
Pre-proof verion of Hsiung, A.R., Tan, W.T., Loke, L.H., Firth, L.B., Heery, E.C., Ducker, J., Clark, V., Pek, Y.S., Birch, W.R., Ang, A.C. 
and Hartanto, R.S., 2020. Little evidence that lowering the pH of concrete supports greater biodiversity on tropical and temperate seawalls. 
Marine Ecology Progress Series, 656, 193-205. 
 

 
 

1 

Little evidence that lowering the pH of concrete supports greater biodiversity on 1 
tropical and temperate seawalls 2 

Amanda R. Hsiung1¶, Wen Ting Tan1¶, Lynette H.L. Loke1*, Louise B. Firth2, Eliza C. Heery1, James 3 
Ducker2, Victoria Clark2, Y. Shona Pek3, William R. Birch3, Ambert C.F. Ang1, Rania S. Hartanto1, 4 
Tiffany M.F. Chai2, Peter A. Todd1 5 

1 Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of 6 
Singapore, 14 Science Drive 4, Block S3, Singapore 117557 7 
2 School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom 8 
3 Institute of Materials Research & Engineering, 2 Fusionopolis Way, Innovis, Singapore 138634 9 

¶These authors contributed equally to this work 10 
*Corresponding author, lynetteloke@gmail.com  11 
 12 
Concrete is one of the most commonly used materials in the construction of coastal and 13 

marine infrastructure despite well-known environmental impacts, including a high carbon 14 

footprint and high alkalinity (~pH 13). There is an ongoing discussion regarding the potential 15 

positive effects of lowered concrete pH on benthic biodiversity, but this has not been 16 

investigated rigorously. Here, we designed a manipulative field experiment to test whether 17 

carbonated (lowered pH) concrete substrates support greater species richness and abundance, 18 

and/or alter community composition, in both temperate and tropical intertidal habitats. We 19 

constructed 192 experimental concrete tiles, half of which were carbonated to a lower surface 20 

pH of 7–8 (vs control pH of >9), and affixed them to seawalls in the United Kingdom and 21 

Singapore. There were two sites per country and six replicate tiles of each treatment were 22 

collected at four time-points over a year. Overall, we found no significant effect of lowered 23 

pH on the abundance, richness, or community assemblage in both countries. Separate site- 24 

and month-specific generalized linear models (GLMs) showed only sporadic effects: i.e, 25 

lowered pH tiles had a small positive effect on early benthic colonisation in the tropics but 26 

this was later succeeded by similar species assemblages regardless of treatment. Thus, while 27 

it is worth considering the modification of concrete from an environmental/emissions 28 

standpoint, lowered pH may not be a factor for enhancing biodiversity in the marine built 29 

environment.  30 
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1. INTRODUCTION 1 

Coastal marine ecosystems have experienced dramatic changes during the last century, often 2 

driven by urbanisation and exemplified by the proliferation of man-made structures such as 3 

seawalls, breakwaters, and groynes (Heery et al. 2017, Todd et al. 2019). In major coastal 4 

cities, including Sydney, Hong Kong, and Singapore, these artificial structures can comprise 5 

over 50% of shorelines (Chapman & Bulleri 2003, Lam et al. 2009, Lai et al. 2015). 6 

Designed to prevent erosion and provide flood protection (Chapman 2003, Todd et al. 2019), 7 

sea defences are likely to become more prevalent with growing coastal populations, rising sea 8 

levels and increasing storm frequencies (Nicholls et al. 2007, Temmerman et al. 2013). 9 

Concomitantly, there has been growing research interest in the ecological functioning of 10 

these man-made structures (Bulleri & Chapman 2010, Dafforn et al. 2015, Firth et al. 2016b). 11 

However, compared to natural rocky shores, artificial structures tend to support lower species 12 

diversity and/or abundances (e.g., Moschella et al. 2005, Lai et al. 2018), different ecological 13 

communities (e.g., Chapman & Bulleri 2003, Lam et al. 2009), and higher numbers of non-14 

native species and/or homogenised species assemblages (e.g., Bulleri & Airoldi 2005, Glasby 15 

et al. 2007).  16 

Concrete, a composite material comprising Portland cement, water, and a mixture of coarse 17 

and fine aggregates, is one of the most commonly used building materials in coastal and 18 

marine infrastructure (Dugan et al. 2011). While the physical characteristics of concrete (e.g. 19 

durability, strength, and workability) have made it a ubiquitous component of the modern 20 

built environment (Dyer 2014), the production process of concrete has a high carbon 21 

footprint (Waters & Zalasiewicz 2018). It has also been suggested that concrete has a 22 

negative effect on the recruitment of marine biota due to its high surface alkalinity (pH ~13) 23 

(Lukens & Selberg 2004, Perkol-Finkel & Sella 2014), reducing initial rates of species 24 
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colonization (Nandakumar et al. 2003) and favouring alkotolerant taxa such as barnacles and 1 

serpulids over algae (Hatcher 1998, Dooley et al. 1999). This high surface alkalinity 2 

potentially compounds the known negative effects of hard coastal defences such as the loss of 3 

habitat area (Lai et al 2015), compression of the intertidal zone due to its steep gradient (Firth 4 

et al. 2014, Loke et al. 2019a), low structural complexity (Chapman & Bulleri 2003, Moreira 5 

et al. 2007), and higher desiccation (Tan et al. 2018, Zhao et al. 2019) and temperature risk 6 

(Aguilera et al. 2019). With such changes in material and physical structure, seawalls have 7 

been considered sub-optimal intertidal habitats and there is a general consensus that the 8 

expansion of hard coastal defences at a global scale presents a huge threat to coastal and 9 

marine biodiversity (Bishop et al. 2017, Heery et al. 2017).  10 

In response to these threats, ecological engineering—the integration between engineering 11 

principles and maximised ecological value—has been increasingly adopted in the marine 12 

environment (Strain et al. 2018, Chapman et al. 2018). The aim is to alleviate the negative 13 

impacts associated with artificial structures and to increase their ecological functioning 14 

(Morris et al. 2019). In particular, “hard” engineering, the physical modification of existing 15 

seawalls or use of habitat enhancement units (Chapman & Underwood 2011), has been 16 

experimented in several countries, both temperate and tropical (Dafforn et al. 2015, Firth et 17 

al. 2016a, Loke et al. 2019b). However, ecological engineering techniques applied to 18 

seawalls have generally targeted the physical (topographical) differences between natural 19 

rocky shores and artificial structures. Therefore, habitat enhancement units tend to focus on 20 

manipulating the surface complexity of substrates to incorporate water-retaining features 21 

and/or increase structural complexity, via the creation of cavities and the retrofitting of tiles 22 

with varying surface topography (Firth et al. 2013, 2014, Loke et al. 2017, Strain et al. 2018). 23 

Nevertheless, even with ecological engineering efforts, concrete is often used, as it fulfils 24 
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industry building and construction safety standards and is easily moulded into various shapes 1 

and designs (Waltham & Dafforn 2018).  2 

Some studies have suggested that the material of habitat enhancement units should also be 3 

manipulated to increase their ecological benefits (Dennis et al. 2018). Partial replacement of 4 

cement or coarse aggregates with more environmentally-friendly materials such as granulated 5 

blast-furnace slag and pulverised fly ash has been shown to improve the live cover of benthic 6 

organisms on concrete substrates (Dennis et al. 2018, McManus et al. 2018). Altering the 7 

concrete matrices also resulted in higher live cover and primary productivity of pre-fabricated 8 

habitat units (Perkol-Finkel & Sella 2014, Sella & Perkol-Finkel 2015). On top of increasing 9 

species diversity, using natural materials in concrete can reduce its environmental footprint 10 

(Dennis et al. 2018). Many of these studies postulated that the reduced pH from these 11 

modifications may be beneficial for biotic recruitment (Perkol-Finkel & Sella 2014, Sella & 12 

Perkol-Finkel 2015, McManus et al. 2018). pH can influence the colonisation of algae and 13 

barnacles at early stages (Guilbeau et al. 2003), which can, in turn, result in different 14 

succession patterns (Almeida & Vasconcelos 2015). With contrasting effects of pH on 15 

different taxa (Guilbeau et al. 2003), sites with different benthic community assemblages 16 

could also be influenced to varying degrees.  17 

One straightforward technique for lowering concrete pH for experimental work is through 18 

concrete carbonation. Carbonating concrete ex-situ, also known as accelerated carbonation, 19 

has traditionally been used to simulate the carbonation process that occurs naturally when 20 

concrete is exposed to air (de Ceukelaire & van Nieuwenburg 1993, Neves et al. 2013). This 21 

is often performed to test for the effects of long-term carbonation on concrete’s metal 22 

leaching abilities (Sazzad bin Shafique et al. 1998), compressive strength (de Ceukelaire & 23 

van Nieuwenburg 1993, Chi et al. 2002), and durability (Roy et al. 1999) as carbonation can 24 
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alter the physical properties of concrete by densifying the concrete surface (Chi et al. 2002, 1 

Fernandez Bertoz et al. 2004). However, to our knowledge, no previous studies have tested 2 

the effects of this approach on benthic diversity and composition. 3 

Whether changes in concrete pH alone (i.e. while keeping structure texture and composition 4 

constant) affects the overall species recruitment on habitat enhancement units is unknown. To 5 

determine this, we fabricated topographically-complex concrete tiles and carbonated half of 6 

them to obtain lower surface alkalinity, from here on referred to as “carbonated tiles”. To test 7 

for generality, the experiment was conducted in a temperate country (United Kingdom) and a 8 

tropical country (Singapore). Specifically, we tested the following hypotheses: (1) carbonated 9 

tiles would support higher macrofaunal abundance and species richness than standard non-10 

carbonated tiles, and (2) carbonated tiles would support different biological communities 11 

from standard non-carbonated tiles, and these differences would be consistent across time and 12 

sites with different community assemblages. 13 

2. MATERIALS & METHODS 14 

2.1. Tile design and fabrication 15 

A total of 192 experimental tiles were constructed for this study using a single tile design. 16 

The face of each tile measured 14 cm × 10 cm (Fig. 1) and had a smooth and pitted façade 17 

(on left and right hand side, respectively). The smooth surface was designed for photographic 18 

analysis of epibenthic percentage cover while the pitted side was designed to create water-19 

retaining features that would act as refugia for colonising macrofauna (Loke and Todd, 20 

2016); this was achieved using the software CASU (Loke et al. 2014). After measuring the 21 

angle of seawalls at the chosen study sites, we then adapted all tiles so that the resultant slope 22 

of the front facing façade after installation was standardised at 60° (Fig. 1C–D). 23 
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Masters of the tiles were created following Loke and Todd’s (2016) protocol, using silicone 1 

rubber moulds (Freeman Bluesil™ V-340). Tiles were then cast from the moulds using 2 

cement/aggregate ratio = 1/3 and water/cement ratio = 3/5. Pre-drilled holes were set in the 3 

centre of the concrete tiles for installation on seawalls. 4 

2.2. Tile carbonation  5 

Carbonation is often performed by diffusing high concentrations of carbon dioxide into a 6 

sealed chamber containing the concrete (Sanjuán et al. 2003, Chang & Chen 2006). Carbon 7 

dioxide reacts with calcium hydroxide and calcium–silicate–hydrate in concrete to form 8 

calcium carbonate and water, reducing the alkaline content in the tiles and lowering its pH 9 

(Fernández Bertos et al. 2004). In this experiment, a CO2 chamber was created using a large 10 

cooler box and dry ice (Short et al. 2001, Venhuis & Reardon 2003).  11 

Trials were conducted using concrete coupons (5 cm × 5 cm × 2 cm) to determine the best 12 

carbonation conditions (wet or dry), and the duration of curing (2, 6, 12, 20 days) and 13 

carbonation (7, 22, 29 days) required to reduce the pH of the tiles. Concrete coupons were 14 

split in half using a tile saw and the surface and cross section of the split tiles were stained 15 

with two pH indicator dyes: (1) Phenolphthalein and (2) Bromothymol blue to test the 16 

effectiveness of carbonation. Phenolphthalein, a pH indicator which transitions from 17 

colourless to light pink around pH 8, becoming a dark pink when pH value exceeds 9, is 18 

typically used to assess the extent of carbonation in concrete (Fig. 2B; Chang & Chen 2006, 19 

Thiery et al. 2007). Bromothymol blue, which is less commonly used to test concrete pH, 20 

transitions from yellow to light blue from pH 6 to 7, becoming dark blue for pH values above 21 

8 (Guilbeau et al. 2003). When the stained carbonated tiles were colourless (phenolphthalein) 22 

and light blue (bromothymol blue), it indicated that the external front-facing surface of the 23 

carbonated tiles had a pH estimated to be between 7 and 8 (Fig. 2A).  24 

i) 
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After several trials were conducted, it was found that the tiles were more rapidly carbonated 1 

when dry as opposed to wet, and when they were left to cure for longer before being exposed 2 

to CO2. Carbonation duration (>28 days), however, was the most important variable to 3 

achieve a pH of less than 8 (Fig. 2A). A sub-sample of the final batch of tiles were assessed 4 

using the indicator dyes, which showed that the surface of the carbonated concrete tiles was 5 

no more than than pH 8.  6 

Attempts were also made to quantify the pH of the concrete tiles using a pH meter, but there 7 

has been a longstanding lack of a standardised protocol for measuring the pH of pore fluid in 8 

concrete (Alonso et al. 2012). Additionally, while the method is often used to test for internal 9 

concrete pH, it does not give an accurate measurement of surface pH. Therefore, this method 10 

was only used to confirm the differences in internal pH between treatments at the 6-month 11 

time point (Fig. S1, Table S1). All tiles were prepared in Singapore before half were sent to 12 

the UK. 13 

2.3. Study sites 14 

Tiles were deployed in two locations, one temperate and one tropical climate, with two 15 

seawall sites at each location. Plymouth (United Kingdom) was chosen as the temperate 16 

location and Singapore was chosen as the tropical location.  17 

2.3.1. Plymouth, United Kingdom 18 

Plymouth is a port city located on the south-west coast of England, United Kingdom, where 19 

the English Channel broadens into the Atlantic Ocean. 33% of the coastline within Plymouth 20 

Sound is artificial (mostly seawalls) (Knights et al. 2016). In Plymouth, the tiles were 21 

installed in February 2018 onto two vertical seawalls at: (i) Turnchapel (50.359, 4.1178) and 22 

(ii) Cremyll (50.3648, 4.1633).  23 
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2.3.2. Singapore 1 

Singapore is a tropical city-state located just over one degree north of the equator, separated 2 

from Peninsular Malaysia by the Straits of Johor in the north and from Indonesia by the 3 

Straits of Singapore in the south. Over 63% of Singapore’s coastline is made up of seawalls 4 

(Lai et al. 2015). In Singapore, tiles were carbonated from January to February 2018 and 5 

were installed in late February and early March 2018 at two southern islands: (i) grouted 6 

granite rip-rap seawall at Pulau Hantu (1.22611, 103.75222) and (ii) vertical seawall at Pulau 7 

Seringat (1.23, 103.85056).  8 

2.4. Field experimental design, sampling and laboratory procedures 9 

At each site, 24 of each tile treatment (carbonated and non-carbonated) were installed along 10 

seawalls at mid-shore height, approximately 1.5 m above chart datum, and spaced at least 0.5 11 

m apart. Six replicates of carbonated and non-carbonated tiles were removed randomly at 3, 12 

6, 9 and 12 months. However, due to unforeseen temporary restricted access to Pulau Hantu, 13 

collection for the 9-month time point could not be carried out, hence we included a 15-month 14 

time point instead for that site. 15 

Prior to removal of the tiles, fast-moving organisms were picked and placed into self-sealing 16 

plastic bags. The tiles were then photographed (for subsequent algal cover analysis) before 17 

being removed from the seawall and placed into larger self-sealing plastic bags. Algal cover 18 

was quantified using CPCe image analysis software (Kohler & Gill 2006), with percentage 19 

cover tabulated from 40 random point intercepts on the smooth surface of the tile. Four 20 

common functional groups were used to categorise the algae composition in both countries 21 

following Loke et al. (2016) (Table 1).  22 
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After algal removal from the smooth surface, the tiles were placed into the freezer (–20 °C) 1 

for subsequent sorting, counting and identification using a dissecting microscope. All 2 

specimens were identified to species or morphospecies level except for polychaetes, which 3 

were identified to family level (Loke & Todd 2016, Loke et al. 2017, 2019a).  4 

2.5. Statistical analysis 5 

As tiles were lost due to wave action, there was an unequal number of replicates for some 6 

sites and treatments (Table S2), but there were at least four replicates per treatment per site 7 

per time point. Data were first examined for the presence of outliers, heterogeneity, non-8 

normality and overdispersion (Zuur et al. 2010). We then tested for differences in total 9 

abundance and species richness using generalised linear models (GLMs). Models with 10 

Poisson error were first constructed separately for the two countries with treatment, site, and 11 

month (categorical) as fixed effects, but models with negative binomial error were 12 

subsequently used to analyse abundance due to over-dispersed data.  13 

With differences in sample numbers between sites at some time points (described above) and 14 

significant differences in abundance and species richness between months and sites, we 15 

removed interaction terms (Table S3) and evaluated whether treatment effects differed by 16 

subsequently modelling the abundance and richness data separately for each site and month 17 

with treatment as the sole predictor. Site- and month-specific models of richness tended to be 18 

under-dispersed, and were therefore fit with Conway-Maxwell-Poisson (COM-Poisson) 19 

regressions (Sellers & Shmueli 2010). Negative binomial error structure was maintained for 20 

site- and month-specific models of abundance. Univariate tests were performed in R v3.6.0 21 

(R Core Team 2019). COM-Poisson models were constructed and evaluated using the 22 

‘COMPoissonReg’ package (Sellers et al. 2017) while negative binomial regression was 23 

performed using the ‘glm.nb’ function in the ‘MASS’ package (Venables & Ripley 2002).  24 



Pre-proof verion of Hsiung, A.R., Tan, W.T., Loke, L.H., Firth, L.B., Heery, E.C., Ducker, J., Clark, V., Pek, Y.S., Birch, W.R., Ang, A.C. 
and Hartanto, R.S., 2020. Little evidence that lowering the pH of concrete supports greater biodiversity on tropical and temperate seawalls. 
Marine Ecology Progress Series, 656, 193-205. 
 

 
 

10 

We used permutational distance-based multivariate analysis of variance (PERMANOVA; 1 

Anderson 2001) to test for differences in community composition between treatments (we 2 

removed 15th month data as they were un-replicated in time; please see the Methods section 3 

for more information). As both countries hosted no overlapping species, analyses were 4 

conducted separately for temperate and tropical systems. The abundances were log(X+1)-5 

transformed and the full resemblance matrix was calculated on Bray-Curtis similarities and p 6 

values were generated using 9999 unrestricted random permutations of residuals. 7 

PERMANOVA revealed significant differences in community composition among months, 8 

but did not reveal significant differences among treatments; canonical analysis of principal 9 

coordinates (CAP) plots were then used to examine these temporal differences. All 10 

multivariate analyses were performed using the PRIMER v7 with the PERMANOVA add-on 11 

(Anderson et al. 2008).  12 

3. RESULTS 13 

3.1. Abundance and species richness  14 

A total of 78,114 individuals of 68 species/morphospecies were collected and identified from 15 

experimental tiles across both countries. Of these, 13 were temperate species from Plymouth, 16 

and 55 were tropical species from Singapore. Although there were more unique species found 17 

on carbonated tiles than non-carbonated tiles at both sites in Plymouth, this was not observed 18 

in Singapore (Table 2; further details in Table S5, S6). Additionally, all species found from 19 

both countries were native, with the exception of the non-native Austrominius modestus in 20 

Plymouth and Siphonaria guamensis in Singapore (Gallagher et al. 2015, Tan et al. 2018), 21 

both of which were found on both treatments at both sites in their respective countries.  22 
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GLMs showed a significant effect of month on abundance and species richness in both 1 

Plymouth and Singapore. There was also a significant effect of site on abundance and species 2 

richness in Singapore (Table 3), with lower rates of colonisation at Pulau Hantu (Fig. 3). 3 

There was, however, no significant effect of treatment in either country (Table 3, S7).  4 

Site- and month-specific GLMs revealed that there were significant effects of carbonation at 5 

some months and sites, but they were not ubiquitous and none occurred in the final 12-month, 6 

time point (Table 4; further details in Table S8, S9). Carbonated tiles had greater total 7 

abundance than non-carbonated tiles at Cremyll at the 9-month time point, and at Pulau 8 

Hantu at the 6-month time point (Table 4). In Singapore, species richness was greater on 9 

carbonated tiles than non-carbonated tiles at the 3-month time point at Pulau Seringat, and at 10 

the 6-month time point at Pulau Hantu. There were no other significant effects of carbonation 11 

detected from site- and month-specific GLMs.  12 

3.2. Community composition  13 

PERMANOVA revealed significant differences in colonising assemblages among months 14 

(SS = 124360; Pseudo-F3,70 = 39.06; p = <0.001, SS = 38734; Pseudo-F3,67 = 8.6198; p = 15 

<0.001, for Plymouth and Singapore respectively; Table 5) and sites (SS = 3309.5; Pseudo-16 

F1,70 = 3.1183; p = <0.05, SS = 60739; Pseudo-F1,67 = 40.55; p = <0.001, for Plymouth and 17 

Singapore respectively; Table 5), but none between treatments regardless of country or month 18 

(Table 5). Despite significant results for the interaction term (site × treatment × month) in 19 

Singapore, no significant differences were detected when pair-wise comparisons were 20 

conducted between treatments within sites and months. 21 

In Plymouth, barnacle A. modestus, dominated the surfaces of all tiles (Fig. 4). Despite 22 

having higher percentage cover on carbonated tiles than non-carbonated tiles at the 3-month 23 
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time point, there was no observed difference at the final 12-month time point. In Singapore, 1 

biofilm which dominated at 3-month and 6-month time points was succeeded by barnacles 2 

and encrusting algae by the 9-month time point (Fig. 4). However, mean barnacle cover fell 3 

from 31% to 18% between 9-month and 12-month time points (Fig. 4). Although there 4 

appears to be marginal differences between treatments at the 9-month time point, with higher 5 

barnacle percentage cover than algae on non-carbonated tiles, this was not observed at the 6 

final 12-month time point (Fig. 4). 7 

4. DISCUSSION 8 

Findings from our bilateral one-year study indicate that lowering the pH of concrete did not 9 

significantly increase the abundance and species richness of intertidal benthic organisms on 10 

retro-fitted enhancement tiles, and did not significantly alter the community composition they 11 

support. Concrete is generally considered damaging to the environment, yet it remains one of 12 

the most utilised materials in the world and is prevalent in the construction of marine and 13 

coastal infrastructure (Bulleri & Chapman 2010, Waters & Zalasiewicz 2018), including 14 

marine biodiversity enhancement units. Some researchers have proposed that lowering the 15 

pH of concrete would further increase species richness on enhancement units (Perkol-Finkel 16 

& Sella 2014, Huang et al. 2016, Reef Ball Foundation 2017). However, previous studies that 17 

showed positive effects of lowered concrete pH on benthic diversity were only conducted 18 

over short time periods (3–4 weeks; Guilbeau et al. 2003, Nandakumar et al. 2003), in 19 

subtidal areas with little/no emersion (Perkol-Finkel & Sella 2014, Sella & Perkol-Finkel 20 

2015), or had also made additional adjustments to the concrete composition and surface 21 

texture (Perkol-Finkel & Sella 2014, Sella & Perkol-Finkel 2015, Dennis et al. 2018) which 22 

made it difficult to discern if pH was indeed responsible for the positive effect. Given that the 23 

current experiment, which tested the effects of pH alone, found no overall significant 24 
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differences in species recruitment on the tiles, lowering pH might not be an efficacious 1 

ecological engineering technique for increasing intertidal biodiversity on artificial structures.  2 

While the effects of soil pH on plants have been thoroughly studied in the terrestrial 3 

environment (Bååth & Arnebrant 1994, Robson 2012), the influence of substrate pH on 4 

benthic marine life remains poorly understood (Nandakumar et al. 2003, Sekar et al. 2004). 5 

Higher species richness on carbonated concrete at earlier time-points in Singapore (3-month 6 

at Pulau Seringat and 6-month at Pulau Hantu; Fig. 3) could be related to greater biofilm 7 

(e.g., cyanobacteria, diatoms) and microalgal development. pH has been regarded an 8 

important factor in the colonisation of natural biofilms (Sekar et al. 2004); further, 9 

carbonating concrete can create smaller pore diameters when calcium is precipitated into 10 

carbonate form (Roy et al. 1999) that can also encourage microalgal attachment (Guilbeau et 11 

al. 2003). These layers of biofilm and microalgae are food resources which could have 12 

provided greater foraging opportunities for grazers (Irigoyen et al. 2011), such as limpets 13 

(e.g., Siphonaria guamensis, Patelloida saccharina) and snails (e.g., Nerita undata). For 14 

example, higher abundance of individuals found on carbonated concrete tiles from Pulau 15 

Hantu at the 6-month time point was also mainly due to a single snail species, N. undata, a 16 

microalgal feeder (Underwood 1984). Concrete carbonation, however, had little or no effect 17 

at sites which had low algal growth generally, such as at Cremyll and Turnchapel in the UK 18 

(Fig. 4).  19 

Even though there might be some early differences in abundance and species richness 20 

between tile treatments in Singapore, the effects of carbonation did not persist. Biofilm 21 

formation can strongly influence the settlement of macrofouling taxa such as barnacles, 22 

serpulids and mussels (reviewed by Almeida & Vasconcelos 2015), but the lack of significant 23 

differences between treatments beyond six months suggests that, even if there were 24 
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differences in initial microalgal attachment, it was not enough to influence subsequent 1 

successional species. Additionally, the surface pH of non-carbonated tiles in Singapore 2 

appeared to have reduced to <8 by month 6 (Figure S1). This is in line with findings by 3 

Dooley et al. (1999) who suggested that the pH of concrete surface will approach seawater 4 

pH after three to six months in marine environments. As such, colonisers may not experience 5 

major differences in concrete pH between tiles of different treatments after a few months of 6 

seawater exposure. 7 

Substrate alkalinity is also unlikely to affect primary or secondary consumers during low tide, 8 

since leaching occurs when concrete is submerged in water (Li et al. 2005). Calcium oxide 9 

(CaO) in Portland cement reacts with water to form calcium hydroxide (CaOH), contributing 10 

to the high pH of the substrate. Lowering concrete pH via carbonation can also influence the 11 

solubility of metals, where copper, cadmium and cobalt are increasingly mobilised, and 12 

calcium and strontium become more tightly bound (Sazzad bin Shafique et al. 1998, 13 

Fernandez Bertoz et al. 2004), but this mostly occurs during submersion. Nevertheless, the 14 

water-retaining pits of the non-carbonated concrete tiles still accommodated a higher 15 

abundance and richness of benthic organisms than the flat surfaces of the tiles. Water-16 

retaining features of habitat enhancement units, even non-carbonated concrete ones, provide 17 

organisms with shelter from desiccation and thermal stresses (Firth et al. 2016a, Loke et al. 18 

2019b). This adds to the growing evidence that habitat structure may have a larger influence 19 

on community assemblages than substratum material (Anderson & Underwood 1994, 20 

Coombes et al. 2015).  21 

At small scales, the presence of motile fauna (i.e., gastropods, non-encrusting polychaetes, 22 

decapods) is often highly influenced by the availability of refugia and foraging opportunities 23 

in habitats (Schmidt & Scheibling 2007, Irigoyen et al. 2011). The empty shells of dead 24 
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barnacles provide additional complex micro-habitat (<5 mm) structures (Chalmer 1982, Dean 1 

& Connell 1987). In this study, many barnacles died in Singapore after initial colonisation, 2 

which then served as microhabitats for smaller organisms such as the crab Nanosesarma 3 

minitum, snails Zafra spp. and polynoids (Fig. 5). At a larger scale, seawall design and 4 

location can affect benthic colonisation (Jackson 2014). For instance, slope differences can 5 

affect the susceptibility of seawalls to extreme surface temperatures, with sloping seawalls 6 

absorbing more solar radiation compared to vertical ones (Zhao et al. 2019). Additionally, 7 

Pulau Hantu is a particularly sheltered site compared to Pulau Seringat (Loke et al. 2016). 8 

Both temperature and wave exposure can affect hard-shore communities (McQuaid & Branch 9 

1984, 1985), and lower abundance and species richness at Pulau Hantu (sloping) compared to 10 

Pulau Seringat (vertical) at all time points is likely due to their very different gradients. These 11 

biotic and abiotic influences on the succession of the tiles may play a greater role in 12 

controlling community patterns compared to the pH of the concrete tiles.  13 

Furthermore, barnacles and serpulids often settle on new intertidal substrate surfaces, both 14 

natural (Dean & Connell 1987, Tejada-Martinez et al. 2016) and artificial (Chalmer 1982, 15 

Coombes et al. 2017), during early successional phases. While carbonated concrete had 16 

previously reduced the settlement of “alkotolerant organisms” (Dooley et al. 1999, Huang et 17 

al. 2016) and promoted algal growth (Guilbeau et al. 2003), this effect was not evident in the 18 

current experiment. In fact, there were significantly more barnacles on carbonated tiles than 19 

non-carbonated tiles at Cremyll at the 9-month sampling point (Table 3, Fig. 3). 20 

To gain a more comprehensive understanding on the effects of concrete pH, future studies 21 

can take regular measurements of the tile pH as well as the seawater pH in the water-22 

retaining pits of the tiles. There is also a lack in standardised protocol for testing the pH of 23 

other hard substrates such as granite, limestone and other naturally occurring rocks (Aho & 24 
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Weaver 2006), which would be useful for investigating the role of substrate pH in influencing 1 

marine biodiversity. Nevertheless, this study provides some insight to the potential effects of 2 

pH on marine benthic colonisation from an ecological engineering perspective.  3 

As the demand for urban coastal development rises in response to the threats of sea level rise 4 

and increasing coastal populations, it is important to consider engineering solutions that can 5 

maximise the ecological functioning of artificial structures. However, the influence of 6 

substrate pH on benthic colonisation is relatively understudied with little evidence to support 7 

the hypothesis that lowering concrete pH can increase species richness or abundance of 8 

organisms. Our experiment indicates that the effects of pH on benthic colonisation is non-9 

significant and we suggest that manipulation of the physical structure of habitat enhancement 10 

units, such as increasing topographical complexity and adding water-retaining features, is a 11 

more effective eco-engineering approach to enhancing the ecological value and species 12 

diversity on seawalls.  13 
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Tables 1 

Table 1. Functional categories used for classifying algae in this study, adapted from Loke et al. 2 
(2016). 3 

Functional group Dominant Component Taxa (examples from Singapore) 
Microalgae/biofilm Unidentified cyanobacteria and diatoms, bare surfaces were also 

classified in this group due to difficulty in differentiating visually. 
Encrusting algae Ralfsiaceae and/or Neoralfsiaceae 
Ephemeral green turfs Ulva spp. 
Red/brown turfs Parviphycus antipae, Gelidiopsis variabilis, Dictyota spp. and 

Ceramiales 
 4 

Table 2. Total number of species and unique species found on each tile treatment at each site across 5 
all time points. 6 

Sites 
Total number of species Total number of unique species 

Carbonated Non-carbonated Carbonated Non-carbonated 
Cremyll 11 8 4 1 
Turnchapel 8 7 2 1 
Pulau Hantu 19 21 4 6 
Pulau Seringat 41 41 5 5 

 7 

Table 3. Analysis of deviance results for negative binomial and poisson GLMs for total abundance 8 
and species richness in Plymouth (left) and Singapore (right). Significant p-values, as determined by 9 
likelihood ratio tests, are shown in bold. 10 

 Plymouth, UK Singapore 
Source df Dev Res df Res Dev P df Dev Res df Res Dev P 
Abundance - Neg. Bin. GLM 
  Model   94 164.5    88 448.1  
  Site 1 0.9 93 163.6 0.3388 1 253.9 87 194.2 <0.0001 
  Treatment 1 0.9 92 162.7 0.3411 1 2.5 86 191.6 0.1107 
  Month 1 48.7 91 114.0 <0.0001 1 83.0 85 108.6 <0.0001 
           
Richness - Poisson GLM 
  Model   94 50.8    88 350.9  
  Site 1 0.1 93 50.8 0.8150 1 211.3 87 169.7 <0.0001 
  Treatment 1 0.4 92 50.3 0.5478 1 2.7 86 167.0 0.1008 
  Month 1 19.1 91 31.2 <0.0001 1 117.6 85 49.7 <0.0001 

 11 

Table 4. Results from site- and month- specific GLMs for total abundance and species richness. 12 
Models for N used a negative binomial error distribution, while Conway-Maxwell-Poisson error was 13 
used in models for S. All contained treatment as the sole predictor. The table shows “--” when there 14 
was no difference between pH treatments, “C > NC” where carbonated tile treatments had higher 15 
abundance or species richness than the non-carbonated pH treatment, and “na” where no data were 16 
available. Complete coefficient summaries from each model are provided in Appendix A. 17 

Country Site 3-month 6-month 9-month 12-month 15-month 
Abundance - Neg. Bin. GLM 
  Plymouth, UK Cremyll -- -- C > NC -- na 
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 Turnchapel -- -- -- -- na 
  Singapore P. Hantu -- C > NC na -- -- 
 P. Seringat -- -- -- -- na 
 
Richness - Conway-Maxwell-Poisson GLM 
  Plymouth, UK Cremyll -- -- -- -- na 
 Turnchapel -- -- -- -- na 
  Singapore P. Hantu -- C > NC na -- -- 
 P. Seringat C > NC -- -- -- na 

 1 

Table 5. Permutational distance-based multivariate analysis of variance (PERMANOVA) results 2 
based on Bray-Curtis dissimilarities of the relative abundances (log-transformed) of 13 and 57 3 
(Plymouth and Singapore, respectively) taxa in response to site, pH treatment and duration since 4 
deployment as fixed factors and their interactions. 5 

Source df SS Pseudo-F P(perm) Unique perms 
Plymouth, UK 
  Site 1 3309.5 3.12 0.0379 9942 
  Treatment 1 1343.4 1.27 0.2568 9940 
  Month 3 124360.0 39.06 <0.0001 9914 
  Site x Treatment 1 1944.1 1.83 0.1297 9941 
  Site x Month 3 3828.2 1.20 0.2841 9938 
  Treatment x Month 3 4979.9 1.56 0.1303 9936 
  Site x Treatment x Month 3 1703.4 0.54 0.8541 9951 
  Residual 70 83844    
 
Singapore 
  Site 1 60739.0 40.55 <0.0001 9949 
  Treatment 1 1748.7 1.17 0.2903 9930 
  Month 3 38734.0 8.62 <0.0001 9910 
  Site x Treatment 1 519.0 0.35 0.9628 9936 
  Site x Month 2 27654.0 9.23 <0.0001 9927 
  Treatment x Month 3 5119.7 1.14 0.2892 9904 
  Site x Treatment x Month 2 5327.8 1.78 0.0454 9904 
  Residual 67 100360    

  6 
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Figures 1 

 2 

  

  

Figure 1. Dimensions of tiles for (A) vertical and (B) sloping seawalls, with schematics of the tiles 3 
when installed on the seawalls (C and D, respectively). 4 

 5 
A) Carbonated tiles B) Non-carbonated tiles 

  

Figure 2. Images of (A) carbonated tiles stained with phenolphthalein (left) and bromothymol blue 6 
(right) after undergoing: i) 29 days of carbonation and 12 days of drying, ii) 22 days of carbonation 7 
and 20 days of drying, and iii) 22 days of carbonation and 6 days of drying, with (B) non-carbonated 8 

A B
1 

C D
0 

i) 

ii) 

iii) 
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tiles that dried for the same amount of time (control) stained with phenolphthalein (left) and 1 
bromothymol blue (right). 2 
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1 

 2 
Figure 3. (A) Abundance (number of individuals) and (B) species richness on tile treatments (non-carbonated and carbonated) across four time points (3-3 
month, 6-, 9-, 12- for Cremyll, Turnchapel and Pulau Seringat, 3-month, 6-, 12-, 15- for Pulau Hantu). Boxplot middle lines indicate the median; hinges 4 
indicate 75% and 25% quantiles (top and bottom, respectively); whiskers indicate highest and lowest values within 1.5 times the interquartile range from top 5 
and bottom hinges, respectively; dots indicate outliers.6 

A 

B 
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 1 

Figure 4. Changes in mean percentage cover (±1SE) of dominant taxa (mean > 1%) on the front 2 
surface of the tiles in Plymouth and Singapore over time.  3 

 4 

Figure 5. Example of a non-carbonated tile at 12-month from Pulau Seringat, Singapore, with several 5 
empty barnacle shells that contributed to microhabitats for smaller organisms. 6 


