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ABSTRACT
In this Perspective, two interrelated new developments are discussed. The first relates to a much better understanding of the actual move-
ment of domain walls during switching. Ferroelectric and ferroelastic domain movements proceed via the combination of jerky and smooth
displacements of domain walls. A careful separation of these two mechanisms into “wild” and “mild” is crucial for the understanding of
avalanches in ferroelectrics. Avalanche switching involves jerky domain wall movements and leads to singularities in the switching current.
During avalanches, domain walls enhance and localize atomic transport and generate magnetism emerging from mobile kinks in the walls.
The second development is based on the transport of dopants inside domain walls during nano-fabrication of devices. Progressing domain
walls in electric fields can then—mainly in the case of wild wall movements—connect defect “reservoirs” similar to synapses connecting neu-
rons in the brain. The walls take the role of synapses, and the defect clusters take that of neurons. The combination of fast moving domain
walls and chemical transport inside the walls constitutes, therefore, ingredients for memristive device elements in neuromorphic computers.
This application is predicted to play a major future role in ferroelectricity.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0035250

I. INTRODUCTION

Ferroelectricity is defined by the switching of polarization
and, thus, by the movement of ferroelectric domain boundaries.
The equivalent definition holds for ferroelastic materials where the
switching occurs between different strain states (Salje, 2012). Many
ferroic materials, such as archetypal BaTiO3, are both ferroelastic
and ferroelectric with respect to the switching of 90○ boundaries,
while they are almost exclusively ferroelectric for 180○ boundaries.
The switching of 90○ boundaries (Ishibashi and Salje, 2002) often
requires more strain energy than electrical energy so that the evalu-
ation of the energy transfer ∫ PdE over the full hysteresis loop tells
us more about the inherent strain interactions than about the elec-
tric interactions. Moreover, weak ferroelectricity occurs in specific
ferroelastic patterns, while the bulk material is purely ferroelastic.
Ferroelectricity and piezoelectricity stem in these cases entirely from
rearrangements of polar ferroelastic twin walls (Lu et al., 2020a;
2019a; 2019b; 2019c) and are unrelated to the crystal structure of
the bulk. Wall polarity in non-polar materials was predicted already
by Goncalves-Ferreira et al. (2008) and Salje (2010) and first direct

observed by Van Aert et al. (2012). It is also now established that
the vast majority of those ferroelastic domain walls that have been
tested contain polarity (switchable or not) (e.g., Hlinka et al., 2016)
depending on the symmetry of the bulk and the domain walls
(Salje et al., 2016a; Schiaffino and Stengel, 2017). Ferroelectric
switching is not only relevant in the case of binary switching. A
ferroelectric thin film deposited with some strain mismatch on sub-
strates develops complex domain patterns (Tagantsev et al., 2002;
Pertsev et al., 1998) including a multitude of intermediate (meta-
)stable configurations, which allow for non-binary ferroelectric
switching. In adaptive domain structures, these multi-state logical
applications are at the heart of the design of domain walls with three
states in most single crystals and more states in realistic domain
configurations close to the morphotropic phase boundary (Viehland
and Salje, 2014). Multibit hysteresis in such configurations was
described in detail by Baudry et al. (2017).

This result demonstrates that multistate switching is possible in
twinned ferroelectric materials when deposited as thin films. Multi-
state effects are based on the complex energy landscape of the fer-
roelectric device. This complex behavior does not, however, explain
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the possible dynamics of the switching where possible pathways may
not be realized simply because they are dynamically blocked by high
activation energies or other reasons. Domain wall dynamics is now
considered in its most basic approach.

II. MILD AND WILD HYSTERESIS
Several new developments have invigorated the investigation

of domain switching in ferroelectrics and ferroelastics. I wish to
elucidate here some further developments that are likely to have a
major effect on the evolution of neuromorphic (brain-like) com-
putation. In order to do so, let me first elucidate some necessary
related developments, which are crucial for the use of domain wall
movements for such device applications. They all relate to the move-
ments of the domain walls under fields and the way they can connect
chemical dopants between reservoirs (Lee and Salje, 2005; Lee et al.,
2005).

The first breakthrough was the quantitative observation of the
dynamics of domain switching. After first observations of jerk-like
switching, similar to Barkhausen noise (Shur et al., 2002) and the
measurement of jerky propagation of needle domains under stress
in ferroelastics (Harrison and Salje, 2010) and the investigation of
acoustic noise in martensites (Salje et al., 2011), a full set of dynam-
ical switching parameters in BaTiO3 and some other ferroelectric
materials were measured (Salje et al., 2019; Xu et al., 2020). In
most studies, the switching currents constituted a first indicator for
avalanche switching dynamics (Tan et al., 2019; Casals et al., 2020).
The time resolution of more detailed investigations was massively
improved by using acoustic emission (AE) techniques to measure
the switching energy, amplitude, time sequence, aftershock prob-
ability, and correlations (Salje et al., 2019). The results of these
experiments show that switching proceeds by avalanches of corre-
lated domain wall movements where a full set of avalanche param-
eters could be determined (Salje and Dahmen, 2014). In addition,
much milder, smoother domain propagation (Zhang et al., 2020)
coexists. This schism is captured by the notion that we observe
“wild” and “mild” processes where wild means that spiky energy
emission, the so-called “jerks,” dominates the domain wall move-
ments (Yang et al., 2020; Weiss et al., 2015). These move-
ments constitute avalanches in the description of the work of
Salje and Dahmen (2014). Coexistence of mild and wild move-
ments is well known for restructuring processes in many materials
under external forcing, such as ice (Weiss, 2019) and martensites
(Chen et al., 2019) and in crack propagation (Bonamy et al., 2008;
Laurson et al., 2010). Mild processes are much more difficult to
observe than spiky jerks (Casals et al., 2019) where the optical
observation of domain wall movements proved particularly use-
ful (Casals et al., 2020). Mild movements produce very little strain
although they are potentially visible in AE at a very low noise
level.

In summary, avalanche switching generates jerks in the depo-
larization current, the acoustic emission, and other macroscopic
parameters, which are manifest by spikes in almost all response func-
tions. In contrast to these wild events, mild events do not generate
significant spikes and are often seen as background noise. Neverthe-
less, they also relate to domain wall movements, albeit these move-
ments are smoother but still change the fractal dimension of the
domain pattern (Catalan et al., 2008).

III. DOMAIN WALLS CARRY CHEMICAL CURRENTS
The second development relates to the current in domain walls

and associated chemical changes. Ever since the discovery of super-
conductivity in domain walls (Aird and Salje, 1998) and subsequent
studies of highly conducting walls (Seidel et al., 2010), the concept
of domain wall electronics was developed rapidly and was reviewed
by Catalan et al. (2012) and Evans et al. (2020).

An important step forward was the idea that domain wall
transport includes chemical changes during electronic conduction.
This impacts on the origin of memristor properties of ferroelastic
domain walls (Bibes et al., 2008; Garcia et al., 2009). In fact, net-
works of ferroelectric domains have the same properties as arrays
of memristors (Chanthbouala et al., 2012). One typical nanostruc-
ture is a needle domain approaching a perpendicular wall, leading
to the formation of a junction between domain walls and tweed
microstructures (Hayward and Salje, 1998; Salje and Parlinski, 1991;
and Salje et al., 2016b). If the walls are superconducting, the con-
nection between the two walls’ orientations (Fig. 1) constitutes a
Josephson junction. An additional effect is that the current provokes
chemical changes in the walls or in the needle domain itself. Such
modifications may lead to a percolation criticality when the needle
touches an orthogonal wall, an interface, or the surface of the sample
(Novak et al., 2002).

A typical example is the case of WO3 where oxygen depletion
promotes superconductivity. Even at the room temperature, domain
boundaries are highly conducting, while the bulk is a wide gap semi-
conductor (Kim et al., 2010), as shown in Figs. 2 and 3. In a different
approach, Aird and Salje (2000) systematically doped twinned WO3
crystals with Na. The enrichment proceeds via the diffusion from a
Na-gas phase surrounding the sample and is easily detected optically
and via chemical microprobe analysis (see Fig. 4). The dark colored
domain walls in Fig. 4 are doped with Na, and the doping level is

FIG. 1. Attraction of a needle domain to a surface or an interface. A conductivity
spike occurs when the connection is made between the walls and the interface
if atoms are transported inside the domain walls (computation after the work of
Novak et al., 2002).
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FIG. 2. PFM images of WO3 at room temperature: (a) Topography, (b) VPFM phase, and (c) VPFM amplitude of a reduced tungsten oxide crystal. The twin boundary is
clearly visible by the phase change in the VPFM images. No significant change in the in-plane component at the twin boundary occurs in LPFM images. The white arrow in
panel (b) represents the position of the twin boundaries. After Kim et al. (2010).

FIG. 3. I–V characteristics acquired on
the twin wall (a) and on the free sur-
face of a freshly reduced WO3−x crys-
tal. The diode effect is very large
with critical voltages near −0.1 V and
+1.7 V. Memristive behavior is superim-
posed on a piezoelectric response. (b)
The piezoresponse amplitude is a func-
tion of the ac voltage applied to the con-
ductive probe of a PZT epitaxial thin film,
an x-cut quartz, and the reduced surface
layer of a WO3−x single crystal. After
Kim et al. (2010).

maximum 12% (Na/W ratio). Both oxygen and Na are mobile above
the room temperature so that WO3 domain boundaries can be uti-
lized to inject or retract defects into un-doped domain boundaries
and thereby dramatically modulate the conductivity of an array of
domain boundaries. It may be mentioned that other ions such as Li
and K equally generate superconductivity.

For AFM/PFM studies, it is important that the symmetry of the
surface layer given by Kim et al. (2010) was found to be higher than
that of the core. The orthogonal orientation of the twin boundaries
indicates orthorhombic or tetragonal symmetry. A direct experi-
mental evidence for the identity of the surface layer stems from the
observation of a strong local piezoelectric activity measured by PFM,
as shown in Fig. 2. The triclinic phase of the core does not have
any transverse or vertical piezoelectric activity; thus, no piezoelectric
effect is to be expected. However, a strong piezoresponse was clearly
observed in the vertical out-of-plane PFM mode. The piezoelectric
activity in the VPFM images shown in Figs. 2(a) and 2(c) is due to
a genuine surface effect originating from the reduced surface layer
rather than from the crystal bulk. All but two phases in WO3 are cen-
trosymmetric, and the only piezoelectric phases are the monoclinic
ε phase (with weak piezoelectricity) and the tetragonal phase P421m
with very strong piezoelectricity (Hamdi et al., 2016). The chemi-
cal composition of the tetragonal phase was reported to be around
WO2.95 depending on the reducing conditions during the sample
preparation. When this surface is contacted with another sample,

the chemical potential gradient will induce ionic transport, which
can be modulated by electric fields. This biased transport is the key
ingredient for memristive devices.

It is then left to the ingenuity of the engineers to design the
appropriate chemical changes in such a way that the percolation
induces a strong increase in the filamentary conductivity between
walls. When the wall retracts, the circuit is broken so that an asym-
metric memory device can be constructed. This fundamental idea
was already proposed in 2012 by Chanthbouala et al. and has been
worked upon ever since. The key ingredient is now that chemical
modifications can, in principle, be constrained to the domain walls
where the chemical mobility is high, while the mobility remains
low inside the bulk. Erasable conductive domain walls in insulat-
ing ferroelectric thin films can hence be used for the non-destructive
electrical readout of the polarization states in ferroelectric memo-
ries. However, domain-wall currents based on these devices seem
not to have reached the intensity and stability required to drive
readout circuits operating at high speeds. First results using spe-
cific domain-wall configurations in epitaxial BiFeO3 thin films show
great promise (Jiang et al., 2018).

IV. NEUROMORPHIC COMPUTATION
Combining the two developments, namely, the recognition

of wild and mild mobilities of the domains and the targeted
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FIG. 4. (a) Chemical composition and (b) optical image of reacted
monoclinic–orthorhombic boundaries in WO3. The scale bar is 50 μm. The black
lines indicate the Na charged regions. Note the intersection between the hori-
zontal and vertical twin boundaries in a diagonal boundary where Na transport
occurred between the two twin systems. The graph (a) shows the enrichment by
Na over W in two adjacent domain walls indicated by the dotted lines. After Aird
and Salje (2000).

chemical injection by domain walls (e.g., Lee and Salje, 2005),
we can now discuss applications of ferroelectrics as proposed
by Chaudhary et al. (2020), Chanthbouala et al. (2012), and
McConville et al. (2020) in the field of neuromorphic computing.
The memristor-type formation of filaments inducing conduction
spikes near a percolation point (Dongale et al., 2018) can, poten-
tially, be replaced by injected chemical domain wall conductivity.
This has several advantages. First, the chemical changes are strongly
confined to interfaces (Nataf et al., 2020; Salje, 2010) and can be
identified by spectroscopy (Salje, 1992). Even though percolations
will presumably generate Schottky barriers near junction areas, these
barriers are limited to atomic size patches and will relax even at
high operating frequencies. Moreover, ferroelectric walls and highly
conducting walls (such as observed in WO3) can help to overcome
the bottleneck between memory and synaptic data transfer. Neuro-
morphic computers imitate the functionality of brain neurons and
connecting synapses, where the synapses combine logical opera-
tions with memory effects. For this purpose, the dual functionality
of the domain walls may be the key ingredient. Injected defects can
stop transport currents in domain walls. Furthermore, synapses are

dynamical elements, which is also the case for mobile, jerky domain
walls.

The path of the electrical current can be switched at the per-
colation point. The percolation point is modified by shifting the
position of the domain wall or of defects, which blocks the trans-
port of atoms along the domain walls. An external signal by an
electric field strain (e.g., via defect movements) can then greatly
change the ionic current (Lu et al., 2019a). The changes occur
rapidly because the walls’ movements in jerks are extremely fast
(Zhang et al., 2014). Equally, the connection and the blocking
of atomic transport can occur over extremely short time inter-
vals (Salje et al., 2017; Sharma et al., 2017; Jiang et al., 2018; and
Chai et al., 2020). The work by Sharma et al. (2017) is particu-
larly important and gives much hope for future developments. They
demonstrated that by using nanofabricated electrodes and scanning
probe techniques, a prototypic non-volatile ferroelectric memory
element entirely based on domain boundaries can be constructed.
The element was scalable to below 100 μm. The binary memory ele-
ment is the conductivity which is present or absent in the boundary.
They demonstrated that the device could be read non-destructively
at less than 3 V with an on–off ratio of ∼1000.

Much work has been directed into such use of ferroelectric
domain boundary engineering in neuromorphic computation over
the last decade, but several key issues still remain obscure. First,
ferroelectric and ferroelastic domains and domain walls generate
many complex domain patterns (Scott, 2020). Each domain bound-
ary can carry specific chemical loading, which can be tailored to
change the percolation point for the memristive carrier transport.
This problem is well known, but no systematic assessment and cat-
alogs of mobile defect species and their mobilities inside complex
patterns of domain boundaries are yet available. Furthermore, fer-
roelectric and ferroelastic domain patterns are well described as
post-mortem objects, while no robust concept exits, which allows
us to understand the loading and unloading during pattern forma-
tion. It is also unknown how the loading of domain walls by mobile
species (e.g., from the bulk) can be undertaken in a reliable way. Even
additional magnetic interactions, generated by the polar and rough
domain boundaries, have been postulated (Lu et al., 2020b) but not
confirmed experimentally.

In summary, research of classic ferroelectricity has come a
long way to be understood theoretically. Furthermore, ferroelec-
tric devices were designed, helped by simulations on various levels
of sophistication, and commercialized. New challenges have also
arisen, and new directions become clearer. Great progress is pos-
sible but is not certain, combining a more detailed knowledge of
the behavior of ferroelectrics and ferroelastics and their domain
boundary dynamics with the intricacies of neuromorphic compu-
tation. Novel tools exist in the field of ferroelectrics, and much
progress has been made in understanding memristive switching.
Some groundwork for computer applications has been laid, but the
great breakthrough is still missing. It appears possible that synaptic
ferroelectrics will be used in future neuromorphic computer designs,
which greatly increases the applicability of ferroelectric materials.
Applications in ferroelectricity are much more widespread than
what could have been imagined 10 years ago. This includes the
advent of ferroelectric Bloch-lines and highly structured ferroic
surface layers (Salje and Carpenter, 2015; Salje and Scott, 2014).
Research in ferroelectrics has greatly evolved, and novel questions
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have emerged. Research in ferroelectricity has branched out in many
directions and will further expand vigorously.
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