
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Jadud, Matthew C (2006) An exploration of novice compilation behaviour in BlueJ. Doctor
of Philosophy (PhD) thesis, University of Kent.

DOI

uk.bl.ethos.555285

Link to record in KAR

https://kar.kent.ac.uk/86458/

Document Version

UNSPECIFIED

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/384444758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Exploration of Novice Compilation Behaviour in BlueJ

A thesis submitted to

the University of Kent at Canterbury

in the subject of Computer Science

for the degree

of Doctor of Philosophy

By

Matthew C. Jadud

October 2006

Abstract

Our research explores the process by which beginning programmers go about writing pro-

grams. We have focused our explorations on what we call compilation behaviour: the program-

ming behaviour a student engages in while repeatedly editing and compiling their programs

in an attempt to make them syntactically, if not semantically, correct. The students whose be-

haviour we have observed were engaged in learning to program in an objects-first style using

BlueJ, an environment designed for supporting novice programmers just starting out with the

Java programming language.

The significant results of our work are two-fold. First, we have developed tools for visu-

alising the process by which students write their programs. Using these tools, we can quickly

obtain valuable information about their process, and use that information to inform further

research regarding their behaviour, or apply it immediately in a classroom context to better

support the struggling learner. Second, we have proposed a quantification of novice compila-

tion behavior which we call the error quotient. Using this metric, we can determine how well

(or poorly) a student fares with syntax errors while learning to program. This quantity, like

our tools for visualisation, provides a powerful indicator for how much or little a student is

struggling with the language while programming, and correlates significantly with traditional

indicators for academic progress.

iii

Contents

1 What students do 1

1.1 “They aren’t thinking!” . 1

1.2 Of stoppers and movers . 2

1.3 Novice compilation behaviour . 3

1.3.1 Exploring the data . 4

1.4 Tools for teaching . 5

2 Review of Literature 7

2.1 The tools of the trade . 7

2.1.1 Punched cards forever . 8

2.2 Editing and editors . 12

2.2.1 Structured editors . 13

2.2.2 Initial programming environments . 15

2.2.3 Initial programmers . 21

2.2.4 Models and mistakes . 25

2.2.5 Notational systems and cognitive dimensions 30

3 Into the Data 33

3.1 Students at Kent . 33

3.1.1 The place . 34

3.1.2 The students . 38

3.2 BlueJ and Objects First with Java . 41

v

3.2.1 BlueJ: an initial programming environment 41

3.2.2 Objects First with Java . 43

3.3 Capturing behaviour . 46

3.3.1 The data at a glance . 46

3.3.2 Tools for data collection: BlueJ . 47

3.3.3 Tools for data collection: WWW . 49

3.3.4 Databases . 50

3.3.5 Data preparation . 52

3.4 Aggregate compilation behaviour . 58

3.4.1 Time between compilations . 58

3.4.2 Syntax errors: type and distribution . 63

3.5 Visualizing the data . 70

3.5.1 Reading code: a grounded document analysis 70

3.5.2 Digging deeper . 75

3.6 Vignettes . 76

3.6.1 Neville: running in place . 78

3.6.2 Ron: A picture of motion . 90

3.6.3 Harry: persistence over form . 95

3.6.4 Hermione: success, with elegance . 98

4 The Error Quotient 109

4.1 Development of the error quotient . 109

4.1.1 Diving into the code . 112

4.1.2 Automating a document analysis . 113

4.2 Line, colour, and repetition . 114

4.3 Scoring compilation behaviour . 115

4.3.1 The error quotient and parameter choice 117

4.3.2 Neville, Ron, Harry, and Hermione . 122

4.3.3 EQ: normally distributed . 124

4.3.4 Neville, Ron, Harry, and Hermione revisited 127

4.4 Exploring error rates . 129

4.4.1 “The best of the best” . 130

4.4.2 “Middle of the road” . 134

4.4.3 “On the high side” . 140

4.4.4 Karen: no peace unto the desperate . 143

4.5 The EQ and grades . 145

4.5.1 About the population . 145

4.5.2 Grades: assignments and examinations . 146

4.5.3 EQ: correlation and prediction . 153

4.6 Conclusions: putting the EQ to use . 157

4.7 Qualitative assessment . 157

4.7.1 Summative vs. formative assessment . 158

4.7.2 EQ as a real-time tool . 160

4.7.3 Application vs. evaluation . 161

5 Looking Forward 163

5.1 Analytical refinement . 163

5.2 Expanding the methodological sphere . 164

5.3 Small population, more data . 166

5.4 Error quotients everywhere . 167

5.5 Thousands of languages, thousands of students 169

5.6 Future work: a three-year plan . 169

5.6.1 A three year plan . 170

5.6.2 Year 1: putting the EQ to use . 171

5.6.3 Year 2: distributing collection . 173

5.6.4 Year 3: repetition . 174

5.7 In conclusion . 174

A Traces 177

B Syntax error types 217

B.1 Categorising errors . 220

C Calculating the error quotient 233

D Compilation chains 237

D.1 What came next? . 237

D.1.1 Syntactically correct compilations (Table D.1.1) 238

D.1.2 Undefined symbol - variable (Table D.1.2) 238

D.1.3 Bracket expected (Table D.1.3) . 238

D.1.4 ’;’ expected (Table D.1.4) . 239

D.1.5 Unknown symbol - method (Table D.1.5) 240

D.2 How many repetitions? . 240

D.2.1 Syntactically correct chains (Table D.2.1) 241

D.2.2 ’;’ expected (Table D.2.2) . 241

D.2.3 Unknown symbol - variable (Table D.2.3) 241

D.2.4 The trend . 242

Bibliography . 243

List of Figures

1.1 The edit-compile-run cycle. 4

1.2 BlueJ, a programming environment for novices. 5

2.1 The DrScheme ILE. 18

2.2 The BlueJ Diagram window. 19

2.3 The BlueJ code window. 20

2.4 The fundamental edit cycle in Perkins’s studies and our own. 24

2.5 The hack-n’-act cycle, sans thinking? . 24

3.1 BlueJ’s Diagram Editor . 42

3.2 BlueJ’s Text Editor . 43

3.3 BlueJ reporting a ’;’ expected error. 44

3.4 Systems involved in data collection . 50

3.5 SQL to create the metas table on a Postgres database server 51

3.6 SQL to create the errors table on a Postgres database server 52

3.7 SQL to create the processed version of the metas table 53

3.8 SQL to create the processed errors table. 54

3.9 Collecting Unicode data requires careful consideration during data collection. . . 56

3.10 The percentage of compilations taking place in a given 10-second window for all

compilations recorded during the 2003-2004 and 2004-2005 academic years. . . . 59

3.11 The percentage of compilations taking place in a given 10-second window for all

compilations recorded in our study. 60

ix

3.12 Continuous distribution function for the timing distribution of all compilation

events recorded in our study. 61

3.13 Time between compilations 2003/2004, considering whether the student was work-

ing from a syntax error (F) or syntactically correct code (T), and how the compi-

lation ended (error = F, correct = T). 61

3.14 Time between compilations 2004/2005, considering whether the student was work-

ing from a syntax error (F) or syntactically correct code (T), and how the compi-

lation ended (error = F, correct = T). 62

3.15 Common syntax errors in 2003-2004 . 65

3.16 Common syntax errors in 2004-2005 . 67

3.17 Common error rates in both 2003-2004 and 2004-2005. 68

3.18 Distribution of common syntax errors in nine languages 68

3.19 Ron, hard to distinguish from Neville . 90

3.20 Ron’s first attempt at the printAllNotes() method. 92

3.21 A session characterized by Harry’s persistence. 95

3.22 A brief, but effective, session from Hermione . 99

3.23 A single, large change by Hermione. 102

4.1 Compilations per session, per population. 110

4.2 Total time between compilations vs. total compilations 111

4.3 A browser for viewing successive differences in student programs 113

4.4 To calculate the error quotient of a session, each pair of events is first scored

using this algorithm. Those values are then summed and normalized, assuming

a maximum score of 8 per pair. 116

4.5 Our code for generating parameter combinations. 119

4.6 EQ distribution with our original parameters (left) and those found through semi-

exhaustive search (right). 121

4.7 EQ distributions based on number of sessions recorded for each subject. 123

4.8 Distribution of error quotients for students with 3 or more sessions. 125

4.9 Q-Q plot of EQ values from entire study population. 126

4.10 Neville, Ron, Harry, and Hermione’s average EQ overlaid on the population EQ. 127

4.11 Neville, Ron’s EQ session scores. 129

4.12 Distribution of assignment marks for the 2004-2005 academic year. 148

4.13 EQ vs. average assignment grades for the 2004-2005 academic year. 150

4.14 Distribution of final exam grades for the 2004-2005 academic year. 151

4.15 EQ vs. final exam grades for the 2004-2005 academic year. 152

4.16 Midterm vs. final examination for subjects in our study, 04/05. 154

4.17 Fall and Spring EQ for subjects in our study, 04/05. 155

4.18 Fall 2004 EQ vs. midterm exam scores for subjects in our study. 156

4.19 Spring 2005 EQ vs. final exam scores for subjects in our study. 156

5.1 A three-year plan for further research into compilation behaviour. 170

List of Tables

2.1 General observations regarding DITRAN usage 10

2.2 Percent of total errors for common DITRAN errors. 10

2.3 Syntax errors in DITRAN programs . 11

2.4 A working set of cognitive dimensions. 31

3.1 Year 2003 incoming CS survey: OSes and Applications 38

3.2 Year 2003 incoming CS survey: Languages . 39

3.3 Louis, Session 2 . 77

4.1 A fictitious, four-event session . 117

4.2 Parameter choice for EQ calculation . 120

4.3 Scores of the four vignettes . 124

4.4 Average error quotient for Neville, Ron, Harry, and Hermione 128

4.5 The twenty-four students with the lowest average EQs. 131

4.6 Students with an average error rate between 0.33 and 0.48, inclusive 135

4.7 Students with an average EQ greater than 0.48 . 141

A.1 Neville, Session 1 . 178

A.2 Ron, Session 1 . 181

A.3 Harry, Session 1 . 182

A.4 Hermione, Session 3 . 183

A.5 Terry, Session 19 . 184

A.6 Deborah, Session 1 . 186

xiii

A.7 Deborah, Session 25 . 187

A.8 Catherine, Session 11 . 188

A.9 Gregory, Session 2 . 189

A.10 Jack, Session 3 . 190

A.11 Hermione, Session 10 . 191

A.12 Patricia, Session 1 . 192

A.13 Carlos, Session 2 . 193

A.14 Bryan, Session 9 . 194

A.15 Gloria, Session 16 . 196

A.16 Victor, Session 3 . 198

A.17 Joe, Session 2 . 199

A.18 Joe, Session 5 . 200

A.19 Eugene, Session 2 . 201

A.20 Justin, Session 5 . 202

A.21 Terry, Session 3 . 203

A.22 Roger, Session 2 . 206

A.23 Cain, Session 12 . 207

A.24 Karen, Session 2 . 208

A.25 Karen, Session 13 . 210

A.26 Stephanie, Session 4 . 211

A.27 Eric, Session 3 . 213

A.28 Alfred, Session 1 . 214

A.29 Abel, Session 2 . 215

B.1 Error types recognised in our study. 218

B.2 Error types recognised in our study, continued . 219

D.1 Syntactically correct code and what follows it. 238

D.2 Unknown symbol - variable . 239

D.3 Bracket expected . 239

D.4 ’;’ expected . 240

D.5 Unknown symbol - method . 240

D.6 Syntactically correct chains . 241

D.7 Semicolon error chains . 242

D.8 Unknown symbol chains . 242

Acknowledgements

I have given up trying to list all of the truly wonderful people who have helped shape my

education to date. However, all of you: thank you.

My parents and my wife’s parents have been incredibly supportive in so many ways as

Carrie and I pursued our respective Ph.D.s. There are not thanks enough.

I have had excellent supervision at each stage of my academic career: Tim Sullivan at

Kenyon, Jonathan Mills, Ed Robertson, and Thom Schwen at Indiana, and Sally Fincher at Kent.

My thanks especially to Sally—it was fun.

There are many whom I am fortunate to count amongst my friends, but Robin Blume-

Kohout and Christian Jacobsen deserve special thanks.

And lastly, my supportive and loving wife, Carrie. I am glad and proud to be your husband.

xvii

Chapter 1

What students do

Our research focuses on what students do while learning to program. Anyone who has at-

tempted to program (or even used a computer!) has almost certainly been baffled by a cryptic

error message. Compilers—the tools that take a program written by a student and turn it into

something executable by the system—are veritable gold mines for cryptic and confusing error

messages.

It is our belief that there is a great deal to be learned by observing a student’s behaviour

in response to these messages, not their invisible mental state (their “understanding” or “com-

prehension”). At the least, their behaviour is a powerful indicator for instructors, allowing for

timely interventions to aid their students’ learning process. At best, a student’s behaviour in

response to these cryptic error messages my be an observable indicator of learning and pro-

gramming mastery.

1.1 “They aren’t thinking!”

“Students today aren’t thinking when they’re programming—they’re letting the compiler do

their thinking for them!” I first heard these words while a postgraduate at Indiana University

Bloomington; a Professor was complaining to me about how his students simply couldn’t write

programs the way they used to. I thought about what I had observed in my own students, and

agreed; students clearly liked to beat on the compiler.

1

CHAPTER 1. WHAT STUDENTS DO

It was during my last year at Indiana that I saw something that made me think twice. In our

introductory course, a rich feedback mechanism had been hooked into the web-based handin

system. Students would submit their programs, and they would be analysed (syntactically)

as well as run against a set of unit tests. The results of these analyses was presented to the

students; feedback ranged from the syntactic (“This problem called for use of a cond statement;

your solution employs a nested if”) to the semantic (“Your code passes 8 of 10 tests; have you

checked all of the boundary conditions?”). The system kept all of the students’ submissions.

Some students submitted their code four or five times before the deadline. Many more

students submitted between 10 and 15 times. Some students, however, submitted their code

to the web-based handin system more than 100 times. The web-based submission mechanism

was slow and tedious to use (I wrote it); to submit an assignment over 100 times represented a

significant amount of time and serious determination on the students’ part.

These were not the actions of students who “weren’t thinking.” They received a quality of

feedback from the web-based system that they didn’t from their IDE; as they were programming

in Emacs and compiling their Scheme programs on the command line, a tool that performed

syntactic analysis as well as executing a unit test suite was very powerful. That said, their

code often contained basic syntax errors—it appeared as if they were completely ignoring the

compiler on their own machine in lieu of a more powerful, web-based tool. At the same time as

we are attempting to explain this behaviour, we are not trying to defend it—these actions appear

to be those of a student desperate for any help they can get. Or perhaps not; but desperate

or not, these students were thinking, and making use of whatever tools they had available to

complete their assignments successfully.

1.2 Of stoppers and movers

We were entirely too ready to characterise our students as unthinking, button-pressing zombies.

After examining the programs submitted by students from Indiana during that one, unique

semester (students were limited to a maximum of 10 submissions the next term), it was clear

that students were engaging in some very complex and interesting behaviours. Unfortunately,

we did not have the feedback from each submission available, so we had no way of knowing

2

1.3. NOVICE COMPILATION BEHAVIOUR

exactly what changes were made in response to what feedback. We had half a picture—and it

was a very interesting picture indeed.

We began looking at research regarding the use of compilers and environments designed for

novice programmers. We were particularly taken by work by Perkins, Hancock, Hobbs, Marin,

and Simmons; in a study of novice programmers working in LOGO, they had characterised

students broadly as either “stoppers” and “movers”—students who would quickly give up

in the face of adversity while programming (stoppers), and students who would tinker their

way around, through, or away from a problem (movers)[PHH+89]. In addition, they were

particularly interested in the behavior of some movers—“tinkerers,” as they were called. These

students would poke, and tweak, and otherwise manipulate their code in a variety of small

ways. Sometimes they would make progress towards their ultimate goal of a working program,

sometimes not.

The notion that we could characterise the behaviour of our students became central to our

thinking about students learning to program. We were familiar with many studies conducted

through the 1970’s, 1980’s, and 1990’s that explored the “mental models” students employed

while reading and writing programs (see [RW97, Ris86], Chapter 2); the Perkins study was one

of the first we had encountered that focused in on the what of student behaviour as opposed to

the invisible and more elusive question of why.

1.3 Novice compilation behaviour

Novice compilation behaviour is the study of a student’s interactions with their compiler while

learning to program. This may be mediated by some kind of development environment, or it

may be that they do their programming with a simple text editor and a compiler invoked on

the command line. Authoring software involves more than just getting the code to compile

successfully; as we have discovered in our own studies, however, this alone is often a majour

accomplishment for our students. For this reason, we have focused our investications on only

one part of the “edit-compile-run” cycle that so many students engage in while learning to

program (Figure 1.1).

To explore this cycle, we instrumented BlueJ, a development environment designed for stu-

3

CHAPTER 1. WHAT STUDENTS DO

Compile RunEdit

Figure 1.1: The edit-compile-run cycle.

dents learning to program in an object-oriented style using the programming language Java

(Figure 1.2,[KQPR03]). Every time subjects in our study invoked the compiler, we took a snap-

shot of their program, as well as any messages emitted by the compiler. This resulted in a sig-

nificant amount of data; roughly 42,000 distinct snapshots of student programs were captured,

representing over 2000 “sessions.” A session implies, at the bare minimum, that a student 1)

opened their editor, 2) wrote some code (or edited an existing program), 3) compiled it, and 4)

quit.

1.3.1 Exploring the data

We began sifting through these thousands of sessions with the intention of discovering some

sort of “pattern” to novice programming behaviour. Sadly, one type of behaviour dominated all

others: the overwhelming repetition of errors. Students seem to make lots, and lots, of syntax

errors. Many students would spend 10, 20, 30 or more minutes wrestling with errors in the

syntax of their program, and never actually execute what they had written (Chapter 3). This

implied to us that many of our students were spending long periods of time failing to write

code that would meet even the simplest of learning outcomes for our course modules.

We looked at the quantifiable aspects of this “thrashing” behaviour. As a student wrestles

with a piece of code, we can quantify 1) the type of syntax error or errors they encounter, 2)

where in their program those errors are reported, and 3) where they edit their program in re-

sponse to these errors. These three quantities, observed over time, form the basis for what we

4

1.4. TOOLS FOR TEACHING

Figure 1.2: BlueJ, a programming environment for novices.

have called the error quotient (Chapter 4). A student’s error quotient (EQ) is a value, averaged

over a session, that tells us whether they are dealing quickly and efficiently with syntax errors

(a low EQ), or if they are stuck, making changes that do not actually fix the syntax error in

question, and possibly introducing new ones (a high EQ).

1.4 Tools for teaching

Our work suggests that introductory programming students at Kent with low error quotient

scores tend to do well on traditional coursework assessments and end-of-year examinations.

Similarly, it would appear that students who spend the semester or year wrestling with the

syntax of the Java programming language do poorly on their assignments and examinations.

While this may seem obvious—if they cannot write programs successfully, how can they pos-

5

CHAPTER 1. WHAT STUDENTS DO

sibly do well on programming assignments?—we believe this represents a significant outcome

of our research.

It was clearly wrong to suggest students might be “letting the compiler do their thinking for

them.” Some students appear to be desperately hoping for some help or clue from the compiler

that will help them understand the syntactic morass they are in while trying to accomplish

what they believe should be a simple programming assignment. And, while further work is

necessary, we believe the data we collected and the analytical techniques we developed for

analyzing it may prove useful for automatically monitoring and providing feedback to novice

programmers (and their instructors) while the initial teaching of programming is taking place.

6

Chapter 2

Review of Literature

The fundamental interactions between a programmer and their compiler are poorly under-

stood. There have been several, paradigmatic shifts in programming languages since the 1950’s—

from assembly, to procedural/structured programming, to object-oriented programming and

design—yet the edit-compile-run cycle remains. Despite this constancy, there has been little

systematic research regarding the edit-compile-run cycle.

Our research has demonstrated that a great deal can be learned by studying how a program-

mer interacts with their code over many successive compilations. Throughout the literature on

environments, tools, and languages, as well as the research regarding novice programmers, this

interaction is implicit and rarely acknowledged directly.

2.1 The tools of the trade

While the fundamental edit-compile-run cycle has changed little over the last twenty years,

some of the underlying technologies have changed remarkably. Compiling and executing a

program in the punched-card era could take all day; now, it takes milliseconds. Despite massive

increases in the computational power casually available to instructors and students, the tools

used to write and compile programs have changed minimally in the last fifty years.

7

CHAPTER 2. REVIEW OF LITERATURE

2.1.1 Punched cards forever

If instructors today claim that their students compile their programs too early, too often, they are

themselves to blame. The race to provide ever-faster compilation began in the 1960’s, and con-

tinues to this day. In 1967, the Univac 1107 system running at Case University (later to become

Case Western Reserve University) in Cleveland, Ohio, boasted an impressive turnaround-time

of 12 hours on most jobs. Lynch reports that “A user can submit a deck at 8:00 a.m., have it

on the input tape by noon, his job completed by 12:35, and the output returned to him by 5:00

p.m. in the evening.”[Lyn67] Compared to students today (who work in laboratories equipped

with many machines, each thousands of times more powerful than the Univac 1107), the 9-hour

turnaround time seems to approach infinity; but Lynch goes on to say that “It should be noted

that only 10-15 percent of the runs are the first of the day, 85-90 percent are repeats, and about

a third of the runs have a circulation time of less than 5 minutes. It is often possible to debug a

moderate size program in less than an hour by gaining frequent access to the computer.”

This early report on programmer behaviour seems to imply that having access to rapid feed-

back from a computer regarding the syntax and semantics of a program was a valued interaction

style. Not only is this behaviour exhibited by students today, but tools like Eclipse1 continu-

ously re-compile the programmer’s code, highlighting errors as the programmer develops their

code in real-time; this is the “rapid compilation cycle” taken to its natural limit.

Tools to teach with

The WATFOR (WATerloo FORtran) system from the University of Waterloo[SGM+67] and the

DITRAN (DIagnostic forTRAN) compiler from the University of Wisconsin Madison[MM67]

were probably the first compilers for “mainstream” languages to be written with the student

in mind. Both WATFOR and DITRAN lived and thrived for years; indeed, the WATFOR com-

piler grew into a family of tools over the next decade at the University of Waterloo, constantly

evolving with the advent of new hardware and environments.

Comprehensive error diagnostics are provided at both compile time and run time.

WATFOR detects the standard syntax errors during the compilation of a source pro-

1http://www.eclipse.org/

8

2.1. THE TOOLS OF THE TRADE

gram. For each such error detected, a coded message is printed which relates the

error detected to the statement in which it occurred by means of a serial line count.

An important feature of the WATFOR compiler is that it generates object code which

detects certain logical errors during the execution phase of a FORTRAN IV job. In

this way, inconsistencies such as undefined variables, subscript values not within the

bounds declared for a subscripted variable, and the redefinition of constant param-

eters within a called subprogram, are detected at run time. Run-time error messages

have the same format as compile-time messages.[SGM+67]

Ignoring when this was written, and the particular languages involved, this quote might

describe any programming environment in existence today. The authors describe compile-time

and run-time errors, consistently formatted, linked back to a source line number in all cases.

Programmers today working with GCC (the Gnu C Compiler) don’t even get line numbers in

run-time errors; they have to invoke a separate debugger process and specifically set break-

points in their code to get debugging information this useful.

In addition to describing programming environments similar to those we work with today,

Moulton and Muller’s paper about DITRAN is also interesting due to the presence of some

simple usage statistics at the end of the paper. While their inclusion is almost presented as an

afterthought, they provide some critical insight into how students and other programmers on

campus interacted with the compiler. First, they provide us with some general statistics, which

indicate the size and number of programs they observed (Table 2.1). Furthermore, based on this

information, it would appear that most programs are short, and probably make heavy use of

intermediate variables for mathematical calculations (Table 2.2).

We are most interested in their reports of compilation errors (Table 2.3). Based on our own

analysis of Java programs and syntax errors, it would appear that common linguistic idioms

(like the semicolon at the end of a line in C and Java) and the misspelling of variable and method

names are a common source of syntax errors. Similarly, the most common statement in the

language observed by Moulton and Muller is also the most frequent source of syntax error.

9

CHAPTER 2. REVIEW OF LITERATURE

Table 2.1: General observations regarding DITRAN usage

Number of students 234
Number of batch runs 208
Total number of programs 5158
Average compilation time per program 3 seconds
Average execution time per program 3 seconds
Average core requirements per program 793 words
Average number of statements per program 38

Table 2.2: Percent of total errors for common DITRAN errors.

Type of Statement % of total

Arithmetic Assignment 45.6
WRITE 9.1
DO 8.5
IF 7.4
GOTO 4.9
FORMAT 4.8
END 3.1
READ 3.0
DIMENSION 3.0
CONTINUE 2.7
All others 7.9

10

2.1. THE TOOLS OF THE TRADE

Table 2.3: Syntax errors in DITRAN programs

Number of programs with compilation errors 1859
Average number of compilation errors per program 3.8

Statement type % total errors

Arithmetic Assignment 26.0
Statement format and sequence 22.0
Identifiers 14.8
DO Statements 6.8
General Punctuation 6.6
I/O Statements 5.6
Reference and Definition 5.4
FORMAT Statements 4.6
GOTO, IF Statements 2.4
All others 5.8

Looking forward

There are some similarities between programming systems developed in the mid to late six-

ties and those in use today. However, a significant difference between computing in the late

1960’s and today is the cost associated with every program written and executed. In the sixties,

programs were punched into cards, and output was through a line printer. Cards and paper

both cost money, and supporting an entire school—and a department of computer science, in

particular—was expensive.

The major problem of student running now lies in he sheer bulk of cards and paper

needed. It is expected that the BRUIN compiler, when coupled with a number of

high-speed remote work stations to keep all that paper away from the computing

laboratory, will at last bring the growing monster of student programming under

control.[Mun69]

Munk’s observation regarding the cost of programming is interesting for more than its fi-

nancial insights. What is important here is that Munk is looking forward to technologies that

will not only reduce the costs of student computing at the university, but also allow computer

science instructors to make programming accessible to more students. While the “growing

11

CHAPTER 2. REVIEW OF LITERATURE

monster of student programming” was tamed long ago, the basic practice of writing code in

plain text, compiling that code, and executing it has not changed.

2.2 Editing and editors

During the 1970’s, with increasingly powerful computers and networks, the question of how

one writes a program shifted from the economics of punched cards to the utility of the on-line

editor. Nearly seven years later, the WATFOR project was still alive and well at the University of

Waterloo, and continued to set the pace of innovation regarding educational tools for computer

science.

Another area of research has been student-editing and job-entry systems. A sim-

ple editor, the WIDJET system, was implemented and augmented with commands

which allow submission of jobs for execution. ... One of the prime considerations

was that students could use the editor to write their first computer program after

their first lecture. We feel strongly that novice students should run programs im-

mediately rather than possibly losing interest during several ”theoretical” lec-

tures. The command language was designed to be very simple to learn. Basically,

the editor is a context editor whose commands apply to a current line. The current

line may be changed by repositioning commands. The original editor could only

move the current line pointer forward in a file; in order to move backward the

pointer had to be repositioned at the beginning of the file. In response to stu-

dent suggestions, the editor was modified so the pointer could be moved either

forward or backward.[CDGW76] (Emphasis added)

In looking back at Cowan’s discussion regarding software development on the DEC PDP-

11, it is important to note that the developers of educational technology felt that the ability

for students to try ideas out, quickly and easily, was important. That we would hear lecturers

today say that students have too much power at their fingertips—because they recompile their

programs too often—is an interesting turnabout. In truth, tools are available (in the form of

powerful personal computers) that are not being exploited to their full effectiveness in their

12

2.2. EDITING AND EDITORS

classroom.

To illustrate the underutilization of resources available to us as educators, consider that

students had to tell the developers of the WIDJET editor to allow the user to scroll backward

through a program listing. This is a seemingly obvious feature; computer users are accustomed

to non-linear editing of text, sound, and video on modern computers. Just as this seemingly

obvious feature was missing from an early programming environment for novices, it is likely

that many other useful features are missing from today’s environments—features that there are

now plenty of spare CPU cycles to support.

2.2.1 Structured editors

Along with big hair and leg warmers, the eighties were the golden age of structured editing.

Structured editors restricted programmers to editing within the grammar of the language—

they dodged the issue of confusing syntax and reporting syntax errors simply by making it

impossible to make these kinds of mistakes. These “smart” or “intelligent” editors typically

took the form of highly structured (and sometimes visual) systems, or would instead make use

of the blossoming knowledge of AI researchers to provide an “expert system” that would guide

the user, helping them catch and correct mistakes.

In 1981, Peter J. Denning, then President of the ACM, wrote in his “President’s Letter” that

“A new breed of editors is emerging. They will revolutionize programming and document

preparation. They are ’smart’: not only because they talk back to their clients, but because they

intimately understand their clients’ tasks and can assist them in doing them correctly. These

editors are not people, they are programs.” This is a captivating idea—as the notion of powerful,

timely, and relevant computer-aided instruction is—that the computer will make learning easier

by observing your context and providing startlingly relevant help along the way.

The Cornell Program Synthesizer was a well-known structured editor in it’s time[SJ81, TR81].

Very clearly, the authors state their beliefs: “Programs are not text; they are hierarchical com-

positions of computational structures and should be edited, executed, and debugged in an en-

vironment that consistently acknowledges and reinforces this viewpoint.” There is no research

reported by the team developing the Cornell Program Synthesizer that indicates that program-

13

CHAPTER 2. REVIEW OF LITERATURE

mers think about their programs this way. This trend continues for some time; fifteen years

later, in 1996, Brad Myers decries this disconnect between the practice and research of comput-

ing education:

Over the past twenty years many research studies have discovered useful informa-

tion about novice programmers, and identified good and bad aspects of today’s

programming systems, both visual and textual. However, this body of research

is widely distributed throughout the literature and is not well organized, making

it difficult to use in guiding the design of new systems. The result is that these re-

search results generally have not been systematically fed back into the design of new

programming systems. Instead, the design of new languages and environments has

most often been driven by technical objectives, such as ease of parsing, ease of gen-

erating fast code, closeness to the machine, ease of proving correctness, etc. Even

systems that were designed for novice users or for teaching have not attempted

to broadly survey this body of research before making critical decisions about the

metaphor or model that the language is based on, the notation that is used in the

language, and the environment.[PM96]

Myers and Ko have continued to explore this disconnect between programmers and their

environments. In their study “Eliciting design requirements for maintenance-oriented IDEs:

a detailed study of corrective and perfective maintenance tasks,” they focused on how expert

programmers go about understanding their programs. They found that experts, when faced

with a maintenance task, spent their time engaged in any one of eight behaviours: reading a

segment of code, editing code, navigating between dependencies, searching for names (using

search tools in the IDE), testing, reading documentation, switching between environments (eg.

the IDE and application), and reading task descriptions.

One fifth of the programmers’ time was spent reading code; another fifth was spent editing,

and one sixth of their time was spent navigating between relevant segments of code. Based on

their analysis, Myers and Ko propose a structured editing environment that explicitly supports

programmers in these high-level tasks[KAM05]. Their experimental IDE is task-based, and

aids programmers in tasks they carry out most often—tasks that were derived from empirical

14

2.2. EDITING AND EDITORS

research of real programmers engaged in authentic tasks.

The work done at Cornell and the work carried out by Myers and Ko both resulted in a

structured editor—a tool that constrained the way users interact with code, and help them in

the task of writing syntactically and (hopefully) logically correct code quickly, the first time.

But there is a massive difference between these projects. The developers of the Cornell Program

Synthesizer were of the mind that ”programs are not text; they are hierarchical compositions

of computational structures...” This was not, as reported, based on any empirical research into

the behaviour or cognition of programmers; instead, it was based on a deeply held belief by the

authors about what programming was, and how people did and should engage in the practice

of writing programs.

Myers and Ko took a very different approach; they began by observing what real program-

mers do when confronted with an authentic task. They set their subjects a task, and looked to

see how they could support their subjects best through the use of software. When they were

done with their structured editor, it was tailored to the tasks of editing and maintaining code—

based on rigorous and repeatable study of programmers engaged in an authentic maintenance

task.

The lesson drawn from the research surrounding the structured editing of code is simple: if

the state of initial programming environments is to be improved, we need to understand how

learners go about the programming task, characterize their behaviour, and propose testable

solutions that target specific problems based on observable phenomena.

2.2.2 Initial programming environments

Structured editing environments mostly died along with the 80’s; however, the notion that pro-

grams might be written in more than just a text editor was a compelling one. Over the course

of the 1990’s, a number of programming environments intended for novice programmers were

developed, but few in conjunction with a research agenda as rigorous as that exemplified by

Myers and Ko. That said, they were generally developed by practising educators who, infor-

mally, continuously evaluated their product and the way their students use it.

15

CHAPTER 2. REVIEW OF LITERATURE

Thetis

Thetis, an environment for learning the C programming language, is an exemplar of initial

learning environments intended for use by novice programmers.

In 1991, the Stanford Department of Computer Science decided to abandon Pascal

in its introductory computer science courses and to adopt ANSI C as the language

of instruction. We based this decision on several factors: the inadequacy of standard

Pascal as a base for teaching modern programming concepts, the need to prepare our

students for more advanced courses in which they will be expected to use C for pro-

gramming projects, and increasing pressure from students and faculty throughout

the School of Engineering for instruction in a language that has become the industry

standard. We also believe that it is not reasonable to expect students to learn C on

their own; students must receive instruction in C in order to become good C pro-

grammers. C has several known deficiencies that make it a challenging language to

teach.[Rob93]

Thetis was developed to address what Roberts et al. perceived as the particular needs of

students learning C for the first time. In particular, they found a number of problems (from a

novice’s point of view) with the existing C tool chain:

Shortcomings of existing compilers

The idea that weaknesses in the programming environment complicate the learning

process for beginning students is not a new one; such shortcomings have been recog-

nized in earlier papers. The underlying problem is that most commercial compilers—

particularly for languages like C that cater to a large audience of programmers—are

designed for experts rather than novices. As a result, most of these compilers are

poorly suited to student use.

In our experience, commercial compilers suffer from the following problems when

used in an introductory course:

• The error messages generated by commercial compilers are often uninformative and

sometimes misleading. New programmers tend to make certain mistakes more

16

2.2. EDITING AND EDITORS

often than others. For example, omitting a required semicolon or right curly

brace is a very common error in C programs. Unfortunately, compilers some-

times respond to this error by reporting a seemingly unrelated syntax error

several lines below the actual mistake, presumably because the parser does not

detect the problem until that point in the source file. Expert programmers un-

derstand the problem and know where to look; novices are completely baffled.

• Interactive debuggers typically require students to understand advanced con-

cepts before they are ready to assimilate them...

• Commercial compilers offer a bewildering set of options and special features

that are useless to the novice and occasionally cause consistency problems...

The authors of Thetis reduced the complexity of the C programming language in the sim-

plest and most direct way possible: they rewrote the tools used to write, compile, and execute

programs written in the language. They then structured their instruction to take advantage of

the improvements they had made in the language’s implementation. The combination resulted

in what must have been a greatly improved environment for the novice C programmer.

DrScheme

Like Thetis, DrScheme provides a simplified environment for the novice programmer exploring

the Scheme programming language. The default view of the environment provides a space for

code to be defined, for the student to interact with that code, and four buttons: “Step,” “Check

Syntax,” “Run,” and “Stop” (Figure 2.1). Three of these (Check Syntax, Run, and Stop) should

be obvious as to what they do in the context of a programming environment; “Step,” however,

executes a student’s program one expression at a time, allowing them to see exactly how their

code is evaluated[Gro].

DrScheme provides a series of “language levels” for novice programmers[GF03, Fla02].

These language levels are each subsets of the Scheme programming language; they limit the

syntactic forms available to the novice programmer, and provide error messages that can be

much more specific in the context of a reduced language. From the tool-writer’s perspective,

knowing certain linguistic constructs are (or are not) possible in a given syntactic context al-

17

CHAPTER 2. REVIEW OF LITERATURE

Figure 2.1: The DrScheme ILE.

lows for clearer and more specific feedback to be generated for the novice programmer. While

there are four distinct levels (or sub-languages) provided for students (“Beginning Scheme,”

“Intermediate Scheme,” “Intermediate Scheme with Lambda”, and “Advanced Scheme”), the

concept is very much the same as that implemented in Thetis: students should learn to program

using simplified versions of the full programming language.

This notion of “subsetting” a language was the subject of recent dissertation work by Peter

DePasquale; in “Evaluation of Subsetting Programming Language Elements in a Novice’s Pro-

gramming Environment,” the conclusions reported were that reducing the complexity of the

environment, and also the language itself, were good for novice programmers[DLPQ04]. Based

on focus group discussion, students felt the environment eased their transition into program-

ming, and appreciated the fact that they were restrained from moving too quickly or wandering

too far when attempting to solve a programming problem. From the data collected during the

process, students tended to compile their programs less often than those using a professional

development environment (Microsoft Visual Studio .NET), and fared no better or worse than

their peers in making the transition from an initial learning environment to a professional IDE.

18

2.2. EDITING AND EDITORS

Figure 2.2: The BlueJ Diagram window.

BlueJ

While both Thetis and DrScheme attempt to hide the complexity of the full language from the

novice, BlueJ takes a different approach to introducing students to object-oriented program-

ming in Java. Simply stated, both Thetis and DrScheme are text editors with improved tools

for manipulating and reporting on programs written by students. While the BlueJ environ-

ment does have a simplified/minimal interface, much like Thetis and DrScheme, the BlueJ en-

vironment does not attempt to simplify the Java programming language, or the feedback that

comes from the underlying tool chain (javac) as provided by Sun Microsystems. Instead, BlueJ

provides a basic visualization of students’ programs in the object-oriented paradigm. Using a

subset of the industry-standard UML notation, students interact both with the visual (struc-

tural) representation of their program as well as the textual (logical) representation of their

program[KQPR03].

Figure 2.2 presents the diagrammatic view of code that students are greeted with when they

begin working in BlueJ. By double-clicking one of the classes (denoted by an orange rectangle

in this diagram), students can then edit the text of their program (Figure 2.3).

While BlueJ provides visual abstractions for the structure of their program, there is nothing

particularly spectacular about how BlueJ supports the novice writing Java code. The language

19

CHAPTER 2. REVIEW OF LITERATURE

Figure 2.3: The BlueJ code window.

is not restricted in any way, nor are the error messages tailored for the beginning programmer.

The only simplification provided by BlueJ is related to the volume of errors reported; if stu-

dents were to invoke the Java compiler (javac) on the command line, it is likely that many

errors would be reported simultaneously. By comparison, BlueJ only reports one error to the

programmer at a time. Therefore, a typical student session when working with BlueJ will in-

volve the authoring of code, compiling of that code, and then the student responding to the first

syntax error found in their program.

Once a student has eliminated all the syntax errors from their code, they can then return to

the visual representation of their program and interact with it. The work presented in this the-

sis focused on students’ interactions with the errors reported by the compiler, and ignored the

interactions that took place at run-time after successfully eliminating all the (syntactic) errors

from their programs. The way novices interact with syntax-error free code has been the subject

of a significant amount of research. For example, the work of Perkins et al., of Bonar, Soloway,

and Spohrer[SBE83, SS86b], and of McCracken et al.[MAD+01]. all nicely frame students’ in-

teractions with syntactically correct code. These work of these groups are discussed further in

sections 2.2.3, 2.2.4, and 5.4, respectively.

20

2.2. EDITING AND EDITORS

2.2.3 Initial programmers

The work of Perkins, Hancock, Hobbs, Martin, and Simmons addressed questions regarding

motivation and behaviour: why do some students plough on in the face of errors and adver-

sity, and others quickly throw their hands up in defeat and ask for help? Informally, many of

the behaviours described by Perkins et al. have been observed in students attempting to cor-

rect syntax errors in their programs. This can be contrasted with the research carried out by

researchers like Bonar, Soloway, and Spohrer: their work largely ignores the syntactic struggle

that leads students to the very programs being studied. There is no easy way to reconcile the

gap that exists between the behavioral and cognitive research carried out to date.

Stoppers and movers: towards the concrete

“Conditions of Learning in Novice Programmers” describes some of the work carried out in

the Educational Technology Center at Harvard University by Perkins, Hancock, Hobbs, Martin,

and Simmons[PHH+89]. Their explorations focused on how students can learn to program

(and develop rich problem-solving strategies) without carefully designed instruction informed

by cognitive science and the research on learning and programming. A cynic might say that

it would be just as interesting to study how students learn to program despite all the cognitive

theory that is incorporated into our curricula.

The point remains that, even without carefully designed instruction based on cogni-

tive science and in-depth study of the particular domain, some students learn. What

might be called “bootstrap learning,” where students go significantly beyond what

they have been taught, does occur. Not only is this apparent from the occasional

student with a flair for programming, but our clinical inquiries teach us that even

students who are not doing that well overall can occasionally invent programming

tactics for themselves.

Perkins et al. would sit with students engaged in programming tasks, working in either

LOGO or BASIC. While they did not employ think-aloud protocols, they would ask questions

of the students (and sometimes answer simple questions that came up as a result) while they

21

CHAPTER 2. REVIEW OF LITERATURE

were working through problems at the computer. For example, they discuss their observation

of “close tracking” of code by novice programmers—this is a process which students in their

study were taught to use, which involves carefully reading their program to better understand

precisely what it does (as opposed to what they think or hope it will do). While their research

differed from that presented here, there are significant similarities in the behaviours observed.

The following, extended quotation captures one of the interactions observed by Perkins et al.

that is so reminiscent of the data we present in Chapters 3 and 4.

Although in principle close tracking is a mechanical procedure, in practice it often

proves a source of difficulties. Students commonly neglect to do it when they need

the information close tracking provides to untangle a problem. For example, Fred

was working on the square-of-stars problem in BASIC. He had written the following

code:

10 n$ = "*"

20 input "how many stars per side";n

30 for x = 1 to n

40 print n$;

50 print n$

60 print n$;

70 next x

When he ran the program he got this output:

**

*

He repaired the program by changing line 40 to:

40 print n$,

22

2.2. EDITING AND EDITORS

so that the cursor would move to the next print zone. When he ran the program

again he got this output:

* *

** *

** *

*

Now the program was at least looking more like two sides of the square and he

seemed to think that he was getting closer to the solution. Close tracking might

have helped Fred to realize that his approach could not possibly work in the gen-

eral case, because it allowed the width of the figure to be determined by print zones

instead of n, the desired width. But, rather than track to see what the program was

actually doing, Fred persisted in making many small repairs to lines 40, 50, and 60;

he became stuck in a cycle of diagnosis and repair that could never get him closer to

the correct programming solution.

Perkins et al. say that Fred does not do a good job of “close tracking” in this situation—that

is, he doesn’t carefully step through his code in an attempt to understand how it really works.

Instead, Fred engages in a series of quick edits in an attempt to fix the program as it stands. As

an expert one can clearly see that Fred misunderstands the problem, and his process is not likely

to get him to a correct solution. As an external observer, the struggle Fred is going through is

clear, even if it might not seem that way to the novice.

This “just one more tweak” behaviour that students seem to employ in the Perkins study

strike us as being remarkably similar to the behaviours observed in our own studies, as students

struggle to write a syntactically correct program in Java (Figure 2.4). While the languages and

situation differ, the fundamental behaviour seems remarkably similar:

In the Perkins vignette, the student was observed making quick changes to his program that

produced known results that appeared to bring him closer to the desired solution. Likewise, in

our own observations, students will often make quick changes in the face of syntax errors: if

a semicolon is reported missing, they will add a semicolon. It doesn’t matter that the code in

23

CHAPTER 2. REVIEW OF LITERATURE

Edit Execute

(a) Perkins’s Students

Edit Compile

(b) Our students

Figure 2.4: The fundamental edit cycle in Perkins’s studies and our own.

question is so syntactically incorrect that it is clear the student has no basic grasp of the grammar

of the language—they’ll follow the compiler’s advice quickly (in a handful of seconds), perhaps

hoping that this will be “the fix” that gets them moving again.

One might characterize the behavioral parallel observed between these populations as one

of “hack-n’-act” (Figure 2.5). In both, as instructors, we might be inclined to say there is a

missing step: “think.” Harsh as this sounds, this is exactly the phenomenon Perkins et al. were

curious about: why, in the face of so much research and cognitive psychology, presented as best

we know how to our students, do they persist in developing their own “losing” strategies for

programming? Or, in the absence thereof, how do they develop successful ones?

Hack ActThink

Figure 2.5: The hack-n’-act cycle, sans thinking?

Perkins, Hancock, Hobbs, Martin, and Simmons go on to describe this behaviour in terms

of stoppers and movers (as well as the subgroup of “tinkerers”). Stoppers are students who,

when faced with a difficult problem, will “give up,” or otherwise ask for help without working

the problem through themselves. Tinkerers, however, will explore the problem—sometimes

systematically, sometimes successfully—hopefully to keep moving towards a problem solution.

24

2.2. EDITING AND EDITORS

... for novice programmers, tinkering has both positive and negative features. On

the positive side, it is a symptom of a mover rather than a stopper: the tinkerer is

engaged in the problem and has some hope of solving it. With sufficient tracking

to localize the problem accurately and some systematicity to avoid compounding

errors, tinkering may lead to a correct program. On the negative side, students often

attempt to tinker without sufficient tracking, so that they have little grasp of why

the program is behaving as it is. They assume that minor changes will help, when

in fact the problem demands a change in approach. Finally, some students allow

tinkers to accumulate untested or leave them in place even after they have failed,

adding yet more tinkerers until the program becomes virtually incomprehensible.

2.2.4 Models and mistakes

The work of Bonar, Soloway, and Spohrer does not consider the code development process

that Perkins et al. focused on. They explored semantic errors made frequently by student pro-

grammers, as captured by the first syntactically correct program a student manages to execute.

Methodologically, they ignore the process that led to the creation of that program, and the pro-

cess that follows the creation of this first syntactically correct artefact. Their premise is that the

“goals” and “plans” a student was using (or attempting to use) in developing their program

can be inferred from this snapshot in time.

Their work explores possible sources of error and misconception in novice programmers,

and searches for an over-arching model that is representative of how all novices go about

writing programs. The most comprehensive source of reports we have for this work are the

sequence of papers that appeared in Studying the Novice Programmer, edited by Soloway and

Spohrer[SS88]. “Programming Knowledge: A Major Source of Misconceptions in Novice Pro-

grammers,” “A Goal/Plan Analysis of Buggy Pascal Programs,” and “Novice Mistakes: Are the

Folk Wisdoms Correct” appear together in this volume, and will be discussed here as a single

work.

Bonar, Soloway, and Spohrer motivate their research into the mistakes novices make based

on their work in [BS83]:

25

CHAPTER 2. REVIEW OF LITERATURE

While solving a programming problem (writing a program), novices will encounter

some aspect of the problem they don’t understand (an impasse).

In order to move beyond the impasse, novices cast about for a way to resolve the

aspect of the problem they don’t understand (a patch). Frequently, that resolution

involves an appeal to their knowledge of natural language step-by-step procedures

that would be applicable in a similar situation.

In implementing the patch, a bug is introduced.

There is no data presented, or referenced, to explain the student problem solving process. It

is stated as fact that students “frequently” appeal to their natural language understanding of a

problem and its solution. While this is not unreasonable, it is also the foundation upon which

they will build a cognitive theory of novice programmers: the planning process they go through

in writing a program, and the (semantic) errors they make along the way.

In “Preprogramming Knowledge,” the two critical components of the Bonar/Soloway model

of novice programming are described as being an extension of “repair theory,” which can be

traced through VanLehn’s work on complex problem solving in the early 1980’s to the Cascade

project and beyond[BV80, VJ93]. Bonar and Soloway claim that programming, being a more

complex domain than elementary arithmetic, must have two important components:

1. We characterize the knowledge that allows a novice to form a bridge between

programming language syntax and semantics and higher level design con-

cerns. This is information about how the language constructs are used to ac-

complish standard programming tasks. We represent this information as schema-

like structures called programming plans. We discuss the programming plans

for both the introductory programming language Pascal and natural language

step-by-step procedures.

2. We characterize impasses arising from missing or misapplied programming

plans needed in the course of developing a program. We propose that many

bugs arise out of novice strategies for patching an impasse and continuing a

problem solution. We call these strategies bug generators. We focus on the bug

generators that patch an impasse by using the knowledge of how the problem

26

2.2. EDITING AND EDITORS

would be solved with natural language step-by-step procedures. This knowl-

edge is used to supply missing programming language knowledge.

Bonar and Soloway employ think-aloud protocols while students write a small program in

Pascal. Based on the analysis of the transcribed version of these interviews, they characterize

the step-by-step natural language knowledge a student brings to the task, as well as the pro-

gramming, or Pascal-specific, knowledge a student brings to the task. This information helps

them determine what plans are made by the students as part of the programming process, and in

a second analysis phase they evaluate the bugs in the student’s problem-solving process[BS83].

This work is continued in “A goal/plan analysis of buggy Pascal programs.” In this paper,

they extend their lower-level theories regarding the role of natural-language and programming-

specific knowledge into a theory of goals and plans. Goals are smaller tasks a programmer might

attempt to achieve along the way to completing a larger plan. This work is also described

and extended in “Analyzing the High Frequency Bugs in Novice Programmers,” where they

combine the detailed bug analysis of [BS83] with their higher-level goal/plan approach[SS86a].

One of the last papers in this particular thread of research is Spohrer and Soloway’s “Novice

Mistakes: Are the Folk Wisdoms Correct?”[SS86b]. They contend that, for the most part, how

we decide to teach programming is based not on empirical research, but instead on folk wis-

doms regarding novice programmers. Whether or not this is the case, their arguments are

sound:

As we observed in the introduction, a not unreasonable assumption is that instruc-

tion can be improved when educators gain a better understanding of what students

do and do not know. From our analysis we conclude that computer science instruc-

tors should strive to familiarize themselves with specific high-frequency bugs, and

to learn as much as possible about the origins of all bugs. Both high- and low-

frequency bugs seem likely to occur when students are unable to coordinate and in-

tegrate the goals and plans that underlie program code. Although additional studies

must be carried out to test the stability of our results, our data nevertheless begin to

pinpoint specific areas in which students have difficulty learning to program.

So, while we take issue with some of the leaps made in the formation of their study, their

27

CHAPTER 2. REVIEW OF LITERATURE

conclusions are (generally) reasonable. That is, we agree completely that educators would do

well to understand better what their students do and do not know, as well as the kinds of

mistakes their students typically make while engaging in programming tasks.

The importance of syntax

In all of their work, Bonar, Spohrer, and Soloway did not address the syntactic issues their

subjects had with the languages. Their theory regarding mental models of novice programmers

does not account for syntax errors. While they did study students writing a variety of programs in

a first year course (and focused closely on three in particular), their work always begins from

the first syntactically correct program a student manages to produce. From “Analyzing the

High Frequency Bugs in Novice Programs,”

Sixty-one students’ first syntactically correct programs for the three problems were

selected for detailed analysis. We selected the first syntactically correct version be-

cause we are primarily interested in non-syntactic errors, and the first version con-

tains more bugs than later versions (i.e., the novices had not yet debugged their

programs). Of the 183 programs chosen in this manner, twenty-five were excluded

from the analysis because the students had not tried to solve enough of the problem

in their first attempt (e.g., merely printing an introductory message).

We can only assume that this is indicative of all of their selection criteria, as we do not

receive such a detailed account elsewhere. Here, we see they have excluded 14% of their sample

because the students did not write enough of the program in the first go. As a result, their study

systematically ignores the process that leads up to a syntactically correct program, it ignores

the process that occurs after the first program is written, and it drops a significant percentage

of their population because their methodology is not capable of handling students who write

a minimal amount of code—code that can be executed—before progressing on to the task they

have been given.

28

2.2. EDITING AND EDITORS

The problems with syntax errors

At the same time as Spohrer and Soloway are ignoring syntax in their studies, elsewhere we

hear others calling for more attention to be paid to the errors that systems produce. Coming out

of the 1960’s, it was a big step in compiler technology for run-time errors to be reported in terms

of the source line, as opposed to the location of the error in the generated assembly code. However,

compiler error messages still suffered from obscure, numeric lookup codes and other unusable

reporting measures throughout the 1970’s. In 1983, Peter Brown suggested that an integrated

development environment might provide a framework in which some of these problems can be

solved in his paper “Error messages: the neglected area of the man/machine interface.”

There are also two more recent developments that could lead to a further improve-

ment: the integrated programming environment and the high-resolution display

with windowing. Each of these is just beginning to become available to the average

user in the field, as distinct from the researcher. The average user, of course, needs

good error messages even more than the researcher.

The effect of an integrated programming environment is twofold. First, most such

environments remove the traditional rigid separation between editing, compiling,

and running; it is all the more important, therefore, to have a uniform approach to

errors so that a run-time error is not presented to the user as something radically

different from, say, a lexical error.

Second and more exciting, some programming environments remove the need for

certain error messages altogether. Two well-known examples are the Cornell Pro-

gram Synthesizer and the Interlisp system.[Bro83]

Unfortunately, little empirical work in this area has been carried out in the intervening

decades. Brown was one of the few researchers to highlight the problems and possible solu-

tions inherent in dealing effectively with syntax errors. Isa, Boyle, Neal, and Simons highlight

this in their own studies:

Although many guidelines and articles have been written about improving error

messages, only a handful of empirical results have been reported in the literature.

29

CHAPTER 2. REVIEW OF LITERATURE

In separate experiments involving COBOL compiler messages, text editor messages,

and job-control language messages, Shneiderman reports experimental results that

support the conjecture that the wording and content of messages can impact user

performance and attitude.[IBNS83]

...

Testing of error messages is clearly something that must be done if designers are to

be sure that users will be able to successfully correct their mistakes. For any given

user error situation, program developers must assure that a typical user can make

the appropriate correction. However, testing messages in the context of product use

or while performing other more general product usability tests poses two problems:

first, not all messages will get exercised; and second, when multiple errors occur, it

is difficult, if not impossible, to know which error a user is trying to correct.[IBNS83]

With the continued development and study of novice programming environments — en-

vironments that through one mechanism or another hope to attack the kinds of problems that

Isa, Boyle, Neal, and Simons point out — both theories and methods will play important roles

in this evolving field of research. However, it is work like that of Myers and Ko that may

most productively be taken as an example of data-driven inquiry for exploring programming

behaviour[KAM05].

2.2.5 Notational systems and cognitive dimensions

Our own research focuses on the behaviour of students while engaged in the act of writing

programs. Particular attention has been paid to the compile/edit cycle, a process in which the

student interacts with and reacts to the compiler and its responses to the syntax they feed it. If

a theory regarding how novices deal with syntax (a notational system) is to be developed, then

we may eventually turn to existing work regarding how people understand notational systems

as a starting point.

The research on Cognitive Dimensions represents an interesting way of framing research

regarding how novices struggle with the syntax of a language, and their larger interactions with

the initial learning environment. Cognitive Dimensions of notational systems are proposed in

30

2.2. EDITING AND EDITORS

much the same way that much of physics is reducible to the dimensions of mass, length, and

time[Gre89a]. They provide the language designer and researcher with a framework in which

to discuss, compare, and evaluate notational systems. As suggested by Green, a “system” is a

notation and an environment taken together:

Indeed, the relationship between the notation and the environment is such that the

notation cannot be used except in some kind of environment of use. Trying to just

use a notation, outside of any environment, would be like trying to just talk to some-

one without being in some kind of social situation. We may catch ourselves thinking

that paper-and-pencil, by its familiarity and blandness, is not really an environment

at all, but if so we are making a mistake: paper and pencil is an environment with its

own particular contributions--for instance, it offers unrivalled support for recording

hesitations and commitments, makes it easy to see large amounts of text with little

effort, and supports instant action with very little delay in finding the right place,

choosing the right mode, etc. In all these respects it is superior to typical computer-

based environments.[Gre89a]

1. Hidden/Explicit dependencies 6. Diffuseness
2. Viscocity/Fluidity 7. Consistency
3. Premature commitment 8. Discriminability
4. Role-expressiveness 9. Action slips
5. Hard mental operations 10. Perceptual Cues

Table 2.4: A working set of cognitive dimensions.

Each of the cognitive dimensions presented in Table 2.4 is suggested based on a body of

research carried out by Green and others regarding programming languages and their environ-

ments. For example, we might say that a language like Lisp scores highly on the dimension

of consistency, as its uniform syntax allows for easy and unambiguous notation of logical ex-

pressions. This might be contrasted with the C programming language, where the programmer

must concern themselves with the order of precedence in logical operators—entirely an artefact

of the infix notation—which represents a source of notational inconsistency.

The Cognitive Dimensions framework has been used in a number of contexts for evaluat-

ing programming languages and their environments. Green and Petre used it for evaluating

31

CHAPTER 2. REVIEW OF LITERATURE

LabView and Prograph, as well as the visual complexity of programs written in these visual

languages[GP96]; likewise, Yang et al. applied these dimensions to the design of visual pro-

gramming languages[YBDZ97], and Clarke has applied these ideas to the design of languages

and programming APIs at Microsoft[Cla01]. This might begin to give a sense for how broadly,

in terms of languages and notational systems, the Cognitive Dimensions framework has been

applied.

While not carried out as an empirical study, Linda McIver explored the Cognitive Dimen-

sions of programming languages used in introductory programming courses as part of her dis-

sertation research regarding the development of a programming language for novices[McI01].

Her work applies the Cognitive Dimensions framework broadly across a large number of lan-

guages from a variety of programming paradigms, and then uses this analysis to inform the

creation of new programming languages intended for beginning programmers.

What this, and other work regarding Cognitive Dimensions tells us, is that it is not only

the notational system that matters. The entire environment—whether it is a text editor, initial

learning environment, or a professional, integrated development environment—must be con-

sidered as well. Many studies regarding novice programmers have ignored this larger context.

For example, it would be difficult to discover exactly what version of Pascal, and what version

of the VAX OS, students in Spohrer and Soloway’s studies were working with. However, with a

theoretic framework like Cognitive Dimensions, we are able to make recommendations regard-

ing tools for supporting novice programmers that may, in some way, begin to transcend the

specifics of what language and which editor students were struggling, working, and learning

with.

32

Chapter 3

Into the Data

Good data tells a story. In exploring novice compilation behaviour, we found that the hidden

interactions between students learning to program and their compiler provide a rich source of

material for interesting stories. Like so many frames in a movie strip, we captured a copy of

their work in progress every time they compiled their code. That makes for a lot of data.

To understand the story captured in our data, we begin with the context in which it was

collected: who, where, and when. To make clear our method, we then describe what data we

collected and how we went about that collection. These basic questions provide a background

for the interesting story that the data starts to reveal: a glimpse into the hidden battle between

novice programmers and their compiler. First, we consider our students in the aggregate, look-

ing at trends that hold across the entire population. Then we focus in on the individual, and

discover that there is no less to be told about the individual than the entire population.

3.1 Students at Kent

Our explorations begin with our students. We suspect that university students in their first year

are, by-and-large, the same the world over. They are young adults living on their own, often for

the first time in their lives. These students come to us excited about new opportunities, meeting

new people, and taking on the challenges that their course of study will bring them.

33

CHAPTER 3. INTO THE DATA

3.1.1 The place

The University of Kent was granted its Royal Charter in 1965; to this day, the college system

continues, with all incoming first-years (“Freshers”) being assigned to either the Rutherford,

Eliot, Keynes, or Darwin colleges. They end up studying in one of seventeen departments

arranged into three faculties: the Faculty of the Humanities, the Faculty of Science, Technology,

and Medical Studies, and the Faculty of Social Sciences. Historically, the colleges played a more

important role in the students’ lives; now, they are effectively dormitories, but with an added

sense of history and social structure.

The centre of campus is home to the majority of the academic departments, with the Col-

leges and student accommodation arranged about the periphery. While Canterbury is a popular

tourist destination, the University and City provide no more or less distraction for the students

than any other University. The students at Kent find many productive distractions from study

as well—they engage in all manner of sports through the University fitness centre and vari-

ous club sports. Likewise, political, religious, musical, and other societies exist to fill the time

students spend when not in class or studying.

The Computing Laboratory

The Computing Laboratory is centrally located on campus, providing space and facilities that

many of the students enrolled in computing degrees make use of over the three years they are at

Kent. The Lab’s facilities that are restricted to those students who are in the degree are located in

the Octagon. Named for its distinctive, 8-sided shape, the Octagon houses some departmental

teaching spaces as well as specialized labs. These include the Multimedia lab, with high-spec

machines for dealing efficiently with digital media, as well as the Unix lab, housing Sunray

thin-clients to Raptor, a 4-processor Sun 480 provided by the department for undergraduate

use.

Despite its central location on campus, the layout of the department itself does not encour-

age students to move through the halls and accidentally interact with the faculty. The majority

of the department’s offices are located on the second floor; as there are no teaching spaces in

this area, undergraduates are unlikely to be found in these hallways unless they are specifically

34

3.1. STUDENTS AT KENT

seeking out a member of the faculty for a particular reason. Similarly, the amount of interaction

between the graduate students and the undergraduate population is likewise minimal.

The degree

Students in the Computing Laboratory fall into one of a number of distinct courses of study,

although all of them share a great deal in common (in terms of coursework, etc.). Students en-

counter their first module in programming, “Introduction to Object-Oriented Programming,” in

each of nine different courses of study. While these courses of study diverge most significantly

in the second and third year of the degree, we have focused here only on the similarities and

differences that students encounter in the first year of the program.

Computer Science

This course of study is the most general of the degree courses, and is notable in that stu-

dents encounter two paradigms of programming—object-oriented programming in Java

and functional programming in Haskell—in their first year. Additionally, they cover the

basics of information systems, hardware and protocols, discrete mathematics, and statis-

tics.

Computer Science with a Year in Industry

Each of the paths through the undergraduate degree offer an option of a year in industry.

This highly competitive program is popular with the students, as it gives them a chance

to get real-world experience working with Sun, IBM, or other partners in industry that the

department has cultivated relationships with.

Computer Science and Management Science

The cross between computing and management science varies little in the first year—

students in both programs take many of the same courses. However, the management

students trade the exposure to functional programming for an introductory course in

management science. Other than this, they take the same foundational courses in the-

ory, hardware, and object-oriented programming as the students in the department’s main

course of study. This course offers a “year in industry” option as well, and exhibits greater

variance in the second and third years in terms of courses offered.

35

CHAPTER 3. INTO THE DATA

Computer Science and Business Administration

As per the cross with Management Science, this course of study differs little from the base

course of study in the first year.

Mathematics and Computer Science

In lieu of any courses on information systems, hardware, and protocols (that are taken by

students in the Computer Science degree), these students take more courses in calculus,

discrete mathematics, probability, and algebra. Over the three years of the degree, stu-

dents in this degree program focus most intensely on the programming courses offered

in the department, while content knowledge (courses like operating systems, etc.) are

replaced by maths of one sort or another.

The one module that is consistent across all of these courses of study is the introduction to

programming in the object-oriented style. This module has been taught by two faculty members

in the time we were collecting data; in the 2003-2004 academic year, it was co-taught by David

Barnes and Mathieu Capcarrere, and during the 2004-2005 academic year, it was taught entirely

by Mathieu Capcarrere. In both cases, the module text remained the same (Objects First with

Java,[KB05]), and the assignments remained relatively consistent between the two years, as they

followed the text quite closely.

The most likely source of differences between the students enrolled in these different degree

courses will come from their expectations regarding the first course in programming. For the stu-

dents in computer science, they see Java as a critical part of their education, as it is widely used

in industry. For students in some of the other programs, however, it is often viewed as being

less essential, or less practical: Visual Basic, and the ability to write macros in Excel, is certainly

more practical. This research does not delve into the expectations and desires students bring

with them to the classroom, but instead focus on their programming behaviours regardless of

their particular course of study.

Facilities

All students at Kent have access to the University-provided computing labs. In addition, the

Computing Laboratory provides additional hardware and services for students enrolled in one

36

3.1. STUDENTS AT KENT

of its degree programs. From the Computing Laboratory’s departmental web-pages:

The department has several well equipped laboratories for the sole use of its own

students, including a lab equipped with 16 Sun Rays for access to the department’s

Sun servers running Solaris, and several rooms equipped with PCs running Win-

dows XP; typically 2.4GHz Pentium 4 with 512MB of memory and 19 inch screens.

In addition, the department has a number of servers donated by Sun Microsystems

which can be used by students in their final-year projects, a Sun server (with 16GB of

memory and four SPARC processors) for general undergraduate use, and additional

servers for postgraduate use.

All this equipment is available during term time, weekends and vacations.

We provide a number of printers and you will find that the cost of printing is some-

what cheaper than when you use the university printers.1

As many an undergraduate will attest, these statements are true... in part. As much of this

equipment is in the Octagon, it is actually inaccessible after 9:30 PM during term time, and is not

accessible at all weekends. There is no 24-hour computing facility maintained by the Laboratory

that students can make use of, and students are clearly expected to rely on their own computing

equipment to some degree during their course of study.

Public computing laboratories

The public computing laboratories from which the majority of our observations come are not

maintained by the Computing Laboratory, but instead by the University’s Computing Service.

These laboratories typically have between 15 and 30 machines, arranged around the periphery

of the room they are located in. The machines in these spaces are all 2GHz+ Dell machines

running Windows XP. From the desktop, the students have access to the Microsoft Office suite

and a host of other tools; most notably, for our study, BlueJ. They have a 25MB network share

that they can store files on, which many students find to be inadequate; it is not uncommon to

see them mounting drives from the computers in their own room, using it to stream MP3s, and

even provide a complete remote desktop while working in the labs.
1http://www.cs.kent.ac.uk/students/facilities.htm, accessed on 20050605

37

CHAPTER 3. INTO THE DATA

3.1.2 The students

For a number of years, the Computing Laboratory has issued a survey to all of its incoming

students. While this survey is not comprehensive, it provides us with an overview of the com-

puting background and experience of students entering the department. This survey has been

issued every year, but we will only present here the data from the year 2003-2004 survey, as it is

the most recent survey conducted, and the years 1999-2003 were not appreciably different.

To begin with, the students were asked to rank their familiarity with a number of operating

systems and common software packages, with values ranging from 1 (“never used”) to 5 (“have

used a lot”) (Table 3.1). 132 students completed the questionnaire.

Table 3.1: Year 2003 incoming CS survey: OSes and Applications

Mean Median 1Q 3Q
Web browsing 4.84 5 5 5
Email 4.78 5 5 5
Windows 98, ME, XP, etc. 4.77 5 5 5
Word Processor (e.g. MS Word) 4.60 5 5 5
Instant Messengers (e.g. MSN, ICQ) 4.44 5 4 5
Spreadsheet (e.g. MS Excel) 4.00 4 3 5
Database (e.g. MS Access) 3.56 4 4 5
Creating web pages/sites 3.23 3 2 5
Usenet news 2.82 3 2 4
Unix (Linux, Solaris, etc.) 1.70 1 1 2
MacOS 1.60 1 1 2

This particular background is not surprising: the incoming students at Kent are very com-

fortable with the Windows operating system, have little experience working with Apple com-

puters or Unix systems, and are very comfortable with email, the World Wide Web, and stan-

dard office applications like word processors and spreadsheets.

Using the same scale, the students expressed their familiarity with a variety of programming

languages (Table 3.2).

Based on their self-assessment, none of our incoming students are familiar with any par-

ticular programming language (Table 3.2); if they have been exposed to anything in school, it

is most likely that they have encountered some form of VB, and even then only to a limited

extent. It isn’t uncommon for students to confuse the creation of graphical user interfaces in

38

3.1. STUDENTS AT KENT

Table 3.2: Year 2003 incoming CS survey: Languages

Mean Median 1Q 3Q
Basic (including VB) 2.94 3 2 4
Any other language(s) 2.04 1 1 3
Java 1.85 1 1 2
Pascal (including Delphi) 1.82 1 1 2
C or C++ 1.60 1 1 2
Prolog 1.42 1 1 1

Visual Basic with programming; as such, it seems to say that the vast majority of our students

have little real experience in any programming language when they enter their first year of a

degree in computer science.

The question we were most interested in from this survey was how many of these students

owned their own computer. Of the students surveyed, 95% reported they owned their own PC.

This was further broken down by a series of yes/no questions: 81% reported that their computer

was recent (1GHz or faster), 93% were running some version of Windows, 13% had Linux on

the PC. 74% of these students had their computers on the campus network, meaning they had

100 megabit ethernet in their study bedroom, and another 20% would have their computer on

the Internet via some other ISP. This implies that roughly 20% of the incoming 2003 class lived

off-campus, where a significant number of them would have commuted to school from home.

On their way out

While we have some information regarding what our students were like when they entered,

we can also look at their experiences during the year as reported on exit questionnaires from

their introduction to object-oriented programming. From the course home-page, we find a brief

summary by Mathieu Capcarrere of the feedback questionnaires completed by the students:2

The feedback form has been analysed, but I didn’t find the time to write a proper

page. In Brief: the results are obviously biased as it is only representative of people

still coming to the lectures after 10 weeks... Overall, almost all of you had no expe-

rience of Java before the course, and no or little experience of any other language.

2Accessed June 2005. No longer available online.

39

CHAPTER 3. INTO THE DATA

You agree (limited std deviation) that the course has been interesting and that it def-

initely resulted in an improvement in your knowledge [thank god]. A vast majority

thinks the workload has been reasonable, but a tiny and determined minority seems

to think that torture would have been more pleasant. On the lectures, you kind of

agree that they were clearly structured, going at the right speed, and the visual aids

were helpful, but it is not a plebiscite neither. For help, the anonymous question

page wins with a 10 to 1 margin on other means. Classes were far less convincing

but there is still a majority to say they were OK, and a (small) majority of people to

say that classes should be devoted to assignments. On that latter question, the opin-

ions tend to be clear-cut (large std dev.). Finally BlueJ was found to be easy to use

and install, but you would not warmly recommend the textbook, nor advise against

it: a definite maybe.

This summary comes at the end of the 2004-2005 academic year. Given the plethora of ways

students can and do interact with lecturers in the department—email, newsgroups (Kent has a

thriving newsgroup culture in the Computing Lab), and of course in person—these are not nec-

essarily the students’ preferred mechanism for interacting with their lecturers regarding course

content. Interestingly, the students found the anonymous question pages to be the most useful

form of feedback in the course. The Computing Laboratory maintains a web-based, anonymous

feedback system for almost all of their courses. Using this system, students can leave comments

regarding lectures, homeworks—anything pertaining to the course, really—without having to

identify themselves to their instructor or their peers. Furthermore, the anonymous question

pages are public, and archived: the questions students ask, and the instructor’s answers, are

available for all to read at that time and for years to come. While students found this system

to be a valuable part of their experience in this module, the most pertinent comments filtered

through to us are the students’ reflections on the use of BlueJ and the course textbook, Objects

First with Java. These are, directly and indirectly (in the case of the textbook) the subjects of our

study. While students were largely unimpressed by the environment and text, it is important

that the nature of both the programming environment and the course text are understood before

we continue further.

40

3.2. BLUEJ AND OBJECTS FIRST WITH JAVA

3.2 BlueJ and Objects First with Java

Our research is concerned with how novices interact with the compiler, and the compile-edit

cycle resulting from that interaction. The techniques we employed are not language specific,

nor are they bound to any one particular programming environment. That said, the students

who took part in our study were all using one programming environment (BlueJ) with one

course text.

3.2.1 BlueJ: an initial programming environment

BlueJ is an initial programming environment for beginners learning to program in Java. Such

environments typically provide a simplified mechanism by which students can edit, compile,

and then execute their programs. BlueJ is no exception: it has a minimal interface, and en-

courages an “objects-first” approach to programming. This means that the BlueJ environment

encourages students to think about, first and foremost, objects. Objects are an abstraction used

by computer scientists for representing a combination of data and methods that operate over

that data; they are not unique to Java, but they are the primary mechanism by which Java pro-

grammers organize the structure of their programs.

The first thing students see when they start BlueJ is the diagram editor (Figure 3.1). This

view allows them to see the larger, object-oriented structure of their code. In the centre of the

editor is a diagram made up of rectangles (Classes) and any relationships between classes; our

screenshot shows three classes. On the left are four buttons; the bottom button, Compile, is one

of the three ways students can invoke the compiler, and therefore generate the data we use in

our study. At the bottom of the screen is the object bench: here, students can instantiate the code

they have written, and interact with it—this is how students execute, or “run”, their programs.

While simple in it’s design, BlueJ provides many opportunities for students to interact with their

programs via the diagram editor—our study was not concerned with any of these interactions.

If a student double-clicks a class, they are presented with a simple text editor in which they

can write or modify programs. If there is a syntax error in their program (as we have introduced

in Figure 3.2), a student might discover this by pressing the Compile button on this window,

or by pressing the keyboard shortcut for invoking the compiler. As a matter of principle (held

41

CHAPTER 3. INTO THE DATA

Figure 3.1: BlueJ’s Diagram Editor

by those responsible for authoring BlueJ), only one syntax error at a time is presented to the stu-

dent. So, in Figure 3.3, we see how BlueJ reports a ’;’ expected error. The line in question

is highlighted, and an error message is reported in the status bar at the bottom of the editor

window.

Our research was unconcerned with the pedagogic features BlueJ offers regarding the vi-

sualization and interaction with objects; instead, we focused entirely on the compile-edit cycle

that is ubiquitous in the programming world. However, our analysis was greatly simplified by

the fact that BlueJ only reports one syntax error at a time.

42

3.2. BLUEJ AND OBJECTS FIRST WITH JAVA

Figure 3.2: BlueJ’s Text Editor

3.2.2 Objects First with Java

The text used by students in the course modules we studied all made use of the same course

text, which is tightly bound to the BlueJ programming environment—an instructor would be

hard-pressed to use this text without having their students make use of the BlueJ programming

environment. Like BlueJ, the text encourages an objects-first approach to learning to program in

Java. As a course text, it is quite popular; in fact, Objects First with Java was selling 10 copies per

week in January 20063. According to the BlueJ web page, it is used at hundreds of universities

and high schools around the world for introducing students to programming in Java.

Practically speaking, the textbook’s focus on “objects first” means that students are exposed

to concepts in the third chapter of the book that are often reserved for the last few chapters of

other textbooks used in Java programming classes. This means that less time is spent, early

3Based on an Amazon.com sales rank of 24,978 on January 14th, 2006, and information found at
http://www.fonerbooks.com/surfing.htm

43

CHAPTER 3. INTO THE DATA

Figure 3.3: BlueJ reporting a ’;’ expected error.

in the text, on topics that are typically taught to novice programmers: branching constructs

(if/then/else), looping constructs (while, for), and so on. Instead, students begin focusing

on what might be considered architectural concerns: how their programs are organized, and how

different parts of their program might interact, or communicate, with each-other.

While the course text is not directly related to our research, many of the programming as-

signments our students attempted were taken from this textbook. While we cannot give a com-

plete overview of the text here, we will mention two assignments in particular: the notebook

project and the horse race.

The notebook

The notebook project comes directly from chapter four of the course text. We focus on this as-

signment for a number of reasons; the most important reason is that we have the largest amount

of data for this assignment, as every student in both the 2003-2004 and 2004-2005 academic years

44

3.2. BLUEJ AND OBJECTS FIRST WITH JAVA

did the assignment. Second, students attempt the assignment in the first term, allowing us to

examine novice programming behaviour early in the learning process. And lastly, students are

expected to add a minimal amount of code to their program—we can focus our investigation

without having to artificially ignore large sections of code written by the students.

In chapter four of Objects First with Java, students are introduced to the modelling and pro-

gramming task:

We shall model a personal notebook application that has the following basic fea-

tures:

• It allows notes to be stored.

• It has no limit on the number of notes it can store.

• It will show individual notes.

• It will tell us how many notes it is currently storing.

Chapter four and the notebook project bring together concepts from chapter three (objects

referring to, or otherwise containing, other objects) with the use of Java libraries—in particular,

the ArrayList class. Students are given an overview of the code involved (also provided on

the CD in the back of the textbook), and their assignments centre on extending and evolving

this code.

Horse race

The horse race project was new in the 2003-2004 academic year; it was (in hindsight) a decidedly

challenging assignment. Tackled early in the second term of the academic year, this project

involved students modifying, writing, and extending code representing various objects you

might find involved in a horse race: horses, jockeys, and so on.

The students spent large amounts of time on this project, and significant amounts of traffic

were generated on the anonymous question pages. In the data we collected, we have sessions

that are hours long from some students on this project, as they struggled with solving the vari-

ous parts of the problem set by their instructor.

45

CHAPTER 3. INTO THE DATA

3.3 Capturing behaviour

We carried out our observations of novice programming behaviour over a two-year period

spanning the 2003-2004 and 2004-2005 academic years. During that time, only one change was

made to our observation technique, at the midpoint of the 2003-2004 academic year.

3.3.1 The data at a glance

During the Fall of 2003, we observed students when they were programming during a sched-

uled class time. This works out to one, one-hour session per week, which would typically take

place in one of the public computing spaces located within the Computing Laboratory (CC01,

CC02, CC03, or CC04). This resulted in the collection of 3462 pairs of compilation events from

the 62 students who agreed to take part in our study. We report pairs of events because they

are much more interesting than events taken singly, as successive pairs of events allow us to

observe the evolution of a student’s program over time.

In the Spring of 2004, we expanded our observations to include any time they were working

in BlueJ in one of the public computing labs on campus. This means that we captured their

behaviour when interacting with the compiler (through BlueJ) both when they were in class,

and when they were working on their own somewhere on campus; as a result, we captured

7202 compilation pairs during the Spring of 2004. Our human ethics forms for the Fall of 2003

were written to only cover one term, we reissued these forms in the Spring 2004 term, requesting

students to join or otherwise continue to take part in our study. Therefore, we had 56 students

who allowed us to collect data on their compilation behaviour during the Spring term. 31 of the

students from the Fall continued their participation in our study; as a result, we have a relatively

small population for whom we have continuous data over the entire 2003-2004 academic year.

During the 2004-2005 academic year we observed 68 students any time they were engaging

with BlueJ in a public computing laboratory. We continued to limit our observation to times

students were working in campus computing laboratories largely due to the significant tech-

nical and ethical hurdles involved in studying the students’ programming behaviour on their

own machines located “out in the world.” Over the course of the year, we captured 24,852 pairs

of compilation events—more than twice the number captured during the 2003-2004 academic

46

3.3. CAPTURING BEHAVIOUR

year, providing us with a large, contiguous data set for the 68 students who took part in our

study.

3.3.2 Tools for data collection: BlueJ

Our exploration of novice compilation behaviour relied extensively on the frequent, automatic

collection of source code written by students while programming. By some, our methodologies

might be referred to as an on-line protocol[SS86c], as our observations did not rely on a researcher

observing the subject, but instead a computer automatically recording the student’s interactions

with it. In the case of our work, we required a careful orchestration of extensions to BlueJ, CGI

applications on web servers, and databases to make our research possible.

From the students’ perspective, BlueJ is the software that they use for authoring their Java

programs. From our perspective as researchers, BlueJ is a critical component in our research

infrastructure, due entirely to its highly extensible nature. By extensible, we mean that BlueJ

was designed so that individuals could add new functionality without needing to modify the

application itself.

The BlueJ extensions framework, developed at the University of Kent by Damiano Bolla and

Ian Utting, provides developers with a way of responding to a wide variety of events in the user

interface, as well as the ability to extend top-level and contextual menus throughout the envi-

ronment in a controlled manner[BU]. We extended BlueJ’s functionality in a non-visible and

non-invasive way; our data gathering extension sat quietly in the background, and responded

to three classes of event. The first of these events is generated when students press the “Com-

pile” button in BlueJ, or invoke the compiler through a keyboard shortcut. The second class

of events are generated by the compiler itself, and alert us as to whether there was warning or

error related to the students code. The third class of event alerts us as to when the compiler has

completed its work.

Our extension recognizes when the compilation was begun to the nearest millisecond (later

rounded to the nearest second), gathers up the warnings and errors generated during the com-

pilation process, and notes when the compiler finished compiling. We then gather some addi-

tional metadata from the system—the student’s username, the type of operating system they

47

CHAPTER 3. INTO THE DATA

are running on, and the unique network name of the machine they are using. Lastly, we ship

this metadata to a remote server, along with the source code developed by the student.

Granularity

One of the most difficult challenges in developing an on-line protocol is deciding at what level

of granularity, or detail, data collection will occur. For example, Spohrer and Soloway applied

their theory of goals and plans to the first syntactically correct program written by university

students[SS86c]; they chose to ignore the process leading up to this program, as well as any

subsequent revisions made by the student. At the other extreme, the GRUMPs project at the

University of Glasgow explored the practical limits of instrumenting the Java virtual machine,

and captured every event and method call executed by the VM while students were learning

to program in an IDE for Ada written in Java[GMD+04]. This is far below the level of of the

keystroke; the GRUMPs group had to contend with millions upon millions of events. At this

level of granularity, it becomes a project unto itself not only to manage the data, but to mine it

for information relevant to the study.

The choice of triggering our collection of data on the act of compilation was not arbitrary.

From our own experience in teaching novices to program, we have observed that the compiler

is invoked often, sometimes faster than seems possible—if one assumes that students read the

error, examine their code, and consider what is the best or right way to fix their code before

recompiling. Additionally, we have prior experience authoring code submission systems for

use in introductory computing contexts[Jad]. We have observed (indirectly) that some students

will submit an assignment dozens of times—sometimes upwards of eighty and ninety times—

to get feedback from the hand-in system. At the same time, some students would only submit

their code four or five times. This suggests that different students engage very differently in the

process of writing, compiling, and submitting programming homeworks.

Having seen this first-hand, and having spent time in the classroom teaching beginning

programmers with BlueJ, we had a good sense for how much data we would capture using the

compilation event as our key event. Performing some quick “back of the envelope” calculations

indicated that we would have a reasonable amount of data to deal with. Assuming we might

have 100 students “on-line” at any one time, each with two 2K files open, recompiling every

48

3.3. CAPTURING BEHAVIOUR

10 seconds, our web server would be dealing with 600 requests per minute, and the network

would be carrying 1.2 megabytes of data per minute, when it is capable of carrying (at least) 12

megabytes per second. These estimates led us to believe we could have researched a population

many times larger using the same protocols and infrastructure.

In short, we required no special provision, technologically, to carry out this research; we

could have handled a population ten times larger using the same infrastructure, and suffered

no loss of data.

3.3.3 Tools for data collection: WWW

The WWW—in particular, the HyperText Transport Protocol and web servers—provided a crit-

ical bridge between our students writing their programs and the databases in which we would

store our data. In developing the software to support our explorations, it was our intent that

the students being studied could be anywhere in the world, while the servers harvesting that

data might be on the same campus, or might be halfway around the world.

We exploited these properties in replicating the storage of student compilation data; out of

paranoia, we maintained two separate repositories of data, and each compilation event resulted

in a copy of the data being sent to our local repository (at Kent) and a second to a server that

was located on another continent. The reason we could not insert student data directly into

either database was due to the existence of firewalls.

Firewalls take their name from their physical analogue; whereas a real-world firewall is in-

tended to help slow or stop the spread of fire through a building, a firewall on the network is in-

tended to prevent intruders from obtaining access to protected computing resources. Database

servers are typically a resource that a department wishes to protect from arbitrary access. As a

result, we designed our data collection tools to take advantage of network configurations like

that in Figure 3.4, where a web server is exposed to the outside world, and the database server

is exposed to the web server—but not to the Internet at-large.

To exploit this common network architecture, we wrote a script that would run on the web

server, playing a simple, yet critical role. It would accept data from our BlueJ extension over

the HTTP protocol, verify that the data was “reasonable,” and then insert that data into the

49

CHAPTER 3. INTO THE DATA

Figure 3.4: Systems involved in data collection

database. In structuring our data collection this way, we allowed for the future contingency

that both the students we study and the servers used to store our research data might be located

anywhere in the world.

3.3.4 Databases

Our data collection effort involved two tables in a PostgreSQL database4; the metadata, or

metas table, allowed us to answer very simple, but useful, questions about student compila-

tion behaviour in the BlueJ programming environment. The second table collected the specific

errors that were encountered by BlueJ as it compiled each file in a given project.

Metadata

The SQL statement that was used to create the metas table is given in figure 3.5. This statement

is not strict ANSI SQL, although the Postgres-specific extensions it employs have analogues on

4PostgreSQL is a robust, freely available, open-source database server. http://www.postgresql.org/

50

3.3. CAPTURING BEHAVIOUR

all major database servers. In particular, the two data types serial and text are not part of

the ANSI standard. The serial type is an integer type that is guaranteed to be monotonically

increasing for the life of the table; this is a simple way to provide an increasing, unique index.

The second, text, is a character field limited to 2GB when PostgreSQL is running on 32-bit

operating systems.

CREATE TABLE metas (
"index" serial NOT NULL,
uname text,
homedir text,
result integer,
client_start integer,
client_duration integer,
server_receive integer,
ip_address text,
os_name text,
os_arch text,
os_version text

);

Figure 3.5: SQL to create the metas table on a Postgres database server

Many simple but important questions can be addressed with the metadata table alone.

By looking at the result column, we can tell whether the student compiled code that was

error-free (1) or contained a syntax error (0). We can also tell how long the compilation took

(client duration), and what time of day they initiated the compile, using either the system

time on their machine (client start) or the time at the server when the data was sent to the

web server (server receive). With this information, we can also develop a rough sense for

how often students in our sample population pressed the “compile” button in BlueJ.

Errors

The errors table (Figure 3.6) contains one primary key (index) and one foreign key (meta).

As it is possible for multiple errors to be associated with each row in the metas table, the link

from the errors table to the metas table is essential. When students are working on a project

with just one source file, BlueJ will only generate one syntax error at a time. When they have

multiple files in a project, it is possible that each file might contain one or more syntax errors.

51

CHAPTER 3. INTO THE DATA

Therefore, for a project with five files, a single compilation event may generate up to five errors;

the foreign key lets us know which errors resulted from a single compilation event.

CREATE TABLE errors (
"index" serial NOT NULL,
meta integer,
uname text,
etype integer,
etime integer,
emsg text,
eline integer,
fname text,
file text

);

Figure 3.6: SQL to create the errors table on a Postgres database server

In the errors table, the etype takes on one of three values, indicating whether we captured

an error-free compilation event, a warning, or an error. The etime field tells us when this event

was generated on the client. If a warning or error message was generated by the compiler, it

is captured in emsg, and the line number the compiler reported as being erroneous is stored in

eline. The fname is the fully-qualified name of the BlueJ project. Capturing the full path lets

us see if students copied and renamed an existing project (perhaps as a crude type of version

control while exploring an idea); using this information, we could track the original source and

the “branch” produced by the copy, separately.

The last column is the largest and richest in our database: file. This column contains the

full text of the student’s source code at compile-time. Each row contains the complete source

from one class in a BlueJ project. Regardless of whether there was an error present in the code

or not, we obtain a complete snapshot of the student’s work with every compilation event.

3.3.5 Data preparation

Every time a student pressed the “Compile” button in BlueJ, we captured one event in our

metas table, and one or more events in the errors table. While these raw tables could allow us

to answer some questions about student compilation behaviour, we prefer to process this data

before handling, as it provides an input format for our data handling scripts that is guaranteed

52

3.3. CAPTURING BEHAVIOUR

to be self-consistent.

Processing of the metas table

Our data is more usable when processed. The metas table is reduced from its raw form (Fig-

ure 3.5) to a table with fewer columns of interest (Figure 3.7).

CREATE TABLE metas_processed (
index integer,
cindex integer.
session integer,
uname text,
result integer,
client_start integer,
server_receive integer,
hostname text,
host_type text

);

Figure 3.7: SQL to create the processed version of the metas table

Some elements of the table are copied over without processing: index, cindex, result,

client start, sreceive, and hostname. It is important to note that the index column

is not regenerated in the metas processed table, as this value serves as a foreign key to the

errors table.

One of the additions to the table includes the explicit numbering of programming sessions.

We begin by denoting the start of a session as any time that the cindex (or client index in

the raw table) resets itself to zero. The only way this value can be reset is to restart BlueJ. We

use this to denote the beginning of sessions. However, because we cannot tell the difference

between a graceful shutdown of BlueJ and a crash, we merge sessions that begin and end, on

the same machine, less than ten minutes apart into one session. We found that there was no

difference between using a window of three, five, or ten minutes for the purpose of merging

one session into another if they followed rapidly on from one-another.

The uname field is not copied from the metas table to the metas processed table as well.

While we are guaranteed uniqueness within our population, we do not necessarily want to

use that identifier in our own analytic process and/or reporting. Therefore, we obtained a

list of several thousand of the most popular baby names in the USA from the year 2000, and

53

CHAPTER 3. INTO THE DATA

have randomly assigned our subjects names from this list. While a key is maintained (for the

eventual matching up of course marks and other student performance metrics), those keys are

stored separately from the database, and generally play no role in the day-to-day analysis of the

data.

Lastly, the host type is reduced from the three fields in the raw data (os name, os arch,

and os version) to one field that encapsulates all this information. For example, we acknowl-

edge w2k, xp, linux, sun, and macosx as distinct operating system tags. However, the only four

that enter into our research are w2k, xp, linux, and sun, as all of our data comes from the public

computing laboratories. Therefore, they are either using the machine in its standard configura-

tion (running Windows 2000 in 2002-2003, and Windows XP beginning in the summer of 2004),

or they have connected remotely to a machine in the department running Linux or Solaris.

Processing of the errors table

Like the metas table, the errors table is also processed before it is used for analysis (Fig-

ure 3.8). The most important thing we do is copy the meta column directly from the source

table to the new table, as this is our index into the metas (and now metas processed) table.

CREATE TABLE errors_processed (
"index" serial NOT NULL,
meta integer,
session integer,
uname text,
etype integer,
etime integer,
emsg text,
eline integer,
project text,
fname text,
file text

);

Figure 3.8: SQL to create the processed errors table.

The etype, etime, emsg, and eline columns are copied directly from the raw errors

table. The project column is extracted from the file name captured in the errors table, as

it is the only part of the file name we are interested in; it also helps eliminate the possibility

54

3.3. CAPTURING BEHAVIOUR

of keeping a username in our database that might linger in a BlueJ project file-path. Likewise,

the fname gives us the last of the “interesting” information that can be extracted from a full,

canonical file name.

The file column contains the entire program. This code is not sanitized or processed in

any way. As a result, our programs may contain a student’s name in the comments. While we

tend to focus on the portion of the document containing errors—the majority of our data could

safely be placed on the web for download by other researchers interested in our work, except

for the file column. The file column is, from a human ethics perspective, unsafe for general

distribution. As a result, we have no immediate plans for attempting to release this data for

other researchers to utilise.

Handling student source code

Traditionally, program code has been represented in the American Standard Code for Informa-

tion Interchange (ASCII) character set. This 7-bit standard allowed the representation of 128

distinct characters on terminals and in print; this standard later evolved to a full 8-bit character

set, allowing for 256 distinct characters. This isn’t a significant problem for the English lan-

guage, as the alphabet only has 26 characters (52 counting upper and lowercase), ten digits, and

approximately 28 characters representing punctuation, white space, and so on. Add in a hand-

ful of control characters (newline, carriage return), and it becomes apparent that even ASCII

had space left over for odd widgets, control codes for changing terminal colour, all outside of

the subset necessary for writing in the English language.

The ASCII character set has always been a problem for languages with significantly larger al-

phabets; for example, Mandarin, Thai, Japanese, and other languages have alphabets consisting

of thousands of unique characters. The Unicode standard5 proposed expanding the representa-

tion of characters from 8 bits to 16 bits, allowing for the unique representation of 65,536 items.

Furthermore, the standard allows for the composition of characters, meaning that accents and

other typographic decorations can be added to base characters as a combination of one or more

Unicode “code points.”

The default text editors shipped with BlueJ 1.3, 1.3.5, and 2.0 are Unicode text editors. This

5http://unicode.org

55

CHAPTER 3. INTO THE DATA

means that it is possible, intentionally or otherwise, for students to enter characters into their

programs that are outside of the standard ASCII character set. This is not a problem if every

link in our data collection process is capable of handling Unicode.

Figure 3.9: Collecting Unicode data requires careful consideration during data collection.

Figure 3.9 outlines some of the critical steps involved in handling Unicode text when devel-

oping an on-line protocol like the one employed in our own research.

The first, critical step is the export of data from BlueJ to the web server (Figure 3.9, #1).

BlueJ is written in Java; internally, BlueJ has no trouble working with Unicode characters in

its programs. Likewise, our data collection extension to BlueJ can easily extract the complete

56

3.3. CAPTURING BEHAVIOUR

source for a student’s program—but this data must be shipped over the Internet to the web

server. In particular, it is shipped as an HTTP POST to a CGI application (Common Gateway

Interface, or in other words, an application running on a server) . The protocol allows for the

transport of Unicode character data; our initial solution for shipping data over the network

involved no translation of characters, and instead shipped the students’ source directly to the

CGI application. As a result, the Java classes used for making the HTTP POST silently encoded

any Unicode characters found into entities of the form 水 (this happens to be the Chinese

character for “water”).

Along with much of our data processing code, our CGIs were written in the programming

language Scheme, using the freely available and open-source PLT implementation of the lan-

guage[Fla05]. While our intermediary CGI application was incapable of handling Unicode char-

acters, this did not effect us during our first semester of data collection. Our Scheme code did

not convert the Unicode characters from their HTML entity representation into Unicode code

points; instead, it processed them as ASCII text, and inserted the HTML entity representation

directly into the database (Figure 3.9, #2). Likewise, our database was not prepared to handle

Unicode data—but we were able to easily store the HTML entities in the UTF-8 character set

employed by our Postgres database.

During our first semester of data collection, we noticed nothing problematic about our data

collection. It is true that any accented characters in a student’s code—like an ö, for example—

would be converted to ö. Fortunately, this does not effect any of our analyses. If we were

interested in re-executing our students’ code, we would need to take steps to process and repair

these files. This is something that has not been critical to our analysis, and these problems were

dealt with in the second semester of data collection and the 2004-2005 academic year.

Looking forward, we can take several steps to handle Unicode properly in the future. First,

our data collection extension to BlueJ can perform its HTTP POST in the Unicode character

set. Updating our web server (that executes our collection CGI applications) to Apache 2.0

provides a web server that is capable of handling Unicode. Likewise, updating our Scheme

CGI applications to run on version 300+ of mzscheme will give us a Scheme runtime that is

fully Unicode-aware. Lastly, our Postgres tables can be updated to the Unicode character set;

this way, we can eliminate any conversion between character sets, and keep the students’ source

57

CHAPTER 3. INTO THE DATA

code in its native state from the start of the process all the way through the process of analysis.

3.4 Aggregate compilation behaviour

The infrastructure we built for collecting data regarding novice compilation behaviour is ca-

pable of harvesting large amounts of information over a long period of time with little or no

intervention on the researcher’s part. While we have found that the most interesting stories

come from the in-depth study of individuals, looking at this data in the aggregate helps us

understand the larger trends in our population’s behaviour.

We collected data on 87 unique subjects during the 2003-2004 academic year (some of whom

we only obtained data for the Fall term, and some only the Spring term), and 68 subjects

throughout the 2004-2005 academic year. We captured 10,664 pairs of compilations in 2003-

2004, and 24,852 pairs in 2004-2005. While each compilation has a unique context, the aggregate

compilation behaviour of our students is consistent from one year (and one population) to the

next.

3.4.1 Time between compilations

A notion of time and frequency of compilation is implicit in the unfair declaration that helped

motivate our studies: “Our students aren’t thinking! They’re letting the compiler do their think-

ing for them!” It was interesting to us how much time students spent working on their programs

between one compilation and the next. While we knew from our experiences in the classroom

that students were prone to recompiling their code quickly, we were surprised by just how

quickly, and how often, they would reach for the “Compile” button.

Figure 3.10 summarizes the time students spent working on their code between compilations

for the 2003-2004 and 2004-2005 academic years. Reading this chart, we can see that 19% of all

compilations captured during the 2003-2004 academic year took place less than 10 seconds after

the previous compilation. Of all compilations recorded during that year, 17% were between 11

and 20 seconds after the previous compilation. The right-most “bin” in this figure shows the

proportion of compilation events that were separated by a time of 2 or more minutes. The 2004-

2005 academic year does not differ significantly from the 2003-2004 academic year; however,

58

3.4. AGGREGATE COMPILATION BEHAVIOUR

Time between compilations

0%

5%

10%

15%

20%

25%

30%

10 20 30 40 50 60 70 80 90 100 110 120 600

10 second bins

P
e
rc

e
n

t
o

f
a
ll
 c

o
m

p
il
a
ti

o
n

s

03/04
04/05

Figure 3.10: The percentage of compilations taking place in a given 10-second window for all
compilations recorded during the 2003-2004 and 2004-2005 academic years.

we do think it is striking that 24% of all compilation events captured during the 2004-2005 year

followed less than 10 seconds after a previous compilation.

These histograms tell us the same thing about both years: more than half of all compilation

events occurred less than 40 seconds after the previous compilation. This tells us that our stu-

dents are spending very little time between compilations examining their code, and work very

quickly to add, remove, or modify their program between one compilation and the next. And

while the leading edge of this distribution implies an exponential distribution, student compi-

lation behaviour past the two-minute mark clearly indicates that it is not: roughly 22% of all

compilations took place two more more minutes after the previous compilation. A simpler way

to describe this behaviour might be to simply say that “a lot” of compilations follow quickly on

from the previous compilation.

At first glance, this long tail is not particularly interesting to us, save to point out that student

compilation behaviour is not following a typical, exponential probability distribution. Averag-

ing over all of our data, we can look at the percentage of compilations that fell into any given

59

CHAPTER 3. INTO THE DATA

Time between compilations

0%

5%

10%

15%

20%

25%

10 40 70 10
0
13
0
16
0
19
0
22
0
25
0
28
0
31
0
34
0
37
0
40
0
43
0
46
0
49
0
52
0
55
0
58
0

10 second bins

P
e
rc

e
n

t
o

f
a
ll

 c
o

m
p

il
a
ti

o
n

s

Figure 3.11: The percentage of compilations taking place in a given 10-second window for all
compilations recorded in our study.

bin from 10 seconds up through 10 minutes (Figure 3.11). More interestingly, we can compute

the continuous probability distribution of this data (Figure 3.12), and see that there is interesting

behaviour taking place past the 2-minute mark that cannot be predicted by a crude, statistical

model. Were this a strictly exponential distribution, the continuous distribution function would

reach a limit (and the number of student compilations reach zero) early in the tail.

Exploring this long tail further, we can break each pair of compilation events into one of four

“classes,” based on whether the pair began with a syntax error (F) or from syntactically-correct

code (T), and whether the student’s changes yielded erroneous code (F) or error-free (T) code.

Figures 3.13 and 3.14 capture this trend over time.

Both of these charts tell the same story: students spend more time working on their code

after an error-free compilation (having eliminated all the syntax errors from their program)

than when they are trying to fix a current syntax error. For example, looking at the “F→F”

and “F→T” classes, these represent all the compilation pairs that began with code containing

a syntax error. The student would not necessarily know if they had fixed the last error in their

60

3.4. AGGREGATE COMPILATION BEHAVIOUR

Time between compilations (CDF)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1
0

4
0

7
0

1
0
0

1
3
0

1
6
0

1
9
0

2
2
0

2
5
0

2
8
0

3
1
0

3
4
0

3
7
0

4
0
0

4
3
0

4
6
0

4
9
0

5
2
0

5
5
0

5
8
0

10 second bins

C
D

F
(P

e
rc

e
n

ta
g

e
 o

f
co

m
p

il
a
ti

o
n

s)

Figure 3.12: Continuous distribution function for the timing distribution of all compilation
events recorded in our study.

Time between compilations, 2003-2004

0%

10%

20%

30%

40%

50%

60%

70%

10 20 30 40 50 60 70 80 90 100 110 120 600

bins, 10-second intervals

%
 c

o
m

p
il

a
ti

o
n

s
in

 c
la

ss

F->F
F->T
T->F
T->T

Figure 3.13: Time between compilations 2003/2004, considering whether the student was work-
ing from a syntax error (F) or syntactically correct code (T), and how the compilation ended
(error = F, correct = T).

61

CHAPTER 3. INTO THE DATA

Time between compilations, 2004-2005

0%

10%

20%

30%

40%

50%

60%

70%

10 20 30 40 50 60 70 80 90 100 110 120 600

bins, 10-second intervals

%
 c

o
m

p
il

a
ti

o
n

s
in

 c
la

ss

F->F
F->T
T->F
T->T

Figure 3.14: Time between compilations 2004/2005, considering whether the student was work-
ing from a syntax error (F) or syntactically correct code (T), and how the compilation ended
(error = F, correct = T).

code at the time they press the compilation button, so we can easily see that more than 50% of all

compilations beginning with a syntax error account for compilations that took place less than

20 seconds after the previous compilation. Stated more simply, if the student was correcting a

syntax error, there was a greater-than-50% chance they would recompile their program in less

than 20 seconds. Similarly, if the student was working on code that was syntactically correct,

there was a better than 50% chance that they would spend at least 2 minutes working on it,

possibly more.

From our observations, both in the classroom and through careful document analysis, it

is clear that many students write significant amounts of code (10+ lines) at a time, and then

attempt to eliminate all the syntactic errors that exist in the code. For example, the following

piece of code has more than ten errors in it... or more than one error per line of code.

62

3.4. AGGREGATE COMPILATION BEHAVIOUR

001 int largestValue() {

002 Iterator it = ls. iterator();

003 int temp = 0

004 while (it hasNext()) {

005 Integer intTmp =(Integer) it.next:

006 int num = intTmp. intValue ();

007 if(num >temp); temp = num;{

008 return temp;

009 }

010 }

Perhaps the most disturbing sequence of errors are on lines seven and eight; the code is syn-

tactically correct. Unfortunately, it is far from semantically correct. So while a student may spend

several minutes writing code like this, they will then spend at least as many, if not more min-

utes, attempting to fix the syntax errors. For many of the students in our study, it is unlikely

that they can successfully correct these errors given the output of the compiler—that is, it is

doubtful the compiler will be helpful enough to actually guide them in fixing all the problems

in their programs.

It is code like this that tends to drive us away from coming up with abstract models that

might explain the aggregate behaviour of our students. Our aggregate data suggests that stu-

dents tend to write their programs in large blocks, and then spend significant amounts of time,

in very small bursts, attempting to fix the syntax errors that exist in that code. In section 3.6,

we look closely at the behaviours of our students as expressed by the code they write. While

time-consuming, we found this analysis to be very enlightening.

3.4.2 Syntax errors: type and distribution

Students tend to recompile their programs quickly when it contains a syntax error, and are

likely to spend a significant amount of time working on their code when it is error-free. The

next question is quite simple: what kinds of syntax errors are the students typically dealing

with?

63

CHAPTER 3. INTO THE DATA

Across the entire corpus, we found that 55% of all compilations ended in a syntax error.

We currently recognise 85 different types of syntax error, all of which occur with varying fre-

quency in our data. (A complete table of all syntax errors encountered, and their frequency

of appearance, can be found in Appendix B.) Interestingly, the majority of these errors come

from a minority of the error types; in [Jad05], we presented this data for the Fall 2003 semester

only; we now have data regarding the distribution of syntax errors encountered by our students

throughout of the 2003-2004 and 2004-2005 academic years.

Syntax errors in 2003-2004

In Figure 3.15, we can see the most common syntax errors encountered by students during the

2003-2004 academic year. The most common error encountered by students in our introductory

programming class during the first year of our observation was the error “unknown symbol,”

and in particular in an identifier, or variable position. When the Java compiler reports this error,

it is saying that the programmer has used an identifier that has not been previously declared;

what this means is that the student has likely done one of four things:

1. The student may have misspelled a variable name; for example, they might have declared

foo, but spelled it fop in the body of their code.

2. The student failed to capitalize a variable correctly, perhaps by declaring a variable Foo,

but using it in their code as foo.

3. The student used a variable name, but actually declared something else—for example,

declaring Foo, and then uses Bar in their code.

4. The student used a variable without declaring it.

Ultimately, we are interested in how often students fail to correct a given syntax error. For

example, if they have declared a field of a class as

int Foo;

and attempt to initialize it in the constructor by writing

foo = 3;

64

3.4. AGGREGATE COMPILATION BEHAVIOUR

Common syntax errors, 03/04

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

un
kn

ow
n
va

ria
bl
e

se
m
ico

lo
n

br
ac

ke
t e

xp
ec

te
d

un
kn

ow
n
m
et
ho

d

m
et
ho

d
ap

pl
ica

tio
n
er

ro
r

ille
ga

l s
ta
rt

of
 e
xp

re
ss

io
n

un
kn

ow
n
cla

ss

id
en

tif
ie
r e

xp
ec

te
d

in
co

m
pa

tib
le
 ty

pe
s

cla
ss

 o
r i

nt
er

fa
ce

 e
xp

ec
te
d

Error type

P
e
rc

e
n

ta
g

e
 o

f
a
ll
 e

rr
o

rs

Figure 3.15: Common syntax errors in 2003-2004

the compiler will report Unknown symbol: variable ‘foo’. Now, if they make a

change like

foo = 5;

as a result of this error, we would say that they failed to correct the syntax error once; if

the error persists after another compilation, then they have failed to fix this capitalization error

twice in a row.

Conducting an automatic analysis of all programs written by students during the 2003-2004

academic year, 45% of all “unknown symbol: variable” errors were corrected immediately.

Looking across all programs, written by all students, this particular syntax error occurs 883

times; 399 of these occurrences are fixed immediately (the error does not persist). 16% of the time

students encountered this error, it took two compilations to fix the error; 9% of the time it took

three recompilations.

This tells us that this particular error—the most commonly encountered error by students

during the 2003-2004 academic year—is typically fixed in a small number of recompilations. In-

terestingly, the three most common syntax errors encountered by students during the 2003-2004

65

CHAPTER 3. INTO THE DATA

year—unknown symbol: variable, semicolon expected errors, and bracketing problems—

are all fixed in one compilation roughly half the time they are encountered. Between 15% and

20% of the remaining occurrences are fixed in two compilations, roughly 10% of all occurrences

require three recompilations for the student to correct the error. This is in contrast to the “illegal

start of expression” error that clearly challenges many students, as only 33% of the times this

error is encountered is it corrected immediately. Far more often students must wrestle with the

error over two, three, or more compilations.

Appendix D includes a complete set of tables for our error repetition analysis for both the

2003-2004 and 2004-2005 academic years. The variation in repetition rates may imply that some

errors are “harder” for students to fix than others. While the three most commonly encountered

errors tend to be corrected immediately half of the time they are encountered, some errors (like

illegal start of expression) clearly persist longer when encountered by novices.

Syntax errors in 2004-2005

During the 2004-2005 academic year, we collected twice as many compilation events as in the

previous academic year, but the distribution of error types remained remarkably similar. Of the

ten syntax errors that were most common during the 2003-2004 year, eight of them reappeared

during the 2004-2005 academic year (Figure 3.16).

Unlike the previous year, two of the three most common errors in the 2004-2005 academic

year have to do with the spelling/naming of identifiers in the language. Both the introduction

of unknown variables (the most common error, responsible for 18% of all syntax errors encoun-

tered by students) and methods (10% of all errors) are very similar in nature. This is not entirely

surprising; compiler research of the 1960’s and 1970’s is full of references and research regard-

ing the automatic correction of spelling errors in programs[Mor70]. Unfortunately, it is only in

professional development environments like Microsoft’s Visual Studio or the open-source edi-

tor Eclipse that we see utilities integrated for the correction of spelling, despite spelling-related

errors accounting for (up to) 28% of all syntax errors in our student population during the 2004-

2005 academic year.

66

3.4. AGGREGATE COMPILATION BEHAVIOUR

Common syntax errors, 04/05

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

un
kn

ow
n
va

ria
bl
e

br
ac

ke
t e

xp
ec

te
d

un
kn

ow
n
m
et
ho

d

se
m
ico

lo
n

ille
ga

l s
ta
rt

of
 e
xp

re
ss

io
n

un
kn

ow
n
cla

ss

in
co

m
pa

tib
le
 ty

pe
s

pr
iva

te
 a
cc

es
s
vi
ol
at
io
n

m
iss

in
g
re

tu
rn

m
et
ho

d
ap

pl
ica

tio
n
er

ro
r

Error type

P
e
rc

e
n

ta
g

e
 o

f
a
ll
 e

rr
o

rs

Figure 3.16: Common syntax errors in 2004-2005

Syntax Errors, 2003→2005

The same types of syntax errors dominated both the 2003-2004 and 2004-2005 academic years.

Figure 3.17 combines the top ten from both years of our study, and charts them side-by-

side. A two-sample Kolmogorov-Smirnov test indicates that these two distributions are nearly

identical (D = 0.27, p = 0.83)[Dal02]. This is good; the populations we observed over the course

of two successive years tended to hit the same syntax errors with the same relative frequency. It

is possible that we might even find the correlation would improve if we were to acknowledge

superclasses of these syntactic errors. For example, “unknown X” errors (where X is either a

variable, method, or class name) might all be classed as syntactic errors stemming from some

sort of spelling error. Likewise, semicolon and bracketing errors might be grouped into a class

of errors denoting syntactic delimiters. However, such groupings would not change the fact

that the students in our study wrestled with the same kinds of errors from one year to the next.

67

CHAPTER 3. INTO THE DATA

Most common errors, 03/04 & 04/05

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

un
kn

ow
n
va

ria
bl
e

se
m
ico

lo
n

br
ac

ke
t e

xp
ec

te
d

un
kn

ow
n
m
et
ho

d

m
et
ho

d
ap

pl
ica

tio
n
er

ro
r

ille
ga

l s
ta
rt

of
 e
xp

re
ss

io
n

un
kn

ow
n
cla

ss

id
en

tif
ie
r e

xp
ec

te
d

in
co

m
pa

tib
le
 ty

pe
s

cla
ss

 o
r i

nt
er

fa
ce

 e
xp

ec
te
d

pr
iva

te
 a
cc

es
s
vi
ol
at
io
n

m
iss

in
g
re

tu
rn

Error type

P
e
rc

e
n

ta
g

e
 o

f
a
ll
 e

rr
o

rs
03/04
04/05

Figure 3.17: Common error rates in both 2003-2004 and 2004-2005.

Frequency of nine most common error types
in 6 different programming languages

0%

10%

20%

30%

40%

50%

60%

Common Rare

Commonality of error type

F
re

q
u

e
n

cy

Helium

SOLO

LOGO

DITRAN

BlueJ

COBOL

Figure 3.18: Distribution of common syntax errors in nine languages

68

3.4. AGGREGATE COMPILATION BEHAVIOUR

Error distribution across languages

In the course of our research, we did find some data similar to that we are presenting here re-

garding syntactic errors encountered by our students during their first year of studying the Java

programming language. Often reported as part of a larger investigation, this data is difficult to

find, but interesting when brought together in one place.

Across six languages and/or environments, we found that the most common syntax errors

followed a similar distribution (Figure 3.18). Helium (a pedagogic Haskell environment) was

the most extreme example of this kind of distribution, as 50% of all syntax errors encountered

by students using it were of one type. Given the nature of Haskell, we suspect that a refinement

of the “type error” would bring this distribution more into line with the other languages. The

BlueJ data presented in this chart is based on our Fall 2003 data (which does not differ signifi-

cantly from either the 2003-2004 or 2004-2005 data); it is almost identical to the data presented

in 1976 regarding syntax error rates from students studying COBOL[LD76].

Each of these error types is different; there isn’t any particular relation that we can find

between the classes of syntactic error captured in each of these languages. For example, the most

common error we captured from students programming in Java using BlueJ is quite different

from the type errors that were most prominent in students using Helium, and likewise very

different from the kinds of errors observed in students using DITRAN or LOGO. While we have

no way of evaluating why this distribution seems to play itself out over so many languages, we

can easily posit two possible reasons: the programmer, and the grammar. If it is a result of the

behaviour of the novice programmer, then that might support some notion that the students

in our own study are quite similar from one year to the next, as well as being similar to other

novices learning other languages. This is not unreasonable, in its own way, but we have little

data to support a conclusion along these lines.

It is also possible that these distributions are inherent in grammars of the languages we

program in. For example, there are many points where the Java compiler can fail a parse and

throw a ; expected error. In fact, it is difficult to find points in the grammar where the com-

piler won’t complain about a semicolon expected; it is a prominent terminal throughout the

language. Likewise, if you assume programmers are prone to making spelling and capitaliza-

69

CHAPTER 3. INTO THE DATA

tion errors, there are countless places where a variable, method, or class name can be spelled

incorrectly.

3.5 Visualizing the data

Presented in this section are a series of small vignettes, each exemplifying the compilation be-

haviour of students that we have observed. These vignettes focus on the programs written by

the students, and how they evolved those programs over time. Making sense of these programs

is a challenging task; it is easy to get lost from one compilation to the next. Trying to develop

a “larger picture” of what a student is doing over five, ten, fifteen, or more successive edits

becomes even more difficult.

3.5.1 Reading code: a grounded document analysis

Our single largest source of data regarding the students in our study are the programs they

wrote. The easily quantifiable data we captured—the number of compilations they generated,

the time between them, and so on—do not provide us with enough information to come to

any kind of deep, or meaningful, understanding of an individual student and their program-

ming behaviour. The programs they wrote, especially captured at each compilation, provide a

“window” into a dynamic process that has otherwise been invisible to us as educators in the

past.

Grounded theory

There are two broad ways to approach to the process of extracting meaning from the programs

written by the students who took part in our study. One would be to take an existing theory

of novice programmers, and through that focusing lens, study the programs they wrote and

how those programs evolved over time. For example, we might begin with a notion of goals

and plans as put forward by Spohrer and Soloway[SS86b, SS86a]. As this theory was origi-

nally put forward as a way of characterising the semantic errors students made while program-

ming, we would be forced to reinterpret it in the light of our continuously evolving picture of

70

3.5. VISUALIZING THE DATA

a student’s program over time. We might also begin with Richard Mayer’s work on novices

learning to program in BASIC, and his theories regarding the psychology of novice program-

mers[May81, BM83, MDV86]. Or, we could employ the Cognitive Dimensions framework, and

attempt to characterise the difficulty, diffuseness, viscosity, and so on, of the constructs students

were writing (or attempting to write) in Java at the point of each syntax error[Gre89b].

Each of these approaches would have been valid, and may still be carried out on the doc-

uments we have available—using theory as a focusing lens for understanding complex data

is a reasonable technique. We felt that a grounded theoretic approach was more appropri-

ate. Grounded theory was put forward by Glaser and Strauss in the late 1960’s as way to ap-

proach complex, qualitative datasets and let the data guide the development of theory[GS67].

In essence, it is a theoretical framework that casts the researcher in the role of building new

theories, where those theories are based entirely on the researcher’s experiences in the field,

interacting with artefacts, and so on.

Glaser and Strauss eventually parted ways over what they believed/interpreted grounded

theory to really mean. Strauss and Corbin later wrote Basics of qualitative research in an attempt to

set the record straight as to what they believed grounded theoretic work to truly mean[SC90].

Indeed, this debate rages on today throughout the qualitative research community. Piantanida,

Tananis, and Grubs captured this debate in their article “Generating Grounded Theory of/for

Educational Practice: The Journey of Three Epistemorphs”[PTG04].In it, they describe their

experiences as qualitative educational researchers, seeking to find an epistemological haven for

discussing, describing, and carrying out qualitative research in the educational arena. We can

relate to their story as cross-disciplinary researchers; we want to make sound methodological

choices without becoming lost in several decades of methodological debate.

Ultimately, our approach was most true to the early descriptions of grounded theoretic work

put forward by Glaser and Strauss[GS67]. Our primary source of data was the distributed col-

lection of programs students wrote using BlueJ. Our initial explorations attempted to charac-

terise this data; for example, we read through all of the five most common errors captured in

2004-2005 in an attempt to categorise possible interpretations of the syntax errors reported in a

given context. As we became more comfortable with our data, this coding became less inter-

esting, as we were led towards a more in-depth reading of programs on a student-by-student

71

CHAPTER 3. INTO THE DATA

basis.

A document analysis

A grounded theoretic approach to analysing our data involved working to annotate and doc-

ument the dynamic process of making sense of our data and constantly reflecting new under-

standing back into our research. While we employed some limited, live observation of students

in our study, this was not our primary tool for data gathering and sense-making; we were in-

terested, first and foremost, in the programs written by our students.

The analysis of documents is a powerful tool for looking back in time when conducting re-

search. They transcend, or otherwise “freeze” time, allowing us to look back at what students

were doing at any given moment with great clarity[DL05]. Likewise, it is exact (unlike notes

from direct observation), and can be interpreted qualitatively or quantitatively as the content

allows; in the case of the programs written by students in our study, we have done both. How-

ever, as Yin points out, we face problems of biased selectivity; the data itself is incomplete in

places, and we as researchers may be selecting “interesting” or otherwise “limiting” documents

in our analysis that would otherwise unduly influence the process of sense-making and theory

building that we are engaging in[Yin03]. We believe that our mixed qualitative and quantitative

approach has provided us with some degree of protection from unnecessary bias in our work.

We discuss the tools and techniques that have helped us keep sight of the “bigger picture” in

our analysis, as well as the details, in Chapter 4.

Our deeper readings of individual sessions had us searching for differences between subse-

quent compilations in a given session, and then evaluating the changes students were making

in the immediate and larger context of their program and the assignment it related to. Through

an ongoing “sense-making” process, our initial goal was to identify compilation behaviours

that appeared to be common across students in the population.

We began to see some patterns; for example, it is common for students to guess at the name

of object methods. When presented with an ArrayList, how does one find the number of ele-

ments in it? Is it the object member variable array.length? By invoking array.length()?

Perhaps it is array.size()? We’ve called this “guess the method”; many students seem

happy to guess at method names instead of looking them up in the documentation. Likewise,

72

3.5. VISUALIZING THE DATA

“remove the error” is popular as well; when faced with an error that seems resistant to all of

the student’s best efforts, it is not uncommon to see them comment out or completely remove

code that is problematic. Sometimes they reintroduce the code—sometimes they don’t.

As interesting as these small behaviours were, we were making slow progress through the

entire data set; with 42,000 pairs of files to examine over many hundreds of sessions, we needed

a better way to take an entire session in at a glance. We needed a way of visualizing a single

session that would allow us to quickly address many of these questions:

• Were there any large edits in the session?

– Did they add, or remove, a large piece of code?

– Was their edit at the beginning of a session, or the end?

– Was it “idempotent”? (E.g. They removed the code, and then inserted the code again

later?)

• Were there any long edits, where a significant amount of time passed?

• Were there any particularly problematic syntax errors?

– What was the error?

– Where in the code?

– How many times did it occur in sequence?

– How much time was spent working on that error?

– Did the student fix it, or remove it?

– Did the student work on other code while the error persisted?

• Did the student focus their effort on one part of the program only? Or, were their edits

scattered throughout their program over the course of the session?

These are the kinds of questions that we found were interesting to ask when presented with a

new session. As stated before, finding answers to these questions by working backwards from

the source code was a difficult task—reading syntactically incorrect code, attempting to infer

intention, and answer complex questions about the structure of the code was taxing. For this

73

CHAPTER 3. INTO THE DATA

reason, we developed a way of visualizing a single session that would answer these questions

for us.

Table 3.3 is an example of the tabular representation that we now work with when we begin

exploring any given student’s programming session. We begin with some basic metadata that

helps orient us as to where the student is in the term. The date, project, and file name all tell us

where in the syllabus the student is, so we have a rough idea of what concepts they should or

should not be attempting to master at that point in time. It also gives us a sense for whether a

particular syntactic construction might be new, as we can look at Objects First with Java and see if

the syntax in question was being newly introduced in the assignment the student was working

on. We can also tell at a glance the duration of the student’s programming session in BlueJ.

This metadata is useful for quickly orienting us on when and where the student was work-

ing, but it is the following table that helps us see how a student spent their time during the

session. Each row in the table represents the change between a pair of consecutive compilation

events. Taken singly, each column tells a story. From left-to-right, the columns in the table are:

Err Type The error type column tells us two things. First, we can see if a particular compilation

pair was successful, implying the compilation was error-free. If it was, we have denoted

this with a ?. More commonly, we find a number. This number provides a unique index

into our table of recognized syntax errors (Appendix B). We have applied colour to this

table to make it easier to see the repetition of syntax errors. In our example, Louis was

clearly stuck on error type #8 (“Class or interface expected”). Even if we don’t look up

what error type #8 is, we can see at a glance the large swath of blue that dominates the

error type column in this session.

∆T We know the amount of time (in seconds) that passed between compilations; in our visual

overview, we have further reduced this to five bins: 0-10 seconds, 20-30 seconds, 30-60

seconds, 60-120 seconds, and more than two minutes. This provides us with a summary

of which compilations were quick and reflexive, and which were the result of (possibly)

more thought and work on the student’s part.

∆Ch How many characters were added or removed from one compilation to the next? This

gives us a sense for the magnitude of the change. A single character might mean the

74

3.5. VISUALIZING THE DATA

addition of a semicolon; two characters might mean they commented out a single line.

The addition of 20-50 lines might mean a new method was written. One to two hundred

characters might mean a cut or paste operation was performed. Also, we can “see” when

a student has likely removed and added a line or lines to their program; if we look at

compilations 10, 11, and 12 in this particular session, we see that Louis removed thirteen

characters from his program (which resulted in a successful compilation), he added thir-

teen characters in (resulting in a syntax error), and then he removed thirteen characters

again. While we do not know if those were necessarily the same characters, we can now

dive into the code at that point and investigate further.

Location The location column represents the extent of a student’s program file: the left side of

the column is the start of the document, and the right side of the column represents the

furthest point a student edited their program. Implicit in this column is a notion of time:

the pink rectangle tells us where a syntax error was reported coming into a particular edit,

while the black dots tell us where the student edited in response to those syntax errors. If

we look at the first compilation in the table, Louis began with a syntax error reported near

the end of his program; he added one character to his program on the same line as the syntax

error. It is not often that we are interested in any one particular compilation when reading

this column; instead, we tend to read the column as if it were an unrolled filmstrip. We

can see, over time (from one compilation to the next) where the errors were in a student’s

program, as well as where they edited their code in response to those errors. As we can

see from Louis’s errors and edits, his attention was focused on the same few lines of code

for the majority of the session.

3.5.2 Digging deeper

With a tabular representation of a novice’s compilation session, we can, at a glance, tell how

many times they were successful in removing all the syntax errors from their program, how

much time (generally speaking) they spent working on their code between compilations, how

many characters they added or removed, and most importantly, where their attention was prob-

ably focused over the course of the session. None of these measures are terribly precise; for

75

CHAPTER 3. INTO THE DATA

example, when a student takes 10 minutes between one compilation and the next, they add one

character, and fail to fix a syntax error, we do not know where their attention was focused dur-

ing that entire ten minutes. However, the table provides an overview of the session that would

otherwise be very difficult to build up simply by reading the students source code from one

compilation to the next.

Our exploration of students’ interactions with the compiler provides a basis for future work

exploring further interactions with the BlueJ IDE. For example, from compilation 4 through 9,

it is not possible for Louis to have tested or otherwise executed his program. Why? Because

the code was never error free. It is not uncommon to see sessions where fifteen, twenty, or

more minutes go by where the code is never devoid of syntax errors. This means a student

is spending large amounts of time wrestling with syntax errors, not the assignment at hand.

And it certainly means they are not in an edit-compile-test cycle, but instead are engaging in an

edit-compile-edit cycle that is, perhaps, less instructive in the long run.

3.6 Vignettes

To help the reader develop a sense for the depth and richness of the data we have captured,

we present a series of vignettes, each of which walks through one programming session of one

student. Each vignette illustrates trends we have observed throughout the population; each

vignette is also representative of a class, or category, of students in our population. Some of the

vignettes we have focused on were found through the careful reading of source code. Others

were found by reading through our tabular representations, looking for what looked like a

problematic or otherwise interesting session.

Each of the vignettes described here captures a sequence of edits made on an assignment

from chapter three of Objects First with Java. This assignment involves writing code to insert

and remove pages from a virtual Notebook; in working on this project, students combine their

knowledge of how to define classes of their own definition with lists of data.

76

3.6. VIGNETTES

Table 3.3: Louis, Session 2

Project: weblog-analyzer File: LogAnalyzer.java
Duration: 33m19s Error Rate: 0.25
Date: Thursday, November 6th, 2003 11:13am

Err Type ∆T ∆Ch Location

1 8 1 t
2 8 -1 t
3 ? 21 tt
4 8 -20 tt
5 8 -9 tt
6 8 12 t
7 8 0

8 8 -16 tt
9 8 33 t

10 ? -13 tt
11 8 13 tt
12 ? -13 tt
13 ? 0

14 ? 0

15 ? 4 t
16 4 -25 tt
17 ? -8 tt
18 ? 14 t

77

CHAPTER 3. INTO THE DATA

3.6.1 Neville: running in place

The first student we will examine in-depth is Neville, and he struggled a great deal with syntax

errors. The code we will examine represents two-thirds of one session, captured in October of

2004. Specifically, we will examine the first 30 minutes of a 45-minute programming session,

during which time almost all of Neville’s efforts are focused on just a few lines of code.

From the start of the session to the first compilation, Neville added nine lines of code to his

program. Specifically, he wrote the removeNote method in its entirety.

059 //A class to remove a note

060 public void removeNote(int noteNumber)

061 {

062 if(noteNumber < 0) {

063 // This is not a valid note number, so do nothing.

064 }

065 else if(noteNumber < numberOfNotes()) {

066 notes.remove(noteNumber)

067 }

068 }

This particular addition of code is just one snapshot that is part of an otherwise long and

complex process. We have attempted to capture some of that process in this this chapter by

presenting code fragments in pairs. On the left, we will present the state of a student’s program

before one compilation, and on the right, the changes they made in the time before the next

compilation. Due to the constraints of the page, we will occasionally have to stack these Before

and After pairs on top of each-other.

For example, after the first compilation, Neville edited his code for five seconds, and then

compiled his code again; in those five seconds, he made one small edit—he added a semicolon

to line 66 of his program.

78

3.6. VIGNETTES

Before

059 //A class to remove a note

060 public void removeNote(int noteNumber)

061 {

062 if(noteNumber < 0) {

063 // This is not a valid note number, so do nothing.

064 }

065 else if(noteNumber < numberOfNotes()) {

066 notes.remove(noteNumber)

067 }

068 }

After

059 //A class to remove a note

060 public void removeNote(int noteNumber)

061 {

062 if(noteNumber < 0) {

063 // This is not a valid note number, so do nothing.

064 }

065 else if(noteNumber < numberOfNotes()) {

066 notes.remove(noteNumber);

067 }

068 }

First, we see the program as it was after the first compilation in the session, and then we

have highlighted line 66, to help indicate where Neville made edits in the time between the two

compilations.

This addition of an entire method over two compilations might seem impressive, consid-

ering we have already described Neville as a student who struggles with syntax errors in his

programming. Because the authors of Objects First with Java believe that students should never

start with a blank page, we sometimes need to double-check the code students have added;

79

CHAPTER 3. INTO THE DATA

in this case, the removeNote method is provided on page 85 of Objects First with Java (second

edition). The fact that Neville inserted nine lines of code, correctly, with only one syntax error,

is not terribly surprising.

After adding the removeNote method, Neville goes on to add another 13 lines of code in

four minutes. At the end of the four minutes, he has added the listAllNotes() method; this

method will be the focus of the rest of our discussion.

070 //List all the notes in the arraylist

071 public void listAllNotes()

072

073 int indexNum

074 {

075 if(noteNumber < 0) {

076 // This is not a valid note number, so do nothing.

077 }

078 else

079 while (indexNum < numberOfNotes) {

080 System.out.println(notes.get(indexNum));

081 indexNum++ ;

082 }

083

An experienced Java programmer is unlikely to make the mistake that Neville has made

here. If we look closely at lines 71 through 74, we see that he has introduced the variable

indexNum outside of the opening { of the method. The code could be corrected by swapping

lines 73 and 74—or, perhaps we should say that the code could be made “more correct” by way

of this switch. We have illustrated what Neville could have done to correct this syntax error in

the next pair of code fragments; it takes Neville 30 minutes, and many edits, to discover this for

himself.

80

3.6. VIGNETTES

What Neville wrote... ... “corrected” by swapping two lines

070 //List all the notes in the arraylist 070 //List all the notes in the arraylist

071 public void listAllNotes() 071 public void listAllNotes()

072 072

073 int indexNum 073 {

074 { 074 int indexNum

Unfortunately, Neville does not make this correction. As the compiler is currently reporting

a ’;’ expected error on line 72, he looks at his code, and realizes he is missing a semicolon—

on line 73. So, Neville adds a semicolon to the end of line 73.

Before After

070 //List all the notes in the arraylist 070 //List all the notes in the arraylist

071 public void listAllNotes() 071 public void listAllNotes()

072 072

073 int indexNum 073 int indexNum;

074 { 074 {

Neville’s addition of a semicolon on line 73 cannot possibly have fixed the error on line

72. While the Java compiler may report many “strange” errors from a novice programmer’s

perspective, it is consistent in one regard: it does not report errors before they happen. The

compiler may report the location of an error as being somewhere after the actual location of the

error—perhaps even the end of the file—but the compiler will never fail due to an error that

takes place one, two, or more lines ahead of the reported location.

Neville recompiles his program; the compiler reports, again, a ’;’ expected error on line

72. In three seconds, Neville looks at the error, the location of the error, his code, and then adds

another semicolon to his program. This time, he adds one to the end of line 71. Because the

header of the method listAllNotes() is on its own, away from the body of the method, it

is easy to see it as a line wanting for a semicolon. However, this is not the case—it is unlikely

that Neville, as a novice Java programmer, will ever have any need to add a semicolon to an

otherwise empty method header.

81

CHAPTER 3. INTO THE DATA

Before After

070 //List all the notes in the arraylist 070 //List all the notes in the arraylist

071 public void listAllNotes() 071 public void listAllNotes();

072 072

073 int indexNum; 073 int indexNum;

074 { 074 {

The result of this rapid addition of a semicolon and recompilation yields a rather uncommon

syntax error:

missing method body, or declare abstract

After one minute and seven seconds, Neville recompiles his program without making any

changes to the source code—we don’t know why, but perhaps it was to refresh the error in the

BlueJ environment, as clicking anywhere would have caused the message to disappear. Fifteen

seconds after this recompile, he removes one character from his program—the semicolon he

had just added to line 71.

Before After

070 //List all the notes in the arraylist 070 //List all the notes in the arraylist

071 public void listAllNotes(); 071 public void listAllNotes()

072 072

073 int indexNum; 073 int indexNum;

074 { 074 {

As a result, the compiler once again reports ’;’ expected on line 72. Neville makes a

small edit elsewhere in his program, and then returns to the listAllNotes() method. In

coming back to this piece of code, he decides to remove the semicolon from the end of line

73. Thirteen minutes into the session, this brings Neville back to where he started: a ’;’

expected error on line 72, and no semicolon at the end of line 71 or 73. This edit follows,

below.

82

3.6. VIGNETTES

Before After

070 //List all the notes in the arraylist 070 //List all the notes in the arraylist

071 public void listAllNotes() 071 public void listAllNotes()

072 072

073 int indexNum; 073 int indexNum

074 { 074 {

Remove the error

After nearly a quarter of an hour, Neville has not managed to correct what we would, as ex-

perienced programmers, consider an obvious syntax error. After trying the most obvious fixes

(adding a semicolon when and where the compiler reports a ’;’ expected), Neville proceeds

to employ a technique that we’ve seen students use time and again; we refer to it generally as

“remove the error.”

“Remove the error” manifests itself differently in different sessions. Sometimes students

remove one or more lines of code completely, only to paste it back into their program several

compilations later. In other cases, students employ block comments to comment out an entire

method or methods. In this case, Neville comments out one line only: line 73.

Before After

070 //List all the notes in the arraylist 070 //List all the notes in the arraylist

071 public void listAllNotes() 071 public void listAllNotes()

072 072

073 int indexNum 073 //int indexNum

074 { 074 {

This is a critical point in the development of this code; Neville has effectively removed the

source of the syntax error in his program. The syntax error that has now consumed a quarter

of an hour of Neville’s time is, for all intents and purposes, gone. Other problems can now be

caught by BlueJ; unfortunately, in his current context, these new syntax error messages seem

to have the undesirable effect of leading Neville back to a syntactically incorrect version of this

program.

83

CHAPTER 3. INTO THE DATA

After compiling this code, the compiler reports cannot resolve symbol - variable

noteNumber on line 75. Looking at the method removeNote that Neville added first, and the

listAllNotes method, we must wonder if the majority of the listAllNotes method was

actually copied from removeNote. The variable noteNumber—responsible for the error, as it

is not in scope in the method listAllNotes—is a hold-over from a copy-paste we suspect

Neville made.

There are several ways Neville could fix this error. He could introduce a new field in this

class called noteNumber, a formal parameter to the method with this name, or a local variable.

He could also decide that the variable is incorrectly named, and change it to something that

is in scope. If we consider syntax errors as a stimulus, and the resulting edit as a response—a

comprehensive and difficult analysis we have not, at this time, carried out—we might say that

Neville’s edit in this case is a “good” response. He renames noteNumber to indexnum, and

then uncomments line 73.

Before After

071 public void listAllNotes() 071 public void listAllNotes()

072 072

073 //int indexNum 073 int indexNum;

074 { 074 {

075 if(noteNumber < 0) { 075 if(indexnum < 0) {

Syntax Blindness

Some of our students, it would seem, are syntax-blind. We do not have a better word for what

we see in edit traces like this one. Neville is, it would seem, unable to see the syntax error that

is present before him, and many other students exhibit similar behaviours when faced with a

missing parenthesis, bracket, or other piece of punctuation.

Neville must believe that he is reintroducing the variable indexNum to the scope of the

method listAllNotes; certainly, we would argue that he knows he needs to declare the vari-

able. However, in uncommenting this incorrectly positioned variable declaration, he only man-

ages to reintroduce the syntax error ’;’ expected. His response is quick and, unfortunately,

reverses the edit he just made: Neville proceeds to comment out line 73.

84

3.6. VIGNETTES

Before After

071 public void listAllNotes() 071 public void listAllNotes()

072 072

073 int indexNum; 073 //int indexNum;

074 { 074 {

075 if(indexnum < 0) { 075 if(indexnum < 0) {

Commenting out line 73 does not fix the problem. It is at this point that Neville realizes that

the capitalization of the variable indexnum is incorrect. So, he converts it to the mixed “camel

case” that is common in Java naming conventions, so it matches the variable declaration two

lines previous. After renaming the variable indexnum to indexNum on line 75, the compiler

reports the same ’;’ expected error on line 72. Although we are not typically concerned

with the time students take between compilations, we would note here that the previous three

edits each took Neville less than five seconds.

Before After

071 public void listAllNotes() 071 public void listAllNotes()

072 072

073 //int indexNum; 073 //int indexNum;

074 { 074 {

075 if(indexnum < 0) { 075 if(indexNum < 0) {

The next edit Neville makes is to—once again—uncomment line 73. This is reasonable; there

is a variable declaration for indexNum, the usage of the variable has been correctly spelled, so

if he uncomments line 73, everything should be fine, and he can move on. Unfortunately, the

compiler is still reporting a syntax error on line 72, as the original problem—the fact that lines

73 and 74 need to be swapped—has not been addressed.

85

CHAPTER 3. INTO THE DATA

Before After

071 public void listAllNotes() 071 public void listAllNotes()

072 072

073 //int indexNum; 073 int indexNum;

074 { 074 {

075 if(indexNum < 0) { 075 if(indexNum < 0) {

Stoppers vs. Movers?

Another behaviour we have observed in many of our students’ traces is that they will “move

on” from a particularly problematic piece of code, regardless of whether they have corrected

any syntax error that may be lingering (such as the error Neville is facing). With some stronger

students we observe this as well—they will ignore a syntax error to work on some other part of

their program, and then come back to the error, and fix it. With students like Neville, however,

this is less common. More often, when they move to some other part of their program without

fixing an error, they only manage to introduce a new, unrelated syntax error that they then

proceed to get stuck on. In either case, this kind of behaviour reminds us of Perkins et. al’s

investigations of beginners working in BASIC and LOGO[PM86]; Perkins might refer to such a

student as a “tinkerer,” who keeps moving, but not necessarily for the better.

At this point, Neville makes the largest removal of code we see in the entire session: he re-

moves lines 76 through 79, eliminating the if construct in this method completely. This is good,

for several reasons. First, the if will play no part in a straight-forward, successful solution to

this problem. Second, the unbracketed else clause, while having reasonable semantics as the

code stands now, is a likely source of woe later. Our experience reading through student traces

is that the failure to use brackets on if, while, for, and similar constructs is often a source of

syntax errors that are difficult to debug.

86

3.6. VIGNETTES

A large removal of code

070 //List all the notes in the arraylist

071 public void listAllNotes()

072

073 int indexNum;

074

075 {

076 if(indexNum < 0) {

077 // This is not a valid note number, so do nothing.

078 }

079 else

080 while (indexNum < numberOfNotes) {

081 System.out.println(notes.get(indexNum));

082 indexNum = indexNum 1;

083 }

084

Little patterns

A great deal of programming is made up of the repetition of small, idiomatic patterns and

structures. What is not explicitly captured in the language is often then expressed in the form

of convention, style guides, design patterns, and other ad-hoc tools for organizing code and

making it more comprehensible to the programmer and, later, the maintainer of the code.

For example, Neville’s next edit captures a typical “little pattern” in many C-like languages:

after declaring a variable, it must be initialized to some value. Sometimes this is combined into

one statement:

int x = 3;

and sometimes these declarations are separated from each-other:

int x;

x = 3;

87

CHAPTER 3. INTO THE DATA

After removing the if statement from his code, the next thing Neville does to his program

is initialize the variable indexNum. Currently, it is declared (unfortunately, in a syntactically

incorrect location), but it is not initialized. It is good that he notices that his attempted use of

indexNum occurs before it is initialized, it is also worth noting that the Java compiler will catch

the use of uninitialised variables, and report that to the programmer. Currently, the compiler

is not complaining about indexNum being uninitialised—it is dying on line 72 because Neville

has declared a variable in the syntactic badlands between his method header and the opening

bracket of the block of code that follows the header.

Unfortunately, if Neville is “moving on,” this is still not helping. In initializing the variable

indexNum, he makes space for a new line of code—outside the start-of-method bracket!

Before After

071 public void listAllNotes() 071 public void listAllNotes()

072 072

073 int indexNum; 073 int indexNum;

074 074 indexNum = 0;

075 { 075 {

This kind of editing continues for the remainder of the session. Neville does, at one point,

take a short “break” from lines 70-74, modifying some System.out.println statements ear-

lier in his program. He introduces a new error there, fixes it, and comes back to this problematic

code. Surprisingly, it is at this point that he manages to correct the program. Perhaps by “step-

ping away” from the point where the problem is he was able to see the syntax error for what it

was. Or, perhaps someone helped him? In truth, we cannot know what took place, as we do

not know what documentation, examples, or other help he may (or may not) have sought in

attempting to debug this particular program.

Neville: stepping back

From our walk through just one of the sessions we have captured of Neville programming, we

can see a number of things. First, we suspect that Neville was working too quickly to be reading

and comprehending the nature of the syntax error the compiler discovered. Furthermore, his

88

3.6. VIGNETTES

strategies appear to be haphazard—like the addition and removal of semicolons and comments

in an attempt to change the output of the compiler. We might even ask how he managed to

write as much code as he did, given his apparent lack of ability in debugging the syntax errors

that were present in that code. Without a doubt, we would want to recommend one-to-one help

for Neville so that he might develop some more advanced strategies for these kinds of syntax

errors in the future. His inability to deal with errors quickly and easily will only hinder him in

the long run.

Having worked through the complete sequence of compilations from just one programming

session, hopefully it becomes clear how rich and complex the data we have collected is; each

session tells a story. While we would like to read every story in our database, it is important

that we develop a sense for what our entire population of subjects is doing, and focus on tools

that can help us understand our students, both as researchers and as instructors.

Table A.1 (in Appendix A) is the tabular visualization of the program Neville has written.

While we know, from reading through the source, that he was stuck on some very basic syntax

errors—and all in the same part of his program—we can see the locations of syntax errors (pink

boxes) and locations of edits (black dots) make a nearly vertical line. That these locations all

line up vertically tell us that Neville did all of his editing in one place, save for a bit at the

beginning and end. Also, the kinds of syntax error, and the number of times they repeat, tell us

that Neville struggled largely with one type of syntax error; while we saw this, reading through

one compilation after another, it is much easier to see the repetition when laid out in a tabular

form.

So, at a glance we can use this representation to tell us a great deal about Neville’s experi-

ences while working through a session. We can see he spent almost all of his time in one part

of his program (indicated by the fact that all of the errors and edits “line up”), that he wrestled

with one type of syntax error for the majority of the session, and that this struggle began with

two large additions of code, after which he made very small edits throughout the majority of

the session as he attempted to fix the syntax error that was plaguing him.

89

CHAPTER 3. INTO THE DATA

3.6.2 Ron: A picture of motion

A session trace helps us to quickly see how a student spent their time while developing their

code. So, instead of attempting to develop a picture of Ron’s session working only from the

source code he wrote, we might begin by looking at Table 3.19 (also A.2 in Appendix A). This

session trace lets us quickly summarize his efforts on the Notebook project.

Figure 3.19: Ron, hard to distinguish from Neville

What does this session trace tell us? Ron spent most of his time working in roughly the

same part of his program as Neville, and like Neville, he did not do much else. The session

is shorter—there are fewer compilations, and this particular session is 20 minutes shorter than

Neville’s. At a glance, we can see that Ron did not spend any long sequences wrestling with

just one type of error, but instead he encountered seven different kinds of syntax error during

the twenty five minutes he spent working on the project. So, like Neville, Ron was stuck in one

90

3.6. VIGNETTES

place, but unlike Neville, he did not get “hung up” on any one kind of syntax error.

The first thing Ron does is write the method remove, which we can see at the start of the

trace; the ’;’ expected error is dealt with quickly.

Before After

059 public void remove(int index) 059 public void remove(int index)

060 { 060 {

061 notes.remove(note) 061 notes.remove(note);

062 062

Over the next three compilations, Ron does not make any changes to his program; thirty

seconds pass while he hits the “Compile” button, changing nothing. The error is cannot

resolve symbol - variable note, and one possible fix is to rename the variable note

in line 61 to index (matching the formal parameter to the method remove), or renaming the

parameter. Either way, this apparently does not occur to him, so he makes a change to his

program that lets him continue on with the tasks set before him.

Before After

059 public void remove(int index) 059 /** public void remove(int index)

060 { 060 *{

061 notes.remove(note); 061 * notes.remove(note);

062 062 */}

Ron comments out the entire method. For the remainder of the session, he never comes back

to this method. This is significantly different than the strategies employed by Neville; whereas

Neville seems to be stuck on the only error in his program, Ron moves on. Perhaps he has

decided to come back to it later, perhaps he intends to ask for help from a peer or instructor;

either way, we don’t know. Regardless of his possible intentions, Ron leaves this particular

error behind. We feel this is, generally, a good behaviour—being able to move past one error

and work elsewhere, perhaps returning later to the problem code—but we also find it troubling

that Ron does not know how to deal with an unknown symbol error four weeks into the term.

Ron proceeds to add half of a method:

91

CHAPTER 3. INTO THE DATA

063 public void printAllNotes()

064 {

065 int i = 0;

066 while (i < numberOfNotes);

067 {

068 system.out.println(notes)

069 i = i + 1

070 }

071
072)

Figure 3.20: Ron’s first attempt at the printAllNotes() method.

063 public void printAllNotes()

064 {

065 int i = 0

066 while (i < numberOfNotes)

which he compiles, generating a syntax error—and then adds the other half of the method.

He ends up with a printAllNotes() method that looks reasonable for a first attempt (Fig-

ure 3.20).

There are a number of small problems with this code, that Ron manages without too much

trouble. He correctly realizes (with prompting from the compiler) that numberOfNotes should

actually be a method call (e.g. numberOfNotes()), and that system.out.println should

have a capital ’S’. However, the fact that he closed all of his code off with a parenthesis instead of

a curly bracket (line 72) takes several illegal start of expression errors (compilations

10, 11, and 12) before he coaxes a ’}’ expected error out of the compiler, making his mistake

obvious.

Once he has worked through these errors, he makes his next large addition of code, shown

below.

92

3.6. VIGNETTES

Before

063 public void printAllNotes()

064 {

065 int i = 0;

066 while (i < numberOfNotes());

067 {

068 System.out.println(notes);

069 i = i 1;

070 }

071

072

073

074 }

075 }

076

077

93

CHAPTER 3. INTO THE DATA

After

063 public void printAllNotes()

064 {

065 if numberOfNotes = 0

066 {

067 System.out.println("There are no notes in the notebook");

068 }

069 else

070 {

071 int i = 0;

072 while (i < numberOfNotes());

073 {

074 System.out.println(notes);

075 i = i 1;

076 }

077 }

Ron spends several compilations wrestling with this code, after which he decides that it

doesn’t actually matter—and he removes the new if clause completely. We don’t know why

he removed it, but it could be he decided that didn’t actually improve his program or make it

function correctly. Given that it never compiled successfully between the time he added it and

removed it, he certainly could not have tested his program, so the reason for both the addition

and removal remains a mystery.

Ron: stepping back

Compared with Neville, it feels like Ron makes much more progress during the time he spent

programming. His ability to deal with syntax errors (or, as the case may be, realize that he

cannot deal with a syntax error) is, we suspect, a more successful strategy in the long-term than

that exhibited by Neville. While almost all of the compilations in this session ended in syntax

errors, Ron managed to avoid getting hung up on any one error.

94

3.6. VIGNETTES

We are not trying to claim that one of these two students exhibits compilation behaviour

that is particularly “good.” Certainly, neither spent any significant amount of time working

with syntactically correct code. This means that neither student spent any significant amount of

time testing their ideas and solving the problems set for them by their instructor; instead, they

spent the majority of their time wrestling with one (Neville) or many (Ron) syntax errors.

3.6.3 Harry: persistence over form

Unlike his other classmates, Harry is nothing if not persistent. However, his methods are not

always the most elegant—but that, perhaps, does not really matter. His session trace is captured

both in Figure 3.21 and Table A.3 in the appendix.

Figure 3.21: A session characterized by Harry’s persistence.

95

CHAPTER 3. INTO THE DATA

We can see at a glance that Harry’s efforts on the Notebook project are not dominated by

the presence of syntax errors. His editing focuses on the listAllNotes() method. However,

unlike both Neville and Ron, this session is punctuated by many syntactically correct compila-

tions. This implies to us that Harry was able to test his program. In fact, as can be seen from

the trace, Harry makes a number of edits that are syntax-error free near the end of his session;

perhaps he was editing, testing, and editing again?

Our attention on Harry’s programming will be focused on the listAllNotes method,

which he introduces between compilations five and six.

066 //listAllNotes - prints all stored notes

067 public void listAllNotes() {

068 int i

069 System.out.println ("List of all notes:");

070 while (notes !=null) {

071 while (notes.isEmpty = false) {

072 System.out.println("Note " + i + ":" + notes.get(i));

073 i++

074 }

075 }

076 }

These ten lines of code were written over the course of 6 minutes 43 seconds. They are

reasonably well formatted, and contain only two minor (obvious) errors—a missing semicolon

on lines 68 and 73. The compiler catches each of these, and Harry corrects them without diffi-

culty. More problematic is line 71, which is the test in the inner while loop. When Harry first

wrote the code, it was notes.isEmpty = false, which he changes to notes.isEmpty()

= false, and then settles on i <= notes.size() as being appropriate. He makes his way

through these three changes in two minutes, spending a little over a minute on the final edit.

This final form yields the error variable i might not have been initialized, so

he tweaks line 68 to read int i = 0;. The method listAllNotes() now looks like the code

below:

96

3.6. VIGNETTES

066 //listAllNotes - prints all stored notes

067 public void listAllNotes() {

068 int i = 0;

069 System.out.println ("List of all notes:");

070 while (notes !=null) {

071 while (i <= notes.size()) {

072 System.out.println("Note " + i + ":" + notes.get(i));

073 i++;

074 }

075 }

076 }

Harry only makes two more changes at this point; he changes the test on line 71 from <=

to <, and inserts a missing space in the output of his System.out.println statement (a

common mistake made by everyone when doing string concatenation). After these two minor

changes, he does not revisit this method again for the remainder of the session.

Harry: stepping back

We would like to say that this is an example of an excellent session, but Harry’s performance

leaves us unsatisfied. First, both at this point and earlier in his program, he makes use of

notes.size(), which is correct. However, the Notebook class contains a method called

numberOfNotes() that returns the length of the notes ArrayList; granted, it just returns

notes.size(), but this may change later if we decide to use an array instead of an ArrayList.

By using the method numberOfNotes(), Harry would make his code more resilient to future

changes. So, he scores points on functionality, and looses points for failure to choose to reuse

his code where and when it is appropriate.

Secondly, Harry has introduced a very awkward, nested while loop. In fact, it introduces

an infinite loop into the program. The inner while loop correctly steps through the notes

ArrayList, visiting each index from 0 to size() - 1. Then, we go to the top of the outer

while loop, and check the condition notes != null, which is still true. We then fail to enter

97

CHAPTER 3. INTO THE DATA

the inner while loop (because, at this point, i is equal to the length of the ArrayList), and

instead jump back to the outer while loop.

Harry rapidly wrote syntax-error free code—when compared to his classmates Neville and

Ron, we want to describe this session as “successful.” However, the presence of this infinite

loop in his program makes us wish we had a window into what he was doing after successfully

compiling his program. Certainly, there was enough time between some of the compilations

in the session for Harry to execute his program—and if he did, he somehow managed not to

notice that his program was looping infinitely. We executed this code on our own machine, and

find that such an oversight would be difficult to make, leading us to believe that it is possible

that Harry never actually tested his program.

In any case, we have strayed from the question of compilation behaviour to testing, which is a

run-time concern. Harry wrote his code cleanly, it is well-formatted, and he dealt quickly and

efficiently with syntax errors when they arose. He could have reused code better, and perhaps

should have wondered about the odd, nested while that he wrote. But, overall, we believe

his behaviour, when interacting with the compiler, was much more effective than that of his

classmates Neville or Ron.

3.6.4 Hermione: success, with elegance

We have seen the compilation behaviour of three students so far; in each case, we have looked

at the kinds of errors they faced and how they responded to those errors. In this 15 minute

session of Hermione’s, only four compilations of twelve captured ended in a syntax error (the

session was 75% error-free). None of those errors persisted for any length of time—they were

always dealt with quickly and accurately. We can see as much in the session trace in Figure 3.22,

or Table A.4 in the appendix.

There are a few things that are striking in the visual representation of the trace. First, the

relative lack of colour tells us that there were very few errors in the session; the Err Type column

is dominated by stars (?), indicating compilations that were syntax-error free. There are also

many edits where Hermione touched multiple lines in the file at a time. Like all of the other

sessions, Hermione was adding code to the end of the file, as she was adding a new method to

98

3.6. VIGNETTES

Figure 3.22: A brief, but effective, session from Hermione

the end of her program.

Hermione’s first edit fixes a syntax error that was present in her code at the start of the

session. Why the code was left dangling in this state previously we do not know. She quickly

eliminates the syntax error. We see this change below.

Before

066 for (int i=0; i

067 System.out.println(notes.get(i));

068 }

After

066 for (int i = 0; i <= notes.size(); i++) {

067 System.out.println(notes.get(i));

068 }

The next edit takes Hermione 1 minute 27 seconds, and involves the removal of just one

99

CHAPTER 3. INTO THE DATA

character; on line 66, she replaces the <= with an =. This is not a syntactic edit, as the program

can be compiled successfully with either operator in-place. Instead, this is one of the first exam-

ples we have seen of a semantic edit. The motivation for this change only has meaning within

the context of the executing program. Coupled with the fact that 1 minute 27 seconds pass be-

tween compilations at this point, it is entirely possible that Hermione compiled her program,

tested it, and discovered that she needed to change the termination case of her for loop.

Before

066 for (int i = 0; i <= notes.size(); i++) {

067 System.out.println(notes.get(i));

068 }

After

066 for (int i = 0; i < notes.size(); i++) {

067 System.out.println(notes.get(i));

068 }

The craft of programming

The next change is subtle, and is a kind of edit that we haven’t seen in our examination of

Neville, Ron, or Harry. Whereas many of the sessions we have seen so far have involved stu-

dents wrestling, to some degree, with errors reported by the compiler (sometimes caused by

the poor layout of their own code), here we see a purely cosmetic change; Hermione adds two

spaces to her program on two different lines.

Before

047 if(noteNumber < 0) {

048 ...

050 else if(noteNumber < numberOfNotes()) {

After

047 if (noteNumber < 0) {

048 ...

050 else if (noteNumber < numberOfNotes()) {

100

3.6. VIGNETTES

On lines 47 and 50, Hermione adds a single space after the if and else if. Neither of these

spaces effects the execution of the program. However, this kind of attention to detail—this craft

in programming—is part of what is ultimately required for the authoring of truly excellent,

robust code. While we do not believe that adding spaces to a program makes the difference

between code that executes and performs correctly and code that does not, we do believe that

this is the kind of attention to detail that is ultimately needed for writing good unit tests that

catch all the expected cases, all of the edge cases, and some of the less expected cases as well. Or,

for keeping up on documentation, or anything else about programming that requires attention

to detail. Is programming a craft or a science? We don’t know. But we do know that Hermione

demonstrates far more craft in this one session than any of her peers that we’ve examined so

far.

Testing and user interface interaction?

The next set of changes that Hermione introduces is much larger. She makes changes in the

showNote, removeNote, and listAllNotes methods at the same time. This shows up in

Table A.4 as a single edit with a relatively large removal of code (Figure 3.23).

This is an interesting cut and edit; Hermione removes a significant amount of code from

her program, and generally simplifies the logic of the showNote() method in the process. In

addition, she has the method output a visible warning when the else clause is reached, instead

of quietly doing nothing.

At the same time as she made the above changes to showNote(), Hermione also added

error-checking code to removeNote(). Whether she copy-pasted some of the code from showNote()

into removeNote() is difficult to say. This, the second of three changes made in this single

compile follows.

101

CHAPTER 3. INTO THE DATA

Before
045 public void showNote(int noteNumber)

046 {

047 if (noteNumber < 0) {

048 // This is not a valid note number, so do nothing.

049 }

050 else if (noteNumber < numberOfNotes()) {

051 // This is a valid note number, so we can print it.

052 System.out.println(notes.get(noteNumber));

053 }

054 else {

055 // This is not a valid note number, so do nothing.

056 }

057 }

After
045 public void showNote(int noteNumber)

046 {

047 if (noteNumber >= 0 && noteNumber < numberOfNotes()) {

048
049
050
051
052 System.out.println(notes.get(noteNumber));

053 }

054 else {

055 System.out.println("Invalid note index");

056 }

057 }

Figure 3.23: A single, large change by Hermione.

102

3.6. VIGNETTES

Before

059 public void removeNote(int noteNumber)

060 {

061 notes.remove(noteNumber);

062 }

063

064

065

066

After

059 public void removeNote(int noteNumber)

060 {

061 if (noteNumber >= 0 && noteNumber < numberOfNotes()) {

062 notes.remove(noteNumber);

063 }

064 else {

065 System.out.println("Invalid note index");

066 }

While the previous two parts of this single edit were interesting, we want to spend a moment

on the last change Hermione made in this single, large edit-compile sequence:

Before

066 for (int i = 0; i < notes.size(); i++) {

067 System.out.println(notes.get(i));

068 }

After

070 for (int i = 0; i < numberOfNotes(); i++) {

071 System.out.println(notes.get(i));

072 }

On line 66 in the listAllNotes() method, Hermione has made one critical change. She

103

CHAPTER 3. INTO THE DATA

has changed the conditions of the for loop from

for (int i = 0; i < notes.size(); i++)

to

for (int i = 0; i < numberOfNotes(); i++)

While both pieces of code are correct (they are functionally identical), Hermione has made

good use of the method numberOfNotes() which is defined earlier in the class. In addition to

all of the edits she was making, Hermione is reusing a method defined previously, as opposed

to constantly invoking the size() method on the notes object. In this particular instance

the reuse probably doesn’t matter one whit—but it this kind of awareness and reuse is a habit

that will serve her well in the future. Additionally, this awareness can be contrasted with the

code we saw Harry write, where he simply used notes.size() over-and-over in his code,

instead of making calls back to numberOfNotes(); it is this kind of awareness that separates

the editing and compilation behaviour of Harry and Hermione.

After compiling her code, Hermione discovers an illegal start of expression er-

ror. In examining many of these traces, an illegal start of expression error typically persists

over multiple compilations. In the simplest instance, it often indicates a failure on the part of

the student to properly match braces. Hermione catches the error quickly the first time (not

shown).

104

3.6. VIGNETTES

Before

068 public void listAllNotes()

069 {

070 for (int i = 0; i < numberOfNotes(); i++) {

071 System.out.println(notes.get(i));

072 }

073 }

After

065 public void listAllNotes()

066 {

067 for (int i = 0; i < numberOfNotes(); i++) {

068 System.out.println(i + ": " notes.get(i));

069 }

070 }

While Hermione tracks down and corrects the bracketing problem she introduced in the

removeNote method, she also makes cosmetic changes in the listAllNotes method as well.

As we have seen, students faced with a syntax error typically do little more than tackle the

error at hand. Here, Hermione not only dealt with a bracketing problem in her code, but she

also went on to make cosmetic changes in the output of her program. In the compilation after

this one, she adds the missing + in line 68, which is a common oversight made by many students

doing string concatenation in Java, but surprisingly problematic to find in many cases, because

the error reported has so little relevance; in this case, the error reported was ’)’ expected.

Hermione: stepping back

Hermione’s entire session was only 15 minutes long. However, she was very productive in that

time, and the errors she encountered were easily dealt with. What is also striking is the amount

of time she took between compilations: 20 seconds, 1 minute 18 seconds, 1 minute 27 seconds,

23 seconds, 4 minutes 17 seconds, 27 seconds, 13 seconds, 2 minutes 11 seconds, 1 minutes 13

seconds, 28 seconds, 9 seconds, and 3 minutes.

105

CHAPTER 3. INTO THE DATA

Whereas half of all compilations recorded by students during the Fall 2003 semester were

short—lasting 30 seconds or less—Hermione spends much longer than the average on her edits.

The fastest edits were in response to syntax errors, which she handled correctly in each instance

without any persistence of the error over time. From the semantics of the changes she was mak-

ing, we assume that some of this time spent between successful compiles was spent interacting

with her program, testing the handling of input and output. Overall, we would have to say that

the behaviour that Hermione exhibits in this session is the kind of behaviour we might want all

of our novice programmers to exhibit.

Quantifying behaviour

One way to explore the compilation behaviour of novices is to dig deeply into their source code.

While observing the changes they make from one compilation to the next does not tell us every-

thing about their thought processes, we can see and infer a great deal about the program they

are writing. The observable quantities in this process—the changes they make, the errors that

may result from that process, and so on—can be used to summarize a single session, allowing

us to develop quickly a sense for how a student spent their time while developing their code.

While our tabular representation does make it easy to see where syntax errors occur in a file

and how often they repeat, it is still a difficult representation to work with when hundreds of

sessions are involved. One problem in comparing these sessions is that they are all different

lengths; one session might be comprised of 20 compilations, another 40. Each of these sessions

may have several compilations that resulted in error free code; which one had more, propor-

tionally? Was one session “worse” than the other? Although our tabular summaries of student

sessions are a useful overview for a single session, they do not necessarily help us compare one

session to another.

In the next chapter, we present a quantisation of our tabular representation. This quantisa-

tion is based on many of the criteria we have already discussed: the number of syntax errors

made by a student, how often those syntax errors are repeated, and the source location of the er-

ror from one compilation to the next. We reduce an entire programming session to one number,

which we call the error quotient. The error quotient, deterministically generated from observ-

106

3.6. VIGNETTES

able quantities of a students programming behaviour, gives us a normalised value (zero to one)

that allows us quickly and easily to compare sessions: sessions with low error quotients had

relatively few syntax errors; sessions with high error quotients had many syntax errors that re-

peated in the same place over many successive compilations. The details of how we generate

this number, and its utility in expanding our analysis of novice compilation behaviour follows.

107

CHAPTER 3. INTO THE DATA

108

Chapter 4

The Error Quotient

The error quotient is a measure of how many syntax errors a student encountered during a sin-

gle programming session. Students who encounter many syntax errors, and more importantly,

fail to fix them from one compilation to the next, end up with high error quotients. Conversely,

students who have few syntax errors, or who correct their syntax errors quickly (meaning, the

error is reported and then repaired) end up with low error quotients.

4.1 Development of the error quotient

The error quotient was not an a priori notion we had regarding novice programmers. We knew

from experience that students tended to recompile their code quickly and often, we suspected

there might be interesting data to be mined from an observation of their behaviour. A great deal

of time and effort was expended exploring arbitrary views and slices of this data.

For example, we went looking for relationships between the number of compilation events

students generated in each session, as well as the time that elapsed between the compilation

events in those sessions. This yielded the fan-like plots in Figure 4.1. We had no idea how to

make sense of these figures; even on a log-log scale, there did not seem to be any clear corre-

lation between the number of sessions we had recorded for a student and the average number

of compilations we recorded for that student across all of their sessions. (We thought perhaps

that students for whom we had captured lots of sessions would necessarily have generated a

109

CHAPTER 4. THE ERROR QUOTIENT

large number of compilation events.) Confused by this data, we decided to look at total time

spent between compilations vs. the total number of compilations captured (Figure 4.2). While

we believe there was a good correlation here, we realised that our ad-hoc explorations had led

to near truisms—it stands to reason that students who spend more time working on their code

will, on average, compile it more often than students who only work in the labs infrequently.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14

0
50

10
0

15
0

20
0

F2003

C
om

pi
le

s

0 10 20 30 40 50 60 70

0
20

0
40

0
60

0
80

0

Sp2004

Sessions

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50 60

0
50

0
10

00
15

00
20

00

0405

Figure 4.1: Compilations per session, per population.

We came to realise that our blind, statistical explorations were nothing more than grasping

at straws. Every attempted correlation required us to hypothesise ahead of our data. For ex-

ample, we had no reason to suspect that a the number of compilation events in a session might

correspond with the total number of sessions recorded—it was nothing more than a guess, or

a hunch. By visualising arbitrary combinations of data (as exemplified in Figure 4.1), we were

simply hoping that our implicit assumptions will be borne out in practice. These kinds of statis-

tical explorations are a poor substitute for a focused and prolonged examination of the data in

a manner true to the story it might tell. In our case, we wanted a better understanding of what

novices were doing while repeatedly recompiling their programs—which implies that our time

would best be spent reading programs written by students.

110

4.1. DEVELOPMENT OF THE ERROR QUOTIENT

0 500 1000 1500

0
50

00
0

10
00

00
15

00
00

Number of compiles

T
ot

al
 ti

m
e

be
tw

ee
n

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●
●

●
●

●

●

●●●
●
●

●

●
●●●

●

●

●

●
●●

●

●
●
●
●

●●●●●
●

●

●●
●

●

●

●
●●●

●
●●●●●●

●
●

Figure 4.2: Total time between compilations vs. total compilations

111

CHAPTER 4. THE ERROR QUOTIENT

4.1.1 Diving into the code

To better understand what the students participating in our study were doing from one com-

pilation to the next, we engaged in an extensive document analysis. Starting with a random

selection of sessions from our study (there are over 2000 sessions in our database), we began to

read programs. Our initial efforts were spent characterising the kinds of errors students were

making, adding notes and commentary to the session one compilation at a time. We turned

each session into a narrative, and then discussed these narratives with colleagues. Our goal in

this was to tap into the knowledge of educators who had spent years, and sometimes decades,

teaching introductory programming.

These discussions were fruitful; from them, we were reminded of behaviours we had ob-

served in our own classrooms, were told about behaviours we had not seen, and developed a

deeper appreciation for the kinds of errors students made in their programs. From this process,

our next step was to revisit the data with a new focus.

We started with the 2004-2005 academic year and proceeded alphabetically by pseudonym,

and began reading the programs students had written. Our goal was to begin characterising

the types of errors (or sequences of errors) students had made while programming. From our

discussions with other educators, we developed an appreciation for the variety of strategies stu-

dents employ while learning to program, some correct, some not so correct. We approached the

data looking specifically for these strategies; our hope was to develop a catalogue of strategies

for resolving syntactic errors observed in the sequences of edits students were making to their

programs.

This analysis was expensive; it took a great deal of time to read through a session, finding

the location of syntax errors, understanding the changes that were made, etc. Very quickly, we

realised we needed to develop tools for reading the hundreds upon thousands of subsequent

edits that were captured in our database. By rendering sessions to HTML, we could use com-

monly available tools (like a web browser) to quickly browse through and navigate through our

entire database of student programs (Figure 4.3).

Even with improved tools, establishing a catalogue of syntax error recovery strategies was

a daunting task. While it may be possible, we found the diversity of strategies to be great, and

112

4.1. DEVELOPMENT OF THE ERROR QUOTIENT

Figure 4.3: A browser for viewing successive differences in student programs

consistent patterns were not percolating up through our analysis. For this reason, we went back

to the drawing board, exploring our data both in the large and in the small, and developing tools

to support those explorations.

4.1.2 Automating a document analysis

The goal of our analysis was to better understand the behaviour of our students while they

were learning to program. Unfortunately, our natural inclination was to question our students’

intentions when writing programs, as opposed to focusing on what, exactly, they had done. As

before, we found ourselves theorising ahead of our data, mining it for meaning that we could

not possibly verify.

In the previous chapter, we presented a tabular representation of novice programming ses-

sions that provided us with critical insights into how successful or unsuccessful students were

in tackling syntax errors while learning to write programs in Java. These tables were the out-

come of a detailed document analysis; in reading hundreds of programming sessions, we had

113

CHAPTER 4. THE ERROR QUOTIENT

developed a sense for the kinds of events that might signal a “strategy” of sorts. For example,

“remove the error” was a strategy we had seen time and again, and we highlighted this while

discussing code written by Neville. In particular, we realised that we spent the majority of our

time looking at the type of syntax error that had been made, and how often it had repeated—this

was often our best indicator for how well (or poorly) a student was progressing.

The error quotient is an outgrowth of this automated analysis; once we developed a tabular

representation for a student’s session, it became obvious that we could quantify the session, as

all of the elements of the table were observable, discrete quantities. Employing a strategy much

like that employed by some email SPAM filters, we began assigning “penalties” to behaviours

that did not move a student towards the goal of having error-free code. What follows is a

detailed discussion of how the error quotient is formulated, and how this strictly behavioural

quantity relates to student performance in the classroom on traditional homework- and exam-

based assessments.

4.2 Line, colour, and repetition

In our tabular representation of programming sessions, we highlighted visual cues that assist us

in identifying problematic compilation behaviour. If a student spends the majority of a session

stuck in one place in their code, then we see the location of syntax errors and places they edited

their code line up in the Error Location column of our visualisation. When students cannot get

past a particular syntax error, we see large blocks of the same colour appear in the Error Type

column. In both cases, it is the repetition of location or error type that makes the problem more

obvious to the observer.

We saw the interplay of these three criteria most obviously in Neville’s session from the

previous chapter (Table A.1). However, we can browse through our data looking for sessions

where errors are repeated in the same part of the program consistently, edits follow those errors,

and syntax errors repeat themselves over and over. For example, Terry’s 19th session looks

remarkably similar to Neville’s first session (Table A.5). Likewise, Deborah has more than one

session where she gets stuck in one place (sessions 1 and 25, Tables A.6 and A.7).

Examination of the source code in these sessions shows us editing behaviour similar to

114

4.3. SCORING COMPILATION BEHAVIOUR

that which took place in Neville’s code—the commenting and uncommenting of “problematic”

code, guessing at method names, and so on. To describe these sessions as “similar” required

a careful reading of a large amount of source code, however, and judgements are made from

an “expert” point-of-view. While our tabular representations of student sessions are convenient

for quickly summarising the results of many successive compilation events, we have only estab-

lished an informal set of working hypotheses regarding what is “good” and “bad” compilation

behaviour.

For example, our discussion has often focused on the repetition of errors, both the error type

and the location where the syntax error is reported. If one student fails to correct an “illegal start

of expression” error over the course of three compilations, and another over 10, is one student

three times worse than the other? What if the other student deals with a non-stop string of

errors, and the repetition of this particular error is just one of many?

A simple algorithm is presented here, based on our qualitative readings of novice program-

ming sessions, and the development of a visualisation for those sessions. We have attempted to

capture the most salient properties of what we consider “bad” compilation behaviour; in partic-

ular, we have paid careful attention to how often errors repeat, and whether those errors repeat

in the same region of the student’s program code.

4.3 Scoring compilation behaviour

Our algorithm for calculating the error quotient of a session is as follows. Given a session of

compilation events e1 through en:

Collate Create consecutive pairs from the events in the session, eg. (e1, e2), (e2, e3), (e3, e4), up

to (en−1, en).

Calculate Score each pair according to the algorithm presented in Figure 4.4.

Normalize Divide the score assigned to each pair by 9 (the maximum value possible for each

pair).

Average Sum the scores and divide by the number of pairs. This average is taken as the error

quotient (EQ) for the session.

115

CHAPTER 4. THE ERROR QUOTIENT

Start
Do both

events end in
errors?

Same error
type?

Same error
location?

Same edit
location?

Add 2

End

Add 3

Add 3

Add 1

N

Y Y

Y

Y

N

N

N

Figure 4.4: To calculate the error quotient of a session, each pair of events is first scored using
this algorithm. Those values are then summed and normalized, assuming a maximum score of
8 per pair.

The most important step in this process is the assigning of a score to each pair of events in the

session. While the flowchart in Figure 4.4 is reasonably straight-forward, we will demonstrate

it’s application to four events in a fictitious session trace (Table 4.1).

Our scoring begins by taking each pair of events in turn1; in this case, those pairs are events

(1,2), (2,3), and (3,4). Taking compilations 1 and 2, we work our way through the flowchart.

First, we ask if both events end in a syntax error? Given that the second event has an error

type of ? (meaning it was an error-free compilation), we would answer no to this question, and

assign the pair of events a score of 0.

1Compilation pairs with a STRING-EDIT distance of zero are filtered out before any calculation is carried out.

116

4.3. SCORING COMPILATION BEHAVIOUR

Table 4.1: A fictitious, four-event session
Err Type ∆T ∆Ch Location SCORE

1 4 2 t
2 ? 13 t 0

3 1 -27 t 0

4 1 -2 t 8

Repeating this process for the pair (2,3), the second question is answered the same way;

because the pair of events begins with an error-free compilation, we score the pair as a 0. This

is because we believe it is OK for syntax errors to be made by students learning to program—

everyone makes mistakes. However, we are trying to penalize the behaviour, where a single

error persists over multiple compilations. The inability to deal with syntax errors quickly and

concisely is what we intend our algorithm to detect.

In scoring the pair (3,4), we would assign a score of 8. First, they did edit their code, so we

would continue scoring the pair. Second, both events were errors, and were the same kind of

syntax error (in this case, ’;’ expected), so we add 2 and then 3 to the running total for this

pair of events. Then, we observe that the error location is the same (we allow a +/−1 difference

in line number), so we add 3 to the total, yielding 8.

In running our error quotient algorithm over this sample session, we assigned scores of 0,0,

and 8 to the pairs (1,2), (2,3), and (3,4). We would then normalize these three values to 0, 0, and

.88; the average penalty assigned to the pairs is .88/3, or .29. This average over all the pairs

becomes the session’s error quotient.

4.3.1 The error quotient and parameter choice

Our choice of parameters in the error quotient calculation is not arbitrary; based on our docu-

ment analysis, we found that students who were unable to eliminate a given syntax error (thus

compiling the same ’;’ expected error over-and-over) were struggling more with syntax

than students whose explorations at least generated new syntax errors. For this reason, we

117

CHAPTER 4. THE ERROR QUOTIENT

assign a higher penalty (5) to students who repeat the same syntax error type over multiple

compilations than those who explore a larger error space (2).

However, there is a definite parameter space to be explored. Using the parameters we pro-

posed above, we analysed the distribution of the EQ values generated by this method, the

relationship between students’ EQ to their grades on assignments and exams, and so on; the

results were encouraging, as there seemed to be a correlation between the values. This made us

curious: were there parameters that would provide us with greater spread between students in

our study? That is, were there parameters that provided a better differentiation between those

students who tended to deal with very few syntax errors and those who dealt excessively with

errors?

Exploring the parameter space

We began by parameterising our algorithm. This involved the introduction of five variables:

• touched-multiplier,

• eline-range,

• eline-penalty,

• etype-same-penalty, and

• etype-diff-penalty.

The touched-multiplier was a multiplicative factor we applied to our scoring when

students touched the same line of code from one compilation to the next. eline-range al-

lowed us to control what constituted an error on the “same line”; a 0 would literally mean

that two subsequent errors would need to be on exactly the same line, while the range [-

3,3] would indicate that any error within three lines (in either direction) would constitute be-

ing “on the same line.” eline-penalty is applied when an error occurs on the same line,

etype-same-penalty when the error type reported is the same as the previous compilation

result, and etype-diff-penalty when the error type is different.

In an attempt to find “better” parameters, we chose a simple metric: our choice of param-

eters should, as much as possible, differentiate between students across the population. For

118

4.3. SCORING COMPILATION BEHAVIOUR

(define (generate-all-combos)
(let ([all-param-combos ’()])
(foreach ([touched ’(1.0 1.2 1.4 1.6 1.8 2.0)])
(foreach ([range ’((-1 0 1) (-2 -1 0 1 2)

(-3 -2 -1 0 1 2 3))])
(foreach ([eline ’(1 3 5 7 9)])
(foreach ([etype-same ’(3 5 7 9 11)])
(foreach ([etype-diff ’(2 4 6 8 10)])
(gather all-param-combos
(cons (mysym ’combo)

(list touched range eline
etype-same etype-diff)))

)))))
all-param-combos))

Figure 4.5: Our code for generating parameter combinations.

a given set of parameters, we would calculate the EQ for every session of every student who

took part in our study during the 2004-2005 academic year. We stored these results, and then

chose the parameter set that had the greatest range, for each student, between the minimum

and maximum EQ values recorded, while also minimizing the standard deviation of EQ values

calculated for that student.

The space of parameters we searched was not global; we are working from the assumption

that our findings from our document analysis of hundreds of programs has provided us with

a good initial set of parameters. Therefore, we searched a (coarse) space around our initial set

of parameters. These combinations were generated by the code in Figure 4.5. A space of 6174

possible parameter sets resulted.

Table 4.2 summarises the parameters we originally chose, as well as those that we found

through a semi-exhaustive search. There are two striking differences: first, our choice to penal-

ize a student for having a syntax error that repeats on the same line does not seem to matter a

great deal; second, the ratio between having the same error type (5) versus different error types

(2) went from 5/2, or 2.5, to 11/8, or 1.375. Figure 4.6 shows how striking the difference between

these two parameter sets is; our original set of parameters gave us a view of the population that

was shifted to the left (tending towards low EQ values), and we had a very hard time differenti-

ating between individuals in the middle of the distribution. With the parameters found through

search, the population is spread out further (a greater range of EQ values), and we don’t have

119

CHAPTER 4. THE ERROR QUOTIENT

any “hot spots” in the distribution; however, we do have some significant outliers at the two

extremes of the distribution.

Table 4.2: Parameter choice for EQ calculation

Parameter Original From Search
touched-multiplier 1.0 1.0
eline-range [-1,1] N/A
eline-penalty 3 0
etype-same-penalty 5 11
etype-diff-penalty 2 8

Filtering the data

Our data is opportunistic, in a way; we have no control over whether students come into the

public laboratories on campus to do their programming or not. Therefore, when doing statis-

tics over the entire population, we do have to wonder: just how much data do we have on

each individual? Is it enough to claim we have a “representative sample” of each individual’s

programming behaviour?

We could control for this in a variety of ways; currently, we require that a “session” have at

least seven compilation events, during each of which the student made some kind of change to

their code. We might further require that we have a minimum number of sessions for a given

student before we’re willing to consider them with the rest of the population. If we limit our

data this way, we find that we quickly eliminate a significant number of students from our

study.

We have 161 students in our study; of these, 84% recorded two or more sessions during

either the Fall 2003, Spring 2004, or 2004-2005 academic year. If we limit our data to students

for whom we have 3 or more sessions, we lose 40% of our sample; only 96 students, over the

two years, made use of the public labs to do their programming three or more times. The impact

of this filtering is significant, however.

Figure 4.7 shows four distributions of error quotient scores; the upper-left is a population

of 135 students, or those students for whom we have two or more sessions. The upper-right

distribution is a population of 96 students, for whom we have three or more sessions. The

120

4.3. SCORING COMPILATION BEHAVIOUR

EQ with original params

EQ

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8

0
5

10
15

EQ with search params

EQ

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8

0
5

10
15

Figure 4.6: EQ distribution with our original parameters (left) and those found through semi-
exhaustive search (right).

121

CHAPTER 4. THE ERROR QUOTIENT

lower-left is the distribution of error quotients for students who only have one or two sessions

in our database, and the lower-right is the distribution of standard deviations for those error

quotient scores. What we can see is that students whom we have eliminated for only having

one or two sessions do tend towards the extremes of our error quotient distribution; however,

the distribution of standard deviations tells us that these values are essentially random—there

is not enough data to consider them as being reliable.

The table in figure 4.7 encapsulates our statistical rationale for filtering 40% of our popula-

tion from our aggregate analyses; when we focus on only those students for whom we have

three or more sessions, both our Pearson χ2 and Anderson-Darling normality tests report, with

high confidence, that we have a normal, or Gaussian, distribution of error quotient scores.

When we include those students for whom we only have one or two sessions, the distribu-

tion is no longer “normal;” the tails of the distribution are dominated by students for whom

we have very little behavioural data. We do not think this presents an accurate picture of our

population as a whole, and hence we have eliminated them from our analyses in the following

section.

4.3.2 Neville, Ron, Harry, and Hermione

In the previous chapter, we examined four sessions by four students: Neville, Ron, Harry, and

Hermione. Our exploration of their sessions took us all the way down to the source code.

Through the use of our tabular visualisations, and subsequent reading of their source code

over many iterations, we developed a notion that each of these four students interact differ-

ently with the compiler. Our inclination is to attach a value-laden judgement on the behaviour

these students exhibit—that Neville demonstrated “bad” compilation behaviour in comparison

to Hermione, whose behaviour appeared to be substantially “better,” or otherwise “good.” In-

stead of relying on value judgements, we have proposed a mechanism for automatically scoring

individual programming sessions; using this algorithm, we can begin to compare, directly and

quantitatively, novice programming sessions. In short, we can ask “Just how did Neville, Ron,

Harry, and Hermione do?”

Neville scores the lowest (worst) in this group; Ron and Harry both seem to score in the same

122

4.3. SCORING COMPILATION BEHAVIOUR

Sessions >= 2

EQ

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8

0
2

4
6

8
10

Sessions >= 3

EQ

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8
0

2
4

6
8

Sessions <= 2

EQ

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8

0
2

4
6

8

StdDev(Sessions >= 2)

EQ

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8

Figure 4.7: EQ distributions based on number of sessions recorded for each subject.

Distribution # EQs Min. Median Mean Max. p (χ2) p (A-D)
Sess >= 2 135 0.09 0.39 0.41 0.77 0.26 0.03
Sess >= 3 96 0.11 0.40 0.41 0.70 0.81 0.69
Sess <= 2 65 0.00 0.40 0.41 1.00 0.33 0.34
SD(Sess) <= 2 65 0.04 0.20 0.19 0.35 0.50 0.40

Normalcy of error quotient distributions based on number of student sessions

123

CHAPTER 4. THE ERROR QUOTIENT

Table 4.3: Scores of the four vignettes

Student Session Score
Neville 1 0.54
Ron 1 0.29
Harry 1 0.22
Hermione 3 0.06

range. Hermione’s session scores very well compared to her peers, as she had very few syntax

errors in the entire session, few of which are repeated. While the error quotients are interesting

values, they do not have a great deal of meaning unto themselves. For example, what does it

mean for Neville’s session to have an error quotient of .54 and Hermione’s session to have an

error quotient of .06? The extremes of this range (zero and one) mean one of two things. If there

were no repeated syntax errors, the error quotient would be zero. If every single compilation

ended with the exact same error type, those errors all occurred on the same line, and the student

modified their code between each compilation—failing to correct the error—the error quotient

would be one. However, these extremes are not the norm in our population, and so we might

look at how Neville, Ron, Harry, and Hermione fared compared to the rest of their classmates.

4.3.3 EQ: normally distributed

Testing for normality

The histogram and density plot in Figure 4.8 represent the average error quotient of students

who took part in our study from the Fall 2003 semester through to the end of the 2004-2005

academic year. This distribution does represent filtered data; as described in section 4.3.1, we

are only including students in this analysis for whom we have three or more sessions on file;

this leaves us with 96 students over two years.

Is the distribution of error quotients across our population normal (in a statistical sense)?

Using the statistical programming language R we can carry out a number of tests on our data

to obtain the answer to this question[Dal02].

The histogram presented in Figure 4.8 appears to be normally distributed; this first piece

of intuition is useful, as it helps us determine if the results coming back from our statistical

124

4.3. SCORING COMPILATION BEHAVIOUR

Error quotient distribution

EQ

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8

0
2

4
6

8

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.11 0.33 0.40 0.41 0.48 0.70

Figure 4.8: Distribution of error quotients for students with 3 or more sessions.

analyses “make sense.”

One simple test for normalcy is to perform a Quantile-Quantile (Q-Q) plot. In a Q-Q plot,

we plot the nth quantile in our sample against the nth theoretical quantile in the normal distri-

bution. For example, the .42 (or 42%) quantile is the point at which 42% of our data falls below

that point, and 58% of our data is above it. A Q-Q plot of two perfectly normal distributions

will be a line with a slope equal to one.

In R, we can express this test as:

qq.check <- function(dist) {

z.norm <- (dist - mean(dist)) / sd(dist);

qqnorm(z.norm);

abline(0,1); }

Figure 4.9 is the plot generated by the above R fragment when fed the distribution of EQ

data from our entire population. As can be seen, the tails of our distribution do not conform to

a normal distribution, but the distribution is, by-and-large, normal according to this test.

125

CHAPTER 4. THE ERROR QUOTIENT

●

●
● ● ●

●
●

●●
●●●

●●●
●●

●●●
●●

●●●●●
●●●●●

●●●●●
●●●

●●
●●●●●

●●
●●●

●●●●
●●●●●

●●●
●●●

●●●●●●
●●●

●
●●

●
●●●●

●●●
●●

●
●

● ●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 4.9: Q-Q plot of EQ values from entire study population.

126

4.3. SCORING COMPILATION BEHAVIOUR

Error quotient distribution

EQ

ycneuqerF

0.0 0.2 0.4 0.6 0.8

0
2

4
6

8

Neville

Ron

Harry

Hermione

Figure 4.10: Neville, Ron, Harry, and Hermione’s average EQ overlaid on the population EQ.

Between the histogram itself and the Q-Q plot, we can be fairly certain that this data is

normally distributed. However, we can further apply a Pearson χ2 goodness of fit test to the

data; this parametric test for normalcy will tell us whether we should accept the null hypothesis

(that our data is distributed normally) or the alternative hypothesis (that it is not). The Pearson

test2 yields P = 6 and a p − value = 0.81, which leads us to believe that our distribution of

EQ values is normal. Similarly, using a common, non-parametric test, we might employ the

Shapiro-Wilk test; this test is useful as it has both non-parametric and parametric components,

whereas the Pearson test explicitly assumes that the underlying distribution is Gaussian. As we

expect (as our intuition is that this distribution is fairly normal), the Shapiro-Wilk test reports

W = 0.99, and a p = 0.77; again, we accept the null hypothesis, and believe that we have a

fundamentally Gaussian distribution of EQ values in our population.

4.3.4 Neville, Ron, Harry, and Hermione revisited

In Table 4.3, we presented the error quotient for one session from Neville, Ron, Harry, and

Hermione; in each case, the students were working on the Notebook project. In Figure 4.10, we

2pearson.test() as defined in the R library nortest.

127

CHAPTER 4. THE ERROR QUOTIENT

have plotted the average error rates of Neville, Ron, Harry, and Hermione against the distribu-

tion of the rest of their peers. Hermione has the lowest error rate of the four, Harry is on the

low side of the curve, Ron is just below the mean of the of the distribution, and Neville has an

above-average error-rate for the population. We must be cautious, however; the standard devi-

ation for each students’ EQ is quite high; both Neville and Ron and Harry and Hermione have

EQ averages with high enough standard deviations that they fall within one standard deviation

of each-other. In calculating the average EQ for each of these four students, we can look at what

the variance in their sessions is; this is reported in Table 4.4. While Neville may have an average

EQ of 0.59, and Ron has an average EQ of 0.37, these individual sessions that make up these

values are actually highly variable (σ = 0.17 and σ = 0.15, respectively). While the means of

each of these distributions is distinct, they overlap significantly, which is a situation we must be

wary of when trying to draw strong conclusions about one student being substantially different

than another. Figure 4.11 shows the distribution of EQ values, per session, for both Ron and

Neville, to illustrate this condition.

Table 4.4: Average error quotient for Neville, Ron, Harry, and Hermione

Student EQ σ # sessions
Neville 0.59 0.17 17
Ron 0.37 0.15 15
Harry 0.22 0.11 20
Hermione 0.11 0.09 7

The point we are trying to make is that we have a relatively small amount of data for some

of our students, and that data tends to be quite variable. Therefore, making distinctions like

“an EQ of 0.11 is far better than an EQ of 0.18” is not, we believe, possible at this time. This

does not mean that we cannot employ the error quotient in our analyses; quite the opposite, we

still believe the number is potentially of great value to researchers. However, we do need to be

aware of the variability in our dataset, and keep that in mind when drawing conclusions about

our students and their compilation behaviour.

128

4.4. EXPLORING ERROR RATES

Ron's sessions

EQ

F
re

qu
en

cy

0.0 0.4 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Neville's sessions

EQ

F
re

qu
en

cy
0.0 0.4 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Figure 4.11: Neville, Ron’s EQ session scores.

4.4 Exploring error rates

The error quotient is a simple metric that tells us how often our students compile code that

has a syntax error in it, and how those errors persist over subsequent compilations. While it is

clear that for small numbers of compilations, this value can be highly variable, it would appear

in the first instance to (informally) correlate with our ongoing qualitative analysis of novice

compilation behaviour.

If we take the current population of 96 students who generated “enough” data to be consid-

ered in this analysis, we might divide them up into three crude categories. First, those students

who seem to deal effectively with syntax errors; second, students who deal very poorly with

syntax errors, and then those students who fall in-between. Our document analysis would sup-

port the notion that we might use the mean and standard deviation from our EQ distribution

to divide up our students. In the first quartile are both Hermione and Harry. This lowest quar-

tile includes students who tend to deal most effectively with syntax errors. The fourth quartile

includes Neville and those students who clearly struggle with syntax errors. In the middle two

quartiles students like Ron whom we have a harder time categorizing; sometimes they manage

129

CHAPTER 4. THE ERROR QUOTIENT

errors quickly and effectively, and sometimes they don’t.

In breaking up our population into three pools of students, we can now “dip our toes in” to

each of those pools, and see what their behaviour looks like. Whereas our in-depth qualitative

work was a fairly linear (or unguided) process, we can now use the EQ as a way of picking out

what might be interesting or troubling sessions. We start with students who deal with syntactic

errors most easily (the “best” students), and work our way through to students like Neville,

who struggle with syntax in a very fundamental way.

4.4.1 “The best of the best”

Hermione was our exemplar for students with an EQ of less than 0.33. With an average EQ of

0.11, she demonstrated mastery of the language and the ability to not only correct syntax errors

quickly, but also make aesthetic edits as well. There are twenty-four students who have average

error rates less than 0.33 (Table 4.5).

In several cases, we have included a summary table that is representative of a session we

captured by these students. In the Vignettes chapter, we went in-depth into Hermione’s Note-

book code; in that session, we saw that she had no significant difficulties dealing with the syntax

of the language, and even focused some of her editing on (what appeared to be) strictly aesthetic

concerns. In reading through the code for other students in this bracket, we find that they tend

to exhibit many of the same characteristics—syntax, in short, does not seem to be an issue for

them.

Gloria’s programming demonstrates the syntactic efficiency we might expect from students

with a low average EQ value. The session we highlighted (in which she is working on the

“Horse Race” assignment) is particularly long, so we will only highlight one sequence of edits.

The first sequence of errors that Gloria encounters comes from the addition of a new method;

she begins by leaving out brackets around the body of the method—a problem that Neville

attempted to deal with as well, but we might argue that he fared poorly (by comparison) when

faced with the same syntax error.3

3We should also note that when authoring this method, Gloria also authored a correct JavaDoc comment—a com-
menting practice we rarely see in student code.

130

4.4. EXPLORING ERROR RATES

Table 4.5: The twenty-four students with the lowest average EQs.

Student Avg. EQ σ # Sessions Rep. Sess.
Hermione 0.11 0.09 7 A.11
Martin 0.19 0.17 6
Cynthia 0.21 0.20 17
Gloria 0.21 0.17 46 A.15
Harry 0.22 0.11 11
Lee 0.23 0.19 8
Julie 0.24 0.14 13
Aaron 0.25 0.19 4
Kevin 0.25 0.16 6
Antonio 0.26 0.14 7
Jacob 0.26 0.21 16
Juan 0.26 0.17 10
Ryan 0.28 0.18 5
Francis 0.28 0.20 11
Bryan 0.28 0.11 6 A.14
Martin 0.28 0.10 4
Jesus 0.28 0.22 21
Jonathan 0.30 0.18 3
Johnny 0.30 0.17 12
Marie 0.30 0.26 39
Jimmy 0.31 0.19 14
Aaron 0.32 0.21 15
Danny 0.32 0.18 7
Jeffery 0.32 0.09 3

131

CHAPTER 4. THE ERROR QUOTIENT

Before

087 public Horse getFirst()

088 for (int i = 0; i < numHorses - 1; i)

089 lanes[i].isFurther(lanes[i + 1]);

After

087 public Horse getFirst()

088 {

089 for (int i = 0; i < numHorses - 1; i)

090 lanes[i].isFurther(lanes[i + 1]);

091 }

After adding the method, the compiler reports ’;’ expected on line 88; the actual error

is that Gloria neglected to open a bracket for the start of the method body; she remedies this

problem in fifteen seconds. In doing so, the compiler then reports that the method is missing a

return statement (line 91).

132

4.4. EXPLORING ERROR RATES

Before

087 public Horse getFirst()

088 {

089 for (int i = 0; i < numHorses - 1; i)

090 lanes[i].isFurther(lanes[i + 1]);

091 }

After

087 public Horse getFirst()

088 {

089 Horse h;

090 for (int i = 0; i < numHorses - 1; i)

091 {

092 h = lanes[i].isFurther(lanes[i + 1]);

093 }

094 return h;

095 }

Gloria does not just add a return statement to her code; instead, she realised that she

needed to iterate through an entire array for the method to perform the correct operation. She

sets up a temporary variable (of the correct type), and returns the contents of that variable at

the end of the method, after the loop. The compiler then complains that the variable h might

not be initialized; so, she initialized the variable to the first member of the array.

133

CHAPTER 4. THE ERROR QUOTIENT

Before

087 public Horse getFirst()

088 {

089 Horse h;

090 for (int i = 0; i < numHorses - 1; i)

After

087 public Horse getFirst()

088 {

089 Horse h = lane[1];

090 for (int i = 0; i < numHorses - 1; i)

Note again the correction; we assume that Gloria was attempting to initialize the variable h

on line 89 to the first element of the array; instead, she initialized it to 1, or the second element

of the array. This is a minor error—and, in fact, one that does not matter in the least.4 As the

subsequent for-loop visits every pair of Horses in the array, the initial value of h probably

does not matter, as its initial value will likely never be passed back as a result of invoking this

method.

While we may be picking a bit regarding the initial value of a temporary variable, we believe

what is clear from both our earlier exploration of Hermione’s code, as well as this short sequence

of edits belonging to Gloria is that these students are writing code that is largely syntax-error

free. Their edits typically deal with semantic issues in their code, not syntactic issues. While

it can be seen from the standard deviation for the error quotient of each of these students that

they must certainly have their “off” days, we would posit that these students are not distracted

by the syntax they are working in, but instead dealing with the semantic content of the problem

set before them.

4.4.2 “Middle of the road”

The students with the lowest EQs appear to deal quickly and efficiently with syntax errors in

their programs. They focus their edits on semantic, not syntactic issues, and appear to make

4Except, possibly, in a one-horse race.

134

4.4. EXPLORING ERROR RATES

Table 4.6: Students with an average error rate between 0.33 and 0.48, inclusive

Student Avg. EQ σ # Sess Student Avg. EQ σ # Sess
Jeremy 0.33 0.31 3 Victor 0.4 0.15 3
Kathleen 0.33 0.25 22 Jeff 0.4 0.25 44
Luis 0.33 0.21 10 Mark 0.41 0.22 3
Mike 0.33 0.12 8 Phillip 0.41 0.15 8
Craig 0.33 0.18 5 Justin 0.41 0.26 3
Chad 0.33 0.13 8 Glenn 0.41 0.25 45
Diane 0.34 0.2 5 Roy 0.42 0.22 21
Rebecca 0.34 0.14 13 Fred 0.42 0.19 4
Ann 0.35 0.18 26 Kyle 0.42 0.23 6
Curtis 0.35 0.14 3 Roger 0.43 0.05 3
Heather 0.35 0.13 5 Terry 0.43 0.35 6
Rodney 0.35 0.18 17 Melissa 0.44 0.08 11
Arthur 0.35 0.2 10 Anna 0.44 0.23 4
Philip 0.36 0.18 10 Bradley 0.44 0.18 9
Christine 0.36 0.27 8 Alice 0.45 0.17 4
Ruth 0.36 0.22 4 Melissa 0.45 0.19 5
Ron 0.37 0.15 7 Debra 0.45 0.21 11
Carolyn 0.37 0.16 6 Norman 0.47 0.19 39
Allen 0.38 0.24 28 Samuel 0.47 0.22 3
Manuel 0.38 0.2 12 Louis 0.47 0.14 3
Deborah 0.38 0.33 8 Shawn 0.47 0.24 18
Pamela 0.38 0.04 4 Billy 0.47 0.17 13
Linda 0.38 0.33 3 Walter 0.47 0.2 3
Janet 0.39 0.24 6 Jesse 0.48 0.18 5
Marvin 0.39 0.2 7 Chris 0.48 0.17 8
Phillip 0.39 0.2 5 Nancy 0.48 0.21 5
Melvin 0.4 0.27 17

progress toward their goals—a subjective claim based on our knowledge of Objects First with

Java and the assignments issued to students at the University of Kent.

What about the students with “average” error rates—students, for example, like Ron? These

students make up the majority of our sample population. Fifty-three students have average

error rates that fall between 0.33 and 0.48, inclusive; Table 4.6 lists the students in this category,

as well as their average error quotient and the standard deviation associated with that average.

What do sessions look like from students who are more prone to make syntax errors and for

whom those errors persist?

135

CHAPTER 4. THE ERROR QUOTIENT

Mysterious semantics

In the session that we’ve highlighted next, Linda makes error free additions to her code con-

sistently, but makes a rather obvious semantic error that will cause problems before she is

done. In adding some output to her listAllNotes() method, Linda introduces a variable

noteNumber, which is not defined; this probably comes about due to a copy/paste of code she

had written earlier in the class she is working on.

Before After

074 public void listNotes() 073 public void listNotes()

... ...

078 System.out.println(notes.get(index)); 077 System.out.println(noteNumber + ":" + notes.get(index));

To fix this problem, she adds the variable to the formal parameters of the listAllNotes()

method—which changes the signature of the method. Admittedly, this fix makes the syntax

error go away, but it does not make the program “more correct.” She also could have introduced

and initialized a variable local to the method, which would have also made the error go away.

In this case, she has made her program “less correct;” by changing the method header, she will

probably break other code she is expected to write for this particular assignment.

Before After

073 public void listNotes() 073 | public void listNotes(int noteNumber)

Not only did Linda introduce a fix to her syntax error that potentially broke the interactions

of this method with others, but it doesn’t even do what she probably wants it to do. When

executed, this method will now print the same noteNumber on every line, which is not the

behaviour she was looking for. Instead, Linda probably want to print the index (or something

based thereon) on each line of output.

While our analyses of novice programming errors have focused on the syntactic, we cannot

deny that the syntactic and semantic are intimately intertwined. As students struggle to learn

to program, that struggle necessarily takes place as students wrestle to map their understand-

ing of a problem and their desired solution onto the syntax and semantics of a programming

language. Despite many studies regarding programming comprehension and mental models

136

4.4. EXPLORING ERROR RATES

([MMNS83, GG84, GO86]), we do not feel that this research provides us with a model compre-

hensive enough to explain either Linda’s behaviour or Catherine’s5.

In both Linda’s and Catherine’s edits (following), changes were made that fixed syntax er-

rors, but in doing so the semantics of the programs were altered in apparently significant ways.

These semantic alterations do not appear to be intentional in that the program is not made

“more correct” by their edits. So while we might like to say that these students are dealing

quickly and effectively with their syntax errors, we have to question whether the fix is “effec-

tive” if it significantly alters the semantics of the program in ways that do not move the student

closer to a correct solution.6

As an example of a syntactic fix that seems to break the desired semantics of the program,

Catherine wrestles for a stretch with bracketing and a return statement. From this code, it is

not immediately clear how she ultimately derived the default return value for the compareTo

method.

5There are only two sessions belonging to Catherine that meet our criteria for inclusion in our aggregate analysis; we
include her work here as it was flagged as interesting during our document analysis, and is relevant to the discussion.

6Given that we are familiar with the exercises involved, we can say that these semantic changes are not likely part
of any correct solution the student might devise.

137

CHAPTER 4. THE ERROR QUOTIENT

Before After

084 public int compareTo(Object other) 084 public int compareTo(Object other)

085 { 085 {

086 086

087 087 if (other instanceof ContactDetails){

088 ContactDetails otherDetails = (ContactDetails) other; 088 ContactDetails otherDetails = (ContactDetails) other;

089 if (otherDetails != null) { 089 if (otherDetails != null) {

090 int comparison = name.compareTo(otherDetails.getName()); 090 int comparison = name.compareTo(otherDetails.getName());

091 if(comparison != 0){ 091 if(comparison != 0){

092 return comparison; 092 return comparison;

093 } 093 }

094 comparison = phone.compareTo(otherDetails.getPhone()); 094 comparison = phone.compareTo(otherDetails.getPhone());

095 if(comparison != 0){ 095 if(comparison != 0){

096 return comparison; 096 return comparison;

097 } 097 }

098 return address.compareTo(otherDetails.getAddress()); 098 return address.compareTo(otherDetails.getAddress());

099 099

100 rn (0); 100 rn (0);

101 101

After adding in an if statement near the top of the method, Catherine’s bracketing becomes

confused, causing the return statement to fall outside of the brackets defining the extent of

the method. She addresses this quickly, adjusting the brackets appropriately at the end of the

method, despite the rather awful indentation she is employing. This is perhaps a sign of her

comfort with the syntax, but not mastery—we have often seen students with high error quo-

tients fight with bracketing, and become lost in their own poor indentation (so we assume).

While we think this is less of a problem for students like Linda and Catherine, they clearly

have not mastered the language both syntactically and semantically—that, or they’re just very

careless.

138

4.4. EXPLORING ERROR RATES

It is the last edit of Catherine’s session that leaves us scratching our heads, however; she

changes the return value of 0 to a return value of 7. This is where the nature of our data col-

lection and subsequent analysis breaks down—we cannot read our students’ minds. We assume

that Catherine had a good reason for this change, but there is nothing in our experience with

this project that otherwise seems to suggest that they should return 7 instead of 0 as the “de-

fault” return value from compareTo. Furthermore, this is the last compilation of the session,

and the last compilation that we record for this particular piece of code; as a result, we cannot

explore Catherine’s edits on this program further in an attempt to divine what is significant

about a return value of “7”.

139

CHAPTER 4. THE ERROR QUOTIENT

Before After

084 public int compareTo(Object other) 084 public int compareTo(Object other)

085 { 085 {

086 086

087 if (other instanceof ContactDetails){ 087 if (other instanceof ContactDetails){

088 ContactDetails otherDetails = (ContactDetails) other; 088 ContactDetails otherDetails = (ContactDetails) other;

089 if (otherDetails != null) { 089 if (otherDetails != null) {

090 int comparison = name.compareTo(otherDetails.getName()); 090 int comparison = name.compareTo(otherDetails.getName());

091 if(comparison != 0){ 091 if(comparison != 0){

092 return comparison; 092 return comparison;

093 } 093 }

094 comparison = phone.compareTo(otherDetails.getPhone()); 094 comparison = phone.compareTo(otherDetails.getPhone());

095 if(comparison != 0){ 095 if(comparison != 0){

096 return comparison; 096 return comparison;

097 } 097 }

098 return address.compareTo(otherDetails.getAddress()); 098 return address.compareTo(otherDetails.getAddress());

099 099

100 100 rn (7);

101 101

102 rn (0); 102

103 103

4.4.3 “On the high side”

The last group of students we wish to focus on—those whose average error quotient is in the

fourth quartile—are those students who wrestle excessively with syntax (Table 4.7). We posit

that their compilation behaviour is, generally speaking, similar to that of Neville. These stu-

dents have a hard time writing syntactically correct statements in the language they are using,

and struggle with the errors reported by the compiler when the syntax of their code is incorrect.

Put simply, they cannot write code.

140

4.4. EXPLORING ERROR RATES

Table 4.7: Students with an average EQ greater than 0.48

Student Avg. EQ σ # Sess Rep. Sess.
Randy 0.50 0.18 7
Peter 0.51 0.27 5
Amy 0.51 0.19 7
Dale 0.52 0.16 3
Travis 0.53 0.3 7
Sean 0.53 0.14 7
Virginia 0.53 0.1 3
Doris 0.54 0.13 3
Paul 0.55 0.25 3
Amanda 0.55 0.16 6
Herbert 0.55 0.25 19
Joyce 0.56 0.21 5
Louis 0.56 0.13 4
Neville 0.57 0.17 14
Terry 0.60 0.08 5 A.21
Stanley 0.62 0.23 15
Roger 0.63 0.2 3 A.22
Stephanie 0.65 0.23 10 A.26
Deborah 0.67 0.1 5
Karen 0.69 0.05 3 A.25, A.24

While this may sound harsh, it is as concise a statement as can be made. These students

wrestle greatly with syntax, and (in our observations) rarely write programs that compile. We

will look in-depth at one of these students, and in passing at a second.

Roger: how not to invoke a method

Roger’s session involves two files, and he focuses his efforts on one of them (Table A.22). The

code he is working on in this session is part of the “Game of Zuul” project from Objects First

with Java. In this project, the students are expected to fill out a text adventure game in the style

of Zork and other Infocom games7. They create objects to represent rooms in their world, han-

dle input from the user, and generally are expected to create a small game with some creative

elements of their own choosing. Roger never seems to get that far.

The session begins with the traceMoves method commented out (on a line-by-line basis);

it could be that Roger was working on this at home, and had commented out this method until

7http://en.wikipedia.org/wiki/Zork, http://www.infocom-if.org/

141

CHAPTER 4. THE ERROR QUOTIENT

he could devote more time on it. After making one or two small edits elsewhere, he then brings

his attention back to the traceMoves method.

The compiler proceeds to report a misuse of the method Command: cannot resolve

symbol - method Command (java.lang.String,java.lang.String). Over the next

dozen compilation events, Roger focuses his efforts on lines 63 and 64; we will likewise focus

our view on these two lines only. First, he removes his attempted object creation statement on

line 63.

Before

063 Command com = Command.Command("go", direction);

064 goRoom(com);

After

063 goRoom(Command("go", direction));

064

As the compiler is still complaining about an unknown method Command (it is a class, not a

method, and should be instantiated with new), Roger reintroduces the use of the class Command

(incorrectly) as an argument to the goRoom method.

Before After

063 goRoom(Command("go", direction)); 063 goRoom(player.Command("go", direction));

Roger then deletes the word Command completely, but then introduces a new syntax error.

The compiler, after this edit, reports a ’)’ expected error. This is because a , is expected

between "go" and direction.

Before After

063 goRoom(player.Command("go", direction)); 063 goRoom("go" direction));

This error repeats on this line three times before he re-expands this one line of code into two.

Before After

063 goRoom("go" direction); 063 Command com = getCommandWord, getSecondWord

064 064 goRoom("go" direction);

142

4.4. EXPLORING ERROR RATES

A ’;’ expected error is, in some ways, correctly reported for line 63, although the line

itself is far from semantically meaningful Java. Once the semicolon is added, the compiler once

again reports ’)’ expected on line 64; Roger resolves this by replacing line 64 entirely.

Before

063 Command com = getCommandWord, getSecondWord

064 goRoom("go" direction);

After

063 Command com = getCommandWord, getSecondWord;

064 goRoom(com);

Now, the semantically meaningless line 63 is the cause of new errors: cannot resolve

symbol - variable getCommandWord. If the variable isn’t able to be resolved, then per-

haps it is a method? He adds a pair of () to the end of line 63, to which the compiler replies

’;’ expected.

Before

063 Command com = getCommandWord, getSecondWord;

064 goRoom(com);

After

063 Command com = getCommandWord(), getSecondWord();

064 goRoom(com);

We could go on, but we will not; Roger eventually solves this problem by removing these

two lines completely; we strongly suspect that his program fails to do what it is expected to do

at this point.

4.4.4 Karen: no peace unto the desperate

We have included two of Karen’s sessions simply because they represent what is almost typical

behaviour for students with error quotients of 0.50 and higher. We will not explore these ses-

sions in depth, as their story is immediately obvious simply by looking at our summary tables.

The first session we’ve highlighted (Table A.24) comes from early in the semester—it is the

Notebook project, which we looked at in-depth with Neville, Ron, Harry, and Hermione. In

143

CHAPTER 4. THE ERROR QUOTIENT

this session, Karen spends roughly 20 minutes working on her program, and it compiles rarely.

She deals with a wide variety of errors (’;’ expected, illegal start of expression,

’.class’ expected, missing return statement, ’(’ expected, cannot resolve

symbol - variable, and < variable > has private access in < class >), and at no

point does she get her code to compile. In fact, she doesn’t even get her code close to something

that is syntactically correct:

064 public String listNotes()

065 {

066 int i=0;

067 while(i

068 System.out.println(notes.get(i));

069 i++;

070 }

071 }

This must be a frustrating experience for the student—how much of Karen’s programming

time is spent failing to achieve anything? From our snapshots, it would appear that the majority

of her time is spent making small changes to her programs, getting errors of one sort or another

from the compiler, and generally failing to write a program that runs.

The second session we’ve highlighted (Table A.25) is seven minutes long—a short session,

generally speaking. It would appear that she either no longer programs in the public labs (save

when she must, in-class), or Karen has completely given up on the prospect of learning to

program; we cannot truly say, given the data we have to hand. We expect that most of Karen’s

sessions look the same: she explores at least one error type per minute, and never manages to

get her code to compile. The code she is working on is no better than the snip we presented

above; her behaviour has all the appearance of random guessing, perhaps with the vain hope

that she will magically type the correct thing that will make her program work, complete the

assignment, and let her get on with her day, week, and life. Or, perhaps she doesn’t care, and is

just filling time in-class, hoping she won’t be asked any questions by her lab supervisor.

We’ve gone a bit far in attributing emotion and intent to Karen, but it is hard not to—we can

144

4.5. THE EQ AND GRADES

tell from the overviews and the source associated with them that she has no clear idea how to

program in Java, taken alone or in comparison with many of her peers at the same time of the

semester. We assume she is frustrated, or perhaps bored—but we are certain she doesn’t have a

clue when it comes to writing a syntactically correct Java program.

4.5 The EQ and grades

The error quotient gives us a quantitative view into a large, complex, qualitative dataset. As we

saw in the previous section, it allows us to classify students along a single, gross metric, based

almost entirely on the repetition of syntax errors. Students with low EQs typically spend their

time working with syntactically correct code; when they have to deal with a syntax error, it is a

quick and efficient process. On the other hand, students with high EQs can spend ten, twenty,

thirty, or more minutes wrestling with one part of their code, and sometimes with the same

syntax error.

It is interesting to us that the error quotient appears to correlate inversely with grades. This

means that, according to our data, students who have low EQ scores tend to have higher marks

on their assignments and exams than students with high EQ scores. At a glance, many of

our colleagues say “well, that makes sense,” as it seems unlikely that a student who routinely

spends 30 minutes wrestling with a ’;’ expected error will do well on their homeworks and

exams, where correct code with good semantics is expected.

4.5.1 About the population

While much of our research has taken our entire population of students from the 2003-2004

and 2004-2005 academic years into consideration, our claim regarding the connection between

the EQ and course marks are based entirely on data from the 2004-2005 academic year. We

have focused on this population for two reasons. First, we have more subjects in the 2004-2005

academic year (68), whereas only 31 students took part in our study through the entirety of the

2003-2004 academic year. Second, we have more sessions on record for each of the students in

the 2004-2005 year. On average, we have more sessions per student recorded for the 2004-2005

academic year than the previous, fractured year.

145

CHAPTER 4. THE ERROR QUOTIENT

Of the 68 students in our study, 56 of them took the final examination. This does not mean

that 14 of our students failed out of the introductory course in object-oriented programming;

instead, it means 14 of the students in our study were only required to take the first semester

of the two course sequence, CO320/520. For purposes of this analysis, we have simply left the

students who only took one semester of the sequence out of our calculations. This leaves us

with a sample population of 56 students; of these, nine students only generated 2 sessions. So,

we are left with 47 students in our sample population.

At a glance, 47 of 213 students may seem like a rather small sample of the total population;

we do not believe this is the case. During the 2004-2005 academic year, 213 students started the

introductory course; of those 213, only 118 went on to take the second-semester of the course.

This is not uncommon, as the students who drop the course at the midterm are joint-majors or

students from other departments for whom the second semester is not mandatory. Of the 118

who took the second semester, 56 were in our study, leaving 62 students who were not; 47% of

the students who took the final exam, therefore, were subjects in our study through the entire

2004-2005 academic year. Although we eliminate a few of these from our population due to a

lack of data, our claim is that we have a significant, representative sample to work with.

4.5.2 Grades: assignments and examinations

We have two kinds of grades for the subjects in our study. The first are the marks they received

on their assignments; these assignments are graded by postgraduate students and members of

the academic faculty according to a reasonably well-defined rubric. Students sometimes come

back to argue they should receive more marks than they did, and sometimes those marks are

granted. The process, we are trying to say, is somewhat fluid.

We have two examination grades for our students. Students who take only CO320 have one

examination at the end of the year; students who go on to take CO520 take one for each semester

of the course. This does mean that students who only take the first semester see several months

pass by where they might not be doing any programming before they are tested on it—certainly,

not an ideal situation.

It should be noted that the exams are quite different from the assignments the students

146

4.5. THE EQ AND GRADES

work on during the semester. During the term, students work through a series of assignments

that expose them to different syntactic elements in the language, as well as different concepts

fundamental to object-oriented programming in Java. These assignments are programming-

heavy, in that the majority of the points a student can earn on the assignment comes from

extending code they are given to do one or more tasks; while working on their code, they can

(and do) use many resources—their book, their peers, and their instructor, to name just a few. By

comparison, when taking the final exam, they are in a large hall with many other students. They

are allowed a pencil, and are able to request paper for scratch work—this must be submitted

with the exam, as they are not allowed to leave the hall with anything more than they entered

with. While they are expected to write some code on the exam, it is by hand, without the

support (or distraction, as the case may be) of a compiler. In short, the way students interact

with their code under exam conditions is radically different from what they are accustomed to

from their experiences doing coursework during the semester or year.

Assignment grades

Figure 4.12 summarises assignment grades for the 2004-2005 academic year. The boxplots depict

the median, first and third quartile, as well as 1.5 times the inter-quartile distance (dashed lines)

and outliers (marked individually) for the students in our study as well as those students who

are not. In all cases these are students who completed the entire course.

At a glance, it would appear that the students in our study did better on their assignments

overall than the students in the rest of the population. We can test that intuition statistically;

a two-sample t-test is one mechanism that can be used to tell if two distributions are actually

derived from the same parent distribution[Kan99]. In this case, the t-value reported is -1.48,

with a p of 0.14. The t-value tells us that the mean of our second distribution is greater than

the first, and the p value tells us that we should probably accept the null hypothesis—these two

distributions are derived from the same parent distribution. In short, the students in our study

tended to do better on their assignments (to some degree) than those who did not take part;

given the amount of overlap, however, we would claim that this is not a very powerful claim.

It is possible that the t-test is not entirely appropriate in this case; it is typically only applied

when the two distributions in question are independent, and when the distributions being com-

147

CHAPTER 4. THE ERROR QUOTIENT

●

●

●

Not In Study Our Subjects

20
40

60
80

10
0

Average Assignment Grades

Not in Study
Min. 1st Qu. Median Mean 3rd Qu. Max.
19.29 63.57 77.71 75.02 85.14 98.71

Our Subjects
Min. 1st Qu. Median Mean 3rd Qu. Max.
45.57 72.35 81.00 78.76 87.43 93.57

Figure 4.12: Distribution of assignment marks for the 2004-2005 academic year.

148

4.5. THE EQ AND GRADES

pared are Gaussian. While our two distributions may not be entirely normal, our purpose here

is simply to quickly characterise the similarities and differences between these two populations.

Applying a non-parametric test, like a two-sample Kolmogorov-Smirnov test8, we come to the

same conclusion as we did with the t-test: these two distributions are similar (D = 0.24, p-value

= 0.19). Thus, our intuition that the students taking part in the study had slightly better assign-

ment grades than those who did not take part in the study appears to be reasonable.

We are curious about how similar the grades are for these two populations because we want

to know if the students in our study are, generally speaking, representative of the population as

a whole. It would appear that they did not perform hugely better or worse on the assignments

throughout the term than their peers, which gives us some measure of confidence that they are

probably, at least on this one metric, typical of a first-year student learning to program.

Figure 4.13 is a plot of the EQ and average assignment mark for each student in our study.

Using a simple linear regression, there is a significant inverse relationship between average

assignment mark and the EQ (at the p = .01 level). However, an adjusted R-squared value of .11

is poor; an R-squared value of 1.0 in this case would indicate a perfect linear fit.

As we can see, there is a great deal of noise in the assignment data; while there is a possi-

ble trend, we can also see a number of students who look, at best, like “outliers.” Given the

poor confidence value (p = 0.01) and R2 = 0.11, indicating a very poor fit of the trend line

to the data, we’re inclined to think that there isn’t any clear connection between students’ EQ

and their performance on coursework. If we were to remove some of the students from this

sample—those students at the extremes—we might find that a reasonable trend might begin to

develop. At either end of the coursework-mark spectrum, we could make a reasonable case for

eliminating them from this distribution. Students with very poor coursework marks may not

have completed the assignments; given that the coursework only accounts for a small portion of

their overall grade, students will often “economise” their assignments, focusing on work that

is more important, or worth a higher percentage of their overall grades. At the other end of

the spectrum, students with high marks and low EQ scores—students who we suspect have a

great deal of trouble with syntax—may be cheating. We just might be observing the effect of

plagiarism. While we like to believe that all of our students do their own work, we know that

8http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm

149

CHAPTER 4. THE ERROR QUOTIENT

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

Grades vs. Avg. Assignment Grade

EQ

A
vg

. a
ss

ig
nm

en
t g

ra
de

Residual standard error: 10.79 on 45 degrees of freedom
Multiple R-Squared: 0.1322, Adjusted R-squared: 0.113
F-statistic: 6.858 on 1 and 45 DF, p-value: 0.01198

Figure 4.13: EQ vs. average assignment grades for the 2004-2005 academic year.

plagiarism is common in introductory programming courses[LC01]. If 10-15% of our sample

population were to plagiarize or cheat consistently, submitting another student’s work as their

own, they would contribute greatly to the amount of noise in this plot.

Final exam grades

The process by which final exams are graded is much more controlled; the rubrics are clearer

regarding what constitutes a correct answer, what is worthy of partial credit, etc., and multiple

graders must come to a consensus on the marking of each exam. It is not surprising, therefore,

that the relationship between EQ and final exam grades is statistically more significant.

Unlike our assignment grades, the final exam marks for the students in our study (n = 56)

and who were not in our study (n = 62) are quite similar (Figure 4.14). Statistically, we believe

they are from the same parent distribution. A two-sample t-test (t = -0.944, df = 38.6, p = 0.35)

strongly implies they are from the same parent distribution; likewise, a Kolmogorov-Smirnov

test (D = 0.18, p = 0.58) also would imply that these two distributions are statistically equivalent.

So, we feel comfortable claiming that the subjects in our study did not perform significantly

better or worse on their final examination than the students who did not take part in our study.

150

4.5. THE EQ AND GRADES

Not In Study Our Subjects

20
40

60
80

Final Exam Grades

Not in Study
Min. 1st Qu. Median Mean 3rd Qu. Max.
23.00 50.00 70.00 65.48 81.00 96.00

Our Subjects
Min. 1st Qu. Median Mean 3rd Qu. Max.
40.00 53.00 66.00 65.78 77.00 97.00

Figure 4.14: Distribution of final exam grades for the 2004-2005 academic year.

151

CHAPTER 4. THE ERROR QUOTIENT

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

EQ vs. Final Exam Grade

EQ

F
in

al
 E

xa
m

 G
ra

de

Residual standard error: 11.86 on 45 degrees of freedom
Multiple R-Squared: 0.2671, Adjusted R-squared: 0.2508
F-statistic: 16.4 on 1 and 45 DF, p-value: 2e-04

Figure 4.15: EQ vs. final exam grades for the 2004-2005 academic year.

152

4.5. THE EQ AND GRADES

The correlation between EQ and final exam grade (p = 2× 10−4) is far more significant than

that between EQ and assignment grades, and the quality of the linear fit (as measured by the

Pearson coefficient, R2 = 0.25) is twice as good, but still not excellent by any stretch. We can see

that there is significant noise in the data, but by inspection also believe the significance of the

trend line: clearly, the two values are related.

4.5.3 EQ: correlation and prediction

Novice compilation behaviour is a complex thing; the error quotient is just one way of dis-

tilling several observable quantities down to a single, non-dimensional number that reflects

how a novice programmer deals with syntax errors. It would appear that novice compilation

behaviour, as measured by their EQ, correlates with their performance on programming as-

signments and end-of-year examinations. This implies, to some degree, that their compilation

behaviour relates to their performance as measured by traditional, summative measures. How-

ever, can we use a student’s EQ to predict their behaviour on examinations?

As our sample group appears to be representative of the population as a whole, the data that

follows will only reflect those students who took part in our study.

CO320 exam vs. CO520 exam

The CO320 examination is a good predictor of final exam performance. Students who do well

on the exam covering material from the first term of the course do well on the final (Figure 4.16).

The fit is significant (p = 3 × 10−6), and the quality of the fit is better than any of the corre-

lations we’ve considered so far (R2 = 0.32). We would hope, in some ways, that the student’s

performance on material from the first term would reflect their final exam score; it would indi-

cate some kind of consistency in our examination process, and that a student who “knows their

stuff” is not just memorizing material by rote, but might have some broader understanding of

the material.

153

CHAPTER 4. THE ERROR QUOTIENT

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

Midterm vs. Final examination for subjects in study

Midterm (CO320)

F
in

al
 (

C
O

52
0)

Residual standard error: 11.88 on 45 degrees of freedom
Multiple R-Squared: 0.4112, Adjusted R-squared: 0.3981
F-statistic: 31.42 on 1 and 45 DF, p-value: 1.198e-06

Figure 4.16: Midterm vs. final examination for subjects in our study, 04/05.

Fall and Spring EQ

The error quotient for our sample population dropped, on average, over the course of the 2004-

2005 academic year (Figure 4.17). This is, of course, a good thing; it implies that the population,

taken as a whole, learned to deal with syntax errors more quickly and with fewer repetitions of

the same error over the course of the year. Of course, some students had lower error quotient

scores in the fall semester (implying their compilation behaviour was better earlier in the term),

but this kind of effect may be an artefact of the limited data we have for some subjects in our

study. We are pleased that, in the aggregate, it would appear that our students showed some

improvement in their average error quotient scores.

Given that (it appears that) their compilation behaviour improved over the course of the

year, is it in any way predictive of their performance on their midterm and final examinations?

Fall EQ vs. CO320 examination

It would appear that there is some significance to the correlation between the our students’ EQ

(averaged over the Fall 2004 semester only) and their CO320 examination scores (R2 = .22, p

= .0004, Figure 4.18). Our previous comparisons of course marks and a student’s EQ assumed

154

4.5. THE EQ AND GRADES

Fall Spring

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Fall and Spring EQ distributions

E
Q

Fall 2004 EQ
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.15 0.32 0.39 0.42 0.50 0.72

Spring 2005 EQ
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.08 0.29 0.35 0.37 0.46 0.64

Figure 4.17: Fall and Spring EQ for subjects in our study, 04/05.

that the error quotient was the dependent variable; here, we are assuming that a student’s per-

formance on an examination is actually dependent on their EQ score.

It would appear, based on our data from the Fall of 2004, that a student’s EQ may have some

predictive power. While the correlation is not good enough to consider dropping examination

completely in favour of EQ observation alone, it is interesting to see that, for our Fall data at

least, our students’ behaviour may possibly be an indicator of exam performance.

Spring, Fall EQ vs. final examination

Figure 4.19 plots a student’s EQ from the Spring 2005 semester vs. their final exam scores. As

can be seen, the fit has almost no predictive power (R2 = 0.03), and no statistical significance

(p = 0.13). We already know that the students’ EQ, taken over the entire year, does correlate

with their final exam marks (Figure 4.15). Given the variability in our data at the level of the

individual session, and the heavy filtering we have already carried out to restrict the 2004-2005

population, it is difficult to explain why there is significance in the data taken over the entire

year, and that which comes only from the second half of the year.

155

CHAPTER 4. THE ERROR QUOTIENT

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fall EQ vs. Midterm, 04/05

Midterm (CO320) mark

E
Q

Residual standard error: 13.01 on 46 degrees of freedom
Multiple R-Squared: 0.2413, Adjusted R-squared: 0.2248
F-statistic: 14.63 on 1 and 46 DF, p-value: 0.0003919

Figure 4.18: Fall 2004 EQ vs. midterm exam scores for subjects in our study.

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spring EQ vs. Final, 04/05

Final (CO520) mark

E
Q

Residual standard error: 15.14 on 46 degrees of freedom
Multiple R-Squared: 0.048, Adjusted R-squared: 0.028
F-statistic: 2.357 on 1 and 46 DF, p-value: 0.1316

Figure 4.19: Spring 2005 EQ vs. final exam scores for subjects in our study.

156

4.6. CONCLUSIONS: PUTTING THE EQ TO USE

Our suspicion is that we have less quality data (sessions of significant length, enough ses-

sions per student) to work with in the Spring term. This could be due to students doing more

work off-campus as they become more familiar and comfortable with the programming pro-

cess. With a more thorough/invasive approach to data collection, we might develop a more

complete picture of novice programming behaviour not just late in the second semester, but

throughout the entire year.

4.6 Conclusions: putting the EQ to use

Our research involved the analysis of the “invisible”, or heretofore unobserved interactions that

take place between a student and their compiler. From these observations, we believe a number

of conclusions can be drawn that have immediate value to practitioners teaching today. These

observations also suggest as many questions as they answer; there is ample work to be done.

4.7 Qualitative assessment

A strong case can be made for applying our rich visualisations of novice programmer behaviour

and their subsequent distillation into a single error quotient value in the classroom context im-

mediately. Our current mechanisms for assessing the progress of our students are crude and

sparse at best—assignments are too few and far between, typically involving little or no inter-

action between the student and their instructor. Likewise, examinations are even more infre-

quent, and students’ fear the negative repercussions of doing poorly on these one-off exams. In

all cases, it is rare that students are given the opportunity to submit work for evaluation, obtain

feedback, and evolve their work based on this feedback.

Put another way, there is little room in today’s cost-conscious university for models of in-

struction and learning that approach the apprenticeship model, and therefore we must look for

ways to approach that as cost-effectively as possible. We believe that automated tools based on

the notion of novice programming behaviour can provide an instructor with rich, yet succinct

information about their students—information that they can use to improve their instruction,

and their students opportunities to learn, in measurable ways.

157

CHAPTER 4. THE ERROR QUOTIENT

4.7.1 Summative vs. formative assessment

Our correlation between novice programming behaviour (as measured by a student’s EQ) and

their performance on assignments and exams is not unreasonable: they are both a form of as-

sessment. Assignments and examinations are both examples of summative assessment. Sum-

mative assessment tends to be comprehensive in nature, and is often used to test student un-

derstanding or learning at the end of a section, term, or module.[AC93] In this regard, both

the assignments given to students throughout the year, as well as the final examination, were

summative measures of student performance.

While it is typical for assignments to serve as a kind of formative assessment—delivered

as part of the learning process—they are often marked too slowly to be of particular use to the

student. Furthermore, assignments currently mark the end of the learning process: students

are not encouraged to correct and resubmit assignments to improve their marks (and possibly

their understanding) of the material being explored by the assignment in question. As a result,

students progress through the semester with little or no interactive, formative assessment.

Using our tabular visualisations of novice programming sessions and the error quotients

for those sessions, an instructor can easily tell whether a student tends to get “bogged down”

in their programming (like Neville), or if they tend to quickly manage syntax errors in their

program and focus more of their time on the semantics of their code (like Hermione). This

information is (we believe) inappropriate for “evaluating” or otherwise “grading” a student;

however, they are an excellent window into their process. As a tool for instructors, they can be

used as a basis for suggesting any number of interventions:

Tutoring Students could be encouraged to come in for one-on-one tutoring sessions with their

instructor or the class teaching assistant. Or, the instructor could set up a network of “peer

tutors,” where students who are struggling with syntax can sit down and work with peers

who are more confident in their programming abilities. Many departments already have

structures like this in place for helping students with all kinds of programming difficulties;

however, the observation of students’ programming behaviour provides the opportunity

to offer help in a timely and targeted manner.

Peer-groups Similar to tutoring, the instructor might recommend several students who are

158

4.7. QUALITATIVE ASSESSMENT

struggling with syntax work together on the next assignment. Sometimes formalised as

“pair programming,” the instructor could place weak students together, so they might

struggle together with the concept of syntax.[WU01, Van04] Or, perhaps the instructor

might pair stronger students with weaker students, but insist that the weaker student be

responsible for the actual typing when developing code, thus encouraging communica-

tion between the students about the work they are doing.

Passive tutorials We have found that many of the errors students struggle with can be turned

into excellent documentation for future students. Providing students with a step-by-step

walk-through of erroneous code, and discussing strategies for fixing it, may provide in-

sights that students can then bring to their own programming practice. That said, it might

be that students simply spend too much time attempting to write programs, and not

enough time reading and understanding programs. The readability of code has most

often been discussed in terms of whether or not students can comprehend the meaning of

that code.[LAF+04, Nor82] The readability of visual languages has been explored[GPB91],

as well as the role of typography in code presentation[Bae88]. We are not aware of any

work exploring the connection between the reading of code and student comprehension

of a language’s syntax.

Interactive tutorials Meta-content for students to read is useful, but may be difficult for some

students to apply to their own learning. As viewed by many novices, programming is

more of a kinetic than design activity, and as a result tutorial content that is not active in

nature may do little to aid troubled students.

BlueJ ships with a complete embedding of Javascript; this extension is generally referred

to as the “BlueJscript” engine. Using BlueJscript, it is possible to create interactive tutorials

that take students through implementing programs in very small steps. For example, we

have experimented with walking students through the definition of classes and methods

one line at a time, and verifying the correctness of their input at each step9. Additional tu-

torials based on existing novice errors could be developed—“fix-me” challenges—allowing

students to explore the mistakes of others in an active, tutorial-based environment embed-

9http://trails.cs-ed.org/

159

CHAPTER 4. THE ERROR QUOTIENT

ded within the BlueJ IDE.

Having developed several of these tutorials, it is unclear what value they have for the stu-

dent. While they appreciate the step-wise nature of the tutorial, it is not clear they are able

to apply what they learn in the tutorial to the larger task of writing and editing programs.

At the same time, the notion of being able to provide a drill-and-practice environment for

practising writing basic syntactic elements in the language has been well received by sec-

ondary and tertiary instructors who have seen the system in action; certainly, the utility

of such a tutorial system will be dependent on how it is employed in the classroom.

As can be seen, a great deal can be done on the instructor’s part when they have even limited

insight into the beginner’s actual programming behaviour. This kind of formative assessment—

not used to evaluate success, but instead continuously measure progress—is currently missing

from most introductory programming courses.

4.7.2 EQ as a real-time tool

While it is possible for instructors to use the EQ as a formative evaluation mechanism, it is also

possible that we could put the tool in the students’ hands. There is nothing that prevents us

from running the error quotient algorithm over as few as three events, and displaying either

the numeric EQ, or some simplified iconic representation, directly in the editor window. This

way, students can get immediate feedback as to how well or how poorly they are managing the

syntax of the language and the errors they are (or are not) getting from the compiler.

At the same time as it is possible, and provides immediate feedback to the student, it may

become part of the information overload that a struggling student is already dealing with. Does

it help a student who cannot fix a ’;’ expected error to know that their EQ is 0.83? Probably

not. The instructor is likely better equipped to be able to look at the data from a given program-

ming session and make recommendations to the student about how they might improve their

programming practice or solve similar problems in the future.

That said, if the algorithm is running in real-time, it is possible to automatically suggest to

the student that they seek help. If, after a number of compilations, they continue to struggle

with one type of error, or with one region of their code, we could prompt them to ask for

160

4.7. QUALITATIVE ASSESSMENT

guidance from a peer or their instructor. “It looks like you’re having a hard time with the

illegal start of expression error; is there someone you can ask for help?” This kind

of prompting can go any number of ways; it may become another dialog box that the student

clicks simply to make it go away. Then again, having read hundreds of sessions where students

spend 15, 30, and 45 or more minutes on one line of code, thrashing through one syntax error

after another, we want to believe that anything that prompts them to get out of their rut may be

of value. A balance would need to be struck; we don’t want to encourage “stopper” behaviour

(in Perkins’s terminology), but we certainly want to encourage students to recognize when they

need to seek help.

4.7.3 Application vs. evaluation

We have heard our colleagues say that “every class is an experiment.” That is to say, they

constantly try new things on their students, and see what happens. Unlike a real experiment, we

find that many of our colleagues do not keep notebooks or other data regarding their teaching

practice; they rely on their perception of how their “experiment” was received, and may (or

may not) remember to apply what they observed in future iterations of their course.

What we have suggested here are a number of ways we might apply our observations re-

garding novice programming behaviour to the classroom context. Each of these might be con-

sidered an “experiment” in its own right. If we were to make use of a student’s EQ value for

recommending further tutoring, it would be interesting to see how the end-of-year exam marks

did (or did not) change from previous years (assuming some consistent trend from year to year).

Or, we might make more instructional material available to students based on this research—

but we would want to know how the students made use of that material in their studies, and

how often. In short, for it to be an experiment, we would want to have some notional hypothesis,

as well as some mechanism for collecting data to verify or negate that hypothesis.

For the practitioner, our qualitative work can provide critical insight into student behaviour.

For the researcher, we believe it begs many questions, and provides a fertile starting point for

future work.

161

CHAPTER 4. THE ERROR QUOTIENT

162

Chapter 5

Looking Forward

It is possible that a student’s programming behaviour (or EQ) is a predictor for their academic

performance on traditional assignments and exams. From our quantitative analysis of students’

EQ and their relation to exam marks, we are inclined to believe there is a correlation between

these two figures. Given that examinations of novice programmers tend to have syntactic and

semantic elements, we intuitively believe that the student who cannot master syntax will likely

fail to master the semantic challenges of programming. For example, a student who never mas-

ters the syntax for declaring methods of a class may never develop a complete understanding of

how objects are created and interact with each other—this is implied, in part, by our apparent

correlation between a student’s EQ and their performance on end-of-year examinations.

Unlike our qualitative work, a single instructor collecting data on a single classroom of stu-

dents will not provide an adequate pool of subjects for further exploring our larger questions

regarding the EQ as a predictor of student performance. Our research hints that there probably

is a correlation, but further work will require both a refinement of method and an expanded

pool of subjects for further analysis.

5.1 Analytical refinement

Our algorithm for calculating the error quotient is simple, yet effective (Figure 4.4). However, as

can be seen from our analysis, it is not a terribly powerful discriminator. While the students who

163

CHAPTER 5. LOOKING FORWARD

manage syntax errors best are well separated from those who cannot manage syntax errors at

all, the students whose EQ sits within one standard deviation of the mean are too varied. Upon

closer inspection, some students in this middle-range seem to make progress, while others seem

to struggle mightily.

The algorithm we employ for calculating a student’s error quotient evolved out of our quali-

tative analysis of novice programmer behaviour. Having read through thousands of edits made

by dozens of students, our algorithm reflects a theory of novice programming behaviour that

evolved throughout the process of our research. The criteria we found most useful for charac-

terising a student’s programming session developed slowly over time; it was then codified and

refined in the form of the algorithm presented in Chapter 4. That said, there are easily observ-

able quantities that do not factor into our analysis; time is the most notable of these quantities.

Does it matter, for example, if a student makes three edits in rapid succession that all end in

errors vs. making three edits with a minute or more in-between that are error-free? In the same

vein, do the number of characters added or removed matter? Or do we need to consider much

higher-level behavioural data? In each case, our ultimate goal is to better infer whether the

student is struggling or making process in their battle with the compiler.

Other observable quantities include the absolute time of day the work is being carried out

(morning vs. late at night), whether a deadline is imminent, and how long the session has

carried on. For example, if a student has been working for two hours without an apparent break,

will their ability to focus on syntactic detail be diminished? All of these and other observable

quantities may aid us in further discriminating between those students who are productively

employing their time programming and making progress vs. those who are struggling and in

need of assistance.

5.2 Expanding the methodological sphere

Our research to date has been based extensively on the manual and automatic analysis of doc-

uments produced as a side-effect of our students’ programming process: we have read (and

processed) a lot of code. While this is a fascinating view of what takes place while the students

are developing their code, it is only part of a much larger context.

164

5.2. EXPANDING THE METHODOLOGICAL SPHERE

When working in a classroom, students have many more modes of interaction available

to them than just the compiler. Students can raise their hand and flag down the instructor—or,

perhaps, the instructor will offer help unrequested. Depending on the situation, a student might

ask a friend for help, or perhaps they have been explicitly requested to work in pairs. If we are

interested in these human interactions that take place during the programming process, we will

need to sit in classrooms and observe what takes place. And even then, we must decide what

we are looking for: are we counting the number of times students ask for help? Are we more

generally interested in the kinds and quality of interactions that take place between people in

an introductory programming laboratory? Would we later wish to correlate this information

with an automated collection of the compilation data?

Simply counting events and correlating them with our existing data could be very inter-

esting; there are many times when we wonder how a student “broke out of” a string of bad

compilations; we might see four, five, or more failed compilations, all ending with the same er-

ror in the same part of the code. Then, after a reasonably long delay (2 or more minutes), we see

that their code improves markedly. Simply knowing that during those two minutes the student

asked for some kind of help would allow us to begin correlating the ends of error sequences

with interactions with the instructor or the student’s peers.

However, the quality of the interactions may be more important than simply knowing when

they took place. As Barker, Garvin-Doxas, and Jackson reported in “Defensive Climate in the

Computer Science Classroom,” computing classrooms are not typically the most supportive

and encouraging places for students to be.[BGDJ02] A laboratory setting where the instructor

is always ready to gush over a particularly “elegant” or “concise” piece of code, but rarely

encouraging or supportive of smaller victories might discourage students from asking “stupid

questions,” or otherwise draw attention to themselves. With additional pressures regarding

plagiarism and copying, students are often left wondering what they can and cannot talk to

their peers about. This tends to yield a very closed and distant environment where ideas are not

freely discussed and engaged—two processes we believe are critical to learning programming.

So while simple observational techniques might provide more (automatically) processable

data, more in-depth observations (and perhaps focused discussion groups or interviews) are

necessary to develop a complete picture regarding the kinds and quality of interactions that

165

CHAPTER 5. LOOKING FORWARD

take place between students, their peers, and their instructors.

5.3 Small population, more data

We suspect that many of our students did a great deal more programming than our automatic

data collection suggests; in fact, given the demographic information we have regarding com-

puting students attending Kent over the past several years, we know for a fact that 95% or more

of our students have access to computers off-campus. Therefore, to come to a better understand-

ing of these students’ compilation behaviour, we must observe their programming behaviour

outside of the classroom.

Capturing programming behaviour data regardless of where the student is presents both

technical and ethical issues. Technically, we can no longer assume that a globally unique identi-

fier (a username) will be provided by the operating system, nor can we assume a high-availability

network; while DSL and similar technologies are becoming more common, there are still many

students who work with a dial-up connection that is infrequently connected to the Internet.

Likewise, many of our students make use of laptops that are infrequently connected either to

dial-up or a high-speed LAN. These are difficult issues to deal with transparently (from the

student’s perspective) and robustly (from the researcher’s perspective).

Some, but not all, of the technical concerns could probably be overcome. Data could be

stored local to the student, and infrequently shipped to a server, either on physical media or

over a network connection. Matching a delayed datastore to a student is trickier: we no longer

have a guaranteed student ID. We could provide custom BlueJ extensions to each student, which

could provide some level of assurance that extension build #2933 (which was given to, say,

Hermione) collected all the data in a particular data store. However, the process is significantly

more invasive: whereas students in our study were likely oblivious to much of the data col-

lection going on after a short time, students in an extended, and more personal, study would

necessarily be very much aware of the data collection that was taking place every time they

compiled their code.

Technical issues aside, there would certainly be ethical issues to consider. Could we provide

assurance that such data would not be used to blame, or otherwise prosecute, a student who

166

5.4. ERROR QUOTIENTS EVERYWHERE

was suspected of cheating? Once we are observing them “everywhere,” so to speak, it becomes

very tempting to look and see just how much time a student spent on a particular assignment. If

the first time a program appears it is 90% complete, clearly something suspicious is going on...

and that is not the purpose of this kind of research. How these and other ethical concerns would

be handled are questions that would need to be addressed before a more invasive/personal data

collection effort could be undertaken.

5.4 Error quotients everywhere

Without looking deeper into our own classroom environments, and without peering deeper

into the programming lives of our students, we could simply expand the scope of our own

data collection. Replicating our (relatively) low-fidelity data collection at other institutions is

a possibility. For example, if we can do a similar, low-cost, low-impact collection of novice

compilation data at another institution, we might find that the error quotient is a more general

phenomenon than we thought.

With the start of the new millennium we have seen a growing trend amongst computer

science education researchers to develop larger and more inclusive studies of novice program-

mers. McCracken et al’s multi-national, multi-institutional study of assessment of program-

ming skills of first-year computer science students provided one of the first broadly applied

characterisations of novice programmers at the university level[MAD+01]. Their study, carried

out at eight institutions in five countries (Australia, Israel, Poland, UK, USA) with a total of

217 participants, challenged students to write a series of short programs that would evaluate

arithmetic expressions:

The exercises focused on arithmetic expression evaluation. The easiest of the three

exercises (P1) required a computer program to evaluate a postfix expression. The

second exercise (P2) required a computer program to evaluate an infix expression

with no operator precedence (the operations were to be performed strictly left to

right, with no parentheses present). The last exercise (P3) required a computer pro-

gram to evaluate an infix expression with parenthesis precedence (operations were

167

CHAPTER 5. LOOKING FORWARD

to be performed left to right, with parentheses forcing sub-expressions to be evalu-

ated first).

These exercises were then marked according to a common rubric, scored, and the data com-

piled and evaluated. One of the results reported by McCracken et al. resonates with our own

experiences observing data regarding novice programmers:

The first and most significant result was that the students did much more poorly

than we expected. There are many possible causes: Our expectations may have

been too high, the problems may have been too hard or a poor fit to the students’

background and interests, there may not have been enough time given, and so on.

We observed this same phenomenon in our own research: after collecting a large amount

of data together in one place regarding novice programmers, the inconsistencies between indi-

viduals begins to wash out, and you are struck with, in some cases, how poorly students seem

to fare with the task of writing programs. This tells us something important: we, as educators,

sometimes do not realize how little our students really know or are capable of.

The McCracken study was interesting, and demonstrated that we could, without too much

difficulty, look outside our own walls as computer science education researchers, and attempt

to develop a kind of “bigger picture” regarding our own experiences and the data we might

collect in our own institutions. This process has been formalized, and exported, through the

successful Bootstrapping Research in Computer Science Education and Scaffolding Research in

Computer Science Education workshops run by Sally Fincher, Marion Petre, and Joshua Ten-

nenberg[PFea03, SFB+05, FT05]. Each of these workshops brought together 20-30 practitioners

in computer science education, and over the course of several days, provided a “crash-course”

in research practice and methodology. Over the course of the next year, the participants put into

practice a research “kit,” collecting data regarding students in their own university. At the end

of the year, this data is brought together, cleaned, and the now aspiring researchers dive into

an analysis and report their findings. This process has been well documented at this point, and

instituted four times on three continents, with over 120 researchers participating[FLC+05].

These workshops not only provide a model for distributing research, but additionally pro-

vide a context in which researchers new to the field are introduced to the process of carrying out

168

5.5. THOUSANDS OF LANGUAGES, THOUSANDS OF STUDENTS

a rigorous computer science education research study. If we are confident that novice compi-

lation behaviour is a fruitful area for continued exploration, a distributed, multinational study

could provide an invaluable, empirical base for further research and collaboration.

5.5 Thousands of languages, thousands of students

There are many other programming languages used to teach novices how to program. Scheme,

C, Smalltalk, Pascal, Ada... all of these languages and more appear in the first course on pro-

gramming somewhere. In many cases, there are pedagogic environments not entirely unlike

BlueJ that are used for introducing students to programming. And in the case of every lan-

guage, it is not entirely unlikely that students struggle with the syntax of the language they are

being taught.

We would like to think that the error quotient is a language-neutral measure; any language

and/or environment with an edit-compile cycle is probably attacked by students in a manner

very similar to the way our students wrote programs in BlueJ. Currently, we only have our own

experience to indicate that this would seem to be the case. However, we have to wonder—

is it worse for novice Java programmers than novice Scheme programmers? These kinds of

questions would be difficult to answer, but without data of some sort, we’ll never know.

5.6 Future work: a three-year plan

There are many ways to take this research forward; we have a rich set of data and preliminary

analysis that inspires more questions than it answers. At one level, it would be fascinating to

instrument DrScheme, Helium, Squeak, and Visual Basic, and look for similarities between the

data we collected in BlueJ and similar data from these other environments. However, such a

comparison would be riddled with questions of comparability and significance—it would be

fun, and interesting, but it would represent a substantial leap of faith from where we are now.

Our research helped us develop a more complete picture of novice compilation behaviour,

but the fundamental question—“What are they doing?”—remains unanswered. Having devel-

oped tools for quickly distilling complex data resulting from the program development process

169

CHAPTER 5. LOOKING FORWARD

into simple tables and quantitative measures, we are in a position to use these tools as a starting

point for exploring more interesting questions regarding the programming process of novice

programmers in the wild.

5.6.1 A three year plan

We propose a three year plan to further develop the depth and breadth of our understanding of

novice compilation behaviour (Figure 5.1). It is not far reaching in scope; our desire is to make

incremental progress in our exploration of novice programmers, and develop robust tools and

techniques for exploring their behaviour. Small steps, not big leaps, are called for.

Instructor-use pilot

Semantic interaction development

Instructor-use analysis

Instructor-use repeat / semantics pilot

Distributed collection

Live-use prototyping

Instructor-use analysis

Transitions; professional IDE use in 2nd-year students

Instructor-use analysis Distributed semantics collection

Live-use prototyping

Year 1

Year 2

Year 3

Fall Spring Summer

Figure 5.1: A three-year plan for further research into compilation behaviour.

In our first year, we aim to fill in details about novice compilation behaviour we are missing

now. In the second, we would grow our scope of data collection to include not just a stu-

dent’s syntactic interactions with their IDE, but also their semantic actions—while also repeat-

ing some of our previous collection, as repetition is one of the cornerstones of a good experi-

mental method. In this vein, we have colleagues who are interested in exploring this kind of

behaviour in their own classrooms—distributing our data collection framework and analytical

tools to other institutions is important to us, both for building a broader base of data, and for

growing the computer science education research community. We then propose to expand our

170

5.6. FUTURE WORK: A THREE-YEAR PLAN

sphere of collection and analysis into the second year of a computer science degree, and look at

the compilation and interaction behaviour of second-year students who are making the transi-

tion from their initial learning environment into a more powerful, or “professional” integrated

development environment.

5.6.2 Year 1: putting the EQ to use

The error quotient and session summary tables provide instructors the means to quickly assess

whether or not their students are mastering Java’s syntax when working in BlueJ. Our first

goal is to explore whether or not instructors find these tools to be useful, and explore how

rapid, formative feedback regarding novice programming behaviour can be put to use in the

classroom.

We are interested, first and foremost, as to how this impacts the instructor: in what ways

might programming instruction change when real-time, formative feedback is available? We

have focused our research to date on the previously invisible interactions between a student

and the compiler. There is a growing body of research regarding the applicability of pair pro-

gramming and its value in both the classroom and the workplace[WU01, Van04]. Now, we need

to better understand how to use information regarding our students’ compilation behaviour in

the classroom. We believe that this is an important step towards developing a coherent theory

of instruction regarding the first teaching of programming.

Reigeluth defines an instructional-design theory as “a theory that offers explicit guidance

on how to better help people learn and develop”[Rei99]. Currently, we have few tools, as pro-

gramming instructors, for 1) assessing our students in a formative manner, and 2) appropriate

interventions and instructional tools we might apply when we think an intervention might be

called for. Generally, strategies range from “have students read more code” to “have students

write more code.” Our goal in focusing our first year of study on the instructor is to better

understand how they make use of tools like the EQ in their instruction. Currently, we can only

guess at the utility of our visualisations and the EQ in a classroom context; a concerted explo-

ration will allow us to begin developing a theory of instruction that is evidence-driven.

To explore how instructors employ these tools, we would collect data as we have so far;

171

CHAPTER 5. LOOKING FORWARD

no changes to our existing infrastructure would be necessary. However, new tools would be

needed to allow instructors to quickly and easily assess the compilation behaviour of their

students. At the least, this presents a number of visualisation challenges[Tuf01], but those

are best tackled through an iterative design process involving the primary consumers of the

information—the instructor involved in the pilot. Our larger goal in focusing on the instructor

is to develop an empirically-driven theory of novice programming instruction.

Our first year of research will be largely qualitative in nature, as we carry out an extended

observation of the instructor in action, both in lecture and the laboratory. In addition, we would

propose a bi-weekly series of interviews with the instructor, focusing on how they were re-

sponding to—and making use of—their ability to “peer into” the compilation behaviour of their

students. Lastly, we would engage in several small-group interviews with students, exploring

their perceptions of the instructor, with a particular focus on the interactions they have between

the compiler, their peers, and the instructor. In short, we wish to begin “filling in the gaps” in

our current research.

Semantic interactions

In instrumenting BlueJ for data collection, we have focused entirely on the students’ interactions

with the compiler. However, environments like BlueJ often have tools to support the novice in

exploring the run-time behaviour of their programs; in the case of BlueJ, it provides students

with the ability to directly interact with objects through the object bench. This allows them to

instantiate classes, invoke methods on objects, and generally play the part of the main method

in their Java programs. In addition, BlueJ provides integrated support for writing and running

unit tests, as well as a simplified debugger. There are many interesting kinds of semantic inter-

actions students can have with their programs, and we have no data regarding what they do in

the time after their program compiles successfully.

While carrying out our extended observations of an instructor putting our tools into practice,

we would begin developing a second-generation data collection framework to provide insights

into students’ interactions with their programs after they are syntactically correct. This supports

our larger goal of providing more information for instructors to make data-driven, reflective

choices about their instructional strategies in the classroom.

172

5.6. FUTURE WORK: A THREE-YEAR PLAN

5.6.3 Year 2: distributing collection

Year two looks very similar to year one, with an expanded pilot to include student run-time

interactions with their programs. We consider this a pilot study much like our first year, as

it will represent the first time we have a window into the our students’ semantic interactions

with their programs. How we analyse this kind of data, and how it might guide instructors

in providing a better learning environment for their students is the open question which we

would be exploring.

Leading into the second semester, we would encourage our contacts in the southern hemi-

sphere (Australia, New Zealand) to employ the refinement (from year one) of our observational

tools in their own classrooms. Our goal in this distribution is two-fold: first, we hope to pro-

vide more tools for instructors to make good decisions about their instruction; second, we wish

to develop a larger pool of data regarding novice programmers working in Java from which

we can make statistical generalisations. Through distribution of the data collection framework,

we bring other practitioners into the research process, and develop a wider base of student be-

haviours to reason about. This distribution would be coupled with a scaled-down version of

the qualitative work we carried out in our first year; with on-site visits, we would hope to gain

insight into the environments in which the tools are being employed, how they are being used

to guide instruction, and provide a vehicle for disseminating best practices between the sites

involved in the study.

Lastly, given time, we would attempt to pilot the “live-use” of error quotients in the class-

room. Can we automate the intervention process we have been developing, and encourage

students to seek help or access resources without an instructor reviewing their compilation be-

haviour? Such a tool could only be developed in light of how a real instructor made use of

compilation behaviour data (gathered in year one), and how students respond to those inter-

ventions (year one and two). We do not have any great hopes for such an “expert system,” but

feel we would be remiss if we did not attempt to encode and encapsulate some of the knowledge

gathered to that point.

173

CHAPTER 5. LOOKING FORWARD

5.6.4 Year 3: repetition

Projecting three years into the future, with an unknown research agenda, is a challenge at best.

Were our initial pilot experiments successful, we would look to the Bootstrapping and Scaf-

folding projects as a model for distributing research broadly across researchers and institu-

tions[SFB+05, FLC+05]. Assuming we are collecting good data that has use for instructors, de-

veloping a broader usage base, as well as continuing to reflect on the impact of that data’s use in

practice, is a good step. Assuming, for example, that we as instructors can gain greater insight

into how our students are learning to program using both syntactic and semantic interaction

data, distributing our refined tools and instructional recommendations to a larger community

is a critical form of dissemination.

Predicting where we might expand into is difficult; however, there are some natural “next

steps” that may nicely bridge our work regarding novice programmers with existing research

regarding experts. We know from experience and conversation with other educators that the

transition from BlueJ to larger, professional integrated development environments is often chal-

lenging for their students. This “phase change” is necessarily a fascinating milestone in a stu-

dent’s evolution as a programmer: they are transitioning from the tools of a novice to the tools

of an expert.

Exploring students’ compilation behaviour and (if possible) semantic interactions with their

programs in a professional IDE at the time of transition may yield interesting insights and con-

nections that instructors can continue to exploit in the classroom.

5.7 In conclusion

With this work, we have just begun to realise that novice compilation behaviour is a non-trivial

area of study unto itself. In the course of our work, we developed powerful, automated tools

for analysing novice behaviour, we can only begin to scratch the surface of what students are

doing when they are writing their first programs.

Further work will require us to ask additional questions, and attempt to answer them in

appropriate ways. We have already begun preparing to continue our data collection on a new

174

5.7. IN CONCLUSION

cohort of novice programmers, and to expand the data we collect to include basic student inter-

actions with their code after it is syntactically correct. With this new data, we hope to address

some simple questions regarding whether students stop and test their code when it is syntacti-

cally correct, or if they simply use the compiler as their one and only metric for correctness.

The exploration we are most excited to begin is the utility of our visualisations and analyses

as tools for supporting the instructor. If we are able to develop simple, usable tools for pro-

gramming teachers to carry out ongoing, formative evaluations of their students, then we be-

lieve our initial explorations into the area of novice programming behaviour will have achieved

more than we could have hoped for at the outset. While evalutating the applicability and utility

of visualisations and representations of programming behaviour is a non-trivial task unto itself,

it is one we are ready and eager to explore.

175

CHAPTER 5. LOOKING FORWARD

176

Appendix A

Traces

177

APPENDIX A. TRACES

Table A.1: Neville, Session 1

Project: notebook1 File: Notebook.java
Duration: 42m53s EQ: 0.6
Date: Thursday, November 4th, 2004 11:09am

Err Type ∆T ∆Ch Location

1 1 201 t
2 ? 1 t
3 1 239 t
4 1 1 t
5 25 1 t
6 25 0

7 1 -1 t
8 1 12 t
9 1 0

10 1 0

11 1 -1 t
12 2 2 t
13 1 -11 t
14 2 2 t
15 2 -1 t
16 1 -2 t
17 1 -1 t
18 1 1 t
19 1 -73 t
20 1 13 t

178

Neville, Session 1, Continued...

Err Type ∆T ∆Ch Location

21 1 0

22 1 -10 t
23 1 0

24 1 0

25 1 1 t
26 1 -1 t
27 1 2 t
28 2 2 t
29 1 -4 tt
30 1 0

31 1 -9 tt
32 25 1 t
33 1 -1 t
34 1 0

35 1 0

36 1 459 tt
37 1 0 ttt
38 1 17 t
39 1 0

40 14 2 t

179

APPENDIX A. TRACES

Neville, Session 1, Continued...

Err Type ∆T ∆Ch Location

41 14 -2 t
42 14 -94 ttt
43 14 0

44 ? 2 t
45 3 102 ttt
46 ? 0 tt
47 ? -18 ttt
48 13 0 ttt
49 ? -60 ttt
50 ? 4 t

180

Table A.2: Ron, Session 1

Project: notebook1 File: Notebook.java
Duration: 25m39s EQ: 0.39
Date: Tuesday, November 2nd, 2004 3:03pm

Err Type ∆T ∆Ch Location

1 1 49 t
2 2 1 t
3 2 0

4 2 0

5 8 9 t
6 ? -1 t
7 1 62 t
8 1 39 t
9 4 2 t

10 4 0

11 4 3 t
12 3 -1 t
13 2 1 t
14 24 2 t
15 ? -1 t
16 3 85 t
17 2 2 t
18 21 2 t
19 8 -88 t
20 ? -1 t

181

APPENDIX A. TRACES

Table A.3: Harry, Session 1

Project: notebook1 File: Notebook.java
Duration: 24m34s EQ: 0.21
Date: Thursday, November 4th, 2004 10:13am

Err Type ∆T ∆Ch Location

1 3 99 t
2 3 1 t
3 2 -2 t
4 ? 1 t
5 1 248 t
6 1 1 t
7 2 3 t
8 21 2 t
9 18 -19 t

10 ? 4 t
11 ? -1 t
12 ? 1 t
13 ? 0

14 ? 88 t
15 3 115 t
16 ? -2 t
17 ? 46 t

182

Table A.4: Hermione, Session 3

Project: notebook1 File: Notebook.java
Duration: 18m11s EQ: 0.06
Date: Tuesday, October 28th, 2003 3:18pm

Err Type ∆T ∆Ch Location

1 ? 2 t
2 ? 5 t
3 ? -1 t
4 ? 2 t
5 4 -29 t
6 3 10 t
7 ? 2 t
8 1 78 t
9 2 10 ttt

10 ? 4 tt
11 ? 8 t
12 ? 6 t
13 ? 4 tt

183

APPENDIX A. TRACES

Table A.5: Terry, Session 19

Project: Assignment3 File: CourseMarks.java
Duration: 37m08s EQ: 0.71
Date: Friday, November 7th, 2003 11:35am

Err Type ∆T ∆Ch Location

1 4 139 t
2 9 18 t
3 1 5 t
4 4 2 t
5 4 -1 t
6 4 0

7 4 -4 tt
8 4 1 t
9 4 6 t

10 4 2 t
11 10 13 t
12 1 -27 t
13 1 0

14 1 0

15 1 -2 t
16 1 2 t
17 1 -2 t
18 1 0 t
19 1 0

20 8 -2 t

184

Terry, Session 19, Continued...

Err Type ∆T ∆Ch Location

21 12 -1 t
22 12 0

23 ? -29 tt
24 ? -3 t

185

APPENDIX A. TRACES

Table A.6: Deborah, Session 1

Project: book-exercise File: Book.java
Duration: 11m19s EQ: 0.79
Date: Wednesday, October 22nd, 2003 11:08am

Err Type ∆T ∆Ch Location

1 1 138 ttt
2 1 67 t
3 1 1 t
4 8 1 t
5 8 16 t
6 8 -16 t
7 8 -99 t
8 8 101 t
9 8 6 t

10 8 -1 tt
11 8 7 t
12 8 -2 t
13 8 0

186

Table A.7: Deborah, Session 25

Project: CourceMarks File: Student.java
Duration: 30m35s EQ: 0.64
Date: Monday, November 10th, 2003 11:13am

Err Type ∆T ∆Ch Location

1 14 1 t
2 6 2 t
3 6 -9 t
4 6 0

5 99 13 t
6 99 -15 t
7 6 1 t
8 6 0

9 6 0

10 6 6 t
11 6 10 t
12 6 -10 t
13 ? -164 tt
14 7 -19 ttt

187

APPENDIX A. TRACES

Table A.8: Catherine, Session 11

Project: address-book-v1t File: ContactDetails.java
Duration: 17m40s EQ: 0.03
Date: Thursday, March 3rd, 2005 10:49am

Err Type ∆T ∆Ch Location

1 12 0 t
2 8 17 t
3 13 -1 t
4 ? -8 t
5 4 26 t
6 ? 2 t
7 ? 28 t
8 12 -8 tt
9 ? 11 t

10 ? -56 t
11 12 38 tt
12 ? 0 t
13 ? -1 t

188

Table A.9: Gregory, Session 2

Project: notebook1 File: Notebook.java
Duration: 23m26s EQ: 0.02
Date: Wednesday, October 29th, 2003 11:24am

Err Type ∆T ∆Ch Location

1 4 140 t
2 2 -8 t
3 ? 2 t
4 8 18 t
5 ? 2 t
6 ? -19 t
7 ? -17 t
8 ? 11 t
9 24 67 t

189

APPENDIX A. TRACES

Table A.10: Jack, Session 3

Project: assign6 File: Game.java
Duration: 22m52s EQ: 0.0
Date: Tuesday, January 20th, 2004 3:25pm

Err Type ∆T ∆Ch Location

1 ? 68 t
2 ? 15 t
3 ? 6 tt
4 ? 22 t
5 ? 28 t
6 15 63 t
7 ? 7 t
8 ? 7 t

190

Table A.11: Hermione, Session 10

Project: calculator-gui File: CalcEngine.java
Duration: 26m44s EQ: 0.04
Date: Tuesday, December 9th, 2003 3:18pm

Err Type ∆T ∆Ch Location

1 ? 1 tt
2 ? 345 ttttt
3 ? 0

4 ? 20 ttt
5 ? -88 tt
6 ? 0

7 ? 76 ttttt
8 ? 16 t
9 ? 63 tttttt

10 ? 0

11 5 65 ttttt
12 ? 3 tt
13 ? 0

14 ? 48 t
15 2 4 ttt
16 2 0

17 ? -16 tt
18 ? 0

19 ? -4 tt
20 ? 0

Hermione, Session 10, Continued...

Err Type ∆T ∆Ch Location

21 ? 15 t
191

APPENDIX A. TRACES

Table A.12: Patricia, Session 1

Project: notebook1 File: Notebook.java
Duration: 35m39s EQ: 0.22
Date: Tuesday, October 28th, 2003 1:11pm

Err Type ∆T ∆Ch Location

1 1 252 t
2 ? -1 t
3 1 187 t
4 1 -1 t
5 3 2 t
6 2 1 t
7 14 -10 t
8 2 2 t
9 ? 2 t

10 ? -1 t
11 3 45 tt
12 1 0 t
13 23 1 t
14 ? 2 tt
15 ? 48 t
16 ? 96 t
17 3 18 t
18 3 1 t
19 ? 2 t
20 ? 16 t

Patricia, Session 1, Continued...

Err Type ∆T ∆Ch Location

21 ? 63 ttt
22 ? 2 t

192

Table A.13: Carlos, Session 2

Project: auction File: Auction.java
Duration: 24m43s EQ: 0.17
Date: Tuesday, October 28th, 2003 11:26am

Err Type ∆T ∆Ch Location

1 ? 5 tt
2 ? 470 t
3 3 290 t
4 1 2 t
5 3 1 t
6 12 1 t
7 ? 14 t
8 2 19 tt
9 2 2 t

10 ? 2 tt

193

APPENDIX A. TRACES

Table A.14: Bryan, Session 9

Project: Coursework2 File: Gui.java
Duration: 43m20s EQ: 0.2
Date: Thursday, February 17th, 2005 11:13am

Err Type ∆T ∆Ch Location

1 3 1 t
2 6 1 t
3 2 2 t
4 ? -242 t
5 ? -29 tt
6 ? 127 t
7 2 358 t
8 2 -5 t
9 2 73 t

10 2 -15 t
11 2 -3 t
12 ? 28 t
13 9 493 tt
14 20 -201 tt
15 ? 24 t
16 ? 2 tt
17 ? 0 t
18 ? 253 tt
19 ? 17 t
20 ? -11 t

194

Bryan, Session 9, Continued...

Err Type ∆T ∆Ch Location

21 20 1 t
22 ? 13 tt
23 ? -20 t
24 20 -5 ttt
25 20 0

26 ? 5 t
27 ? 0

28 ? 299 t
29 16 -306 tt
30 16 0 t
31 3 7 t
32 16 -8 t
33 ? 2 t

195

APPENDIX A. TRACES

Table A.15: Gloria, Session 16

Project: HorseAssessment File: Race.java
Duration: 1h23m31s EQ: 0.02
Date: Wednesday, December 8th, 2004 12:28pm

Err Type ∆T ∆Ch Location

1 ? 27 t
2 ? 58 tt
3 ? 457 ttt
4 ? 49 t
5 1 324 t
6 12 2 t
7 18 48 t
8 2 10 t
9 ? 1 t

10 ? 347 t
11 ? 67 t
12 12 496 t
13 ? 19 t
14 ? 6 t
15 ? 163 t
16 ? 270 t
17 ? 171 tt
18 ? 206 tt
19 ? 0

20 ? 0

196

Gloria, Session 16, Continued...

Err Type ∆T ∆Ch Location

21 ? 0

22 ? -8 t
23 ? -8 t
24 2 1106 t
25 ? 2 t
26 3 143 tt
27 ? 1 t
28 ? 8 t
29 ? 436 tt
30 ? 180 t

197

APPENDIX A. TRACES

Table A.16: Victor, Session 3

Project: week10 File: TokenizerTest.java
Duration: 12m59s EQ: 0.06
Date: Tuesday, November 25th, 2003 1:03pm

Err Type ∆T ∆Ch Location

1 ? -243 t
2 19 34 t
3 12 7 t
4 1 27 tt
5 ? 1 tt
6 ? -53 t
7 ? 114 t
8 2 176 t
9 ? -7 t

10 ? 10 t

198

Table A.17: Joe, Session 2

Project: assign8-option1 File: LineFill.java
Duration: 25m48s EQ: 0.37
Date: Tuesday, March 16th, 2004 2:36pm

Err Type ∆T ∆Ch Location

1 ? 6 t
2 9 492 tttt
3 4 5 tt
4 2 1 t
5 7 -5 tt
6 13 16 tt
7 13 9 t
8 7 9 t
9 6 8 t

10 ? -5 t
11 6 24 t
12 6 0

13 6 0

199

APPENDIX A. TRACES

Table A.18: Joe, Session 5

Project: assign8-option1 File: LineFill.java
Duration: 30m43s EQ: 0.24
Date: Friday, March 19th, 2004 12:52pm

Err Type ∆T ∆Ch Location

1 4 -1 ttt
2 4 -3 tt
3 4 4 t
4 4 5 t
5 4 -3 tt
6 6 6 tt
7 5 21 tt
8 6 -1 t
9 ? -5 tttt

10 ? -183 tttt
11 8 1333 tttt
12 ? -1149 t
13 ? 0

14 2 -91 t
15 ? -36 tt
16 ? 0

17 ? 26 t
18 ? 4 tt
19 ? 0

20 ? -85 ttttt

200

Table A.19: Eugene, Session 2

Project: notebook1 File: Notebook.java
Duration: 23m53s EQ: 0.57
Date: Tuesday, October 28th, 2003 8:28am

Err Type ∆T ∆Ch Location

1 1 8 t
2 ? 1 tt
3 1 117 t
4 10 1 t
5 10 1 t
6 10 4 t
7 4 -3 t
8 4 -1 t
9 4 1 t

10 1 -1 t
11 1 0 t
12 1 0 t
13 10 1 t
14 1 -4 t
15 3 1 t
16 2 1 t
17 2 -1 t
18 2 2 t
19 ? 1 tt

201

APPENDIX A. TRACES

Table A.20: Justin, Session 5

Project: address-book-v3t File: AddressBook.java
Duration: 15m15s EQ: 0.68
Date: Wednesday, February 11th, 2004 6:27am

Err Type ∆T ∆Ch Location

1 3 -6 t
2 3 1 t
3 9 14 t
4 9 2 t
5 9 -2 t
6 5 2 t
7 5 -1 t
8 59 1 t
9 ? 69 t

202

Table A.21: Terry, Session 3

Project: assign6 File: Game.java
Duration: 1h29m41s EQ: 0.51
Date: Monday, January 19th, 2004 6:01pm

Err Type ∆T ∆Ch Location

1 2 62 t
2 2 0

3 2 -39 t
4 1 -300 t
5 2 1 t
6 2 10 t
7 2 -1 t
8 2 0

9 2 -29 tt
10 2 0

11 2 0

12 15 -7 t
13 2 7 t
14 2 0

15 2 0

16 2 0

17 15 -132 ttt
18 2 57 ttt
19 2 0

20 6 43 tt

203

APPENDIX A. TRACES

Terry, Session 3, Continued...

Err Type ∆T ∆Ch Location

21 15 5 t
22 2 7 t
23 2 42 t
24 2 0 t
25 6 -8 t
26 15 5 t
27 2 -3 t
28 6 -1 t
29 15 -3 t
30 1 8 t
31 2 -5 t
32 15 -7 t
33 27 2 t
34 15 -2 t
35 2 7 t
36 2 0

37 6 -82 ttt
38 15 -14 t
39 2 0

40 6 -1 t

204

Terry, Session 3, Continued...

Err Type ∆T ∆Ch Location

41 14 -30 t
42 27 0

43 6 7 t
44 ? -33 t
45 ? 0

46 ? 0

47 ? 0

48 ? 0

49 ? 31 t
50 ? 9 t
51 6 9 t

205

APPENDIX A. TRACES

Table A.22: Roger, Session 2

Project: Assesment 5 File: Game.java
Duration: 3m11s EQ: 0.23
Date: Tuesday, January 20th, 2004 10:13am

Err Type ∆T ∆Ch Location

1 6 0

2 2 7 t
3 6 19 t
4 6 7 t
5 2 7 t
6 6 19 t
7 6 32 t
8 ? 26 t
9 ? -10 t

10 6 -7 t
11 ? 7 t

206

Table A.23: Cain, Session 12

Project: Classmarks File: CourseMarks.java
Duration: 29m56s EQ: 0.72
Date: Wednesday, November 5th, 2003 4:25am

Err Type ∆T ∆Ch Location

1 11 2 t
2 31 4 t
3 6 4 t
4 12 -16 t
5 12 -6 t
6 12 75 t
7 12 0 t
8 4 64 t
9 11 -1 t

10 11 0 t
11 11 6 t
12 9 2 t
13 11 -10 t
14 11 16 t
15 11 -11 t
16 11 -2 t
17 11 24 t
18 2 -13 t
19 7 -5 t
20 7 13 t

Cain, Session 12, Continued...

Err Type ∆T ∆Ch Location

21 7 0

207

APPENDIX A. TRACES

Table A.24: Karen, Session 2

Project: notebook1 File: Notebook.java
Duration: 22m33s EQ: 0.6
Date: Wednesday, October 29th, 2003 4:25am

Err Type ∆T ∆Ch Location

1 1 54 t
2 1 1 t
3 4 27 t
4 1 0 t
5 1 53 t
6 4 17 t
7 1 3 t
8 10 2 t
9 10 9 t

10 10 -10 t
11 10 13 t
12 10 -12 t
13 10 -1 t
14 12 -5 t
15 12 0

16 3 5 t
17 ? -12 tt
18 1 -20 t
19 1 1 t
20 1 0 t

208

Karen, Session 2, Continued...

Err Type ∆T ∆Ch Location

21 1 1 t
22 1 0

23 1 0

24 ? -91 t
25 2 90 t
26 14 5 t
27 12 1 t
28 ? -5 tt

209

APPENDIX A. TRACES

Table A.25: Karen, Session 13

Project: tokenizertest File: StringTokenizer.java
Duration: 7m08s EQ: 0.46
Date: Wednesday, November 26th, 2003 4:25am

Err Type ∆T ∆Ch Location

1 19 0 tt
2 2 10 t
3 3 -6 t
4 2 2 t
5 2 -3 t
6 5 84 t
7 5 -4 t
8 4 -23 t
9 16 -93 t

10 6 8 t
11 6 0

12 6 -207 t

210

Table A.26: Stephanie, Session 4

Project: Hotels File: Hotel.java
Duration: 1h18m05s EQ: 0.61
Date: Friday, November 26th, 2004 6:31am

Err Type ∆T ∆Ch Location

1 10 24 t
2 3 6 t
3 3 1 t
4 7 1 t
5 5 3 t
6 5 21 t
7 5 0

8 31 -82 tt
9 10 -7 t

10 10 0

11 3 86 t
12 31 1 t
13 31 0

14 1 1 t
15 31 -1 t
16 31 0

17 1 23 t
18 7 1 t
19 31 7 t
20 4 -13 t

211

APPENDIX A. TRACES

Stephanie, Session 4, Continued...

Err Type ∆T ∆Ch Location

21 31 16 ttt
22 31 0

23 4 198 tt
24 4 -1 t
25 4 4 t
26 4 -3 t

212

Table A.27: Eric, Session 3

Project: randomness File: RandomTester.java
Duration: 8m05s EQ: 0.66
Date: Tuesday, November 11th, 2003 6:49am

Err Type ∆T ∆Ch Location

1 1 0 t
2 1 1 t
3 10 1 t
4 10 -7 t
5 10 3 t
6 5 -25 t
7 25 7 t
8 1 -1 t
9 25 1 t

10 1 -1 t
11 19 -1 t
12 1 -1 t
13 1 7 t
14 25 1 t
15 19 -5 t
16 19 -1 t
17 1 -2 t
18 1 2 t
19 25 1 t
20 6 -2 t

Eric, Session 3, Continued...

Err Type ∆T ∆Ch Location

21 10 -11 t
22 10 7 t

213

APPENDIX A. TRACES

Table A.28: Alfred, Session 1

Project: weblog-analyzer File: LogAnalyzer.java
Duration: 33m53s EQ: 0.47
Date: Tuesday, November 16th, 2004 6:12am

Err Type ∆T ∆Ch Location

1 ? 1 t
2 ? -1 t
3 ? 1 t
4 3 -18 t
5 1 1 t
6 4 3 t
7 7 2 t
8 7 -1 t
9 21 2 t

10 21 0

11 7 -2 t
12 7 0

13 7 0

14 7 0

214

Table A.29: Abel, Session 2

Project: class-wk15 File: PayInterestAccount.java
Duration: 20m24s EQ: 0.58
Date: Wednesday, January 21st, 2004 4:23am

Err Type ∆T ∆Ch Location

1 15 1 t
2 15 14 t
3 11 14 tt
4 1 -8 t
5 14 -2 t
6 47 14 t
7 14 -14 t
8 3 23 t
9 6 1 t

10 21 0

11 15 -19 t
12 15 1 t
13 11 2 t
14 1 -8 t
15 15 -1 t
16 1 8 t
17 31 0 t
18 31 0

19 ? 7 t

215

APPENDIX A. TRACES

216

Appendix B

Syntax error types

We recognise 85 syntax errors in our study; the majority of these exist in the “long tail” of the

errors encountered by our students. Many of our students only encounter a few different types

of errors during their explorations of the Java programming language.

In this appendix we have provided a complete listing of all the error types we recognise,

the number of those errors we encountered in our study, and the percentage of erroneous com-

pilations they represent. This information is presented in two tables; following those tables is

the Scheme code that was used to categorise syntax errors; the function defined here consumed

the error message generated by the compiler, and would categorise the error accordingly. Our

students were working with the Sun Java compiler distributed with version 1.4.2 of the SDK for

the duration of our study.

217

APPENDIX B. SYNTAX ERROR TYPES

Table B.1: Error types recognised in our study.
Index Abbrev. # %
1 semicolon 1973 10
2 unknown-variable 3297 16.7
3 bracket-expected 2034 10.3
4 illegal-start-of-expression 997 5.0
5 unknown-class 922 4.6
6 unknown-method 2005 10.1
7 incompatible-types 803 4.0
8 class-or-interface-expected 454 2.3
9 identifier-expected 548 2.7
10 .class-expected 349 1.7
11 not-a-statement 469 2.3
12 missing-return 659 3.3
13 op-application-error 175 0.8
14 private-access-violation 689 3.5
15 method-application-error 692 3.5
16 unknown-constructor 370 1.8
17 illegal-start-of-type 134 0.6
18 possible-uninit-variable 131 0.6
19 return-type-required 146 0.7
20 previously-defined-variable 186 0.9
21 unexpected-type 166 0.8
22 unreachable-statement 92 0.4
23 else-without-if 129 0.6
24 package-not-exist 116 0.5
25 missing-body-or-abstract 78 0.3
26 unclosed-comment 16 0.0
27 method-reference-from-static-context 211 1.0
28 file-io 56 0.2
29 no-return-void-method 64 0.3
30 dereferencing-error 146 0.7
31 loss-of-precision 145 0.7
32 empty-character-literal 4 0.0
33 unclosed-character-literal 18 0.0
34 inconvertible-types 96 0.4
35 illegal-escape-character 15 0.0
36 protected-access-violation 4 0.0
37 type-mismatch 54 0.2
38 assign-to-final 38 0.1
39 class-public-in-file 24 0.1
40 bad-modifier-combination 10 0.0
41 illegal-character 71 0.3
42 array-dim-missing 16 0.0
43 cannot-access 46 0.2

218

Table B.2: Error types recognised in our study, continued
Index Abbrev. # %
44 void-type 30 0.1
45 incomparable-types 23 0.1
46 modifier-static 9 0.9
47 super-first-statement 16 0.0
48 dot-expected 28 0.1
49 non-static-in-static-context 43 0.2
50 weaker-privs 80 0.4
51 abstract-no-instantiate 16 0.0
52 abstract-no-override 131 0.6
53 cannot-override-ret-type 41 0.2
54 unknown-symbol 87 0.4
55 declare-var-final 66 0.3
56 catch-without-try 11 0.0
57 try-without-catch 14 0.0
58 unreported-exception 207 1.0
59 unthrown-exception 50 0.2
60 break-outside 4 0.0
61 while-expected 12 0.0
62 class-expected 38 0.1
63 missing-ret-val 18 0.0
64 unclosed-string 14 0.0
65 not-enc-class 5 0.0
66 colon-expected 1 0.0
67 orphaned-case 4 0.0
68 duplicate-default-lab 2 0.0
69 ret-outside-method 11 0.0
70 repeated-modifier 1 0.0
71 ref-before-supertype 10 0.0
72 modifier-not-here 11 0.0
73 eq-expected 2 0.0
74 no-interface-expected 8 0.0
75 interface-expected 1 0.0
76 access-outside-pkg 3 0.0
77 illeg-fwd-reference 1 0.0
78 abstract-no-body 5 0.0
79 exception-already-caught 1 0.0
80 interface-no-body 1 0.0
81 semicolon-expected 1 0.0
82 unreachable-statement 0.0 0.0
83 abstract-not-reachable 1 0.0
84 illegal-initializer 1 0.0
85 int-too-large 4 0.0

219

APPENDIX B. SYNTAX ERROR TYPES

B.1 Categorising errors

To categorise Java syntax errors into the distinct types listed here, we employed a series of

regular expressions. These regular expressions would be run over the syntax error reported by

the javac compiler, and ultimately reported to the student through the BlueJ interface. Using

the extensions API, we were able to capture a copy of these messages, and store them in our

database along with the source that generated the error.

This function requires PLT Scheme version 300 or greater, and assumes the pregexp.ss

library is installed; this ships as a standard library with the PLT Scheme distribution.

(define get-error-type

(lambda (str)

(let ([check? (lambda (s)

(equal? s str))])

(cond

;;Simple (atomic) matches

;;Expectations

[(check? "’;’ expected") ’semicolon]

[(check? "’class’ or ’interface’ expected")

’class-or-interface-expected]

[(check? "invalid method declaration; return type required")

’return-type-required]

[(check? "unexpected type") ’unexpected-type]

[(check? "’.class’ expected") ’.class-expected]

[(check? "empty character literal") ’empty-character-literal]

;;Illegal syntax

[(check? "illegal start of expression")

’illegal-start-of-expression]

220

B.1. CATEGORISING ERRORS

[(check? "illegal start of type")

’illegal-start-of-type]

[(check? "illegal escape character")

’illegal-escape-character]

[(check? "unclosed character literal")

’unclosed-character-literal]

;;Statements

[(check? "not a statement") ’not-a-statement]

[(check? "unreachable statement") ’unreachable-statement]

[(check? "missing return statement") ’missing-return]

[(check? "’else’ without ’if’") ’else-without-if]

[(check?

(string-append

"cannot return a value from "

"method whose result type is void"))

’no-return-void-method]

;;Missing

[(check? "array dimension missing") ’array-dim-missing]

[(check? "unclosed comment") ’unclosed-comment]

[(check? "missing method body, or declare abstract")

’missing-body-or-abstract]

;;types?

[(check? "inconvertible types") ’inconvertible-types]

[(check? "possible loss of precision") ’loss-of-precision]

;;Regular expression matches

[(ormap (lambda (sym)

221

APPENDIX B. SYNTAX ERROR TYPES

(pregexp-match

(format "’˜a’ expected" sym) str))

’("\\(" "\\)" "\\{" "\\}" "\\[" "\\]")) ’bracket-expected]

;;package resolution

[(pregexp-match "cannot resolve symbol - (.*?) (.*)" str)

=>

(lambda (m)

(let ([type (cadr m)]

[name (caddr m)])

(cond

[(equal? type "variable") ’unknown-variable]

[(equal? type "method") ’unknown-method]

[(equal? type "class") ’unknown-class]

[(equal? type "constructor") ’unknown-constructor]

[else

(fprintf (current-error-port)

"˜a" str)

’unknown-unknown])))]

[(pregexp-match "cannot resolve symbol" str)

’unknown-symbol]

[(pregexp-match "package (.*) does not exist" str)

=>

(lambda (m)

(let ([package (cadr m)])

’package-not-exist))]

;;typing

222

B.1. CATEGORISING ERRORS

[(pregexp-match

"incompatible types - found (.*) but expected (.*)" str)

=>

(lambda (m)

(let ([found (cadr m)]

[expected (caddr m)])

’incompatible-types))]

[(pregexp-match

"(.*) required, but (.*) found" str)

=>

(lambda (m)

(let ([type-needed (cadr m)]

[type-found (caddr m)])

’type-mismatch))]

[(pregexp-match "illegal character.*" str)

’illegal-character]

;;application

[(pregexp-match

"operator (.*) cannot be applied to (.*)" str)

=>

(lambda (m)

(let ([op (cadr m)]

[rand (caddr m)])

’op-application-error))]

[(pregexp-match

"(.) in (.*) cannot be applied to (.*)" str)

223

APPENDIX B. SYNTAX ERROR TYPES

=> (lambda (m)

(let ([method (cadr m)]

[class (caddr m)]

[type (cadddr m)])

’method-application-error))]

;;referencing/dereferencing?

;; method invocation?

[(pregexp-match "(.*) cannot be dereferenced" str)

=> (lambda (m)

(let ([type (cadr m)])

’dereferencing-error))]

;;possible uninit variable

[(pregexp-match

"variable (.*) might not have been initialized" str)

=>

(lambda (m)

(let ([var (cadr m)])

’possible-uninit-variable))]

;;order of ... ? variable errors?

[(pregexp-match "(.*) is already defined in (.*)" str)

=> (lambda (m)

(let ([var (cadr m)]

[method (caddr m)])

’previously-defined-variable))]

[(pregexp-match

"cannot assign a value to final variable (.*)" str)

224

B.1. CATEGORISING ERRORS

=> (lambda (m)

(let ([var (cadr m)])

’assign-to-final))]

;;Access permissions

[(pregexp-match "(.*) has (.*) access in (.*)" str)

=>

(lambda (m)

(let ([method-or-var (cadr m)]

[level (caddr m)]

[class (cadddr m)])

(string->symbol

(format "˜a-access-violation" level))))]

[(pregexp-match

"non-static method (.*) cannot be.*" str)

;;; rest is " referenced from a static context"

=> (lambda (m)

(let ([method (cadr m)])

’method-reference-from-static-context))]

[(pregexp-match

"illegal combination of modifiers: (.*) and (.*)" str)

=> (lambda (m)

(let ([first (cadr m)]

[second (caddr m)])

’bad-modifier-combination))]

[(pregexp-match

(string-append

225

APPENDIX B. SYNTAX ERROR TYPES

"class (.*) is public, should be "

"declared in a file named (.*)") str)

=> (lambda (m)

(let ([class-name (cadr m)]

[file-name (caddr m)])

’class-public-in-file))]

;;file i/o

[(pregexp-match "error while writing.*" str) ’file-io]

[(pregexp-match "cannot access (.*)" str) ’cannot-access]

[(pregexp-match "’void’ type not allowed here" str)

’void-type]

[(pregexp-match

"incomparable types: (.*?) and (.*?)" str)

’incomparable-types]

[(pregexp-match

"modifier static not allowed here" str)

’modifier-static]

[(pregexp-match

(string-append

"call to super must be first "

"statement in constructor") str)

’super-first-statement]

[(pregexp-match "’\\.’ expected" str)

226

B.1. CATEGORISING ERRORS

’dot-expected]

[(pregexp-match

(string-append

"non-static variable (.*?) cannot be "

"referenced from a static context") str)

’non-static-in-static-context]

[(pregexp-match

(string-append

"(.*?) in (.*?) cannot (.*?) (.*?) in (.*?); "

"attempting to assign weaker access "

"privileges; was (.*?)") str)

’weaker-privs]

[(pregexp-match

"(.*?) is abstract; cannot be instantiated" str)

’abstract-no-instantiate]

[(pregexp-match

(string-append

"(.*?) is not abstract and does not "

"override abstract method (.*?) in (.*?)") str)

’abstract-no-override]

[(pregexp-match

(string-append

"(.*?) in (.*?) cannot (.*?) (.*?) in (.*?); "

"attempting to use incompatible return type") str)

’cannot-override-ret-type]

227

APPENDIX B. SYNTAX ERROR TYPES

[(pregexp-match

(string-append

"local variable (.*?) is accessed from within "

"inner class; needs to be declared final") str)

’declare-var-final]

[(pregexp-match "’catch’ without ’try’" str)

’catch-without-try]

[(pregexp-match "’try’ without ’catch’ or ’finally’" str)

’try-without-catch]

[(pregexp-match

(string-append

"unreported exception (.*?) must be "

"caught or declared to be thrown") str)

’unreported-exception]

[(pregexp-match

(string-append

"exception (.*?) is never thrown in body "

"of corresponding try statement") str)

’unthrown-exception]

[(pregexp-match "break outside switch or loop" str)

’break-outside]

[(pregexp-match "while expected" str)

228

B.1. CATEGORISING ERRORS

’while-expected]

[(pregexp-match "class expected" str)

’class-expected]

[(pregexp-match "missing return value" str)

’missing-ret-val]

[(pregexp-match "unclosed string literal" str)

’unclosed-string]

[(pregexp-match "not an enclosing class: (.*?)" str)

’not-enc-class]

[(pregexp-match ": expected" str)

’colon-expected]

[(pregexp-match "orphaned case" str)

’orphaned-case]

[(pregexp-match "duplicate default label" str)

’duplicate-default-lab]

[(pregexp-match "return outside method" str)

’ret-outside-method]

[(pregexp-match "repeated modifier" str)

229

APPENDIX B. SYNTAX ERROR TYPES

’repeated-modifier]

[(pregexp-match

(string-append

"cannot reference (.*?) before supertype "

"constructor has been called") str)

’ref-before-supertype]

[(pregexp-match "modifier (.*?) not allowed here" str)

’modifier-not-here]

[(pregexp-match "= expected" str)

’eq-expected]

[(pregexp-match "no interface expected here" str)

’no-interface-expected]

[(pregexp-match "interface expected here" str)

’interface-expected]

[(pregexp-match

(string-append

"(.*?) is not (.*?) in (.*?); cannot be "

"accessed from outside package") str)

’access-outside-pkg]

[(pregexp-match "illegal forward reference" str)

’illeg-fwd-reference]

230

B.1. CATEGORISING ERRORS

[(pregexp-match

"abstract methods cannot have a body" str)

’abstract-no-body]

[(pregexp-match "interface methods cannot have body" str)

’interface-no-body]

[(pregexp-match "exception (.*?) has already been caught" str)

’exception-already-caught]

[(pregexp-match "identifier(.*)expected" str)

’identifier-expected]

[(pregexp-match "’;’ expected" str)

’semicolon-expected]

[(pregexp-match "unreachable statement.*" str)

’unreachable-statement]

[(pregexp-match

(string-append

"abstract method (.*?) "

"cannot be accessed directly") str)

’abstract-not-reachable]

[(pregexp-match "illegal initializer for .*?)" str)

’illegal-initializer]

[(pregexp-match "integer number too large" str)

231

APPENDIX B. SYNTAX ERROR TYPES

’int-too-large]

[else

(fprintf (current-error-port) "˜a˜n" str)

’unknown]

))))

232

Appendix C

Calculating the error quotient

The error quotient algorithm is presented in Figure 4.4. While a good deal more code is in-

volved in calculating the error quotient than presented here—code for extracting data from the

database, organizing it, etc.—the calc-score function performs the critical calculations on

a session. Given the line numbers where errors occurred, the lines that were touched, the er-

rors that occurred, and the STRING-EDIT values for each of those lines, it calculates the error

quotient score for a given session.

As described previously, we began with one set of parameters for this algorithm, and used

a semi-exhaustive search to find a better set of parameters in the surrounding space. Those are

now the default parameter set employed by the calc-score function.

(define TOUCHED-MULTIPLIER 1.0)

(define ELINE-RANGE ’(-3 -2 -1 0 1 2 3))

(define ELINE-PENALTY 0)

(define ETYPE-SAME-PENALTY 11)

(define ETYPE-DIFF-PENALTY 8)

(define (calc-score elines toucheds errors string-edits)

(let ([score 0]

[scores ’()])

(define (average lon)

233

APPENDIX C. CALCULATING THE ERROR QUOTIENT

(/ (apply + lon) (length lon)))

(define (std-dev lon)

(let ([avg (average lon)])

(expt (/ (apply + (map

(lambda (n) (expt (- n avg) 2))

lon))

(length lon)) .5)))

(foreach ([i (map sub1 (iota (length elines)))]

[eline elines]

[touched toucheds]

[errorp errors]

[se string-edits])

;; Don’t run a comparison on the first element

;; in these lists; no sense in doing that.

(unless (zero? i)

(let ([prev-eline (list-ref elines (sub1 i))]

[prev-touched (list-ref toucheds (sub1 i))]

[prev-errorp (list-ref errors (sub1 i))])

;; Don’t do anything if they managed to

;; eliminate syntax errors.

(unless (or

(zero? (car errorp))

(zero? (cdr errorp)))

(let ([looked-up

(lookup-score

(cons eline prev-eline)

(cons touched prev-touched)

(cons errorp prev-errorp)

234

se)])

(set! score (+ score looked-up))

(gather scores score))

))))

(let* ([SCORE-CONSTANT

(* (sub1 (length elines))

(+ TOUCHED-MULTIPLIER ELINE-PENALTY

(max ETYPE-SAME-PENALTY ETYPE-DIFF-PENALTY)))]

[final-score

(round-to (exact->inexact

(/ score SCORE-CONSTANT)) 2)])

final-score

)))

235

APPENDIX C. CALCULATING THE ERROR QUOTIENT

236

Appendix D

Compilation chains

Students who make many successive syntax errors have high error quotient scores. Effectively,

this means we are interested in the sequence of compilations, the kind of error that results (if

any) from the compilation, and how often it repeats. This led us to be interested in a num-

ber of questions regarding the sequencing of correct and erroneous compilations in student

sesions. We ended up exploring two specific questions: what typically happened after a given

compilation—did the same error type repeat, or did the students move on in some way? And

second, we were curious which errors tended to repeat the most. For example, we suspected

that ’;’ expected errors were handled more quickly than bracketing errors—but our quali-

tative analysis was not appropriate for this kind of question.

We address both of these questions, briefly, here.

D.1 What came next?

First, we were curious: when a student has a correct compilation, what comes next? Or, for that

matter, when they are sitting on a missing semicolon error, do they typically see another missing

semicolon error? The analyses in this section look at the error that most commonly follows a

given compilation result for syntactically correct compilations and the five most prolific error

types observed during the 2004-2005 academic year.

We believe that these tables might provide a starting point for an interesting analysis of

237

APPENDIX D. COMPILATION CHAINS

specific error types within our data, and how they are delt with. This might be a productive

strategy for developing a complete catalogue of how students deal with different types of syntax

error within the Java programming language.

D.1.1 Syntactically correct compilations (Table D.1.1)

There were 7429 syntactically correct compilations recorded in the 2004-2005 academic year

from students in our population. 64% of those compilations were followed by another syntac-

tically correct compilation; the remaining 46% were followed by one or more erroneous compi-

lations. The most common types that students encountered after successfully compiling (and

then editing) their code included unknown symbol - variable errors and ’;’ expected.

Table D.1: Syntactically correct code and what follows it.
Next error # Occurrences %

0 4817 64
2 487 6
1 359 4
3 348 4
6 213 2
4 150 2
7 103 1
5 88 1

14 79 1
12 78 1

D.1.2 Undefined symbol - variable (Table D.1.2)

When students received this error, 31% of the time it would be followed by another error of the

same type. Another 31% of the time, they would manage to correct. Beyond that, this error

class was typically followed by one or more errors of a variety of types.

D.1.3 Bracket expected (Table D.1.3)

Three kinds of bracketing errrors—those involving parentheses, square brackets, and squiggly

brackets (sometimes called “braces” or “curley brackets”) are rolled into this error type. This

error repeated itself 35% of the time it was encountered, and students managed to correct it 19%

238

D.1. WHAT CAME NEXT?

Table D.2: Unknown symbol - variable
Next error # Occurrences %

2 692 31
0 690 31
6 155 7
1 74 3
7 61 2

12 57 2
14 54 2
3 47 2
5 32 1

27 29 1
4 26 1
9 24 1

of the time they came upon it. The rest of the time it was encountered, this led to one or more

other erroneous compilations.

Table D.3: Bracket expected
Next error # Occurrences %

3 454 35
0 250 19
2 107 8
1 63 4
6 60 4
5 56 4
4 37 2

12 36 2
7 28 2

11 21 1
14 19 1
15 15 1
8 14 1

D.1.4 ’;’ expected (Table D.1.4)

This error repeated 24% of the time it was encountered, and was fixed 23% of the time it was

encountered. By some measure, this means the error is harder to fix than unknown symbol -

variable, but easier to fix than most bracketing errors.

239

APPENDIX D. COMPILATION CHAINS

Table D.4: ’;’ expected
Next error # Occurrences %

1 307 24
0 296 23
2 148 11
3 87 7
6 52 4
5 45 3
7 44 3
4 34 2

11 25 2
14 21 1
12 14 1

D.1.5 Unknown symbol - method (Table D.1.5)

Like other “unknown symbol” errors, these are often due to typos and misspellings. Method

symbol errors repeat with roughly the same frequency as their variable counterparts, but are

corrected less frequently, perhaps implying that the errors are more often entwined with code

that is significantly more “broken” in some way.

Table D.5: Unknown symbol - method
Next error # Occurrences %

6 363 32
0 319 28
2 116 1
1 42 3
7 37 3
3 25 2

12 22 1
15 21 1
5 21 1

11 13 1
14 12 1

D.2 How many repetitions?

When a student encountered a bracketing error, did they fix it on their first attempt? Second?

Eigth? Were some errors more “persistent” than others? The answer to this small question is

240

D.2. HOW MANY REPETITIONS?

yes: not all kinds of error are created equal in the fingers of a desperate novice programmer.

D.2.1 Syntactically correct chains (Table D.2.1)

It was four times more common for students to have one or two successful compilations in a row

than for them to immediately revert back to a syntax error. Sequences of three or four successful

compilations in a row were almost as common as solitary, successful compilations. We are

curious if this correlates with the size of the edits made during those successful sequences: did

students edit a small amount of code? Were they cautious? Or, were they just good?

Table D.6: Syntactically correct chains
Chain length # Occurrences

1 342
2 255
0 141
3 139
4 113
5 73
6 53
7 49
8 30
9 24

10 19

D.2.2 ’;’ expected (Table D.2.2)

It is five times more likely that a semicolon error will be transient (fixed or a new error gen-

erated) than repeat. We suspect this error is one students quickly learn to correct. However,

it might be that the quick heuristic of simply adding a semicolon (as the compiler claims) fails

students who have not yet mastered the language. As a result, they end up adding semicolons

(as directed) when more fundamental problems actually exist in their code.

D.2.3 Unknown symbol - variable (Table D.2.3)

When students are faced with an unknown symbol error, it rarely repeats (we saw this previ-

ously). It is roughly four times more common that this error is transient (corrected or otherwise)

241

APPENDIX D. COMPILATION CHAINS

Table D.7: Semicolon error chains
Chain length # Occurrences

0 679
1 103
2 25
4 10
3 9

than for students to wrestle with it over successive compilations. Like a missing semicolon er-

ror, we believe students quickly adapt to this error, and learn what to look for.

Table D.8: Unknown symbol chains
Chain length # Occurrences

0 966
1 235
2 87
3 29
4 19
5 6
6 4

D.2.4 The trend

The trend for other error types continues; the “persistence ratio” for almost all error types (for

which we have sufficient data) hovers around 3.5. This means that it is 3.5 times more likely

that the error type will be transient—either be fixed, or the student will generate a different

error type—than repeat; the previous section of this appendix details repetition rates for some

error types to depth one. When errors do repeat, there does not appear to be any one error that

is significantly more difficult to deal with than any other, based solely on how many times it

repeats.

Certainly, more exploration might be waranted in this area. Are these factors a side-effect

of the structure of Java’s grammar? Or, are they useful tools that we might employ in charac-

terising a student’s behaviour? Perhaps more likely, these might be metrics we could employ

in guiding an in-depth analysis of a student’s session, or perhaps might be tools an instructor

could use when surveying a student’s session behavior.

242

Bibliography

[AC93] T. A. Angelo and K. P. Cross. Classroom Assessment Techniques: A Handbook for College

Teachers. Jossey-Bass, 1993.

[Bae88] R. Baecker. Enhancing program readability and comprehensibility with tools for

program visualization. In ICSE ’88: Proceedings of the 10th international conference on

Software engineering, pages 356–366, Los Alamitos, CA, USA, 1988. IEEE Computer

Society Press.

[BGDJ02] Lecia Jane Barker, Kathy Garvin-Doxas, and Michele Jackson. Defensive climate

in the computer science classroom. In SIGCSE ’02: Proceedings of the 33rd SIGCSE

technical symposium on Computer science education, pages 43–47, New York, NY, USA,

2002. ACM Press.

[BM83] Piraye Bayman and Richard E. Mayer. A diagnosis of beginning programmers’

misconceptions of basic programming statements. Commun. ACM, 26(9):677–679,

1983.

[Bro83] P. J. Brown. Error messages: the neglected area of the man/machine interface.

Commun. ACM, 26(4):246–249, 1983.

[BS83] Jeffrey Bonar and Elliot Soloway. Uncovering principles of novice programming.

In POPL ’83: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles

of programming languages, pages 10–13, New York, NY, USA, 1983. ACM Press.

[BU] Damiano Bolla and Ian Utting. The bluej extensions framework.

243

BIBLIOGRAPHY

[BV80] J. S. Brown and K. VanLehn. Repair theory: A generative theory of bugs in proce-

dural skills. Cognitive Science, 4:379–426, 1980.

[CDGW76] D. D. Cowan, P. H. Dirksen, J. W. Graham, and J. W. Welch. Development of ed-

ucational software using the dec pdp-11. In SIGMINI ’76: Proceedings of the ACM

SIGMINI/SIGPLAN interface meeting on Programming systems in the small processor

environment, pages 109–112, New York, NY, USA, 1976. ACM Press.

[Cla01] Steven Clarke. Evaluating a new programming language. Proceedings of the Psychol-

ogy of Programming Interest Group 13, pages 275–289, 2001.

[Dal02] Peter Dalgaard. Introductory Statistics with R. Springer, New York, NY, 2002.

[DL05] N. Denzin and Y. Lincoln, editors. The SAGE Handbook of Qualitative Research. SAGE

Publications, April 2005.

[DLPQ04] Peter DePasquale, John A. N. Lee, and Manuel A. Pérez-Quiñones.

Evaluation of subsetting programming language elements in a novice’s program-

ming environment. In SIGCSE ’04: Proceedings of the 35th SIGCSE technical sympo-

sium on Computer science education, pages 260–264, New York, NY, USA, 2004. ACM

Press.

[Fla02] M. Flatt. Composable and compilable macros: You want it when, 2002.

[Fla05] Matthew Flatt. PLT MzScheme: Language manual. Technical Report PLT-TR05-1-

v300, PLT Scheme Inc., 2005. http://www.plt-scheme.org/techreports/.

[FLC+05] Sally Fincher, Raymond Lister, Tony Clear, Anthony Robins, Josh Tenenberg, and

Marian Petre. Multi-institutional, multi-national studies in csed research: some de-

sign considerations and trade-offs. In ICER ’05: Proceedings of the 2005 international

workshop on Computing education research, pages 111–121, New York, NY, USA, 2005.

ACM Press.

[FT05] Sally Fincher and Josh Tenenberg. Making sense of card sorting data. Expert Sys-

tems, 22(3), July 2005.

244

BIBLIOGRAPHY

[GF03] Kathryn E. Gray and Matthew Flatt. Professorj: a gradual introduction to java

through language levels. In OOPSLA ’03: Companion of the 18th annual ACM SIG-

PLAN conference on Object-oriented programming, systems, languages, and applications,

pages 170–177, New York, NY, USA, 2003. ACM Press.

[GG84] D J. Gilmore and T R.G. Green. Comprehension and recall of miniature programs.

Int. J. Man-Mach. Stud., 21(1):31–48, 1984.

[GMD+04] P. Gray, I. McLeod, S. Draper, M. Crease, and R. Thomas. A distributed usage

monitoring system. In Proc. CADUI 2004, pages 121–132. CADUI, 2004.

[GO86] Leo Gugerty and Gary M. Olson. Comprehension differences in debugging by

skilled and novice programmers. In Empirical Studies of Programmers, pages 13–27.

1986.

[GP96] T. R. G. Green and Marian Petre. Usability analysis of visual programming en-

vironments: A ’cognitive dimensions’ framework. Journal of Visual Languages and

Computing, 7(2):131–174, 1996.

[GPB91] T. R. G. Green, M. Petre, and R. K. E. Bellamy. Comprehensibility of visual and

textual programs: A test of superlativism against the ’match-mismatch’ conjecture.

In Empirical Studies of Programmers: Fourth Workshop, Papers, pages 121–146, 1991.

[Gre89a] T. Green. Cognitive dimensions of notations. In A. Sutcliffe and L. Macaulay, edi-

tors, People and Computers V, Proceedings of HCI 89. CUP, 1989.

[Gre89b] T. R. G. Green. Cognitive dimensions of notations. In Proceedings of the fifth con-

ference of the British Computer Society, Human-Computer Interaction Specialist Group

on People and computers V, pages 443–460, New York, NY, USA, 1989. Cambridge

University Press.

[Gro] The PLT Group. Drscheme.

[GS67] Barney G. Glaser and Anselm L. Strauss. Discovery of Grounded Theory: Strategies for

Qualitative Research. Aldine, June 1967.

245

BIBLIOGRAPHY

[IBNS83] Barbara S. Isa, James M. Boyle, Alan S. Neal, and Roger M. Simons. A methodology

for objectively evaluating error messages. In CHI ’83: Proceedings of the SIGCHI

conference on Human Factors in Computing Systems, pages 68–71, New York, NY, USA,

1983. ACM Press.

[Jad] Matthew C. Jadud. Vincent. http://www.cs.indiana.edu/vincent/4.0/.

[Jad05] Matthew C. Jadud. A first look at novice compilation behavior. Computer Science

Education, 15(1):25–40, 2005.

[KAM05] Andrew J. Ko, Htet Aung, and Brad A. Myers. Eliciting design requirements for

maintenance-oriented ides: a detailed study of corrective and perfective mainte-

nance tasks. In ICSE ’05: Proceedings of the 27th international conference on Software

engineering, pages 126–135, New York, NY, USA, 2005. ACM Press.

[Kan99] Gopal K. Kanji. 100 Statistical Tests. Sage Publications, London, UK, 1999.

[KB05] Michael Kölling and David J. Barnes. Objects first with Java: A practical introduction

using BlueJ. Prentice Hall, 2nd edition, 2005.

[KQPR03] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg. The bluej system and its peda-

gogy. Journal of Computer Science Education, 13(4), 2003.

[LAF+04] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,

Morten Lindholm, Robert McCartney, Jan Erik Mostrom, Kate Sanders, Otto Sep-

polo;, Beth Simon, and Lynda Thomas. A multi-national study of reading and

tracing skills in novice programmers. In ITiCSE-WGR ’04: Working group reports

from ITiCSE on Innovation and technology in computer science education, pages 119–

150, New York, NY, USA, 2004. ACM Press.

[LC01] Thomas Lancaster and Fintan Culwin. Towards an error free plagarism detection

process. In ITiCSE ’01: Proceedings of the 6th annual conference on Innovation and

technology in computer science education, pages 57–60, New York, NY, USA, 2001.

ACM Press.

246

BIBLIOGRAPHY

[LD76] Charles R. Litecky and Gordon B. Davis. A study of errors, error-proneness, and

error diagnosis in cobol. Commun. ACM, 19(1):33–38, 1976.

[Lyn67] W. C. Lynch. Description of a high capacity fast turnaround university computing

center. In Proceedings of the 1967 22nd national conference, pages 273–288, New York,

NY, USA, 1967. ACM Press.

[MAD+01] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,

Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz

Wilusz. A multi-national, multi-institutional study of assessment of programming

skills of first-year cs students. In ITiCSE-WGR ’01: Working group reports from ITiCSE

on Innovation and technology in computer science education, pages 125–180, New York,

NY, USA, 2001. ACM Press.

[May81] Richard E. Mayer. The psychology of how novices learn computer programming.

ACM Comput. Surv., 13(1):121–141, 1981.

[McI01] Linda McIver. Syntactic and Semantic Issues in Introductory Programming Education.

PhD thesis, Monash University, 2001.

[MDV86] Richard E. Mayer, Jennifer L. Dyck, and William Vilberg. Learning to program and

learning to think: what’s the connection? Commun. ACM, 29(7):605–610, 1986.

[MM67] P. G. Moulton and M. E. Muller. Ditran–a compiler emphasizing diagnostics. Com-

mun. ACM, 10(1):45–52, 1967.

[MMNS83] Richard J. Miara, Joyce A. Musselman, Juan A. Navarro, and Ben Shneiderman.

Program indentation and comprehensibility. Commun. ACM, 26(11):861–867, 1983.

[Mor70] Howard L. Morgan. Spelling correction in systems programs. Commun. ACM,

13(2):90–94, 1970.

[Mun69] Robert G. Munck. Meeting the computational requirements of the university - the

brown university interactive language. In Proceedings of the 1969 24th national con-

ference, pages 665–673, New York, NY, USA, 1969. ACM Press.

247

BIBLIOGRAPHY

[Nor82] A. F. Norcio. Indentation, documentation and programmer comprehension. In

Proceedings of the 1982 conference on Human factors in computing systems, pages 118–

120, New York, NY, USA, 1982. ACM Press.

[PFea03] Marian Petre, Sally Fincher, and Josh Tenenberg et al. ”My Criterion is: Is it a

Boolean?”: A card-sort elicitation of students’ knowledge of programming con-

structs. Technical Report 6-03, Computing Laboratory, University of Kent, Canter-

bury, Kent, UK, June 2003.

[PHH+89] D.N. Perkins, C. Hancock, R. Hobbs, F. Martin, and R. Simmons. Conditions of

learning in novice programmers. Studying the Novice Programmer, 1988.

[PM86] D. N. Perkins and Fay Martin. Fragile knowledge and neglected strategies in novice

programmers. In Papers presented at the first workshop on empirical studies of program-

mers on Empirical studies of programmers, pages 213–229, Norwood, NJ, USA, 1986.

Ablex Publishing Corp.

[PM96] John F. Pane and Brad A. Myers. Usability issues in the design of novice pro-

gramming systems. Technical Report CMU-CS-96-132, Carnegie Mellon University,

1996.

[PTG04] M. Piantanida, C. Tananis, and R. Grubs. Generating grounded theory of/for edu-

cational practice: The journey of three epistemorphs. International Journal of Quali-

tative Studies in Education, 17(3):325–346, 2004.

[Rei99] C. M. Reigeluth. Instructional-Design Theores and Models: A New Paradigm of In-

structional Theory. Instructional Design Theories and Models. Lawrence Erlbaum

Associates, Hillsdale, NJ, 1999.

[Ris86] R. Rist. Plans in programming: Definition, demonstration, and development.

Studying the Novice Programmer, 1988.

[Rob93] Eric S. Roberts. Using c in cs1: evaluating the stanford experience. In SIGCSE

’93: Proceedings of the twenty-fourth SIGCSE technical symposium on Computer science

education, pages 117–121, New York, NY, USA, 1993. ACM Press.

248

BIBLIOGRAPHY

[RW97] Vennila Ramalingam and Susan Wiedenbeck. An empirical study of novice pro-

gram comprehension in the imperative and object-oriented styles. In ESP ’97: Pa-

pers presented at the seventh workshop on Empirical studies of programmers, pages 124–

139, New York, NY, USA, 1997. ACM Press.

[SBE83] Elliot Soloway, Jeffrey Bonar, and Kate Ehrlich. Cognitive strategies and looping

constructs: an empirical study. Commun. ACM, 26(11):853–860, 1983.

[SC90] A. Strauss and J. Corbin. Basics of qualitative research: grounded theory procedures and

techniques. Sage Publications, Newbury Park, Calif., 1990.

[SFB+05] Kate Sanders, Sally Fincher, Dennis Bouvier, Gary Lewandowski, Briana Morrison,

Laurie Murphy, Marian Petre, Brad Richards, Josh Tenenberg, and Lynda Thomas.

A multi-institutional, multi-national study of programming concepts using card

sort data. Expert Systems, 22(3):121–128, July 2005.

[SGM+67] Peter W. Shantz, R. A. German, J. G. Mitchell, R. S. K. Shirley, and C. R. Zarnke.

Watfor–the university of waterloo fortran iv compiler. Commun. ACM, 10(1):41–44,

1967.

[SJ81] O. Stromfors and L. Jones. The implementation and experiences of a structure-

oriented text editor. In Proceedings of the ACM SIGPLAN SIGOA symposium on Text

manipulation, pages 22–27, 1981.

[SS86a] James C. Spohrer and Elliot Soloway. Analyzing the high frequency bugs in novice

programs. In Empirical Studies of Programmers, pages 230–251. ACM, 1986.

[SS86b] James C. Spohrer and Elliot Soloway. Novice mistakes: are the folk wisdoms cor-

rect? Commun. ACM, 29(7):624–632, 1986.

[SS86c] James G. Spohrer and Elliot Soloway. Analyzing the high frequency bugs in novice

programs. In Papers presented at the first workshop on empirical studies of programmers

on Empirical studies of programmers, pages 230–251, Norwood, NJ, USA, 1986. Ablex

Publishing Corp.

249

BIBLIOGRAPHY

[SS88] E. Soloway and James C. Spohrer. Studying the Novice Programmer. Lawrence Erl-

baum Associates, Inc., Mahwah, NJ, USA, 1988.

[TR81] Tim Teitelbaum and Thomas Reps. The cornell program synthesizer: a syntax-

directed programming environment. Commun. ACM, 24(9):563–573, 1981.

[Tuf01] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, May

2001.

[Van04] Tammy VanDeGrift. Coupling pair programming and writing: learning about stu-

dents’ perceptions and processes. In SIGCSE ’04: Proceedings of the 35th SIGCSE

technical symposium on Computer science education, pages 2–6, New York, NY, USA,

2004. ACM Press.

[VJ93] K. VanLehn and R. M. Jones. Foundations of knowledge acquisition: Cognitive models of

complex learning, chapter Learning by explaining examples to oneself: A computa-

tional model, pages 25– 82. Kluwer, Boston, 1993.

[WU01] Laurie Williams and Richard L. Upchurch. In support of student pair-

programming. In SIGCSE ’01: Proceedings of the thirty-second SIGCSE technical sym-

posium on Computer Science Education, pages 327–331, New York, NY, USA, 2001.

ACM Press.

[YBDZ97] Sherry Yang, Margaret M. Burnett, Elyon DeKoven, and Moshé M. Zloof. Repre-

sentation design benchmarks: A design-time aid for vpl navigable static represen-

tations. J. Vis. Lang. Comput., 8(5-6):563–599, 1997.

[Yin03] Robert K. Yin. Case study research. In Design and Methods, volume 5 of Applied

Social Research Methods. SAGE, third edition, 2003.

250

