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Abstract

Sensor nodes, likemany social insect species, exist in harsh environments in

large groups, yet possess very limited amount of resources. Lasting for as

long as possible, and fulfilling the network purposes are the ultimate goals

of sensor networks. However, these goals are inherently contradictory.

Nature can be a great source of inspiration for mankind to find methods to

achieve both extended survival, and effective operation. This work aims

at applying the threshold-based action selectionmechanisms inspired from

insect societies to performaction selectionwithin sensornodes. The effect of

thismicro-model on themacro-behaviour of the network is studied in terms

of durability and task performance quality. Generally, this is an example of

using bio-inspiration to achieve adaptivity in sensor networks.
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Chapter 1

Introduction and Background

1.1 Sensor Networks

Sensor networks are a category of networks that is characteristically distinct

fromconventional computer networks. Individualmembers of a sensor net-

work are called sensor nodes, or nodes for short. Nodes in a sensor network

are comparatively small in size, limited in resources, and often deployed in

large numbers. Limitations in resources available to a sensor node can be in

the form of small-sized memory, modest processing power, and restricted

energy sources [117]. Such limitations combined with the unique meth-

ods and manners of network deployment impact the communication and

control models and mechanisms employed within sensor networks [60].

Nodes within a sensor network can be heterogeneous or homogeneous

[133]. This may be determined by several factors including design time

decisions, failure of node components, cost issues, or any combination of

these factors.

Sensor networks are often utilised tomonitor the dynamics of unknown

environments especially those of unpredictable and/or highly irregular na-

ture. Usually, a sensor nodemonitors phenomenawithin very close proxim-

ity to itself. Such amode of operation allows highly localised data collection

with a great level of detail. The fuzziness and continuous change in such

environments lend themselves to sensor network monitoring. Environ-

ment models would normally provide an adequately accurate view of a

6



CHAPTER 1. INTRODUCTION AND BACKGROUND 7

phenomena without the need for continuous monitoring. For example, cli-

mate models allowed mankind to predict climate activity in different areas

of the globe with adequate accuracy without high-resolution monitoring,

especially if those patterns were repetitive and periodic [185]. Therefore,

the availability of a model suffices to allow fair level of knowledge about

a phenomenon in the past, present, and future. In sensor network appli-

cations, the situation is often substantially different. This is due to many

reasons, for example, it is difficult at best to build a model of an unexplored

environment. In some other sensor network applications, it is challenging

to build a predictable model of the environment, due to its complexity for

instance, which further complicates monitoring tasks.

Examples of sensor network applications include early alarm systems

that can be used around active volcanoes, seismic hot spots, dangerous

material sites, and forests to report fire breaks. Military surveillance ap-

plications can also benefit from sensor networks. For example, sensor

networks can monitor and report enemy vehicle movements or enemy per-

sonnel activity. Monitoring natural phenomena and collecting information

for scientific studies is also another application domain that can benefit

from sensor networks. For example, habitat monitoring, weather moni-

toring, or ocean deep waters monitoring. Finally, and most recently, great

interest arose in pollution monitoring and vehicle movement management,

with the increase of global warming and fuel crises. There are many other

domains and applications for sensor networks [201] [97] that we do not

have the time or space to extensively list or discuss in this dissertation.

However, since we are talking about applications, we take this opportunity

to briefly outline the application scenario we will be discussing through-

out this document. A sensor node can have a number of sensing devices

to detect various measurements from the surrounding environment. The

readings from a sensing device on a sensor node can be used to infer differ-

ent higher-level information items, which in turn can be useful in different

applications. For example, temperature sensor readingsmay be used to pre-

dict ormonitorweather conditions, and also can be use to detect fire breaks.

Another example can be wind sensors which can be used to predict rain

(via cloudmovement patterns), and also the direction of the spread of a fire.
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Given this possibility of reusing sensor readings, it seems very plausible to

imagine a sensor network that is multipurpose [172]. Therefore, instead of

deploying a sensor network to perform weather monitoring, and another

sensor network to perform, say, air pollution monitoring, we can deploy

a single network that would do both tasks. This will require the nodes of

this network to have capabilities of sensing relevant measurements for both

applications. Some of these measurements may overlap, i.e.. same sensing

devices may supply data to multiple applications. Based on this argument,

this thesis was motivated, and hence our application scenario is a multi-

tasked network. It involves a network that does three different tasks, Traffic

Monitoring, PollutionMonitoring, andUrban EnvironmentalMonitoring. More

details about the application scenario will be given later in the dissertation

as we progress through the chapters.

1.2 Sensor Network Challenges

The attention given to sensor networks by both research and industrial

communities is due mainly to the development and evolution of enabling

technologies. For example, the miniaturisation of many sensing compo-

nents like cameras, communication components like transmitters, and pro-

cessing components like CPU units enabled manufacturers to make small

cheap sensor nodes [12]. In addition, different components of a node can

now operate with a fraction of the power profile it conventionally required.

This is especially important for CPUs and communication devices. The

prospects are opening wider and wider as enabling technologies advance

further with every passing day.

While sensornodesoffer advantages like fault tolerance, scalability, high

availability, and low cost, they also present many challenges [29]. Here is a

list of questions and challenges that sensor networks present:

Control mechanisms: control in sensornetworks is oftendistributedwhich

adds to the complexity. Distribution of control is dictated by the fact

that inter-node communication is mostly expensive and unreliable

[61].
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Communication mechanisms and protocols inter-node communication in

sensor networks is unreliable and ad-hoc in nature [170]. Nodes com-

municate with peer nodes within their vicinity to conserve energy

and usually use multi-hop communication structures. Those charac-

teristics of sensor networks require new protocols and mechanisms

to be used as conventional networking protocols were not designed

with these characteristics in mind. For example, TCP require reliable

communication and live connections for data transmission, which is

often unavailable in sensor networks.

Collective decision making, inter-node collaboration, coordination, and cooperation:

nodes need to optimise their collective resources to perform network

goals. Yet, nodes can not rely on a central entity to assign tasks,

schedule activities, or coordinate execution of plans because this of-

ten reduces fault tolerance, which is fundamental to sensor networks.

New control mechanisms, likely distributed, are needed to cope in

such situation [61].

Dynamism: the environments where sensor networks are deployed are

mostly inhospitable, unexplored or unpredictable [115]. The dynamic

nature of the environment requires a degree of intelligence or adapt-

ability on both the macro and micro-levels of the network in order to

achieve network requirements from a human-user point of view with

a reasonable degree of cost-effectiveness.

Security: given the large size of sensor networks, and the nature of the envi-

ronments they are deployed within, security is a great issue in sensor

networks [145]. Sensor nodes could simply be tampered with phys-

ically, or electronically which could consequently result in security

breaches, unreliability, or distorted view of the target phenomenon.

This is often critical in military and business applications.

Generally the term sensor network is overloaded in the scientific lit-

erature and can cover a wide variety of networks with a wide variety of

characteristics and criteria [26]. As this dissertation is mainly concerned

with a particular type of sensor networks, we need to clearly define what
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constitutes a sensor network from our perspective - at least because we

cannot cover all of them for reasons of space, time, and resources. Such a

definition helps greatly and clearly identify the problembeing researched in

this dissertation and narrowdownor specify the scopeof the research appli-

cability. Example criteria and characterisations include heterogeneous vs.

homogeneous, mobile vs. static, active vs. passive, and so on [183]. In this

dissertation, our target networks are generally very resource-constrained.

Although in next the chapter, we will cover in more detail a wide section

of the sensor network literature, the family of networks focused on in this

dissertation is identified here by the constraints and characteristics in the

following list:

1. Nodes typically share a finite communication bandwidth and an unreli-

able communication medium. This implies that connectivity cannot

be guaranteed or relied on [40]. This is a result of the environments

where many sensor networks are deployed. Examples of such en-

vironments include disaster zones, battlefields, and harsh climates.

Disaster zones could expose communication equipments to excessive

heat that could damage them. In battlefields, communication jam-

ming devices could be employed by enemies to disrupt the sensornet-

work effective operation. Finally, harsh climates such as those in the

vicinity of erupted volcanoes may impede communication amongst

sensor nodes. Even if communication medium is reliable, communi-

cation may be impeded by the lack of resources required for it, such

as power or bandwidth. If we look at our multi-tasking applica-

tion, briefly introduced above, we can see that the urban environment

where our network will be deployed is potentially full of communi-

cating devices. This may lead to restricted access to communication

channels and high media unreliability, i.e. constrained bandwidth

[81].

2. Nodes in sensor networks may or may not have information about

peers, i.e. autonomous. Theydonot critically rely on information about

other node conditions, numbers, existence(or lack of), or behaviour in

making decisions [207]. Again, this is due to the nature of the areas
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and manner in which sensor networks are deployed. Deployment is

usually ad hoc, and communication might be very limited. Obtaining

peer-related information within such circumstances may be difficult,

or sketchy at best. Therefore, strong reliance on such information

is a risky approach. In our multi-tasking application, a node may

not know what tasks its peers are performing, and so has to make a

decision based on the information available to it.

3. The physical configuration of sensor nodes may be dynamic, but not

voluntarily controlled [59] by any single node or group of nodes,

i.e. nodes are physically static or parasitically mobile. Nodes are typi-

cally scatteredover the target geographical area randomly, and cannot

move independently [119]. Autonomouslymobile nodes will have to

consume a large amount of energy to achieve the desired geograph-

ical displacement [108]. This goes against the main predicament of

sensor nodes being limited in resources. While voluntary mobility

is assumed to be available in many robotic applications, this is not

the case in sensor networks. In our application scenario, nodes are

distributed over an urban environment more or less randomly and

uniformly, and statically.

4. Fault tolerance is an essential requirement of sensor networks consid-

ering the dynamic, uncertain, and probably hostile environments in

which they are usually deployed [41] [28]. This is advantageous in

case the communication medium, sensing devices, or whole nodes

fail. In our scenario, nodes will be deployed densely to allow fault

tolerance against node failures. Nodes should be able to make de-

cisions even if communication is unavailable, which achieves fault

tolerance against communication media unreliability.

5. Nodes in a sensor network can be heterogeneous [38]. Heterogeneity

can be a system characteristic at design time, or a result of changes in

some device configuration or user policies at runtime. It also could

happen as node parts fail or degrade their performance due to wear

and tear factors. We will experiment with homogeneous nodes in
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this dissertation, but nodes behaviour may make them seem virtually

heterogeneous. There is nothing in this work that is solely aimed

at homogeneous [10] sensor networks. In our application scenario,

nodes are deployed more or less homogeneous in their capabilities.

However, wear and tear and other environmental or manufacturing

factors is likely to result in heterogeneity developing. Our work does

not depend on homogeneity of the nodes to operate successfully.

6. Task preemption is often not possible as nodes are assumed to have

a minimalist build [72]. In other words, because nodes are relatively

resource-constrained (limited energy, memory, CPU power, sensory

capacity, etc), they can perform only one task at a time [167], i.e. they

are single-tasked and the scheduling is non-preemptive. Multi-tasking

could introduce complexity in the infrastructure serving thehigh-level

applications [19] such as memory , CPU, and power management

components. Also applications could work on conflicting agendas,

for example if a sensor node trying to monitor different targets mov-

ing in opposite directions. Complexity in the node infrastructure

may result in increased node production cost and longer design, de-

velopment, testing, and therefore deployment, time lengths. In our

scenario, detailed later in the dissertation, nodes perform tasks with

no preemption, and only one of the three high-level tasks is performed

at a time.

7. No assumptions about future task requirements or task scheduling

can be made by nodes in a sensor network [191]. Therefore, dynamic

on-the-fly decisionmaking is an essential characteristic of any proposed

control mechanism [91] [92] [141]. This comes as a result of the uncer-

tainly surrounding the availability of communication or information

from other networkmembers in addition to the dynamic nature of the

deployment environment and manner. In our application scenario,

nodes make decision dynamically and on the fly depending on their

context, i.e. resource availability, application requirements, and user

policies.
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8. Nodes in sensor networks cannot directly affect, alter, or modify the

environment, i.e. they are passive. Their main function is to report

or monitor events that occur in their locality [2]. This is a significant

difference between a sensor node and a robot. In fact, this often com-

plicates matters in sensor networks as they miss out on the benefits

of the environment’s feedback on the effect of the network activity.

This almost reverses the role of the environment from a target of

change by nodes to a driver of change of nodes [82] [188]. Clearly, in

our application scenario, there is no environment alterations by the

nodes. Node simply monitor, analyse, and report Traffic, Pollution,

and Weather-related data.

9. The resource-constrained [126] nature of the nodes in a sensor network

has repercussions on the nodes’ ability to gather, process, and com-

municate data. Therefore, it is necessary to accomplish the goals of the

network with minimum possible resource consumption [54] [7]. This

requirement is very much linked to many of the other requirements

such as unreliable communication, large number of nodes deployed,

non-preemptive taskingmodel, heterogeneity, and static physical con-

figuration or involuntary mobility. Nodes in our application scenario

are assumed to be as minimalistic as possible.

10. Sensor networks are large-scale in terms of the number of nodes [58]

in a network. Therefore, scalability is crucial in any proposed con-

trol mechanism [160]. This requirement support the fault tolerance

requirement above. Our network scenario employs a dense sensor

network to obtain fine-grained monitoring capabilities.

1.3 Why use biologically-inspired solutions ?

The differences between conventional computer networks, and sensor net-

works motivated researchers to look for new solutions to cope with the

requirements and challenges introduced by the latter [153]. Nature has

always been a source of inspiration and insight into new ideas to solve

man problems [175]. Nature provides working solutions that were tried
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and proved to work to solve natural problems successfully for hundreds

and thousands of years [15]. Fields that have used or drawn from natural

systems include, but not limited to, genetic algorithms, cellular automata,

emergent systems,neural networks, artificial life, artificial immune systems,

and many more [43] [66] [101].

The complexity and and sheer size of sensor networks is observed to

resemble that of some societies or groups that exist in nature. These include

schools of fish, flocks of bird, and ant colonies. Scientists try to under-

stand the mechanisms used by such organisms and replicate them or adapt

them to solve sensor network problems [32]. In this dissertation, we adopt

this approach by taking a biologically inspired solution, and explore the

employment of this solution in sensor network scenarios.

1.4 Dissertation Focus and Research Question

Thedissertation examines the advantages anddisadvantages of the employ-

ment of adaptive bio-inspired solutions in sensor networks. In particular,

the threshold-based models are tackled as a generic adaptive solution to

sensor network problems. The main issues that entail from such a research

activity include:

• How to apply threshold-based algorithms to solve sensor network

problems?

• What points or areas within a sensor node that can benefit from the

application of threshold-based algorithms?

• How to extend the existent threshold-based models to account for

factors that were not accounted for in the biologymodeling literature?

• What side-effects does the application of threshold-based models, in

more than one point within a sensor node, have on the dynamics of

the system or node behaviour?

• What patterns of mapping between the node-level micro-rules and

the macro-level behaviour of the whole network can be observed and
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hence utilised to create simple micro-level solutions to a high-level

network-wide requirements?

• Whatmetrics canbeused to give an estimate of the quality of a solution

to a sensor network problem, particularly the networks characterised

in this dissertation?

1.5 Contributions

The following are the contributions of this work:

• The application of a threshold-based model to solve the problem of

action selection and control in sensor networks.

• The extensionof the threshold-basedmodel to account for network/node

resources in making a variety of decisions.

• Identifying the major points where adaptability can be beneficial if

introduced within a sensor node.

• Providing a general node architecture where a sensor node is divided

into modules and layers that map to adaptability points and control

structures.

1.6 Dissertation Organisation

In chapter 1, we gave a background to the work presented in this thesis

covering general information about sensor networks, biologically inspired

solutions, and how they fit in the context of this dissertation. We also

introduced our application scenario in this chapter. Chapter 2 will discuss

the work done in areas pertinent to the subject of this thesis, including task

allocation, bio-inspired solutions, and sensor node architectures.

chapter 3 will present and discuss a general sensor node architecture

that we use as a basis for introducing adaptability within a sensor node in

later chapters.
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Chapters 4 and 5will focus on adaptability for task allocation and action

selection. In particular, chapter 4 will present the theory and math behind

the application of threshold-based models to regulate task allocation and

action selection within a sensor network, while chapter 5 will contain the

experiments followed by an analysis and discussion.

In chapter 6, the theory and math behind deploying a threshold-based

model for task discontinuation in sensor networks is presented. This is

followed, in chapter 7, by the experimentswith respect to such deployment,

and finally an analysis and discussion of the results.

The subject of chapter 8 is the use of threshold-based models to control

sensing/sampling activities within sensor nodes. The following chapter,

number 9, introduces the experiments in connection with sampling fol-

lowed by results, analysis, and discussion.

Communication and threshold-based models are discussed and intro-

duced in chapter 10, while chapter 11 contains the experiments using the

ideas presented in chapter 10. Also chapter 11 discusses and analyses the

results of the experiments.

Finally, chapter 12 is wherewe summarise and conclude the dissertation

and highlight future work.



Chapter 2

Related Work

There has been a great deal of work on task allocation in systems that share

common characteristics with sensor networks such as robot teams [176] and

clustered processor grids [202]. The intersection between these systems is

often in the number of nodes, agents, or units within a system and the

need to coordinate among them. Robot teams seem to bear the highest

resemblance to sensor networks and therefore will be extensively covered

in this chapter.

Robot teams are similar to sensor networks in many ways. Like sensor

nodes, individual robots in a team often share a communication medium

that is unreliable with limited bandwidth. Also many robotic applications,

like those of sensor networks, require fault tolerant mechanisms and dis-

tributed algorithms. Nonetheless, robots differ from sensor nodes in some

fundamental aspects. Firstly, most robots are voluntarily mobile, whereas

sensor nodes are often not. Secondly, robots for the most part can alter

the environment in one way or another, while sensor nodes are typically

passive monitoring devices. Thirdly, with robots, the energy requirements

of sensing and communication are often marginal in comparison to those

of mobility, and therefore, robots can sense and communicate with relative

liberty. With sensor nodes, sensing and communication may be considered

excessively power-hungry activities, and they ought to be performed spar-

ingly. These differences between robots and sensor nodes have implications

on the efficiency of the mechanisms selected for task allocation and action

17
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selectionwithin sensor networks. Morewill be said about this in later chap-

ters of the dissertation. Meanwhile, this chapter will focus on the literature

of the work undertaken in the areas of multi-tasking in robots and sensor

networks, in addition to bio-inspired solutions.

2.1 Multi-Robot Task Allocation

Gage [67] and Baghaei [13] present an impressive survey of the literature

on multi-task allocation in robots. Although each offer a different basis of

classification for task allocation algorithms and strategies, they, combined,

cover a big portion of the work done in this field and we use them as a

general basis to discuss related work in this section.

In [67], strategies for the Multi-Robot Task Allocation Problem (MRTA)

are classified into five categories. These are:

1. Motivation-based,

2. Mutual-inhibition,

3. Auction-based,

4. Team consensus, and

5. No allocation.

In [13], the following more specific algorithms for task allocation in

multi-robot systems are explored:

1. Publish/Subscribe (MURDOCH),

2. Broadcast of Local Eligibility using Port Arbitration Behaviour,

3. Free Market Architecture for Distributed Control of a Multi-Robot

System,

4. Auction Algorithms,

5. ALLIANCE,

6. Task Acquisition using Multiple Objective Behaviour Coordination,
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7. Functionally-Accurate Cooperative (FA/C) Distributed Problem Solv-

ing,

8. Distributed Multi-Robot Task Allocation for Emergency Handling,

9. Team Formation-based Task Allocation, and

10. Ants Algorithms.

In the following subsections, the above strategies and algorithms are

discussed and evaluated in the context of sensor networks. The aim is to

gauge their suitability to the specific characteristics and requirements of

sensor networks listed in section 1.2.

2.1.1 Auction-based strategy and the MURDOCHAlgorithm

In auction-based strategies, task requests arrive at a node called auction-

eer. Auctioneers could receive tasks from users or detect them from the

surrounding environmental conditions. The auctioneer then broadcasts, to

other nodes, a request to perform each task it receives or detects. Nodes, in

turn, reply by communicating their bids back to the auctioneer. A bid is a

measure of a node’s fitness to perform the task in question. Bids are more

specifically dependent on the domain and application of the network. The

auctioneer, after collecting the different bids, assigns the task to the most

suitable node based on some application-specific criteria incorporated in

the bids, such as task performance quality, least cost, or best performance.

In other words, the highest bidder is notified by the auctioneer to perform

the task under bidding. Tasks can be discovered by the auctioneer, for ex-

ample a target emerges, or could be given to it by other nodes or human

users.

Before we discuss the suitability of auction-based strategies to sensor

network task allocation, It is useful for comparison and contrast purposes

to introduce an algorithm that bears high resemblance to auction-based

strategies, namely MURDOCH [73]. In [67], MURDOCH is viewed as a

variation of an auction-based algorithm, whereas in [13], it is viewed as a

Publish/Subscribe algorithm. We tend to agree with the latter classification
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for two reasons. The first is that in aPublish/Subscribe scheme, task requests

are often selectively multi-cast to nodes which previously subscribed to the

relevant type of task request. In auction-based algorithms, task requests

are indiscriminately broadcast, and so there is no subscription mechanism

employed, but rather a process of dynamic discovery of bidders. In ad-

dition, in MURDOCH, task allocation happens in a distributed fashion by

team negotiation, whereas in auction-based systems, a central entity, often

named ”auctioneer”, performs the arbitration. However, in [76], MUR-

DOCH practically resorted back to an auctioneer-like entity to perform the

final task assignment, which makes it appear as a variation of the auction-

based strategy. Because of these similarities, we opt for discussing both the

auction-based strategy and the Publish/Subscribe algorithm ofMURDOCH

together in this section.

In auction-based strategies, reliable communication is an essential re-

quirement, while it is seen as a scarce resource in many sensor networks,

given the often inhospitable deployment environment and the only-wireless

communication capabilities of sensor nodes. Even though it is said in [74]

that ”Robots can communicate but messages may be lost”, this loss is highly

restrictive and has to be minimal for the system to operate effectively. If the

communication loss is high, the bidding process will be often crippled and

the task assignment process will be only marginally driven by the fitness

metrics of the application. In [73], a more detailed example is given but, for

reasons of time and space,wewill not discuss it fully here. In addition to the

reliance on communication, the requirement of an auctioneer monitoring

the winner’s progress in performing the task is communication-intensive,

incurring an energy cost that is often too expensive to tolerate in a sensor

network.

Also, highly unreliable communication media may result in unpre-

dictable auctioneer behaviours. Thus, auction-based and Publish/Subscribe

strategies do not address constraint 1 in section 1.2 (Communication Band-

width and Reliability).

Furthermore, although there are distributed variations of the auction-

based strategy, clustered auctioning for instance, they all share a degree of

centrality in their operation. This is because there is always an auction-
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eer which performs, as the central entity, the arbitration amongst bidders.

For many sensor networks, this centrality reduces fault tolerance (require-

ment 4 in section 1.2), and is susceptible to communication channel failures

(constraint 1 in section 1.2 regarding Communication Bandwidth and Reli-

ability). Generally, the less coupling between peer nodes, the more robust

the system is in the face of failures.

Additionally, some auction-based algorithms, MURDOCH [73] for in-

stance, require the auctioneer to track the task performance capabilities of

all nodes. This fundamentally reduces the scalability of the solution (cri-

teria 2 in terms of communication and 10 in terms of scalability in section

1.2).

Moreover, in sensor networks, tasks are often connected to the locality

of the node. Since auction-based algorithms depend on the auctioneer to

issue task requests and assign tasks to bidders, the network can operate

in one of three possible scenarios. The first is to leave the task detection

to the auctioneers, who later assign the tasks they detect to bidders. This

scenario restricts geographical coverage to auctioneers’ locality, possibly

leaving some locations uncovered, and/or resulting in inferior sensing res-

olutions. Even worse, the second option may require the auctioneer to

possess significant capabilities to cover wide geographical areas, which is

expensive and fault-intolerant. These options for the auctioneers’ mode

of operation are typically undesirable in sensor networks where high res-

olution monitoring and wide geographical coverage are often application

requirements. The third and last scenario is to have each node sense or

detect tasks, and forward findings to the auctioneer which then in turn per-

forms the conventional auctioning process, i.e. auctioneers only arbitrate.

This latter central-control choice is extremely demanding in terms of com-

munication media reliability and bandwidth capacity. This is at odds with

constraint 1 (Communication Bandwidth and Reliability). Additionally,

heavy communication is often associated with high power consumption,

which breaks requirement 9 (Resource Consumption) in section 1.2.

Finally, some auction-based algorithms, e.g. [73], assume that the auc-

tioneer can monitor the performance of a task assigned to a node. This

either means the node can alter the environment in a way that the auction-
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eer can detect, which is against constraint 8 (Environmental Alteration and

Feedback) in section 1.2, or, as discussed earlier, more communication to

report task utility will be necessary.

The auction-based strategy, like other strategies discussed later, does

not address the questions of how the individual nodes or the auctioneer

will obtain the information based on which the task allocation decisions

are made. For example, in a sensor network, is it viable to send long-

haul communication messages to local nodes about required tasks? Under

what conditions a node can use its sensors to obtain information about

task requests? To what extent (e.g.: considering cost versus benefit) should

task allocation procedures, such as task discontinuation or task engagement

be conducted? in this dissertation, we try to answer these questions and

experiment with models that can be used to address this kind of issues.

2.1.2 Motivation-based Strategy and ALLIANCE

Motivation-based approaches assume that nodes areworking towards goals

and that they can detect and assess how efficient the progress, made by the

network, towards these goals is. Such assumption necessitates, at least

conceptually, a node’s capability to alter the environment, a feature that is

unavailable in many sensor networks as highlighted in constraint 8 (Envi-

ronmental Alteration and Feedback). Even if this was viable, it heightens

the computational load on individual nodes. For a node monitoring itself

is seen as a means of assessing and guiding a node’s actions to achieve a

goal, and is not the goal itself. If the goal of a network is monitoring, then

there is no need for feedback, as once a node perform the monitoring, it

immediately and already is able to establish it has succeeded in achieving

so much towards the monitoring goal.

Motivation-based algorithms are suitable for applications with quality

of task performances that can be represented by binary or boolean vari-

ables. Each of the two possible values of the variables represents one of

two possible states of a node. These are either performing a task, or not.

In sensor networks, task performance is often associated with a measure of

quality. Thismeasure is application-specific but typicallywould include the
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accuracy of sampled data, data delivery timeliness, sampling resolution, or

a combination of these. For example, if the task was monitoring tempera-

ture variation in a node’s locality, a motivational approach would involve

the node to either report temperature readings when there are sufficient

resources, or otherwise not report readings at all. In sensor network appli-

cations, it might be advantageous to vary the rate of reading and reporting

instead of totally halting a task. Sensor networks sometimes require a con-

tinuous spectrum of task performance quality rather than a discrete binary

values space. If we look at our application scenario, it would be beneficial

to allow a node to perform the Traffic Monitoring Task with a certain level

of vigour depending on how complex, exacerbated, or heavy the traffic

situation is. A node may dedicate 25% of its time to perform the Traffic

Monitoring Task if there are indications of a possible traffic jam as opposed

to an already developed one.

Motivation-based algorithms do not address the issue of restrictions on

resources (constraint 9 in section 1.2). In sensor networks, these restrictions

are fundamental because nodes are often expected to live for a long time,

and so need to use available resources sparingly. It is typically preferred in

sensor networks to only provide an acceptable task performance and last

for long periods of time, rather than provide a high-quality performance

and die off quickly. For example, in our application scenario, a network

that can perform Weather Monitoring Task for a long period of time, say

3 years, may be preferred to a network that provides high-precision daily

weather measurements for a short period of time, for example 2 months.

This preference is based on reducing the financial cost and management

overhead involved in frequent deployment of such large scale networks.

Note that monitoring for , say, 3 years is not a goal, it is a behaviour.

Providing data for as long as possible is more likely the goal.

ALLIANCE [144], as an example of a motivation-based algorithm, does

not consider task prioritisation. It assumes that any behaviour can inhibit

any other behaviour. This may be because the tasks addressed in AL-

LIANCE are fairly inter-dependent and require cooperative and/or comple-

mentary actions, therefore any one task is just as important as any other

in order to finally fulfil the networks high level goals. In [144], this goal
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was lifting a set of boxes from a location into a truck. The tasks were:

1) moving boxes closer to the back of the truck, and 2) lifting the close

boxes onto the truck deck. The absence of either of these tasks results in

overall failure in achieving the network goal. In sensor networks, some

monitoring activities may intrinsically bear greater importance than others.

For example, in a sensor network that is deployed to monitor traffic jams,

and air pollution levels, reporting a traffic jam on a vital highway may be

more important than reporting slight variations in pollution levels during

the rush hour. In some situations, the latter can be done in the absence of

emergency conditions.

ALLIANCE does not satisfy constraints on resource consumption in

three ways. First, nodes in ALLIANCE frequently broadcast their internal

status, resulting in heavy communication load. Such resource consumption

should be limited in sensor networks. Second, task preemption is allowed

in ALLIANCE, which incurs the extra computational load and complexity

associated with multitasking. Third, tasks in ALLIANCE are organised

in complex structures, called behavioural sets or high-level task-achieving

functions. Each behavioural set includes a number of low-level subtasks

belonging to it. Each behavioural set serves one network motivation (high-

level task or goal). This tasking model contributes to the computational

complexity of individual nodes. Sensor nodes, unlike ALLIANCE, typi-

cally can only communicate sparingly. Computationally, simple task rep-

resentations are preferred, and therefore task preemption is unlikely to be

the mechanism of choice.

Nodes in ALLIANCE communicate directly with each other, and each

node can communicate directly with every other node in the network [144].

While this may be valid in small to medium-size networks, it lacks scala-

bility to accommodate large-scale sensor networks - refer to constraint 10

(scalability) in section 1.2. Such global communication is very demanding

in both energy and channel bandwidth.

AlthoughALLIANCEdoesnot address the issues encountered in sensor

networks, it can be adapted to deal with many of them. For example, the

global network communication could be restricted to function only within

a local radius. Decisions could be made based on only local samples of data
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and node status, ignoring other teammembers if they are unavailable. The

details of such adaptation are beyond the scope of this work.

2.1.3 Mutual Inhibition Strategy and Broadcast of Local Eligibil-

ity (BLE)

In mutual inhibition strategies, such as those in [194] and [130], a node

has a behaviour associated with each task it can perform, e.g. the search-

ing the terrain behaviour associated with the Search Task, or the behaviour

of observing a target associated with the Observe Task. The fitness of a

node to perform a task is known as its task eligibility. A node’s eligibility

is a scalar that represents the available amount of resources required to

perform this task. Resources that have impact on this value are domain-

and application-specific. For example, in [194], the relevant eligibility cri-

teria was the distance from a target. They may include memory, battery

power, communication capabilities, geographical location, or speed. In

[194], the eligibility for the application used to validate the algorithm was

the geographical location, as nodeswhich could better observe targets were

generally more eligible to assume the task of monitoring that target. Each

node assesses its eligibility with respect to each detected task, and then

broadcasts it to other network nodes. A node then compares its eligibility

for each task with those of its peers. If a node finds itself the most eligible

with respect to a task, it inhibits the behaviour associated with this task

on all other nodes by periodically broadcasting inhibitory messages, thus

claiming the task. If the node fails at any point, i.e. no longer can perform

a task, it stops broadcasting its inhibitory messages, which is interpreted

by other nodes as its failure, and a new best-eligibility node is elected to

perform the task and inhibit other nodes.

In such amechanism, the communication load is high because the active

inhibition process is implemented as continuous broadcasting. In addition,

Werger [194] states that: ”Up to the limit of communication bandwidth, any

number of BLE-enabled robots can be added to a system and properly interact”.

This statement illustrates how fundamental communication is for the strat-

egy, going against constraint 1 in section 1.2. The strategy is essentially built
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on the assumption of communication channel reliability. If communication

fails frequently, as can occur in sensor networks, so does the mutual inhibi-

tion mechanism as premature eligibility elections may occur, or confusion,

resulting from communication reliability fluctuation, could lead to chaos in

the system.

In [194] and [130], there was no consideration for the resource expen-

diture required to produce varying qualities of task performances. The

authors only aimed at improving the quality of network performance, i.e.

achieving best network coverage in their example applications, regardless

of the cost this improvement may incur in terms of resource consumption.

This breaks constraint 9 in section 1.2 and so is unsuited to the domain of

sensor networks.

The BLE strategy does not address the tradeoff between the resource

cost of obtaining the information needed to calculate the local eligibility

and the associated gain to the network performance as a whole. Such cost

is critical to task allocation procedures as well as network performance,

and especially so in sensor networks where resources are scarce. The com-

munication model in [194] and [130] is global, which makes it generally

inappropriate for the domain of sensor networks, where communication is

an expensive activity in terms of energy, and where channel reliability can-

not be guaranteed. Sensor networks are better suited to unreliable localised

communication schemes.

2.1.4 Team Consensus Strategy

According to team consensus strategy, all networknodes reach a consensuson

a formation or a task allocation configuration prior to deployment. Various

mechanisms can be used to realise this consensus including negotiation,

communication, or sharing common models. For example, the algorithm

in [174] assumes periodic communication with unlimited bandwidth and

a guaranteed channel reliability to realise team consensus. This algorithm

also assumes strong inter-task dependencywhich requires direct communi-

cation as a means of coordination amongst network nodes, without which

the network goal cannot be attained. As in some other strategies, Stone in
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[174] makes use of global communication capabilities, which, in many sen-

sor networks, cannot be guaranteed. In addition, nodes can be recovered,

and stay offline for a short period of time in order to synchronise their inter-

nal states, then be redeployed into the field again. These assumptions often

do not apply in sensor networks, which are frequently deployed in danger-

ous inhospitable environments, and it is unlikely that it will be feasible to

un-deploy and then re-deploy them.

Stone [174] also states that his algorithm is for time-critical team work.

This is not always the case in sensor networks, and especially is not the case

in our application scenario. Finally, although agents are supposed to act

autonomously, there is a clear coupling between the behaviour of different

agents and the success of the network. The author concludes that coordi-

nation is paramount for the goal of the network to be achieved, and severe

degradation can result from the communication medium unreliability or

latency. This is mentioned more than once in [174].

The algorithms in [94] and [95] employ adaptive models. They adopt

behavioural adaptivity where a node’s behaviour is driven by information

gathered from the environment, peers, and internal state. However, they do

not employ fine-grain adaptivity mechanisms, but rather a series of coarse

grain pre-programmed rules only on the level of action selection. For

example, a node can be foraging, or not foraging as opposed to foraging

with a 20% capacity and foraging with a 95% capacity. In addition, a

node’s behavioural controllers are deterministic which restricts its adaptive

capabilities to anticipated pre-configured situations.

Both algorithms in [94] and [95] also ignore the cost of collecting informa-

tion and performing tasks, concentrating rather on improving the network

performance. The algorithms do not use any form of global communication

among nodes, which scales very well. However, nodes use an application-

specific local communication mechanism, in the form of coloured lights

fixed on node peaks to indicate their current status to other nodes in the

vicinity. This form of communication requires clear line of sight to func-

tion effectively, which is mostly unavailable in forests, battlefields, disaster

zones, etc. Despite this, it could be argued that applications oftenwill allow

one form of communication or another. Creativity and innovation plays a
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great role in this space, and this is what the work in [94] and [95] have

picked from fireflies.

Finally, the networks in [94] and [95] are constantly performing tasks

without any recruitment process, which may waste resources if task perfor-

mance is redundant. This is critical for many sensor networks because, for

example, such mode of operation may unnecessarily deplete the batteries

of a node or waste its memory space. In our example scenario, if a node

keeps analysing traffic information although there is no traffic for the past

12 hours, battery, CPU cycles, and memory can be wasted.

2.1.5 The No Allocation Strategy

The no allocation strategy is given that name because all nodes perform the

same task, and so there is no need to assign tasks, perform recruitment or

action selection. In most monitoring applications targeted by sensor net-

works, only some events are interesting. For example, a sensor network to

monitor seismic activity is more interested in the few occasions when earth-

quakes happen. In disaster recovery applications, only hazardous events

may be interesting (fires, floods, smoke, etc). In structure safety applica-

tions, only changes in the safety metrics of a building or a structure may

be requested by human users. If we turn our attention to our application

scenario in this dissertation, nodes are only interested in recording traf-

fic statistics, pollution variations, and weather measurements when rapid

changes occur. This would help, for example, prevent or analyse traffic

jams, reduce pollution, and predict weather conditions.

In the ’moving furniture application’ of Rus [51], communication is used

for synchronisation and coordination amongst robots, without which the

network will most likely fail to achieve its goals. In addition, the algorithm

is not scalable as there is always one central device that controls the system.

This also applies to [102] where a central control location is required for the

network to function. Central control is generally an undesirable feature in

many applications of sensor networks because it lacks fault tolerance and

scalability required in such distributed systems.

None of the no-allocation algorithms we could find account for the
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cost of the task allocation enabling processes. These processes include

communicating with the control point, sensing and collecting data from the

environment, and switching states from idle to active or vice versa.

2.1.6 FreeMarketArchitecture for Distributed Control of aMulti-

Robot System

Stentz [173] proposes an architecture inspired from free market economies

tomanagemulti-tasking in groups of robots. According to this architecture,

each node has cost and revenue functions that determine the net profit it

may achieve by performing a certain task. Tasks are divided into subtasks

that nodes negotiate and coordinate to perform. To facilitate negotiations,

the algorithm requires the availability of low-bandwidth communication at

all times, which does not satisfy requirement 1 in section 1.2. Robots that

cannot communicate may not be able to perform tasks as they are not part

of an economy, until they reconnect to the network. Although Stentz [173]

views the free economy as a production-boosting mechanism, we think

that it does not lend itself to many applications of multi-robot systems and

sensor networks. For example, a node in a sensor network might find it

compulsory to perform a task even if it was not lucrative to itself to do

so. A node that needs to issue a warning of an impending dam collapse

cannot but issue a warning regardless of any benefit/loss calculations. In

our example application, if sensors detect a huge rise in pollution levels,

this may mean a hazardous chemical leak has occurred, which then would

oblige the node to report it as soon as possible no matter what the cost

involved is and away from any individual level gains or losses. Also a node

may contribute to achieving network goals by, for example, performing a

resource-exhausting task to relieve weak neighboring nodes, regardless of

the profit it reaps. Generally, nodes in sensor networks take decisions to

further the network goals rather than its own benefit, unlike decisions taken

by individuals in free market economies, where selfish micro-economies

drive the macro-economy.
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2.1.7 Conclusion

In the past few sections, we addressed general task allocation strategies and

algorithms that mainly targetedmulti-robot teams. Robot teams are similar

to sensor nodes in several aspects. Both are inherently distributed, and in-

volve the cooperation, communication, and coordination amongstmultiple

autonomous units to achieve an overall goal. Many of the applications of

both sensor network and robot teams share similar requirements, such as

autonomy, self-organisation, data management, task allocation, etc.

Despite those similarities between robots and sensors, prominent dif-

ferences between the two group types can be identified. First, sensor net-

works addressed in this paper are immobile. This has many implications

on the weight placed on several other activities that are essential to sensor

network operation. For example, communication cost in terms of energy

consumption can be marginal compared to the cost associated with mobil-

ity. In sensor networks with no voluntary mobility, communication power

requirements may be vast in comparison to power requirements of other

activities such as sampling the environment. Also, sensor networks are

computationally minimal, which requires simple control mechanisms to

perform task allocation and coordination. A robot typically possesses a

higher computational power than that of a sensor node. For these reasons,

different task allocation and action selection algorithms may be needed for

sensornetworks from thoseused inmulti-robot systems. In the next section,

we will discuss some task allocation algorithms tailored to accommodate

some characteristics that are specific to sensor networks.

2.2 Task allocation Strategies for Sensor Networks

The algorithm in [121] was designed for mobile sensor networks. It uses

a combination of node interactions, stigmergy, threshold-based, and domi-

nance hierarchy models to make task allocation decisions. A task is moni-

toring a certain geographical area in the application provided in [121] and

[122]. While mobility is a characteristic that is often associated with robots,

rather than sensor networks, there is no clear-cut line between the two fields
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as some platforms fall in the grey area in between by combining charac-

teristics from both paradigms, which we believe is the case in Low’s work

[121].

The algorithm in [121] focuses on collaborative sensing which depends

fundamentally on inter-node communication and so effectively lends itself

to problems with strong inter-task dependencies, such as target-tracking.

The algorithm aims primarily at maximising the quality of network perfor-

mance, in this case network coverage, but does not account for the resource

cost involved. Low [121] discourages static sensor placement, however, we

believe that there are cases when this is a viable, or even inevitable, solu-

tion. For example when mobility results in exhausting intolerable amounts

of the network’s energy. Low [121] states explicitly that he has studied

the problem of task allocation in a robotic context, which may explain the

algorithm’s many discrepancies with our constraints in section 1.2. Low

[121] also states that the type of problems addressed are those that involve

high task interdependency. In contrast to our definition of a sensor net-

work, Low [121] excludes situations where a node can autonomously and

adequately perform a single task. Low [121] assumes that task interference

may adversely affect the network performance. Task interference is the

situation where too many robots decide to perform the same task, resulting

in a physical congestion or control overheads that may cause the quality of

task performance to rather deteriorate instead of improve. This may be al-

leviated by static sensor placement and low inter-node dependencieswhere

possible. Communication in the algorithm takes place periodically every

N time steps to reduce task interference. This represents a fixed resource

cost even under low task demands, yet it is essential for this algorithm to

function satisfactorily. Performances of nodes are compared through ex-

change of dominance messages, and losers of dominance interactions are

less likely to leave the current region. Dominance messages are a represen-

tation of biologically-inspired phenomenon observed in many animal and

insect species to determine right of control of territories or other resources.

The system in [121] was tested on predefined geographical regions, i.e.

there is an internal representation of the environment. Such knowledge of

the environment is likely to be unavailable to nodes in a typical applica-
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tion of sensor networks. Finally, the algorithm does not perform any task

prioritisation within a node, a feature that may be desirable in monitoring

applications like those often performed by sensor networks.

Yu [204] considers a cluster-based approach where communication is

global, i.e. single-hop network. Yu [204] considers collaborative processing

where inter-taskdependencies are high andassume synchronisation is read-

ily available within the cluster. A task (application) in this algorithm can

be performed within an epoch using a TDMA-like slotting technique. The

algorithm employs Exclusive Access Constraint, i.e. non-preemptive task

performance and single-sender communication channels are in use. An

application-driven task allocation is used in contrast to an environment-

driven one where the environmental conditions perceived by a node de-

termine a node’s behaviour. A central control model is adopted within a

cluster, i.e. a cluster head or a similar single entity is implied to oversee the

clustering and task assignment procedures.

Low [122] addresses the problem of network coverage using an ant-

based algorithm, namely a threshold-based algorithm, bearing resemblance

to our work in this dissertation. The sensors are mobile and checkpoints

or beacons are employed to guide their mobility. The authors do not ad-

dress situations of independent task performance or single-node tasks, but

instead they assume a strong task inter-dependence. The algorithm at-

tempts to achieve coordination without direct communication. However,

kin recognition, which can be seen as a form of communication, is em-

ployed to provide nodes within a region with information about the status

of peers within their vicinity. Predetermined regions, like those in [121],

were utilisedwhich is equivalent to embedding amodel of the environment

into the node prior to deployment. Communication is periodic and vital for

this algorithm to function, which goes against constraints 1 and 4 in section

1.2. In this dissertation, we found that our ant-based algorithm achieves a

better network coverage with less energy expenditure on mobility, i.e. it is

more energy-efficient.

Younis [203] studied clustered networks,which have an inherent degree

of centralisation within a cluster’s vicinity while a degree of distribution

is achieved on a macro-level. This task allocation algorithm is designed to



CHAPTER 2. RELATEDWORK 33

work on the cluster heads level, not the node level. Cluster heads receive

commands to perform tasks from a central location called the command

node. This can be a base station, a user laptop, or a satellite server. The com-

mand node performs arbitration among cluster heads. This is a hierarchical

system with an explicit mechanism for centralised control employed. You-

nis [203] assumes that the power requirements of communication between

any two cluster heads is constant. The algorithm depends on communica-

tion among cluster heads, and thus fails to function in environments where

communication is unreliable. The command node centrally performs task

allocationusing an application-specific optimisation algorithm, for example

in [203], the simulated annealing optimisation method was found appropri-

ate by the authors. Simulating annealing is a physically inspired solution,

where good solutions are found by searching a large search space for local

minima/maxima by sifting through different randomly found local ones

[100].

Modi in [135] assumes distributed tasks (high task inter-dependency),

which necessitates communication. He does not address fault tolerance

and scalability issues. The algorithm focuses on maximising the quality of

task performance, without taking the associated resource cost into account.

Modi [135] follows a formal technique that although useful in understand-

ing the problem, makes assumptions that do not hold in real world applica-

tions. For example, he assumes the reliability of agents and communication

media which is very unlikely in the sensor networks domain. Although

our simulations make a similar assumption regarding the reliability of sen-

sors, we believe that it will scale well because sensors are autonomous and

densely deployed. We plan in future work to test our results on unreliable,

more realistic models, or even real sensor nodes/networks.

Tian [182] addresses single hop teams, with multi-task applications.

Again, clustered networks are the main focus in this work, which requires

both communication reliability and central control. In addition, this sense of

centrality imposes additional energy requirements due to additional com-

munication and computation overheads. In [182], tasks are predetermined

and not dynamic. Tian addresses only homogeneous systems and adopts

a design-time scheduling algorithm, which goes against the dynamic char-
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acteristics of our target environment (see constraint 7 in section 1.2). In

addition, the tasks are highly inter-dependent and the algorithm controls

task-associated low-level attributes, such as CPU cycles and communica-

tion scheduling. This may be beneficial, but it is not the subject of this work

as we focus on the control at a higher level of abstraction.

Oliveira [52] uses a feedback mechanism to solve the action selection

and sequencing problems. He does not address any issues related to com-

munication, distribution, or scalability. In addition, the experiments in [52]

were performed on a centralised application where tasks are performed by

an agent after it was assigned to it by a scheduler on a central controller. The

scheduler receives task requests and performs the task allocation centrally,

which is likely inapplicable in sensor networks (see constraints 1,2,4,9, and

10 in section 1.2).

2.3 Bio-inspired solutions

Nature has inspired mankind for long time. This started from fairly simple

activities like cooking, or effect of fire on food, to intricate problems that

mankind, unlike nature, could not yet find solutions for. Computing liter-

ature is full of such problems where nature excelled in finding a solution

while humans have failed for centuries [1] [21] [36]. Bio-inspired solutions

span a wide research area, however, almost every work in this space can

be classified under one of the following three categories: 1) Genetics and

evolutionary computing, 2) Artificial Life, and 3) Swarm Intelligence.

The first of these aspire to find solutions to complex problems via search

algorithms derived from models and mechanisms from human-genetics,

such as mutations and global heuristics [79] [134]. Evolutionary computing

has been applied to a variety of optimisation and search-space problems.

Genetic algorithms, GA for short, are the most popular form of evolution-

ary algorithms that has been used extensively even in optimising its own

parameters, such as the rate of mutation, the generation size, and the se-

lection model or criteria [65] [195]. We discuss in the conclusion chapter

of this dissertation the idea of using GAs to tune the parameters of our

model. Many studies has focused on using these algorithms in optimis-



CHAPTER 2. RELATEDWORK 35

Table 2.1: Comparison of different Task Allocation

Approaches. Note: Low 2004[121], Low 2005[122],

Yu 2005[204], Younis 2003[203], Modi 2002[135], Tian

2005[182], Oliviera 2004[52]
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ing neural networks and various types of multi-agent systems [200] [118]

[208]. GAswere also used in software engineering and systemmanagement

work. For example, Tripathi’s work [186] uses GAs to address problems of

inter-module communication within a system of multiple processors.

The second research field in the list is concerned with replicating life in

its original form as opposed to only borrowing the mechanisms employed

by living systems [110]. Not only has Artificial Life researchers tried to

create robots that possess human intelligence, but also robots that possess

characteristics that are conventionally exclusive to humans, such as laugh-

ing at jokes, feeling in love or angry, suffering tiredness and pain, and even

learning social skills andmaking friends. The AL field had achieved varied

degrees of success but was, still is, and probably will always be a highly

controversial topic [89].

The third and last item on the list, swarm intelligence, is the study of

the behaviour of groups of living organisms in order to understand and

hopefully make use of emergent complex patterns out of relatively simple

individuals. In this section we will focus on swarm intelligence as it is the

most relevant to our work and as sensor networks fall in this category of

systems in one way or another.

Research in swarm intelligence is subdivided into various connected

subjects each attempting to answer one or more of the following questions:

1) What is the effect of the micro-behaviour associated with members of

the swarm on the macro-behaviour of the group as a whole, 2) What are

the protocols or communication mechanisms that are sufficient and feasible

to be utilised in swarming groups, and 3) What parameters control the

behaviour of the swarm leading to certain steady-states or end states like

convergence, disintegration, chaos, or self-organisation 4) How to map

micro-behaviours to obtain a set of guaranteed outcomes observed on the

macro-view of the system. In the next few paragraphs, we will present

some of the work in the field of bio-inspired solutions that tried to answer

one or more of these questions. We will focus naturally on sensor networks

research as it is the target field of this dissertation.

In the field of sensor networks and robotics, nature-inspired ideas have

been a major source of solutions. For example, in [35], a routing algorithm
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drawn from ant colonies behaviour was employed. In this algorithm, called

AntNet, routes were discovered and compared through a set of agents that

constantly tour the network. Agents communicated via a concept called

stigmergy, which is equivalent to using the environment as a medium for

communication instead of direct communication. In [199], brood sorting

algorithms observed in some ant species, specifically the Leptothorax, were

used to sort objects using a group of minimalist robots. Wilson [199] used

genetic algorithms to tune the parameters of his biological model, i.e. he

again drew from biology. This is more of a robotics work in our opinion

as it involves mobile agents. In [113], the coalition formation mechanisms

drawn from primates and insects, for example [158], were used to regulate

task allocation in robots and sensornetworks. Li [113] applied his algorithm

on a team of UAVs (Unmanned Attack Vehicles). He also used concepts

from game theory to guarantee the stability of the system. The stability in a

coalition formation context means the certainty that no individual member

of a coalition will deviate from the team’s goal. Li’s algorithm aimed at

maximising the lifetime of the team by minimising the resource depletion

experienced by any single member of the team, while achieving the team

goals through cooperation among the members.

Low [121] uses three mechanisms to regulate task allocation in a group

of sensing robots. These are ant foraging mechanism through pheromone

laying, threshold-based techniques, and the social dominance interactions

within insect societies. A similar algorithm, but with neural networkmech-

anisms utilised for tuning agent’s behaviour is provided in [122]. Both [121]

and [122] have been discussed in more detail in previous sections of this

chapter.

In [159], algorithms based on game theory for coalition formation are

presented and analysed extensively. Game theory is a type of multi-agent

systems where single members are selfish and try to maximise their own

return rather than care for the group in total. The author identifies the

type of system he focuses on as not necessarily super-additive. This means

that collaboration amongst agents does not automatically mean a gain for

the group, however, it can be so. We see any system with autonomous

individuals as a multi-agent system (MAS for short), while Shehory [159]
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calls super-additive systems, i.e. collaborating agents for the good of the

group and not the individual, a Distributed Problem Solving system, DPS for

short. In [23], multi-robot coordination is achieved through an algorithm

inspired from the nest-building behaviour of some wasp species. In [205]

and [168], physics-based algorithms are used to control sensor networks

and robots respectively.

In [33], a method for assigning tasks or resources, based on a model of

division of labour in social insects, is introduced and applied to a dynamic

flow shop scheduling problem. The problem consists of assigning trucks to

paint booths in a truck facility to minimise total makespan and the number

of paint flushes. Similarities between the ant-based approach and amarket-

based approach are highlighted and the authors found that both systems

are able to adapt well to changing conditions. Note that evenmarket-based

algorithms can be seen as biologically inspired systems because humans

are what constitutes markets and so human behaviour is a major player in

the dynamics of the system.

In [37], brain cells learning mechanisms were replicated in a sensor

network to allow decentralised perception of a phenomena. In [8], an archi-

tecture which is very much biologically inspired according to the authors,

is used for control, coordination, and action selection within a robot. AuRa

[8] uses the Schema Theory as the fundamental basis of his architecture,

in addition to incorporating various psychological, physical, and genetic

theories. In [69], Galstyan provides a stochastic analysis of a task allocation

mechanism that does not need inter-agent communication at all. This no-

communication mode of operation is very similar to what we adopt in this

dissertation, excluding the part that investigates the communication issues

(chapter 10 and chapter 11).

In [132], a wall-building application used an ant-inspired algorithm for

coordination and cooperation among a group of robots. In [102], task alloca-

tion and worker recruitment for foraging were achieved through, again, an

ant-inspired mechanism. In [107], the concepts of self-organisation for task

allocation without the need for communication is explored. Marshall [152]

used bacteria-inspired genetic algorithm to perform network management

services. Sacks in [154] describes how to build a sensor network platform
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using a set of biologically inspired solutions.

Britton [29] presents an approach for designing wireless sensor net-

works. He literally advocates treating these networks as biology-like sys-

tems in terms of their structure and the characteristics required for their

survival. In [29] also the kOS is evaluated for its fitness to satisfy sensor

network’s OS requirements. Oliviera [52] presents a process to generate,

adapt, and changemulti-agent organisationdynamically at system runtime,

using a swarm inspired approach, especially for task allocationwithout pre-

planning or explicit coordination. In [186], a genetic algorithm is used to

regulate task allocation considering loads on the network and the individual

nodes.

2.4 Sensor Node Architectures

Sensor nodes are where the adaptive algorithms will be employed as they

constitute the micro-view of a network. A look at what research has been

conducted in terms of a sensor node’s architecture is in order. We present

some of the work done in this area here, and in the following chapter, as we

present our adopted architectural view of a sensor node, we will discuss

some of them in more detail.

In [9], Asada presents a hardware architecture that is compact and low-

power for the construction of a sensor node. The architecture is dubbed

WINS. Nodes adopt a continuous sensing and event-based detection mod-

els. WINS applications are typically latency-tolerant and of the monitoring

family. In WINS, sensors are low-power and MEMS-based (Microelec-

tromechanical Systems). Signal processing is performed through a low-

power spectrum analyser. A micro-power RF system is utilised for multi-

hop internode communication.

Avancha [11] proposes a functional component-based architecture, as

opposed to a hardware-based one, called SWANS. Themain components of

the architecture are Monitoring and Reporting component, Logic Compo-

nent and Action Component. The Monitoring and Reporting component

performs the application monitoring tasks given sensor states, network

goals, and sensor ontology. The Logic component computes the state of
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other components given a set of parameters associated with each. Finally,

the Action component decides how and when a node will move from one

state to another.

The architecture in [46] is composed of four modules: 1. interpreter

2. widgets/sensors 3. application 4. aggregator . These modules are in fact

different levels of abstraction. The sensor-widget pair is composed of a low

level sensor, and a higher-level widget. The latter translates the low-level

readings from the former into a value that can be used by othermodules. In-

terpreters take readings from widgets and applications and translate them

into higher- and lower-level information respectively. Aggregators collect

information from different widgets in one location to be retrieved by rele-

vant applications.

Fitzpatrick in [64] demonstrates a software architecture by the name of

Sentient Object Model. Sentient objects are made of three main components:

1. event consumer 2. inference rules 3. event producer . Each of the three

components is composed of the same three subcomponents, i.e. event

consumers, rules, and event producers. On the higher-level view of the

architecture, a sensor node has a component that consumes events from

the environment. It then uses inference rules or control logic to decide on

appropriate actions. Decisions are forwarded to actuators, i.e. the event

producer component, which in turn puts actions in effect. Within an event

consumer, there are the same three components: an event consumer that

receives events from the environment, which then is forwarded to a control

subcomponent that decides which inference engine to forward the data

to, and then forwards that decision to an event producer subcomponent.

Similar logic applies for the high-level event producer and inference engine

components.

Verissimo in [189] extends the architecture in [64], focussing on real-time

applications support. Verissimo’s architecture is given the name GEAR

(short for Generic Event-based ARchitecture). GEAR uses message-driven

communication paradigm, where events are filtered through translation lay-

ers and then sent out to event subscribers. Event Channels are in charge of

propagating the different events across the whole architecture. There is also

theCommunication Layer that is responsible for transporting events between
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different sentient objects in the system.

Farinelli in [62] presents a layered robot architecture composed of three

layers. The lowest of them is called the Operative Layer. Within this

layer, modules representing actuators and sensors exist togetherwithworld

model data. Above this layer resides the On-line Deliberative Layer. This

layer contains high-level descriptions of the environment inferred from the

lower-level world model in the layer below. It also include a Plan Execution

Module and a Coordination Module. Finally, at the top of the stack lies the

Off-line Deliberative Layer. This layer contains a library of plans for task

execution, a high-level knowledge base, and a module for Plan Generation.

The knowledge base is given to the robot before deployment, then fed to

the plan generation module which in turn generates a set of plans to be

executed according to the situation on the ground detected by lower layers

of the architecture. Robots use the plan library combined with data from

the environment and peer robots to decide on which plan to execute.

Gage [68] designs a robot architecture, called SFX, based on a formal

emotions model referred to as OCCmodel (short for the names of the three

authors of the model, Ortony, Clore, and Collins). The SFX architecture is

composed of three layers, namely deliberative, managerial, and reactive.

Each of these layers contains a number of modules. The details of this work

is beyond the scope of this dissertation.

In [70], again, a layered architecture is proposed, where each layer uses

the data provided by lower layers to produce coarser view of the environ-

ment, which is very similar to the approach we take in our architecture

in the next chapter. Handziski [84] suggests a hardware-based architec-

ture implementing the ISO stack to a great extent. Hill [86] also proposes

a hardware architecture composed mainly of a set of sensors, a wireless

communication port, and a micro-controller.

Mascolo [129] provides a large survey of many software architectures

of mobile computing, which include robot teams, sensor networks, and

mobile devices.
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2.5 Summary

This chapter gave a literature coverage in the subjects pertinent to this dis-

sertation. It started by covering the multi-tasking problem widely, because

it is the most important aspect of this thesis. Then the chapter high-lighted

the bio-inspired computing paradigm and gave examples of work done in

this field. Finally, sensor nodes and network architectures research exam-

ples were provided.

In the next chapter, an architectural view of sensor networks and nodes

fromour perspectivewill be presented, relating and comparing itwith some

of the work introduced in this chapter.



Chapter 3

Sensor Node Model and

Network Architecture

In this chapter, we will discuss a general view of a sensor network from

an architectural and functional viewpoints. Based on these views, we will

present our sensor node model that will be adopted in the rest of the dis-

sertation.

3.1 Introduction

The main goal of this chapter is introducing an adaptable sensor node and

sensor network architectures. The concept of adaptivity in sensor networks

is inspired by biological theories about species survival and adaptive be-

haviour. Biologists have found compelling ecological evidence that the

capability of different species of living organisms to continue to exist over

extendedperiods of time is attributable to their highly adaptive behaviours.

The success of these specieswas often despite living in harsh and highly un-

certain environments. In the same manner, the extinction of many species

can be explained by their failure to adapt and, consequently, being over-

powered by adverse environmental conditions. The success of adaptive

behaviour in living organisms have led us to speculations, encouraged by

previous success stories in other fields, that introducing adaptive strategies

to sensor networks may yield similarly desirable outcomes in overcoming

43
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the challenges of environmental dynamism.

Before looking into what adaptive algorithm or model we employ, we

need to characterise the sensor network requirements thatwould fall within

the space we target in this dissertation. This will be the topic of the next

section.

3.2 Network Requirements

It is possible to summarise, rather simplistically, the ideal goals of a sensor

network to be: 1. Nodes should remain functional for as long as possible,

optimally forever 2. Nodes shouldwork to provide highest possible quality

of service to achieve the network’s overall goal . These two goals are inher-

ently contradictory, and so a middle solution needs to be found and some

compromises and prioritisation of goals need to be done. This is exactlywhat

adaptive algorithms are needed for. Nodes in adaptive sensor networks

should be able to dynamically react to changes they can detect in the local

environment and determine at which point in the wide spectrum between

the two contradicting goals of the network a node should operate. Such an

adaptive strategy will also lead to the automation of many activities, oth-

erwise performed by humans. This characteristic is called self-organisation,

and allows for a great scalability which is another important requirement

for sensor networks. For example, instead of a human operator signalling

sensor nodes to reduce temperature reading rate when he/she notices lack

of interesting variations, network nodes could have adaptive rules to detect

temperature variations and adjust the temperature sampling rate accord-

ingly. In general, minimal human intervention is desirable, if not necessary,

in many sensor network applications.

Nodes in a sensor network should not depend on their knowledge of

the environment, or neighboring nodes to perform their tasks. Autonomy

can be added then to the list of requirements of a sensor network. The

network task performance quality should not severely deteriorate if some

nodes fail, i.e. the network needs to be fault tolerant. This is supported, from

a node-level point view, by the autonomous node model. The deployment

of large number of nodes, following the ecological rule ”safety in numbers”,
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achieves fault tolerance from a network viewpoint.

Network’s support for heterogeneity is viewed as a main requirement for

sensornetworks that are addressed in this dissertation. Heterogeneity could

result from design-time decisions or from operational circumstances, such

as the failure of some sensors on a node. Although it might be inevitable

that a node has at some point to communicate with a base station, either by

single- or multi-hop communication, nodes should not fail to perform their

tasks if communication channels fail or are unavailable temporarily. This

means that nodes should not dependon communicationwith peers tomake

decisions, however, that does not mean that nodes will never communicate

with sinks of the data or decisions they made. Based on this argument,

we can say that there are two types of communication by a node [183]:

1. infrastructure communication, used for coordination, making decisions,

etc, 2. application data communication, which is reporting the finding of the

node, a summary of its taken readings over a period of time, etc. Section 1.2

summarises the requirements and constraints of our target sensornetworks.

In the next section, we will present the functional points at which adap-

tivity could be introduced to satisfy the requirements provided in this sec-

tion.

3.3 Critical Functional Points of a Sensor Node

There are activities that are considered critical to the operation of a sensor

network. The control mechanisms of these operations are potentially good

candidates for the application of adaptive models. We view task allocation

on the network level, and action selection on the node’s level as one of

those activities. This is particularly apparent when considering the com-

plexity of sensor networks, and the resource-constrained nature of their

building blocks, i.e. sensor nodes. In this document, a task is defined as

a high-level/application-layer procedure, such as Air Pollution Monitoring

Task application, rather than low level operating system processes. The

latter may include authentication, packet routing, loading an application,

communicating a data item, or reading a sensor. The resource requirements

of a task or an action may significantly vary from one context or application
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to another. For example, real-time data retrieval might be necessary for one

application, e.g. seismic activity monitoring, while it might be superfluous

to another such as long-term climate monitoring. The later is the type of

applications we are interested in. In this dissertation, we study and analyse

an adaptive mechanism as a sensor node’s action selection/task allocation

tool. We investigate the relationship between action select at the node level

and the emergent task allocation process in the network as whole. We also

examine the impact of action selection and task allocation processes on the

lifetime and effectiveness of a sensor network. The aim here is to identify if

these adaptive algorithms can dynamically find the balance points between

the sensor network application requirements, and the set of constraints

imposed by the context of the sensor node/network itself.

From the literature in sensor networks, there are four major actions,

performed by the individual nodes, which play a significant role in the

general operation of a sensor network and within the task allocation and

action selection processes in particular. The actions are summarised in the

following list, and more detailed explanation will follow:

1. Sampling: this means taking readings or sensing the environment.

This activity is in the essence of a sensor network/node operation,

hence the naming ”sensor node” and ”sensor network”. Nodes use

sensor readings to make decisions or simply report the readings di-

rectly or indirectly to users. Applications of sensor networks are

inherently about sensing the environment, for example, life monitor-

ing (ZebraNet [96], Great Duck Island [127]), environmentmonitoring

(Glacier Monitoring [128], ARGO Ocean Monitoring [178], oceanog-

raphy [146]), and others [153].

2. TaskAllocation/Action Selection: This refers to the process of engag-

ing in performing ahigh-level task or application[53] (could be termed

task engagement, which is analogous to loading an application). Sen-

sor nodes/networkswould be ideally performing all the jobs tasked to

them incessantly and vigorously. However, due to the restrictions im-

posed on the networks and nodes by the environment, costs, and their

hardware/software capabilities, they cannot live up to such an ideal
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[106]. Instead, nodes/networks have to plan, prioritise, and some-

times make compromises in order to best serve the user/application

requirements within the limits of the available resources [55]. This is

why task allocation has been extensively studied and researched [3].

3. Task discontinuation: this is simply equivalent to quitting perform-

ing a task, and could be analogous to unloading an application. There

is only few explicit studies [114] [44] [98] on themechanisms and tech-

niques used in making decisions about task discontinuation. How-

ever, implicitly, every action selection/task allocation scheme utilises

one or more task discontinuation mechanism. The model in [25] uses

a constant discontinuation rate, which is a crude non-adaptive scheme

of discontinuation. We propose a different approach in chapter 6.

4. Communication: this couldbewith anyother systementities (servers,

neighbour nodes, base stations, etc). Communication is a very impor-

tant activity in multi-agent systems, including sensor networks, as it

is the means of information flow between various components of the

system. Collaboration, coordination, cooperation, control, and man-

agement are all activities that most of the time depend on communi-

cation capabilities or at least are better facilitated through communi-

cation. This is why there is a massive research effort being dedicated

to communication protocols [4], mechanisms [48], hardware/software

designs [187], and other communication aspects.

Network nodes make decisions to start and discontinue performing

tasks based on: 1) locally available information about the phenomena they

are monitoring, which is obtained by sampling the accessible environment,

2) locally available information, obtained by communication, from peer

nodes, 3) the internal status of a node, which may include energy levels,

memory, and sensor availability.

We propose that adaptivity, employed at each of the above points, can

better the task allocation process by increasing its robustness, resilience,

and self-management capabilities. Adaptivity can be incorporated within

each of the four major actions driving the action selection and task alloca-
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tion processes in many ways. In the rest of this dissertation, we study the

applicability of adaptivity with respect to each of the actions, listed above,

and explore its effects on the network performance and duration compared

to the base case of systems based on non-adaptive approaches which are

usually driven by statically preset parameters and fixed values for moni-

toring rates or periods. For example, a system that uses periodic sampling

of the environment is non-adaptive since it uses a preset value for the pe-

riod, frequency, or rate of sampling. A system that uses a sampling rate

that varies according to various system, environment, and/or user-defined

requirements and constrained is an adaptive system.

Before introducing adaptive algorithms to perform task allocation, iden-

tification of the layers of abstraction or modules at which these algorithms

will work is in order. From previously developed architectures for sensor

networks and nodes, such as those in [138] and [180], the shortly introduced

two abstract models for our hypo thesized architecture were created. The

next two sections will describe those models.

3.4 Abstract Generalised Network Architecture

Our network architectural view focuses on the data management aspect

of a sensor network. This is because the type of networks we target in

this thesis is that that mainly performs monitoring tasks. The key task of

such networks is to collect and process data to produce useful information.

Therefore, data management is such an important activity within those

networks.

Usually, data collected by sensor networks are huge in size, however,

only a fraction of the collected data items are useful or interesting to the

network, based on its requirements set by users and designers. For ex-

ample, seismic activity monitoring sensor networks may essentially aim at

providing early alarms against earthquakes. Earthquakes usually happen

in a sporadic manner, which means the network is most of the time reading

silence so to speak. Only when earthquakes really happen, the data become

interesting to humans and they need to be delivered as efficient and fast as

possible. Same argument apply to forest-fire sensor networks, or structure
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safety sensor networks. If we look at our application scenario, when jams

occur in the vicinity of a node, then it has the responsibility to act by re-

porting the situation to a base station, and analyse the developments on the

ground, possibly giving directions how to avoid this traffic jam spot. Same

with the Air Pollution Monitoring Task, if pollution levels soar suddenly,

then nodes need to react quickly and report back to a base station the type

of chemical that is detected, the amount of variation, the pattern of change,

etc.

Based on the previous argument, it seems unrealistic to continuously

send data back to a user, or base station. Even exchanging data within a

small locality seems wasteful if they are useless, uninteresting, or of little

importance. Sometimes local communication of seemingly uninteresting

data can help actually validate or change a node’s view of the value of a

piece of information. However, it is unlikely that long-distance communi-

cation will achieve the same effect because sensor nodes are inherently a

reflection of the locality, and in a similar manner, a group of them within

a vicinity are a reflection of this vicinity. On the contrary, far apart nodes

give very low resolution information about the geographical distribution of

a phenomenon, and this configuration does not lend itself to many sensor

network applications. One of the main factors that also would deter us

from designing networks that communication large volume of data over

long distances is the energy cost involved. Sensor nodes have resource

constrained systems, and energy is a very dear commodity. Communica-

tion is one of the most power-hungry activities that a node could perform

in many sensor network applications. Accordingly, minimising communi-

cation is a very desirable characteristic. Also the small bandwidth makes

large volume communication untenable in many sensor network scenarios.

In-network processing seems to be a commendable approach. Nodes

can process the data before forwarding them. Processing data could involve

filtering unimportant data and possibly discarding them, compressing data

locally before forwarding them, abstracting data in a vicinity or summaris-

ing them, etc. This idea of abstracting data as you go higher up the stack

of the network constitutes the basis of our data management view of a

network.
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Figure 3.1: Abstract viewof a sensor network architecture

To illustrate the idea, it is best to use an example while putting figure 3.2

inmind. Let’s assume thatwe aredeploying a sensornetwork tomonitor the

activity of an active volcano close to an important city. To identify a volcanic

activity, nodes need to sample the air for certain chemical structures that are

telltales of close eruptions. Also nodes could take readings of temperature

of the surroundings, as they will grow higher because of the hot gases

rushing out of the soil before an imminent eruption. Moreover, nodes may

need to sample the soil for changes in chemicals that can help predict the

status of this volcano. Now, we can have the sensor nodes communicate

every temperature, soil, and air reading back to a base station that can

analyse them and find out if an eruption is impending, or dormancy is the

status quo. Another way to do this is to allow individual nodes, or small

groups of nodes to examine and analyse the data they collected locally, and

then send only conclusions to human users at the base stations. The latter

solution will often involve much less communication and so will allow the

network to have better longevity. In addition, it allows for more scalability

as the distributed processing signifies.
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Another example is our application scenario, where the a has three

potential tasks to perform, namely Air Pollution Monitoring, Traffic Mon-

itoring, and Weather Monitoring. All readings relevant to the three tasks

can be sent to a base station to be analysed, and conclusions made in the

base station. However, this will incur huge data communication, especially

if compared to the data that would need to be transferred if the nodesmade

the processing, i.e. node would send a summary of findgins when this is

necessary. That could be when a jam develops, or a hazardous chemical

leak occurs, or if a storm telltales are found in the weather readings, and so

on.

In figure 3.4, there is another possible application scenario depicted.

Note the difference between the type of decisions taken at each of the three

layers in this figure. What we want to emphasise here is that these layers

do not necessarily lie on one device/node or another. For example, all

layers can be implemented on one node, or on each node in a network,

or on only some nodes on a network. A network could have many nodes

implementing the lowermost layer, and only a base station that implements

the upper two layers. Another configuration of a network may be with all

nodes implementing the lower two layers, and a base station implementing

the uppermost layer. Generally, any working combination is possible. In

this dissertation, we will focus on networks with nodes that have the three

layers implemented on them. However, we believe the adaptive algorithms

presented in this dissertation can be applied to other layer configurations

as well.

Our network view is generally similar to the architecture in [71], where

data get coarser as it approaches the application layer, or higher up the

networking stack or communication sinks. Figure 3.1 shows a typical ar-

chitecture that can represent our view of a sensor network. In this section

we discussed the network architecture. Next section will discuss that of a

sensor node.
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Figure 3.2: Abstract view of a sensor node architecture

3.5 Abstract Model of a Sensor Node

The architecture of a sensor node [47] can be looked at as a two dimensional

entity. On the vertical dimension, a sensor node is viewed as a set of ab-

straction layers [180]. On the horizontal dimension, i.e. within each layer, a

generally modular component-based approach is envisaged (and adopted)

producing a set of modules or components [56]. Such an approach offers

several advantages including: 1) flexibility, 2) reusability, 3) modularity,

4) extensibility, 5) portability, and 6) scalability [177]. It is also compatible

with the way the network as a whole is viewed, which is very important

in this context for several reasons. First and foremost, sensor networks

vary in terms of the location of the implementation of the various network

layers. There are no clear-cut boundaries within which the implementation

of different layers is located. For example, the application layer might be

implemented on each and every node within a sensor network, or alterna-

tively be implemented only on a single base station. Figure 3.4 shows an

example of such an application. The topmost layer may be on each and ev-

ery node within a house in a certain implementation of an Automatic House

Control Sensor Network. The same application may be implemented with

one base station performing the high-level decision making, while nodes

only perform the lower layer functionalities in the network stack, such as
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aggregation, compression, and sampling. The same analogy applies to the

Traffic Monitoring Task, in our application scenario, where the readings of

all sensors on a node may be all forwarded to a base station that does the

data mining for information about congestion probability or situation on

the road. Alternatively, this application could be running on each node and

the nodes in this case would only send high-level jam indicators individ-

ually or collectively to radio stations in order to be advertised to drivers

or even to ambulance cars to allow them to avoid congested roads. A lay-

ered approach is also a used and well-studied design approach since the

appearance of the ISO/OSI networkmodel that dominates our world today.

Adopting a modular approach within each layer allows us to break the

problems within a layer into sub-problems. This is a well-known approach

in software engineering, and complex systems design. This also helps our

cause by allowing us to separate the functional pointswithin an architecture

clearly and study each separately.

The architecture we propose is event-based similar to the one in [138].

This is as opposed to a flow-based, pre-determined or pre-scheduledmech-

anism. Flow-based architectures have static routes for messages from one

layer to another, from one node to another, or from one module to an-

other. Pre-determined architectures refer to those that decide what type

of information will be passed from one entity to another at design-time

as opposed to at runtime. Finally, pre-scheduled architectures sends mes-

sages at pre-determined time points, such as periodically every five min-

utes. Event-based architectures make decision about the destination of

messages, transmission time, and type of information to be transmitted

at runtime. One approach to implement such an architecture in a sensor

node is to delegate the event handling to the modules in the locality of

the event. Therefore, sensors, for example, will handle sensory events, and

communicationmoduleswill handle communication-related events, and so

on. The sensing module, for instance, may contain a filtering functionality

to detect interesting or eventful data. This will occur in a separate space

of the software/hardware of a node. On figure 3.2, this could be the Raw

Sensor Readings layer adaptively handling sensing events, allowing other

modules to apply adaptive behaviours in different, may be higher-level,
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modules of the architecture. The same argument can be applied to each

layer of the architecture in figure 3.2.

Our architecture is mainly composed of four layers. The following is a

description of each:

Sensor and I/O Layer: This is where the control of the lowest-level sensing

devices and communication peripherals reside. This may correspond

to the drivers of the physical, data link, and possibly network layers

in the OSI networking model. However, It differs in that it does not

only communicate to peer nodes, but also it can be seen as a provider

of a dynamic view or model of the world at a very fine detail. It

greatly influences the decision making process in the higher-level

layers in the architecture because it literally represents the physical

phenomena being monitored from the higher layers point of view.

Radio transmitters, photodiodes, temperature and humidity sensors

are all components that could be included in this layer.

At this layer, a degreeof intelligence, adaptability or dynamic decision

making process can be vastly beneficial and effectual to the operation

of a sensor node/network. An example of adaptivity within this layer

may be in a situation where a sensor has failed, or its readings are

noticeably unreliable, then the sensing device controller might decide

to report the last reliable reading, or contact neighboring nodes and

report the average reading of other nodes. The decision should be

takenaccording to the information available about neighboringnodes,

the environment local to the node, and the status of the node itself.

However, it is important to notice that the decision-making process

does not require any information to succeed. It works in a best-effort

fashion, which provides robustness and fault tolerance.

Raw Sensor Readings Layer: This is where the data from events from the

previous layer are handled and stored. It filters the sensor read-

ings to identify the interesting data items and pass them on to other,

mostly higher-level, layers in the node. Interesting data items are de-

fined by the domain knowledge of the application. Higher layers can

parametrise this layer to identify which data should be considered



CHAPTER 3. SENSOR NODE/NETWORK ARCHITECTURES 55

interesting, hence determining what constitutes an event. It is almost

like one layer subscribing to a type of events that may occur in the

layer below. An example of a decision making process within this

layer could be the following: if a pollution-related process finds that

its readings are the same for the last 10 samples, it might choose not

to request any further readings from lower layer modules (pollution

sensing device controllers) for some time, and instead use the value

of the last reading.

Contextual Information Layer: In this layer, interesting contextual data

is aggregated from different sensors and communication channels.

Higher-level knowledge is then produced by analysing these data

items. If events interesting to higher layers happen in this layer, noti-

fication messages would be sent to those layers. This layer could be

seen as a form of middle-ware [20] that provides general distributed

applications infrastructure services. Infrastructure services may in-

clude location services, routing services, security services, and so on.

Decisions to run tasks based on the knowledge produced within this

layer likely will occur in higher layers of the refinement architecture,

just as decisions to perform tasks within this layer are likely made

based on events from lower layers. This layer can be seen as mainly

performing a combination of control and intelligence functionalities

on a system level rather than on a node level. For example, this layer

may coordinate with other nodes to preserve network energy, while

the Sensor and I/O Layer would work on minimising energy expendi-

ture on a node level solely.

Incorporating adaptive algorithms within this layer can be very criti-

cal to a sensor network’s performance. For example, decisions related

to GPS-based location services within this layer would greatly affect

the longevity of a network, as communication is an energy-hungry

process. This layer could try to minimise communication to provide

location services by, for instance, gathering information from neigh-

boring nodes, i.e. using local communication, rather than using the

nodes long-haul communication equipment.
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User Application Data Layer: This is where user programs and applica-

tions are run based on events occurring at the lower layers of the

architecture. High-level data analysis could be performed within this

layer. Examples of tasks that can be performed here include further

processing of the findings of lower layers to produce general policies

or report application-level findings to human observers. Other activ-

ities that can happen within this layer include operating/controlling

actuators, planning node policies, and/or mapping received data into

user-friendly representations. As with the lower layer, adaptivity at

this layer can provide node- and system-wide advantages.

Notice that within each layer in this architecture we could have several

modules [190]. Communication between pairs of layers is an abstraction of

the communication between modules in different layers. In other words,

each layer could have more than onemodule, which can communicate with

each other. Alsomodules in different adjacent layers can communicate with

each other. Layers cannot communicate with non-adjacent layers. This

module-to-module connections view of the system adds a service-oriented

aspect to the architecture, however, the architecture cannot be viewed as

a purely service-oriented one. It helps to clarify our architecture if we

compare it to the SOA, especially that there are many similarities between

the two. Differences between our hybrid event-based architecture and the

SOA can be summarised in the following points:

• Service oriented architecturesSOAhave autonomousmodules through-

out. Autonomy in our architecture is layer-wise only.

• The compatibility between different components in SOA is through

policies and this could be true in our architecture. However, com-

ponent compatibility in our architecture is restricted by the layer the

modules belong to.

• In SOA, the boundaries of each component is explicit. However, in

a layer, this is not a requirement in our architecture. Components

are only functional concepts, rather than real software components.
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Of course, some applications would adopt the SOA approach within

each layer, and this is fine.

• Finally, schemas and contracts exist between components in a SOA,

while they exist between layers in our architecture.

3.6 Functional/Architectural Model of a Sensor Node

In this section, we present a more detailed functional/architectural view of

a sensor node [85] [87] [157] [47] [56] [84] [180] [138]. Also we identify

on the architecture a more specific points of deployment for the adaptive

algorithm we discuss later in this dissertation. The reader could think of

the previous abstract model in figure 3.2 as a general high-level view of a

node or a sensor network stack, while figure 3.3 is a modular more specific

view of a sensor node.

Figure 3.3: Functional/Architectural view of a sensor

node

In this section, we will not discuss the hardware layer because it does

not involve much data handling but rather state-related information that
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Figure 3.4: Example application for the architecture of

figure 3.2

drives the operation of the hardware sensors. However, we think that the

same concepts we adopt in this dissertation would apply on the hardware

layer taking into consideration its specific requirements and characteristics.

In addition, it could be argued that the intelligence at the Raw Sensor Data

layer can incorporate rules and behaviour that controls the hardware layer,

so they can be merged in some applications.

Here is a description and discussion of each module in figure 3.3:

Intelligence and Policies Modules These are: 1) Task Control Intelligence

andPoliciesModule 2)Action Selection Intelligence andPoliciesMod-

ule 3) Sampling Intelligence and Policies Module 4) Communication

Intelligence and Policies Module. These modules are needed in ev-

ery layer of the abstraction presented in the previous section, and

they represent the points where we propose that adaptive algorithms

can be advantageously employed. They can be seen as the controller

modules of their respective layers, but that does not necessarily mean

that there could be only one actual module performing this role per

layer, but they are rather the decision making mechanisms within

the layer regardless of the type or number of modules involved.
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Implementation-wise, the choice is domain- and application-specific.

At the Raw Sensor Readings layer, simple analysis to control the op-

eration of the hardware sensors may be employed. For example low

level power concerns may be addressed at this level by some form of

intelligence, i.e. an adaptive algorithm. In the contextual informa-

tion layer, the interesting raw readings from different data sources are

analysed and processed into a more useful information for the appli-

cation layermodules. Therefore some form of intelligence and/or user

policy rules can be useful within this module too. Policies here can be

some form of user or application explicit requirements. The need for

intelligence at the application layer is obvious and might be included

in multiple software applications within this layer. However, we em-

phasise that the module shown in figure 3.3 at the application layer

can also be concerned with the meta data of applications rather than

the details of the application purposes themselves. For example, this

intelligence module might allocate more memory to one application

than another because of prioritisation issues. The application-layer

tasks themselves might not know about each other. Communica-

tion Intelligence Modules could make adaptive decisions on routing,

communication medium frequency, etc. In figure 3.4, adaptivity in its

simplest form here can be seen as a set of fuzzy-logic rules that control

the behaviour of the node at each of these layers, i.e. the ’words’ that

drive the logic represented within each of the boxes.

Data Storage Modules Each layer of this functional architecture has its

own type of data to process, hence the need for this module. These

modules could be a type of DBMS system, an API for XML data, or

a special storage on a mobile phone. They have the intelligence and

capability to handle the low level details of data processing such as

indexing, integrity, encryption, etc. These storage modules might not

be physically separate, i.e. a shared physical memory or the same

object structures may be used to store data from different layers or

modules. However, conceptually they are treated differently accord-

ing to the level of intelligence required or the granularity or purpose
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of the processing of the data items. The I/O Buffer modules represent

the storagemodule for the communication dimension of each layer. In

figure 3.4, the data that appear in bold font represent the information

that are saved in the storage modules.

Scheduler/Event-based manager module Intelligencemodulesmaymake

conflicting decisions or need a form of inter-communication and plan-

ning. This module ensures smooth coordination between various lay-

ers, modules, and components within a node. In addition, timing and

synchronisation issues need to be addressed globally within a node to

increase efficiency and facilitate the operation towards a particular set

of goals. In its simplest form, this module can be a timetable or sched-

uler for different modules operation in a TDMA slotting mechanism.

So it may be sendingwake-up signals, re-schedule signals, error mes-

sages, etc. The logic in this module should be minimal as modular

distributed design of intelligence is fundamental to our architecture.

Before we end the chapter, we would like to clarify how the communi-

cation intelligence and datamanagement relate to the rest of the node archi-

tecture because it is a layer/module combination that spans all other layers

in figure 3.2. Inter-node communication is handled by an intelligent agent

in the communication module. The communication process is assumed to

be transparent to any of the intelligence and policy modules within any of

the layers. For example, if the Raw Sensor Readings intelligence module

suspects that one of its readings is faulty or unreliable, it may decide to com-

municate with a neighbour, and request another opinion, so to speak. This

decision is not supposed to be explicit in our design. The suspecting mod-

ule would request such an action from the communication module, and the

communication module would put a value in the buffers or data repository

for the suspectingmodule to pick up. Where this latter value comes from is

not the business of the suspecting module. It only can read the target data

item from the communication data storage without making assumptions

about where the communication module has obtained it from exactly. Of

course if the communication module decides to add indications of how it

obtained the data item, it could do so, however, this is not guaranteed or
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required. The suspecting module may not know for sure if communica-

tion has actually happened or has not. This abstracts the communication

process into another simple data storage module, hiding the complexity of

communication issues, decisions, and problems from intelligence modules

at the various layers of the architecture. Of course, the intelligence mod-

ules can decide that the data coming from the Communication data storage

are unreliable, or decide not to write data to communication data storage

since, for instance, its processes are not functioning properly. In essence,

the modules in our architecture behave as if they were sensor nodes in a

sensor network, especially in terms of autonomous decision making and

robustness. Communication data storage can be seen in figure 3.4 as the

separate boxes on the right. Note that each box has information that are

on the same granular level as that of the layer it serves or corresponds to,

however, they can be stored physically on the same medium.

Most of the coming chapterswill explore deploying adaptive algorithms

at the communicationmodule, the application layer, contextual information

layer, and the raw sensor data layer.

3.7 Summary

In this chapter we presented the network requirements identifying the type

of networks targeted in this dissertation, and clearly defined in section 1.2.

Later, the major functional points within a sensor network building blocks,

i.e. sensor nodes, were introduced and discussed. Then, we introduced

an abstract high-level architectures of both a sensor network, and a sensor

node. Finally, a functional more detailed view of a sensor node architecture

was demonstrated and correlated with the high-level views of both the

network and the node. The adaptivity points were highlighted within each

layer briefly, as theywill be furtherdiscussed inmoredetail in later chapters.

An example application, togetherwith our application scenario introduced

in chapter 1, were used throughout the chapter to illustrate the ideas and

concepts in the context of a real-life application.

In the next chapter, we will be looking at applying adaptive models at

the fundamental functional points identified in this chapter.



Chapter 4

Action Selection and Task

Allocation

This chapter introduces an adaptive technique for task allocation and action

selection. To easily explain the technique, the process occurring at the node

level, i.e. the action selection process, is presented first. Subsequently, the

macro effect of these processes on the whole network, manifested in the

form of a fairly complex task allocation mechanism, is discussed. The term

task is used to refer to a high-level function/process, such as a Air Pollution

Monitoring Application, as opposed to a low level function/process of an

operating system, such as procedures for memory management. The term

action refers to the choice made by a node as to what to do at a certain point

in time. For example, a component in amulti-purpose sensornodemay face

a choice between performing task TA associated with Pollution Monitoring

P1, or task TB associated with Traffic Monitoring P2. Moving towards the

execution of either of the tasks is called an action in this context. Even the

decision to perform neither is a type of action.

In the next section, non-adaptive techniques are briefly discussed fol-

lowed by sections discussing, in more detail, the Response Threshold

Model, a biologically inspired model for task allocation. This model is

the key motivator of the adaptive mechanisms proposed in this thesis.

62
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4.1 Non-Adaptive Action Selection

One approach for task allocation in sensor networks is preset scheduling,

where tasks are scheduled to be performed at times determined prior to

deployment of the network. For example, in a multi-purpose sensor net-

work, a node can be configured to periodically run applications, i.e. at

preset intervals, with each application representing monitoring a certain

phenomenon such asWeather, Pollution, and Traffic. Another scenario is to

have nodes specialised in performing only one task, e.g. constantly running

a software application to manipulate data associated with a air pollution

levels. Scenarios with such static schemes attempt to maintain a constant

stream of readings, consequently incurring a constant rate of power con-

sumption, independent of the conditions of the nodes, environment, and/or

the network. This allows the user to have a fixed-precision representationor

depiction of the phenomena, regardless of how interesting the information

provided by the network is.

Other forms of non-adaptive behaviour in action selection include fix-

ation or local optima phenomena. Consider the following scenario: a node

made a decision to perform a task based on circumstances present at the

decision time. After some time has elapsed, the conditions to perform the

task has ceased to exist, however, the node is still stuck with the obsolete

decision it previously made to perform the now unnecessary work. In such

a scenario it is said that the node is tied to a local optima.

Preset scheduling schemes and local optima are examples of poten-

tially inefficient non-adaptive techniques where data obtained by the sen-

sor nodes may not carry much information, and consequently may waste

valuable energy (or more generally resources). For example, in the previous

scenario of the multi-purpose sensor network, if, at time t, the network re-

ports to a base station that the traffic intensity pi value is ci, and then at time

t + 1 it reports that the traffic intensity pi value is ci. Then the new data did

not necessarily bear much information, but rather repeated the previously

conveyedmessage. If the sensor network stayed idle, this might indicate to

the user that there is no change in the traffic intensity without any associ-

ated energy expenditure. If nodeswere to follow a simple adaptive rule like
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reporting only relative variability in traffic intensity that exceed a certain

constant value, it will still make energy savings.

Employing a sensor network that can adapt its actions to match the

environmental factors may result in greater efficiency and better utilisation

of resources. In this chapter, we introduce models that can allow a sensor

network to achieve exactly that.

4.2 Adaptive Action Selection

As sensor nodes detect surrounding phenomena, they process their read-

ings, and accordingly, determine their next appropriate actions. The algo-

rithms involved in processing sensor readings are generally application-

dependent. This dissertation focuses on the processing that task allocation

involves, giving little attention to the processing required to perform the

tasks themselves. Often, sensor networks aredeployed toperformanumber

of tasks. Given the resource-constrained nature of the nodes, multi-tasking

can be difficult and therefore sensor nodes often adopt a single-tasked

model, where only one task is active at a time. As previously discussed,

a task is a high-level application, such as Monitoring of Pollution Levels or

Monitoring of Traffic. If a node detects the need to perform multiple tasks,

it has to conduct an arbitration process, whereby only one of the required

tasks is performed and the rest is deferred. This arbitration process may

depend on several criteria that are application- and task-dependent.

A generalmodel for adaptive task allocation was proposed in [25] based

on observations from insect societies. We take this model as an example of

adaptive algorithms that can optimise the use of network resources while

maintaining the network performance at satisfactory levels. Satisfactory

levels of performance are decided by human users and given as input to

sensornodes. In the next few sections,wewill describe themodel in general

and two of its variations in addition to presenting a deployment scenario

in a sensor network. In further sections, the models will be extended to

support the inclusion of more criteria in its workings.
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4.3 The Stimulus-Based Response Threshold Model

Within a group of insects, an individual performs a task if it observes

sufficient cues indicating demand for the task to be performed. These

cues might be environmental or in the form of messages from the fellow

members of the society. Such cues can be categorised according to the task

they stimulate the individual to perform, hence the name task-associated

stimulus or hereafter stimulus.

In insect societies, many factors contribute to an individual’s decision

to perform a task, including genotypic, environmental, temporal, morpho-

logical, physiological, and social factors. However, certain cues can be

dominant in stimulating the performance of a particular task, at least from

an observational viewpoint. For example, bumping into many dead bodies

in a colony can be seen as a strong stimulation for individuals to perform the

task of ’Dead Body Clearance’, regardless of other potentially less important

cues in this context such as weather conditions. The amount of stimulation

experienced or the number of cues observed that are sufficient for an indi-

vidual to start performing a task is called the task-associated response threshold

or task response threshold hereafter.

Two variations of a mathematical representation of the task-stimulus

correlation described above, i.e. a response threshold mathematical model,

were developed in [25] (a Fixed Response Threshold (FRT) model) and in

[181] (a Variable Response Threshold (VRT) model). These models were

chosen to be investigated as adaptive mechanisms in this dissertation for

the following reasons.

• They map algorithms that seemed to succeed spectacularly in nature

in systems that bear great resemblance, as previously discussed, to

sensor networks.

• They are simple enough to be employed in a sensor node, yet flexible

enough to account for a large number of parameters.

Nodes in a sensornetworkwill play the role of an individual insect in the

model, while a sensor networkwill be analogous to an insect society. Nodes
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will use cues from the environment and peer nodes, the network goals,

and the node’s internal status to make decisions about what actions to take.

This draws from almost identical situation, according to themodel, in insect

societieswhere individual insects usepeer interactions,environmental cues,

insect capabilities, and society/group goals to make decisions about future

actions.

4.4 Fixed Stimulus-based Response Threshold Model

In this model, each node holds N variables denoted S0, S1, . . . , Sn equal

to the number of potential tasks as well as N corresponding constants

denotedθ0, θ1, . . . , θn. Each pair of correspondingvariable and constant (Si)

is associatedwith a taskTi. Si represents the stimulation a node can detect in

connectionwith the associated task Ti. The θi constant represent the critical

value of Si at which the node should start performing the associated task

Ti. The latter is also known as the task-associated threshold in the model’s

nomenclature [25]. This will be referred to as threshold hereafter in this

document.

The model proposed in [25] is probabilistic. This allows the exploration

of different adaptive behaviours, provide more flexibility, and account for

the noisy environments where nodes (or social insects in [25]) generally

exist. In addition, probabilistic models allow the abstraction of unknown

factors that contribute to the behaviour of a node/insect. Therefore, given

a stimulus Si and a threshold θi, a node will perform an associated task Ti

with a probabilityΨi(Si).

Theraulaz [181] used a particular equation to relate the stimulus Si,

the threshold θi, and the probability an insect (or node in our work) will

start performing the associated task with probability, Ψi(Si, θi). However,

the authors did not exclude the validity of using other equations with

similar features. The choice is likely to depend on some application-specific

requirements such as curve growth rate, response sensitivity, etc. Theraulaz

[181] used the following equation:
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Ψi(Si) =
Sn
i

Sn
i
+ θn

i

(4.1)

Another example of an equation with similar properties is:

Ψi(Si) = 1 − e(−Si/θi) (4.2)

Notice thatΨi(Si), in both equations, satisfy the following two features:

1. Ψi(Si) approaches 0 as Si approaches 0, and

2. Ψi(Si) approaches 1 as Si approaches∞.

The value of Si increases if more cues for the associated task are detected,

and decreases otherwise. This means the more cues are detected for a task,

the higher the probability the insect (or node in a sensor network) will

engage in performing that task. Thus, a task with a high threshold needs a

high number of detected cues before an insect (or node in our case) starts

performing it. As aforementioned, any function with similar characteristics

can be used in the model. This function is analogous to the utility or fitness

function in other algorithms like auction-based ones.

The values of θi is normalised between tasks, and can be seen to rep-

resent the task priority associated with this task. For example, in our

multi-purpose sensor network, traffic monitoringmay be more urgent than

weather monitoring, so the network need to be more sensitive to the traffic

measurement in the environment. By setting the thresholds associatedwith

traffic to a low value, nodes will respond faster to their associated task.

4.5 VariableStimulus-BasedResponseThresholdModel

The Variable Response Threshold Model is almost the same as the Fixed

Response Threshold Model except that the value of the thresholds θi vary

over time according to detected environmental conditions and insect sta-

tus. This variability allows specialisation of a node to emerge if it is more

frequently stimulated to perform a certain task, than to perform others. So
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the probability is a function of both θ and S as follows:

Ψi(Si, θi) =
Sn
i

Sn
i
+ θn

i

(4.3)

The variable response threshold employs two additional parameters, a for-

getting, and a learning coefficient. When a node engages in performing a

task Ti, the task-associated threshold is decremented by an amount called

the learning coefficient, β, and all other task thresholds are incremented by

an amount called the forgetting coefficient, α. This makes easier for this

insect/node to perform this task if stimulated to later, and more unlikely

to perform one of the other tasks. A mathematical representation of this

procedure is given in algorithm 1.

if Just engaged in Ti then1

θi ← θi − β ;2

if θi < θmin then3

θi ← θmin4

endif5

for j = 0→ N do6

if i , j then7

θ j ← θ j + α ;8

if θ j > θmax then9

θ j ← θmax10

endif11

endif12

endfor13

endif14

// where N is the number of tasks

// where β is the learning coefficient

// where α is the forgetting coefficient

// where T is a task

// where θ is the threshold associated with a task Ti

Algorithm 1: Variable Response Threshold Algorithm

Given similar stimulation levels for all tasks, nodes have a greater ten-
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dency to perform tasks with low threshold values, which makes them

quickly specialise in performing these tasks. This also results in less task

switching than if the fixed response threshold model is used, which is ben-

eficial in applications where task switching involves costly resource over-

heads. An example of such a situation is if switching tasks require learning

new communication routes, which incurs additional energy and time over-

heads. Also, switching from idle to active is expensive in general and so

should not be done too frequently in a sensor node [5]. Notice that nodes

may perform tasks with high stimulation levels even if they are not spe-

cialised to perform these tasks.

4.6 Resource-based Response Model

Both variable and fixed response thresholdmodels perform themodulation

of a node’s behaviour according to environmental cues. They do not take

into consideration the state of a node’s resources, or that of neighboring

nodes. We here extend the model to account for internal resources (e.g.

battery levels, memory space, bandwidth, etc) when performing action se-

lectionprocesses. In our extension of themodel,wewill consider the battery

levels as an example of a resource to incorporate into the action selection

process or criteria. However, other resources could be incorporated in a

similar manner without loss of generality.

Battery levels can indicate the life expectancy of a node under a known

energy consumption rate, and is a very critical resource in many sensor

networks. If a node has low battery, it may need to sparingly consume

energy in order for its lifetime to be extended. If many nodes in one

network fail due to flat batteries, reduced network coverage and increased

network disconnections may result. In such situations, nodes with high

battery levels may be more eligible to perform tasks, possibly relieving

nodes with low energy levels.

Energy is consumedwithin a nodemainly by three types of components.

These are: 1) Sensing Devices, 2) Communication Devices, and 3) Comput-

ing Devices (CPUs, microprocessors, etc). Tables 4.1, 4.2, and 4.3 show a

comparison of the power requirements of various devices. These tables are
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Phenomenon Current Manufacturer

Photo 1.9 mA Taos

Temperature 1.0 mA Dallas Semiconductor

Humidity 550 uA Sensirion

Pressure 1.0 mA Intersema

Magnetic Fields 4.0 mA Honeywell

Acceleration 2.0 mA Analog Devices

Acoustic 0.5 mA Panasonic

Smoke 5.0 uA Motorola

Passive IR (Motion) 0.0 mA Melixis

Photosynthetic Light 0.0 mA Li-Cor

Soil Moisture 2.0 mA Ech2o

Table 4.1: Energy Requirements of Various Sensing De-

vices

for comparison purposes only, and we are not using any particular device

from these tables in our experiments since we conducted them on a more

abstract level. However, generally, we assumedwe used a chip like the one

in [57], or the MSP, PIC, AVR families [124]. MEMS-based sensors are low

power and we would recommend them for sensor networks. Finally, we

recommend communication devices like the ones in [39] and [137]. Sensing

devices power consumption varies significantly according to the phenom-

ena and the device types. However, in general, they require significantly

CPU MIPS/mA Idle (mA)

Atmel AVR AT90LS8535 1.25 min < 0.001

Microchip PIC16F877 (prelimi-

nary)

1.66 preliminary < 0.001

MC68H(R)C 908JL3 0.1 typical 0.001 typical

Atmel AT91M40400 16/32 bit

Strong Thumb

0.6 (1.35 static current) < 0.001

Table 4.2: Energy Requirements of Various CPUs
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Device Current Con-

sumption (mA)

Throughput kb/s

HX2000 Transmitter 4.5 10

RX2010 Receiver 2.5 10

Blue Tooth Compliant

Philstar PH2401

20 1000

Table 4.3: Energy Requirements of Various RF Commu-

nication Devices

less power than RF communication devices, especially if we know that RF

communication devices consume power even when there is no commu-

nication taking place, i.e. listening mode, while in many sensing devices,

power is consumed onlywhen a sampling event occurs. Table 4.2 shows the

power consumption of some CPUs when they are active, however, when

they are inactive, the power consumption is lower by orders of magnitude.

Generally, power requirements of computing is much lower than those of

communication in sensor networks.

Mathematically, we correlate the probability,Ψ(B), by which a nodewill

perform a task T when its current battery level or energy level is B by the

following equation:

Ψ(B) = (
B

B0
)m (4.4)

Where B0 is the node’s full battery content of energy

Where m determines the response curve steepness (i.e. speed of growth)

in relation to resource variation in general, or battery level variation in this

case.

This equation was chosen arbitrarily from equations that fulfil the fol-

lowing two characteristics:

1. The probability Ψ(B) approaches 0 as B approaches 0 (i.e. battery is

nearly flat), and,

2. The probability Ψ(B) approaches 1 as B approaches B0 (near full-

battery).
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Any equation with similar characteristics could have been used. More

sophisticated forms of this equation are possible in light of more realis-

tic battery consumption models, however, this is out of the scope of our

research. It is worth mentioning that there are battery models that have

a linear range which we assume we work within here [147] [99], so this

assumption is sufficiently realistic.

The same argument above could be used to produce an equation for

memory as a resource. A node with a total physical memory of Mem0,

current free memory ofMem would respond to a task performance request

with a probability calculated by the following equation:

Ψ(Mem) = (
Mem

Mem0
)m (4.5)

More complexmemory equations could be used,but this one only serves

as an illustration of the possibilities.

4.7 CombiningBattery-Based andStimulus-BasedRe-

sponse Models

The previous two sections addressed models to deal with each of the three

key factors we identified in making action selection decisions, namely re-

source cost, task demand, and high-level user policies. The node needs to

account for all three factors simultaneously when making action decisions.

We propose the following equation to be used by a node to account for

the first two of them, while a set of fuzzy rules to address high level user

requirements:

Ψ(S,B) = (
Sn

Sn + θn
)(
B

B0
)m (4.6)

WhereΨ(S,B) is the probability a node engages in performing a task T

Where θ is the task-associated threshold

S is the stimulus detected for task T

B is the current level of the node’s resource

B0 is the maximum amount of the node’s resource
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n and m are the sensitivity parameters to changes in task stimulus and

battery level respectively

Notice that user policies are also represented by the θ variable, which

signifies two issues. First, the sensitivity of the node to stimuluswith respect

to a task, and the task priority relative to other tasks. Environmental cues

were represented by the S variable, and the resource status is represented

by the B variable.

The equation was chosen to satisfy the following condition:

Ψ(S,B), the probability of engaging in performing a taskT based

on both available resource and current stimulus levels, denoted

B and S respectively, approaches 0 as either B or S approach 0,

and approaches 1 as the stimulus and battery levels approaches

∞.

We do not claim that the equation above is optimal for all applications

and many equations that satisfy these conditions could be used. Fitness

and utility functions are application- and domain-specific.

The next chapter presents simulations conducted to test the effects of

employing these algorithms in a hypothetical sensor network, and observe

the macro- and micro- phenomena that result.

4.8 Network Performance Metrics

It is generally difficult to produce a clear single definition of a measure of

quality of the performance of a sensor network. One possible reason for this

is the application-dependent nature of the problem. However, this is not the

main reason the identification of a definite metric of network performance

quality is complex. The main problem lies in the general contradictory

requirements a sensor network needs to satisfy simultaneously [75].

Sensor nodes are very resource-limited. This means they need to do as

little as possible, and use resources as wise as possible to conserve their

resources. However, intrinsically, consuming more resources can lead to

better performance. The forces driving a node to satisfy the previous two

assumptions result in a compromise. The extreme case of consuming no
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resources will most likely result in an unacceptable task performance lev-

els. The other extreme, i.e. performing tasks without limit on resource

consumption, is undesirable because the node lifetime or other capabilities

will be over-strained and node failure/death will result very soon.

However, a combination of the following metrics [87] may allow us to

evaluate a sensor networks performance:

Lifetime: mostmonitoring application dependon long operational lifetime

of a network. Network density and node redundancy play a big part

on defining the lifetime of a network in terms of the number of live

nodes.

Coverage: ideally 100% coverage is required. This is difficult to attain in

most networks. However, luckily, many applications tolerate much

lower instantaneous coverage.

Response Time: some security, and other critical monitoring systems, re-

quire fast response from the network. This can range from as small as

milliseconds to as long as hours.

Temporal Accuracy: time stampeddataprocessing and correlation is paramount

in many applications. For example, in our application scenario, if two

nodes detected the same traffic density at the same time or around

the same time, then they can fairly accurately decide that they have

detected the same jam incident. Lack of timestamping heremay cause

confusion.

Cost and ease of deployment: self-management, self-configuration, and self-

healing are all desirable features in sensornetworks to reduce cost and

make network deployment a viable process.

For the purpose of our experiments, we consider two measures to be

relevant in assessing the quality of a sensor network operation. The first is

the network lifetime. In monitoring applications, networks that last longer

are considered better than networks that die out quickly. The percentage

or count of dead nodes that render the network unusable is application-
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and domain-specific. The second metric is the average and total task per-

formance. Task performance in monitoring applications is usually network

coverage [131]. Each node is said to give a view of the target phenomenon

within a certain neighbourhood or vicinity. Often this neighbourhood is

identified by the area falling within a radius r full circle from the node’s

centre. This document assumes a binary model of sensing [111]. At any

point on the sensing surface, there is either coverage, or no coverage. There

can be no 50% or 33% coverage. It is either on or off. This sometimes is

called the Boolean Sensing Model [90]. This model is realistic enough and

used in many sensor network applications and simulations. An example

can be our application scenario, where for the weather monitoring task,

wind speed can be measured by only one sensor node within a square kilo-

meter, and is assumed to be uniform over this whole area. Note that the

work in [90] addresses the network coverage issues, but does not deal with

adaptivity issues and the regulation of multi-tasking.

Mathematically speaking, a node will provide a coverage of πr2
0
if it

is said to represent a phenomenon within a radius r0. We will call this

radius hereafter sensing radius. We will call the πr2
0
the coverage range. In a

sparse network, where nodes do not have overlapping ranges, a network

composed of N nodes, would yield a total coverage, C(N), according to the

following equation:

C(N) =

N∑

i=1

Ci = π ×

N∑

i=1

r2i (4.7)

where ri is the sensing radius of the ith node. If the nodes have equal

sensing radii, then equation 4.7 can be simplified to:

C(N) = N × C = N × π × r2 (4.8)

where C is an individual node’s coverage range and r is a node’s sensing

radius. However, the coverage analysis gets more involved when overlap-

ping ranges occur in the network.

To further investigate the coverage problem when overlapping occurs,

we need to introduce a few concepts. These will be useful in the next

chapter when we conduct our experiments and try to assess and analyse
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the results. These critical definitions are:

Network Density, λ: It is the number of nodes present within a surface

area unit. Assuming a square-shaped 2D-terrain with L side length

will have a surface areaA andN nodes randomly distributed over the

surface, then the network density, denoted λ, will be defined as:

λ =
N

A
=

N

L2
(4.9)

Note that some of the equations that will follow depend on an as-

sumption that the terrain surface area ismuch greater than the sensing

radius of any node, i.e. L ≫ r. This will make sure that the edge effect

is marginal. The edge effect is the weight of the lost coverage by the

nodes that are in close proximity to the edge of the sensing terrain.

This lost coverage is marginal when L≫ r.

Area Coverage, fa: It is the ratio of covered area to the total areaA. Covered

areas are thosewithin r distance units from at least 1 sensor node. The

value of fa must be between 0 and 1 ( 0 ≤ fa ≤ 1 ).

fa =
C(N)

A
=

C(N)

L2
=

C(N)λ

N
(4.10)

Node Coverage, fd: The ratio between the number of covered nodes to

those which are not covered. Covered nodes are those nodes whose

coverage area is totally coveredbyother nodes. These node’s coverage

area is at least doubly covered (by the node itself for one, and then by

other nodes for second). This value is a measure of redundancy in a

network. This document is focused on networkswith high fd. In [120]

a correlation is found between this value, fd, and the area coverage,

fa.

Mathematically, area coverage can be calculated by the following equa-

tion:

fa = 1 − e−λπr
2

(4.11)
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and this equation will apply regardless of the overlapping of some sensors

as long as L≫ r is true.

To achieve a certain coverage fa, the density required can be calculated

by the following equation:

λ =
− ln (1 − fa)

πr2
(4.12)

4.9 Summary

In this chapter, we briefly described non-adaptive schemes of task alloca-

tion, and compared them to simple adaptive ones. In order to demonstrate

the benefits of adaptivity, we gave few simple example scenarios.

The threshold-basedmodel of task regulation in insect societies by Ther-

aulauz and Bonabeau [24] was introduced. This model was extended to

include resource factors in making the action selection decisions. Two vari-

ations of the threshold-based models were illustrated, namely the FRT and

the VRT model variations.

Finally, sensor network performancemetrics were introduced. The ones

that were relevant to our dissertation were further discussed and their

relevance reasoned about. Some mathematical equations and definitions

were identified and explained in the same context.

Next chapter will present and discuss the simulations associated with

the Action Selection Model that we undertook, in addition to an analysis

and conclusions from the results.



Chapter 5

Task Engagement and Action

Selection Simulations

5.1 Introduction

In this chapter, we will present our experimental platform, a simulation en-

vironment called NetLogo. Experiments for action selection using 5models

will be demonstrated. General parameters of the experiment simulations

will be defined and discussed. Also model-specific parameters will be

identified, and discussed.

The experiments in this chapter will focus on the action selection mech-

anisms within a sensor node. We ran experiments with the following five

models, and then compared the results:

1. Constant Response Probability Model, or CR for short

2. Fixed Stimulus-based Response-Threshold Probability Model, or FRT for

short

3. Variable Stimulus-based Response-Threshold Probability Model, or VRT for

short

4. Fixed Stimulus- and Resource-based Response-Threshold Probability Model,

or FRT+B for short

78
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5. Variable Stimulus- andResource-basedResponse-Threshold ProbabilityModel,

or VRT+B for short

5.2 Simulation Environment

NetLogo [196] [162] is our choice for simulating our bio-inspired models

in sensor networks. NetLogo is a general modeling environment that par-

ticularly excels in the modeling of complex systems. It has been used for

sensor network modelling previously [149] [80] [123]. It allows hundreds

and thousands of independent agents to be modeled and controlled simul-

taneously. Agents run concurrently, which is a very important premise

of sensor networks. Unlimited number of variables and actions can be

associated with each agent.

In addition,NetLogo allows for themodeling of the environment through

batches. Batches represent the terrain on which agents act, move, and/or re-

side. They could model the environment, atmosphere, or surroundings of

the nodes. We used them to model the geographical area where our sensor

network is deployed. Like with agents, any number of variables or proce-

dures can be associated with each batch. A grid of batches, with adjustable

sizes, appear as the surface where the simulation happens. This area is

internally represented as a torus in NetLogo, i.e. there are no edges since

each edge is connected to the opposite one.

NetLogo also offers anObserver agent that can manipulate the collective

system, i.e. all batches and agents. The observer is usually used to control

global variables such as time boundaries, simulation speed, statistical data

collection and analysis, etc.

Figure 5.2 shows a number of agents modeled on a set of batches, while

figure 5.1 shows an example user interface to control the parameters of a

model in NetLogo.

NetLogo provides facilities to monitor both micro- and macro-level ef-

fects, behaviours, and motions of a system, including graphs, counters,

monitors, events, and data files. Although NetLogo is sufficiently sophisti-

cated, it is simple to program and has a rapid learning curve. In addition,

NetLogo allows connecting software agents to real sensors or other hard-
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Figure 5.1: User Interface Demonstration of NetLogo

Figure 5.2: Agents on batches in NetLogo



CHAPTER 5. ACTION SELECTION SIMULATIONS 81

ware. Finally, NetLogo is platform-independent because it is coded purely

in Java.

NetLogo’s models are hard to extend since the code is procedural, as

opposed to object-oriented, and so hard to maintain and debug. As a

consequence, very complicatedmodels are not well suited toNetLogo. One

of our goals was creating complex macro-effects through simple micro-

rules, and so this disadvantage had limited impact on our simulations.

NetLogo also slowed down considerably when the number of agents grew

to a magnitude of tens of thousands, however, this was beyond our needs.

The main reason NetLogo was adopted as the simulation environment

was the speed at which we could prototype and try models. This was

extremely vital as the search space for our models was very large, and

our Monte Carlo experiments had a lot of try-and-error cycles, dictated

by the complexity of the macro-level behaviour and the number of pa-

rameters involved in the models of both the environment and the nodes.

Implementing and experimenting our model with high-fidelity simulation

frameworks and environments [184] [142] [78] would have required too

long time which we could not afford. However, we have tried few selected

experiments on a high-fidelity simulator1 and the results were equivalent

to those obtained from NotLogo. In addition, the level of abstraction our

models apply at does not require such complex accurate simulations to be

verified, therefore it would have been an overkill to use such high-fidelity

simulators.

5.3 Network Evaluation Metrics

Before we present the results of the simulations, a glossary of terms used to

represent and evaluate the results are provided. Some of these metrics or

concepts were introduced in general terms in previous chapters, however,

we put them here into the specific context of the experiments we conduct:

1We have used J-Sim [166][164][165] to run some of our simulations to confirm that

the results from NetLogo match those obtained from a more complicated model of sensor

networks/nodes, such as those in J-Sim. The differences were marginal, and irrelevant to

our work.
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• Network lifetime: the number of time steps elapsed from the start

of the network deployment, to the time all network nodes have run

out of energy. This is a very critical measure of a sensor network’s

efficiency. Often, sensor networks need to be able to function for

periods of several years. A time step in our experiments is a generic

time unit. Its value controls the speed of the experiment running. We

assumehere a time step is one second, and adjust the other parameters

based on this assumption.

• Network Task Performance, fa: a quantitative measure of how well

a particular task is performed by the network. For example, if the

network was intended to perform the task of monitoring the varia-

tions in air pollution, then the network performance of this task is the

amount of pollution variance recorded or reported by the network,

compared to the actual pollution variation. In monitoring applica-

tions, which are the main focus of this dissertation, the performance

metric commonly used is network coverage. Network coverage has

been discussed in detail in previous chapters and will be used as our

metric for task performance in our experiments.

• Instantaneous Network Task Performance, fa(t): In our experiments,

this is the network coverage at a particular moment in time. Any

single point on a curve of the network coverage as a function of time

represents an instantaneous network task performance, fa(t).

• Total Task Performance,
︷︸︸︷

fa(t) : this is the sum of the instantaneous

task performances over the network’s lifetime. For example, if an air

pollution monitoring network lived for 3 time steps, and at the first

time step it recorded 2 units of pollution variation, at the second it

recorded 1, and finally 5 variation units were recorded at the third

time step, the total task performance would be 2 + 1 + 5 = 8 units

of pollution variation. The average task performance would be 8/3

or ≈ 2.7 units of variation. Total task performance is, in continuous

time mathematics, the integral of the total task performance function.

In discrete time mathematics, it is represented by the sum of the
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instantaneous task performances:

︷︸︸︷

fa(t) =

t=n∑

t=0

fa(t) (5.1)

In continuous time mathematics, this will be:

︷︸︸︷

fa(t) =

∫ t

t0

fa(t) (5.2)

• Average Network Task Performance, fa(t): the task performance of

a sensor network may vary over time due to node failures, environ-

mental conditions, or user/high-level policy changes. However, the

instantaneous performances of a networkwith respect to a task can be

averaged over the lifetime of the network to give a quantitative rep-

resentation of the performance of the network with respect to a task.

We call this quantitative representation the Average Task Performance.

In discrete mathematical terms, this can be calculated as follows:

fa(t) =

∑t=n
t=0 fa(t)

n
(5.3)

In continuous time mathematics, this will be:

fa(t) =

∫ t

t0
fa(t)

t − t0
(5.4)

In general terms:

fa(t) =

︷︸︸︷

fa(t)

Li f etime
(5.5)

• Instantaneous Task Demand Level: represents a quantitative mea-

sure of the urgency to perform a task at a particular point in time. For

example, assume that in a network, a task is to produce an air pollu-

tion analysis report aimed at mapping the pollution variance in the

environment. In such a network, one pollution report will be enough

as long as there is no pollution variance in the environment. This
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may indicate that this task is of low priority. This can be represented

internally in a node as a variable holding a normalised value of the

pollution variance. Later, if a high pollution variation occurs in the

neighbourhood of a node that is supposed to produce a report, then

the task demand recorded by the sensors will increase, and this task

will have a high task demand level, i.e. data for the pollution report

should be recorded urgently. This will correspond, in our experi-

ments, to the S variable in the FRTmodel discussed in more details in

chapter 4.

5.4 The Experiment Scenario

We will demonstrate the experiment scenario in general terms, and then

we will translate those general terms into a more concrete real-life sensor

network scenario.

5.4.1 Abstract General Scenario

The experiments conducted followed a generalised scenario. They depict a

network that is intended to perform three tasks. The number of tasks in the

network was chosen arbitrarily to satisfy the following two conditions:

• The experiments were required to simulate a network with multiple

tasks performed, so more than one task was needed. After all, the

dissertation is about action selection which inherently means that

there is more than one task to execute.

• However, toomany tasks could havemade the systemhighly intricate

to be studied. The scalability of the algorithms we are investigating

here is certainly an important issue, however, we leave investigating

this for the future as it is outside the scope of this work. In this

dissertation, the focus is on the capability of the thresholding models

to control swarm systems with a large number of nodes, rather than

tasks. Increasing the number of tasks per node will complicate the

analysis as we will have to consider the performance of more tasks.
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In addition, this will lengthen the time needed to perform the study

beyond an acceptable limit.

We used three tasks merely to satisfy the previous two conditions. Each

of the tasks, TA, TB, and TC, is a monitoring task associated with the vari-

ation of a phenomenon. Monitoring a phenomenon involves running an

application specific to it, and/or communicating readings pertinent to this

phenomenon to a base station, or a satellite.

Each node in the simulated network can be in one of two states, active

state, or idle state. An idle node is a node that is not doing any of the three

tasks, i.e. not running any of the task-associated applications. Idle nodes

have their CPU and communication equipment in the off or sleep mode.

They consume minimal amount of energy in these states. An active node is

a node that is performing one of the three aforementionedmonitoring tasks.

In otherwords, each node, if not idle, has a set of potential tasks to perform.

Each task causes the node to consume resources at a predetermined fixed

rate. The experiments in this dissertation will abstract resources in its

calculations to account for only one resource, that is the power source, i.e.

the battery. Other resource types could have been used, however, literature

suggests that power consumption is the most critical resource in sensor

networks [151] [109] [88], and so it is reasonable to focus our attention on it.

Monitoring tasks have different priorities, which can be determined by

network goals, task criticality, and/or explicit user policies. Network goals

are concerned with their general purpose. For example, a node could give

self-maintenance a lower priority compared to monitoring tasks. Explicit

user policies can be pushed into the network at real time, or built into

the nodes at design time. They may include fuzzy rules such as which

phenomenon to focus on, or be more sensitive towards. Task criticality

refers to the urgency of performing a task due to reasons other than explicit

user policies and general network goals. For example, in a network that

harvests energy, if severe energy shortage is detected, then all tasks may

be deferred until the Energy Harvesting Task has run sufficiently to allow

other tasks to run regardless of any other factors.
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In our experiments, task A has highest priority, followed by task B, and

least priority was given to task C. Readings from a node represent the

variations in a phenomenon within a radius r0 from the node. The efficacy

of a network in performing a task is evaluated in terms of two factors. The

first is the accuracy of the network recording of a phenomenon, i.e. the

difference between the actual variation in a phenomenon and the variation

the network has recorded. The second factor is the resource consumption

incurred to achieve such a level of monitoring accuracy. The network

performance and network coverage will be used synonymously hereafter.

Ideally, the goal of the networkwould be to achieve 100% coverage without

consuming any resources. How close a network can be to this ideal goal

represents the efficiency of this network.

5.4.2 Hypothetical Multi-purpose Sensor Network Application

Scenario

Multi-purpose networks have grabbed the attention of researchers recently

[93] [171] [172]. In a multi-purpose sensor network, a sensor node would

have various types of sensing devices attached to it. The processor or CPU

on the node would use these readings to serve various applications. We

adopt such a network for our experimental scenario. Each node will have

a set of sensors, and the node processor will be tasked with three different

applications, each representing a Task. As aforementioned in chapter 1, our

network application scenario will involve the following three tasks: Traffic

Monitoring, Air Pollution Monitoring, and Environmental Monitoring. In

the following few sub-section, more details are given about each of those

tasks.

Traffic Monitoring, TA

Traffic problems are quickly becoming an important and crucial aspect of

the daily life of every citizen. Who of us did not suffer traffic jams? Road

safety problems? Fuel prices? etc. These issues press for urgent solutions,

and many new technologies are being harnessed to find out whether they

could deliver solutions ormitigate the problems in relation to traffic. Sensor
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Networks is no different in this respect [163] [179]. Such an application of

sensor networks could help us better understand how traffic congestions

and jams develop, subside, what are the underlying causes, and how could

we avoid or resolve them.

In this dissertation, we take the traffic congestion problematic phe-

nomenon and consider using sensor networks to mitigate its effects or

detect it when it occurs. In this application, nodes take readings in connec-

tion to traffic jams, car concentrations, and bottlenecks. This data is then

communicated to a server that feeds a radio station and broadcast to drivers

to adjust accordingly. This is conventionally done via helicopter and other

non-distributed systems.

We assume our sensor nodes are equipped with sensors to detect three

traffic-jam related measurements [148]. These are density, intensity, and

speed. Density is a measure of howmany vehicles there are in a length unit,

while intensity is a measure of how many vehicles there are per time unit.

Finally, speed is a measure of how quick the traffic is flowing [83]. As one

might expect, the higher the density, the more likelihood of a jam there is.

The reverse applies to the intensity since the higher the intensity, the less

likelihood there is a jam. Finally, the higher the speed, i.e. traffic flow, the

less probability a jam will develop.

When a node’s reading of any of the three measurements cross a certain

threshold, the node will start sending a message indicating a possible jam

[42]. Note that an equation, or a set of fuzzy logic rulesmay control the value

of the stimulus associated with the Traffic Monitoring Task as a function

of the intensity, density, and speed traffic measurements. How do we map

those readings to a single scalar stimulus value is out of scope of this work.

Once a significant change in the congestion status is detected by a node, this

data will be transferred to a receiver on the closest vehicle, or vehicles, in

the communication range the node, where the vehicle in turn will transfer

the data to a control centre via a satellite link or any other communication

links available. We will not tackle how this data is processed after this

point, since this data could be for example received by peer nodes [112],

base stations [209], or any other useful processing path. a possible final

destination of the data could be in the form of a broadcast to drivers on
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a radio channel directing them to act accordingly. We only focus on the

actions of the nodes in this dissertation, which is detecting the jam, and

notifying the sinks in the surrounding.

Note that this task will have the highest priority amongst tasks, because

when a jam is developing, we do need to take fairly quick measure to stop

it or avoid it exacerbating.

Air Pollution Monitoring, TB

With global warming on the rise, and the increase of car emissions, au-

thorities of big cities need to monitor the pollution levels [18] to see if its

measures to curb emissions and curb carbon footprint is working. Like in

[209], we assume a simple pollution monitoring application where there

is a set of sensors on each node that would detect various air pollutants.

We would assume our application will monitor three air pollutants, for

simplicity. These are Carbon Monoxide (CO), Sulphur Dioxide (SO2), and

Nitrogen Dioxide (NO2). The pollutant level readings will constitute the

stimulus for the air pollution monitoring task [125] [77] according to some

application-specific criteria that is out of the scope of this dissertation.

The same technique used in the trafficmonitoring to deliver data/results

to a base station will be used in the pollution monitoring task, similar to the

scheme in [139]. That is results are transmitted to the closest vehicle and

that then is forwarded by a satellite link, or a similar device, to a control

centre that may make use of these results.

Note that this task has the second priority after the Traffic Monitoring

Task, sense it has long term goals and usually does not require immediate

action.

Urban Environmental Monitoring, TC

Daily weather conditions togetherwith various climate monitoring are vital

for various scientific reasons that are connected to global warming and the

contribution of the city where the network is functioning towards carbon

footprint. Urban environment data is also useful for various other applica-

tions [112] [63]. Sensor networks can be used effectively study in afine-grain
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manner the developments and changes in the environment [16]. Note that

even natural climate and weather change cycles can be monitored with the

same network. The stream of readings can be used in many applications.

We assume this task requires the sensor node to be able to measure the

following measurements: air temperature and humidity, surface temper-

ature, incoming solar radiation, wind speed and direction, precipitation,

soil moisture and pressure. When any combination of these measurements

has an adequately large variation, the node should start performing this

task, and send results to base stations on vehicles within its communication

range. Again, this is the same technique used with both the Traffic and Air

Pollution Monitoring tasks.

Note that this task has the least priority amongst the tasks, because it

is usually a long term data collection task that only need to be analysed

cumulatively.

In the next few sections, 10 runs were performed for eachmodel and the

results were averaged before analysis has taken place. In each experiment,

the environment applies a constant demand for the three tasks TA, TB,

and TC. Nodes of the network are scattered over a bounded geographical

area, and each node records the phenomena variations it detects in the

vicinity. The collective action of the nodes gives an approximate view of

the phenomena distribution over the whole geographical area the network

covers. Nodes run out of energy, i.e. die out, and eventually the whole

network follows. Experiments representing different models were given

similar network parameters except the model used to perform the action

selection decision making. This helps identify the effects of the action

selection models without interference from the variation in other network

parameters, such as energy consumption rates, number of nodes, or density

of the network.

5.5 Simulation Assumptions

The simulation environment and the scenario we use makes a set of as-

sumptions and abstractions about the real-life application described in the

previous section. This section covers those assumptions, and explains the
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rationale behind making them. These assumption hold for the rest of the

simulations in this dissertation, especially since the experiments use the

same scenario, and the same simulation environment. Only chapter 11 has

the communication assumptions valid for coordination. Other chapters

abstract communication details within the application layer, and consider

them an application-dependent detail.

Note that the scenario itself is a motivation for discussing and inves-

tigating the algorithms we are experimenting with. The aim of the work

was not answering a set of engineering questions, or inspecting specific

sensor node hardware/software issues. The aim is basically to assess the

fitness of threshold-based algorithms to solve problems that are generally

present in sensor networks. The details of the implementation will depend

generally on the technological advancement and choices made at the time

of the solution production, manufacturing facilities, and design decisions.

For example, if we make assumptions about energy cost of communication,

then these are not necessarily true for the application we tackle here, be-

cause may be in the future new technologies will have new communication

requirements. Also different communication schemes may have different

power profiles, and so on. Moreover, running simulations in high-fidelity

environments or simulators maywaste massive time and energy [184] [136]

[150] [161] in tackling issues that are mostly irrelevant to the focus of the

research from an analytical point of view [104] [14]. We have experienced

this first-hand when we tried running our experiments in a high-fidelity

environment, J-Sim, and ended up having almost the same results but in

much longer time and after investing much greater effort. It is generally

known that the solution space is exponentially enlarged as the number of

variables involved increases [27].

It is worth mentioning that many of the constant values we assume in

our simulations are acceptable based on a large number of nodes and so

an average over these nodes would be a good approximation for many

of those values. This is for example true for transmission power, sensing

power, transmission rate, packet sizes, etc.
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Node Count, Type, and Distribution

The simulations have 5000 stationary nodes over the terrain of 100x100

length units, and all of them possess the same sensing, processing, and

communication capabilities, i.e. homogeneous dense network with high

redundancy [139]. They do not have any voluntary mobility capability.

We do not think that balanced heterogeneity will change the results we

obtained here [198], but for reasons of time and space, we will not discuss

heterogeneity experiments in this dissertation.

Nodes are distributed randomly but uniformly over an edgeless (torus)

area [27]. We assume that this is what will happen in reality, but we need

to be aware that this does not apply in all applications and situations of

the real-world. For example, if sensor nodes were deployed on a highway

through a desert, the readings will simply reflect the phenomenon on the

road and the small area around it, as opposed to the desert in general. Our

deployment is assumed to be random within a densely populated city.

Generally, the models we assume here represent steady state conditions

of nodes, i.e. localisation, synchronisation, and other node/network initial-

isation activities are not included [198].

Environmental Model

Weuse a two-dimensional area to represent the environment, which is used

in may sensor network simulation environments including high-fertility

ones [169] and inmany other research efforts [206]. The area is treated in the

simulation environment as a torus, so the edge effect is cancelled. Another

way to cancel the edge effect is to assume that the terrain is infinitely big

by making the area of the terrain much greater than a single node coverage

area.

Every phenomena has its own propagation, and data generation model

[27]. However, we assume that our phenomena apply a uniform stimulus

on the sensing devices, i.e. all sensors sense the stimulus with the same

intensity at all times. This is not the case in most real-life applications, but

the complexity resulting from using a more realistic sensing model could

make interpretting the results more difficult, which we wanted to avoid at
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this stage of the research. We wanted to establish and study the base case

first, before, as a future work, delve into the behaviour of the thresholding

models in real life applications.

Transmission Model

Data items are transmitted in an error-free [116], in a broadcast fashion

between the sender sensor node and all its neighbouring nodes. The prop-

agation model is a free space model, but without signal attenuation [150].

We use the first order radio model [116] as our radio transmission model.

However, because nodes communicate fixed-size packets similar to the

synchronisation packets in [30], we can abstract the energy model of the

communication to consume a constant fixed amount of energy per commu-

nicated message.

Nodes transmit over a fixed-radius range [140] [139] [116]. Although

this not very realistic [150], but it is commonly used assumption in analytical

and abstract studies in order for example to establish upper bounds of per-

formance possible to achieve using a certain protocol, technique, algorithm,

etc.

Communication Model

Nodes in our scenarios have omnidirectional antennas, and have a common

constant maximum transmission radius r [116]. This assumption is not

particularly true in the real world, but we assume that the density of the

network will be so high to offset such an defect. It remains to be seen how

such a model fair in real sensor networks in future research activity.

We also assume that transmission/reception buffers are limitless [116],

and work as FIFO queues. Memory nowadays is cheap, and so we can

virtually have limitless queues. Certainly this is not strictly true in real life

applications, although more likely true in sensor networks. In applications

where queues grow huge in short time, and the communication buffers

cannot cope with the amount of data, then obviously the results need to be

revisited.

We assume that communicated data units have fixed size. While this
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may not be strictly true in real-life applications, we envisage that the aver-

age size would be fixed, except in very rare occasions, and so the results

should hold strong with this assumption. Note that also for performance

reasons, networks might resort to fixed size packets which then makes this

assumption very realistic. This is the case, for example, in ATM networks.

Communication wireless channel/medium is error-free or lossless [116],

but the model does not depend on or assume so, and can easily accommo-

date such phenomenon in the future. This is especially because our model

does not depend on communication generally. Moreover, since buffers are

assumed to be of infinite capacity, data units are never lost while travelling

through the network, and so there is no retransmissions.

Communication range is circular andpropagation is deterministic. Com-

munication signals are free to travel (i.e. no signal-holding obstructs), i.e.

open space model. This is only applicable in communication experiments

in chapter 11. Communication does not suffer any broadcast collision, nor

other propagation effects. Although we do not use any acknowledgement

or hand-shaking protocols, the network communication gives this effect

because it is error-free.

Note: using simplified communicationmodelwith localised algorithms,

and ours is, give a slightly different results, but with huge gains in terms of

performance, speed of development, testing, and feedback [104].

A scheme like the one in [198] which is mainly ultra-low-power is envi-

sioned in our work. It uses location-based addressing as opposed to IP-like

routing and addressing protocols. It uses wake-up signals to perform com-

munication, so there is no over-hearing, hyper-hearing, or idle-listening.

Processing Model

Nodes can receive, transmit, sense, andprocess data in one time slot because

each of these processes is performed by a separate device hardware. Each

application is seen as a black box which consumes energy at a constant rate,

so we avoid the details of the application domain in favour of analysing the

performance of threshold-based models generically.
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Scheduling Model

When the sensor switches to the active mode, and the sensor schedules a

time instant in the future at which it will go back to sleep. The scheduled

active period, expressed in time slots, is a random variable calculated by

the model. However, at the time slot at which the sensor should transition

to sleep mode, the node may reassess its sleep probability to decide if it

should sleep or not.

Note that while a node is performing a task, it cannot perform any other

task, but it can sense, transmit or receive data.

Traffic Model

Our scenario uses an event-based traffic, as opposed to time-based or query-

based one [140]. So, when nodes detect an event, specifically when a phe-

nomenon probabilistically crosses a threshold, data is sent to a close by

vehicle (base station) reporting the change, making recommendations, etc.

Sensing Model

Sensing radius is circular and deterministic [116]. Detection follows a

Boolean, or binary, model. In many other research on sensing coverage,

such as [111] [105] [34], the samemodel was assumed. In a binary detection

model, sensor node can detect a target with a 100% probability provided

that the target is within its sensing range, and cannot detect a target beyond

the range. In this paper, we use a deterministic detection model. When

a target is within a sensors sensing range, if the sensor node samples the

environment, it will discover the phenomenon with full intensity, i.e. no

propagation effects [206].

With a probabilistic detection model, we can hardly have a 100% detec-

tion probability for all the geographic points in the target area. The system

will have different degrees of monitoring at different locations. However,

a high node density can alleviate this problem. We assume high node re-

dundancy and coverage which improves area coverage and alleviates the

side effects of the ideal sensing model and make it virtually much closer to
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a real sensing situation.

Battery Model

We assume a linear battery model [155]. In this model, the battery acts as a

linear bucket of energy. The maximum capacity of the battery is provided

independent of the discharge rate. Such a model enables us to investigate

the efficiency of applications by offering a simple metric of energy con-

sumption. In our fast, low delity simulations in steady-state conditions, a

linear model is often preferred since the middle of the discharge curve is

often almost linear [193] [192] [103]. In addition, the relaxed battery model

acts exactly as a linear model in absence of high rate discharge. In our

application, we assume that nodeswill mostly act in low powermodemost

of the time and so the relaxation effects will have minimum impact on the

simulation results.

Also althoughbatteries are not linear, using a linear battery can represent

a worst case scenario, because we do not utilise the relaxation positive

effect. So the results are conservative as opposed to over-optimistic, which

reflects the hardships/constraints imposed on sensor networksmore or less

better. Note that communication is what often results in non-linear battery

consumption [143], but because most of our experiments do not include

communication for coordination and control, it is not a problem to assume

linear model.

Energy ConsumptionModel

Performing tasks consumes energy by a constant rate, i.e. constant amount

of energy per time unit. Every sensor reading or sample consumes a fixed

amount of energy, which is smaller by orders of magnitude compared

to communication and processing energy profiles. Idle nodes consume a

minute amount of energy, which is also a constant value per time unit [156].

Transmission of a packet consumes a fixed energy value per message (since

packets are of fixed size), and the same amount is consumed for Reception

of a message [140]. We use a symmetric energy cost for transmission and

reception.
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5.6 ConstantResponseProbabilityModel, FixedResponse-

thresholdModel, andFixedBattery-modulatedResponse-

threshold Model

This sectionwill investigate the performance of the FRT and FRT+Bmodels

in a sensor network simulation scenario and compare them to that of the CR

model and to each other’s. Appendix B.1 lists the settings and parameter

values for this set of experiments.

The FRTmodel addresses the action selection process based on the task

demand and user policies, e.g. task prioritisation here. However, the FRT

model does not take the resource consumption or availability into consid-

eration. In chapter 4, we extended the model to include resources in its

calculations. We will refer to the extended FRT model by FRT+B hereafter.

Energy is typically a critical resource in sensor networks. Therefore, we use

energy levels available in a node’s battery as an example resource whose

availability or abundance can contribute to action selection decisionswithin

a node - and consequently within a sensor network.

5.6.1 Experiment Objectives

The experiment simulations in this section has the following objectives:

• Test the benefits of using the threshold-based model as an adaptive

algorithm in sensor networks,

• Test the performance of the threshold model under various task de-

mand levels,

• Test the threshold model capability to prioritise tasks under various

task demand levels for all tasks

• Investigate the advantages and disadvantages of the FRT+Bmodel as

compared to the CR and the FRT models,

• Identify the variousdynamics and side effects resultant from the adop-

tion of the adaptive models in a sensor network.
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• Identify the family of applications that can benefit from employing

the FRT or FRT+B models, as opposed to the CR model.

5.6.2 Results

Figure 5.3: Too many active nodes does not necessarily

mean radical network coverage improvement

Figures 5.4 to 5.12 depict the results of our experiments. The plots

mainly show a comparison between the performance of different models

with respect to metrics introduced in section 5.3 under different task de-

mand intensities. Some of the graphs also show the task prioritisation be-

haviour of the various action selection models. The following sections will

state observations drawn from the graphswith some possible explanations.

Network Lifetime

Constant Response networks (CR networks) maintained a constant level

of resource consumption throughout the experiments. This was simply

because they had constant response rates, independent of variations in task

demand levels (figure 5.4). In a network where events are rare, this type of

response model might result in unnecessary consumption of resources at
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Figure 5.4: Network Life vs Task Demand
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Figure 5.5: Total Task A Performance vs Task

A Demand
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Figure 5.6: Total Task B Performance vs Task B Demand
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Figure 5.7: Total Task C Performance vs Task C Demand

low task demand, and a possibly sub-optimal network coverage when task

demand is high (figures 5.5 to 5.7). Inmany sensornetworks, suchdepletion

of resources that, otherwise, could be used to elongate the network lifetime

or performextra tasks, is highly undesirable. On the contrary, the lifetime of

the Fixed Response Threshold network (FRT network) varied with different

task demand levels (figure 5.4). The fact that the FRT network preserved

resources when the task demands were low, and dedicated more resources

with the increase of the task demand led to a corresponding variation in

network lifetime. Essentially, the response of the FRT network was in

proportion to the task demand (figures 5.5 to 5.7).
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Figure 5.8: Average Task A Performance vs Task A De-

mand
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Figure 5.9: Average Task B Performance vs Task B De-

mand
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The battery-modulated network, FRT+B, always achieved better net-

work lifetime (figure 5.4). The improvement ranged from 10% to just above

100%, i.e. lifetime more than doubled.

The lifetime gain varied with the task demand detected by the nodes.

The best results were at relatively medium to high task demand levels

(e.g. from 10 variation units per time step in figure 5.4). Marginal lifetime

improvement were observed at extremely low task demand levels as the

network was nearly idle most of the time. For many sensor network ap-

plications, this does not constitute a concern as at such low workload, the

need to conserve energy is minimal.
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Mean Coverage

FRT networks were configured to give different priorities to tasks TA, TB,

andTC. This is representedby giving the tasks different response thresholds

(Task TA, TB, and TC had a threshold of 100, 300, and 1000 respectively).

At low demand for task TA, the FRT network lived longer than most CR

networks (figure 5.4) and produced a higher total coverage (figure 5.5).

However, the FRT network, at low demand for task TA, had a low average

performance (figure 5.8), i.e. at any instant during the experiment there

were only few nodes active, and accordingly the coverage per time step

was low. This might not be disadvantageous because high coverage is

unlikely to be needed when the demand is low in many sensor network

applications. At high task TA demand, the FRT network gave a very high

average coverage compared tomanyCRnetworks(figure 5.8). However, the

total coverage was comparatively low (figure 5.5). This low total coverage

resulted from the fact that the vast majority of nodes in the FRT network

were active simultaneously yielding the best possible coverage to meet the

high task demand imposed on the network by the environment, without

considering any associated resource consumption. This is realistic and

desirable in many real life applications. For example, this can be true if our

Pollution Monitoring associated stimulus was extremely high, signalling

a probable hazardous chemical leakage event, the sensor nodes should
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certainly start all analysing fervently what is happening in the environment

to give the human users as accurate a view of the environment as possible

in such a critical situation. Similar observations can be made with regard

to the other two tasks, namely TB and TC (figure 5.6, 5.7, 5.9, and 5.10).

However, task TA performance was invariably the highest at any demand

level, with task TC (the least priority task) constantly having the lowest

performance amongst the three tasks(figure 5.11 and 5.12). This shows how

the FRT network addressed the task prioritisation issue.

The average coverage is consistently lower for the FRT+B network,

except at extremely low task demand levels. This is because this network

sometimes, when energy is scarce, compromised performance in favour of

saving energy. At extremely low task demand levels, both the FRT+B and

FRTnetworkswere idlemost of the time and so their performance was very

similar.

Total Coverage

Peaks can be seen clearly in the total coverage graphs (figure 5.11). These

represent the optimal point of coverage at which the network was driven

by environmental cues to take readings at a rate that optimally balances the

accuracy of monitoring and the associated resource consumption (see the

network on the right in the figure 5.3). At extremely high task demand, the

network is required to perform at an extremely high rate, i.e. very many

nodes are active simultaneously, which shortens the network’s lifetime dra-

matically, yet does not produce noticeable gains in network coverage. From

the diagram in figure 5.3, you can see that having a large number of nodes

simultaneously active to monitor a phenomenon (the network on the left in

figure 5.3) does not necessarily result in noticeable coverage improvement

if the network is dense with nodes (high node coverage, or many nodes

within each other’s coverage range). This is because nodes will cover areas

already covered by other neighboring nodes.

At low task demand levels for TA, the FRT network achieved better

total performance (coverage) than the FRT+B network (figure 5.5). This is

because the nodes in the FRT+B network had two factors dampening their
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task response. One is the low demand level and the other is the gradually

decreasing battery level. These can be represented mathematically by the

following equation:

lim
S→0,B→0

(
S

S + θ
)(
B

B0
) = 0 (5.6)

Equation 5.6 indicates that the FRT+B response decreases faster than that of

the FRT (equation 5.17) because of the additional battery modulated term.

At high task demand levels, the situation is reversed with FRT+B having

the higher edge in terms of total performance. This is because the FRT

is pushed by the high demand levels to consume its resources, i.e. en-

ergy, quickly and consequently yielding low total performance. Whereas in

the FRT+B network, nodes are pushed to perform harder by the high task

demand levels, but in the same time performance is dampened by the de-

creasing battery levels, so compromise is made on average performance to

achieve better total performance. Equation 5.19 and the following equation

mathematically represent the difference between the two networks at high

demand levels:

lim
S→∞,B→0

(
S

S + θ
)(
B

B0
) = 1 · 0 = 0 (5.7)

Similar arguments to those given to explain TA’s figures can be used to

explain the graphs for TB (figure 5.6).

The total performance curves of the FRT+B and FRT networks with

respect to TC were different from these of TA and TB (figure 5.7). The FRT

network performed worse than the FRT+B network across all levels of task

demand. Modulating the FRT model with a battery-based term alleviates

the effect of the task demand in governing the response patternof individual

nodes as well as that of the network. The network response to TC’s task

demand is low, compared to TA and TB because it has a much higher task-

associated threshold. The battery modulation component of the FRT+B

model has two effects that explain the TC curve shapes:

• It reduces a node’s absolute responsiveness to task demands for the

three tasks. This can be represented mathematically as:
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∀ θ > 0, B > 0 , B0 > 0 , B < B0 :

If T(S,B) = T(S) · (
B

B0
)

then T(S,B) < T(S) (5.8)

• It reduces the relative difference between the responsiveness of a node

to the three tasks. This can be represented mathematically as:

∀ θA > 0, θB > 0 , B > 0 , B0 > 0 , B < B0 , |TA(S) − TB(S) | > 0 :

If TA(S,B) = TA(S) · (
B

B0
) , TB(S,B) = TB(S) · (

B

B0
)

then |TA(S,B) − TB(S,B) | < |TA(S) − TB(S) | (5.9)

For example, assume that a node has the following settings:

TA(S) = 0.8

TB(S) = 0.6

TC(S) = 0.4

|TA(S) − TC(S)| = 0.4

|TA(S) − TB(S)| = 0.2

|TC(S) − TB(S)| = 0.2

B

B0
= 0.5

After applying the battery-based component ( B
B0
= 0.5), the resultant values

are:

T′A(S) = TA(S) · (
B

B0
) = 0.8 · 0.5 = 0.4

T′B(S) = TB(S) · (
B

B0
) = 0.6 · 0.5 = 0.3

T′C(S) = TC(S) · (
B

B0
) = 0.4 · 0.5 = 0.2

|T′A(S) − T′C(S)| = |0.4 − 0.2| = 0.2

|T′A(S) − T′B(S)| = |0.4 − 0.3| = 0.1

|T′C(S) − T′B(S)| = |0.2 − 0.3| = 0.1
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Note that the new probabilities are less than the original ones, and

the difference between the original probabilities is double the difference

between the new ones. This leads to the difference between the number

of nodes that are active for each task to be much closer when the battery

term is applied. That is why at low to medium task demand levels, the

total coverage for TC in the FRT+B network is higher than that of the FRT

network. However, at high task demands, the FRT+B achieved better total

coverage for the same reasons thenetworkperformedbetter at highdemand

levels in terms of total performance for tasks TA and TB.

Task Prioritisation

Figures 5.11 and 5.12 suggest that the network follows the priority rules in

performing the tasks, i.e. monitoring the phenomena. As required, under

the same task demand, tasks with high priority have higher chance to be

performed than tasks with low priority. However, the differences between

the responses to different tasks converge at very low task demand as well

as at very high task demand levels. This is because the network response

thresholdmodel gives very high responseprobability to highdemand tasks,

i.e. task-associated demand is much higher than the task-associated thresh-

old, and very low one to low demand tasks. If all tasks experience demands

much higher than their thresholds, the node’s probability to respond to any

of the tasks is veryhighand theprioritisation, representedby the thresholds,

is blurred (figures 5.12 and 5.11). Mathematically, this can be represented

as follows:

i f SA ≫ θA then Ψ(SA, θA)→ 1 (5.10)

i f SB ≫ θB then Ψ(SB, θB)→ 1 (5.11)

i f SC ≫ θC then Ψ(SC, θC)→ 1 (5.12)

A similar argument applies when the network experiences very low

demand levels for all tasks.

i f SA ≪ θA then Ψ(SA, θA)→ 0 (5.13)
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i f SB ≪ θB then Ψ(SB, θB)→ 0 (5.14)

i f SC ≪ θC then Ψ(SC, θC)→ 0 (5.15)

5.6.3 Conclusion

The observations presented in the results section suggest that a network

that can adapt to the the environmental conditions can be advantageous in

dynamic unpredictable environments, for example, when monitoring phe-

nomena that happen rarely (e.g. volcanic eruptions, forest fires, chemical

leakage, storms). Even in not so rare events like traffic jams (twice a day?),

great longevity gains will be achieved if intensive task performance only

occurs during the interesting event, otherwise, the node is in idle mode.

Such networks, which utilise adaptive algorithms (e.g. Fixed Response-

Threshold Model), will be able to operate for longer, by consuming its

resources only when they are most needed. In the same time, compromises

on performance will be minimal in the case of intensive coverage demands.

Threshold-basedmodels seem to be effective in prioritising tasks and in

the same time take the task context into consideration as well as weighing

up the task demand in both relative and absolute terms.

The experiments of this section also show that FRT+B manages to im-

prove the network longevity. However, this comes at a degree of compro-

mise on the coverage front.

From the results, battery-modulated systems appear to perform better

in applications where there is room for data extrapolation. For example,

in applications where changes are not erratic or abrupt such that missing

points can be predicted from available ones. It also fit applications that

are tolerant to noise and irregularity of the data collected. In addition,

applications where the network lifetime is of a greater importance than the

amount of data collected are good candidates for using the FRT+B model.

The FRT model can be more suitable for systems that have relatively

abundant resources and do not need to make performance-compromising
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decisions to maintain network longevity, however, can utilise adaptivity to

manage task prioritisation and network lifetime implicitly.

Next section will compare various threshold-basedmodels (with a base

CR model) in applications where task switching is an expensive operation.

5.7 CR, FRT, FRT+B, VRT, and VRT+B

In some applications, task-switching is a resource-consuming action that

should be avoided whenever possible. This is especially so in minimal-

ist resource-constrained sensor nodes. The Variable Response-Threshold

(VRT) Model addresses this issue by enabling nodes to learn which tasks

they have performed previously, and subsequently reinforces the tendency

of nodes to perform these tasks in future. In contrast, tasks that has been

rarely performed by a node are less likely to be performed in the future.

In this section, we conduct experiments to investigate, and study the

differences between the VRT and FRTmodels if applied in sensor networks

scenarios. In addition, we conducted experiments to test the effects of

addressing the resource consumption profiles using the FRT+B model in

comparison to using the VRT+B model. Both VRT+B and FRT+B aim at

improving network longevity by considering node energy when making

action selection decisions. Comparing the various models in this section

furthers the understanding of their dynamics. Appendix B.2 lists the set-

tings and parameter values for this set of experiments.

5.7.1 Experiments Objectives

This set of experiments are designed to achieve the following:

• Investigate thedifference between sensornetworkperformanceswhen

employing the FRT/FRT+B and VRT/VRT+B models under various

task demand intensities.

• Test the suitability of the VRT/VRT+B models for applications where

task switching is undesirable, as opposed to the FRT/FRT+B models

respectively.
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• Investigate the system dynamics resulting from the specialisation of

nodes in the VRT/VRT+B networks as opposed to those dynamics

appearing in the FRT/FRT+B networks.

• Identify, through the differences in behaviour, which type of applica-

tions would benefit from which model.

5.7.2 Results

We ran experiments for each of the CR, FRT, FRT+B, VRT and VRT+B

models under different task demand levels, with the settings specific to this

section, detailed in table B.2 in the appendix. Figures 5.13 to 5.21 represent

the results of our simulations. The coming few section will discuss various

observation from these graphs.
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FRT networks

Network Lifetime

TheVRTnetwork consistently had a longer lifetime (figure 5.13) because the

reduced switching resulted in energy-savings, allowing the VRT network

to last longer. However, the difference between the life time of the two

networks diminished when task demands grew to extremely high levels,

or dropped to extremely low levels. This is because, according to the VRT

model, the decision-making process becomes dominated by the enormity,or
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minuteness, of the task demand at extreme values. This can be represented

mathematically by the following equations:

lim
S→0
Ψ(S, θ) = lim

S→0
(

S

S + θ
) = 0 (5.16)

lim
S→0
Ψ(S) = lim

S→0
(

S

S + θ
) = 0 (5.17)

lim
S→∞
Ψ(S, θ) = lim

S→∞
(

S

S + θ
) = 1 (5.18)
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lim
S→∞
Ψ(S) = lim

S→∞
(

S

S + θ
) = 1 (5.19)

Equation 5.16 represents the value of the response probability at ex-

tremely low task demand levels for the VRT network. According to equa-

tion 5.17, the FRT network have the same response probability at such task

demand levels. Figure 5.13 agreeswith thesemathematical equations. Sim-

ilarly, equations 5.19 and 5.18 indicate that the two response probabilities

converge to the value 1 at extremely high task demand values, and fig-

ure 5.13 depicts such observation. Roughly speaking, At extremely high

demand levels, the benefits of performing an urgently needed task may
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outweigh the cost involved in switching and, therefore, nodes do not at-

tempt to save energy by following specialisation rules. Instead, they do

their best to satisfy the currently high task demands. At extremely low

demand levels, nodes do not benefit from specialisation because there is no

need to perform any tasks in the first place. Idle nodes that can specialise

and those that cannot use energy almost at the same rate. This explains

the similarity in terms of lifetime length between FRT and VRT networks at

extremely low demand levels.

In real networks, these mathematical equations and simulation results

could translate to the following example situations:

• If a node in a network, which adopts FRT or VRTmodels, experiences

extremely high task demands, it may disregard the cost involved

in task-switching in favour of providing a high quality service. For

example, if a node in our sensornetwork specialised in performing the

weather monitoring task and the node experiences an extremely high

pollution levels (a chemical leakage might be happening), then the

nodemight switch to pollution-monitoring task in order to contribute

to recording the possiblymost accurate representationof the pollution

phenomenon at this critical point.

• If a node in a network, which adopts FRT or VRTmodels, experiences

extremely low demand levels, it may disregard the cost involved in

task-switching as the computational overhead of specialisation may

exceed that of task-switching. For example, if a node in our sensor

network experiences very little variation of weather measurements

for very long time, it might opt for shutting down itself temporarily.

When it switches back on, it may be acceptable to pick any of the three

tasks randomly to perform, rather than retrieve data about its task

specialisation that might require some processing and management

overheads with no tangible benefits.

The VRT+B network lifetime was always longer than that of the VRT

network. The gain in network life timewas small at low task demand levels,

whereas itwas a double lifetime gain atmedium to high task demand levels.

The following equations explain this mathematically:
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lim
S→0
Ψ(S, θ) = lim

S→0

S

S + θ
= 0 (5.20)

lim
S→0
Ψ(S, θ,B,B0) = lim

S→0
(

S

S + θ
)(
B

B0
) = 0 (5.21)

From equations 5.20 and 5.21, at extremely low task demand levels,

nodes in both networks tend to conserve energy predominantly because

there is no task demand rather than because of any energy concerns. There-

fore, the behaviour of the two network converge, with a slightly greater

tendency to conserve on the side of the VRT+B network. However, at high

task demands levels, equations 5.20 and 5.21 are transformed into:

lim
S→0
Ψ(S, θ) = lim

S→∞

S

S + θ
= 1 (5.22)

lim
S→0
Ψ(S, θ,B,B0) = lim

S→∞
(

S

S + θ
)(
B

B0
) =

B

B0
(5.23)

equations 5.22 and 5.23 indicate that the VRT network lifetime depends

solely on the task demand,making itwork harder at high task demands,and

so have a shorter lifetime. On the other hand, the VRT+B network’s lifetime

depends on the batterymodulation term as well as the task demand, which

dampens the response probability in order to conserve energy, allowing the

network to live longer.

Mean Coverage

ForTA’s average performance (figure 5.17), the number of specialised nodes

in performing TA in the VRT network is equal to the number of non-

specialised nodes that perform TA at any time step in the FRT network.

Actually, the VRT network behaves like a FRT one in terms of the average

performance for TA. At t0 of any run of the VRT network, no nodes are

specialised yet, i.e. the VRT network is equivalent to a FRT one. at t1, some

nodes, say NA, will be performing TA, and are likely to specialise in per-

forming it. At t2, the specialisation begins to appear in stronger terms, and

the nodes that performed TA at t1 have a higher probability of performing

TA at t2. This process results in roughly NA nodes performing TA at each
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time step in a VRT network run. In a run of an FRT network, at each time

step, the network resembles a VRT network at t0, i.e. NA nodes are likely

to perform TA. This yields the almost identical average performance for TA

by both networks.

In terms of the average coverage for TB (figure 5.19), the FRT network

was superior to the VRT one throughout the task demand spectrum, except

at the very extremes. This exception was because specialisation in the VRT

network resulted in a large number of nodesperformingTA at any time step,

andmuch lower number of nodes performing TB compared to the situation

in the FRT network where any node could perform any task, regardless of

any switching cost involved.

In terms of average performance, the TC performance of the VRT net-

work was lower than that of the FRT, except at extremely high or low

demand levels, where it was very similar (figure 5.21). As discussed in a

previous paragraph of this section, this was a result of diminishing special-

isation effects in the VRT network at extreme demand levels. Essentially, at

those extremes, the behaviour of the VRT network is reduced to that of a

FRT one.

Looking at the average performance in the case of TA (figure 5.17), at low

task demand levels, both networks perform similarly for the same reasons

given to explain the same observation for the total performance figure (see

next section). However, at high task demand levels, theVRTnetwork boosts

its performance to satisfy the networkneeds (network coverage), disregard-

ing any resource consumption incurred, and hence achieving maximum

possible average performance. Meanwhile, the VRT+B network increases

its performance but with less intensity in an attempt to conserve energy,

resulting in a lower average performance at these task demand levels.

What was said about TA applies to TB in terms of average performance

(figure 5.19) for comparing the VRT and VRT+B models.

In terms of TC’s average performance, the VRT network maintained

higher average task performance at medium to high task demand values

in comparison with the VRT+B network. While both networks behaved

almost identically at low task demand values (figure 5.21). These obser-

vations can be explained by the same arguments presented previously to
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compare the FRT and VRT networks TC’s average performances.

Total Coverage

The network performance (or coverage in our simulation scenario) differed

from one task to another (figures 5.16 to 5.21). For TA, the VRT network

performedmuch better than the FRT network in terms of total performance

(figure 5.16). This is because TA had the highest priority (lowest threshold)

amongst tasks, so a large number of nodes in the VRT network specialised

in performing it. In addition, the VRT network lived longer than the FRT

network for the reasons detailed previously. Both facts resulted in this

superior TA’s total performance for the VRT network compared to the FRT

one.

For TB’s total performance (figure 5.18), the VRT network performed

only slightly better at medium to high task demand levels, and worse oth-

erwise. This is because at small to medium demand levels, most nodes in

the VRT network specialise in performing TA, leaving only a small number

of nodes to specialise in performing TB. At high demand levels, the special-

isation effects of the VRTmodel become substantially diluted (see equation

5.18 and 5.19), which results in the convergence of the total coverage of both

FRT and VRT networks. Similar observation can be recorded at extremely

low demand levels (figure 5.18 and equations 5.17 and 5.16).

For TC, at extremely low task demands, the two networks had identical

total performances (figure 5.20). As demand increased towards small to

medium values, the VRT network specialised in performing the higher pri-

ority tasks, i.e. TA and TB, leaving only very few nodes to perform TC, while

the FRTnetwork respondedonly according to thedemand levels it detected.

This resulted in a lower VRT total performance for TC in comparison to FRT.

When demand reached medium to high values, the specialisation effects in

the VRT network subsidised and the performance of both networks con-

verged with a slightly higher edge, in terms of total performance, for the

VRT network.

For TA, the VRT+B network had a higher total coverage at medium to

high task demand values (figure 5.16), whereas the VRT network’s total
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performance was higher at small to medium task demand values. This

can be explained by the two response-dampening forces, the low task de-

mand levels and the decreasing energy supplies. Applying these two forces

combined to the VRT+B network, while the VRT network has only one

response-dampening factor, i.e. the low task demand, causes the VRT net-

work to work closer to the optimal coverage level than the VRT+B network

producing higher total performance.

What was said about TA applies to TB in terms of total performance

(figure 5.18) for networks VRT and VRT+B.

For TC, the VRTnetwork has always achieved a lower total performance

(figure 5.20). This is because most nodes in the VRT network specialised

to perform either TA or TB, leaving very few nodes to perform TC. This

amounted to a low total performance at any task demand level. On the other

hand, in the VRT+B network, the battery factor dampened the tendency of

some nodes to specialise, and therefore the less specialised nodes did more

frequently perform TC resulting in a better TC total performance than that

of the VRT network.

Switching

The VRT network considers switching cost when making action selec-

tion decisions, which can be seen as a context-aware decision making

mechanism, or more specifically switching-aware action selection. In terms

of the specialisation resultant from the learning and forgetting mecha-

nisms embedded in the VRT model, the action selection process can be

described as a specialisation-oriented process for action selection, and we

termed this mechanism specialisation-oriented action selection. switching-

aware/specialisation-oriented action selection can result in energy-savings

on two levels:

• The frequency of performing the resource expensive switching pro-

cess is largely reduced, and therefore resources that are normally con-

sumed to perform switching are conserved to serve other purposes.

• As a node specialises in performing only a subset of the tasks, work-

load is reduced on this node, and hence it has less energyneeds,which
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contributes to the elongation of its lifetime.

As expected, the VRT network consistently switched less than the FRT

network (figure 5.14 and 5.15). The VRT model caused nodes to specialise

in performing a set of tasks and not others and so nodes switched tasks less

frequently. In other words, nodes in the VRT network favoured performing

tasks that they were specialised in over other tasks.

It is worth noting that when the environment produces extremely low

task demand, the battery modulation has minimal effect on the system

average coverage, total coverage, or network life time. On the contrary, the

effect of the batterymodulation is at its peakwhen the environment exhibits

high task demands. This is viable because high task demands require more

efficient regulation than low task demands do.

5.7.3 Conclusions

The results of the experiments suggest that the specialisation that VRT

and VRT+B networks provide have resulted in longer lifetimes for sensor

networkswith only slight compromise in terms of performance. In contrast,

FRT networks use more energy because their higher flexibility comes with

the cost of the task switching overhead.

We can conclude that VRT networks are generally suitable for appli-

cations that are tolerant to slight performance compromises in favour of

longevity of operation, especially when task switching is resource expen-

sive or undesirable. Whereas FRT networks in general would perform

better for applications with high performance requirements and cheap task

switching.

The experiments of this section suggest also that VRT models help re-

duce switching, prioritise tasks, and control a network’s response to match

the task demanddetected. It falls short of addressing the resource consump-

tion incurred by certain action selection decisions. VRT+B networks rectify

this shortcoming of the VRT model, however on the expense of average

task performance.

The VRT+B model would be preferred, as shown in the experiments,

to the VRT model in applications where network longevity is a paramount
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requirement. Whereas the VRTmodel will fit applications where resources

are abundant (energy in our experiments) or irrelevant in making action se-

lection decisions. This could be for example if energy harvesting techniques

were incorporated in the nodes, i.e. energy sometimes become abundant,

and then the nodes in our scenario may switch to VRT or FRTmodel as op-

posed to VRT+B or FRT+B model. Also possible application like Building

Security Sensor Networks, where sensors could be connected to the mains

most of the time, can benefit from the VRT and FRT models.

5.8 Summary

In this chapter,we conducted several simulations to explore, investigate and

study the effect of using a family of adaptive algorithms on the performance

and efficiency of a sensor network in a hypothetical scenario.

The biologically-inspired model, whose variations were used in this

chapter’s experiments, is the response-threshold model. The main two

variations of this model are the Fixed Response Threshold Model and the

Variable Response Threshold Model. We extended the variation models to

include a resource component in the decision making process.

The results show that each of these models, variations ,and extensions

benefit networkswith certain characteristics and requirements. As expected

there is no generic answer model to all sensor network applications. For

example, we found that the Variable Response Threshold Model can be

used in networks that have resource expensive switching processes, while

the FRTmodel is suited to networkswith tasks that have different priorities

and need to control the network action only according to the detected

demand for different tasks.

The simple thresholdingmodels used in this chaptermanaged tobalance

between opposing goals at various contexts tomake fairly sensible decisions

without resorting to complex processes.

Both the FRT and theVRTmodels dependondriving a node’s behaviour

based on information collected about the environment, user policies, and

the conditions of the node itself. How much weight is put on any of

these factors can be decided at node design stage according to the appli-
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cation requirements. An alternative would be using some form of genetic

algorithm or any of the other self-learning mechanisms to perform this

weight/importance analysis dynamically and automatically.

Taking a node’s resources into consideration when making decisions

involves a trade-off between the network performance and its longevity.

The adaptive algorithms we experimented with in this chapter try to find

the optimal point of balance between these two important aspects of a

sensor network’s operation.

The next few chapters will expand on employing the same family

of adaptive algorithms at different points of our envisaged sensor node

architecture (fig 3.3), namely at communication module, application re-

scheduling (or discontinuation module), and sampling modules.



Chapter 6

Task Discontinuation Model

In the previous two chapters, we studied and discussed the mechanism

by which nodes within a network make action selection decisions. Nodes

are assumed, in this dissertation, to be single-tasked, as opposed to multi-

tasked (although multi-purpose). This requires nodes to find a mechanism

tomake decisions aboutwhen to quit performing a task. In the experiments

of the last two chapters, we used a constant probability like the one in [22]

to make discontinuation decisions. In this chapter, we will extend this to

use a more capable adaptive algorithm.

6.1 Non-Adaptive Discontinuation Schemes

In the previous chapter, a preset interval was used by a node to discontinue

performing a task, though probabilistically. A non-stop task performance

can also be used. Both, and similar, schemes do not take into consideration

the need to perform a task, or rather the variability of the need to perform

a task, i.e. task demand. For example, in our network scenario, if a node

is performing the pollution monitoring task, it might not need to report the

static or stable air pollution level. In such case a non-stop scheme will do

redundant, unnecessary, andpossibly costlywork. Most systems that adopt

the non-stop active scheme disregard the cost of task performance, either

because it is irrelevant to the application or because the resources needed to

perform a task are abundant [51][121][122]. However, this is rarely the case
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in many sensor network applications. We will next explore alternatives to

such schemes.

6.2 The Constant Discontinuation Probability Model

(CD)

The previous chapter discussed the use of threshold-based models to help

individual nodes in a sensor network make decisions whether to engage

in performing a task, or not. but it does not address the mechanism used

by individuals to make decision to quit performing a task. In the model

described in [22], an individual that is engaged in performing a task dis-

continues performing it with a constant probability p. The value of the

probability is preset before the system is employed, i.e. at design time. The

authors of the model justified using a fixed discontinuation probability in

their model of task allocation in social insects by stating that it is supported

by experimental data from real insect colonies. The authors of the model

used the same fixed discontinuation mechanism in their experiments on

both variations of the model (see section 4.4 for FRT and section 4.5 for

VRT).

Setting the value of the discontinuation probability p to a relatively low

value (for example it was set to 0.02 in Bonabeau [24])mean that individuals

who decide to engage in performing a task will on average spend 1/p time

units performing it. When p is low (p approaches 0), the time spent by

individuals on performing the task is relatively long (1/p approaches ∞).

Although this may work well in situations where it takes long for the task

demand levels to subside, it will cause extra work in environments where

demands change rapidly, or only appear sporadically. On the contrary,

if p is high (p approaches 1), the time spent by individuals on the task

will be short (1/p approaches ∞). That may work well in environments

with highly dynamic demand levels, but it will perform poorly in slowly

changing environments, for example by introducing unnecessary high task

switching rate with the associated overhead. Switching rates may incur

overheads in time and quality of collected data or it might complicate the
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decision making process. Medium values will give less than optimum

results at either extremely high or extremely low demand variations (very

slowly and very rapidly changing phenomena). In addition, such values

will not be optimal for continuous spectrum demand levels. For example,

wind speed variation spans a wide range of values. In many climates, it

may not be possible to find a sampling rate that matches that of the wind

speed variation for long periods of time. Whereas sensor networks are

assumed to be deployed for extended periods of time (months if not years).

The mathematical representation of the time spent by a node performing a

task with discontinuation probability p is as follows:

T(Task) =
1

p
(6.1)

lim
p→1

T(Task) = lim
p→∞

1

p
= 1 (6.2)

lim
p→0

T(Task) = lim
1

p
= ∞ (6.3)

where T(Task) is the time spent by a node in performing a task. p is

the probability of discontinuing a task. These equations are disregarding

the action selection decisions effects on the time spent performing a task,

focusing insteadon the effects of the value of thediscontinuationprobability.

For example, if the probability of engaging in performing a task is relatively

low, the total time a node spends performing a task is decreased compared

to high task engagement probability. However, at similar task engagement

probabilities, these equations will hold true, i.e. given a node has started

performing a task, these equations apply.

Sensor networks are often employed in unpredictable environments.

For example, our sensor network may experience no traffic to monitor for

all night. When the rush hours arrive, the sensors in the area will have

massive environment changes to report. In such a scenario, low values of

discontinuation probability in normal no-traffic conditions might be inap-

propriate, while a high discontinuation probability may cause unnecessary

task switching when traffic is heavy for an extended period of time (for

example on a big event day). In the next few sections, we will extend the
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threshold-based model provided by Bonabeau in [24] and [25], and Ther-

aulaz in [181] to control task discontinuationwithin a sensor network node.

Later, in the next chapter, simulations and findings related to this extension

will be presented.

6.3 Fixed Stimulus-Based Discontinuation Threshold

Model

The way many living systems survived for millions of years is said to be

their ability to adapt to the environment [197]. We see the same concept

applicable to sensor networks. If sensor networks can adapt to the stress

the environment exerts on them, they may stand better chance to survive

for longer periods of time, as well as provide better task performances. This

adaptability is crucial inmany behavioural aspects of the network including

the task discontinuation decisions. Individual nodes may benefit from

being able to make the decision of quitting performing a task dynamically

according to the data it can gather, rather than sticking to one rigid hard-

coded discontinuation scheme.

To make the idea clearer, let us look at our example scenario. If an indi-

vidual node observes heavy rain, it may engage in high rate environmental

monitoring and reporting task. While it is sending readings to a base sta-

tion, a traffic congestion occurs, and the rain stops. It might then increase

its discontinuation probability with respect to the environment-associated

task because likely there is no need any more to pursue this task. This will

allow the traffic monitoring task to be performed in place of the weather

monitoring task, resulting in a better overall task performance. Or may be

the traffic congestion did not happen, hence the node might decide still to

quit performing the weather-associated task to stay idle instead, in which

case it will conserve some energy and consequently last longer.

When demand to perform a task is high, the discontinuation probability

for that task is low. On the contrary, if an individual is performing a task,

while the demand for that task is low, it is likely that the individual should

quit performing the task since there is no or little need to perform it. This can
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be modeled mathematically, drawing from the response threshold model,

as follows:

Ω(θ, S) = 1 − (
Sn

Sn + θn
) (6.4)

Where Ω(θ, S) is the probability an active node will quit or discontinue

performing a task given its threshold is θ and its task-associated stimulus

is S. Note that Ω(θ, S) approaches 0 as S approaches ∞ (there is very high

demand for this task), and approaches 1 as S approaches 0 (there is little

demand for this task). The following equations represent this mathemati-

cally:

lim
S→∞

Ω(θ, S) = lim
S→∞

[1 − (
Sn

Sn + θn
)] = 0 (6.5)

lim
S→0
Ω(θ, S) = lim

S→0
[1 − (

Sn

Sn + θn
)] = 1 (6.6)

In the next section, we incorporate to our discontinuation model a com-

ponent to account for the resources available for a task within a node.

6.4 AdaptiveResource-BasedDiscontinuationThresh-

old Model

The previous section discussed the FDT extension of the FRTmodel in [22].

It used the task demand levels to decide either to discontinue performing a

task, or continue performing it. In this section, we extend this model even

further to include resource levels in task discontinuation decisions. We will

in specific discuss the battery level as an example of a valuable resource

that needs to be taken into consideration when making task discontinua-

tion decisions. Sometimes, task demands are high, but resources required

to perform the task are running low. In such circumstances, nodes may

need to make compromises on the quality of task performance in favour of

longer service lifetime. Accounting for battery levels in task discontinua-

tion decisions is only an example of incorporating resource levels available
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to nodes in making task-associated decisions. Battery level is an ideal ex-

ample of a scarce resource in many sensor networks, and hence can be used

without loss of generality.

The following equation is drawn from the FDT equation and uses the

battery level, B to control the discontinuation probability of a task, referred

to as Ω(B):

Ω(B) = 1 −
Bm

Bm
0

(6.7)

Algorithm 2 represents how a node would use battery levels and task

demands to make decisions on task discontinuation:

Ω(S, θ) = 1 − Sn

Sn+θn1

Ω(B) = 1 − Bm

Bm
0

2

// Now, simply take the most restrictive of the Ω(S)

// and Ω(B)

if Ω(S, θ) < Ω(B) then3

Ω(S, θ,B) = Ω(B)4

endif5

else if Ω(S) >= Ω(B) then6

Ω(S, θ,B) = Ω(S, θ)7

endif8

// where Ω(S, θ) is the demand-based task

// discontinuation probability

// where Ω(B) is the battery-based

// discontinuation probability

// where B is the current battery level

// where θ is the task-associated threshold

Algorithm 2: Variable Response Threshold Algorithm

This algorithm results in the following mathematical equations repre-

senting the discontinuation probability trends:

lim
S→∞,B→0

Ω(S, θ,B) = lim
S→0,B→B0

Ω(S, θ,B) = lim
S→0,B→0

Ω(S, θ,B) = 1 (6.8)
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lim
S→∞,B→B0

Ω(S, θ,B) = 0 (6.9)

These equations represent a generalised trend of node behaviour. If task

demand is high and there is enoughbattery power, then the node is unlikely

to discontinue. However, if either or both battery power and task demand

are low, then the nodewill most likely discontinue performing the task. We

will discuss in more detail the effect of such behaviour on the quality of task

performance in the next chapter.

6.5 Summary

In this chapterwe introduced an extension to the FRTmodel used originally

in [22] to make action selection decisions. Our extension uses the model

to make task discontinuation decisions. This extension can be seen as

an additional layer of adaptivity which improves the performance and

longevity of sensor networks. In the next chapter we will explain the

simulations that were done on this model, together with the results. We

also discuss some conclusions that can be drawn from those results.



Chapter 7

Task Discontinuation

Simulations

In the previous chapter, we introduced a mathematical model to make task

discontinuation decisions. In this chapter, we run simulations to investigate

the effects of this model on the dynamics of a sensor network.

First we introduce the experiments scenario, then a discussion of the

context of the experiments will follow. Next, the results in the form of

several graphs and comments on their indicationswill be provided. Finally,

some conclusions will be presented.

7.1 The Experiments Scenario

The goal of these experiments is to examine the effects of the use of adap-

tive discontinuation models in general, and the threshold-based models in

particular, on the performance and longevity of sensor networks. We will

use the same example we used in previous sets of simulations. Although

simple, the application is realistic enough to motivate real world scenarios.

In the multi-purpose monitoring application, a network is supposed to

monitor three phenomenon in its vicinity. The three phenomena have three

different priorities. Traffic phenomenon, A, associated with monitoring

task TA has the highest priority to be monitored, followed by Air Pollution

Phenomenon, B. Air Pollution B is in turn associated with task TB. Finally,
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Environment Phenomenon, C, has the least priority and is associated with

monitoring task TC. We do not discuss all the details of the phenomenon

here in order not to distract the discussion from the task allocation mecha-

nisms to chemical, environmental, or traffic domain-specific non-pertinent

topics. Appendix C.1 lists the settings and parameter values for this set of

experiments.

7.2 Experiment Objectives

The experiments of this chapter aim at:

• Testing the effect of applying the FDT Model on a sensor network’s

task performance dynamics.

• Testing the effects of applying the FDT+BModel on a sensor network’s

task performance dynamics.

• Identifying what applications could benefit from each of the three

models CR, FDT, and FDT+B.

In the next few sections, a few sensor network performance criteria will

be examined, and the results of the simulations will be discussed.

7.3 Results

In this section we present the results of the experiments we ran. Each

subsection will address one of the metrics associated with the evaluation of

a sensor network performance.

7.3.1 Network Lifetime

As longevity of sensor nodes is so important, we compare the network life-

time results fromour experiments for networksusingCD, FDT, and FDT+B.

Figure 7.1 shows the lifetime of the networks at different task demand levels

for differentmodels. Fromfigure 7.1, the next fewparagraphswill highlight

some observations:
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Figure 7.1: Mean Lifetime for sensor networks with dif-

ferent Task Discontinuation Probability

Lifetime Variability: networks that use constant discontinuation proba-

bility have constant lifetimes independent of the environmental status rep-

resented by the task demand levels in ourmodel. This results in a stream of

data or processing rate that is constant. We argue that this is undesirable in

many applications. If task demand is high, and the network discontinues

with high speed, switching overhead and inferior performance will result.

Even if lifetime is elongated, the network fails to match its performance

to the needs dictated by the environmental status. If the task demand is

high, and the network rarely discontinues performing a task once engaged,

lifetime will be shorted unnecessarily, as battery will be depleted quickly

performing unneeded task. Alternatively, if another task exert high task de-

mand, low discontinuation probability will result in ignoring the urgently

needed task inappropriately. In comparison to constant rate discontinua-

tion, networks that adopt FDT and FDT+B managed to live for very long

when task demand was low. However, both networks had short life time

under high task demands, favouring fulfilment of the application’s require-

ments to preservation of resources or staying idle.

Imagine our sensor network deployed in a busy city, say London, where

a chemical leakage has happened. Sensors that detect an exceptionally high
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air pollution levels, may need quickly to take more readings, make cal-

culations and estimations, communicate with base stations and peers to

help contain identify and contain the event. In such a situation, priority is

alleviating the effects of the disaster rather than preserving network/node

resources. However, networks in safe zones may not need to do anything

and should preserve their energy to live longer, and may contribute to the

management of other future disasters.

Task Demand Effect: Task demand urges higher network performance.

Therefore, nodes should increase activity when task demand is high, and

use periods of low task demand to stay idle to preserve their resources

or perform other tasks with high associated demands. Static discontin-

uation schemes would not achieve such adjustment. They would either

compromise network lifetime all the way through the node’s operation, or

compromise the node’s performance, and consequently that of the network.

As we can see from figure 7.1, the lifetime of networks FDT and FDT+B

varied according to the task demand. At high demand levels, both net-

works had considerably shorter lifetime compared to their relatively long

lifetime at low task demand levels. Medium-strength task demands achieve

medium-length lifetimes. This is a form of adaptivity demonstrated by the

use of the simple threshold-based discontinuation models.

FDT vs FDT+B: The previous two paragraphs discussed the differences

in lifetime between static discontinuation models and adaptive ones. Now,

a comparison of the two adaptive discontinuation models is in order. Both

FDT and FDT+B networks behave in a very similar pattern or trend as

task demand grows. However, a difference in the lifetime clearly emerges

at high demand levels, less so at middle-range task demand levels. Only

marginal difference can be observed at low demand levels. This can be

attributed to the fact that both networks stay idle, i.e. they start perform-

ing tasks with the same rate, and they are very much pushed to quickly

quit performing the task they started since the associated demand is low.

However, at high task demand levels, the situation is different between the

two networks. From algorithm 2, we can see that FDT will decreasingly
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disengage from performing tasks as task demand increases. This behaviour

persists without any opposing force regardless of a node’s resource levels.

In contrast, FDT+Bwill initially increase activity to match the high task de-

mand, but not for all its lifetime. When battery levels start to decrease and

battery depletion continues, FDT+B nodes start compromising sometimes

on the quality of task performance in favour of elongating their lifetime.

This gives them the longer lifetimes observed at high task demand levels.

7.3.2 Mean Coverage

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 0.1  1  10  100  1000  10000

C
ov

er
ag

e 
P

er
ce

nt
ag

e

Task Demand (phenomena variation units)

Mean Active Coverage vs Task Demand for different rates

C 0.0
C 0.1
C 0.3
C 0.5
C 0.7
C 0.9
C 1.0
FDT

FDT+B

Figure 7.2: Mean Active Coverage for all tasks
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Figure 7.3: Mean Coverage for Task A
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Figure 7.4: Mean Coverage for Task B
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Figure 7.5: Mean Coverage for Task C

Mean Coverage represents the instantaneous coverage on average. Ide-

ally, this should be 100%, however, in many applications, this cannot be
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Figure 7.6: Mean Idle Nodes Coverage for all Tasks

achieved because it will be detrimental to the longevity of the network

which is also important to the application’s purpose and user requirements.

From figures 7.2 to 7.6, the following observations can be made:

Active Coverage: for static discontinuation schemes, it is obvious from

figure 7.2 that task demand has no effect on its coverage. It performs tasks

monotonously at the same rate regardless of the need to perform those

tasks. It can be analogous to an employee writing reports when they are

not needed, or documenting systems that will never be used. Surely the

employer will see this as a waste of the employees energy. In comparison,

FDT and FDT+B perform better on average, i.e. yielding higher coverage,

as the phenomenon intensity increases. FDT and FDT+B networks outper-

formmost of the others at high task demand levels. Although they provide

very low coverage at low demand levels. This is not a deficiency, but rather

a positive behaviour that will result in resource preservation until these

resources are most needed. In this context, adaptive models have outper-

formed static models at all task demand levels. The superior performance

of adaptive models at high task demand levels indicate a rapid resource

consumption, which agrees with the requirements of the family of appli-

cations of sensor networks that we are addressing in this dissertation. In

the case of a hazardous chemical leakage, for instance, then you want to
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contain the disaster regardless of the longevity. This can be seen elsewhere

with bees that all perform suicidal attacks against enemieswhen their hives

are infiltrated or greatly endangered.

Task A Coverage: TA’s coverage follow a trend that is very similar to

that of the active nodes (figure 7.3). It is simple to see why this is the

case. Networks with constant discontinuation probability give the same

coverage no matter what task demand there is. This is not optimal for Task

A because when its associated demand is high, the constant discontinua-

tion probability networks may produce inferior task performance. In the

same manner, when Task A’s demand is low, these networks may waste

energy performing unnecessary work. FDT and FDT+B networks, unlike

CD networks, change their task performance time/frequency according to

the task demand detected by the sensor node. This allows preserving en-

ergy when work is not needed, and producing superior coverage when it

is most needed. The difference in coverage between FDT and FDT+B is

a result of the extra dampening effect of the inclusion of battery levels in

making the task discontinuation decisions. When battery levels are low, the

discontinuation decision is probabilistically dominated by this factor, and

task discontinuation is increased accordingly.

Task B Coverage: In CD networks, Task B’s curves in figure 7.4 show

identical trends to those of Task A, same coverage regardless of task de-

mand intensity. However, if we look at the FDT and FDT+B networks,

we see a fairly unexpected behaviour. At low task demand levels, both

adaptive networks give fairly low coverage, which is normal and expected.

However, when task demand is intense, a proportional growth in coverage

is expected, yet little growth is observed. This is because the threshold of

Task B is much higher than that of Task A, resulting in most nodes opting

for performing TaskA, with least threshold. This results in less effect on the

number of nodes performing Task B. If Task A’s demand was low, and that

of B was high, a clear growth would be observed . We did not include the

graphs of these results here for reasons of space and time. The difference

between FDT and FDT+B is again a result of the additional battery compo-
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nent effect in the FDT+B network.

Task C Coverage: analysis of the performance of CD networks with re-

spect to task C will not be included here as it is identical to those of task

A and B. However, surprisingly, task C’s coverage is reduced when task

demand is increased, see figure 7.5. The correlation here is between the rise

in both task A’s demand, and that of task C. As task A has higher priority,

nodes ignore task C, even if it is highly demanded, and go on performing

task A. Of course FDT+B nodes stand even less chance to perform task C

because their decreasing battery levels decrease their tendencies to perform

any task at all, and task C in particular because it has the highest threshold

value. Again if task C’s demand intensity was high, and medium or low

intensity of demandwere present for taskA and B, taskCwill be performed

by a larger number of nodes.

Idle Coverage: Idle nodes do not perform coverage tasks, but calculat-

ing their coverage and treating them as nodes performing a costless task

helps obtaining an insight into the future robustness and amount of redun-

dancy the network provides. For example, in figure 7.6, Idle nodes made

coverage of around 90% of the terrain at low demand levels, meaning that

if every active node fails, there would be enough nodes to replace them all.

This indicates a network that can achieve good longevity. However, this

was reduced to 75% in the case of FDT+B, and to 10% with FDT networks

at high task demand levels. FDT networks rush into performing the tasks

continuously when the demand is high disregarding any resources consid-

erations, while FDT+B networks continue performing the tasks incessantly

as long as the resource levels allow it. Otherwise, they take a safer approach

by performing the tasks less frequently than dictated by the task demand.

7.3.3 Total Coverage

Generally, at low task demand, networks are supposed to maximise total

performance, Fa(t), while at high task demand, networks should be max-

imising average performance, fa(t). This is what we see happening for FDT
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Figure 7.7: Total Active Coverage for all tasks
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Figure 7.8: Total Coverage for Task A

 120

 140

 160

 180

 200

 220

 240

 0.1  1  10  100  1000  10000

C
ov

er
ag

e 
P

er
ce

nt
ag

e

Task Demand (phenomena variation units)

Task B total Coverage vs Task Demand for different rates

C 0.0
C 0.1
C 0.3
C 0.5
C 0.7
C 0.9
C 1.0
FDT

FDT+B

Figure 7.9: Total Coverage for Task B
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Figure 7.10: Total Coverage for Task C

and FDT+B in figure 7.7. Of course, CD networks had constant total cover-

age as they perform the exact amount of work regardless of task demand.

We can notice the same pattern for total coverage for active, task B, and task

C nodes seen in figures 7.7, 7.9, and 7.10 respectively.

However, we notice in figure 7.8 that task A’s total coverage rose at

medium range demand levels. This is because task A’s threshold was the

lowest, i.e. it had the highest priority to be performed by the network. At

some point, the task demand caused an optimal ratio of active nodes to idle

ones to occur. At very high task demand intensities, the number of active

nodes increases with only little increase in network coverage, if at all. In

the multi-covered regions, some of the network energy was wasted. The

extra active nodes can be useful in high node-loss applications, e.g. disaster
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Figure 7.11: Total Idle Nodes Coverage for all Tasks

zone monitoring applications. At medium range task demand, the number

of active nodes achieves high coverage with as few nodes as possible, and

this is where this surge appears in figure 7.8.

7.3.4 Dead and Idle Nodes

From the dead nodes graph, figure 7.12, we can see that the two extreme

cases of discontinuation ( performing tasks incessantly, and discontinuing

a task once performing it started) give the bounds of possible values of life

times, i.e. longest and shortest longevity.
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Figure 7.12: Dead Node Count vs Time
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It is interesting to see that FDT and FDT+B behave as different CD
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networks with respect to the network lifetime at different task demands.

Which CD network they adopt or behave like is based on the status of

the many parameters of the system, be it environment, internal status, or

task importance. For example, in figure 7.12, FDT networks perform as

if they were a CD network with (C = 0.0) at very high task demand. At

very low task demands, discontinuation probability is very high, and so

FDT and FDT+B both perform very similar to CD networks with (C = 1.0).

At very high task demand levels, FDT+B network does not die as fast as

FDT, but lives longer, and performs slightly less. It does a tradeoff between

performance and resource consumption.

Figure 7.13 shows the count of idle nodes for different networks. From

the graph, we can see that FDT+B have a variable number of idle nodes

that rises slowly to reach the maximum with time. This is because at the

beginning of the experiment, batteries were full, and so the FDT+B network

did not have a reason to decrease the number of active nodes when the task

demand is extremely high. Slowly, batteries are depleted and the FDT+B

network starts reducing the number of active nodes, even though demand

is high, to preserve energy. This scenario does not occur with the FDT

network, which does not consider energy variations. This explains the

level curve for the FDT network. The FDT network, however, exposes an

adaptive behaviour by varying the number of idle nodes according to the

task demand levels.

7.3.5 Prioritisation

Making sensible and desirable prioritisation is a very important aspect in

action selection algorithms. In our scenario there are two required levels of

prioritisation. The first is task prioritisation and the second is cost prioritisa-

tion. This section will discuss each level separately.

Task Prioritisation: Task prioritisation refers to the higher tendency of

a node to perform a certain task in comparison with other tasks. In the

FDT and FDT+B networks, a node determines which task has higher pri-

ority over another by considering task thresholds, in addition to the task-
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associated demands. From figure 7.2, we can see that CD networks do

not perform any prioritisation in terms of task importance. CD networks

perform tasks with a constant rate independent of their importance. From

figures 7.2 to 7.5, FDT and FDT+B networks coverage illustrate a correlation

between coverage and the combination of thresholds and task demands.

For these networks, when task demand is low, all tasks are treated equally,

with slightly higher tendency to perform low threshold tasks. At high task

demand levels, tasks with high importance, i.e. low thresholds, hog more

resources than lower priority tasks. If high priority tasks has low demand,

and low priority tasks has high demand, then tasks with low priority will

be performed more frequently, without ignoring high priority tasks com-

pletely. At mid-range task demands, the network finds a rate at which

a compromise is made between the importance of a task, and how much

resources it needs in order to perform it.

Cost Prioritisation: The term refers to the act of balancing the importance

of performing a task against the amount of resources that are going to be

consumed if this task is performed. FDT+B is the only network that consid-

ers resources when making task discontinuation decisions in this chapter.

In figures 7.2 and 7.3, FDT+B network did not produce a mean coverage

as high as that of the FDT network. This is because after sometime, nodes’

batteries were getting depleted, and so FDT+B reduced its frequency of

performing the task increasing the discontinuation frequency, while FDT

network ignored such a warning and so gave a higher coverage on average.

However, we can see that FDT+B gave a better total performance because

it used its resources more wisely.

7.3.6 Conclusions

From the results of this chapter, it seems that the FDT model is mostly

suited to applications thatmonitor short-livedphenomena like earthquakes,

structural collapses, or traffic congestions. While FDT+B could be more

suited to applications with unknown, unpredictable, or relatively long-

lasting phenomena, such as forest fires, floods, draughts, environmental
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conditions, etc. The FDT+Bmodel could work better in applications where

longevity is more important than high resolution monitoring.

It can be concluded that using adaptive discontinuation models is bene-

ficial in sensornetworkswhere node/network resources are scarce, orwhere

application requirements differ according to systemstatus. FDT andFDT+B

models both improve the longevity of sensor networks conserving energy

when possible. Both FDT and FDT+B models support task prioritisation.

7.4 Summary

In this chapter, we presented the results of simulations run to examine the

effects of using an adaptive behaviour for task discontinuation in sensor

networks. We also discussed the different aspects, indications, and poten-

tial conclusions of these results. Threshold-based mechanisms constitute a

simple, yet powerful mechanism to introduce adaptivity at task discontin-

uation and action selection processes. In previous chapters, we discussed

how threshold-based mechanisms can be employed for action selection,

and in this chapter we utilised them to control task discontinuation. In the

next chapter, we will examine using the same models to control sensing

processes within a sensor node, and after that we will address also the

control of communication processes using the same family of models.



Chapter 8

Sampling

In previous chapters, we applied the threshold-based adaptive model of

[22] to action selection and task discontinuation decision making processes

of a sensor node. In this chapter, we apply the same model in order to

control the sampling processes within a sensor node.

8.1 Non-Adaptive Sampling/Sensing Schemes

A preset interval can be used by a node to take readings in relation to a

phenomenon. A semi-continuous polling-like sampling scheme can also be

used. Both, and similar, schemes do not take into consideration the need to

sample the environment, or rather the variability of the need to sample the

environment. For example, a network that monitors air pollutionmight not

need to sample pollution levels that are stable. In such case, an incessant

sampling scheme will perform redundant, unnecessary, and possibly very

costly sampling. Most systems that adopt static, periodic, or constant sam-

pling schemes disregard the cost involved in these processes, either because

such considerations are contradictory to the application requirements (for

example in hard real-time applications), or because resources needed to

perform sampling are abundant [50] and [49], [130]. For example, sensors

that are deployed in buildings may be able to use the mains power.

138
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8.2 TheConstantSampling /SensingProbabilityModel

(CS)

Previous chapters discussed the use of threshold-based models to help in-

dividual nodes in a sensor network make decisions whether to engage in

performing a task if idle, or discontinue performing a task if active. How-

ever, we have not yet addressed the mechanism used by individual nodes

to make decisions in relation to sampling the environment. In the model

described in [31], sensor readings are taken every 0.5 seconds, and in the

climate monitoring application in [48], the environment is sampled every 5

minutes. Nodes in such networks take readings on a regular basis, or based

on a constant probability p. The value of the probability is preset before

the system is employed, i.e. at design time. The authors of these models

did not explicitly explain why they used these values for sensing/sampling

frequency or probability. However, it is generally based on the required

time resolution of samplings that is deemed satisfactory to the application

in question. For example, in the case of [31], temperature monitoring ap-

plication was devised to illustrate a calibration mechanism. In real applica-

tions, a more complex pattern may be needed. Applications could take the

maximum required sampling rate to guarantee satisfactory overall results.

However, this means wasting some of the resources as some collected data

may be uninteresting. We find that an adaptive model is used in nature in

many phenomena. Take for example the human brain, it needs to rest, pre-

serve energy, recover. Therefore, they work minimally, for example, when

one is asleep. Another observation is that different human sensory capa-

bilities work at different situations. These, and similar, observations point

to a conclusion that it is only logical to have an adaptive sensing. This is

evenmore so when sensing is an expensive activity. Unnecessary sampling

could result in battery depletion, degradation in other task performances,

memory consumption, or waste of computational power.

In our Weather Monitoring Task, setting the value of the sensing prob-

ability p to a relatively low value (say 1 reading a day) may result in too

coarse-grain data. Inmost such applications, this type of reading frequency

is undesirable. However, imagine the situation in the poles, where changes
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in the climate are very slow, and so very low sensing probabilities may

be acceptable. On the contrary, if p is high (p approaches 1), nodes will

log, process, and consume energy on dealing with these values for no, or

so little, advantage. Actually this may result in faster depletion of battery

power, or fast wear of sensing hardware. Frequent turning on and off of

sensors may introduce overheads, yet too few readings could result in in-

ferior performance i.e. low network coverage. Medium values for p will

give less than optimum results at either extremely high or extremely low

climate/weather variation speeds (very slow and very rapid). In addition,

such values will not be optimal for continuous spectrum variation levels.

For example, wind speed variation spans a wide range of values. In many

climates, it may not be possible to find a sampling rate that matches that of

the wind speed variation for long periods of time.

Themathematical representation of the arguments presented in the pre-

vious paragraph is now due. Assuming Tmax is the maximum interval

between two samples taken by a node, then the duration, T(S), after which

the next sampling event will occur can be calculated using the equation:

T(S) = Tmax ×Φ(S) (8.1)

where T(S) is the time after which a reading for the phenomenon in

question will be taken, Tmax is the maximum time interval between two

consecutive sampling events with respect to a phenomenon, and finally

Φ(S) is the probability a sampling event with respect to a phenomenonwill

take place. Φ(S) can be calculated using different equations according to

application- and domain-specific knowledge. However, in many sensor

network applications, an equationwith the following characteristics will be

desirable:

lim
S→∞

Φ(S) = 1 (8.2)

lim
S→0
Φ(S) = 0 (8.3)

where S is the stimulus of the phenomenon in question.

Sensor networks are often employed in unpredictable environments.

For example, a sensor network to monitor traffic in an urban environment
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might detect very low variations in the traffic most of the time due to nor-

mal hours conditions. However, in rush hours, the sensor nodes in the

surrounding area will have massive traffic changes to report, and hence

sampling rate may need to be increased significantly and temporarily until

the rush hour ends. In such a scenario, high values of sampling probabil-

ity in normal low-traffic conditions might be inappropriate, while a low

sampling probability may cause inferior sampling resolution when traffic

is heavy for an extended period of time. In the next few sections, we will

extend the threshold-based model provided by [24] and [25], and [181] to

control phenomenon sampling within a sensor network node. Later, in the

next chapter, simulations and findings will be presented.

8.3 Fixed Stimulus-Based Sampling ThresholdModel

The way many living systems survived for millions of years is said to be

their ability to adapt to the environment [197]. We see the same concept

applicable to sensor networks. If sensor networks can adapt to the stress

the environment exerts on them, they may stand better chance to survive

for longer periods of time, as well as provide better task performances. This

adaptability is crucial inmany behavioural aspects of the network including

the environment sampling decisions. Individual nodes may benefit from

being able to make on-the-fly decisions on whether to sample the environ-

ment or not with respect to a phenomenon. This dynamic decision making,

driven by environmental conditions, improves network performance and

longevity, compared to those of networks that adopt static sampling scheme.

To make the idea clearer, let us look at an example scenario. In the

WeatherMonitoring task in our multi-purpose sensor network application,

if an individual node observes a great temperature increase in its vicinity,

it may perform high rate sampling activity to record these variations in the

environment and report them back to a base station. While it is sending

readings to a base station about the environment, a traffic jam develops,

and the temperature rise has, fortunately, stopped. It might then decrease

its sampling rate with respect to the Environment Monitoring task because

there may be no need to sample this phenomenon anymore. This will
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allow other phenomena, such as Traffic, to be sampled and processed in-

stead of the Environment or phenomena, resulting in a better overall task

performance. Or may be the hypothetical traffic jam phenomenon did not

happen. In this case, the node’s decision to reduce sampling rate of the

Environment-associated task will result in conserving energy and possibly

will lead to a longer network lifetime.

When stimulus to perform a task is high, the sampling probability for

that task-related phenomena is high. On the contrary, if an individual is

performing a task, while the stimulus for that task is low, it is likely that

the individual should sample the environment conservatively as there may

be very little gain from performing unnecessary sampling. This can be

modeled mathematically, drawing from the response threshold model in

chapter 4, as follows:

Φ(S) =
Sn

Sn + θn
(8.4)

Where Φ(θ, S) is the probability a node will sample the environment with

respect to a phenomenon associated with a task with threshold θwhen the

task-associated stimulus isS. Note thatΦ(θ, S) approaches 1 asS approaches

∞ (there is very high demand for this task, and so urgent need to sample the

associated phenomenon), and approaches 0 as S approaches 0 (there is little

demand for this task, and consequently little need to sample the associated

phenomenon). The following equations represent this mathematically:

lim
S→∞

Φ(S) = lim
S→∞

Sn

Sn + θn
= 1 (8.5)

lim
S→0
Φ(S) = lim

S→0

Sn

Sn + θn
= 0 (8.6)

In next chapter, we will conduct experiments to validate themodel, and

investigate the effects it has on the dynamics of a sensor network behaviour.

Next, we will look at incorporating resource levels availability or cost in

making sampling decisions.
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8.4 AdaptiveResource-BasedSamplingThresholdModel

The previous section discussed the FST extension of the FRT model in [22].

It used the task demand levels to decide whether to sample a phenomenon,

or keep the sensing equipment off. In this section, we extend this model

even further to include battery levels in environment sampling decisions.

To reiterate we mentioned in previous chapters, battery is only an example,

though very important one, of a resource that can be incorporated in the

decisionmaking process, and other resources could have been used as well.

Sometimes, task demands are high, and so more data is needed about the

environment and the phenomenonof interest, but resources required to per-

form the task and sample the environment for the associated phenomena

are running low. In such circumstances, nodes may need to make compro-

mises on the quality of task performance and accuracy of data depending

instead on other data sources such as historical data or environmentmodels

in favour of longer task performance. Accounting for battery levels in envi-

ronment sampling decisions is only an example of incorporating resource

levels available to nodes inmaking task-associated decisions. Battery levels

are a candid representation of scarce resources in many sensor networks,

and hence can be used without loss of generality.

Algorithm 3 represents how a node would use battery levels and task

demands to make decisions on phenomenon sampling.

Φ(S,Φ) = Sn

Sn+θn1

Φ(B) = Bm

Bm
0

2

Φ(S, θ,B) = Φ(B) × Φ(S, θ) = Sn

Sn+θn ×
Bm

Bm
0

3

// where Φ(S) is the probability a node will sample a

// phenomena when task demand is S disregarding the

// battery level B (essentially equation 8.4) Φ(B) is

// the probability a node will sample a phenomenon when

// the energy level on this node is B disregarding task

// demand S

Algorithm 3: FST+B Model algorithm to decide Φ(S,B)
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This algorithmresults in the followingmathematical equations representing

the sampling probability trends:

lim
S→∞,B→0

Φ(S,B) = lim
S→0,B→B0

Φ(S,B) = lim
S→0,B→0

Φ(S,B) = 0 (8.7)

lim
S→∞,B→B0

Φ(S,B) = 1 (8.8)

These equations represent the following generalised trend of node be-

haviour: If task demand is high and there is enough battery power, then the

node will most likely sample the environment. However, if either or both

battery power and task demand are low, then most likely the node will not

sample the environment. We will discuss the effect of such behaviour on

task performance in the next chapter.

8.5 summary

In this chapterwe introduced an extension to the FRTmodel used originally

in [22] to make action selection decisions. Our extension uses the model

to make sampling decisions. This extension can be seen as an additional

layer of adaptivity which may improve the performance and longevity of

sensor networks. Also, we added a resource level modulation component

to the model to account for resource availability and task performance cost.

In the next chapter we will present the simulations that were conducted to

study and investigate this extension model, together with the results. We

also discuss some conclusions that can be drawn from those results.
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Sampling Simulations

9.1 Introduction

In this chapter, wewill use an experimental application scenario to examine

the sampling decision making within a sensor network simulation. Next

section will introduce the experiments scenario, and a discussion of the

context of conducting these experiments. This will be followed by the

results in the form of several graphs and comments on their indications.

Finally, some conclusions will be presented regarding the use of the FST

and FST+B models in making sampling decisions.

9.2 Experiment Scenario

The goal of these experiments is to examine the effects of the use of adaptive

sampling models in general, and the threshold-based models in particular,

on the performance and longevity of sensor networks. Again, we will

use our multi-purpose sensor network application to run the simulations

detailed in chapter 5. In this application, a network aims at monitoring

three phenomena The three phenomena has three different priorities. Phe-

nomenonA, TrafficMonitoring, associatedwith monitoring task TA has the

highest priority to be monitored, followed by phenomenon B, Air Pollution

Monitoring. Phenomenon B is in turn associated with task TB. Finally,

phenomenon C, Environment Monitoring, has the least priority and is as-
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sociated with monitoring task TC. We did not delve into the details of the

Monitoring Tasks in order not to distract the discussion from the task allo-

cation mechanisms to chemical, environmental, or any other non-pertinent

details. Also there were concerns over the space available and the scope

of the research in this dissertation. Appendix D.1 lists the settings and

parameter values for this set of experiments.

9.3 Experiment Objectives

The experiments of this chapter aim at:

• Testing the effect of applying the FST Model on the dynamics of task

performance in sensor networks.

• Testing the effects of applying the FST+B Model on on the dynamics

of task performance in sensor networks.

• Identifying what applications could benefit from each of the three

models CS, FST, and FST+B.

9.4 Results

We conducted 10 runs for each of the networkmodels (CS, FST, and FST+B)

with eachmodel settings given in appendix D.1. We collected data from the

experiments, and the next few sections will present and discuss the results.

9.4.1 Network Lifetime

We can see in figure 9.1 that the FST, FST+B, and C 0.1 networks live shorter

life at low task demand levels, while the situation is reversed at middle-

range task demand levels. At high demand levels, differences between

networks lifetimes disappear.

The pattern we see in figure 9.1 is probably surprising at first glance.

However, understanding the way the nodes interpret the concept of a stim-

ulus, or task demand, can give us an insight into why this pattern occurs.
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Figure 9.1: Task demand vs lifetime for different net-

works

At first glance, you might think that if a network does less sampling,

based on its assessment of an environment that exerts minute task demand

on it, then it will live longer. This is probably true for certain environment

behaviours and models. For example, our network generally is stimulated

by the variation in a phenomenon, which means less sampling will lead

to loss of some phenomenon details. These details may have great conse-

quences on the network dynamics. For example, if air pollution changes

between different sampling events, then the amount of that variation repre-

sents the stimulus that a node detects. In a network that has a the following

readings sequence associated with the pollution (notice the pollution is

fluctuating):

−→
S = (5, 6, 5, 4, 5)

a constant variation of 1 unit is detected by the node that obtains these

readings. This can be calculated by taking the absolute value of the sub-

traction of each reading from its predecessor or successor reading. Now,

consider the following series of readings, which represents a different envi-

ronment model where the pollution is steadily increasing:

−→
S = (5, 6, 7, 8, 9)
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Again, if these readings were obtained by a node, then the average task

demand will appear to be 1 unit. We can see that both set of readings were

perceived similarly even though they are quite different. Now imagine

that a node took only the first and the last readings of each of the readings

sequences. The first serieswill give a variation of 0, meaning there is no task

demand at all. The second series will produce a four times more stimulus

magnitude at a value of 4 stimulus units. Here the difference between the

two reading sets is very significant. The second series is more like what our

networks in this chapter experience, hence the way the data is interpreted

in the graphs.

With the previous analysis in mind, the following can be noted about

figure 9.1:

At low task demand: networks that did frequent sampling, namely C

0.9, C 0.5, and C0.1 networks, lived longer. Whereas those networks that

did less sampling, namely the adaptive networks FST and FST+B, had short

lifetimes. This is, following our discussion above, because the environment

has a constant rate of increase of each monitored phenomenon. Those net-

works that did scarcely sample the environment perceived higher stimulus

than those who sampled it more frequently. High perceived stimulus lead

to more task performance which in turn increases battery consumption

leading finally to a short lifetime. This could have been avoided if the stim-

ulus was divided (normalised) by the time elapsed between the sampling

events, which we did not do in our simulations.

At high task demand: high demand is perceived the same way by all

networks, hence all networks live for similar lengths of time with only

marginal differences. Because the task demand is very high, and perceived

as so by the networks, high task performance rate results, and the effect

that we see at low task demand levels becomes too small to influence the

life time of different nodes. This can be demonstrated by the following

example. Assume a node that takes the following series of readings:

−→
S = (50000, 60000, 70000, 80000, 90000)
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Here, the node’s probability of performing the associated task, given its

task threshold is 1000, can be calculated by:

Φ(θ, S) = S(1000, 10000) = 10000/(1000 + 10000) ≃ 0.91

Another node that hasmuch lower reading rate could read the following

sequence:

−→
S = (50000, 150000, 250000, 350000, 450000)

and from this we can calculate the probability it will engage in perform-

ing a task using the following equation, given it has the same associated

task threshold:

Φ(θ, S) = S(1000, 150000) = 100000/(1000 + 100000) ≃ 0.99

which does not differ significantly from the other node that did 10 times

more sampling. This is of course a big contrast to the situation at low task

demand levels.

At mid-range task demand: slowly, with task demand growth, the low

task demand pattern is reversed. There is a critical point in the mid-range

task demand levels where the frequency of sampling becomes insignificant

with respect to the task engagement decision making and hence the cross

in the mid-range stimulus in figure 9.1.

9.4.2 Mean Coverage

In this section, we discuss the implications of the Sampling Model on the

task performance, or in particular, network coverage within the different

sensor networks of our simulations. From fig 9.2 to 9.6 we can make the

following observations:

For C 0.1 network: Consistently over all graphs and at all task demand

levels, this network performs high on average. Remember that it lived the

least as well. This is a result of rare sampling, resulting in high perceived
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Figure 9.5: Task demand vs Mean Task C Coverage for

different networks

stimulus. We can represent this using a mathematical equation. Assuming

∆t is the time between two readings, S(t) is the stimulus from the envi-

ronment at time t and Cs is the rate at which stimulus in the environment

changes,we can represent the perceived stimulus,Stotal, just after a sampling

event by:

Stotal(∆t) =

i=∆t∑

i=0

S(i) = ∆t × Cs (9.1)

This equation is least when ∆t is least because Cs is a constant. Mathe-

matically, this can be represented as follows:
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ferent networks

lim
∆t→0

Stotal(∆t) = 0

In the C 0.1 network, ∆t is high and so the perceived stimulus, Stotal, is

also high. This, in turn, induces this network to perform, in average, more

forcefully than others.

For FST and FST+B networks: low sampling rate at low task demand

levels result in high perceived stimulus, which in turn results in high task

performance in average. As task demand levels increase, more sampling

happens, resulting in less perceived task demand in comparison to what

other networks perceive. This in turn results in less average performance.

Indeterministic results: We discussed networks that used the C 0.1, FST,

and FST+B models because they have a clear trend. Some trends can be

observed from the graphs for other networks, such as those of the C 0.9

networkwhich show clear low average performance at low demand levels,

and higher performance, in comparison to other networks, at high demand

levels. However, these trends are less significant, less obvious, and may

incur many questions that we have no space to answer in this thesis. How-

ever, they are connected to the complexity of the model, and the unclear

trends are not adverse in anyway, so we can safely say they insignificant.

In fig 9.3, Task A’s performance display a peak at some point. This is
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an optimal point of performance where the stimulus exerted by the envi-

ronment motivates the network to activate a number of nodes that together

achieve a very high coverage for Task A (the highest priority task), and not

so high for other tasks, namely Task B and Task C. When stimulus gets very

high for all tasks, the differences between their thresholds become negligi-

ble, and so Task A loses its high priority status, and so its average coverage

descends as in the figure.

In figures 9.4 and 9.5, both tasks, B and C, exhibit a continuously as-

cending coverage with the increase of stimulus magnitude. This is because

continuous increase in stimulus steadily increases the number of active

nodes for these tasks, until they even get to be as high-priority as Task A.

Notice the difference between the trend of the average task performance for

these tasks and for task A.

The points made regarding the average coverage for active nodes are

identically observed on the graphs of individual task performances. This is

an important sign of consistency in the effects of the model on all tasks.

Mean idle nodes coverage exhibits a similar trend to that of the FRT and

FRT+B networks from chapter 5. This is due to the fact that the FRT model

was used throughout this chapter to make action selection decisions (note

that FST and FST+B are used to make sampling decisions).

9.4.3 Total Coverage
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Figure 9.7: Task demand vs Total Active Coverage for

different networks
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ferent networks

While mean coverage had fairly clear trends and differences between

networks at high demand levels, total coverage statistics seem to showclose

resemblance between the different network curves. This is observed in all

graphs of this section, figures 9.7 to 9.10.

For total coverage, we see a trend appearing in the range from low to

medium magnitudes of task demand. We can see a crossover point, where

networks that produced high total coverage at low task demand levels,

display lower levels of coverage at medium task demand levels, and vice

versa. This follows from the same argument presented in section 9.4.2.

Highly sporadic sampling events within a node result in its perception of
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high task demand, which in turn results in high average coverage, and a

lower total coverage. The reverse is also true. High sampling frequency by

nodes results in low perception of task demand, which in turn leads to low

average coverage, but high total one. This crossover is most obvious for the

FST and FST+B networks because they use adaptive schemes.

Network C 0.1 does not follow the trend highlighted above because it

has always high perception of stimulus because it very sparingly samples

the environment.

The C 0.9 network does exhibit a crossover, but for different reasons

from those of the FST and FST+B networks. This network perceives low

task demand at low task demand levels because it samples the environment

frequently. However, it detects high demand at high stimulus magnitudes

despite its frequent sampling. This is the reason of the crossover, it con-

verges to behave very much like FST and FST+B when task demand is

high.

Finally, idle node’s count in figure 9.11 follows the same trend observed

in average idle node coverage in figure 9.6. All constant rate sampling

networks maintain a constant number of idle node’s coverage. Whereas

FST and FST+B, the adaptive networks, exhibit a descending idle node

coverage as task demand increases.

9.4.4 Idle Nodes
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Figure 9.12: Time vs Idle Nodes Count for different net-

works when S = 0.1
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works when S = 1
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works when S = 10
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Figure 9.15: Time vs Idle Nodes Count for different net-

works when S = 100
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Figure 9.16: Time vs Idle Nodes Count for different net-

works when S = 1000
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Figure 9.17: Time vs Idle Nodes Count for different net-

works when S = 10000

Figures 9.12 to 9.17 show the idle node count vs time for different net-

works. Notice that when stimulus is very low, as in figure 9.12, networks

have similar number of idle nodes, because they all sense a relatively low

stimulus. Similar phenomenon happen when task demand is extremely

high, as in figure 9.17, because again, here networks perceive extremely

high task demand for all tasks, regardless of the task’s threshold.

Different networks have different number of idle nodes at mid to high

range stimulus values. For example, in figure 9.14, network FST has the

highest number of idle nodes, this is because it perceives low stimulus.

Notice that in this experiment, sampling rate has a significant effect on the
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perceived stimulus, therefore, this value of response rate that yielded this

idle node curve seems to be a good value that balances the frequency of

sampling and the task performance rate. In the same figure, we notice a

sloped curve (FST+B network). This is due to the effect of the battery slowly

running low on energy, and so the sampling rate was reduced, making the

nodes perceive greater task demand, and hence less idle nodes result.

9.4.5 Dead Nodes
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Figure 9.18: Time vs Dead Nodes Count for different

networks when S = 0.1
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Figure 9.19: Time vs Dead Nodes Count for different

networks when S = 1
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Figure 9.20: Time vs Dead Nodes Count for different

networks when S = 10

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  100  200  300  400  500  600  700  800

N
od

e 
C

ou
nt

Time (time steps)

Dead Node Count vs Time

C 0.1
C 0.5
C 0.9
FST

FST+B

Figure 9.21: Time vs Dead Nodes Count for different

networks when S = 100

Figures 9.18 to 9.23 show the time line of the number of dead nodes vs
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Figure 9.22: Time vs Dead Nodes Count for different

networks when S = 1000
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Figure 9.23: Time vs Dead Nodes Count for different

networks when S = 10000

time for different stimulus levels. The following observations can be taken

from these graphs:

Death Speed: at very low task demands, the network lives almost dou-

ble the time it took for the very first node to die, whereas at extremely high

task demand, it takes only 7th of the time a network lived before its first

node died for the whole network to be dead.

At very high stimulus levels: at high stimulus levels, all nodes exhibit

similar death rate, or die in very close range of time. This is because all net-

works, independent of the sampling rate, perceive extremely high stimulus,

so the active time is extremely high, and all other factors governing the en-

ergy consumption diminish in the presence of such a high task performance

rate.

9.4.6 Multiple Adaptive Models

There are two adaptivity models working together in the experiments of

this chapter. These are the FRT model for action selection, and FST/FST+B

models for sampling decisions. The FRT is used to make action selection

decisions in all experiments, while different sampling schemes were used

for different networks. At extreme task demands, the influence of the
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adaptivity of the sampling models was marginal. While it was much more

obvious at lower task demand levels. Actually, FST and FST+B almost

reverse the effect of the FRT at low task demands. This can be seen clearly

by comparing figures 9.18 and 9.23.

9.4.7 Sampling Frequency
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Figure 9.24: Time vs Sampling Count for different net-
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Figure 9.25: Time vs Sampling Count for different net-

works

Average Sampling Frequency

In figure 9.25 we can see that the average sampling rate stays constant,

independent of the demand levels, for networks that use the CS models.

While, for FST and FST+B, mean sampling frequency increases with the

increase of demand levels. FST+B sampling growth rate is slower than that

of the FST network because the battery energy content influences decisions

made in the FST+B network. This growth in sampling frequency increases

the resolution of a node’s view of the environment, which in many sensor

network applications would be an application requirement, i.e. leading to

a better task performance. While when there is no interesting activity in the

network, a low sampling frequency would be sufficient.
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Total Sampling Frequency

In figure 9.24, at low task demand values, the C0.9 and C0.5 networks does

high frequency sampling. This is because sampling is a cheap operation

power-wise, and the task demand is low, hence you get nodes that sample

frequently for very long time because they do not have to perform power-

hungry tasks. With the FST and FST+B networks, task demand is low,

so there is no power-hungry tasks being performed, but also there is little

sampling to do. The data samples taken by the high-frequency sampling

nodes may be redundant, or may be expensive in terms of memory or

computational complexity. At high task demands, all nodes converge to

similar total sampling frequency because they all consume most of their

energyperforming thepower-hungry tasks,and so the effect of the sampling

frequency differences diminish to a minute size. However, we still can see

that at high demand levels, FST networks produce the highest sampling

frequency, followed by the C0.9 network, then the FST+B and the C0.5

networks. Finally and as expected, the C0.1 network comes with the lowest

sampling frequency.

9.5 Experiments Conclusions

The interpretation of the sampled data had a great effect on the way the

network behaved, which actually allows us to conclude that the design of

the interpretation of the environmental data gathered is just as important

as modeling the sampling behaviour itself, and that both aspects are very

coupled and need to be considered together.

Sampling will have minimal effects, in most cases, on a node’s be-

haviour and resources as long as it is done with small power print. This

is the case with many sensors and other sampling equipments. Therefore

FST+B model may not have great positive impact on the longevity or task

performance of a node, and the FSTmodel would be sufficient for sampling

control.

FST+B can be considered if sampling equipments have high power

requirements.
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9.6 Summary

In this chapter we investigated the effects of sampling rate on the network

performance. We also saw typical effects of sampling on sensor node life-

time. We examined the inter-dependency between task performance, per-

ceived stimulus, and the sampling models. Consequences of the sampling

model on total coverage, average coverage, node coverage, and network

death were all observed and discussed.

There still remain many issues that could be investigated, such as what

if sensing was a power-hungry activity itself, but for reasons of time and

space, we only restricted our discussion to a small window that covers the

wider and more common range of sensing power requirements.



Chapter 10

Communication

In previous chapters we introduced threshold-based models to control ac-

tion selection, task discontinuation, and sampling. In this chapter, we in-

troduce a threshold-basedmodel to control communication within a sensor

network.

We will start by a general discussion of communication in sensor net-

works, and then sections about the models will follow.

10.1 Communication in Sensor Networks

Sensor networks need communication for a variety of reasons. These in-

clude receiving instructions from human users and sending back data to

servers, and/or base stations. Communication could be used aswell to coor-

dinate among nodes, conduct collaborative tasks, or influence the operation

of peer nodes in the network.

It is important to realise the communication implications on sensor

nodes in terms of energy [9] [17], which create the tradeoff between the ob-

served benefits in terms of task performance as a result of communication,

and the adverse effects of communication on network and node lifetimes.

If nodes are voluntarily mobile, thenmobility would constitute the greatest

power hungry activity that the node has to cope with, in which case com-

munication can be allowed almost without restrictions. However, if nodes

are immobile, then communication is often the activity that consumes most

161
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of the available energy. To illustrate the difference in power consumption

between communication devices and other components on a sensor node,

we compare a typical sensing device to a typical communication device.

Sensors are generally low energy consumption components, however, that

does not necessarily preclude the possibility of the presence of a sensing

component that has a high power footprint. Here, our focus is on the more

common energy profiles of different device families, rather than the specific

or exceptional cases. For example, operation current for the temperature

sensor MCP9700/01 is 12µA at maximum and 6µA typically. This is com-

pared to a very low power transmitter like TXE − 315 − KH from LINX

Technologies that typically requires 1.5mA to operate. While this transmit-

ter is relatively low in terms of power consumption, it is still 125 timesmore

power consuming than the temperature sensor.

Sensor nodes usually use lowpower protocols, such as Zigbee [6]. Com-

monwireless communication protocols do not particularly satisfy the pecu-

liarly energy-constrained profile of sensor nodes, and would result in quick

depletion of node batteries. This is primarily due to the polling nature

of many conventional protocols, in addition to the frequency they operate

at, and the distances they target. Examples of such unsuitable protocols

include the now infamous Wi-Fi and FDMA.

Sensor nodes often use multi-hop communication schemes as opposed

to long-haul ones to conserve energy. It is established that the communica-

tion power requirements are proportional to the radius of communication,

or distance, quadrupled. Although multi-hop schemes has some adverse

implications on the complexity of the communication protocols, and the

computation cost of networking, it is offset by a great energy profile reduc-

tion. You can refer to a more elaborate discussion of this issue in [133].

Communication seems to be inevitable in many sensor networks, how-

ever, we believe that sensor nodes should not depend on the availability

of communication to perform their task allocation and action selection. We

see that communication with base stations or human users is a different

and separate issue from communication that affects the sensor node and/or

network task performance [183]. For example, inter-node communication

for the purpose of task allocation may happen depending on the environ-
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mental conditions, while communication between users and nodes may

happen on preset intervals. Also separate communication equipmentsmay

be used for each type of communication. For instance, a node may have a

long haul equipment that is only used once per month to transfer data to

a base station, while another low-power communication module could be

used otherwise to coordinate with other nodes. We think that both issues

should be addressed separately. In this chapter, we focus on communica-

tion activities for the purpose of improving the network and node quality of

coverage, i.e. task performance, and longevity rather than data aggregation

or dissemination purposes.

In the next few sections, we will discuss models we propose to use to

regulate communication activities within a sensor network.

10.2 Non-Adaptive Communication Schemes

We can think of two basic non-adaptive schemes for communication: 1) A

preset interval of synchronisation or communication can be used by a sen-

sor network to regulate inter-node communication, 2) A no-communication

policy . However, both policies may not be ideal under different conditions

for some environments and/or application domains. Though the latter

scheme results in big savings in energy consumption, it would be advan-

tageous, and may be sometimes necessary to the application, to perform

some communication. Also in some applications, the nodemay not depend

on communication to operate, but would benefit from communication if

available. Both of these schemes are also non-adaptive schemes because

they are decided upon at design time, rather than runtime. They do not

autonomously react to environment-based, policy-based, or system-based

variables.

Let’s take an example to illustrate the deficiencies that can occur from

using static communication schemes. If in our pollution monitoring task has

been observing low pollution levels, then the sensors will likely be idle. In

this case, communication may be a futile activity, as there is no need to coor-

dinate or collaborate over any monitoring activities. But imagine, if there is

more than one phenomenon highly active in the vicinity of this network. In
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this case, itmight be advantageous if differentmonitoring tasks are assigned

to different nodes, and this can be done through communication. If nodes

do not communicate, some phenomenon may be under-monitored, while

others are over-monitored. From this simple scenario, we can conclude that

periodic communication schemes may waste energy when communication

is unnecessary, and the no-communication scheme may adversely impact

network coverage quality.

In the next section, we will discuss one of the non-adaptive schemes,

namely, the constant communication probability model (CC for short).

10.3 The Constant Communication ProbabilityModel

(CC)

Previous chapters discussed the use of threshold-based models to control,

regulate, or help making decision with respect to action selection, task

discontinuation, and sampling frequency. However, they all assume a no-

communication policy, i.e. nodes never inter-act or communicate for the

purpose ofmaking decisions. In themodel described in [22], an assumption

of a no-communicationpolicywasmade, even though in real insect societies

it is well documented that there are several communication mechanisms

employed [45]. In this chapter we will explore employing a threshold-

based model to regulate communication in sensor networks. It is worth

mentioning that we have not done any experiments on insects or any other

real societies to suggest employing this model, but we were rather inspired

by the suitability of this model to regulate other activities in insect societies,

or rather imitate the regulation observed in these societies. To be able to

assess the performance of the adaptive threshold-basedmodel, we compare

it to a base case model, that is theConstant Communication Probabilitymodel,

or CC for short.

In the CCmodel, an individual would communicate with nodes within

radius Rc from its centre with a constant probability pc. The value of the

probability is preset before the system is employed, i.e. at design time. This

is anon-deterministic scheme corresponding to theperiodic communication
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model in deterministic terms. Periodic communication schedules were and

still are employed in many computing systems.

Setting the value of the communication probability pc to a low value

will mean that individuals will communicate very rarely. Rare communi-

cation is not always beneficial for network performance. When pc is low

(pc approaches 0), the number of communication events used by individ-

uals out of N possible communication slots approaches 0. Although this

may work well in situations where there is little work to be done, or when

communication may introduce undue overhead, this is not always the case.

Similarly, if pc is high (pc approaches 1), the number of communication

events utilised by nodes will be close to the N communication time slots

available. That may work well in environments with highly dynamic de-

mand levels, or those that has high inter-task dependencies, or require a

great deal of coordination. Again, this may be a waste of energy, or unnec-

essary, if communication does not benefit the application requirements, i.e.

improve the quality of service. Medium pc values will give less than opti-

mum results at either extremely high or extremely low demand levels. In

addition, such values will not be optimal for continuous spectrum demand

levels. For example, assume that air pollution variation is the stimulus that

modulates the communication rate between nodes. The variation of air

pollution may span a wide range of values and therefore one pc value may

never be appropriate for all situations.

The mathematical representation of the previous discussion is as fol-

lows:

C(Task) = pc ×N (10.1)

lim
pc→1

C(Task) = lim
pc→1

pc ×N = N (10.2)

lim
pc→0

C(Task) = lim
pc→0

pc ×N = 0 (10.3)

where C(Task) is the number of communication slots used by a node to

communicate with nodes in its vicinity for the purpose of coordination and

making task allocation decisions.
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where pc is the probability a node will communicate with peers in the

vicinity.

Note that there is an assumeddecoupling between the physical commu-

nication equipment, and the application view of the communication events.

For example, an application program might request the number of nodes

performing wind data analysis in its vicinity. The communication module

would return avalue, however, this does notmean that communicationwith

peers in the vicinity has actually happened. The communication module

controller makes this decision based on context information and not based

on application specifically communicated requests. This was discussed in

more details in chapter 3.

Sensor networks are often employed in unpredictable environments.

For example, a sensor network to monitor traffic might have very low vari-

ations in the traffic due to clear roads at night and most of the day. This

means there may be no particular need to communicate for the purpose of

coordination as nodesmay opt for staying idle most of the time, preserving

their energy reserves until needed. When the rush hour starts, the sensors

in the area will have massive traffic changes to report, and may be complex

monitoring tasks for which coordination, collaboration, and cooperation

are needed. In such a scenario, high values of communication probability

in normal traffic conditions might be inappropriate, while a low commu-

nication probability may cause unnecessary energy overheads when traffic

is heavy for an extended period of time. In the next few sections, we will

extend the threshold-basedmodel from [24], [25], and [181] to control inter-

node communication within a sensor network. In the next chapter, the

associated simulations and their findings will be presented and discussed.

10.4 FixedStimulus-BasedCommunicationThreshold

Model (FCT)

The way many living systems survived for millions of years is said to be

their ability to adapt to the environment [197]. We see the same concept

applicable to sensor networks. If sensor networks can adapt to the stress
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the environment exerts on them, they may stand better chance to survive

for longer periods of time, as well as provide better quality of service, i.e.

better network coverage. This adaptability is crucial in many behavioural

aspects of the network including the inter-node communication decisions.

Individual nodes may benefit from being able to make communication-

related decisions dynamically according to the information they gather,

rather than adhering to one rigid periodic scheme of communication.

To make the idea clearer, let us look at an example scenario. For our

Traffic Monitoring task, if an individual node observes a great traffic in-

crease, it may engage in high rate reporting task. However, before starting

to work hard to report the detected changes, it may wish to consult with

its peers in the vicinity in case one or more of them are already engaged

in performing this particular task. If a node or more are performing the

highest priority task of reporting the traffic status to a base station, another

node may use this knowledge to make the decision of turning its attention

to report the pollution level increase associated with the traffic increase.

As aforementioned, once the traffic subsides, communication amongst idle

nodes becomes redundant, and actually can be considered an unnecessary

squandering of the limited energy reserves.

When stimulus to perform a task is high, or when there are many tasks

that need to be performed, the communication probability is likely to be

high in order to facilitate coordination, and improve quality of service. On

the contrary, if an individual is performing a task,while the stimulus for that

task is low, it is likely that the individual should not need to communication

with its peers as the decisionmaking process through communication could

be evenmore expensive thanperforming the task itself. This canbemodeled

mathematically, drawing from the response threshold model, as follows:

ζ(θ, S) = (
Sn

Sn + θn
) (10.4)

Where ζ(θ, S) is theprobability an active nodewill communicatewith regard

to a task with threshold θwhen the task-associated stimulus is S. Note that

ζ(θ, S) approaches 1 as S approaches∞ (there is very high demand for this

task), and approaches 0 as S approaches 0 (there is little demand for this
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task). The following equations represent this mathematically:

lim
S→∞

(
Sn

Sn + θn
) = 1 (10.5)

lim
S→0

(
Sn

Sn + θn
) = 0 (10.6)

This concludes our introduct in of the FCT model, next we will extend

this model to account for the resource availability within a node.

10.5 AdaptiveResource-BasedCommunicationThresh-

old Model (FCT+B)

The previous section discussed the FCT extension of the FRT model in [22].

It used the task demand levels to decide either to communicate with peers

or make decisions without using information from peers. In this section,

we extend this model even further to include resource levels, in particular

battery levels, inmaking communication decisions. Sometimes, a nodemay

be able to detect that task demands are high, however, it cannot respond

because the resource required to perform the task are running low. In

such circumstances, nodes may need to communicate with peers that task

demands can be detected, but no response is possible on the node because

of lack of resources. May be some other node could then respond to such

help request messages. Accounting for battery levels in communication

decisions is only an example of incorporating resource levels available to

nodes in making task-associated decisions. Battery levels is a common

representation of scarce resources in many sensor networks, and hence

can be used without loss of generality and relevance. Note that the way

adaptivity is modeled is application- and domain-dependent. For example,

it could be said here thatwhen resources are low, thennodesmay favour not

communicating because communication in itself is an energy-exhausting

process. However, in other applications the reverse could be true. We

assume the latter in our examination of the model in this and the next

chapter.
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The following mathematical equation represents the battery-modulated

control component in the communication decision making process:

ζ(B) = 1 − (
B

B0
)m (10.7)

The following are the trends that follow from equation 10.7:

lim
B→0
ζ(B) = 1 (10.8)

lim
B→B0

ζ(B) = 0 (10.9)

The following is an algorithm representing how a node would use bat-

tery levels and task demands to make decisions on communication events,

given stimulus S, task-associated threshold θ, battery level B, and a resolu-

tion µ:

ζ(S, θ) = Sn

Sn+θn1

ζ(B) = 1 − ( B
B0
)m2

// Now, simply multiply the two terms, and divide by the

// resolution

ζ(S, θ,B) =
ζ(S,θ)×ζ(B)

µ =
[ Sn

Sn+θn
][1−( B

B0
)m]

µ3

// where ζ(S, θ) is the probability a node will communicate

// with peers with regard to a task when the

// task-associated demand is S disregarding the battery

// level B (equation 10.4).

// ζ(B) is the probability a node will communicate with

// peers with regard to a task when the energy level on

// this node is B disregarding task-associated demand S

Algorithm 4: FCT+B Model algorithm to determine ζ(S, θ,B)

Algorithm 3 results in the following mathematical equations represent-

ing the communication probability trends:

lim
S→∞,B→0

ζ(S, θ,B) = 1 (10.10)
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lim
S→0,B→B0

ζ(S, θ,B) = 0 (10.11)

lim
S→0,B→B0

ζ(S, θ,B) = 0 (10.12)

lim
S→∞,B→B0

ζ(S, θ,B) = 0 (10.13)

These equations represent the following generalised trend of node be-

haviour: 1) If task demand is high and there is enough battery power,

then the node will not most likely need to communicate, as it can afford to

perform the task 2) Communication is not needed as well if task demand

is low, regardless of battery power status 3) If battery power is low, and

task demand is high, then the node would most likely communicate with

its neighbours to negotiate a solution or notify others to perform the work

needed.

This concludes our introduction of the FCT+B model.

10.6 summary

In this chapterwe introduced an extension to the FRTmodel used originally

in [22] to make action selection decisions. Our extension uses the model to

make task-associated communication decisions. This extension can be seen

as an additional layer of adaptivity which improves the performance and

longevity of sensornetworks. We also introduced a component tomodulate

the communication decisions according to the battery levels within a node.

In the next chapter we will explain the simulations that were performed to

examine the effect of the models we introduced in this chapter on a sensor

network, together with their results. We also discuss some conclusions that

can be drawn from the results.



Chapter 11

Communication Simulations

11.1 Introduction

In this chapter, we conduct simulations of our hypothetical scenario in order

to investigate the FCT and FCT+B models (see chapter 10).

Appendix E.1 lists the settings and parameter values for this set of

experiments. Next section will present the objectives of our simulations

followed by the results and conclusions.

11.2 Experiment Objectives

The experiments of this chapter aim at:

• Testing the effect of applying the FCT Model on the dynamics of task

performance in sensor networks.

• Testing the effects of applying the FCT+B Model on the dynamics of

task performance in sensor networks.

• Identifying what applications could benefit from each of the three

models CC, FCT, and FCT+B.
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11.3 Results

Following sections will discuss the results with respect to different metrics

of the network performance.

11.3.1 Network Lifetime
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Figure 11.1: Task demand vs lifetime for different net-

works

From figure 11.1, it seems that no matter what communication model

the network use, it does not affect the lifetime of the network. Lifetime is

only affected by the intensity of the task demand. Clearly, the higher the

task demand, the shorter the network lifetime is. This can be explained by

two factors:

1. The increase of the task performance with the increase of the task

demand, mathematically represented in equation 4.1.

2. The increase of communication frequencywith the increase of the task

demand, mathematically represented in equation 10.4.

Although these two factors have a strong impact on the lifetime of the

network, we believe that the vast difference in the lifetime of the network

observedbetween the two extremes of the task demand intensity ismainly a

result of the communicationmodel adopted. An examplewill help illustrate
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this situation more clearly. In the settings of these experiments, the cost of

a communication event between any pair of nodes equals to 10 energy

units. The cost of performing a task, no matter which one it is, is 20 energy

units per time step. Now, at low task demand intensity, say 0.1 units, the

probability of performing the task TA, with threshold θA is:

Ψ(0.1) =
0.1

0.1 + 50
≈ 0.002 (11.1)

If we calculate the time a node will spend performing this task under

these circumstances out of an interval of 100 time steps we obtain:

100 ×Ψ(0.1) = 100 × 0.002 = 0.2 (11.2)

And from this, we can calculate the energy expenditure for this level of

task performance to be:

EA(0.2) = 0.2 × 20 = 4 (11.3)

Therefore, in task performance, 4 energy units were used. Now to

calculate the communication energy expenditure, we take a node with say

4 neighboring nodes. Under a 0.1 task demand intensity, the frequency of

communication can be calculated to be:

ζ(0.1) =
0.1

0.1 + 50
≈ 0.002 (11.4)

Again multiply this by the time interval of 100, the result is:

ζ(0.1) × 100 = 0.002 × 100 = 0.2 (11.5)

Now to get the energy expenditure, multiply this by 10 to get:

Ecomm(0.1) = 0.2 × 10 = 2 (11.6)

This seems less than the energy consumptionused for task performance,

until you remember that this sort of cost is repeated with the 4 neighbours

of the node, leading to a total cost of 5x2 = 8 energy units, i.e. more than

double that used in task performance. Sum the task performance and the
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communication energy expenditures, an amount of 10+4 = 14 energy units

is needed.

Now let’s do the same calculations at high task demand, say 10000 task

demand units. The probability of performing a task TA, with threshold θA

is:

Ψ(10000) =
10000

10000 + 50
≈ 0.995 (11.7)

If we calculate the time a node will spend performing this task under

these circumstances out of an interval of 100 time steps we obtain:

100 ×Ψ(10000) = 100 × 0.995 = 99.5 (11.8)

And from this, we can calculate the energy expenditure for this level of

task performance to be:

EA(99.5) = 99.5 × 20 = 1990 (11.9)

Therefore, in task performance, 1990 energy units were used. Now to

calculate the communication energy expenditure, we take a node with say

4 neighboring nodes. Under a 10000 task demand intensity, the frequency

of communication can be calculated to be:

ζ(10000) =
10000

10000 + 50
≈ 0.995 (11.10)

Again multiply this by the time interval of 100, the result is:

ζ(10000) × 100 = 0.995 × 100 = 99.5 (11.11)

Now to get the energy expenditure, multiply this by 10 to get:

Ecomm(10000) = 99.5 × 10 = 995 (11.12)

This number needs to be multiplied by 5 to get the total communication

expenditure of 5×995 = 4975. Add this to the task performance expenditure

to get a whopping amount of 4975 + 1990 = 6965 energy units.

The previous calculations give us an idea of how high the impact of

communication overhead has on the system energy expenditure and conse-

quently the network lifetime. Notice that the communication expenditure
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constitutes 72% of the total energy expenditure at both high and low task

demand intensities.

The similarity in lifetime among the different networks mostly will

make comparison between networks easier with respect to other metrics

discussed in this chapter.

11.3.2 Mean Coverage
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Figure 11.2: Task demand vs Mean Active Coverage for

different networks
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Figure 11.3: Task demand vs Mean Task A Coverage for

different networks
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Figure 11.4: Task demand vs Mean Task B Coverage for

different networks
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Figure 11.5: Task demand vs Mean Task C Coverage for

different networks

In this section,wediscuss the implications of theCommunicationModel

on the task performance, or in particular, network coverage within the
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Figure 11.6: Task demand vs Mean Idle Coverage for

different networks

different sensor networks of our simulations. From fig 11.2 to 11.5, we can

make the following observations:

At low task demand levels

All networks converge to low average coverage of almost the same value.

This is due to two factors: 1) nodes do not communicate when they are idle,

and if they are idle most of the time, because there is only minute task de-

mand detected, 2) then they also do minuscule amount of communication.

This results in the observed convergence of the networks.

At high task demand levels

As task demand level increases, the difference between different networks

becomes apparent. Networks that communicate rarely yield higher cov-

erage on average. This is because more nodes per neighbourhood radius

become active for a single task. Nodes are not aware of this because they

rarely communicate. Networks that communicate fervently at extreme task

demandsperform least on average because the least number of nodeswould

be active with respect to a task within a neighbourhood radius. We can see

an almost clear plateaus in terms of average performance curve in the re-

gion betweenmiddle to high task demand levels. This is because at certain

frequency of communication, the network collectively succeeds in restrict-
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ing the number of active nodes per neighbourhood to a minimum. Any

further increases to the amount of communication does not result in any

reduction in the number of active nodes within a neighbourhood. This fre-

quency could be detected and used as an upper limit to the communication

probability. However, this issue is out of the scope of this dissertation.

Adaptive vs non-adaptive models of communication

Adaptive models changed their skins, so to speak, with the change of task

demand levels. This is beneficial in many sensor network applications.

For the FCT model, the network behaved like all other networks at low

demand levels. At medium demand levels, the FCT network behaved

similar to a C0.5 CC network. Finally, at high demand levels, it behaved

similar to a C0.9 CC network. The FCT+B network has also changed its

behaviour according to demand levels. At low task demands, it behaved

like a C0.1 CC network, and slowlywith the growth of the task demand, the

FCT+B network morphisized into a C0.5 CC network. It did not converge

to a C0.9 network because it had the battery component that capped its

communication frequency to half that of the FCT network.

In fig 11.3, Task A’s performance display a peak at some point. This is

an optimal point of performance where the stimulus exerted by the envi-

ronment motivates the network to activate a number of nodes that together

achieve a very high coverage for Task A (the highest priority task), and

not as high for other tasks, namely Task B and Task C. When stimulus

gets very high for all tasks, the differences between their thresholds become

negligible, and so Task A loses its high priority status, and so its average

descends. Also notice that this peak happens at the mid range task de-

mand region, when the communication frequency is not yet able to cap the

number of active nodes per neighbourhood to its optimal status, i.e. one

per neighbourhood, which results in this high coverage. As task demand

increases to reach extremes, the fervent communication makes sure that the

least possible number of active nodes exist per neighbourhood, and so all

tasks get the same number of active nodes at that point. While at the mid

range, Task A gets highest coverage, followed by Task B, and finally comes
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Task C.

In figures 11.4 and 11.5, both tasks B and C exhibit a continuously as-

cending coverage with the increase of stimulus magnitude. This is because

continuous increase in stimulus steadily increase thenumber of active nodes

for these tasks, until finally they even get to be as prioritised as TaskA. No-

tice the difference between the trend of these tasks’ average coverage on the

graphs, and that of task A.

The points made regarding the average coverage for active nodes are

identically observed on each task’s graph separately. This is an important

sign of the consistency of the network behaviour across all tasks.

Mean idle nodes coverage exhibits an interesting high average. At

worst we see that 85% of the network terrain is covered by idle nodes. This

emphasises the communication importance in keeping nodes that do not

need to be active idle until the situation changes. Communicationhere helps

support high redundancy and fault tolerance. It also allows for better task

assignment because as nodes know that other nodes are performing a set

of tasks, they can deal with other tasks that no other nodes are performing.

11.3.3 Total Coverage
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Figure 11.7: Task demand vs Total Active Coverage for

different networks
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Figure 11.8: Task demand vs Total Task A Coverage for

different networks

In figures 11.7 to 11.10, the total coverage graphs are presented. From

these graphs we can make the following observations:
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Figure 11.9: Task demand vs Total Task B Coverage for

different networks
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Figure 11.10: Task demand vs Total Task C Coverage for

different networks
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Figure 11.11: Task demand vs Total Idle Coverage for

different networks

The C0.1 network

This network achieves the highest total coverage. This can be attributed to

two factors:

1. This network communicates rarely irrespective of the task demand

intensities, allowing it to save large amount of energy for task perfor-

mance, i.e. coverage.

2. The fact that the nodes rarely communicate reduces the limitation on

the number of active nodesper neighbourhood, allowing for a slightly

higher coverage on average, which adds to the total coverage. Note
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that extremely high coverage on average does not necessarily result in

the maximisation of total coverage, and the same is true with respect

to extremely low coverage on average.

The C0.9 network

This network always, regardless of the task demand intensity, produces the

least total coverage. This is because of reasons that mirror those given for

the high total coverage of the C0.1 CC network. These reasons are:

1. This network communicates liberally irrespective of the task demand

intensities, consuming high amounts of energy for communication for

coordination.

2. This network’s high intensity communication minimises the number

of active nodes per neighbourhood, allowing for just enough cover-

age on average which reduces the average coverage compared to the

situation where less restrictions on the active node count per neigh-

bourhood with the C0.1 CC network.

The adaptive networks, FCT and FCT+B

Both FCT and FCT+B networks behave as a C0.1 network at extremely low

task demand levels. On the contrary, when task demands are extremely

high, these two networks tend to behave more like a C0.9 network. How-

ever, FCT+B network converges to aC0.5 network because of the restriction

on its average coverage imposed by the decreasing resources level through-

out the experiments. Such a restriction does not exist in the FCT network,

and so its average coverage keeps increasing, and hence the low total cov-

erage figure.

Task A, Task B, and Task C’s total coverages:

Generally, all individual graphs follow similar trends to these found in the

total active coverage. However, there are new observations that were not

apparent from the active coverage graph, which are addressed here. We

notice that the graph in figure 11.8 experiences a convex at mid range task
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demand, while in figures 11.9 and 11.10, a concave curve is observed. This

is because as task demand increases, nodes follow the prioritisation rules

dictated by the task-associated thresholds. These dictate that task A is the

most important, and so nodes has much higher probability of performing

this task, practically ignoring other tasks. This results in this concavity at

this task demand level. However, as the task demand continue to increase,

the task importance, or priority, becomes irrelevant. Similar number of

nodes tend to perform any of the tasks, which makes them converge to the

same total coverage. To illustrate such dynamics, we give a simple example.

If we say that humans need water, and good food to survive. When the

human body is dehydrated, it asks for water, and if it is hungry, it asks for

food. But if both are at shortage, it asks for both, but gives higher priority to

water since humans die quicker from lack of water than from lack of food.

However, under severe shortage of both water and food, the human body

does not particularly differentiate, knowing that the shortage on both fronts

is severe and could soon lead to system collapse.

Idle Node coverage:

Due to the high node redundancy in average discussed previously, total

coverage have similar levels for all networks at all task demand intensi-

ties. Remember that the increase of active nodes does not always result in

increase in the coverage, and this explains to a large extent what we are

observing in figure 11.11 but in terms of idle nodes rather than active ones.

11.3.4 Idle Nodes

Figures 11.12 to 11.17 show the idle node count vs time for different net-

works. Notice that when stimulus is very low, as in figure 11.12, different

networkshave almost the same number of idle nodes, because they all sense

an extremely low stimulus. At extremely high demand levels, as in figure

11.17, networks vary greatly in terms of the number of idle nodes, and this

is due to two factors:

1. Communication Frequency: communication frequency increases fer-

vently at high task demands, causing the active node count per neigh-
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Figure 11.12: Time vs Idle Nodes Count for different net-

works when S = 0.1
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Figure 11.13: Time vs Idle Nodes Count for different net-

works when S = 1
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Figure 11.14: Time vs Idle Nodes Count for different net-

works when S = 10
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Figure 11.15: Time vs Idle Nodes Count for different net-

works when S = 100

bourhood to reach a minimum. This increases the number of idle

nodes on average. This can be seen from the curves of the C0.9 and

FCT networks in figure 11.17.

2. Task Demand: as this goes extremely high, nodes race to perform

tasks which in the case of networks with low communication rate

causes a low idle node count, as in the curve of the C0.1 network

in figure 11.17. While in the high communication rate networks,

this race does not result in any significant change in the number of

active nodes per neighbourhood, hence the high idle node count in

the curves of C0.9 and FCT networks. Networks that face medium
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Figure 11.16: Time vs Idle Nodes Count for different net-

works when S = 1000
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Figure 11.17: Time vs Idle Nodes Count for different net-

works when S = 10000

intensity task demand and use medium communication rate would

behave somewhere between the two aforementioned extremes.

Note that the FCT+B networkbehaves differently at the beginning of the

the experiment to at the end of its lifetime. This is governed by the battery

levels within a node. As time goes by, batteries are gradually depleted,

and consequently the network responsiveness to task demands in terms

of communication rate decreases, and so the FCT+B network converges

to become a C0.1 network rather than the C0.9-like network it was in the

beginning of the experiment.

11.3.5 Dead Nodes

Figures 11.18 to 11.23 show the time line of the number of dead nodes vs

time for different stimulus levels and different networks. The following

observations can be drawn from these graphs:

Death Speed

At very low task demands, all networks die almost at the same time, and

with the same rate. This similarity is explained by the similarity of their

profiles at this task demand level, i.e. all idle, all not communicating

much. At very high task demand levels, the situation is very different.
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Figure 11.18: Time vs Dead Nodes Count for different

networks when S = 0.1
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Figure 11.19: Time vs Idle Nodes Count for different net-

works when S = 1
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Figure 11.20: Time vs Dead Nodes Count for different

networks when S = 10

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  50  100  150  200  250  300  350  400  450  500

N
od

e 
C

ou
nt

Time (time steps)

Dead Node Count vs Time

C 0.1
C 0.5
C 0.9
FCT

FCT+B

Figure 11.21: Time vs Dead Nodes Count for different

networks when S = 100

Each node dies at a different point in time from others. Networks C0.9

and FCT have the slowest death rate, but the first to start losing member

nodes. This is because these networks communicate and perform tasks

extensively over their lifetime. Network C0.1 is the last to die although it

performs tasks fervently because it rarely communicate, which results in

great energy saving that allows it to last longer. Networks C0.5 and FCT+B

are in the middle between the two previous death rates because they do

communication but are restricted in doing so by either the 0.5 constant

communication rate, or the battery component of the adaptive algorithm in

the case of the FCT+B.
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Figure 11.22: Time vs Dead Nodes Count for different

networks when S = 1000
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Figure 11.23: Time vs Dead Nodes Count for different

networks when S = 10000

At medium range task demand levels

Each network exhibits different death rate at this task demand level. This is

unlike at extremely high, or extremely low task demand levels. The fastest

death occurring in network C 0.9 reflecting the lack of adaptivity of this

network with respect to communication rate. The FCT network manages

to live longer because it perceives the medium-range stimulus as so, and

adapts its communication rate accordingly. These two are followed by

the C 0.5 and the FCT+B networks respectively. The FCT+B lives longer

again because it is double restricted in terms of communication by the task

demand, and the battery levels. Finally, the C0.1 network dies last. This is

because it communicates least, managing to survive longest as there is little

communication overhead.

Adaptivity

There are two adaptivity models working together in this chapter’s experi-

ments. These are the FRTmodel for action selection, and the FCT or FCT+B

models for communication decisions. FRT is used in all experiments, while

different communication schemes were used for different networks. At ex-

tremely low task demands, the adaptivity of the communication models are

marginally influential on the rate of death of nodes. While they are much

more obvious at higher task demand levels.
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11.3.6 Communication Frequency

Wewill address the total frequency of communication graphs first, then the

mean communication frequency graphs next.

Total Communication Frequency
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Figure 11.24: Stimulus vs Total Communication Count

for different networks
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Figure 11.25: Stimulus vs Mean Communication Count

for different networks

Following is explanations and discussion of some of the network’s be-

haviours and curves appearing in figure 11.24:

C0.9Network: this networkmaintains high total communication frequency

throughout the graph, i.e no matter how much task demand it is exposed

to. This is understandable and expected because it has a constant high

communication probability that is independent of any task demand. This

superiority in total communication changes only at extremely high task

stimulus rates because then the FCT network yields a communication prob-

ability that is higher than 90%. We notice also that though the C0.9 network

has highest communication frequency almost always, its value peaks at

somewhere in the medium range stimulus. This is due to the fact that there

are two opposing forces acting in this situation, and the balance is hit at

some middle value of both forces. These forces are: 1) the communication

frequency increase with the increase of task demand which works in the

favour of increasing the total communication frequency, 2) the second is
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the increase of the communication energy consumption by the task perfor-

mance activity, causing less communication frequency activity in total . At

some level of task demand, the communication frequency that happens on

average accumulates to reach the peak as the task performance does not

consume as much as it does at extremely high task demand levels.

The C0.1 network: in figure 11.24, this network exhibits low total com-

munication frequency at all task demand levels, except at very low task

demand levels. This is because communication in this network is governed

solely by the constant 0.1 communication probability. At extremely low task

demand levels, the FCT and FCT+B networks yield lower communication

rates than 0.1, hence the lower total frequency count.

FCT and FCT+B networks: these two adaptive networks change their

rate of communication with the task demand levels and energy available.

This explains the way their curves appear in figure 11.24. At low task de-

mand, the FCTnetwork reduces its communication rate to a very low levels,

similar to a C0.1 network. While at extremely high task demand levels, it

simply fervently let communication happen to reach an optimal coverage,

appearing like a C0.9 network. In the middle, between the two extremes, a

gradually ascending communication rate occurs with the gradual increase

in task demand levels. The FCT+B network behaves like an FCT or a C0.1

network at very low task demands. At high task demand levels, it behaves

like a C0.5 network, unlike FCT that behaves like a C0.9 network. This is

because it is capped by the diminishing energy levels from the battery. From

these observations, we can see that adaptive networks may offer a better

model of control, by exhibiting context awareness, which is beneficial in

many sensor network applications.

Mean Communication Frequency

In figure 11.25, we see the mean communication frequency, i.e. the average

instantaneous number of communication events per time step during an

experiment. As expected, the C0.1 network exhibits a generally low fre-
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quency of communication, while the C0.9 static network communication

model yields a generally high average communication frequency. The FCT

network behaves on average like a C0.1 network at low task demands, and

more like a C0.9 at high task demand levels. Finally, the FCT+B network

behaves like an FCT or a C0.1 network, while it behaves like a C0.5 network

at high task demand levels.

It is worth-noting that there are no peaks in this graph, because the trend

is only governed by the task demand, and not affected by the lifetime of

the network, unlike total communication frequency graphs. Remember in

the total communication frequency graph, the lifetime that results from the

task demand levels affected the total frequency count creating the peaks

apparent in figure 11.24.

11.4 Experiment Conclusions

From the result sections we can draw the following conclusions:

• The CC model is a good model for controlling communication if

communication cost can be predicted and does not impact network

longevity.

• The FCT model is a good model to control communication activities

within a sensor node for applications that does not need periodic

or frequent communication and for applications where the need for

communication depends on conditions within vicinities of nodes.

• The FCT+B model is a good model to control communication when

it is a costly activity and would be better avoided if resources are not

available.

11.5 Summary

In this chapter we investigated the effects of communication rate on the net-

work performance, lifetime, and general behaviour. We examined the inter-

dependencybetween taskperformance and communication frequency. Con-
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sequences of the communicationmodel on total coverage,average coverage,

node coverage, and network death rate were all discussed.

Communication energy consumption had dire consequences on the net-

work performance. The energy overhead reduced the energy available to

conduct other activities which sometimeswas acceptable, or inevitable, but

other times had a potentially unacceptable energy requirements.

There still remain many issues that could be investigated, such as what

if the communication protocol changes, or if the reception and transmission

had different energy footprints. Also the ratio of the energy consumption

rate of a task to that of the communication variationsmay be an issue to look

at. However, for reasons of time and space,weonly restrictedourdiscussion

to a small window that covers somehowaprofile of communication settings

that resemble those appearing in typical sensor networks.

Next chapter will present general discussion on all the results of the

dissertation. It will state the contributions of this thesis, and also identify

future directions of research. Some general conclusions will be drawn too.



Chapter 12

Conclusions and Future Work

12.1 Conclusions

Knowledge and information has revolutionised the way we conduct our

daily life today. Human hunger for information has provided great mo-

mentum towards monitoring and surveillance applications, i.e. gathering

and collecting information. Wireless sensor networks is a technology that

facilitate monitoring physical phenomena from a close proximity, with high

resolution, and in a distributed fashion.

Through studying the literature of wireless sensor networks, we found

that the main areas of concern for a sensor network can be classified into:

1) data management, 2) energy management, 3) communication man-

agement, and 4) task management . We also concluded that adaptivity

can be a very advantageous characteristic of sensor networks given the of-

ten resource-constrained nature of sensor nodes. We took an approach in

swarm intelligence research whereby micro-control system design leads to

the macro-control effect desired by the application. Therefore, we looked at

modifying the design of individual nodes to produce network-wide effects.

In order to address adaptivity within a sensor node, we produced a

generalised sensor node architecture. Then,we identified four fundamental

micro-control modules within that architecture. We proposed applying

threshold-based adaptive algorithms as micro-control means within each

of the fourmodules. Thesemoduleswere: 1)Action Selection , 2) Sampling,

190
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3) Task Scheduling, and 4) Communication .

We investigated the applicationof threshold-based controlmodelswithin

each of the aforementionedmodules. For eachmodule we adapted the FRT

model in [22] to work according to the system requirements. This resulted

in the following models explored:

• FRT: amodel to control action selection processes given a level of task

demand and a set of task-associated thresholds.

• FRT+B: a model to control action selection processes given a level of

task demand, a set of task-associated thresholds, and a resource level,

i.e. batteries, memory space, communication bandwidth, switching

overhead, etc.

• VRT: amodel to control action selection processes given a level of task

demand and a set of task-associated thresholds. In addition, it does

allow task specialisation if switching is a costly process.

• VRT+B: a model to control action selection processes given a level of

task demand, a set of task-associated thresholds, and a battery level.

In addition, it does allow task specialisation if switching is a costly

process.

• FDT: a model to control task discontinuation (re-scheduling) pro-

cesses given a level of task demand and a set of task-associated thresh-

olds.

• FDT+B: a model to control task discontinuation processes given a

level of task demand, a set of task-associated thresholds, and a re-

source level, i.e. batteries,memory space, communication bandwidth,

switching overhead, etc.

• FST: a model to control environment sampling given a level of task

demand and a set of task-associated thresholds.

• FST+B: a model to control environment sampling processes given

a level of task demand, a set of task-associated thresholds, and a re-

source level, i.e. batteries,memory space, communication bandwidth,

switching overhead, etc.
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• FCT: amodel to control communication processes given a level of task

demand and a set of task-associated thresholds.

• FCT+B: a model to control communication processes given a level of

task demand, a set of task-associated thresholds, and a resource level,

i.e. batteries, memory space, communication bandwidth, switching

overhead, etc.

We tested the adapted models, and their extensions, on a simulation

environment within a hypothetical scenario. The results showed that the

adaptive algorithmsmanaged to producemany desirable behaviours, lack-

ing in non-adaptive schemes, under various environmental conditions. For

example, networks reduced task switching to avoid the associated over-

head. Also nodes varied their activity according to the available resources

within the nodes, and the task demand levels the nodes were exposed

to. The proposed architecture showed great flexibility and scalability. The

modular design, and the distributed nature of the architecture allowed for

fault tolerance and ease of configuration.

We also identified what type of applications would be well-suited to

what model and under what general conditions. Notice that these were

general rules and the algorithm/models may need to be adapted and used

differently in each application or domain.

12.2 Contributions

Our contributions can be summarised as follows:

• The application of a threshold-based model on a micro-level to solve

the problem of action selection in sensor networks on a global-level.

• The extension of the threshold-based model to account for network

resources in making various decisions.

• Identifying the major points where adaptability can be beneficial if

introduced in a sensor node.
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• Providing a general node architecture where a sensor node is divided

into modules and layers that map to adaptability points and control

structures.

• Identifying the family of applications that may be well-suited to each

of the models proposed in this dissertation.

12.3 Future Work

Our work was only a step further in the state of the art in the field of

sensor networks. We tried to make the work as complete as possible,

however, some questions stayed open, and new problems require further

investigation. The following sections will discuss a few of the areas that we

think are worth pursuing in the future.

12.3.1 Model Tuning

The models we experimentedwith, extended, and investigated had a fairly

large number of parameters. The choice of the values of these parameters

was performed in this dissertation based on trial-and-error, heuristics, and

common sensemethods. It would beworth automating this process bymay

be simulating the network for sometime before deployment or at design

time. It even may be possible to find a way to allow these parameters to

change in realtime by base stations or sensor nodes.

12.3.2 Scalability and Extreme Conditions

Although the models we experimented with in this dissertation are de-

signed with scalability in mind, this has not been validated in all aspects.

For example, all our experiments, for simplicity sake, were conducted with

only three tasks. What if the number of tasks grow to hundreds?. Scala-

bility in terms of the number of factors contributing to the decision making

process needs to be tested as well. In this dissertation these were only

three factors: 1) User policies (minima and maxima), 2) task demands,

3) resources available . Other scalability issues can be also looked at in the

future.
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12.3.3 Time Effects

Many of the parameters of the models we studied in this dissertation could

be affected by time. For example the VRT specialisation level does not

change over time. This means that nodes that have specialised in per-

forming a particular task can never de-specialise over time, which may be

beneficial to some applications, but not in some others.

Also the time effect on the various coefficients like the sensitivity, learn-

ing, and forgetting coefficients. Even the control processes could have a

time dimension to be studied in the future.

12.3.4 Ontology

Mapping environmental phenomenon to a set of node variables was per-

formed in this dissertation based on a one-to-one relationship. For example,

the variables that represent the task stimulus were mapped to single phe-

nomenon, specifically apollution level in the environment. However, in real

world, the situation could be more complex, and more involved mapping

rules could be needed. For example, if a task was the general monitoring

of an individual’s health, and the task demand was represented by a single

variable that maps to the individual’s health. In this situation, a sensor

cannot sample a person’s health directly, but need instead to take a set of

readings and perform some calculations to come upwith an estimate of the

health variable value.

12.3.5 Equilibrium and Saturation

We discussed the phenomenon of hyper-coverage, or coverage saturation

occurring as a result of twomany active nodes per neighbourhood. The op-

timal point before this phenomenon start dominating a network behaviour

is called the equilibrium point. The issue that is worth looking at is how to

find this point. Also how to quantify the coverage saturation, how to detect

it, and how to control it.
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12.3.6 Real-world Application Validation

Our dissertation investigated the threshold-based models in hypothetical

scenarios and on a simulation framework, rather than on a real-world ap-

plication with a real-world sensor nodes. In the future our results should

be validated through a real scenario and a real hardware. The models may

have to then be optimised to run on the real platform specifics.

Applying the concepts, algorithms, andmodels produced in this disser-

tation in a real-world application will require adding domain knowledge

which is a research task on its own.

Finally, we re-iterate that adaptivity advantages sensor nodes,and insect

societies are a great inspiration source. Simple adaptive models are easy

to change, modify and observe, and therefore are predicted to be part of

future control methodologies in large-scale multi-agent systems.



Appendix A

Definition of Simulation and

Experiment Parameters and

Settings

A.1 Experimental Simulation Parameter Values and

Settings

Table A.1 defines the parameters and settings of all experiments and simu-

lations we perform in this dissertation. A table of the values given to each

of these will be provided in the specific experiment section.

Parameter Definition

Node Count, N0 The total number of nodes in the network initially,

i.e. at time t0 of an experiment. Nodes will at some

point run out of battery, and so there will be dead

nodes. These can never engage in any activity, be it

sensing, communication, task engagement, or even

discontinuation. Node Count at any moment after t0

will be called N.
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Parameter Definition

Neighbourhood Ra-

dius, r0

used to calculate the area of a node’s coverage, and

it is the same area within which a node can commu-

nicate in our experiments. These two ranges take the

same value following the idealised sensor network

model where nodes are separated by distance r with

each node covering the area within this radius from

its centre. The ideal network uses multi-hop commu-

nication schemes to transfer data because long-haul

communication is too expensive in terms of power.

As we need to minimise the communication power

consumption, we communicate the shortest distance,

and this is r. Any less communication range will iso-

late the node as it mostly will fail to communicate

with any peers, and any longer communication range

will mean consuming energy more than needed for

single-hop communication. This neighbourhood ra-

dius was set to 2 length units within the simulation

environments we used to achieve a high node cover-

age value. We adjusted the density of the nodes to

achieve sufficient connectivity.

Initial Energy Level, B0 number of Joules in a node’s battery at the beginning

of an experiment. Thiswill be the same for all network

nodes in our experiments.

Threshold Model,M can be one of the two models discussed in chapter 4,

namely, FRT or VRT models.

Sampling Resolution,

∆

The number of active nodes per square area units

required for a network to be perfectly reporting on

a phenomenon when the stimulus for this phenom-

ena, detected by the network nodes, equals the task-

threshold θ associated with this phenomenon.

continue on the next page ...
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Parameter Definition

Minimum Response

Rate, Pr−min

is the minimum rate at which an application associ-

ated with a phenomenon runs.

Maximum Response

Rate, Pr−max

is the maximum rate an application associated with

any task can run. This is, for example, set in the action

selection experiments to 1.0. This means that each

task-associated application can be run for 100% of the

time, provided the node is not performing another

task, and the node does not have a flat battery.

Minimum Sampling

Rate, Ps−min

is the minimum rate at which a node samples the

environment.

Maximum Sampling

Rate, Ps−max

is the maximum rate at which a node samples the

environment.

Minimum Discontinu-

ation Rate, Pd−min

The minimum rate at which a node discontinues per-

forming a task.

MaximumDiscontinu-

ation Rate, Pd−max

is the maximum rate at which a node discontinues

performing a task.

Minimum Communi-

cation Rate, Pc−min

is the minimum rate at which a node communicates

with peers within the neighbourhood radius, r0

Maximum Communi-

cation Rate, Pc−max

is the maximum rate at which a node communicates

with peers within the neighbourhood radius, r0

Minimum Threshold,

θmin

Theminimum valid value of a task-associated thresh-

old. This is useful in the simulations of theVRTmodel

where thresholds vary with time which could lead to

overspecialisation. In overspecialisation, nodes could

turn to be extremely sensitive to stimulus with re-

spect to a certain task because its threshold is almost 0.

Here, this value serves as a safeguard against overspe-

cialisation of nodes by capping the maximum value

the threshold could get to.
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Parameter Definition

Maximum Threshold,

θmax

Themaximumvalid value of a task-associated thresh-

old. This is useful in the simulations of the Variable

Response Threshold (VRT) model where thresholds

vary with time which could lead to overspecialisa-

tion. Overspecialisation means a node would never

respond to stimulus with respect to a certain task be-

cause its threshold is too high. Here, this value serves

as a safeguard against overspecialisation of nodes by

capping the maximum value the threshold could get

to.

Task A Threshold, θA the threshold associated with task A, or how much

variation in phenomenon A the node needs to ob-

serve before it runs TA. This is measured by the unit

of variation. The specific unit depends on the phe-

nomenonbeingmeasured, and the precision required.

For example, if wind speed is the phenomenon being

monitored, a threshold for an associated task could

be 50 meters per second. Therefore, if the wind speed

changes from 3m/s to 53m/s, the associated task will

be probably performed.

Task B Threshold, θB the threshold associated with task B, or how much

variation in phenomenonB the node needs to observe

before it runs TB.

Task C Threshold, θC the threshold associated with task C, or how much

variation in phenomenonC the node needs to observe

before it runs TC.

Task A Demand, SA the task demand detected by the node with respect to

task A.

Task B Demand, SB the task demand detected by the node with respect to

task B.

continue on the next page ...
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Parameter Definition

Task C Demand, SC the task demand detected by the node with respect to

task C.

Task AEnergy Cost EA: is the energy consumed when performing TA for one

time step.

Task B Energy Cost EB is the energy consumed when performing TB for one

time step.

Task C Energy Cost EC is the energy consumption incurred from performing

TC for one time step.

Switching Tasks En-

ergy Cost Esw

is the energy required to switch from any Task Ti to

any Task T j where i , j. This was set for all experi-

ments except those in 5.7 to the value 0 as these exper-

iments are not meant to investigate switching issues,

and a value of 0 would neutralise this variable.

Idle Energy Cost, Ei the energy consumption rate per time step of a totally

idle node, i.e. with no task-associated applications

running. This was set in the simulations to 0.001 en-

ergy units per time step. Note that the ratios between

the values in our simulation models were chosen to

be similar to the real world values from real com-

ponents. For example, idle energy consumption is

considerably lower (in micro joules) than processing

or sensing (usually inMilli joules) in real components

(see 4.1, 4.2, and 4.3)and wemade sure this is the case

in our model experiments.

Communication En-

ergy Cost, Ecomm

the average cost of communicating a message be-

tween two nodes within each others’ neighbourhood

radius.
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Parameter Definition

Sampling Energy Cost,

Es

The energy cost of making a sensor reading for any

phenomenon by the node. Sensing different phenom-

ena requires different power consumption rates, how-

ever, most sensor (see table 4.1), fall in close proximity

of each other’s power requirements, and to simplify

ourmodel, we assume sampling the environmentwill

cost the same regardless of the type of sensorused. We

have, as mentioned before, verified our results on J-

Sim high-fidelity simulation platform, and found out

that this does not have any significant impact on our

results and findings.

Forgetting Coefficient,

α

the increase in a task’s threshold when a node per-

forms a different task in the VRT model.

Learning Coefficient, β the decrease in a task’s threshold when a node per-

forms this task.

StimulusDecay Coeffi-

cient, d

the rate at which stimulus decays with time. Assum-

ing at time t0 a node detects a stimulus S0, then the

stimulus after ∆t = t − t0, where t ≥ t0, can be calcu-

lated by the equation:

S(∆t) = (d)∆t × S0
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Parameter Definition

Sensitivity Coefficient,

ρ

controls the sensitivity of a node towards a task-

associated phenomenon. After a node samples the

environment, it multiplies the data be this coefficient.

If the value of ρ is very high, then the node will per-

ceive any small stimulus as major, and will react. If

ρ≪ 1, then thenodewill not respondbut to extremely

high stimulus, according to the following equation:

Sperceived = Sread × ρ

Minimum Task De-

mand, Smin

is the minimum task demand level that can be seen

as valid. This works as a safeguard against erroneous

and too extreme readings. Again, too small valid val-

ues of this parametersmay complicate computational

complexity of a sensor node or actually fail to be han-

dled by the node’s processors.

Maximum Task De-

mand, Smax

is the maximum task demand level that can be ob-

servedby anynode. Thisworks as a safeguard against

erroneous and too extreme readings. This was set in

the simulations to the value 100000 as some float-

ing point calculations were intricate for values higher

than this one.

Constant Response

Probability, PR

is a constant representing the rate at which a task-

associated application would run if the node uses the

CR model. For example, if the minimum response

rate is 0.001, i.e. at least one evaluation happens every

1000 time steps, then the node will have a chance to

run by a probability of PR every 1000 time steps.

Constant Discontinua-

tion Probability, PD

is the minimum rate at which a task-associated appli-

cation is discontinued.
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Parameter Definition

Constant Sensing

Probability, PS

represents the rate of sensing phenomenon by a node.

Constant Communica-

tion Probability, Pcomm

represents the rate of communicating data to neigh-

bours. This is set in all simulations to a value of

0, i.e. there is no direct inter-node communication,

except in chapter 11. Eliminating communication

made it possible to assess how a network could per-

form collectively without any explicit communication

amongst its member nodes. In addition, this reduces

the complexity of investigating the effects of the re-

sponse models on the sensor network. It may be

very difficult to have a network without communi-

cation at all, however, the communication we target

here is that which is needed for coordination and ac-

tion selection. For example, this dissertation does

not tackle the data dissemination related communi-

cation. Nodes could have long-haul communication

equipment that is only used for data dissemination.

Nodes could be designed to perform data dissemi-

nation when their batteries allow, for example in the

summer if the nodes can charge through the sun light.

Another example is networks that send their data to

touring base stations.

Simulation Environ-

ment Area, A

a torus represented as a flat surface with an area of

10000 square area units (10x10 dimensions).

Side Length, L the simulation terrain we run our experiments within

is a torus visually represented as a two-dimensional

square with side length equal to L.
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Parameter Definition

Environmental Task

Demand Distribution,

Si(x, y, t)

this refers to how the task demand is distributed over

the environment area and varies across time. This ,

for the experiments of this chapter, is set to be uni-

form. This means that a node a at any point (xa, ya) on

the environment surface at time ta will detect a task

demand of S(xa, ya, ta) that equals the task demand

S(xb, yb, tb) detected by any node b at any other point

(xb, yb) at any time tb.

Resource Intensity, m this is a parameter that controls the intensity of the

responsiveness of a node towards a variation in avail-

able resources as seen in equation 4.4

Stimulus Intensity, n this is a parameter that controls the intensity of the

response to stimulus as seen in 4.1.

Stimulus-based Re-

sponse Equation,

Ψ(S, θ)

a function used to calculate the probability a nodewill

respond to a task with stimulus S and threshold S.

Resource-based Re-

sponse Equation,

Ψ(B,B0)

a function used to calculate the probability a node

will respond to a task when its battery has currently

B joules left, and had B0 at the outset.

Stimulus-based Dis-

continuation Equa-

tion,Ω(S, θ)

a function used to calculate the probability a nodewill

discontinue a task it is currently performing given

stimulus S and threshold θ.

Resource-based Dis-

continuation Equa-

tion,Ω(B,B0)

a function used to calculate the probability a nodewill

discontinue performing a task it is currently perform-

ing given a current battery level of B and an initial

battery level of B0.

Stimulus-based Sam-

pling Equation, Φ(S, θ)

a function used to calculate the probability a node

will perform a sampling operation of a phenomenon

given a stimulus S and threshold θ.
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Parameter Definition

Resource-based Sam-

pling Equation,

Φ(B,B0)

a function used to calculate the probability a nodewill

sample the environment with respect to task given a

current battery level of B, and a maximum battery

level of B0

Stimulus-based Com-

munication Equation,

ζ(S, θ)

a function used to calculate the probability a node

will perform communication within its neighbour-

hood radius with regard to a task given stimulus S

and threshold θ

Resource-based Com-

munication Equation,

ζ(B,B0)

a function used to calculate the probability a nodewill

communicate with its peers regarding a task given its

current battery level B and the initial battery level of

B0

Table A.1: Simulation Model Parameters
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Action Selection Simulations

B.1 Experimental Simulation Parameter Values and

Settings for the CR, FRT, and FRT+B Experiment

Sets

The following settings are specific to the experiments in this section:

Parameter Value for CR Value for FRT Value for FRT+B

N0 (nodes) 3000 3000 3000

r0 (length units) 2 2 2

B0 (power units) 5000 5000 5000

M CR FRT FRT+B

∆ (node/square

area units)

1 1 1

Pr−max 1.0 1.0 1.0

Pr−min 0.01 0.01 0.01

Ps−min 0.03 0.03 0.03

Ps−max 1.0 1.0 1.0

Pc−min 0.0 0.0 0.0

Pc−max 1.0 1.0 1.0

Pd−min 0.0 0.0 0.0
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Parameter Value for CR Value for FRT Value for FRT+B

Pd−max 1.0 1.0 1.0

θmin (phe-

nomenon varia-

tion units)

100.0 100.0 100.0

θmax (phe-

nomenon varia-

tion units)

10000.0 10000.0 10000.0

θA (phenomenon

variation units)

100.0 100.0 100.0

θB (phenomenon

variation units)

300.0 300.0 300.0

θC (phenomenon

variation units)

1000.0 1000.0 1000.0

SA (phenomenon

variation units)

S(x, y, t) S(x, y, t) S(x, y, t)

SB (phenomenon

variation units)

S(x, y, t) S(x, y, t) S(x, y, t)

SC (phenomenon

variation units)

S(x, y, t) S(x, y, t) S(x, y, t)

EA (power units) 20.0 20.0 20.0

EB (power units) 20.0 20.0 20.0

EC (power units) 20.0 20.0 20.0

Esw (power units) 0.0 0.0 0.0

Ei (power units) 0.001 0.001 0.001

Ecomm (power

units)

10.0 10.0 10.0

α (phenomenon

variation units)

0 0 0

β (phenomenon

variation units)

0 0 0
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Parameter Value for CR Value for FRT Value for FRT+B

d 0.85 0.85 0.85

ρ 1.0 1.0 1.0

Smin (phe-

nomenon varia-

tion units)

0.0 0.0 0.0

Smax (phe-

nomenon varia-

tion units)

10000.0 10000.0 10000.0

PR Ψ(S, θ) Ψ(S, θ) Ψ(S, θ) ×Ψ(B,B0)

PD Ω(S, θ) Ω(S, θ) Ω(S, θ)

PS Φ(S, θ) Φ(S, θ) Φ(S, θ)

Pcomm ζ(S, θ) ζ(S, θ) ζ(S, θ)

A (square area

units)

10000 (100x100) 10000 (100x100) 10000 (100x100)

L (length units) 100 100 100

S(x, y, t) 0.1, 1.0 , 10.0,

100.0, 1000.0,

10000.0

0.1, 1.0 , 10.0,

100.0, 1000.0,

10000.0

0.1, 1.0 , 10.0,

100.0, 1000.0,

10000.0

m 1 1 1

n 1 1 1

Ψ(S, θ) 0.0, 0.1, 0.3, 0.5,

0.7, 0.9, 1.0

Sn

Sn+θn
Sn

Sn+θn

Ψ(B,B0) unused unused ( B
B0
)m

Ω(S, θ) 0.5 0.5 0.5

Ω(B,B0) unused unused unused

Φ(S, θ) 0.5 0.5 0.5

Φ(B,B0) unused unused unused

ζ(S, θ) 0.0 0.0 0.0

ζ(B,B0) unused unused unused
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B.2 Experimental Simulation Parameter Values and

Settings for theCR, FRT, andFRT+B,VRT,VRT+B

Experiment Sets

Table B.2 shows the settings of the two networks simulated in this section:

Parameter Value for

CR

Value for

FRT

Value for

FRT+B

Value for

VRT

Value for

VRT+B

N0 (nodes) 3000 3000 3000 3000 3000

r0 (length

units)

2 2 2 2 2

B0 (power

units)

5000 5000 5000 5000 5000

M CR FRT FRT+B VRT VRT+B

∆

(node/square

area units)

1 1 1 1 1

Pr−max 1.0 1.0 1.0 1.0 1.0

Pr−min 0.01 0.01 0.01 0.01 0.01

Ps−min 0.03 0.03 0.03 0.03 0.03

Ps−max 1.0 1.0 1.0 1.0 1.0

Pc−min 0.0 0.0 0.0 0.0 0.0

Pc−max 1.0 1.0 1.0 1.0 1.0

Pd−min 0.0 0.0 0.0 0.0 0.0

Pd−max 1.0 1.0 1.0 1.0 1.0

θmin (phe-

nomenon

variation

units)

100.0 100.0 100.0 100.0 100.0
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Parameter Value for

CR

Value for

FRT

Value for

FRT+B

Value for

VRT

Value for

VRT+B

θmax (phe-

nomenon

variation

units)

10000.0 10000.0 10000.0 10000.0 10000.0

θA (phe-

nomenon

variation

units)

100.0 100.0 100.0 100.0 100.0

θB (phe-

nomenon

variation

units)

300.0 300.0 300.0 300.0 300.0

θC (phe-

nomenon

variation

units)

1000.0 1000.0 1000.0 1000.0 1000.0

SA (phe-

nomenon

variation

units)

S(x, y, t) S(x, y, t) S(x, y, t) S(x, y, t) S(x, y, t)

SB (phe-

nomenon

variation

units)

S(x, y, t) S(x, y, t) S(x, y, t) S(x, y, t) S(x, y, t)

SC (phe-

nomenon

variation

units)

S(x, y, t) S(x, y, t) S(x, y, t) S(x, y, t) S(x, y, t)
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Parameter Value for

CR

Value for

FRT

Value for

FRT+B

Value for

VRT

Value for

VRT+B

EA (power

units)

20.0 20.0 20.0 20.0 20.0

EB (power

units)

20.0 20.0 20.0 20.0 20.0

EC (power

units)

20.0 20.0 20.0 20.0 20.0

Esw (power

units)

40.0 40.0 40.0 40.0 40.0

Ei (power

units)

0.001 0.001 0.001 0.001 0.001

Ecomm

(power

units)

10.0 10.0 10.0 10.0 10.0

α (phe-

nomenon

variation

units)

100 100 100 100 100

β (phe-

nomenon

variation

units)

100 100 100 100 100

d 0.85 0.85 0.85 0.85 0.85

ρ 1.0 1.0 1.0 1.0 1.0

Smin (phe-

nomenon

variation

units)

0.0 0.0 0.0 0.0 0.0
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Parameter Value for

CR

Value for

FRT

Value for

FRT+B

Value for

VRT

Value for

VRT+B

Smax (phe-

nomenon

variation

units)

10000.0 10000.0 10000.0 10000.0 10000.0

PR Ψ(S, θ) Ψ(S, θ) Ψ(S, θ) Ψ(S, θ) Ψ(S, θ)

PD Ω(S, θ) Ω(S, θ) Ω(S, θ) Ω(S, θ) Ω(S, θ)

PS Φ(S, θ) Φ(S, θ) Φ(S, θ) Φ(S, θ) Φ(S, θ)

Pcomm ζ(S, θ) ζ(S, θ) ζ(S, θ) ζ(S, θ) ζ(S, θ)

A (square

area units)

10000

(100x100)

10000

(100x100)

10000

(100x100)

10000

(100x100)

10000

(100x100)

L (length

units)

100 100 100 100 100

S(x, y, t) 0.1, 1.0 ,

10.0, 100.0,

1000.0,

10000.0

0.1, 1.0 ,

10.0, 100.0,

1000.0,

10000.0

0.1, 1.0 ,

10.0, 100.0,

1000.0,

10000.0

0.1, 1.0 ,

10.0, 100.0,

1000.0,

10000.0

0.1, 1.0 ,

10.0, 100.0,

1000.0,

10000.0

m 1 1 1 1 1

n 1 1 1 1 1

Ψ(S, θ) 0.0, 0.1, 0.3,

0.5, 0.7, 0.9,

1.0

Sn

Sn+θn
Sn

Sn+θn
Sn

Sn+θn
Sn

Sn+θn

Ψ(B,B0) unused unused ( B
B0
)m unused ( B

B0
)m

Ω(S, θ) 0.5 0.5 0.5 0.5 0.5

Ω(B,B0) unused unused unused unused unused

Φ(S, θ) 0.5 0.5 0.5 0.5 0.5

Φ(B,B0) unused unused unused unused unused

ζ(S, θ) 0.0 0.0 0.0 0.0 0.0

ζ(B,B0) unused unused unused unused unused
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Discontinuation Simulations

C.1 Experimental Simulation Parameter Values and

Settings

Table C.1 provides the settings of the experiments in this section.

Parameter Value for CD Value for FDT Value for

FDT+B

N0 (nodes) 3000 3000 3000

r0 (length units) 2 2 2

B0 (power units) 5000 5000 5000

M CD FDT FDT+B

∆ (node/square area

units)

1 1 1

Pr−max 1.0 1.0 1.0

Pr−min 0.01 0.01 0.01

Ps−min 0.03 0.03 0.03

Ps−max 1.0 1.0 1.0

Pc−min 0.0 0.0 0.0

Pc−max 1.0 1.0 1.0

Pd−min 0.0 0.0 0.0
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Parameter Value for CD Value for FDT Value for

FDT+B

Pd−max 1.0 1.0 1.0

θmin (phenomenon

variation units)

100.0 100.0 100.0

θmax (phenomenon

variation units)

10000.0 10000.0 10000.0

θA (phenomenon varia-

tion units)

100.0 100.0 100.0

θB (phenomenon varia-

tion units)

300.0 300.0 300.0

θC (phenomenon varia-

tion units)

1000.0 1000.0 1000.0

SA (phenomenon varia-

tion units)

S(x, y, t) S(x, y, t) S(x, y, t)

SB (phenomenon varia-

tion units)

S(x, y, t) S(x, y, t) S(x, y, t)

SC (phenomenon varia-

tion units)

S(x, y, t) S(x, y, t) S(x, y, t)

EA (power units) 20.0 20.0 20.0

EB (power units) 20.0 20.0 20.0

EC (power units) 20.0 20.0 20.0

Esw (power units) 0.0 0.0 0.0

Ei (power units) 0.001 0.001 0.001

Ecomm (power units) 10.0 10.0 10.0

α (phenomenon varia-

tion units)

100 100 100

β (phenomenon varia-

tion units)

100 100 100

d 0.7 0.7 0.7

ρ 1.0 1.0 1.0
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Parameter Value for CD Value for FDT Value for

FDT+B

Smin (phenomenonvari-

ation units)

0.0 0.0 0.0

Smax (phenomenon

variation units)

10000.0 10000.0 10000.0

PR Ψ(S, θ) Ψ(S, θ) Ψ(S, θ)

PD Ω(S, θ) Ω(S, θ) Ω(S, θ)

PS Φ(S, θ) Φ(S, θ) Φ(S, θ)

Pcomm ζ(S, θ) ζ(S, θ) ζ(S, θ)

A (square area units) 10000

(100x100)

10000

(100x100)

10000

(100x100)

L (length units) 100 100 100

S(x, y, t) 0.1, 1.0 , 10.0,

100.0, 1000.0,

10000.0

0.1, 1.0 , 10.0,

100.0, 1000.0,

10000.0

0.1, 1.0 , 10.0,

100.0, 1000.0,

10000.0

m 1 1 1

n 1 1 1

Ψ(S, θ) 0.5 0.5 0.5

Ψ(B,B0) unused unused unused

Ω(S, θ) 0.0, 0.1, 0.3,

0.5, 0.7, 0.9, 1.0

1 − Sn

Sn+θn 1 − Sn

Sn+θn

Ω(B,B0) unused unused 1 − ( B
B0
)m

Φ(S, θ) 0.5 0.5 0.5

Φ(B,B0) unused unused unused

ζ(S, θ) 0.0 0.0 0.0

ζ(B,B0) unused unused unused

Table C.1: CD, FDT, and FDT+B Parameters



Appendix D

Sampling Simulations

D.1 Experimental Simulation Parameter Values and

Settings

Table D.1 provides the settings of the experiments in this section.

Parameter Value for CS Value for FST Value for

FST+B

N0 (nodes) 3000 3000 3000

r0 (length units) 2 2 2

B0 (power units) 5000 5000 5000

M CS FST FST+B

∆ (node/square area

units)

1 1 1

Pr−max 1.0 1.0 1.0

Pr−min 0.01 0.01 0.01

Ps−min 0.03 0.03 0.03

Ps−max 1.0 1.0 1.0

Pc−min 0.0 0.0 0.0

Pc−max 1.0 1.0 1.0

Pd−min 0.0 0.0 0.0

continue on the next page ...

Table D.1: CS, FST, and FST+B Parameters
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Parameter Value for CS Value for FST Value for

FST+B

Pd−max 1.0 1.0 1.0

θmin (phenomenon

variation units)

100.0 100.0 100.0

θmax (phenomenon

variation units)

10000.0 10000.0 10000.0

θA (phenomenon varia-

tion units)

100.0 100.0 100.0

θB (phenomenon varia-

tion units)

300.0 300.0 300.0

θC (phenomenon varia-

tion units)

1000.0 1000.0 1000.0

SA (phenomenon varia-

tion units)

S(x, y, t) S(x, y, t) S(x, y, t)

SB (phenomenon varia-

tion units)

S(x, y, t) S(x, y, t) S(x, y, t)

SC (phenomenon varia-

tion units)

S(x, y, t) S(x, y, t) S(x, y, t)

EA (power units) 20.0 20.0 20.0

EB (power units) 20.0 20.0 20.0

EC (power units) 20.0 20.0 20.0

Esw (power units) 0.0 0.0 0.0

Ei (power units) 0.001 0.001 0.001

Ecomm (power units) 10.0 10.0 10.0

α (phenomenon varia-

tion units)

100 100 100

β (phenomenon varia-

tion units)

100 100 100

d 0.85 0.85 0.85

ρ 1.0 1.0 1.0

continue on the next page ...
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Parameter Value for CS Value for FST Value for

FST+B

Smin (phenomenonvari-

ation units)

0.0 0.0 0.0

Smax (phenomenon

variation units)

10000.0 10000.0 10000.0

PR Ψ(S, θ) Ψ(S, θ) Ψ(S, θ)

PD Ω(S, θ) Ω(S, θ) Ω(S, θ)

PS Φ(S, θ) Φ(S, θ) Φ(S, θ)

Pcomm ζ(S, θ) ζ(S, θ) ζ(S, θ)

A (square area units) 10000

(100x100)

10000

(100x100)

10000

(100x100)

L (length units) 100 100 100

S(x, y, t) 0.1, 1.0 , 10.0,

100.0, 1000.0,

10000.0

0.1, 1.0 , 10.0,

100.0, 1000.0,

10000.0

0.1, 1.0 , 10.0,

100.0, 1000.0,

10000.0

m 1 1 1

n 1 1 1

Ψ(S, θ) Sn

Sn+θn
Sn

Sn+θn
Sn

Sn+θn

Ψ(B,B0) unused unused unused

Ω(S, θ) 0.5 0.5 0.5

Ω(B,B0) unused unused unused

Φ(S, θ) 0.1, 0.5, 0.9 Sn

Sn+θn
Sn

Sn+θn

Φ(B,B0) unused unused ( B
B0
)m

ζ(S, θ) 0.0 0.0 0.0

ζ(B,B0) unused unused unused

Table D.1: CS, FST, and FST+B Parameters



Appendix E

Communication Simulations

E.1 ExperimentalSimulationParameterValues andSet-

tings

Table E.1 provides the settings of the experiments in this section.

Parameter Value for CC Value for FCT Value for

FCT+B

N0 (nodes) 3000 3000 3000

r0 (length units) 2 2 2

B0 (power units) 5000 5000 5000

M CC FCT FCT+B

∆ (node/square area

units)

1 1 1

Pr−max 1.0 1.0 1.0

Pr−min 0.01 0.01 0.01

Ps−min 0.03 0.03 0.03

Ps−max 1.0 1.0 1.0

Pc−min 0.0 0.0 0.0

Pc−max 1.0 1.0 1.0

Pd−min 0.0 0.0 0.0

continue on the next page ...
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Parameter Value for CC Value for FCT Value for

FCT+B

Pd−max 1.0 1.0 1.0

θmin (phenomenon

variation units)

100.0 100.0 100.0

θmax (phenomenon

variation units)

10000.0 10000.0 10000.0

θA (phenomenon varia-

tion units)

100.0 100.0 100.0

θB (phenomenon varia-

tion units)

300.0 300.0 300.0

θC (phenomenon varia-

tion units)

1000.0 1000.0 1000.0

SA (phenomenon varia-

tion units)

S(x, y, t) S(x, y, t) S(x, y, t)

SB (phenomenon varia-

tion units)

S(x, y, t) S(x, y, t) S(x, y, t)

SC (phenomenon varia-

tion units)

S(x, y, t) S(x, y, t) S(x, y, t)

EA (power units) 20.0 20.0 20.0

EB (power units) 20.0 20.0 20.0

EC (power units) 20.0 20.0 20.0

Esw (power units) 0.0 0.0 0.0

Ei (power units) 0.001 0.001 0.001

Ecomm (power units) 10.0 10.0 10.0

α (phenomenon varia-

tion units)

100 100 100

β (phenomenon varia-

tion units)

100 100 100

d 0.85 0.85 0.85

ρ 1.0 1.0 1.0

continue on the next page ...
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Parameter Value for CC Value for FCT Value for

FCT+B

Smin (phenomenonvari-

ation units)

0.0 0.0 0.0

Smax (phenomenon

variation units)

10000.0 10000.0 10000.0

PR Ψ(S, θ) Ψ(S, θ) Ψ(S, θ)

PD Ω(S, θ) Ω(S, θ) Ω(S, θ)

PS Φ(S, θ) Φ(S, θ) Φ(S, θ)

Pcomm ζ(S, θ) ζ(S, θ) ζ(S, θ)

A (square area units) 10000

(100x100)

10000

(100x100)

10000

(100x100)

L (length units) 100 100 100

S(x, y, t) 0.1, 1.0 , 10.0,

100.0, 1000.0,

10000.0

0.1, 1.0 , 10.0,

100.0, 1000.0,

10000.0

0.1, 1.0 , 10.0,

100.0, 1000.0,

10000.0

m 1 1 1

n 1 1 1

Ψ(S, θ) Sn

Sn+θn
Sn

Sn+θn
Sn

Sn+θn

Ψ(B,B0) unused unused unused

Ω(S, θ) 0.5 0.5 0.5

Ω(B,B0) unused unused unused

Φ(S, θ) 0.5 0.5 0.5

Φ(B,B0) unused unused unused

ζ(S, θ) 0.1, 0.5, 0.9 Sn

Sn+θn
Sn

Sn+θn

ζ(B,B0) unused unused 1 − ( B
B0
)m

Table E.1: CC, FCT, and FCT+B Parameters
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[104] Alexander Kröller, Dennis Pfisterer, Carsten Buschmann, Sándor P.

Fekete, and Stefan Fischer. Shawn: A new approach to simulating

wireless sensor networks. In Proceedings of the 3rd Symposium on De-

sign, Analysis, and Simulation of Distributed Systems (DASD’05), pages

117–124, 2005.

[105] S. Kumar, T.H. Lai, and A. Arora. Barrier coverage with wireless

sensors. In Proceedings of the 11th Annual International Conference on

Mobile Computing and Networking (MoBiCom 05), pages 284–298, 2005.

[106] MauriKuorilehto,MarkoHnnikinen, andTimoD.Hmlinen. A survey

of application distribution in wireless sensor networks. EURASIP

Journal on Wireless Communications and Networking, 2005(5):774–788,

2005. doi:10.1155/WCN.2005.774.

[107] Thomas H. Labella, Marco Dorigo, and Jean-Louis Deneubourg. Self-

organised task allocation in a group of robots. Proceedings of the

7th International Symposium on Distributed Autonomous Robotic

Systems (DARS04), Toulouse, France, June 23–25 2004. R. Alami.



BIBLIOGRAPHY 236

[108] M. Laibowitz and J. A. Paradiso. Parasitic mobility for pervasive

sensor networks. In H. W. Gellersen, R. Want, and A. Schmidt, edi-

tors, Proceedings of the Third International Conference, PERVASIVE 2005,

pages 255–278, Munich, Germany, May 2005. Springer-Verlag.

[109] Olaf Landsiedel, KlausWehrle, and StefanGtz. Accurate prediction of

power consumption in sensor networks. In Proceedings of The Second

IEEE Workshop on Embedded Networked Sensors (EmNetS-II), Sydney,

Australia, May 2005.

[110] C. G. Langton. Artificial life. In Artificial Life: Proceedings of the Inter-

disciplinary Workshop on the Synthesis and Simulation of Living Systems,

Santa Fe Institute Studies in the Sciences of Complexity, pages pages

1–47, Los Alamos, NM, September 1987. Addison-Wesley.

[111] Loukas Lazos, Radha Poovendran, and James A. Ritcey. On the de-

ployment of heterogeneous sensor networks for detection of mobile

targets. In Proceedings of the 5th International Symposium on Modeling

and Optimization in Mobile, Ad Hoc and Wireless Networks and Work-

shops, 2007, pages 1–10, Limassol, Cyprus, April 2007.

[112] Uichin Lee, Biao Zhou, Mario Gerla, Eugenio Magistretti, Paolo

Bellavista, and Antonio Corradi. Mobeyes: smart mobs for urban

monitoring with a vehicular sensor network. Wireless Communica-

tions, IEEE (also IEEE Personal Communications), 13(5):52–57, October

2006.

[113] C. Li and K. Sycara. A stable and efficient scheme for task allocation

via agent coalition formation. Algrithms for Cooperative Systems, World

Scientific, 2004.

[114] Chengfa Li, Mao Ye, Guihai Chen, and Jie Wu. An energy-efficient

unequal clustering mechanism for wireless sensor networks. In Proc.

of the 2nd IEEE International Conference on Mobile Ad-hoc and Sensor

Systems (MASS). IEEE, November 2005.

[115] Yingshu Li and My T Thai. Wireless Sensor Networks and Applications.

Signals and Communication Technology. Springer, 2008.



BIBLIOGRAPHY 237

[116] Wei Liang, Haibin Yu, Peng Zeng, and Chang Che. Besm: A balanc-

ing energy-aware sensor management protocol for wireless sensor

network. International Journal of Information Technology, 12(4), 2006.

[117] Stehpanie Lindsay, C. S. Raghavendra, and Krishna M. Sivalingam.

Data gathering in sensor networks using the energy delay metric. In

IPDPS ’01: Proceedings of the 15th International Parallel & Distributed

Processing Symposium, page 188, Washington, DC, USA, 2001. IEEE

Computer Society.

[118] B. Liu andD. Towsley. On the coverage anddetectability of large-scale

wireless sensor networks. In Proc. of the Modeling and Optimization in

Mobile, Ad Hoc and Wireless Networks Conference (WiOpt). (2003), 2003.

[119] Donggang Liu and Peng Ning. Improving key predistribution with

deployment knowledge in static sensor networks. ACM Trans. Sen.

Netw., 1(2):204–239, 2005.

[120] Zhengjun Liu, Aixia Liu, Changyao Wang, and Zheng Niu. Evolv-

ing neural network using real coded genetic algorithm (ga) for mul-

tispectral image classification. Future Generation Computer Systems,

20(7):1119–1129, October 2004.

[121] Kian Hsiang Low, Wee Kheng Leow, and Marcelo H. Ang, Jr. Task

allocation via self-organizing swarm coalitions in distributed mobile

sensor network. In Proceedings of the 19th National Conference on Arti-

ficial Intelligence (AAAI-04), pages 28–33, San Jose, CA, July 2004.

[122] Kian Hsiang Low, Wee Kheng Leow, and Jr. Marcelo H. Ang. Au-

tonomic mobile sensor network with self-coordinated task allocation

and execution. IEEE Transactions on Systems, Man, and Cybernetics -

Part C: Applications andReviews, (Special Issue on EngineeringAutonomic

Systems), March 2005.

[123] Chuck Lutz. Informing joint c2 system-of-systems engineering with

agent-based modeling: An analysis and case study. In Proceedings

of 12th ICCRTS, Adapting C2 to the 21st Century. Martin Loker Heed,

Martin Loker Heed, 2007.



BIBLIOGRAPHY 238

[124] Ciaran Lynch and Fergus O’Reilly. Processor choice for wireless sen-

sor networks. In Proceedings of the Workshop on Real-World Wireless

Sensor Networks REALWSN’05, Sockholm, Sweden, June 2005.

[125] Yajie Ma, Mark Richards, Moustafa Ghanem, Yike Guo, and John

Hassard. Air pollution monitoring and mining based on sensor grid

in london. Sensors 2008, 8:3601–3623.

[126] GeoffreyMainland, David C. Parkes, andMatt Welsh. Decentralized,

adaptive resource allocation for sensor networks. In NSDI’05: Pro-

ceedings of the 2nd conference on Symposium onNetworked SystemsDesign

& Implementation, pages 315–328, Berkeley, CA, USA, 2005. USENIX

Association.

[127] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk,

and JohnAnderson. Wireless sensor networks for habitat monitoring.

In WSNA ’02: Proceedings of the 1st ACM international workshop on

Wireless sensor networks and applications, pages 88–97, New York, NY,

USA, 2002. ACM.

[128] K. Martinez, A. Riddoch, J. Hart, and R. Ong. A Sensor Network for

Glaciers, chapter 9, pages 125–138. Springer, 2006.

[129] C.Mascolo, L. Capra, andW.Emmerich.Mobile ComputingMiddleware

(A Survey), volume 2497 of Advanced Lectures on Networking. Lecture

Notes in Computer Science. Springer Verlag, Pisa, Italy, 2002.

[130] Maja J. Mataric and Gaurav S. Sukhatme. Task-allocation and coor-

dination of multiple robots for planetary exploration. In Proceedings

of the 10th International Conference on Advanced Robotics (ICAR), pages

61–70, Buda, Hungary, August 2001.

[131] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M.B. Srivastava.

Coverage problems in wireless ad-hoc sensor networks. In IEEE

Infocom 2001, volume 3, pages 1380–1387. IEEE, April 2001.



BIBLIOGRAPHY 239

[132] C. Melhuish, J. Welsby, and C. Edwards. Using templates for defen-

sive wall building with autonomous mobile ant-like robots. Towards

Intelligent Mobile Robots (TIMR), Bristol, UK, 1999.

[133] V. Mhatre and C. Rosenberg. Energy and cost optimizations in wire-

less sensor networks: A survey. in the 25th Anniversary of GERAD,

Kluwer, September 2004.

[134] Melanie Mitchell. An Introduction to Genetic Algorithms. The MIT

Press, 1998.

[135] Pragnesh Jay Modi, Wei-Min Shen, and Milind Tambe. Distributed

resource allocation: Formalization, complexity results and mappings

to distributed csps. In Proceedings of Seventh International Conference

on Principles and Practice of Constraint Programming, (CP) 2001, 2001.

[136] J.M. Molina-Garcia-Pardo, A. Martinez-Sala, M.V. Bueno-Delgado,

E. Egea-Lopez, L. Juan-Llacer, and J. Garca-Haro. Channel model

at 868 mhz for wireless sensor networks in outdoor scenarios. In

International Workshop on Wireless Ad Hoc Netowrks, IWWAN 2005,

London, May 2005.

[137] A. Molnar, B. Lu, S. Lanzisera, B.W. Cook, and K.S.J. Pister. An ultra-

low power 900 mhz rf transceiver for wireless sensor networks. In

Proceedings of the Custom Integrated Circuits Conference, 2004, pages

401–404. IEEE, October 2004.

[138] Henk Muller and Cliff Randell. An event-driven sensor architecture

for low power wearables. In Proceedings of ICSE 2000, Workshop on

Software Engineering for Wearable and Pervasive Computing, pages 39–

41, Limerick, Ireland, June 2000. ACM/IEEE.

[139] Xiaoguang Niu, Xi Huang, Ze Zhao, Yuhe Zhang, Changcheng

Huang, and Li Cui. The design and evaluation of a wireless sen-

sor network for mine safety monitoring. In Global Telecommunications

Conference, 2007. GLOBECOM ’07, pages 1291–1295, Washington, DC,

USA, November 2007. Chinese Academy of Science, Beijing, IEEE.



BIBLIOGRAPHY 240

[140] Moslem Noori and Masoud Ardakani. A probability model for life-

time of wireless sensor networks. CoRR, abs/0710.0020, 2007.

[141] Nesrine Ouferhat and Abdelhamid Mellouck. Qos dynamic routing

for wireless sensor networks. In Q2SWinet ’06: Proceedings of the 2nd

ACM international workshop on Quality of service & security for wireless

and mobile networks, pages 45–50, New York, NY, USA, 2006. ACM.

[142] ElMoustaphaOuld-Ahmed-Vall, George F. Riley, andBonnie S.Heck.

Large-scale sensor networks simulation with gtsnets. Simulation,

83(3):273–290, 2007.

[143] Chulsung Park, K. Lahiri, and A. Raghunathan. Battery discharge

characteristics of wireless sensor nodes: an experimental analysis. In

Second Annual IEEE Communications Society Conference on Sensor and

Ad Hoc Communications and Networks, 2005, IEEE SECON 2005, pages

430–440, September 2005.

[144] Lynne E. Parker. Alliance: An architecture for fault tolerant mul-

tirobot cooperation. IEEE TRANSACTIONS ON ROBOTICS AND

AUTOMATION, 14(2):220–240, April 1998.

[145] Adrian Perrig, John Stankovic, and David Wagner. Security in wire-

less sensor networks. Commun. ACM, 47(6):53–57, 2004.

[146] Dario Pompili, Tommaso Melodia, and Ian F. Akyildiz. Deploy-

ment analysis in underwater acoustic wireless sensor networks. In

WUWNet ’06: Proceedings of the 1st ACM international workshop on

Underwater networks, pages 48–55, New York, NY, USA, 2006. ACM.

[147] Ravishankar Rao, Sarma Vrudhula, and Daler N. Rakhmatov. Battery

modeling for energy-aware system design. Computer, 36(12):77–87,

2003.

[148] S. Ray, R.Ungrangsi, F.D. Pellegrini,A. Trachtenberg, andD. Starobin-

ski. Robust location detection in emergency sensor networks. In

Twenty-Second Annual Joint Conference of the IEEE Computer and Com-

munications Societies, INFOCOM 2003, volume 2, April 2003.



BIBLIOGRAPHY 241

[149] J. Reich and E. Sklar. Toward automatic reconfiguration of robot-

sensor networks for urban search and rescue. In First International

Workshop on: Agent Technology for Disaster Management, pages 18–23,

Hakodate, Japan, May 2006.

[150] Frank Reichenbacha, Matthias Kochb, and Dirk Timmermanna.

Closer to reality: Simulating localization algorithms considering de-

fective observations in wireless sensor networks. In PROCEEDINGS

OF THE 3rd WORKSHOP ON POSITIONING, NAVIGATION AND

COMMUNICATION (WPNC06).

[151] Sokwoo Rhee, Deva Seetharam, and Sheng Liu. Techniques for min-

imizing power consumption in low-data rate wireless sensor net-

works. In Proceedings of the IEEE Wireless Communications and Net-

working Conference (WCNC04), March 2004.

[152] I.W. Marshall ; C. Roadknight. Adaptive management of an active

service network. BT Technology Journal, Springer, 18(4):78–84, October

2000.

[153] K. Romer and F. Mattern. The design space of wireless sensor net-

works. Wireless Communications, IEEE, 11(6):54–61, December 2004.

[154] L Sacks, M Britton, I Wokoma, A Marbini, T Adebutu, I Marshall,

C Roadknight, J Tateson, D Robinson, and A G Velazquez. The De-

velopment of a Robust, Autonomous Sensor Network Platform for

Environmental Monitoring. In IoP Sensors and their Applications (S&A

XII), University of Limerick, Ireland, 2003.

[155] Andreas Savvides, Sung Park, and Mani B. Srivastava. On modeling

networks of wireless microsensors. In SIGMETRICS ’01: Proceedings

of the 2001 ACM SIGMETRICS international conference on Measurement

and modeling of computer systems, pages 318–319, New York, NY, USA,

2001. ACM.

[156] D. Schmidt, M. Kramer, T. Kuhn, and N. Wehn. Energy modelling in

sensor networks. Advanced Radio Science, (5):347–351, 2007.



BIBLIOGRAPHY 242

[157] Brian Schott, Michael Bajura, Joseph Czarnaski, Jaroslav Flidr, Tam

Tho, and LiWang. Amodular power-awaremicrosensorwith>1000x

dynamic power range. In IPSN, pages 469–474, 2005.

[158] Thomas D. Seeley and P. Kirk Visscher. Choosing a home: How the

scouts in a honey bee swarm perceive the completion of their group

decision making. Behavioral Ecology and Sociobiology, (54):511–520,

2003.

[159] Onn Shehory and Sarit Kraus. Methods for task allocation via agent

coalition formation. Artificial Intelligence, 101(1-2):165–200, May 1998.

[160] Jeong-Hun Shin andDaeyeon Park. A virtual infrastructure for large-

scale wireless sensor networks. Comput. Commun., 30(14-15):2853–

2866, 2007.

[161] G. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi. Simulation-based

optimization of communication protocols for large-scale wireless sen-

sor networks. In Proceedings of the IEEE Aerospace Conference, 2003,

volume 3, pages 1339–1346, March 2003.

[162] E. Sklar. Netlogo, a multi-agent simulation environment. Artif Life,

13(3):303–11, 2007.

[163] Antonios Skordylis, Alexandre Guitton, and Niki Trigoni.

Correlation-based data dissemination in traffic monitoring sensor

networks. In CoNEXT ’06: Proceedings of the 2006 ACM CoNEXT

conference, pages 1–2, New York, NY, USA, 2006. ACM.

[164] A. Sobeih and J. Hou. A simulation framework for sensor networks in

j-sim. Technical Report UIUCDCS-R-2003-2386, Department of Com-

puter Science, University of Illinois at Urbana-Champaign, Novem-

ber 2003.

[165] A. Sobeih, J. C. Hou, Lu-Chuan Kung, Ning Li, Honghai Zhang, Wei-

Peng Chen, Hung-Ying Tyan, and Hyuk Lim. J-sim: a simulation

and emulation environment for wireless sensor networks. Wireless

Communications, IEEE, 13(4):104–119, August 2006.



BIBLIOGRAPHY 243

[166] Ahmed Sobeih, Wei-Peng Chen, J.C. Hou, Lu-Chuan Kung, Ning Li,

HyukLim,Hung-YingTyan, andHonghaiZhang. J-sim: a simulation

environment for wireless sensor networks. In Simulation Symposium,

2005. Proceedings. 38th Annual, pages 175–187, Dept. of Comput. Sci.,

Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA, April 2005.

IEEE Society, IEEE.

[167] Byungrak Son, Yong sork Her, and Jung-Gyu Kim. A design and

implementation of forest-fires surveillance system based on wireless

sensor networks for south korea mountains. IJCSNS International

Journal of Computer Science and Network Security, 6(9B), September

2006.

[168] W. Spears, R. Heil, D. Spears, and D. Zarzhitsky. Physicomimetics for

mobile robot formations. In Proceedings of the Third International Joint

Conference on Autonomous Agents and Multi Agent Systems (AAMAS-

04), volume 3, pages 1528–1529, 2004.

[169] Thammakit Sriporamanont and Gu Liming. Wireless sensor network

simulator. Masters thesis in electrical engineering, School of Informa-

tion Science, Computer and Electrical Engineering, Halmstad Uni-

versity, Box 823, S-301 18 Halmstad, Sweden, January 2006.

[170] J. A. Stankovic, T. E. Abdelzaher, Lu Chenyang, Sha Lui, and J. C.

Hou. Real-time communication and coordination in embedded sen-

sor networks. In Proceedings of the IEEE, volume 91, pages 1002–1022,

July 2003.

[171] Jan Steffan, Ludger Fiege, Mariano Cilia, and Alejandro Buchmann.

Scoping in wireless sensor networks: a position paper. In MPAC ’04:

Proceedings of the 2nd workshop on Middleware for pervasive and ad-hoc

computing, pages 167–171, New York, NY, USA, 2004. ACM.

[172] Jan Steffan, Ludger Fiege, Mariano Cilia, and Alejandro Buchmann.

Towards multi-purpose wireless sensor networks. In ICW ’05: Pro-

ceedings of the 2005 Systems Communications, pages 336–341, Washing-

ton, DC, USA, 2005. IEEE Computer Society.



BIBLIOGRAPHY 244

[173] Anthony (Tony) Stentz and M Bernardine Dias. A free market archi-

tecture for coordinating multiple robots. Technical Report CMU-RI-

TR-99-42, Robotics Institute, Carnegie Mellon University, Pittsburgh,

PA, December 1999.

[174] Peter Stone and Manuela Veloso. Task decomposition, dynamic role

assignment, and low-bandwidth communication for real-time strate-

gic teamwork. Artificial Intelligence, 110(2):241–273, 1999.

[175] Steven H. Strogatz. Sync: The Emerging Science of Spontaneous Order.

Penguin Press Science, April 2004.

[176] P. B. Sujit, A. Sinha, and D. Ghose. Multiple uav task allocation using

negotiation. In AAMAS ’06: Proceedings of the fifth international joint

conference on Autonomous agents and multiagent systems, pages 471–478,

New York, NY, USA, 2006. ACM.

[177] Hartmut Surmann andAntonioMorales. A five layer sensor architec-

ture for autonomous robots in indoor environments. In Proceedings of

the International symposium on robotics and automation ISRA2000, pages

533–538, Monterrey, N.L., Mxico, November 2000.

[178] Y. Tan and The Argo Collaboration. High altitude observatory ybj

and argo project. In International Cosmic Ray Conference, volume 2 of

International Cosmic Ray Conference, page 821, 2001.

[179] Feilong Tang1, Minglu Li1, Chuliang Weng1, Chongqing Zhang1,

Wenzhe Zhang1, HongyuHuang1, and YiWang1. CombiningWireless

Sensor Network with Grid for Intelligent City Traffic, volume 4186/2006

of Lecture Notes in Computer Science. Springer Berlin / Heidelberg,

August 2006.

[180] C. Tessier, C. Cariou, C. Debain, F. Chausse, R. Chapuis, and C. Rous-

set. A real-time, multi-sensor architecture for fusion of delayed ob-

servations: Application to vehicle localisation. In Proceedings of the

First NationalWorkshop on Control Architectures of Robots, Monthpellier,

France, April 2006.



BIBLIOGRAPHY 245

[181] Guy Theraulaz, Eric Bonabeau, and Jean-Louis Deneubourg. Re-

sponse threshold reinforcement and division of labour in insect so-

cieties. Proceedings of the Royal Society of London B, (265):327–335,

February 1998.

[182] Yuan Tian, Eylem Ekici, , and Fusun Ozguner. Energy-constrained

task mapping and scheduling in wireless sensor networks. In Pro-

ceedings of the First IEEE International Workshop on Resource Provision-

ing and Management in Sensor Networks (RPMSN05), Washington, DC,

November 2005.

[183] Sameer Tilak, Nael B. Abu-Ghazaleh, and Wendi Heinzelman. A

taxonomy of wireless micro-sensor network models. SIGMOBILE

Mob. Comput. Commun. Rev., 6(2):28–36, 2002.

[184] BenL. Titzer, DanielK. Lee, and Jens Palsberg. Avrora: scalable sensor

network simulationwith precise timing. In IPSN ’05: Proceedings of the

4th international symposium on Information processing in sensor networks,

page 67, Piscataway, NJ, USA, 2005. IEEE Press.

[185] Kevin E. Trenberth and Julie M. Caron. Estimates of meridional at-

mosphere and ocean heat transports. Journal of Climate, 14:3433–3443,

august 2001.

[186] ANILKUMARTRIPATHI, BIPLABKUMER SARKER, andNAVEEN

KUMAR. A ga based multiple task allocation considering load. In-

ternational Journal of High Speed Computing, 11(4):203–214, 2000.

[187] M. Tubaishat and S.Madria. Sensor networks: an overview. Potentials,

IEEE, 22(2):20–23, April–May 2003.

[188] Paul Valckenaers, Hadeli, Bart Saint Germain, Paul Verstraete, and

Hendrik Van Brussel. Mas coordination and control based on stig-

mergy. Comput. Ind., 58(7):621–629, 2007.

[189] P. Verissimo and A. Casimiro. Event-driven support of real-time

sentient objects. InProceedings of the Eighth IEEE InternationalWorkshop



BIBLIOGRAPHY 246

on Object-oriented Real-time Dependable Systems (WORDS 2003), pages

2–9, January 2003.

[190] MarcosAugustoM.Vieira, ClaudionorN.Coelho. Jr., DiogenesCeclio

da Silva Jr., and Jose M. da Mata. Survey on wireless sensor network

devices. In Emerging Technologies and Factory Automation(ETFA03),

IEEE Conference, pages 16–19. IEEE, September 2003.

[191] Lan Wang and Yang Xiao. A survey of energy-efficient scheduling

mechanisms in sensor networks. Mob. Netw. Appl., 11(5):723–740,

2006.

[192] Ye Wen, Rich Wolski, and Gregory Moore. Disens: scalable dis-

tributed sensor network simulation. In PPoPP ’07: Proceedings of the

12th ACM SIGPLAN symposium on Principles and practice of parallel

programming, pages 24–34, New York, NY, USA, 2007. ACM.

[193] Ye Wen, Wei Zhang, Rich Wolski, and Navraj Chohan. Simulation-

based augmented reality for sensor network development. In SenSys

’07: Proceedings of the 5th international conference on Embedded networked

sensor systems, pages 275–288, New York, NY, USA, 2007. ACM.

[194] Barry Brian Werger and Maja J Mataric. Broadcast of local eligibil-

ity: Behavior-based control for strongly-cooperative robot teams. In

Proceedings of Autonomous Agents, 2000.

[195] Darrell Whitley. The genitor algorithm and selection pressure: Why

rank-based allocation of reproductive trials is best. In J. D. Schaf-

fer, editor, Proceedings of the Third International Conference on Genetic

Algorithms, San Mateo, CA, 1989. Morgan Kaufman.

[196] UWilensky. NetLogo. Center for Connected Learning and Computer-

Based Modeling in the Northwestern University, Evanston, IL, 1.3

and 1.4 edition, 1999.

[197] GeorgeChristopherWilliams.Adaptation andNatural Selection. Prince-

ton University Press, Princeton, N.J., reprint edition, may 13 1996

edition, 1966.



BIBLIOGRAPHY 247

[198] A.Willig, R. Shah, J. Rabaey, and A.Wolisz. Altruists in the picoradio

sensor network. In Proceedings of the 4th IEEE International Workshop

on Factory Communication Systems, 2002, pages 175–184, 2002.

[199] Matt Wilson, Chris Melhuish, Ana B. Sendova-Franks, and Samuel

Scholes. Algorithms for building annular structures with minimalist

robots inspired by brood sorting in ant colonies. Autonomous Robots,

17(2-3):115–136, 2004.

[200] J.-X. Wu, Z.-H. Zhou, and Z.-Q. Chen. Ensemble of ga based selec-

tive neural network ensembles. In Proceedings of the 8th International

Conference on Neural Information Processing.

[201] Ning Xu. A survey of sensor network applications. Survey Paper for

CS694a.

[202] Peng-Yeng Yin, Shiuh-Sheng Yu, Pei-Pei Wang, and Yi-TeWang. Task

allocation for maximizing reliability of a distributed system using

hybrid particle swarm optimization. J. Syst. Softw., 80(5):724–735,

2007.

[203] Mohamed Younis, Kemal Akkaya, and Anugeetha Kunjithapatham.

Optimization of task allocation in a clusterbased sensor network. In

Proceedings of the 8th IEEE International Symposium on Computers and

Communications(ISCC’2003), page 329, Antalya, Turkey, June 2003.

[204] Yang Yu and Viktor K. Prasanna. Energy-balanced task allocation for

collaborative processing inwireless sensor networks.Mobile Networks

and Applications, 10(1–2):115–131, 2005.

[205] D. Zarzhitsky, D. F. Spears, and W. M. Spears. warms for chemical

plume tracing. In Proceedings of SIS 2005, Swarm Intelligence Sympo-

sium, pages 249–256. IEEE, IEEE, June 2005.

[206] Jingbin Zhang, Ting Yan, and S. H. Son. Deployment strategies for

differentiated detection in wireless sensor networks. In 3rd Annual

IEEE Communications Society on Sensor and AdHoc Communications and



BIBLIOGRAPHY 248

Networks, 2006. SECON ’06. 2006, volume 1, pages 316–325, Reston,

VA, September 2006.

[207] Jichuan Zhao and A. T. Erdogan. A novel self-organizing hybrid

network protocol for wireless sensor networks. In First NASA/ESA

Conference on Adaptive Hardware and Systems, 2006. AHS 2006., pages

412–419. IEEE, June 2006.

[208] Z.-H. Zhou, J.-X. Wu,W. Tang, and Z.-Q. Chen. Combining regresson

estimators: Ga-based selective neural network ensemble. Interna-

tional Journal of Computational Intelligence and Applications, 1(4):341–

356, 2001.

[209] Kasun De Zoysa and Chamath Keppitiyagama. Busnet a sensor

network built over a public transport system. In Proceedings of EWSN

2007, the fourth European conference on Wireless Sensor Networks, pages

9–10, TU Delft, Netherland, January 2007.



List of Figures

3.1 Abstract view of a sensor network architecture . . . . . . . . 48

3.2 Abstract view of a sensor node architecture . . . . . . . . . . 50

3.3 Functional/Architectural view of a sensor node . . . . . . . . 55

3.4 Example application for the architecture of figure 3.2 . . . . 55

5.1 User Interface Demonstration of NetLogo . . . . . . . . . . . 77

5.2 Agents on batches in NetLogo . . . . . . . . . . . . . . . . . . 78

5.3 Too many active nodes does not necessarily mean radical

network coverage improvement . . . . . . . . . . . . . . . . . 94

5.4 Network Life vs Task Demand . . . . . . . . . . . . . . . . . 94

5.5 Total Task A Performance vs Task A Demand . . . . . . . . . 94

5.6 Total Task B Performance vs Task B Demand . . . . . . . . . 94

5.7 Total Task C Performance vs Task C Demand . . . . . . . . . 94

5.8 Average Task A Performance vs Task A Demand . . . . . . . 95

5.9 Average Task B Performance vs Task B Demand . . . . . . . 95

5.10 Average Task C Performance vs Task C Demand . . . . . . . 95

5.11 FRT Average Task Performances vs Task Demand . . . . . . 95

5.12 FRT Total Task Performances vs Task Demand . . . . . . . . 95

5.13 Network Lifetime of VRT vs Lifetime of FRT . . . . . . . . . 103

5.14 Total Switching Frequency for the VRT and FRT networks . 103

5.15 Average Switching Frequency for the VRT and FRT networks 103

5.16 Total Task A Performance for the VRT and FRT networks . . 103

5.17 Average Task A Performance for the VRT and FRT networks 103

5.18 Total Task B Performance for the VRT and FRT networks . . 103

5.19 Average Task B Performance for the VRT and FRT networks 104

249



LIST OF FIGURES 250

5.20 Total Task C Performance for the VRT and FRT networks . . 104

5.21 Average Task C Performance for the VRT and FRT networks 104

7.1 Mean Lifetime for sensor networks with different Task Dis-

continuation Probability . . . . . . . . . . . . . . . . . . . . . 120

7.2 Mean Active Coverage for all tasks . . . . . . . . . . . . . . . 123

7.3 Mean Coverage for Task A . . . . . . . . . . . . . . . . . . . . 123

7.4 Mean Coverage for Task B . . . . . . . . . . . . . . . . . . . . 123

7.5 Mean Coverage for Task C . . . . . . . . . . . . . . . . . . . . 123

7.6 Mean Idle Nodes Coverage for all Tasks . . . . . . . . . . . . 123

7.7 Total Active Coverage for all tasks . . . . . . . . . . . . . . . 125

7.8 Total Coverage for Task A . . . . . . . . . . . . . . . . . . . . 125

7.9 Total Coverage for Task B . . . . . . . . . . . . . . . . . . . . 126

7.10 Total Coverage for Task C . . . . . . . . . . . . . . . . . . . . 126

7.11 Total Idle Nodes Coverage for all Tasks . . . . . . . . . . . . 126

7.12 Dead Node Count vs Time . . . . . . . . . . . . . . . . . . . . 126

7.13 Idle Node Count vs Time . . . . . . . . . . . . . . . . . . . . . 126

9.1 Task demand vs lifetime for different networks . . . . . . . . 138

9.2 Task demand vs Mean Active Coverage for different networks141

9.3 Task demand vs Mean Task A Coverage for different networks141

9.4 Task demand vs Mean Task B Coverage for different networks 141

9.5 Task demand vs Mean Task C Coverage for different networks141

9.6 Task demand vs Mean Idle Coverage for different networks 141

9.7 Task demand vs Total Active Coverage for different networks 143

9.8 Task demand vs Total Task A Coverage for different networks 143

9.9 Task demand vs Total Task B Coverage for different networks 143

9.10 Task demand vs Total Task C Coverage for different networks 143

9.11 Task demand vs Total Idle Coverage for different networks . 144

9.12 Time vs Idle Nodes Count for different networks when S = 0.1145

9.13 Time vs Idle Nodes Count for different networks when S = 1 145

9.14 Time vs Idle Nodes Count for different networks when S = 10 145

9.15 Time vs Idle Nodes Count for different networks when S = 100145

9.16 Time vs IdleNodesCount for different networkswhenS = 1000145



LIST OF FIGURES 251

9.17 Time vs Idle Nodes Count for different networks when S =

10000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.18 Time vsDeadNodesCount for different networkswhenS = 0.1146

9.19 Time vs Dead Nodes Count for different networks when S = 1 146

9.20 Time vs Dead Nodes Count for different networkswhen S = 10146

9.21 TimevsDeadNodesCount fordifferent networkswhenS = 100146

9.22 Time vs Dead Nodes Count for different networks when S =

1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.23 Time vs Dead Nodes Count for different networks when S =

10000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.24 Time vs Sampling Count for different networks . . . . . . . . 147

9.25 Time vs Sampling Count for different networks . . . . . . . . 147

11.1 Task demand vs lifetime for different networks . . . . . . . . 160

11.2 Task demand vs Mean Active Coverage for different networks163

11.3 Task demand vs Mean Task A Coverage for different networks163

11.4 Task demand vs Mean Task B Coverage for different networks 163

11.5 Task demand vs Mean Task C Coverage for different networks163

11.6 Task demand vs Mean Idle Coverage for different networks 163

11.7 Task demand vs Total Active Coverage for different networks 165

11.8 Task demand vs Total Task A Coverage for different networks 165

11.9 Task demand vs Total Task B Coverage for different networks 165

11.10Task demand vs Total Task C Coverage for different networks 165

11.11Task demand vs Total Idle Coverage for different networks . 165

11.12Time vs Idle Nodes Count for different networks when S = 0.1168

11.13Time vs Idle Nodes Count for different networks when S = 1 168

11.14Time vs Idle Nodes Count for different networks when S = 10 168

11.15Time vs Idle Nodes Count for different networks when S = 100168

11.16Time vs IdleNodesCount for different networkswhenS = 1000168

11.17Time vs Idle Nodes Count for different networks when S =

10000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

11.18Time vsDeadNodesCount for different networkswhenS = 0.1169

11.19Time vs Idle Nodes Count for different networks when S = 1 169

11.20Time vs Dead Nodes Count for different networkswhen S = 10169



LIST OF FIGURES 252

11.21TimevsDeadNodesCount fordifferent networkswhenS = 100169

11.22Time vs Dead Nodes Count for different networks when S =

1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

11.23Time vs Dead Nodes Count for different networks when S =

10000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

11.24Stimulus vs Total Communication Count for different networks171

11.25Stimulus vs Mean Communication Count for different net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171



List of Tables

2.1 Comparison of different Task Allocation Approaches. Note:

Low2004[121], Low2005[122], Yu2005[204], Younis 2003[203],

Modi 2002[135], Tian 2005[182], Oliviera 2004[52] . . . . . . . 34

4.1 Energy Requirements of Various Sensing Devices . . . . . . 68

4.2 Energy Requirements of Various CPUs . . . . . . . . . . . . . 68

4.3 Energy Requirements of Various RF Communication Devices 69

A.1 Simulation Model Parameters . . . . . . . . . . . . . . . . . . 181

A.1 Simulation Model Parameters . . . . . . . . . . . . . . . . . . 182

A.1 Simulation Model Parameters . . . . . . . . . . . . . . . . . . 183

A.1 Simulation Model Parameters . . . . . . . . . . . . . . . . . . 184

A.1 Simulation Model Parameters . . . . . . . . . . . . . . . . . . 185

A.1 Simulation Model Parameters . . . . . . . . . . . . . . . . . . 186

A.1 Simulation Model Parameters . . . . . . . . . . . . . . . . . . 187

A.1 Simulation Model Parameters . . . . . . . . . . . . . . . . . . 188

A.1 Simulation Model Parameters . . . . . . . . . . . . . . . . . . 189

A.1 Simulation Model Parameters . . . . . . . . . . . . . . . . . . 190

B.1 CR vs FRT Simulation Parameters . . . . . . . . . . . . . . . 191

B.1 CR vs FRT Simulation Parameters . . . . . . . . . . . . . . . 192

B.1 CR vs FRT Simulation Parameters . . . . . . . . . . . . . . . 193

B.2 CR, FRT, FRT+B, VRT, and VRT+B Simulation Parameters . 194

B.2 CR, FRT, FRT+B, VRT, and VRT+B Simulation Parameters . 195

B.2 CR, FRT, FRT+B, VRT, and VRT+B Simulation Parameters . 196

B.2 CR, FRT, FRT+B, VRT, and VRT+B Simulation Parameters . 197

253



LIST OF TABLES 254

C.1 CD, FDT, and FDT+B Simulation Parameters . . . . . . . . . 198

C.1 CD, FDT, and FDT+B Simulation Parameters . . . . . . . . . 199

C.1 CD, FDT, and FDT+B Simulation Parameters . . . . . . . . . 200

D.1 CD, FST, and FST+B Simulation Parameters . . . . . . . . . . 201

D.1 CD, FST, and FST+B Simulation Parameters . . . . . . . . . . 202

D.1 CS, FST, and FST+B Simulation Parameters . . . . . . . . . . 203

E.1 CC, FCT, and FCT+B Simulation Parameters . . . . . . . . . 204

E.1 CC, FCT, and FCT+B Simulation Parameters . . . . . . . . . 205

E.1 CC, FCT, and FCT+B Simulation Parameters . . . . . . . . . 206


