 to 100ms, we use a bin size of 10ms, and from 100ms to 2s, we use a bin
size of 100ms. Overall, we have 29 bins. We notate this list b, and the resulting
histogram hr. The spacing in bins is set heuristically; however, it could have
a strong influence on the result. We leave it to future work to quantify that
influence.

From this IOI, we compute its spectral flatness [4], which is defined as the
ratio of the geometric mean of the histogram over its arithmetic mean: It is
used usually on power spectra, and represents the peakiness of the spectrum.
It is useful in our case, as quantised rhythms would give an IOI histogram with

9

only some non-zero bins, corresponding to specific note values, while rhythm
imprecision would spread the values across several bins. We thus have:

Sf =
1

29

∑
0≤i<29

log(hr[i])− log

(
1

29

∑
0≤i<29

hr[i]

)
(20)

In practice, we add ε = 10−5 to deal with 0 values in hr.
We then compute the spectral flatness value for N and N̂ . We use as features

the spectral flatness for N̂ and the difference between the spectral flatness of N̂
and N .

3.9.2 Rhythm dispersion

Another approach to attempt to characterise rhythmic deviations is to run K-
means clustering [5] on the IOI set. Ideally, each cluster would correspond to
one note value, with small variations due to tempo deviations and interpretation
mostly. We can then assess the mean and standard deviation within each cluster.

Setting the number of clusters here is a tough problem. If we do not have
enough clusters, one cluster might correspond to several note values, which
would result in artificially high standard deviation. If we have too many clusters,
we might end up with several clusters corresponding to the same note value, or
in the extreme case, one cluster per note.

To determine the number of clusters and their initial centers, we compute a
normalised IOI histogram on the target, similar to the previous, but with higher
bin size: 20ms between 0 and 0.1s, and 200ms between 0.1 and 2s. We then
choose as initial cluster centres all the peaks in the resulting hr. Here again,
the spacing in bins is set heuristically; however, it has to be noted that it might
have a strong influence on the number of clusters.

We first run K-means clustering on the target IOI set. After convergence,
we use the resulting cluster means as initial values to run K-means clustering on
the estimated IOI set. We then compute the distance between cluster means
for the estimated and target IOI sets, and the relative difference between the
cluster standard deviations for the estimated and target IOI sets. We use as
feature the mean, maximum and minimum across clusters, for both the centre
drifts and standard deviation differences.

3.9.3 Validating Rhythm features

We have seen in the experiments presented in [7] that these rhythmic features
have a high importance when modelling perceptual ratings of AMT quality. In
order to validate that these metrics do capture rhythm deviations, we run some
experiments.

We use as target the AMT outputs for all the stimuli in presented in [7]. We
use as outputs various modified versions of these same MIDI files, by order of
rhythm regularity (high to low):

10

Quant-constant: Quantised MIDI files with 16th note precision, using a con-
stant tempo equal to the average tempo over the whole segment (we use
the A-MAPS tempo and beat annotations described in [6]);

Quant: Quantised MIDI files with 16th note precision, using a time-varying
tempo, with the ground-truth 16th note positions;

Noisy-100: Add uniform noise in [-100ms,100ms] to the onset times;

Noisy-300: Add uniform noise in [-300ms,300ms] to the onset times.

We report in Table 1 the mean and standard deviation (std) of the rhythm
features in each condition. It appears that the features behave generally as
expected. The mean spectral flatness is lowest for Quant-constant, and highest
for the Noisy configurations. Besides, the spectral flatness difference is negative
for the quantised versions, and positive for the noisy versions. For the rhythm
dispersion values, we see a similar trend: for quantised versions, the average
change in std is negative, while it is positive for noisy versions. Moreover, the
greater the noise, the greater the average change in std.

However, it appears that increasing the noise level does not change the mean
spectral flatness of the outputs, which is kind of surprising. This might be due
to the bin size we used: since we use bins of size 100ms between 100ms and
2s, small differences in noise might be hard to catch. Another possibility is
that since we use short examples, in a lot of cases, histogram bins contain one
single value. Adding noise to that value will change the bin it is counted in, but
will not change the overall spectral flatness. This might also explain why the
dispersion average drift also increases with the noise level: although the noise
is centred on zero, it is likely applied to many clusters with one single, or few
values in it, so the drift does not always cancel out on average within a cluster.

It also appears that the dispersion feature values are very similar for both
quantised versions. This might be due to the fact that we use short segments,
and that tempo variations are quite small usually, so there is probably little
difference between the two quantised conditions.

3.10 Consonance measures

We choose 3 different consonance measures: one based on periodicity/inharmonicity,
one based on partials interference, and one based on culture (statistical fre-
quency in a corpus). These are computed using Peter Harrison’s implementa-
tion2. In particular, we use the following features:

• hutch 78 roughness for partials interference

• har 18 harmonicity for periodicity

• har 19 corpus for culture.

2https://github.com/pmcharrison/incon

11

Feature
Quant-constant Quant Noisy-100 Noisy-300
mean std mean std mean std mean std

Spectral Flatness Output -9.842 0.857 -9.572 0.909 -6.695 0.814 -6.751 0.772
Spectral Flatness Difference -1.850 0.973 -1.580 0.898 1.298 1.217 1.241 1.380

Dispersion Avg. std Change -0.010 0.019 -0.010 0.017 0.024 0.020 0.080 0.038
Dispersion Min. std Change -0.032 0.036 -0.029 0.041 -0.001 0.050 0.037 0.074
Dispersion Max. std Change 0.012 0.031 0.009 0.026 0.049 0.027 0.125 0.048

Dispersion Avg. Drift 0.025 0.022 0.025 0.026 0.038 0.032 0.129 0.047
Dispersion Min. Drift 0.008 0.009 0.008 0.009 0.015 0.013 0.057 0.045
Dispersion Max. Drift 0.046 0.050 0.046 0.059 0.065 0.068 0.209 0.095

Table 1: Feature means and standard deviation (std) across all stimuli, with
4 levels of rhythmic precision. Highest mean values are in bold, lowest mean
values are in italic.

These 3 consonance measures were shown to correlate best with perceptual
ratings of consonance [3].

We then compute these consonance measures on the output and target piano
rolls, using an event timestep: one timestep per new onset or offset. The above
features are undefined for silence, we thus do not take them into account in the
computations. We then compute the weighted average (using as weight each
frame’s duration in sections), the weighted standard deviation, minimum and
maximum value for each feature, both on the output and target piano rolls. We
use as features the weighted average, the weighted standard deviation, minimum
and maximum computed on each consonance measures on the output piano roll.

3.11 Polyphony level

We assume that a mistake is more salient when it is the only note being played.
Conversely, if a big chord is supposed to be played, but few notes are detected,
this will be noticeable.

We compute the difference in polyphony level as a time series:

Poly(t) =

∣∣∣∣ ∑
0≤p<88

M̂ [p, t]−
∑

0≤p<88

M [p, t]

∣∣∣∣ (21)

We then use as features the mean, standard deviation, minimum and maxi-
mum of this series.

4 Summary

We provide a table summarising all the features. The first column corresponds to
feature groups (as described in the sections above), the second column describes
each scalar value that can be found within that feature group, and the last
column describes whether higher is better for that metrics: “Yes” if higher is
better, “No” if lower is better, “/” when it depends on other factors.

12

Feature group Sub-feature Higher is better?

Benchmark
Framewise metrics

Precision Yes
Recall Yes
F-measure Yes

Benchmark
Onset-only
notewise metrics

Precision Yes
Recall Yes
F-measure Yes

Benchmark
Onset-Offset
notewise metrics

Precision Yes
Recall Yes
F-measure Yes

Framewise
mistakes in highest
voice

Precision Yes
Recall Yes
F-measure Yes

Framewise
mistakes in lowest
voice

Precision Yes
Recall Yes
F-measure Yes

Notewise mistakes
in highest voice

Precision Yes
Recall Yes
F-measure Yes

Notewise mistakes
in lowest voice

Precision Yes
Recall Yes
F-measure Yes

Loudness Normalised false negative loud-
ness

No

False negatives loudness ratio No

Binary out-of-key
false positives

Proportion among false positives No
Proportion among detected
notes

No

Non-binary
out-of-key false
positives

Average key-disagreement of
false positives

No

Average key-disagreement of
false positives normalised by the
average key-disagreement of all
detected notes

No

Framewise
semitone errors

Proportion among false positives /
Proportion among detected
notes

/

Framewise octave
errors

Proportion among false positives /
Proportion among detected
notes

/

Framewise
third-harmonic
errors

Proportion among false positives /
Proportion among detected
notes

/

13

Feature group Sub-feature Higher is better?

Notewise semitone
errors

Proportion among false positives /
Proportion among detected
notes

/

Notewise octave
errors

Proportion among false positives /
Proportion among detected
notes

/

Notewise
third-harmonic
errors

Proportion among false positives /
Proportion among detected
notes

/

Repeated notes Proportion among false positives /
Proportion among detected
notes

/

Merged notes Proportion among false positives /
Proportion among detected
notes

/

Rhythm histogram
spectral flatness

Value computed on output /
Relative difference between value
computed on output and on tar-
get

/

Rhythm dispersion Mean centre drift No
Minimum centre drift No
Maximum centre drift No
Mean cluster standard deviation
difference

/

Minimum cluster standard devi-
ation difference

/

Maximum cluster standard devi-
ation difference

/

Consonance
measures

Mean of hutch 78 roughness /
Standard deviation of
hutch 78 roughness

/

Minimum of
hutch 78 roughness

/

Maximum of
hutch 78 roughness

/

Mean of har 18 harmonicity /
Standard deviation of
har 18 harmonicity

/

Minimum of
har 18 harmonicity

/

Maximum of
har 18 harmonicity

/

Mean of har 19 corpus /

14

Feature group Sub-feature Higher is better?

Standard deviation of
har 19 corpus

/

Minimum of har 19 corpus /
Maximum of har 19 corpus /

Table 2: Summary of all the proposed evaluation metrics.

References

[1] Mert Bay, Andreas F. Ehmann, and J. Stephen Downie. Evaluation of
multiple-f0 estimation and tracking systems. In 10th International Society
for Music Information Retrieval Conference (ISMIR), 2009.

[2] Tian Cheng. Exploiting Piano Acoustics in Automatic Transcription. PhD
thesis, Queen Mary University of London, 2016.

[3] Peter Harrison and Marcus T. Pearce. Simultaneous consonance in music
perception and composition. Psychological Review, 127(2):216, 2020.

[4] James D. Johnston. Transform coding of audio signals using perceptual noise
criteria. IEEE Journal on selected areas in communications, 6(2):314–323,
1988.

[5] Kevin P. Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

[6] Adrien Ycart and Emmanouil Benetos. A-MAPS: Augmented MAPS
dataset with rhythm and key annotations. In ISMIR Late Breaking and
Demos Papers, 2018.

[7] Adrien Ycart, Lele Liu, Emmanouil Benetos, and Marcus T. Pearce. Inves-
tigating the perceptual validity of evaluation metrics for automatic piano
music transcription. Transactions of the International Society for Music
Information Retrieval (TISMIR), Accepted, 2020.

15

	1 Introduction
	2 Data format
	3 Features
	3.1 Benchmark Framewise Precision, Recall, F-measure
	3.2 Benchmark Onset-only Notewise Precision, Recall, F-measure
	3.3 Benchmark Onset-offset Notewise Precision, Recall, F-measure
	3.4 Number of mistakes in highest and lowest voice
	3.4.1 Framewise
	3.4.2 Notewise

	3.5 Loudness of false negatives
	3.5.1 Normalised false negative loudness
	3.5.2 False negative loudness ratio

	3.6 Out-of-key false positives
	3.6.1 Binary pitch profile
	3.6.2 Non-Binary pitch profile

	3.7 Specific Pitch Errors
	3.7.1 Framewise
	3.7.2 Notewise

	3.8 Repeated and merged notes
	3.8.1 Repeated notes
	3.8.2 Merged notes

	3.9 Rhythm features
	3.9.1 Rhythm histogram spectral flatness
	3.9.2 Rhythm dispersion
	3.9.3 Validating Rhythm features

	3.10 Consonance measures
	3.11 Polyphony level

	4 Summary

