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Abstract

This thesis presents an investigation into the usefulness of software measurement

techniques, also known as software metrics, for software written in functional

programming languages such as Haskell.

Statistical analysis is performed on a selection of metrics for Haskell programs,

some taken from the world of imperative languages. An attempt is made to assess

the utility of various metrics in predicting likely places that bugs may occur in

practice by correlating bug fixes with metric values within the change histories of

a number of case study programs.

This work also examines mechanisms for visualising the results of the metrics

and shows some proof of concept implementations for Haskell programs, and notes

the usefulness of such tools in other software engineering processes such as refac-

toring. This research makes the following contributions to the field of software

engineering for functional programs.

• A collection of metrics for use with functional programs has been identified

from the existing metrics used with other paradigms.

• The relationship between the metrics and the change history of a small

collection of programs has been explored.

• The relationships between the individual metrics on a large collection of

programs has been explored.

• Visualisation tools have been developed for further exploring the metric

values in conjunction with program source code.

xxii



Acknowledgements

I would like to express my thanks to the Engineering and Physical Sciences Re-

search Council for funding this work and to Microsoft Research for the time I

spent at their Cambridge research lab in November 2000.

I would also like to extend my thanks to my supervisor, Professor Simon

Thompson, for guiding me through this work and for the countless hours of proof

reading.

My personal thanks must go to my mother, father and sister for their support

throughout my university life. I could not have wished for better parents or a

more supportive family and could not have completed this work without them.

And finally, to Kristina for pushing me to finish the corrections. Thank you.

xxiii



For my parents

For my sister

For Kristina

xxiv



Chapter 1

Introduction

Functional programming has been an active area of research for many years, but

relatively little of this research has been directed towards the software engineering

aspects of functional programming. This may partly account for the slow adoption

of functional programming in “real world” software development, along with a lack

of robust libraries and other such issues discussed by Wadler [98].

Functional programming languages can be a very efficient tool for implement-

ing complex systems. However, if the system requires debugging or performance

tuning it is not necessarily straightforward to test for and track down bugs or

performance bottlenecks.

Currently, most research in the area of software engineering for functional pro-

gramming is focused on debugging techniques such as tracing, or data abstraction

mechanisms such as the work of Hudak and his co-workers [61] on monad trans-

formers and that of Swierstra and his co-workers [92] on combinator libraries.

Work has also been done on design methodologies for functional programming,

for instance the work of Russell [84], and more recently into other development

activities such as Refactoring [60] of functional programs.

1
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1.1 Metrics and Debugging

Work on debugging techniques is a valuable addition to the field, but mostly such

work is based on runtime observation of a program, for instance the use of exe-

cution tracing. This works very well for small scale programs, but on non-trivial

programs it may take an inordinate amount of time to run the program, and of

course, there is no guarantee that every section of code will be executed. In such

situations it would be useful to be able to concentrate the testing and debugging

effort into those areas of a program that are most likely to benefit from the atten-

tion. Currently, there is no easy way to make such decisions, although runtime

profiling tools are often used to help direct development effort at performance

bottlenecks.

In the world of imperative and object-oriented languages, software measure-

ment, also known as software metrics, has been used for many years to provide

developers with additional information about their programs. Such information

can give programmers important indications about where bugs are likely to be in-

troduced, or about how easy parts of a program are to test, for instance. This can

be extremely valuable in easing the testing process by focusing programmers’ at-

tention on parts of the program where their effort may provide the greatest overall

benefit, which in turn can help ease the whole process of validating software.

The example of the imperative and object-oriented communities suggests that

software metrics could provide a useful complement to the existing debugging tools

available to functional programmers today. Some of the measurement techniques

from imperative and object-oriented languages may transfer quite cleanly to func-

tional languages, for instance the pathcount metric which counts the number of

execution paths through a piece of program code, but some of the more advanced

features of functional programming languages may contribute to the complexity

of a program in ways that are not considered by traditional imperative or object-

oriented metrics. It may therefore be necessary to develop new metrics for certain

aspects of functional programs.



CHAPTER 1. INTRODUCTION 3

This thesis aims to examine both imperative and object-oriented metrics to

assess their applicability to functional programming, and to develop new metrics

for the areas which are not covered by traditional metrics.

1.2 Metrics and the Development Process

Functional programming currently lacks a commonly adopted design methodology,

such as UML for object-oriented development. Proposals have been presented,

for instance by Russell [84], but as yet such ideas have not been widely adopted.

Instead, newer methodologies such as Extreme Programming [13] appear to better

suit the current ad hoc methodologies used by functional programmers.

Although there is no formal recognition that functional programmers are using

an Extreme Programming methodology, the ideas of performing unit tests early

and often, and of continual incremental development, seems to be reminiscent of

the typical development style used with functional languages.

A development process which has gained popularity with the rise of Extreme

Programming is Refactoring [36]. Refactoring is the process of making changes

to software which preserve behaviour but improve structure or design. Extreme

Programming involves frequent refactoring as a program is written. However,

deciding exactly which refactorings to apply and where to apply them relies on

the intuition and experience of the programmer. Software metrics offer a way to

discover parts of a program which have unusual characteristics, or “bad smells” in

Fowler’s [36] terminology, and which therefore may be good targets for refactoring.

1.3 Metrics and Visualisation

Software measurement tools can generate large amounts of data from non-trivial

programs. Because of this a natural extension to measurement tools is to add

some form of visualisation system. This thesis therefore also discusses methods of
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visualising and exploring software systems and metric values, presenting a selec-

tion of visualisation systems for Haskell programs implemented as a flexible and

extensible library.

The combination of visualisation tools and metrics can be a useful tool for use

with other development activities such as refactoring, where visualisation tools can

be used to “browse” for refactoring targets or to indicate how much a program

will be affected by a particular refactoring.

1.4 Overview of this Thesis

This thesis presents and analyses a selection of software metrics designed to

measure attributes of programs written in the functional programming language

Haskell which may not be considered by existing metrics for imperative or object-

oriented languages. The work is then extended to show how these metrics can

be incorporated into software visualisation systems in order to provide tools to

programmers that can help their understanding of their programs and aid in the

application of other development processes such as refactoring. This thesis pro-

vides the following contributions to the field of software metrics for functional

programming languages.

• A collection of metrics for use with functional programs has been identified

from the existing metrics used with other paradigms.

• The relationship between the metrics and the change history of a small

collection of programs has been explored.

• The relationships between the individual metrics on a large collection of

programs has been explored.

• Visualisation tools have been developed for further exploring the metric

values in conjunction with program source code.
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The experiments and studies carried out to make these contributions reached

a number of conclusions which are detailed briefly here.

• Several of the metrics presented are strongly correlated. This suggests they

are measuring closely related attributes, such as the number of patterns in a

function and the number of scopes in a function. Analysing the correlation

between metrics led to the following observations.

– The occurrence of non-trivial recursion, e.g. recursion in which a func-

tion does not directly call itself, in Haskell programs is quite unusual,

and is associated with complex program behaviour. However the oc-

currence of trivial recursion, where a function directly calls itself, is

common.

– The callgraphs of functions in whole Haskell programs generally grow

uniformly in both depth and width, rather than becoming long and

thin, or short and wide.

– Large functions tend to include a greater number of local declarations

than small functions. This is most likely because local declarations

allow one to attach names to parts of a large, perhaps complex, func-

tion. Therefore functions which are large, but do not have many local

declarations may well be difficult to understand.

– The functions used by a single function, foo, will tend to be located

close to foo in the source files.

• In the selection of metrics studied in this thesis, there does not appear to be a

single metric that, for all programs, gives a good correlation with the number

of bug-fixing or refactoring changes, although “Outdegree” (c3), a measure

of the number of functions called by a given function, can give reasonable

predictions for most programs. Instead, combinations of metrics can be

used to give increased correlation, and therefore more accurate predictions.
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This implies that there is no single attribute that makes a Haskell program

complex, rather that the complexity is a result of a number of attributes.

• Typically the metrics presented generate values that are distributed at the

low end of their scales, suggesting that it should be possible to select thresh-

olds to indicate when the various attributes are exhibiting unusual values,

because any values above a threshold are very likely to indicate unusual

behaviour that may warrant further investigation.

• Software metrics can generate large amounts of data and so there is a clear

need for tools that can present the interesting points of the data to the user,

while hiding the bulk of the uninteresting data.

• Visualisation tools, combined with software metrics, have applications in

other parts of the software engineering process. Tools such as Tarantula [29]

have shown the use of visualisation tools for analysing measurements about

the testing process. Work in this thesis has shown that visualisation systems

like the file browser tool, presented in Section 7.1.2 of Chapter 7, have uses

in the refactoring process, for example, by indicating all the sections of a

program’s source code that may be affected by a particular refactoring.

The work in this thesis is presented in two main parts, covering software met-

rics and software visualisation respectively. The thesis is divided into a number

of chapters which are introduced here.

• Chapter 2, Software Measurement, describes why software measurement is

seen as important by the imperative and object-oriented (OO) development

community, and presents various software metrics used in imperative and

OO programming. The chapter also examines how metrics have been used

to aid other development processes such as testing and refactoring.

• Chapter 3, Validation Methodology, describes the experimental methods

used to assess the various metrics described later in Chapter 4, Software
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Measurement for Haskell, and Chapter 5, Trends and Characteristics of

Haskell Metrics, along with the rationale for the choice of programs used as

case studies. The chapter also describes what characteristics are expected

of a candidate case study program, and highlights the difficulty of finding

suitable programs.

• Chapter 4, Software Measurement for Haskell, applies ideas from imperative

and OO metrics to a functional programming language, Haskell. A selection

of metrics for Haskell are presented and statistical analysis of the results

of two case studies is performed to assess the correlation between metric

values and changes (including bug fixes) in the evolution history of software

projects. Statistical analysis is also used to determine correlation between

metric values, indicating metrics which are closely related.

• Chapter 5, Trends and Characteristics of Haskell Metrics, extends the work

presented in Chapter 4, Software Measurement for Haskell, to study a wider

selection of case study programs in order to examine the relationships be-

tween the various attributes measured by the metrics. Further work is per-

formed to discover the typical metric values that programs exhibit, in order

to understand what constitutes an anomalous value of a particular metric.

• Chapter 6, Software Visualisation, discusses software visualisation systems

that have been used to explore and investigate software systems, and exam-

ines the main issues involved in designing visualisation tools. Visualisation

tools are particularly useful for exploring the results of software metrics,

which will produce large amounts of data for non-trivial programs. In par-

ticular, the chapter discuses how visualisation systems for Java programs

have been combined with metrics and with information about test cases.

• Chapter 7, Software Visualisation for Haskell, presents an implementation

of a flexible library of visualisation components which can be combined to

build various visualisation tools for exploring Haskell programs, drawing
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inspiration from the work in Chapter 6. The systems presented offer ways

to explore either single files or collections of files, support visualising the

evolution of source files, and allow the end user to view and explore the

module hierarchy and callgraph of a program. The library is intended to

allow the end user to customise or create visualisation systems or to combine

elements of different visualisations, thereby providing flexibility. The library

is written in Haskell, ensuring that end users do not need to learn a new

programming language, and uses HOpenGL [76] to display the user interface.

• Chapter 8, Conclusions and Further Work, summarises the thesis and lists

the main conclusions from this work. The chapter also suggests several di-

rections for possible future work, including closer ties to the refactoring and

testing processes, and integration with evolutionary computing technologies.

This thesis also includes a number of appendices containing tables and graphs

which are referenced in Chapter 4, Software Measurement for Haskell and Chapter

5, Trends and Characteristics of Haskell Metrics. These tables and figures were

separated into appendices to preserve the clarity of those chapters due to the large

space the tables and graphs occupy.



Chapter 2

Software Measurement

Developing software is a complex and expensive process. New processes are con-

tinually being developed to improve the quality of software and reduce the costs

involved in its construction, but although software development is maturing, many

activities are still ad hoc and rely upon personal experience. This is particularly

highlighted by Shull and his co-workers in [87].

A significant amount of effort is spent on avoidable rework, although the

amount of effort decreases as the development process matures. Avoidable rework

is any rework that is not caused by changing requirements, e.g. fixing software

defects such as coding errors.

Finding and fixing software defects after delivery is much more expensive than

fixing defects during early stages of development. The reasons for this are illus-

trated nicely by Smith [90], and are shown here in Figure 1. If errors are not

detected early, much extra work must be performed in testing, diagnosing, and

fixing the defect. Because of this it is important to find and fix defects as early

as possible, and as such, any tools that can aid in the detection of defects can be

a significant benefit.

Studies such as the work of Shull and his co-workers [87] have shown that most

avoidable rework comes from a small number of software defects, and that code

inspections, or peer reviews, can catch more than half of the defects in a product.

These points raise a number of questions, such as those presented by Smith [90],

9
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Designer A makes a coding error

!

Code inspection misses the error

Improvements here
will avoid wasted
effort downstream

"

!

Tester B detects a problem

!

Designer C diagnoses the problem

!

Designer A corrects the coding error

!

Tester B tests the fix

Figure 1: Fixing defects early saves effort.
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about how one might reduce the number of software defects that survive the early

stages of development:

• Why not inspect all code? Conducting a peer review of millions of lines of

code is time consuming and expensive.

• Why not just do lots of testing? Testing is time consuming and therefore

expensive. According to Peters and Pedrycz [79] typically as much as 30 to

50% of the software development budget is spent on testing. Additionally,

it can be very hard to develop a comprehensive test suite, which can result

in only partial testing of the system.

• Why not look at past defect history? The idea of using the past history of

the system has been exploited in many processes and is particularly useful

where there is a collection of projects which can be expected to share many

characteristics, however this suffers from two drawbacks. Firstly, new code

has no defect history so such processes may not help in this circumstance,

and secondly, defect fixes often only address symptoms of the defect and can

leave the real defect unfixed and undetected.

• How can these methods be combined? By combining a number of techniques

it may be possible to take the positive aspects of the techniques while reduc-

ing the effects of the negative aspects, such as the time consuming nature

of peer reviews.

Software measurement is a technique in which quantitative measures, often

called metrics, are taken from the source code of a program. Typically metrics

attempt to quantify how complex a piece of source code is to understand, modify

or test. This notion of complexity should not be confused with the computational

complexity of an algorithm, which is typically denoted using O() notation. Com-

putational complexity is concerned with runtime behaviour, rather than how easy

or hard it is for a programmer to maintain.
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One of the claims of software measurement is that it can help identify the

parts of a system which are most likely to benefit from inspection. This allows

resources to be focused where they will help most and allows them to be used in

their most effective way, e.g. peer reviews of small sections of code, rather than

large sections, or indicating parts of a program that may benefit from refactoring

code changes.

Software measurement is increasingly becoming part of the development pro-

cess in many software development companies. Many such companies participate

in process certification programs such as ISO9000 [78] or Software CMM [77].

These certification programs indicate the quality and maturity of the develop-

ment process used in a company, and many large software houses view these as

an important benchmark. Interest in these programs is not confined only to the

developers either, clients are also increasingly specifying certification levels as part

of the tendering process. This in turn has created a drive by software development

companies to achieve the necessary improvements in the development process to

gain higher certification levels.

This increased desire to improve the quality of the software development pro-

cess has correspondingly increased the acceptance of software measurement. For

instance, Software CMM [77] highlights that engineers may have detailed insight,

or visibility, into the state of a project due to their first-hand knowledge, but

may only see a small part of a large project, while managers may lack visibility

into the project, relying instead on periodic reviews. Level 4 of Software CMM

requires that productivity and quality are measured, and that software processes

are instrumented with well-defined and consistent measurements. The purpose

of these measurements is to provide a quantitative foundation for evaluating the

projects’ software processes and products. While this thesis does not study process

measurements it does study product measurements.

The remainder of this chapter will explore some of the work already performed

in the software measurement field and discusses the various methods of validation

that have been used in software measurement. There has been a large amount
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of work in this area since its inception in the early 1970’s, and as such the work

presented in this chapter can only be a broad survey of the field. This chapter

mostly covers static measures of software, but does briefly visit the area of dynamic

measures. Dynamic measures are not considered in the rest of this thesis, and

therefore all measures discussed should be assumed to be static measures unless

otherwise stated. The remainder of this chapter is divided into the following parts.

• Section 2.1 presents a brief summary of the history of software measurement.

• Section 2.2 describes some of the metrics for imperative languages.

• Section 2.3 examines metrics for analysing object-oriented languages.

• Section 2.4 introduces previous work that applies software measurement

techniques to functional programming languages.

• Section 2.5 investigates the role of time in the use of software metrics.

• Section 2.6 discusses the ways in which metrics have been used in quantifying

aspects of design artifacts.

• Section 2.7 examines the use of software measurement to aid in the process

of re-engineering software systems.

• Section 2.8 presents some metrics which do not fit in the classifications of

the previous sections.

• Section 2.9 summarises the chapter.

2.1 Ott: A Brief History of Software Metrics

The history of software metrics makes an interesting lesson on the pitfalls of over

zealous promotion of research results. In [73] Ott provides a detailed history of

research in software metrics which it is worth summarising briefly in this section.
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The first major work published in the field of software metrics was Halstead’s

work on “Software Science” [42] in the early 1970’s, which is covered in more

detail later in this section. Halstead wanted to form a science that would be the

foundation of software engineering, much like physics is to electrical engineering.

Halstead frequently drew analogies between software issues and concepts from

other disciplines, such as psychology. Several researchers started looking at soft-

ware metrics after Halstead’s work, but the field was viewed with scepticism by

many people. Criticism was levelled at both Halstead’s experimental methods, in

which he sometimes used inappropriate statistical methods, and at the theory on

which “Software Science” was based. In particular, Halstead’s tendency to take

findings from disparate disciplines and use them out of context within the software

engineering field attracted much criticism and this left something of a cloud over

the field for some time.

Much of the early work following Halstead’s was focused on measuring com-

plexity. Such work is typified by the work of Bell and Sullivan [14], as well as

that of McCabe [67] which is described later in this chapter. During the mid 70’s

several industrial projects started to look at software measurement. Their goal

was to provide some way to quantify the software development process so that

the effect of changes to the process could be monitored. This prompted many

researchers during the late 70’s and early 80’s to look again at the field. Many

“new” metrics were developed, however much of the computer science community

still viewed software metrics with scepticism. Much of the criticism was still lev-

elled at Halstead, but some more general concerns were raised about the validity

of attempting to measure something as multi-faceted as software complexity by a

single number.

Since then, the field of software measurement has progressed. Researchers

in the field have learned from Halstead’s mistakes and software measurement

has gained a more solid foundation, both in statistical analysis and in empirical

validation. An excellent set of guidelines for empirical research and statistical

analysis for software metrics is provided by Kitchenham and her co-workers [52].
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These guidelines are not described here, but are to be recommended to anyone

involved in empirical studies of software.

This improved foundation has helped the use of software metrics to become

more accepted. An indication of the acceptance of software measurement is indi-

cated by a recent conference [1, 2] on software measurement at which a number

of large companies, such as various telecommunications and aero-space manufac-

turers, were represented both as speakers and listeners.

The rest of this chapter presents a survey of the past and present work relating

to software measurement, both in general and for specific programming paradigms.

2.2 Metrics for Imperative Languages

Until relatively recently most software has been written in imperative languages

and correspondingly most research into software measurement has been conducted

on such languages. There have been many metrics developed and it would be

impossible to describe all of them in detail, however in the following sections a

general overview of the different types of metrics will be presented. Fenton’s [32]

text provides descriptions of these metrics in greater depth than is possible here.

The rest of this section is divided into the follow parts.

• Section 2.2.1 presents a brief introduction to software metrics for traditional

imperative languages.

• Section 2.2.2 describes some of the measurement techniques used for quan-

tifying program size.

• Section 2.2.3 surveys some of the useful metrics used to measure factors of

control flow.

• Section 2.2.4 looks at how metrics relate to testing of imperative programs.

• Section 2.2.5 covers the metrics that can be used to help understand mod-

ularity in programs.
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2.2.1 Introduction to metrics for imperative languages

A software program has many attributes that can be measured. Fenton classifies

such attributes into two classes:

• Internal attributes. Those attributes of software products dependent only

on the software product, such as size.

• External attributes. Those attributes measured only with respect to how the

product relates to its environment, such as reliability.

Fenton stresses that although it is possible to learn through measurement that

a particular attribute (for example “complexity”) of a program is particularly high,

software measurement cannot tell you how to improve the program. Software

measurement can however be used to give clues to improve software. Coupled

with this point, Fenton observes that the term “complexity” is commonly used

to capture the “totality” of internal attributes, but that it does not articulate

any particular attribute of complexity very well. Fenton therefore argues that

although people feel complexity should be summarised by a single value, a better

approach is to learn how to quantify the attributes that contribute to complexity,

such as those described in this chapter, and thus improve the quality of software

systems in that way.

2.2.2 Measuring the size of an imperative program

One of the simplest attributes of a program is its size. Program size, although

primitive, can be a useful measure of complexity because large pieces of code could

be expected to be harder to understand and maintain than small pieces of code,

all other considerations being equal.

There are many ways one might choose to measure the size of a program.

Conte [23] claims that the most common definition is to count the number of lines

of code where a line of code, or LOC, is defined as:
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“...any line of program text that is not a comment or blank line, re-

gardless of the number of statements on the line. This includes all

lines containing program headers, declarations and executable and

non-executable statements.”

Fenton [32] calls this definition of program size Non-Comment Lines Of Code

or NCLOC. This measure does not consider the size of any comments in the

program text, however comments may still be of interest because they are often a

source of documentation for the adjacent functions or the containing source file.

For this reason Fenton also defines Comment Lines Of Code, or CLOC, as the

number of comment lines in the program text. From this, the total program size

will be LOC = NCLOC + CLOC.

Fenton believes it is generally useful to gather both NCLOC and CLOC be-

cause they measure different attributes. NCLOC measures the “size” of the code

in a program, whereas CLOC measures the amount of documentation contained

in the program source code in the form of comments.

Fenton also notes that many people find it tempting to combine some notion of

effort, e.g. the amount of “stuff” on a line, with the program length but he argues

that program length should be kept “atomic” rather than creating a hybrid length

measure. An example of such a hybrid measure is Halstead’s program volume.

Halstead’s program volume [42] is a measure of the size of a program. Halstead

classifies symbols in a program into two classes, those that are used to specify

actions are classed as operators while symbols that represent data are classed as

operands. Halstead defines four basic measures from his symbol classifications:

η1 The number of unique or distinct operators in the program.

N1 The total number of operators in the program.

η2 The number of unique or distinct operands in the program.

N2 The total number of operands in the program.
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From these elemental measures Halstead defines program volume as V = N ×

log2 η, where N is the program length, defined as N = N1+N2, which is essentially

the number of symbols in the program, and η is the program vocabulary, defined

as η = η1 + η2.

The program volume measure indicates the size of the smallest possible repre-

sentation of the program in bits. This occurs because log2 η indicates the number

of bits needed to represent all the individual elements of the program, while N

indicates how many elements there are in the program.

2.2.3 Attributes of control flow in imperative languages

One of the important aspects of imperative programs is their control flow, that is,

the path of execution through a program. Control flow can often be non-trivial and

programs with complex control flow can become difficult to comprehend, test, and

maintain. It is therefore desirable to attempt to quantify and manage the control

flow while a program is being developed, which might allow for easier maintenance

in the future. There has been much work on using software measurement to

quantify the control flow of programs, some of which will be discussed in the

following sections.

The control flow of a program is usually modelled using flowgraphs. Flow-

graphs are directed graphs which indicate the execution paths through a pro-

gram. Some flowgraphs, such as if-then-else constructs, appear very regularly in

program construction and have therefore been given special names and are known

collectively as prime flowgraphs. These prime flowgraphs have been illustrated in

Figure 2.

Flowgraphs can be combined through sequencing and nesting. The notation

used for sequencing is (F1; F2; . . .), e.g. (P0; D0). The notation used for nesting is

F (F1 on x1, F2 on x2, . . .) which states that flowgraph F1 is nested on node x1 on

the flowgraph F , and likewise F2 is nested on node x2, e.g. D1(D2 on A). This

is often abbreviated to F (F1, F2, . . .). To illustrate this notation further, consider

the flowgraph in Figure 3. This graph represents a simple program to read the
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occurred (a) read a
line from the file
(B)
If the error is End
Of File (b) then print
"File read." (C)
else print "Error
occurred." (D)

Figure 3: Example of an S-graph

contents of a file, and is constructed from a number of prime flowgraphs, such as a

“while a do A” loop, D2(a, B), and an “if-then-else” structure, D1(b, C, D). These

prime flowgraphs are composed in sequence, thus the whole flowgraph could be

represented as the sequence (P2; D2; D1).

Fenton claims it is possible to use the flowgraph of a section of code to deter-

mine whether that code is “well structured”. This is done by first nominating a

set S of prime flowgraphs. The choice of which prime flowgraphs to include in

S might depend, for instance, upon the particular programming language being

used, due to the different control structures available in different languages.

Any control flowgraph that is composed only from elements of set S is then

classified as structured. Fenton calls such structured graphs S-graphs. Figure 3

illustrates an example of an S-graph.

Any flowgraph can be decomposed into the component flowgraphs and so as-

sociated with each flowgraph is a decomposition tree which describes how the

flowgraph may be built from prime flowgraphs using sequencing and nesting. In

[33] Fenton and Whitty describe a Prime Decomposition Theorem which states

the following:
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“Every flowgraph has a unique decomposition into a hierarchy of prime

flowgraphs.”

This theorem and its proof describes how every program has some quantifiable

degree of “structuredness” which can be characterised by its decomposition tree.

This occurs because the only structures which cannot be decomposed are the

prime flowgraphs and therefore, unless a program consists of only a single prime

flowgraph, it must be possible to decompose the program to some extent.

Fenton believes that the Prime Decomposition Theorem can be used to help

“restructure” code in an optimal manner by identifying those primes that are

causing “spaghetti” code. This can be done by calculating the decomposition tree

for the given program flowgraph. Any elements of the decomposition tree which

are not part of the S set indicate sections of code which are unstructured and

therefore are likely to cause “spaghetti” code.

Flowgraphs provide a source of many measures such as depth of nesting and

complexity. One such well known and commonly cited metric is McCabe’s cyclo-

matic complexity metric [67]. Cyclomatic complexity was presented as a measure

of the complexity of a program although, as will be seen in Section 2.2.4, it is also

useful as a measure of testability.

Cyclomatic complexity is a measure of the complexity of the decision structure

in a program. Programs are represented as a flowgraph G in which there is a single

entry point and a single exit point. The metric is defined as v(G) = e−n+2 with

e, the total number of arcs, and n, the total number of nodes. This metric counts

the number of independent paths through the program, where an independent

path is any path through the program that introduces at least one new set of

processing statements. The number of independent paths is a good indicator

of the complexity of a program because generally a program becomes harder to

understand as the number of paths increases. It can also be shown that for a

graph in which all decision nodes have an outdegree of 2, that is, every node has

two outgoing edges, v(G) is equal to one plus the number of decision nodes in the

flowgraph.



CHAPTER 2. SOFTWARE MEASUREMENT 22

Although McCabe’s work on Cyclomatic Complexity remains the most heavily

cited and best known control flow measure, there have been many other control

flow complexity measures defined by many researchers. These other control flow

complexity measures are not discussed in this thesis, but a comprehensive analysis

of these metrics is provided by Zuse [107].

2.2.4 Metrics for software testing in imperative languages

Effective software testing is recognised as being one of the hardest tasks in software

engineering. Because of this it is important that software is written in such a way

as to ease the testing process. Software measurement can have a role to play in

helping achieve this goal.

Fenton is quick to point out that although it is possible to measure how difficult

a program will be to test, software measurement cannot explain how to change

a program to improve testability. Despite this, software measurement is still of

use because it can indicate areas where a program may be difficult to test, and so

can help direct programmer effort towards the areas of a program where it may

be most needed and therefore most cost effective.

A measurement that is more commonly associated with complexity measures

than testability is McCabe’s cyclomatic complexity measure. Cyclomatic com-

plexity measure, previously defined in Section 2.2.3, counts the number of linearly

independent execution paths in a program and so forms an important indication

of how difficult a program may be to test. Generally, the greater the number of

paths, the more test cases are needed to fully test all paths of the program.

There are many test strategies such as those described and compared by Basili

and Selby [11] and those featured in almost any text on software engineering.

Because of the wide range of test strategies, it would be useful to be able to

measure the number of test cases required for each strategy for a given program

and it may be possible to use metrics for this purpose. For instance, McCabe’s

cyclomatic complexity can measure the number of test cases needed for structured

testing. Each such metric is only an indication of testability since it is much easier
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to calculate an estimate of the number of test cases needed than it is to generate

the actual test cases.

Whatever testing strategy is used, it is important to know how much of the

program is being executed by the test cases. This is known as test coverage or

the Test Effectiveness Ratio. It is important to know the test coverage because

it indicates how effective the set of test cases are. This is useful because there is

little point in running a large number of test cases if most of them exercise the

same execution path!

For a test designed to exercise objects of type T , where T might be loops,

branches, etc, the Test Effectiveness Ratio for that test is defined as :

TERT =
number of T objects exercised ≥ once

total number of T objects

To calculate the Test Effectiveness Ratio it is necessary to determine which

objects were exercised for a specific set of test data. This may be difficult to

achieve statically, so it is often necessary to perform some form of runtime execu-

tion tracing to be able to perform this measurement.

The use of metrics to predict, or give indications of, how easily a program may

be tested has been explored by many researchers in many papers, such as those

by Bache and Mullerburg [7], Freedman [37], Binder [15] and Woodward and Al-

Khanjari [103], although there is often little in the way of validation presented

with such work.

2.2.5 Attributes of modularity in imperative languages

Most modern programming languages provide some support for dividing a pro-

gram into modules. Such modular programs are generally easier to understand

and make better reuse of code, although Hatton [44] suggests that a program

consisting of lots of small modules may be harder to understand than a program

consisting of a smaller number of slightly larger modules. Yourdon and Constan-

tine [106] claim that the shape, or morphology, of the overall program structure
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can be a useful source of information about the design of a software system. Call-

graphs are directed graphs in which nodes represent functions and edges represent

calls between functions. Callgraphs can be constructed from a software system

and provide many attributes such as width and depth that can be measured quite

simply. A few of the more interesting measures they define are described below.

• Size. This can be the number of nodes, the number of arcs, or the sum of

both. The size of a callgraph affects the complexity of the program. The

greater the size of the callgraph, the more dependencies between different

parts of the program there is likely to be, and so the greater the complexity.

• Depth. The length of the longest path from the root node to a leaf node.

• Width. The maximum number of nodes at any one level.

• Arc-to-node ratio. This is a connectivity density measure that increases as

more connections, or function calls, are made and is similar to cyclomatic

complexity. A high arc-to-node ratio indicates complex interactions between

functions, and thus may highlight areas of program code that may benefit

from re-engineering. Section 2.7 examines the use of metrics in the re-

engineering process.

As well as the simple measures described above there have also been some more

esoteric metrics designed for use on callgraphs. For instance, Ince and Hekmatpour

[47] derived a novel measure they term impurity. Impurity is the extent to which

a callgraph deviates from an n-ary tree. Their assertion is that the more a system

deviates, the worse the architecture of the software system. However it is not

completely clear that this is necessarily a desirable property because it appears to

discourage code reuse, because their measure implies that all nodes should only

be used once.

Code reuse is generally considered an important part of dividing a program into

modules because reusing code can reduce both programming and testing effort.

Fenton classifies reuse into two categories.
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• Public Reuse. Reusing code which was constructed externally to the pro-

gram. e.g. library code.

• Private Reuse. Reusing modules within the same program.

Both public and private reuse can be measured from a callgraph. Reuse may

be measured either by the number of times a module is used or by the number of

modules that use a particular module. Although these two measures seem to be

the same, consider the situation where one module uses a second module multiple

times, for example by using several functions that are exported by the second

module. In this situation the two measures will then give different results.

Coupling

One of the intentions of dividing a program into modules is to prevent changes

in one module affecting other modules. In this situation the extent to which two

modules are coupled is an important consideration. If two modules are too tightly

coupled it will not be possible to change either module independently. In the

context of software measurement, coupling is normally considered between pairs

of modules. The coupling of a system as a whole is called global coupling. Fenton

classifies coupling between modules in an imperative language into six classes:

• Content Coupling, R5. (x, y) ∈ R5 if x changes things inside of y, for instance

by changing values defined in y.

• Common Coupling, R4. (x, y) ∈ R4 if x and y both refer to the same global

data. This can cause problems if the format of the global data is changed.

• Control Coupling, R3. (x, y) ∈ R3 if x passes a parameter to y with the

intention of controlling the behaviour of y. An example might be if y is a

function that draws shapes on a computer screen. Different parameters to

y might cause it to perform different actions, such as drawing a triangle or

a square.
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• Stamp Coupling, R2. (x, y) ∈ R2 if x and y both accept the same defined

type as a parameter. This may create interdependencies between otherwise

unrelated modules.

• Data Coupling, R1. (x, y) ∈ R1 if x and y communicate by parameters

which do not incorporate any control element. This occurs when x and y

perform the same tasks regardless of the data passed between them. An

example might be passing parameters to a mathematical function, the func-

tion performs the same actions regardless of the parameters passed. This

is in contrast to control coupling in which different sets of actions may be

performed depending on the parameters that are passed. Data coupling is

the minimum necessary coupling for any communication between modules.

• No Coupling, R0. (x, y) ∈ R0 if x and y are completely independent.

Fenton orders these classifications of coupling from R0 being good to R5 being

bad. It is not usually possible to have only R0 coupling between all modules, one

exception might be a library of utility functions, so Fenton’s ordering is intended

to be treated only as a guideline.

It is also worth noting that in practice it may be difficult to exactly classify

coupling by Fenton’s classifications. For instance, determining between R3 and

R1 coupling may be difficult or impossible to do mechanically and may therefore

require manual inspection in order to decide the exact classification.

The coupling of a system can be modelled using a coupling-model graph. A

coupling-model graph can provide a good method of visualising the coupling be-

tween modules. An example of such a graph is shown in Figure 4, where edges of

the graph are marked with pairs, (x, y), which indicates the type of coupling (Rx)

and the number of occurrences (y) of that type, for instance the number of shared

global variables for R4 coupling. The visualisation of the module coupling may

be of as much, or even more, use than any measures on coupling because it can

allow developers to gain a high level overview of the interactions in the software

system very quickly.
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Figure 4: Example coupling graph.

Information flow

Generally a modular program will consist of modules with data flowing through

them in a manner that is termed information flow. Measuring properties of in-

formation flow may be of interest to programmers because it can help to indicate

where particularly complex interaction is occurring between functions, and thus

where there may be complex algorithmic behaviour that is likely to make modifi-

cations to the program difficult to perform.

Flowgraphs can be used to model the information flow between modules. Fen-

ton views information flow as one of several different types, described below.

• Local Flow. A module invokes a second module and passes information to

the invoked module, or an invoked module returns a result to the caller.

• Local Indirect Flow. Occurs if an invoked module returns information which

is subsequently passed to a second invoked module.

• Global Flow. Occurs if there is a flow of information from one module to

another via a global data structure.

Using the information flowgraph of a program it is possible to measure many

attributes that help to quantify the complexity of the program structure. One

such complexity measure is the Henry-Kafura [45] measure. This measure uses

the following two measures as its basis.

• Fan-In. The number of local flows that terminate at a module M .
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• Fan-Out. The number of local flows which emanate from a module M .

Information from such attributes may help to identify modules that contribute

to complex information flow, and that therefore make testing and modifications

more difficult to perform.

The Henry-Kafura measure, shown in Equation 1, uses these attributes along,

with a measure of the module size, to indicate the complexity of a module. The

fan− in(M) × fan−out(M) component of the metric indicates the number of

possible connections between an input source and an output destination, and is

squared in the belief that the complexity in terms of the number of connections

is more than linear. The assertion that complexity is non-linear is also supported

by Brooks [17].

However the use of the Henry-Kafura measure to indicate complexity is a little

questionable because a module with fan-out or fan-in of zero will have a complexity

measure of zero. Henry and Kafura justify this notion by claiming that modules

with zero fan-in or fan-out are in some sense isolated from the system as a whole

and therefore have low complexity.

complexity of module M = length(M) × (fan−in(M) × fan−out(M))2 (1)

Henry and Kafura performed an industrial study comparing their measure

with maintenance change data for the UNIX operating system. The study re-

vealed a correlation between high measurement values and those modules known

to be difficult to maintain. Shepperd [86] also performed a detailed study of the

Henry-Kafura measure, comparing the Henry-Kafura measure with the develop-

ment time of projects. Shepperd found that the Henry-Kafura measure did not

have significant correlation with the development time. However Shepperd found

that a hybrid measure, shown in Equation 2, did show a significant correlation

with development time, although it is not clear why this should be so.

complexity of module M = (fan−in(M) × fan−out(M))2 (2)
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2.3 Metrics for Object-Oriented Languages

In previous sections a selection of useful metrics has been shown for imperative

languages, and there are many more that have not been covered in this thesis due

to the large body of work covering metrics for imperative languages. However in

recent years Object-Oriented (OO) programming languages such as C++ and Java

have become popular so it is interesting to examine the metrics available for such

programming languages. Many of the metrics used for imperative languages can

be applied to OO programs, but there are a number of additional attributes that

are specific to OO programs which are therefore ignored by imperative metrics.

Many metrics for use with OO programs are described by Lorenz and Kidd [62].

The remainder of this section is divided into the following parts.

• Section 2.3.1 discusses ways to classify the importance of classes.

• Section 2.3.2 presents work to measure properties of methods in an OO

program.

• Section 2.3.3 examines classes and their properties.

• Section 2.3.4 looks at work that investigates the coupling between objects.

• Section 2.3.5 summarises this section.

2.3.1 Classifying classes

In OO programming the program is divided into classes which typically encapsu-

late both state and functionality. Lorenz and Kidd classify program classes into

one of the following two categories.

• Support Classes are those classes which are not central to the task the pro-

gram is to perform. It would be possible to develop a solution without

them.
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• Key Classes are those that are central to solving the problem, without which

it would be impossible to develop a solution.

It is important not to confuse these two classifications with “application” and

“utility” classes. Utility classes may be key classes, for instance a numerical li-

brary may contain utility classes which are key to solving the application problem.

However, making this classification normally requires the insight of a program and

would be difficult to perform accurately with an automated system.

With program classes classified into support and key categories it is possible to

measure the ratio of support classes to key classes. This ratio gives an indication

of whether the program is dominated by support vs key code. This may be useful

to know because “show stopping” defects are more likely to occur in key classes

than support classes, where defects may not be so serious.

2.3.2 Metrics for methods

Object-oriented languages use classes to encapsulate functionality and state. A

class will normally have attributes (state) and methods (functionality) which op-

erate on those attributes. Classes communicate by sending messages, which is

achieved by invoking the methods of the target class.

Some metrics view methods simply as functions in an imperative language and

in this way many of the metrics used for imperative languages can be used directly

on methods in an OO program. For instance, method size may be measured by

Lines Of Code, or the number of statements in the method body.

A more object-oriented view of method size, suggested by Lorenz and Kidd

[62], may be to measure the number of message sends initiated by the method.

The number of message sends gives a useful indication of how “busy” a method is,

which might highlight methods with a high degree of coupling. This is similar to

counting the number of function calls out of a particular function in an imperative

language, and may be calculated either statically, by the number of lines which

initiate message sends, or dynamically at runtime. Dynamic measures of coupling
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between objects are discussed in greater detail in Section 2.3.4.

2.3.3 Class properties

Existing metrics for imperative languages are not necessarily best suited for mea-

suring properties of classes as a whole. For instance, to measure the size of a class

it would be possible to measure Lines Of Code but this is not necessarily a good

indication of the size of a class. A better measurement might be to count the

number of methods the class contains, which measures how large the interface to

the class is, or how much state the class encapsulates, for instance by counting

the number of attributes the class contains.

One of the most useful features of OO programming is inheritance. Inheri-

tance allows a child class to inherit behaviour from a parent class, or extend the

behaviour of the parent class. This feature adds genericity to OO languages, but

can make the behaviour of a child class harder to understand because it may

be necessary to understand the behaviour of the ancestor classes as well as that

of the child class. Because inheritance is an important aspect of OO program-

ming it is useful to have metrics to measure the impact of inheritance on program

complexity.

Inheritance can be represented using directed graphs. From such graphs it

is possible to measure attributes such as depth of inheritance and number of

ancestors. It is worth noting that just representing the inheritance graph visually

may be of significant help in understanding a system, as can be seen by the

popularity of modelling tools such as UML, and can highlight places where the

implementation of a software system does not match the original design. This is

explored in greater detail in Section 2.6.

Along with the inheritance hierarchy, the effect of inheritance on a class is also

of interest. When a class inherits functionality from a parent class it may also

override methods. This information can be added to the flowgraph and allows

information such as the number of inherited methods or the number of overridden

methods to be counted. The number of overridden methods is a particularly
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interesting metric because overriding methods can result in methods which are

syntactically identical from the point of view of their type signature, but may

have fundamentally different behaviour. This can make it very hard to correctly

understand the behaviour of code that uses such overridden methods.

Because all these measures consist of counting occurrences of some property,

they can be implemented quite simply as static measures, although it is also

possible to perform these measurements dynamically, which is partly examined

in Section 2.3.4. Additionally, many of these measures can be applied to design

artifacts such as UML diagrams. This is discussed in Section 2.6.

2.3.4 Dynamic coupling measures

Software systems often need to be changed, e.g. for new or changing user require-

ments. It is therefore important that software systems are constructed in such a

way that they may be changed with the minimum of disruption to existing code.

One way to make the system easier to change is to ensure the amount of coupling

between components is minimal. Because of this there have been many coupling

metrics defined, such as those for imperative programs described in Section 2.2.5.

These static measures of coupling have been shown to be useful indicators of soft-

ware quality by the work summarised in Section 2.2.5. However properties of the

dynamic behaviour of OO software can only be accurately gathered at runtime.

One of the advantages of measuring coupling dynamically instead of statically

is that it allows the focus of attention to be limited to code used for a particular

use case, which may be only a subset of the code contained in the classes associated

with the use case. This is not possible with static measures which must consider

the classes as a whole.

Arisholm [6] examines three different dimensions of dynamic collaboration be-

tween two components of a system, namely the direction of the coupling, the

mapping of the coupling and the strength of the coupling. These are described in

more detail below.
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• Direction. One can measure the messages received by an entity, the export

coupling, separately from the messages sent by an entity, the import coupling.

• Mapping. Messages are “received” through methods defined either within an

object’s class or inherited from its parent classes. Because of this, although

messages are mapped to a single object, they may be mapped to many

classes. From this a distinction can be drawn between the objects sending

and receiving the messages and the classes that implement the methods.

This leads to two categories of coupling which can be measured separately,

object-level coupling and class-level coupling.

• Strength. The strength of the coupling is a measure of the amount of asso-

ciation between the two entities. Arisholm uses three methods of measuring

this strength:

– Number of dynamic messages. A count of the total number of messages

sent by an entity.

– Number of distinct method invocations. The number of unique messages

sent by an entity, ignoring duplicate messages.

– Number of distinct classes. The number of unique classes to which the

entity sends messages. Different messages sent to the same class are

treated as a single message.

Unlike the classification of coupling described earlier in Section 2.2.5, these

strength measures do not attempt to classify the type of the coupling,

e.g. whether the messages contain some control element, but instead only

count the number of occurrences, and so treat all types of coupling as equal.

From these three dimensions of coupling Arisholm developed a collection of

twelve metrics. The preliminary results from his work suggested that a number

of the metrics showed a positive correlation with the change proneness of a case

study program. Further, the results suggested that the higher the object-level
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export coupling of a class, the more objects depend upon that object and hence

the class of which that object is an instance is more likely to be changed.

Dynamic measures of software open up many possibilities for measurement,

however this thesis concentrates on static measures of software and the dynamic

measures are presented here only for information.

2.3.5 Summary

In general, many of the imperative language metrics can be used for OO programs.

Additional metrics can be used to measure attributes of the additional features

of OO languages, such as inheritance and coupling. However some of these OO

features must be measured dynamically at runtime rather than statically in order

to gain accurate measurements.

2.4 Software Measurement for Functional Pro-

gramming Languages

While there is much work examining the use of software measurement for imper-

ative and object oriented languages, there appears to be little work exploring the

use of software measurement in functional programming. One of the few such

works is the PhD thesis of Van den Berg [96]. This thesis describes how func-

tional programming using the language Miranda1 is used for teaching purposes in

the first year of the computer science course at the University of Twente. The

introduction of functional programming into the curriculum provided the initial

motivation for the thesis, namely to answer the question “Do students produce

better programs when they learn functional programming instead of imperative

programming?”. This question raises two issues, “Which criteria can be used to

objectively assess the quality of programs?” and “How to compare quality aspects

of programs written in different programming paradigms?”.

1Miranda is a trademark of Research Software Ltd.
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The rest of this section addresses these questions and is divided into the fol-

lowing subsections.

• Section 2.4.1 examines the readability of programs.

• Section 2.4.2 describes the methods Van den Berg used to validate his met-

rics.

• Section 2.4.3 summarises the conclusions Van den Berg drew from this work.

2.4.1 Readability

An important aspect of producing “a better program” is readability. Van den

Berg used metrics such as program volume from Halstead’s Software Science and

McCabe’s cyclomatic complexity metric to assess the readability of a program.

Van den Berg carried out an experiment in which several students performed

modifications to existing programs, some written in Miranda and others in Pascal,

which were then ranked in order of readability by a group of experts. The metrics

were then applied to the programs and the correlation was measured between the

ordering of the metric results and the ordering from the expert’s opinions.

This case study showed that while there was a reasonably high correlation

between the metrics and the experts view for imperative programs (Pascal), the

correlation was significantly lower for functional programs (Miranda). Van den

Berg found that for functional programs, the degree of agreement between the

experts on the readability of the programs was low and cited this as a possible

causes of the low correlation.

2.4.2 Validation

A common criticism of software measurement in the past has been the lack of

rigorous validation. Van den Berg presents a case study demonstrating the exper-

imental validation process he used. For the case study he used structure metrics
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for Miranda type expressions. The structure of Miranda type expressions was

represented by the grammar :

typeexp ::= Num | Bool | Char |
Var num | L typeexp | T [typeexp] |
F typeexp typeexp

With this grammar a large class of Miranda types, excluding algebraic and

abstract types, can be represented. For instance the type :

(* -> bool) -> [*] -> ([*],[*])

would be represented in the grammar as :

(F (F (Var 1) Bool)
(F (L (Var 1))

T [(L (Var 1)),(L (Var 1))]))

From the grammar for type expressions Van den Berg derived the following

set of axioms that a structure metric on types must fulfil.

m(L t) > m(t) (3)

m(T [t1, . . . , tn]) > max(m(t1), . . . , m(tn)) (4)

m(T [t1, . . . , tn]) = m(T (perm[t1, . . . , tn])) (5)

m(F t1 t2) = m(F t2 t1) (6)

m(T [t1, . . . , tn+1]) > m(T [t1, . . . , tn]) (7)

m(T [t1, . . . , tn]) > m(L ti), i = 1, . . . , n (8)

m(F t1 t2) > m(T [t2, t1]) (9)

where n ≥ 1

Axiom 3 states that the metric value for a list of elements of type t should be

higher that for a single element of that type, and thus makes the assumption that

lists add to the complexity of a type expression.
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Axion 4 states that the metric value for a tuple should be a greater value than

any of the metric values for the types contained in the tuple. This makes the

assumption that a tuple adds to the complexity of a group of types.

Axiom 5 states that the metric values for a tuple should not be affected by the

order of the elements of a tuple.

Axiom 6 states that the metric values for a function type should not be affected

by the ordering of the element types in the function type.

Axiom 7 states that the metric value for a tuple should increase as the number

of elements in the tuple increases.

Axiom 8 states that the complexity of a tuple, e.g. (Bool,Char), is greater

than the complexity of a list of any of the component types, e.g. [Bool] and

[Char]. The reason for this assertion is that to understand the tuple it is necessary

to understand two types and the tuple constructor, while to understand a list it

is only necessary to understand one type and the list constructor.

Axiom 9 states that the metric value for a function type should be greater

than the metric value for a tuple type containing the same element types.

For the experiment a simple sum metric that conforms to the above axioms

was defined in the following manner:

m(Num) = CN

m(Char) = CC

m(Bool) = CB

m(V ar n) = CV (n)

m(L t) = CL + m(t)

m(F t1t2) = CF + m(t1) + m(t2)

m(T [t1, . . . , tn]) = CT + m(t1) + · · ·+ m(t2)
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Axiom tLHS(sec) tRHS(sec)

Eqn. 3 LHS > RHS 19.0 08.0
Eqn. 4 LHS > RHS 21.6 10.6
Eqn. 5 LHS = RHS 33.8 29.7
Eqn. 6 LHS = RHS 15.2 20.7
Eqn. 7 LHS > RHS 25.6 20.5
Eqn. 8 LHS > RHS 24.6 12.7
Eqn. 9 LHS > RHS 19.7 12.7

Table 1: Results from the validation of metrics for Miranda type expressions.

The experiment consisted of presenting a type expression to a subject who

was then requested to produce a function with that type. The function need not

produce any sensible output, merely conform to the type signature. The time was

measured from the instant the subject was shown the type expression until the

instant they completed the task. The subjects were 16 first year undergraduate

students, each answering 40 questions. Each subject was shown the same ques-

tions, but in a random order. Showing individual type expressions to the subjects

in a random order avoids the results being biased by a “learning effect”, whereby

answering one question trains the subject for a later question, resulting in reduced

time to answer the later question.

The type expressions used in the experiment were devised so that they would

fit the axioms described above. For instance, the two type expressions [char ->

bool] and char -> bool could be used to test Axiom 3.

Only those type expressions that were correctly answered were considered and

those with extreme time values2 were discarded. The average times taken to

correctly complete the type expression questions were then used to test the axioms.

The results from this experiment are shown in Table 1.

These timing results were then used to calculate coefficients, e.g. CN , to be

inserted in the metric described above. This resulted in a metric that can be used

to assess the complexity of type expressions in Miranda programs.

2Those that differ by more than three times the standard deviation from the arithmetic mean.
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Program structure is often thought to be an important aspect of good program

construction. Van den Berg derived metrics for program structure using control

flowgraphs. He then performed an experiment to determine programmers perfor-

mance on structured versus unstructured function definitions of varying sizes.

The notion of structured and unstructured used in this work was based on

Fenton’s [32] control flow work. Van den Berg classifies flowgraphs for Miranda as

structured or unstructured by the paths through the flowgraphs. A path through a

flowgraph is a sequence of consecutive nodes from the start node to the stop node.

Van den Berg defines a D-structured path as a sequence of pattern matching nodes

followed by a sequence of guard nodes, and possibly an expression node and finally

a stop node. He further defines a path that is not D-structured as X-structured.

He then classifies a function as structured if all paths through its flowgraph are

D-structured, otherwise the function is classified as unstructured.

The experiment was performed in a similar manner to the experiment de-

scribed earlier for type expressions. The following conclusions were drawn from

the experiment.

1. Subjects need significantly less time to obtain an answer to structured func-

tional definitions than to unstructured functional definitions.

2. Subjects give correct answers to somewhat larger structured functional def-

initions significantly more often than they do to unstructured definitions of

comparable size.

3. Subjects need significantly more time to obtain an answer to larger function

definitions than to smaller ones.

4. Subjects give correct answers for larger structured function definitions sig-

nificantly more often than they do for smaller ones.

The most interesting conclusion here is 4, which appears to show that subjects

in the experiment were more careful in their answers to larger problems than they

were for their answers to smaller problems. This is also suggested by conclusion
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3 which shows that the subjects spent less time answering the smaller problems

than they did for the larger problems.

2.4.3 Summary

Van den Berg concluded that it was not possible to make a general conclusion

to the question ‘Do students who learn functional programming write better pro-

grams?’ on objective grounds, particularly as there was little agreement between

experts on what constituted a readable Miranda program. However he did note

that students who learnt functional programming tended to use more functions in

imperative languages than those students who had not. No other work relating

software measurement to functional programming is known to the author.

In general there there has been little activity in the field of software engineering

for functional programming. There has been a little work on design paradigms

for functional programming by Russell [84] and Wakeling [99], but the majority

of the software engineering research has been focused on tool support, such as

support for Haskell in integrated development environments such as Eclipse [38]

and Visual Studio [65].

By far the largest body of work in the area of software engineering for func-

tional programming has been in the study of debugging and tracing tools, which

are typified by work such as that of Runciman and his co-workers [20] on trac-

ing program execution and that of Reinke [81] on visualising and animating such

traces.

Most recently, work has also been started by Li, Reinke and Thompson [60] in

the area of tool support for refactoring functional programs. The application of

software metrics to refactoring is examined in Section 2.7.

2.5 Metrics and Time

Large software projects are often developed and maintained over many years. As

such software ages it can become difficult to maintain, develop, and debug. The
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history of the development of such a system, particularly the change history as

might be contained in a revision control system such as CVS [35], can provide

interesting data about the program which may be used with metrics in several

ways. The remainder of this section is divided into the following parts.

• Section 2.5.1 examines work that measures attributes of the change history

of a program.

• Section 2.5.2 shows how the change history of a program may be used to

validate a metric.

• Section 2.5.3 summarises this section.

2.5.1 Time as a metric

In [40] Graves and his co-workers explored the effect of using the history of a

program’s development to predict where a program is likely to become unman-

ageable. They found that the change history contained more useful information

than could be obtain from a single snapshot of the program. For their work they

compared the following measures:

• Number of Past Faults. This method predicts the number of faults to be

found in a module in the future using a constant multiple of the number of

faults found over a past period of time. This provided a reasonably accurate

prediction of the number of faults and proved to be difficult to improve

upon.

• Number of Deltas. Using the number of changes to a module over its entire

history provided a better prediction of the number of faults to be found than

those measures that were generated from a single snapshot of the program

such as lines of code. This measure may be related to the Number of Past

Faults metric because there is likely to be changes, or deltas, after a fault

has been discovered. Likewise, if there are a large number of deltas then

there may be an increased probability of faults being introduced.
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• Average Code Age. Combining the average age of code within a module with

the number of deltas produced a measure which increased the accuracy of

the number of deltas method.

• Weighted Time Damp. This method computes the fault potential of a mod-

ule by adding contributions from each change made to a module such that

the larger or more recent a change is, the greater the contribution, with re-

cent large changes contributing the most. This method also incorporates a

damping mechanism to avoid transient events such as a single large change

from skewing the result.

Of all these methods, the weighted time damp metric provided the most ac-

curate prediction of the number of faults likely to occur in the future. For their

experiment a 1.5 million line subsystem of a telephone switching system was used.

The metrics described above, along with other complexity and size metrics such as

Lines Of Code, were used to predict the number of faults in the system and these

results were compared with the actual fault occurrences. The Number of Past

Faults metric was used as a benchmark against which the other methods could be

compared. From these experiments they found that the change history provides

much more useful and accurate predictions than simple metrics that are applied to

a single snapshot of the program. Particularly good correlation with the number

of faults was obtained when the data from the change history is combined with

“snapshot” metrics such as Lines Of Code. An example of such a metric is the

Weighted Time Damp measure.

2.5.2 Using time to validate metrics

Barnes and Hopkins [10] describe how they applied simple metrics such as path-

count to a software library written in Fortran and compared the results with the

bug fixing changes appearing in the change history of the library. They found that

there was a high correlation between routines which required post release mainte-

nance and routines which exhibited a high pathcount value in excess of 105. Their
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results showed that 41% of all the bug fixes occurred in routines with a pathcount

value in excess of 105, while those routines accounted for only 16% of the total

number of routines in the library. They therefore calculated that routines with

a pathcount value greater than 105 where six times more likely to contain a bug

than routines with a pathcount value of less than 105.

One hypothesis that could account for such a result is that if bugs are dis-

tributed randomly throughout the program code, and that routines with larger

pathcount values also have a larger number of lines of code, then those larger

routines would be statistically more likely to contain bugs.

This hypothesis depends on there being a correlation between the size of a

routine and its pathcount. To perform a quick test to see if there is a correlation,

we plotted a graph of pathcount values against routine size, which is shown in

Figure 5.

This graph shows that there is a trend for the pathcount values to increase with

the routine size. Further analysis showed a statistically significant correlation of

0.4334 between the pathcount values and the size of a routine, measured in lines

of code. However, this correlation is quite low, so it is still not clear if Barnes and

Hopkins results could be caused by random placement of bugs. When considering

the pathcount metric in more detail it seems clear that as a pathcount value

increases, the number of lines of code must also increase because there is a limit

to the number of execution paths that may be present in a given number of lines

of code. It therefore seems likely that the correlation between function size and

pathcount is caused by this relationship.

Because of this observation it is unclear if Barnes and Hopkins could have

achieved similar results by using function size rather than pathcount values. One

reason why pathcount may be a more discriminating predictor of faults than

function size may be that pathcount measures cover a significantly larger range of

values than the function size metric, and may therefore have a finer granularity.
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Figure 5: Plot of path count values against code size in Lines Of Code. Path
count plotted on logarithmic scale.

2.5.3 Summary

Barnes and Hopkins provide a scientific approach to the validation of metrics,

something that has sometimes been lacking in the field. Their method of using

the change history of a library to allow validation of predictions based on metric

values is an innovative use of the change history.

This section has also shown that the change history contains much useful

information about the state of a software system and that combining metrics with

software change history can make software measurement a more powerful tool.

Using change history as part of the measurement process may be relatively

simple for many large software systems because such systems often employ a

source code revision control system such as CVS, from which it is sometimes

possible to extract information automatically. However it is worth noting that this

can depend heavily upon the frequency of commits to the revision control system

and the quality of the log messages associated with them. This is discussed more

in Chapter 3.
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2.6 Measuring Software Design

Software systems are growing increasingly complex so it is essential that software

implementations are based on a good software design. This is highlighted in the

work of Mens and his co-workers [68] which also notes that improved software

development methodologies do not solve the problems of constructing complex

software because such methodologies are usually used to implement more features

within the same time frame, and so the overall complexity of the systems is not

reduced.

Because of the importance of having a good design from which to build software

systems, some researchers have begun to study how software measurement ideas

can be applied to artifacts of the design process, such as UML diagrams, in order to

assess the quality of a design. Design artifacts can be thought of as a higher-level

source code, and artifacts such as class diagrams often employ graph abstractions

that are commonly used in software metrics, so in many ways this is a natural

progression for software measurement. The rest of this section is divided into the

following parts.

• Section 2.6.1 examines measures of testability that can be applied to class

diagrams.

• Section 2.6.2 examines ways metrics can be used to improve the interfaces

provided by components of a system.

• Section 2.6.3 summarises this section.

2.6.1 Assessing testability from class diagrams

Testing of a software system can be an expensive and time consuming phase of the

software development cycle, so it is important that the system being developed is

as easy to test as possible. Ease of testability in a software system does not happen

accidentally, instead it must be designed into the system from the beginning.

The work presented by Baudry and his co-workers [12] aims to address the issue
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of designing programs that are easier to test by applying ideas from software

measurement to design artifacts such as UML class diagrams.

Class diagrams show the interdependencies or relationships between objects

in the system. These relationships may be either direct or transitive. Direct

relationships between objects A and B occur when the two objects directly interact

with each other, while transitive relationships occur when the two objects interact

via a whole sequence of direct relationships involving other objects.

However, it is important to realise that class diagrams can present only a par-

tial view of the program. There is a distinction to make between class interaction,

represented in the class diagrams, and object interaction at runtime. Class inter-

actions present in the class diagram are only potential interactions, while object

interactions are actual interactions between objects.

Using a class dependency graph as a model of the class interactions, it is

possible to detect interactions of classes that may not be obvious from the class

diagram. Additionally, the class dependency graph allows several metrics to be

defined which quantify the complexity of the class interactions. Increased com-

plexity in the interactions usually indicates increased difficulty in testing.

Having a means to measure the testing complexity of a design artifact such as

UML class diagrams allows system architects to compare evolutions of the system

design to establish the effects of changes on the testability. Such measures also

allow designers to focus their efforts in areas where testing might be difficult,

perhaps making more cost effective use of their time and reducing the cost of the

testing phases of the development cycle.

2.6.2 Factorisation and metrics

Object-oriented programming encapsulates functionality in components called

classes. Amongst the design issues inherent in constructing component based

software is the problem of ensuring components offer good interfaces for collabo-

ration, encapsulating neither too much nor too little functionality.
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The issue of determining the best generalisation and specialisation relation-

ships between components, and the factorisation that occurs when component

based systems are designed, is considered by Dao and his co-workers in [24]. Their

work presents a theoretical framework in which to assess the quality of a com-

ponent hierarchy and derives metrics that measure aspects of the factorisation of

such component based systems.

Although their framework is not detailed in this thesis, it is worth noting

that their work may be useful in refactoring where functionality might be moved

between classes to improve the public interface of components, and thus reduce

the complexity of the system as a whole. However, it is important to ensure

that moving items between classes does not adversely affect the readability of the

program, which is an issue discussed by Moore [70, 71].

2.6.3 Summary

Creating a good design is an important part of the software development process.

As such, artifacts of the design process such as UML diagrams should be consid-

ered as part of the program source, and therefore legitimate targets for software

measurement. This has only recently begun to be recognised, and this section has

presented some work that utilises this idea.

2.7 Metrics for Re-engineering

An intrinsic property of real-world software is that it evolves when new require-

ments are discovered and extra features are added. Such systems tend to become

increasingly complex as they evolve and often drift from their original design,

becoming cumbersome to maintain and difficult to extend.

The process of refactoring claims to address these issues by incrementally

improving the internal structure of the systems while preserving the external be-

haviour of the system.

A good survey of the field of refactoring is provided Mens and his co-workers
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in [68] and [69]. These papers raise several research questions, one of which is:

“How can we determine where and why refactorings should be applied?” This

seems an ideal application for software measurement.

The remainder of this section consists of the following parts.

• Section 2.7.1 shows how cohesion metrics can be used to suggest places where

refactorings might be applied.

• Section 2.7.2 describes the use of metrics for determining where refactorings

have been applied between versions of software.

• Section 2.7.3 summarises the section.

2.7.1 Cohesion metrics for refactoring

Cohesion metrics measure the degree to which separate parts of a software system,

such as classes in an OO program, interact with each other. If two classes interact

heavily they probably “belong together”. This can give a strong indication that

the two classes might benefit from moving some items, such as attributes or meth-

ods, between the classes to produce a cleaner system design and implementation.

This use of metrics is demonstrated by Simon and his co-workers in [89] which

presents four refactorings used in OO software and describes the symptoms, or

bad smells, that indicate that the refactorings should be applied. The refactorings

used in this work were:

• Move method. Move a method from class A to class B. Typically done when

the method uses, or is used by, more features of B than A.

• Move attribute. Move an attribute from class A to class B. Typically done

when the attribute is used more by B than A.

• Extract class. Extract functionality from a class and form a new class. This

is done when a class performs two or more distinct functions in the program

which should each be provided by separate classes.
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Figure 6: An illustration of visualising distance measures by Simon, Steinbrücknet
and Lewerentz.

• Inline class. Merge a class A into a class B. Typically applied when a class

is too small and does not contain much functionality, or when two classes

are intimately coupled.

Cohesion measures were used to measure “distance” between items, however

rather than simply display these distances as a list, Simon and his co-workers

produced a VRML [43] model to display this information graphically.

This graphical display, which is illustrated in Figure 6 and described in detail

in Chapter 6.4.1, shows elements such as attributes and methods in a three di-

mensional space. The class to which elements belong is shown by colour coding

the elements. As a result of using the cohesion metrics to measure the distances

between elements, elements that are strongly associated with each other will be

clustered in the visualisation.
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Ideally clusters will contain elements of the same colour, indicating that the

strongly associated elements are packaged in a single class. However, if one finds

a cluster that contains a small number of elements which are coloured differently

from the majority of the elements in that cluster, it is a good indication that those

elements might be suitable for a move refactoring.

Visualisation systems such as this offer a very clear view of the cohesion of the

design. However, its usability is limited to small numbers of classes and elements

and is not scalable because as the number of elements and classes increase the

view can very quickly become messy and unintelligible.

2.7.2 Finding refactorings via change metrics

Reverse engineering is the process of determining the design from a functioning

software system. Reverse engineering may be an integral part of the software

development process because the implementation of the system may drift from

the design, and it is important to understand why such drifts occur. One reason

for an implementation to drift from its design is that various refactorings have

been applied, such as those that move items between classes. However it is not

always clear where such refactorings have been applied, so it would be useful to

have a method of detecting where this has occurred.

One way to detect where refactorings have been applied is to use metrics. This

is examined by Demeyer and his co-workers [26]. Their system uses a combination

of change metrics on past versions of the software, and heuristics to identify parts

of the system where refactorings are likely to have occurred and, for a small subset

of refactorings, which refactorings have been applied. The refactorings that this

system detects are described below.

• Split Into or Merge With Superclass. This refactoring either separates out

some functionality of a class into a new superclass (Split Into Superclass),

or merges a class into an existing superclass (Merge With Superclass). This

is illustrated in Figure 7.
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• Split Into or Merge With Subclass. This refactoring either separates func-

tionality from a class into a new subclass (Split Into Subclass) or merges

a class into an existing subclass (Merge With Subclass). At a first glance

this seems to be the same as the previous refactoring, “Split Into or Merge

With Superclass”, but the two refactorings are subtly different in the way

they affect the inheritance hierarchy. The “Split Into Superclass” refactor-

ing creates a new superclass, while the “Split Into Subclass” creates a new

subclass. This is illustrated in Figure 8.

• Move to Other Class. This refactoring moves an item such as a method from

one class to another.

• Split Method or Factor Out Common Functionality. This refactoring will

split a method into two separate methods (Split Method) or merge common

functionality from two separate methods into a single method.

Change metrics measure attributes of changes between different versions of a

program. This work considered the following three properties of the software.

• Method Size. Measuring changes in method size may indicate the splitting

or merging methods. This work used three metrics to measure method size,

“Number of message sends in method body”, “Number of statements in

method body”, and “Lines of code in method body”. These metrics were

discussed in Section 2.3.2.

• Class Size. Changes in the size of a class may indicate a shift of function-

ality between classes. The class size was measured using the “Number of

methods”, “Number of instance variables” and “Number of class variables”

metrics. These metrics were examined in Section 2.3.3.

• Inheritance. Changes to the class inheritance is a symptom of refactorings

that optimise the class hierarchy, such as “Split Into Subclass”. Inheritance
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was measured using “Hierarchy nesting level”, “Number of immediate chil-

dren of a class”, “Number of inherited methods”, and “Number of overridden

methods”.

To validate the metric and heuristic combination a series of three case studies

were chosen. The case studies were select for the following reasons:

• Accessible. Source code of the case studies is publicly accessible, allowing

others to reproduce the results.

• Representative. Each case study is a successful system that has undergone

successive refactorings.

• Independent. Each case study was developed independently, which means

the development process used for the programs should not influence the

results.

• Documented. The features that were changed between different version of

the case study programs are documented.

The case studies showed that the combination of using change metrics and

heuristics generally focused on a small subset of the program code and reliably

indicated the refactorings. This allows a reverse engineer to examine only the

highlighted code, significantly reducing the effort of code inspection. It is im-

portant to note that this system only identifies where refactorings have already

occurred and does not attempt to indicate where refactorings might take place in

the future.

However their system does suffer from some drawbacks. The system uses

names for matching items so it is vulnerable to items being renamed, which the

system sees as separate removal and addition of items. This can lead to confusing

results, although a more sophisticated system could handle renaming better. More

problematic is that the system becomes less precise as the number of changes

between versions increases. One way to solve this is to ensure only a small number
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of changes occur between each version, for instance by committing changes to a

CVS repository frequently. This is difficult to do after the fact so it is important

to ensure this is done from the start of the development cycle. This is a recurring

need when attempting to performing empirical studies of software measurement

techniques.

2.7.3 Summary

This section has described the problems associated with software systems as they

evolve, and has presented refactoring as a method to control this evolution. Fur-

ther, it has shown work that attempts to use cohesion metrics which measure the

extent to which items in a program “belong together” to decide where refactorings

might be applied.

This section has also shown that at times it is useful to determine where

refactorings have been applied in the past, in order to determine how and where

a program has drifted from its design. Work has been presented that uses change

metrics to determine where refactorings have been applied between two versions

of a program.

2.8 Generic and Miscellaneous Metrics

In the previous sections a range of software measurement techniques have been

discussed. This section presents a few other interesting measurement systems

which do not easily fit into the classifications of those already described.

2.8.1 Predicting software scalability

Software measurement is typically used to highlight sections of program code

that may cause problems during the software development cycle, for instance by

increasing the difficulty of testing or decreasing the maintainability. However,

it may also be of interest to measure other aspects of software systems such as
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performance criteria. This issue is addressed by Weyuker and her co-workers in

[100], which presents a Performance Non-Scalability Likelihood metric which can

be used to predict the scalability of a software systems.

The Performance Non-Scalability Likelihood, or PNL, metric provides a prob-

abilistic prediction of the likelihood of a software system meeting some chosen

performance criteria under a specified workload. In order to apply the PNL met-

ric it is necessary to first produce a simplified model of the software system by

identifying the key operations, or state variables, of the system that constitute

the state of the software system to be measured. The PNL metric analysis is

performed on this simplified model.

To apply the PNL metric to the system model one must first decide upon a

performance objective. An example of a performance objective might be a max-

imum response time that would be deemed acceptable, or the minimum number

of transactions per second.

Next it is necessary to collect field usage data which describes how the sys-

tem behaves in the real world for some observed real workload. This is called

an operational distribution or an operational profile and is a probability distribu-

tion describing how the software system being studied is actually used during its

operation.

Finally, the PNL metric can be computed for the system model using the

operational distribution. The result from this analysis is a probability distribu-

tion describing the likelihood of the performance criteria being met for a given

workload.

Being able to estimate when a workload will be too high for the performance

criteria to be met can be extremely useful because it can be used to plan when

system upgrades may be necessary, or may indicate that algorithms used by the

software system might need improving.

However computing the PNL metric is not straightforward because the metric

is not “fully automated”. It requires that a model of the system is provided which

is likely to require manual analysis of the software system. More problematic is
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the necessity to collect field data. This may be difficult for large systems or poten-

tially impossible, for instance if the software system is not yet fully constructed.

Collecting a suitable amount of field data may incur significant costs although

if the process is included as an intrinsic part of the construction of the software

system these costs may be modest, while providing the potential to avoid costly

performance issues that may appear at a later date.

2.8.2 Measuring system maintainability

Studies have demonstrated that software’s characteristics, history and associated

environments are all useful in measuring the quality and maintainability of soft-

ware systems. Consequently many metrics have been designed to assess the main-

tainability of a system. One such metric is HPMAS.

HPMAS, described by Coleman and his co-workers in [22], is Hewlett Packard’s

Hierarchical Multidimensional Assessment model, a software maintainability as-

sessment system which examines three underlying attributes or dimensions of a

system:

• The control structure.

• The information structure such as the data structures and information flow.

• Typography of the source code, such as the naming of identifiers and com-

menting.

Metrics are defined to measure the characteristics of each of the dimensions and

an index of maintainability is derived for each dimension. The three dimension

scores are then combined to form the total maintainability index for the system

as a whole.

HPMAS uses a weighted deviation system such that metric values outside a

specified optimum range are penalised further, helping to highlight problem areas

in the system.
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Validation of the HPMAS model was achieved by applying the model to large

industrial systems provided by HP.

HPMAS can be used for assessing the maintainability of software systems and

allows investigation of the effects of changes to the software on its maintainability.

It is particularly useful for gauging the effectiveness of changes intended to enhance

the maintainability, where it may be useful to know the cost effectiveness of the

effort involved in such changes. In some ways HPMAS can be thought of as an

“applied” metric because it is a hybrid metric that is the result of applying atomic

metrics, such as those described elsewhere in this chapter, to real systems in long

term studies.

2.8.3 Using information theory for metrics

A common abstraction used when dealing with software systems is a graph com-

posed of nodes and edges in which nodes represent components of the system

while edges represent interactions between those components.

As has been shown in previous sections, many software metrics such as size,

length, complexity, coupling and cohesion use this abstraction when performing

their measurements. These traditional measures generally count features as if

they were all equal in the programmers mind, however information theory suggests

that repetitive patterns have low information content, and therefore have a low

cognitive load for the programmer. This suggests that using information theory as

a foundation for these metrics may yield more accurate results than the traditional

metrics.

Allen [4] suggests that mistakes in software design and implementation may be

caused by cognitive overload, which occurs when the amount of information that

the programmer must comprehend in order to make a decision is too large. Allen

presents versions of the size, length, complexity, coupling and cohesion metrics

that use information theory as a foundation. These metrics all measure the infor-

mation content of their particular attributes of a graph structure in bits, except

for the cohesion metric which provides a ratio of bits.
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Although these are interesting theoretical measures, Allen presents no evidence

of their use on actual programs and does not provide any validation of these

metrics. Instead validation of the usefulness of these measures in practice is left

to others.

2.9 Summary

This chapter has shown how, despite a somewhat turbulent start, software mea-

surement has grown to become a recognised part of the software development

process.

In the preceding sections it has been seen that there are many attributes that

one might choose to measure from software systems, whatever the programming

paradigm they are written in, or even from the design artifacts associated with

the software. These metrics, which are summarised in Table 2, can help assess

the quality of the software, can indicate parts of the program where testing will

be difficult, or may indicate where one may wish to apply refactorings.

Metrics are not limited to just measuring attributes of the source code of a

program, but may even be used to predict how well a system will scale. Such

information is invaluable for planning when systems will need to be upgraded, or

for otherwise addressing performance concerns.

As can be seen from Table 2, almost all the metrics can be applied to the

source code of a program in an automated manner. The exception to this is

the Performance Non-Scalability Likelihood (PNL) metric, which is applied to a

model of the program. The construction of a model is typically a manual task. The

metrics such as the Number of Past Faults and the Weighted Time Damp require

a change history for the program being measured as well as the source code of the

program. Typically this would be provided by a revision control system such as

CVS, which would allow the metrics to be applied without manual intervention.

A number of the metrics, such as the Callgraph Size or the Depth of Inheri-

tance, can be applied not only to the source code of a program, but also to the
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design documents such as UML diagrams. This could prove particularly useful for

assessing the architectural complexity of a program during the design phase of the

development cycle, when changes to the design can be performed with relatively

little cost.

One of the important considerations when designing software programs is to

minimise the coupling and dependencies between the various components of the

program. Experience has shown that minimising coupling makes software easier

to test and maintain. It is not surprising then that many of the metrics presented

in this chapter attempt to measure the number of dependencies and the degree

of coupling between components. This can be seen in Table 2, which shows that

nearly a third of the metrics are performing such measures.

From all this work, and the continuing work in the field, it seems clear that

metrics will play an increasingly pivotal role in software development. However,

one aspect where research into software measurement is lacking is in their ap-

plication to functional programming. Functional programming is something of a

niche in the world of software development, but is gradually emerging from the

shadows.

With the emergence of functional programming as a technology comes a ne-

cessity for more rigorous development methods. As was highlighted earlier in this

chapter, there is no widely used formalised design process for functional program-

ming as there is, for instance, with UML for OO programming. However there is

an awareness among functional programmers that techniques such as refactoring

fit very nicely into a functional context. Because of this there is a need for tools

to quantify functional programs and indicate situations where refactorings could

result in improvements to the source code.

This is an ideal application for software measurement, and so the following

chapters will study the use of software measurement in the functional program-

ming language Haskell.
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Table 2: A selection of metrics and their properties.



Chapter 3

Validation Methodology

The work in this thesis presents a number of software metrics for use with Haskell

programs. Chapter 2 described how, historically, work on software metrics has

often been lacking in rigorous validation. Because of this lack a significant portion

of this thesis is devoted to the validation and analysis of the metrics presented.

Before examining the results of this analysis it is important to understand how

the validation was performed. Therefore this chapter presents the methodology

used to perform this validation, and also describes the design and implementation

of the metrics.

To further aid in understanding what measurements are performed by the

metrics, a brief overview of the Haskell language is also provided. The chapter is

thus divided into the following parts.

• Section 3.1 provides a brief introduction to the Haskell language and its

features.

• Section 3.2 describes how the metrics and visualisation systems presented

in this thesis were designed and developed.

• Section 3.3 explains the experimental methodology used to validate the met-

rics presented in this thesis, the results of which are discussed in Chapter 4

and Chapter 5.
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3.1 A Brief Introduction to Haskell

Haskell is a standardised general purpose lazy functional programming language,

which features a sophisticated and powerful static polymorphic type system,

higher-order functions, user defined algebraic data types, a monadic I/O system,

and many other innovations. As such Haskell is the culmination of many years of

research on non-strict functional languages.

In this section the Haskell language will be described in general, but it is not

the intention to provide a comprehensive specification of the language. Such a

specification is provided by the Haskell 98 Report[80].

The rest of this section is divided into the following parts.

• Section 3.1.1 describes the general differences between imperative languages

and functional languages such as Haskell.

• Section 3.1.2 presents an overview of the syntax of a Haskell program.

3.1.1 Characteristics of Functional and Imperative Lan-

guages

The exact features that categorise a language as functional is open to debate,

but the most commonly agreed feature is that functions are treated as first class

values that can be passed around as function arguments, returned as results, and

generally manipulated in the same way as any other built in values. Contrast this

with imperative or Object-Oriented (OO) languages which only allow references

to functions to be passed, for instance function pointers in C or indirectly as col-

lections of functions encapsulated by a class which can be instantiated as objects

in Java.

Because functional languages allow functions to be passed around as values,

they also allow the construction of functions at runtime. For instance, by using

lambda expressions in Haskell.
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Typically functional languages also restrict functions to pure behaviour by dis-

allowing side effecting actions, although in some languages such as SML and LISP

this restriction is not complete. Imperative and OO languages incorporate side

effects as fundamental language behaviour using features such as global variables

and object attributes. In contrast, functional languages provide many ways to

achieve similar behaviour without the need for side effects. In a functional lan-

guage the implicit state modifications caused by side effects are rendered explicit,

helping to reduce the chances of unforeseen or unpredictable behaviour.

By enforcing the use of pure functions the functional languages are not con-

strained to a particular execution order, and so are typically non-strict. In partic-

ular it is common to use lazy evaluation strategies in which values are evaluated

“on demand”. Haskell uses a lazy evaluation scheme such that functions and

parameters are evaluated only as far as is needed for the result. The use of lazy

evaluation makes it possible to perform computation using infinite data structures.

The use of pure functions can also allow the compiler to perform extra optimi-

sation phases, such as inlining or memoization. Furthermore, pure functions can

aid in formally reasoning about program behaviour.

Functional languages also typically include a powerful type system which sup-

ports safe reusability and abstraction through features such as user defined con-

crete (or algebraic) data types, abstract data types, higher order functions and

polymorphism.

3.1.2 Haskell Syntax

The majority of this thesis uses Haskell as an example of a functional programming

language. It is therefore useful to have a broad understanding of the syntax of

Haskell.

At the top-level Haskell programs consist of a set of modules, each of which is

typically stored in a separate file. Each module normally starts with an interface

declaration, which lists the functions and data types which are exported, meaning

they are accessible from outside the module. A module interface declaration for
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a module FooBar might look like this.

module FooBar
( foo
, bar
) where

This interface declaration exports two functions foo and bar. If a module does

not include an interface declaration, like this:

module FooBar where

then everything contained within the module is externally accessible. A module

may be imported to gain access to its exported functionality. This is illustrated

in the example below, in which the FooBar module imports the Foo and Bar

modules.

module FooBar where

import Foo
import Bar

Modules contain a selection of declarations. Declarations may be functions,

data types and type classes. Only a subset of the various possible declarations

and language syntax will be described in this section, and if further details are

required the Haskell 98 Report[80] should be consulted.

Function declarations

Functions in Haskell can be thought of as consisting of two parts, a type declara-

tion and a definition. The type declaration specifies the types of the parameters

and the return type of the function, e.g. foo :: Int -> Int -> Double declares

the type of the function foo to be a function which takes two integer numbers and

returns a floating point number. The -> symbol is right associative, so for instance

the type declaration for foo could be bracketed like so: Int -> (Int -> Double).

Similarly, function application is left associative, therefore the application of foo
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could be bracketed like this: (foo 1) 2. The associativity allows for the useful

feature of partial application, which allows the creation of function values. For

instance, the value foo 1 is the partial application of foo to the value 1, and thus

results in a function of type Int -> Double.

The definition of a function involves specifying the name for the function, its

arguments, and its behaviour. This is illustrated below.

foo :: Int -> Int -> Double
foo a b = fromInteger (a + b)

Here the first argument is called a and the second b, and the behaviour on the

right hand side of the = symbol is to add them together and convert the result

into a floating point value.

This example illustrates a very basic function, but shows the general pattern

of function definition in Haskell. Further examples of function declarations are

shown and explained Chapter 4 of this thesis.

Data types

Haskell features several built-in data types, such as Int for integer numbers,

Double for floating point numbers and Char for characters. However Haskell

also allows the declaration of new data types by using the data keyword.

Data types consist of a name and one or more constructors. To illustrate this,

consider the example below.

data Shape = Rectangle Int Int | Triangle Int Int Int

This example defines a data type called Shape to hold information about a

shape, and contains two constructors, one to store information about a rectangle,

and one to likewise represent a triangle. Both constructors take arguments, in

this case indicating the lengths of the sides of the shapes.

Functions can be written to operate on such data types by matching against

the constructors, for instance in this example:
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perimeter :: Shape -> Int
perimeter (Rectangle w h) = 2 * w + 2 * h
perimeter (Triangle a b c) = a + b + c

When data types are used in multi-module programs the data types must be

exported from its containing module. This is done by including the name of the

data type in the export list of the module. For example:

module MyShapes
( Shape (..)
) where

It is important to note the use of (..) after the data type name. This causes

all the constructors of the data type to be exported from the module. However it is

usually good design practice to hide the internal representation of data structures

when writing complex programs. This can be achieved in Haskell removing the

(..) from the export list and instead adding only those constructors or functions

which one wishes to be “published”. Example 1 illustrates how an abstract shape

type might be defined.

This example allows users of the MyShape module to use the Shape data type in

their code, but they may only construct such a data type using the makeTriangle

and makeRectangle functions. Furthermore, this allows the internal representa-

tion of the Shape data type to be modified, for example if it is necessary to add

extra constructors or extra parameters to existing constructors, without affecting

users of the module.

Control structures

So far the methods of declaring functions and data types have been described, but

no mention has been made of how to perform actions within a function. In this

section the various control structures available within Haskell will be described.

Control structures in Haskell do not contain loop constructs, such as the

“while” and “for” loops that are common in imperative languages to sequence
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module MyShapes ( Shape
, makeTriangle , makeRectangle
, isTriangle , isRectangle
, rectWidth , rectHeight
, triSideA , triSideB , triSideC
) where

data Shape = Rectangle Int Int | Triangle Int Int Int

makeTriangle :: Int -> Int -> Int -> Shape
makeTriangle a b c = Triangle a b c

makeRectangle :: Int -> Int -> Shape
makeRectangle w h = Rectangle w h

isTriangle :: Shape -> Bool
isTriangle (Triangle a b c) = True
isTriangle (Rectangle w h) = False

isRectangle :: Shape -> Bool
isRectangle (Rectangle w h) = True
isRectangle (Triangle a b c) = False

rectWidth :: Shape -> Int
rectWidth (Rectangle w h) = w
rectWidth (Triangle a b c) = fail "Not a Rectangle"

rectHeight :: Shape -> Int
rectHeight (Rectangle w h) = h
rectHeight (Triangle a b c) = fail "Not a Rectangle"

triSideA :: Shape -> Int
triSideA (Triangle a b c) = a
triSideA (Rectangle w h) = fail "Not a Triangle"

triSideB :: Shape -> Int
triSideB (Triangle a b c) = b
triSideB (Rectangle w h) = fail "Not a Triangle"

triSideC :: Shape -> Int
triSideC (Triangle a b c) = c
triSideC (Rectangle w h) = fail "Not a Triangle"

Example 1: An example of an abstract data type
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or repeat groups of commands. Instead controlled looping is performed using re-

cursion, which in many cases of “tail recursion” the compiler can optimise into

loops.

Instead, control structures in Haskell consist only of mechanisms for branching

execution. There are four basic branching mechanisms, pattern matching, guards,

case expressions and if-then-else.

Pattern matching. Pattern matching has two purposes. Firstly it allows a

function to provide alternative actions for different inputs by using patterns in

place of argument names in the declaration, and secondly it provides for selecting

parts of the input. For instance, consider the following trivial examples.

isZero :: Int -> Bool
isZero 0 = True
isZero a = False

rectangleWidth :: Shape -> Int
rectangleWidth (Rectangle w _) = w

The isZero function of this example illustrates the use of pattern matching

to provide alternative actions. If the function is passed a zero then the first line

will be executed, otherwise the second line will be evaluated.

The rectangleWidth function illustrates the use of pattern matching. It ex-

tracts only the width field of the record. The _ character is a wildcard and is used

as a place holder for the height field which is not used in this function. A pattern

match can contain multiple wildcards.

Patterns are explored in more detail in Section 4.1 of Chapter 4. It is important

to note the limitation of patterns, in that they are essentially “static” branches,

and cannot perform dynamic branching. For example, it is not possible to use

pattern matching to perform an action if one argument is greater than another.

Such dynamic checks need a different form of branching, such as guards.

Guards. Guards, like pattern matching, allow selective evaluation of parts of

a function definition, but unlike pattern matching, allow dynamic checks. For
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instance, consider this function.

largest :: Int -> Int -> Int
largest a b | b > a = b

| otherwise = a

This example features two guards, the first tests for the situation where b is

greater than a, while the second guard, otherwise, is a “default” or “catch-all”

guard. Guards are tested in the order they are written, and Haskell allows as

many guards as one wishes. It is not necessary to end with an otherwise guard,

although it is good coding practice to do so. Guards are discussed in more detail

in Section 4.5.1 of Chapter 4.

Case expressions. Case expressions perform an analogous task to pattern

matching, but are allowed on the right hand side of a function definition or as

part of a larger expression. Thus case expressions are for expressions what pattern

matching is for function definitions. For instance, consider the following example.

isZero :: Int -> Bool
isZero a = case a of

0 -> True
b -> False

This example shows a straightforward use of case at the top level of a function

definition to match against zero, or any number and return the appropriate value.

Case expressions can also be used as part of a larger expression, for instance

consider the following function.

shapeToString :: Shape -> String
shapeToString s =
"A " ++ (case s of

Rectangle w h -> "Rectangle"
Triangle a b c -> "Triangle")

++ " shape"

This example will generate a string such as “A Triangle shape”, depending on

the given input, and demonstrates how case expressions can be used as part of a

larger expression, in this case part of a larger string concatenation (++) expression.
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If-then-else. Just as case expressions provide a mechanism to use pattern match-

ing within an expression, Haskell also provides a mechanism to use guard-like

functionality within expressions by using if-then-else statements. An example

is illustrated below.

largest :: Int -> Int -> Int
largest a b = if a > b then a else b

Similarly, as with case expressions, if-then-else constructs can be used as

part of a larger expression. For instance in this example.

printEvenOdd :: Int -> String
printEvenOdd n =
"n is an " ++ (if n ‘mod‘ 2 == 0 then "even" else "odd") ++ " number"

The control structures presented in this section may also be used in any com-

bination, as is illustrated in the contrived example below.

longestSide :: Shape -> Int
longestSide :: Shape -> Int
longestSide (Triangle a b c)
| a >= c = if a >= b then a else b
| b >= c = b
| otherwise = c

longestSide (Rectangle w h) = if w > h then w else h

Summary

This section has presented a brief overview of some of the top-level syntax of

the Haskell functional programming language. This introduction is intended only

to familiarise the reader with some basic constructs of the language, and where

necessary this thesis will expand on this introduction. Further information about

Haskell may be obtained from the Haskell website, http://www.haskell.org/,

the Haskell language report[80], or from several introductory texts on functional

programming using Haskell, such as [94] or [46]. A detailed formal definition of

the Haskell language and syntax can be obtained from the Haskell 98 Language

report[80].
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3.2 Implementing the Metrics: Medina

The work presented in this thesis studies a selection of software metrics and visu-

alisation techniques for use on Haskell programs. The metrics and visualisation

systems used in this study were implemented especially for use on Haskell as a

library called Medina. The library is written in Haskell and is designed to be

extensible, reusable and generic. The design and implementation of the Medina

library is an integral part of the work presented in this thesis, so it is therefore

described in detail in the following sections.

Medina is implemented using Haskell 98 and the multi-parameter type class

extension supported by GHC [66], and consists of a library of functions and associ-

ated data types to assist programmers in writing their own metrics or visualisation

systems. The Medina library can be loosely divided into two groups of functions,

those for implementing metrics and those for implementing visualisation systems,

which share a common base consisting of a parser and various data structures to

represent Haskell programs.

To aid in extending and testing the library, a selection of example metrics and

visualisation systems is included. The example metrics supplied with Medina are

those that were used to perform the studies presented in Chapters 4 and 5 of

this thesis. The example visualisation programs supplied with Medina are those

described in Chapter 7 of this thesis.

The metrics support in Medina includes the following systems and the overall

architecture of the system is illustrated in Figure 9.

• Parser.

• Transformations that can be performed on various representations of ab-

stract syntax trees.

• Generic abstract syntax tree traversal routines.

• Support for temporal operations, such as applying a metric to every version

of a program, using CVS.
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Example Metrics

Syntax Tree
Representations Syntax

Tree
Traversals

Temporal
Operations

Import Chasing

Parser

Pre-processing

Figure 9: A block diagram of the Medina library metrics sub-system.

• Import chasing and processing of literal scripts.

The visualisation support includes the following systems and is illustrated in

Figure 10.

• Basic functions for building GUI for OpenGL[16, 85] and SVG[30] output

formats.

• An interface to GraphViz[31] for performing graph layout.

• Basic support for generating HTML.

• Basic support for generating GIF format images.

The Medina library consists of 99 modules, which in total contain approx-

imately 30,000 lines of Haskell source code, including comments and Haddock

documentation. The division of lines of code between the modules is summarised

in Table 3.

The remainder of this chapter presents the design and structure of the library

in greater detail and discusses how the library may be extended by a user. Finally,

the chapter explains several directions in which the functionality of the Medina

library could be enhanced.



CHAPTER 3. VALIDATION METHODOLOGY 73

Example Visualisations

HTML
Output

GIF
Output

OpenGL
GUI

Support

SVG
GUI

Support

GraphViz
Graph
Layout

Figure 10: A block diagram of the Medina library visualisation sub-system.

Component Approximate LOC

Front-end (parser and lexer) 8000
Data structures for representing programs 4500
Temporal operations (CVS integration) 800
Largest metric 650
Smallest metric 35
All metrics 6000
Visualisation systems 10000

Total lines of code 30000

Table 3: A summary of the number of lines of code in the Medina library.
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Figure 11: A simplified diagram of the Medina library module structure.

3.2.1 Medina Design

The Medina library consists of two loosely coupled halves, containing the metrics

and the visualisation systems. The design of these two halves and the points

of coupling between them are discussed in the following sections. A simplified

overview of the module structure of the Medina library is provided in Figure 11.

Medina Metrics

The metrics half of the library consists of a “front-end” for the Haskell language,

abstractions for traversing and manipulating abstract syntax trees, and alternative

representations of Haskell programs, provided as alternatives to abstract syntax

trees. Each of these components is described in detail now.

A Front-end for Haskell The “front-end” of the Medina library consists of

three phases. The first phase performs “unlitting”, turning literal Haskell scripts

(.lhs) into non-literate Haskell programs (.hs). The second and third phases are

lexing and parsing respectively.

Medina provides two ways of performing unlitting. One method uses a pure

Haskell 98 function to perform unlitting of a string containing the source code

of the Haskell program. This method is completely portable and requires no
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external support programs. However, this pure function does not support the use

of preprocessor directives, such as CPP, embedded in Haskell programs, although

in principal this could be added given further engineering effort.

Haskell compilers typically have some support for passing such programs through

the appropriate preprocessor to expand these directives. Because this is common

behaviour, the Medina library provides an alternative method of performing un-

litting which requires the presence of GHC. This alternative method invokes GHC

to perform the unlitting and removal of preprocessor directives, reading back the

resulting output Haskell source code via a UNIX pipe. This method has the

advantage of removing preprocessor directives, but requires the work to be per-

formed within the IO monad and depends upon the presence of GHC on the user’s

system.

The parser and lexer used in Medina are based on those from Haddock[64],

the Haskell documentation tool, and they provide syntactic support for various

GHC extensions to the Haskell 98 specification. The parser and lexer are largely

unchanged from those in Haddock, with the only modification performed being to

make the data types used by the parser to represent the abstract syntax tree into

abstract data types. Making the data structures abstract reduces the coupling

between the front-end and the rest of the library, which may allow the library to

use a different lexer and parser in the future, such as that from GHC, without

affecting programs that use the Medina library.

Abstractions for traversing abstract syntax trees Writing metrics typ-

ically requires traversing the abstract syntax tree of a program. This can be

a tedious task, so the Medina library attempts to provide some mechanisms to

reduce this burden.

Medina does not contain a true generic programming system, such as Strafunski[58],

but instead provides a collection of utility functions to perform common tasks,

such as:

• Grouping all the bindings in a program by identifier.
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FnDecl foo

Param a Param b

Var a Var b

FnApp >

Lit 2

FnApp *

Var a
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Lit 2

FnApp ==

Lit 0

Paren ()

Paren ()

FnApp &&

Paren ()

FunRHS

Figure 12: An example of a ParseTree data structure.

• Extracting a particular identifier from an abstract syntax tree.

• Selecting specific types of nodes from the abstract syntax tree.

Program representations in the Medina library Because the abstract syn-

tax tree of a Haskell program is somewhat cumbersome to analyse, the Medina

library provides a number of alternative representations which may prove easier to

use than the raw abstract syntax tree. The various representations of the abstract

syntax tree are described below.

• ParseTree is the basic abstract data structure generated by the parser and

is the basis for all the other representations. The data structure forms a tree

that mirrors the lexical structure of the program. For example, the structure

for the function definition foo a b = (a > b) && ((2*a) ‘mod‘ 2 == 0)

is shown in Figure 12.

• BaseAbstractSyntax is a concrete version of the ParseTree data structures
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in which every node contains a field for storing meta data about the node.

The meta data can be arbitrary, but every node must have the same type

meta data. Meta data is useful for tasks such as holding intermediate values

of metrics, or holding final metric values to be passed on to a pretty printer

for colour coding in a visualisation.

Each node of the structure is also labelled with a unique identifier. These

identifiers are attached by performing a depth-first traversal of the structure,

during which every node of the structure is stamped with a unique integer.

These unique identifiers do not convey information about the program be-

ing represented, such as binding or usage information, but are instead used

only as references into the abstract syntax tree data structure. This allows

for nodes to be extracted from the abstract syntax tree, processed, then

inserted back into the tree. Functions are provided to perform this merg-

ing process. This can be useful when one of the other representations is

used to generate a value which one wishes to be stored in the meta data

of the BaseAbstractSyntax. For instance, one might use a more abstract

representation such as an IdentMap (described in detail below) to calculate

a metric value, but store the results as meta data in order to pass them to

a pretty printer.

To illustrate the structure of a BaseAbstractSyntax data type, Figure 13

shows the BaseAbstractSyntax representation of the example ParseTree

structure shown in Figure 12.

• RawTaggedBindingList represents a Haskell program as a list of the func-

tion and pattern bindings in the program source code. Each binding is

represented by its abstract syntax. RawTaggedBindingList structures are

generated from a BaseAbstractSyntax, and may be merged back into the

source BaseAbstractSyntax. This is a useful abstraction because it is of-

ten necessary to examine only the bindings in a program in order to per-

form a measurement, ignoring all the type and data declarations. Figure
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FnDecl foo1 MD

Param a2 MD Param b3 MD FunRHS4 MD

FnApp &&5 MD

Paren ()10 MD

FnApp ==11 MD

Lit 018 MD

Lit 217 MDParen ()13 MD

FnApp *14 MD

Var a16 MDLit 215 MD

FnApp `mod`12 MD

Paren ()6 MD

FnApp >7 MD

Var b9 MDVar a8 MD

Figure 13: An example of a BaseAbstractSyntax data structure.

FnDecl foo1 MD

Param a2 MD Param b3 MD FunRHS4 MD

FnDecl bar19 MD

Param a20 MD FunRHS21 MD

RawTaggedBindingList [ ]

Figure 14: An example of a RawTaggedBindingList data structure. Some nodes
are not included in this diagram in order to clarify the structure.
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14 illustrates a RawTaggedBindingList structure for the following example

program.

foo :: Int -> Int -> Bool
foo a b = (a > b) && ((2*a) ‘mod‘ 2 == 0)

bar :: Int -> Int
bar a = a * a

• IdentMap is similar to the RawTaggedBindingList. It represents a Haskell

program as a finite map from fully qualified identifiers to the corresponding

abstract syntax tree nodes. Thus for every fully qualified identifier there

is a list of AST nodes representing the elements of the identifier defini-

tion, such as its type signature and its bindings. This differs from the

RawTaggedBindingList in two ways. Firstly it includes all elements that

have an identifier, including type and data declarations, which are not in-

cluded in a RawTaggedBindingList. Secondly, the IdentMap is a mapping

from identifiers to abstract syntax, rather than a simple list of abstract syn-

tax elements. This frees the metric writer from having to extract identifier

names themselves, and also provides simpler mechanisms for applying met-

rics by using the standard operators on finite maps, such as mapFM. Figure

15 illustrates the IdentMap structure for the example program previously

used to illustrate the RawTaggedBindingList structure in Figure 14.

• ModuleImportGraph represents the import hierarchy of a program as a di-

rected graph with edges indicating import statements and nodes representing

modules. Nodes in the ModuleImportGraph contain the ParseTree of the

corresponding module, if it is available. The syntax might not be available

because although Medina may know a module exists, due to an import state-

ment that references the module, it may not know where to find its source

code, for instance, the module may be part of a binary library shipped with

a compiler. Figure 16 shows an example of a ModuleImportGraph structure

for the program in Example 2.
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FnDecl foo1

Param a2 Param b3 FunRHS4

FnDecl bar19

Param a20 FunRHS21

IdentMap
foo

foo.b
bar

bar.a

foo.a

Figure 15: An example of an IdentMap data structure. Some nodes are not
included in this diagram in order to clarify the structure.

module Bang where
bang :: Int -> Bool
bang a = a*a > 25

module Bar where
import Bang
bar :: Int -> Int -> Int
bar a b | bang a = a

| otherwise = b

module Foo where
import Bar
import Bang
foo :: Int -> Int -> Int
foo a b | bang b = b

| otherwise = foobar a b

foobar :: Int -> Int -> Int
foobar a b = bar (a+b) (a*b)

Example 2: An example of a multi-module program.
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Bar
FnDecl bar

Param a

Param b

FunRHS

Bang FnDecl bang

Param a FunRHS

Foo FnDecl foo

Param a

Param b

FunRHS

FnDecl foobar

Figure 16: An example of a ModuleImportGraph structure for the program in
Example 2. Some parse tree nodes are hidden for clarity.

Foo.foo

Bar.barBang.bang

inter-module

inter-module

Foo.foobarintra-module

inter-module

Figure 17: An example of a CallGraph structure for the program in Example 2.

• CallGraph represents the callgraph of a Haskell program as a directed graph.

Nodes of the graph are marked with their fully qualified identifier, while

edges are marked with their type, e.g. whether they are calling an identifier

in the same module (intra-module), in another module (inter-module), or if

the callee has not yet been processed (unresolved). The CallGraph structure

of the program in Example 2 is illustrated in Figure 17.

• TotalCallGraph is a conglomeration of ModuleImportGraph and CallGraph.

It represents Haskell programs as a directed graph in which nodes represent

modules and edges represent import statements. The nodes of the graph,
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Figure 18: An example of a TotalCallGraph structure for the program in Ex-
ample 2.

have the CallGraph structures of the corresponding module attached to

them. Because TotalCallGraph is related to CallGraph, functions are also

provided to convert a TotalCallGraph into a CallGraph. The TotalCallGraph

structure for the program in Example 2 is illustrated in Figure 18.

The Medina library also includes a number of utility functions for convert-

ing between the various program representations described above. For instance,

functions are provided to generate a Callgraph from a list of file names or

ParseTree’s, or for generating a IdentMap from a ParseTree.

The example metric programs provided with the Medina library all use one

or more of these abstractions, and the provision of the abstractions does make

implementing metrics easier. One area that still requires some work is in additional

support for traversing these various representations, such as by using a generic

programming library like Strafunski[58].

Temporal operations using CVS To aid the work presented in this thesis,

support was added to Medina to perform temporal operations such as applying

a metric to every version of a program between two given dates. This support is
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provided by an interface to CVS, a commonly used version control system.

CVS allows a user to record all versions of the source code of a program and

at a later date retrieve specified versions. Medina includes a low-level interface

to CVS which provides Haskell equivalents of all the CVS operations, as well as

a higher level interface intended to be used by users of the Medina library. This

higher level interface provides operations for mapping metrics over ranges of dates

or version numbers of software in the CVS repository.

Medina Visualisation

The visualisation systems in the Medina library are designed to be modular and

reusable. This allows the various visualisation components to be reused as part

of more complex visualisation systems. Most of the visualisation systems are

decoupled from the metrics and the abstract syntax tree, and instead use some

form of generic input description. This allows the visualisation systems to be used

with a wider range of inputs, which may extend beyond program visualisation.

However, currently both the visualisation systems and metrics are combined into

a single library image and are thus linked together at compile time. In future the

library will be further decoupled, such that the visualisation and metrics systems

are contained in separate library images, allowing the visualisation systems to be

used without requiring the metric systems to be linked into the final executable.

The visualisation systems currently use HOpenGL to provide the user inter-

face. Each visualisation component is designed to render its display into a separate

panel, which allows the various components to be used together, in particular it

allows components to be embedded within other components. The available com-

ponents can be divided into two groups:

• GUI support, such as scrollbars, buttons, and menus.

• Basic visualisation components, from which more complicated visualisation

systems can be built.
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Figure 19: An overview of the structure of the basic Medina visualisation com-
ponents.

The GUI support components are not discussed further in this work because

they are likely to be familiar to most readers who have used GUI programs in op-

erating systems such as Mac OS or Windows. The basic visualisation components

are more interesting and are therefore described in more detail in the following

section.

Basic visualisation components All of the visualisation components provided

by the Medina library are built from a few basic components. These basic compo-

nents can be combined in many ways to form more complex visualisation systems,

such as those described in Chapters 6 and 7 of this thesis.

The Medina library provides the following basic components which are illus-

trated in Figure 19.

• Haskell pretty printer. This provides a mechanism for turning abstract syn-

tax trees into text representations of the source Haskell program. The cur-

rent pretty printer is quite basic so therefore the pretty printed Haskell

program does not always look like the source Haskell program. However,

if the abstract syntax tree and token stream contain enough information it
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would be possible to replace the existing pretty printer with a more sophis-

ticated pretty printer that can preserve the layout of the Haskell program,

such as that used by the HaRe[60] tool.

The Medina pretty printer has support for encoding colour information in

the textual output, enabling metric values embedded in the abstract syntax

tree to be used for colour coding parts of the pretty printed source.

The output of the pretty printer can be passed directly to other visualisation

components such as the text renderer or the pixel representation, both of

which are described below.

• Text renderer. The text rendering system in the Medina library allows

abstract descriptions of textual content to be display in a GUI component.

The abstract description used as input to the text renderer represents text

as blocks of characters which share common attributes. Currently the only

supported attribute is colour, but it would be possible to add other attributes

such as font information, character styles such as bold and italic, or font size

information. The blocks of characters can include line breaks.

The interface to the text renderer is overloaded such that there are vari-

ous implementations that can be used via a common interface. Different

implementations generate different output formats. Medina provides text

renderers for generating output to plain ASCII text files, HTML files, GIF

images, to the screen as a GUI component, and as a pixel representation.

Pixel representations are described below.

• Pixel representation. The pixel representation is a specialised implementa-

tion of the text renderer interface, described previously. Pixel representa-

tions are described in detail in Section 6.1.1 of Chapter 6 and in Section

7.1.1 of Chapter 7 of this thesis, but are briefly introduced here. Pixel rep-

resentations display characters as a solid area of colour, typically one pixel

square, rather than displaying the character glyph. The result of rendering



CHAPTER 3. VALIDATION METHODOLOGY 86

text using a pixel representation is to dramatically reduce the amount of

space used by the rendered text, while still preserving its shape.

Pixel representations are often used to form the backdrop of a scroll bar, or

to give an overview of a data set.

• Graph display. The Medina library provides a component for displaying

directed graphs. The component uses a static layout in which the nodes

and edges are positioned at the time the component is created and are fixed

thereafter. A dynamic layout would allow user interaction to move the nodes

and edges from their initial positions, however this is not supported yet. The

Medina graph display component provides facilities for zooming in and out

of the graph, and for scrolling around the graph.

The graph display component allows the library user to control many aspects

of the graph display by providing callback functions. Callback functions can

be passed to the component to change how the edges and nodes are drawn,

e.g. to have dashed lines instead of solid. The graph display component

also allows callback functions to be attached to various GUI events, such as

the user positioning the mouse cursor over an edge or node, or clicking on

and edge or node, and other similar events. These are used to good effect in

the Haskell module browser described in Section 7.1.3 of Chapter 7 of this

thesis.

Example programs The Medina system includes a small selection of exam-

ples programs which demonstrate how the visualisation components in the library

should be used, and which were also used for the work presented in Chapter 7 of

this thesis.

These example visualisation programs currently use a fixed, hard-coded choice

of metric to be visualised. It is only possible to select a different metric in these

programs by editing the source code and re-compiling them.

However, these programs are intended only as example and proof-of-concept
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implementations, and as such the Medina library supports the implementation

of more realistic visualisation tools which, for instance, might allow the user to

select at runtime which metric to use for the visualisation, or to dynamically

switch between metrics as the visualisation is running, or even to display multiple

metrics and visualisations simultaneously.

Coupling between metrics and visualisation

Although the metrics and visualisation parts of the Medina library are largely

decoupled, there are a few points where the two parts are coupled.

The visualisation components take a generic input description and therefore

do not depend on the metrics part of the library. Equally the metrics part of the

library does not depend upon the visualisation part.

However, there are routines provided to convert metric data and abstract syn-

tax tree representations into the generic descriptions that the visualisation com-

ponents require. These conversion routines therefore cause coupling between the

two halves of the library.

Furthermore, there are some utility modules that are shared between the two

halves, such as some utilities for performing IO actions. These modules add further

coupling between the two halves.

Therefore the overall structure of the Medina library is a diamond shape, with

a shared base, two distinct sides, and then a top which enables the two sides to

be used together. This structure is illustrated in Figure 20.

3.2.2 Extending Medina

The original goal of the Medina library was to enable users to build their own

metrics using the metrics and tools built into the library. Currently this can be

achieved by using the various abstract syntax tree representations to select the

parts of a program that are to be measured, and then by writing functions to

measure the required attributes. This is further eased by the provision of a small
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Figure 20: An overview of the design structure of the Medina library. Numbers
in brackets indicate approximate code size.

selection of type classes and functions which provide for a limited form of generic

traversal of the raw syntax trees. For instance, a function selectPT is provided to

allow selection of specific nodes from a parse tree, such as in the following example

that extracts all pattern nodes from a tree:

isPat PatNode = True
isPat _ = False

selectPT isPat parsetree

Inevitably however, this mechanism still requires the programmer to have fairly

detailed knowledge of the abstract syntax tree of a Haskell program and may

also require, depending on the complexity of the metric being implemented, a

significant amount of tedious boilerplate code to be written.

Therefore, the Medina library does make steps towards its original goal of

making it easier for programmers to implement their own metrics. However im-

provements can be made in this area, for instance by adding support for more

powerful generic programming techniques using a library such as Strafunski[58].

3.2.3 Future Expansion

The Medina library presented with this thesis is a first version of a toolkit for im-

plementing software metrics and visualisation systems for Haskell programs. This
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first version has shown that there are a number of areas of the library which could

be improved. These can largely be split into two areas, engineering improvements

and integration with other systems, which will be discussed separately.

Engineering Improvements

The engineering improvements that could be made to the Medina library focus

largely upon the usability of the library. Usability includes both usability for

potential tool writers, implementing tools that use the library, and the usability

for the end-user of such tools.

To increase the usability for tool writers, there are a number of changes that

could be made. The most useful change would be to use a real generic program-

ming library, such as Strafunski[58], to implement the abstract syntax traversal

functions. This would not only result in a reduction in the size of the Medina li-

brary, but would also relieve tool writers from having to write as much boilerplate

code for performing their metric analysis. The benefits of Strafunski for this type

of work have already been demonstrated by HaRe, the Haskell refactoring tool.

A further change that may benefit tool writers is to divide the Medina library

into two halves, one for the metrics functionality and the other for the visualisa-

tion systems. Such a division would have several benefits. Firstly, the API of the

library is likely to be cleaner and simpler, allowing tool writers to examine only

the documentation they need for their particular type of tool, be it visualisation

or metric. Further more, such a division reduces the dependencies of metric tools,

which would otherwise have dependencies on GUI libraries which would not ac-

tually be required. Reducing dependencies in software is important to make use

of such tools easier.

The usability of the library for end users is mainly limited by the graphical

interface library used for displaying the visualisations. Currently Medina uses the

HOpenGL library, which offers no support for providing native look and feel for

applications. The emerging standard GUI library for Haskell programs appears
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to be wxHaskell, a binding to the cross-platform wxWidgets library. The wx-

Haskell library provides native look and feel across platforms, and so porting the

visualisation systems to wxHaskell may significantly improve the usability of the

visualisations.

However, such a port may not be simple. Some of the visualisation systems,

most notably the callgraph visualisations, require careful optimisation to obtain

acceptable user interface responsiveness when displaying complex programs. This

is possible in HOpenGL due to the low-level nature of the library, but there is

a danger that using a higher level user interface might reduce the opportunities

for such optimisations. The optimisations performed by the Medina library are

described in detail later in Section 7.2.4 of Chapter 7.

Integration with Other Systems

As well as the engineering enhancements described in the previous section, there

are a number of directions in which Medina could be improved by integration with

other tools that perform related tasks.

One such tool is HaRe [60], a tool for performing refactoring of Haskell pro-

grams. As has been described in Section 1.2 of Chapter 1 of this thesis, metrics

can be used to indicate where a refactoring should be performed. Because of this

it seems logical to integrate HaRe and Medina in some way. HaRe provides both

a tool for performing refactorings, and an API for implementing refactorings and

other such program analysis tools. One way to integrate Medina with HaRe would

be to either combine their APIs, or port Medina to use the HaRe API. This may

make it easier to implement tools such as visualisers to help a programmer find

locations where they may wish to apply refactorings.

Further work could also investigate ways of combining the Medina library with

tools such as QuickCheck [21] to help target testing effort, or Hat [20] to drive the

process of tracing and debugging.
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3.3 Experimental Methodology

The great promise of software metrics is that they may provide a concrete method

to quantify the “quality” of software, and therefore the likelihood of defects ap-

pearing in particular sections of program code. However there has been little

rigorous work to verify that software metrics can deliver on this promise. Barnes

and Hopkins [10] attempted to provide some much needed rigorous analysis of

software metrics by analysing the evolution of a large library of numerical rou-

tines written in Fortran through a series of releases. They measured pathcount

metric values for each routine in the library, in each release, and counted the

number of defects over the lifetime of the library. Their statistical analysis of

this data showed some encouraging signs, as it produced a statistically significant

correlation between the pathcount values and the number of defects found over

the system evolution.

While Barnes and Hopkins’ work concentrated on a Fortran library, their ap-

proach is equally well applicable to programs written in any programming lan-

guage and therefore seems a good model in which to validate the metrics for

functional program that are presented in this thesis. For this to be a useful exer-

cise it was necessary to find a Haskell program that had a comprehensive change

history, such as that available for any project stored in some form of version con-

trol software such as CVS [35], and which was also of a large enough size to allow

some achievable (statistically significant) confidence in any statistical analysis.

There are two approaches to finding a suitable program to use as a case

study. The first method is to find a real-world program from a source such as

the haskell.org CVS repository. Such a program would have the advantage of

being a true reflection of the use of Haskell. However it is necessary that changes

to the program are committed to the repository regularly, and that bug fixing

changes in particular are committed individually, in order to be able to reliably

separate out such changes for analysis.

The alternative approach to finding a suitable case study program is to write
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a program of our own specifically to use as a case study. This has the advantage

of allowing complete control of how changes in the program are logged, but may

run the risk of being too small to have any statistically significant confidence in

the statistical analysis. For the work presented in this thesis we adopted both

approaches, which are now described in more detail.

3.3.1 First Attempt: Happy

The original intention was to take a real-world Haskell program and analyse its

change history and its metric values. To be sure of a comprehensive change history

the program needed to be managed by some form of version control system, such

as CVS. Several programs from the haskell.org CVS repository were examined

and “Happy”, a parser generator similar to yacc, was chosen. Happy was chosen

because it appeared to contain a change history that spanned several releases,

consisted of approximately 5500 lines of code and so was large enough to have

some confidence of meaningful statistical analysis, and yet was small enough for

the code to be able to manually inspected. Manual inspection of the code is

necessary when the purpose of a change to the code is not clearly marked as

either a bug fix or the addition of a feature, and must therefore be determined

manually.

The first task was to determine how many changes each function of the pro-

gram had undergone during the program’s lifetime and to classify each change

as either fixing a defect, adding a feature, or refactoring the code. To do this it

was necessary to look at the change history of the program and determine where

each change occurred and what the change was doing. It was hoped that the log

messages that are added to each change in the CVS repository would enable the

changes to be classified. Sadly this proved not to be the case because there would

often be several changes committed with a single log message that covered both

a defect fixing change and a separate feature addition change.

Because of this it was necessary to manually view and classify each of the

changes to determine where and when the various types of changes occurred, a
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long and tedious task. The result of this was a count of the number of bug fixes

for each function in Happy.

However this showed that there were only a small number of bug fixing changes

occurring during the lifetime of the program. Out of approximately 250 functions

there were only 25 bug fixes, occurring in just 14 functions, with one function

containing 12 of those bug fixes!.

There are several reasons why there might be so few bug fixes appearing in

the code. The code may be well written and therefore relatively defect free, or

bug fix changes may have been missed or mis-classified as feature additions when

manually reviewing the change history. The granularity of commits may also affect

the number of bug fix changes that were found. For instance, a bug fix change

may have been made but not committed to CVS, and then a feature addition may

have overwritten the bug fix change before being committed to CVS. This would

would mean the bug fix change was never committed to CVS, and therefore never

seen in our analysis.

Alternatively, Happy has undergone some relatively large changes that were

implementing additional features during its lifetime. There are several such changes

and it is possible that these changes are hiding underlying bug fixes, e.g. Function

X contains a defect, but that defect was “fixed” when function X was changed to

add feature Y.

Because of the extent of the feature changes it was deemed that Happy did not

provide a good test case for the statistical work and this test case was abandoned.

3.3.2 Second Attempt: Peg Solitaire

After reflecting on the first attempt at a case study it was decided that a program

would be specifically written for the case study. This decision was reached partly

because of the effort involved in classifying changes in an unknown program and

partly because a research project was starting at Kent to look at refactoring of

functional programs [60]. One of the first tasks of that project was to write

a program that the project team could use to familiarise themselves with the
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Module Min Size (LOC) Max Size (LOC) Changes

Board 86 220 9
Main 25 27 38
Solve 39 101 7
Stack 26 31 0
GPegSolitaire 228 350 78
TPegSolitaire 98 177 16

Totals: 502 906 148

Table 4: Information about the Peg Solitaire case study program. Note: The
total sizes are approximate figures only, due to individual modules change sizes
at different times during the evolution of the program.

Haskell language and which later could be used as a case study. It was felt that

this metrics work could use the Refactoring group’s program. Their case study

program was an ideal program for our own use because we had no input to the

development of this program, other than to request a fine grained CVS commit

policy which resulted in bug fixing changes being clearly marked.

The program used for the case study was an implementation of a peg solitaire

game. The game includes both a textual and a graphical interface with which

to play the game. The program consists of six modules and went through 41

revisions during its lifetime. Some details of the number of changes occurring in

each module are presented in Table 4.

No reference is made to which file modules occur in because this sometimes

changed during the history of the program. An example of this is where Main

moved from the file TPegSolitaire.hs to its own file, Main.hs. Because of

this it was decided that changes should be assigned to the module they occurred

in rather than the file. This makes it easier to track metric values over time

because we can ignore which file a module has been loaded from. It is also worth

noting that not all the modules necessarily existed at the same point in time. For

instance, later versions of the program did not contain the Solve module, while

earlier versions did not contain the GPegSolitare module.

To calculate the number of changes occurring in each module the source code
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for the program was manually inspected using TkCVS [95], a graphical interface

to the CVS revision control system. TkCVS provides an easy way to view the

differences between two versions of a source file using a visual difference tool,

and using this we classified each change throughout the program as either a bug

fix, a feature addition, or a refactoring change. There were relatively few bug

fix changes but a reasonable number of refactoring changes, some of which may

also have included bug fixes. For the purpose of exploring metric values, the

number of bug fix and refactoring changes were combined because both types of

changes indicate reasons for closer examination of the relevant sections of code,

for instance refactoring changes can be thought of as fixing bugs in the design of

a program. Therefore this examination of metrics is evaluating the correlation of

metric values with the number of “fixing” changes, where a fixing change may be

either a bug fix or a refactoring.

The case study was run by applying metrics to each revision of the program

over the course of its lifetime using the CVS integration of the Medina library,

described later in Section 3.2. From these metric values the maximum value of the

metric for each function in the program was taken as the “score” for the functions.

The scores for the functions were then correlated with the number of bug fix and

refactoring changes for each function using the statistical functions within Excel.

The results of this experiment are discussed later in Chapter 4.

3.3.3 An Additional Case Study: Refactoring

As well as using the Peg Solitaire program as a case study it was felt that a larger

piece of software should also be studied. As part of the Kent Refactoring group’s

work they have written a tool to perform refactorings on Haskell program code.

A pre-release version of this tool was chosen as a second case study. The tool

used a library for parsing Haskell code which was not examined in this study, so

only the code that manipulated parse trees was analysed. Details of the sizes and

number of changes for each module of the program are presented in Table 5. This

shows that the Refactoring case study program is approximately twice the size of
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Module Min Size (LOC) Max Size (LOC) Changes

EditorCommands 198 215 4
PFE0 332 337 2
PfeRefactoringCmds 18 24 5
PrettySymbols 23 23 0
RefacAddRmParam 142 434 56
RefacDupDef 62 157 19
RefacLocUtils 201 848 88
RefacMoveDef 322 796 56
RefacNewDef 77 478 58
RefacRenaming 67 236 23
RefacTypeSyn 20 21 0
RefacUtils 764 1088 126
ScopeModule 222 222 0
TiModule 140 140 0
Main 36 103 7

Totals: 2624 5122 444

Table 5: Information about the Refactoring case study program. Note: The
total sizes are approximate figures only, due to individual modules change sizes
at different times during the evolution of the program.

the Peg Solitaire program.

The techniques used for classifying changes in the Peg Solitaire program were

again used for the Refactoring tool. Metric measurements and analysis were per-

formed in the same way for both the Peg Solitaire program and the Refactoring

tool. The results of these experiments are discussed later in Chapter 4.

3.3.4 A Larger Body of Programs

Basing the statistical work on only two case study programs is somewhat limiting,

however the work involved in manually inspecting change histories is prohibitive.

An alternative to looking at the number of bug fixing changes is to consider the

relationships between metrics. In order to do this it is only necessary to take

snapshots of programs and apply the metrics to those. This can be done quickly

and automatically.
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For this work a selection of programs was gathered from the list available at

http://www.haskell.org/libraries/ on the 28th of July, 2003. The following

programs were chosen for this study, and their various characteristics are sum-

marised in Table 6.

• CGI Library (Cgi). A library for writing CGI programs for web servers.

http://www.cse.ogi.edu/~erik/Personal/cgi.htm

• Haskell Cryptographic Library (Crypto). A library of cryptographic func-

tions. http://www.haskell.org/crypto/ReadMe.html

• Haskell DSP Library (Dsp). A library of digital signal processing functions.

http://haskelldsp.sourceforge.net/

• FGL (Fgl). A library of graph operations. http://www.cs.orst.edu/

~erwig/fgl/

• The Library for Geometric Algorithms (Geomlib). A library of geometric

functions. http://www.dinkla.net/fp/cglib.html

• GetOpt (Getopt). A module for GNU/POSIX-like handling of command

line arguments. http://www.pms.informatik.uni-muenchen.de/mitarbeiter/

panne/haskell_libs/GetOpt.html

• Haddock (Haddock). A tool to generate documentation from Haskell

source code. http://www.haskell.org/haddock/

• Happy (Happy). A parser generator for Haskell, similar to yacc. http:

//www.haskell.org/happy/

• Hat (Hat). A collection of tools for debugging of Haskell programs, using

tracing. http://www.cs.york.ac.uk/fp/hat

• HaXml (Haxml). A library of XML tools, including parsing, pretty printing

and transformations. http://www.cs.york.ac.uk/fp/HaXml/
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Program LOC Functions Modules

Cgi 1426 214 17
Crypto 739 73 8
Dsp 6973 523 78
Fgl 3159 442 26
Geomlib 7236 869 22
Getopt 198 16 1
Haddock 11789 1945 16
Happy 4779 400 14
Hat 15696 1661 57
Haxml 7294 817 28
Hunit 1094 112 11
Pretty 935 82 1
Pcf 242 59 3
Thih 11259 563 38

Table 6: A summary of the case study programs showing their sizes in lines of
code and the number of functions and modules they contain.

• HUnit (Hunit). A unit testing framework for Haskell. http://hunit.

sourceforge.net/

• Pretty printer library (Pretty). Simon Peyton Jones industrial strength

pretty printing library. http://research.microsoft.com/~simonpj/downloads/

pretty-printer/pretty.html

• An implementation of untyped PCF in typed PCF (Pcf). This software was

donated by a colleague, Dr Stefan Kahrs, rather than selected from Haskell.

org. http://www.cs.kent.ac.uk/people/staff/smk/PCF/Untyped_PCF.

html

• Typing Haskell in Haskell (Thih). A Haskell program that implements a

Haskell type checker. http://www.cse.ogi.edu/~mpj/thih/

Each of the metrics was run on each of the programs and the results were placed

into a single spreadsheet. This was then used to calculate the cross-correlation

information discussed in Section 5.1 of Chapter 5 and the mean, mode, median
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and standard deviation values discussed in Section 5.2 of Chapter 5.

3.3.5 Summary

There were a number of problems encountered during the course of this work, and

it is useful to discuss these here. The first problem was finding suitable programs

to use as case studies. Ideally a program maintained in a CVS repository, with a

comprehensive change history was needed. However most of the programs inves-

tigated had no clear separation between bug fixing changes, refactoring changes

and feature additions, with different types of changes often being committed to

CVS in the same commit. This made it necessary to manually inspect the code

changes to determine the type of change, a very time consuming and error prone

procedure.

Because of the need to manually inspect the changes it was necessary to choose

programs that were small enough that it was possible to inspect them within a

reasonable amount of time, but this can lead to problems because the programs

may then be too small for statistically significant results to be obtained, as is seen

for the Peg Solitaire program in the results of this experiment which are described

in Chapter 4.

Programs which undergo frequent and/or large feature additions cause prob-

lems when analysing change histories because the large changes can often mask

bug fixing changes. This can lead to artificially low bug fix counts, making such

programs unsuitable as case studies. This problem can be partially relieved if a

strict, fine grained commit policy is used, such that all bug fixes are individually

committed to the repository. This allows bug fixing changes to be extracted re-

gardless of the amount of feature additions present. However, this still does not

help in the case where a feature addition “accidentally” fixes a bug, in which case

the bug fix will go unnoticed. This may be unavoidable.

Investigating cross-correlation between metrics can be achieved much more

simply than correlating metrics with bug fixes, and as such it is possible to examine

both larger programs, and a greater number of programs than is feasible when
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correlating with bug fixes. However this does not help to explain the relationship

between metrics and bug fixes, and as such is not a substitute for longitudinal

case studies that examine the correlation between bug fixes and metric values.

An ideal case study would consist of a program that has a rigid commit policy

in which each change has been clearly labelled with its kind, such as bug fix,

feature addition or refactoring, and individually committed into a version control

system such as CVS. Such a program would have undergone several releases or

revisions, and would have had enough defects, and therefore bug fixes, that it is

possible to obtain statistically significant results from the program.



Chapter 4

Software Measurement for

Haskell

Chapter 2 presented a selection of previous work on measuring a variety of aspects

of software. Most of this work relates to imperative or object oriented program-

ming languages. In this chapter some of the ideas from Chapter 2 are applied to

the functional programming language Haskell, although the observations in this

thesis may apply equally well to other functional languages such as SML and

Clean.

There have been many software metrics defined over the years and hence Chap-

ter 2 represents only a broad sample of the possible measurements one might make

from imperative and OO programs. There are a number of these imperative and

OO metrics which may transfer over to the functional programming domain with

little or no modification, and these are briefly enumerated here.

• Program size. The various measures of program size, such as LOC and

Halstead’s program volume can be transfered to functional programs with

little or no modification. These measures are used in Section 4.5.2 of this

chapter.

• Testing effort. Metrics that measure the effort involved in testing a program,

such as pathcount and cyclomatic complexity, can be applied to functional

101
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programming languages, although as is described later in Section 4.5.1 im-

plementing such metrics requires care to correctly consider all execution

paths. The pathcount measure is analysed for Haskell in Section 4.5.1 of

this chapter.

• Callgraph measures. Measurements taken from callgraphs, such as size,

depth, width and arc-to-node ratio, can all be applied to functional pro-

grams without modification. These measures are examined for use with

Haskell in Section 4.4 of this chapter.

• Coupling measures. Although it is possible to apply OO coupling measures,

such as object level and class level coupling and coupling strength, from

functional languages such as Haskell, some modifications are needed to map

different language elements into the metric. For instance, OO coupling met-

rics normally measure coupling between classes, but Haskell classes are not

classes in the OO sense, and instead one is most likely to measure coupling

between modules or functions. Coupling between functions is examined

briefly in Sections 4.4.2 and 4.4.3 of this chapter.

• Design artifacts. In principle metrics which operate on design artifacts such

as UML diagrams should be applicable to the equivalent design artifacts

of functional programming languages. Unfortunately, the functional pro-

gramming world generally does not follow any formalised software design

process, partly because the topic of designing functional programs is under-

researched, with the thesis of Russell [84] and paper of Wakeling [99] con-

stituting the majority of the work in the area. Because of this, the ideas

presented in this section do not appear to have much applicability to Haskell

program design at the current time.

This chapter presents versions of these metrics for use with Haskell, as well as

other metrics designed to measure particular language features that may not be

covered by existing imperative metrics.
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Using the methodology described in Chapter 3, this chapter shows the correla-

tion coefficients that result from correlating these measurements with the change

history of two Haskell programs, Peg Solitaire and Refactoring, to determine if

higher metric values are correlated with higher numbers of bug fixes. The two

programs are relatively small, with Refactoring being approximately twice the

size of Peg Solitaire. These programs were described previously in Chapter 3.

Statistical significance is assumed to be at the 5% level unless otherwise stated.

Statistical analysis is also used to select the combinations of measurements

that provide the highest correlation, and to investigate how the attributes being

measured interact.

From this statistical analysis a number of observations are made about the re-

lationship between the metrics and the subjective complexity of Haskell functions.

The term subjective complexity is used as a notion of the complexity that might

be perceived by a programmer attempting to understand or modify the given

function. This should not be confused with computational complexity which is

normally specified in O() notation. Unlike computational complexity, subjective

complexity cannot be concretely specified and instead metrics provide indications

of the subjective complexity.

The remainder of this chapter is divided into the following sections.

• Section 4.1 investigates the complexity of pattern expressions in Haskell

programs.

• Section 4.2 discusses attributes that can be measured by examining the

distance between where identifiers are used and where they are declared in

Haskell programs.

• Section 4.3 looks at the important property of recursion in Haskell programs.

• Section 4.4 presents some generic measurements that can be taken from

the callgraph of a program and investigates their application to Haskell

programs.
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• Section 4.5 examines some generic measurements of program size and pro-

gram complexity and applies those to Haskell programs.

• Section 4.6 investigates how the various metrics may interact and shows that

several of the metrics are strongly correlated.

• Section 4.7 summarises the conclusions from the work in this chapter and

suggests some ways to utilise this information.

Further analysis of the metrics presented in this chapter is performed in Chap-

ter 5, which studies both the interaction between the metrics, and the typical

metric values that are exhibited by a collection of Haskell programs.
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sumList :: [Int] -> Int
sumList [] = 0
sumList (n:ns) = n + sumList ns

Example 3: Using pattern matching to introduce identifiers.

data Shape = Rect Int Int | Triangle

isSquare :: Shape -> Bool
isSquare (Rect w h) = w == h
isSquare Triangle = False

Example 4: Using pattern matching with algebraic data types.

4.1 Measuring the Complexity of Patterns

Pattern matching is widely used in Haskell. It provides a mechanism to selectively

handle various classes of function arguments. For instance, consider Example 3.

In the sumList function there are two patterns. The first pattern matches an

empty list, [], and the second pattern matches the first element of the list, n, and

the possibly empty tail of the list, ns. This pattern introduces two identifiers into

the scope, which are then used on the right hand side. These identifiers may be

overridden by definitions in a local definition such as a let expression or where

clause.

Patterns are also invaluable in manipulating algebraic data types. Patterns

may contain constructor names which cause the pattern to match only that con-

structor. Consider the program in Example 4.

In the isSquare function the first pattern will match if and only if the shape

is a Rect while the second pattern will match if the shape is a Triangle. This

indicates how patterns can be used to discriminate between constructors. The first

pattern, which extracts the width and height from the Rect, also demonstrates

how patterns may be used for selection as well.

By nesting patterns it is possible to perform complicated selection operations,
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-- Colour as RGB values
type Colour = (Int,Int,Int)
data Shape = Square Colour | Triangle Colour

redValue :: Shape -> Int
redValue (Square (r,g,b)) = r
redValue (Triangle (r,g,b)) = r

Example 5: Using nested patterns.

redValue :: Shape -> Int
redValue (Square (r,_,_)) = r
redValue (Triangle (r,_,_)) = r

Example 6: Using wildcards in patterns.

such as those illustrated in Example 5.

Patterns may also contain wildcards, _ which are used as place holders for

parts of the pattern that are of no interest in the definition in hand. Using a

wildcard is preferable to using some identifier because it explicitly states that

the object matched by the wildcard is not used, and therefore does not need to

be named. An alternative version of Example 5 that uses wildcards is shown in

Example 6.

An alternative to using wildcards in patterns when matching against data

structures is to add field names to the data type, which can greatly simply the

pattern expressions. This is illustrated in Example 7. Adding field names to data

structures is also useful because well chosen field names can help document the

data structures.

Patterns are not confined just to the left hand side of a function, but may also

be used in the body of a function, for instance as part of a let or case expression.

Example 8 illustrates this.

Because patterns are so widely used in all areas of functional programming in

Haskell it is interesting to investigate how patterns affect a program’s complexity,
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data Colour = Colour {red, green, blue :: Int}
data Shape = Square Colour | Triangle Colour

redValue :: Shape -> Int
redValue (Square c) = red c
redValue (Triangle c) = red c

Example 7: Using field names with data structures in patterns.

redValue :: Shape -> Int
redValue sh =

let
(r,g,b) =

case sh of
Square c -> c
Triangle c -> c

in
r

Example 8: Using patterns on the right hand side of functions.
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and whether this in turn affects its change history. To do this it is necessary to

decide which attributes of patterns might be measured and how these attributes

may affect the complexity.

There are several attributes that one might measure from patterns. These are

discussed in detail in the following sections, but are briefly introduced case by

case now.

• Number of identifiers introduced. Patterns often introduce identifiers into

the scope. One way in which this might affect the complexity is to increase

the number of identifiers a programmer must know about in order to un-

derstand the program code in question. This is described in more detail in

Section 4.1.1.

• Number of overridden or overriding pattern variables. Patterns that intro-

duce variables may override existing identifiers, or identifiers in patterns

may be overridden by those in a where or let clause. Overriding identifiers

in this manner can be very confusing, and can easily lead to erroneous be-

haviour when modifying the program. It therefore appears that measuring

the number of pattern variables involved in overriding might help to predict

potential points of error. This is described in more detail in Section 4.1.2.

• Number of constructors used. Patterns containing constructors are often

used to manipulate algebraic data types. Like identifiers in patterns, this

increases the number of items a programmer must know about, and therefore

may increase the complexity. This is described in more detail in Section

4.1.3.

• Number of wildcards. When initially considering patterns it was debated

whether or not wildcards in patterns should be measured. It was suggested

that wildcards should be ignored because they explicitly state that the item

they are matching is of no interest. However, wildcards often convey impor-

tant information about the structure of items in the pattern, for example,
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-- An alphabet consisting of only 3 characters
data SmallAlphabet = SA | SB | SC

-- An alphabet consisting of 26 characters
data LargeAlphabet = LA | LB | LC | .... | LZ

isSmallA :: SmallAlphabet -> Bool
isSmallA SA = True
isSmallA _ = False

isLargeA :: LargeAlphabet -> Bool
isLargeA LA = True
isLargeA _ = False

Example 9: Differences in the normal form of functions.

the position of arguments to a constructor. Because of this uncertainty it

was decided that wildcards should be measured to see what effect they have.

This is described in more detail in Section 4.1.4.

• Depth of nesting. Nesting of patterns is used quite often, for instance

[(a,b)] contains the pattern (a,b) nested within the pattern [...]. How-

ever nesting can lead to complicated patterns so the depth of nesting seems

to be a good target to measure. This is described in more detail in Section

4.1.5.

• Pattern size. Patterns obviously may be of different sizes, and it is likely

that larger patterns are more complex than smaller patterns so pattern size

seems an ideal candidate to measure. This is described in more detail in

Section 4.1.6.

• Complexity of the normal form of a definition. Another potential indicator

of the complexity of a definition containing patterns is the complexity of the

normal form in which overlapping patterns have been removed, making all

patterns exclusive. For instance consider the two functions in Example 9.
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Although the isSmallA and isLargeA functions look to have similar com-

plexities, it is worth considering the final pattern in each of these func-

tions. In the isSmallA function the final pattern expression will be exe-

cuted for two of the SmallAlphabet constructors, whereas in the isLargeA

function the final pattern expression will be executed for twenty five of the

LargeAlphabet constructors. This may make the latter function more com-

plex than the isSmallA function.

Such a situation could be detected by examining the normal form of the def-

initions, however this requires the use of a type system which the framework

used for these experiments currently lacks. For this reason this particular

measure will not be considered any further in this study, and is left as future

work.

These pattern measures cover a large range of the common usage of patterns in

Haskell programs, and most of these measures cover a single attribute of patterns

and therefore can be thought of as “atomic”.

For most of the pattern measures one would expect increased values to indicate

increased complexity. The exception to this is the “Number of wildcards” measure,

where one might expect increased values to indicate reduced complexity.

In the following sections these attributes will be analysed to see what effect

they have on the complexity of patterns used in the case study programs described

in Chapter 3. Specifically the rest of this chapter will be arrange in the following

manner.

• Section 4.1.1 explores the “Number of pattern variables” measure.

• Section 4.1.2 investigates the “Number of overridden or overriding pattern

variables” metric.

• Section 4.1.3 examines the “Number of constructors in pattern” metric.

• Section 4.1.4 discusses the “Number of wildcards in pattern” measure.
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• Section 4.1.5 explores the effect of the depth of nesting of patterns upon the

complexity.

• Section 4.1.6 examines the “Pattern size” metric.

• Section 4.1.7 discusses how the pattern metrics interact, and looks at the

correlation between metric values.

• Section 4.1.8 presents the conclusions that can be drawn from measurements

made on pattern expressions.

4.1.1 Number of pattern variables

Patterns are most often used to introduce variables. An example might be a

variable representing a parameter of a function, or a pattern expression which

matches a tuple with two elements, introducing two variables. It is not immedi-

ately clear how increasing the number of variables in this sort of pattern might

affect the subjective complexity, that is, the ease of understanding the pattern.

One hypothesis is that the presence of more pattern variables requires the pro-

grammer to comprehend more objects in order to understand the section of code

in question, and so increases the complexity.

Having implemented a metric to measure this attribute, and applied it to

the case study programs described in Chapter 3, the first impression was that a

large proportion of the functions in the case study programs used patterns that

contained pattern variables. The Peg Solitaire program used pattern variables in

199 of its 234 functions (85%), while the Refactoring program use pattern variables

in 379 of its 540 functions (70%). This demonstrates how central patterns are to

Haskell.

The metric values were correlated against the number of bug fixes, as described

in Chapter 3. The correlation coefficient, shown in Table 9 in Appendix B, for

this metric for the Peg Solitaire program was 0.0209, which is not statistically

significant. The Refactoring program has a statistically significant correlation
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value of 0.5927, showing a fair degree of correlation with the number of changes.

These results are confusing because the value for the Peg Solitaire program

seems to suggest that the number of pattern variables has little effect upon the

complexity, while the result for the Refactoring program does provide support for

the hypothesis. Therefore it is possible to make the following tentative observa-

tion.

Observation 4.1.1 The presence of a high number of pattern variables may in-

dicate increased subjective complexity.

4.1.2 Number of overridden or overriding pattern vari-

ables

Patterns that introduce variables may override existing identifiers, and identifiers

in patterns may be overridden by those in a where or let clause. Overriding

identifiers in this manner can be confusing, for instance in Example 10 it is not

immediately clear which a is being used at any point in the function.

This type of overriding can be particularly troublesome if the conflicting defi-

nitions have the same type, which prevents the compiler from indicating possibly

erroneous behaviour when modifying the program. For instance, consider the

(contrived) area function in Example 10. If the a in the where clause is renamed,

the function will compile with no errors, but will give incorrect results unless the

a after the = is also changed.

It therefore appears that measuring the number of pattern variables involved

in overriding might predict potential points of error. However, the implementation

of the metric used in this work does not yet contain a type system, and so for this

work it is not possible to check if the variables involved in the overriding have the

same type, which would be interesting to factor into the measurement, and so this

implementation of the metric treats all overriding in the same manner, regardless

of the types involved. However it would be possible to re-implement the metric

using a framework such as Programatica [41] to make use of type information in
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data Shape
-- A triangle described by its angles and lengths
= Triangle {

a :: Float,
angleA :: Float,
b :: Float,
angleB :: Float,
c :: Float,
angleC :: Float

}

-- Area of a shape
area :: Shape -> Float
area (Triangle a aA b bB c cC) = a
where

a = 1/2 * (b * c * sin(aA))

Example 10: Overridden pattern variables.

the measurement.

The metric developed to measure this attribute was applied to the case study

programs and the results showed that overriding of pattern identifiers occurred in

only 9 out of the 234 functions of the Peg Solitaire program, and in 51 of the 540

functions that make up the Refactoring program.

The correlation results for the Peg Solitaire program, shown in Table 9 in

Appendix B, do not exhibit any statistically significant correlation with the num-

ber of bug fixing changes, probably because of the low number of instances of

overriding occurring in the program. However, the results from the Refactoring

program show a statistically significant correlation of 0.3731. Thus the following

observation can be made.

Observation 4.1.2 Increasing the number of overridden pattern variables in-

creases the subjective complexity of the function.

One might claim that overriding pattern variables is an inherently undesirable

programming paradigm and as such this metric may be a useful tool to highlight
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such occurrences, so that they may be corrected by the programmer. Such a

tool might combine this metric with a visualisation technique such as the pixel

representation to quickly highlight such code (See for instance Sections 6.1 and

6.5 of Chapter 6), or form part of an automated refactoring tool such as HaRe

[60].

4.1.3 Number of constructors

Patterns are commonly used in Haskell programs for manipulating algebraic data

types by matching against constructor names. A possible metric is to count how

many constructors are used in a pattern. There are two interesting and opposing

hypotheses about the effect of this attribute on the subjective complexity of a

function.

One hypothesis is that using more constructors in a pattern requires more

objects to be understood in order to comprehend the pattern, therefore increasing

the complexity. The alternative hypothesis is that if constructor names are chosen

well they are descriptive, and therefore add an element of documentation to the

pattern, possibly reducing the subjective complexity of the pattern.

The metric data for this attribute showed that the Peg Solitaire program used

patterns that contained constructors in 33 of its 234 functions, while the Refac-

toring program used such patterns in 138 of its 540 functions.

The results in Table 9 in Appendix B show once more that there is no sta-

tistically significant correlation for the Peg Solitaire program, but that there is a

small positive correlation of 0.3645 for the larger Refactoring program.

The correlation value for the Refactoring program suggests that the first hy-

pothesis is more likely to be true, although the lack of correlation for the Peg

Solitaire program makes it difficult to be certain.

However, a possible explanation for the difference in correlation values between

the two programs might be the nature of the Refactoring program, which uses

complicated algebraic data structures to represent abstract syntax trees of Haskell

programs. Because these structures are complicated it is easy for errors to occur in
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their use, which might contribute to the positive correlation between the number

of constructors and the number of changes. This suggests that combining the

number of constructors with some measure of the complexity of the corresponding

data structures could produce a more accurate version of this metric.

In the smaller data structures of the Peg Solitaire program the use of well

named constructors can add documentation to the source code, thereby mak-

ing the patterns in the code less complex, which might explain the (statistically

insignificant) negative correlation seen in the Peg Solitaire program.

4.1.4 Number of wildcards

Wildcards may initially lead one to believe that they make understanding a pat-

tern simpler because wildcards indicate items that may not need to be considered,

but it is also possible that thinking of wildcards in this manner could be mislead-

ing.

Consider Example 11. In the redValue function it is reasonably straightfor-

ward to remember the position of the field we are interested in, namely the red

value. However in the lineGreenValue function it is much harder. In such an ex-

ample it is very easy to get the g pattern variable in the wrong place, and because

the fields are all of the same type the compiler is unable to indicate any errors if

the variable is in the wrong place.

Because of this it is reasonable to expect that larger numbers of wildcards

might increase the complexity of the pattern. To explore the impact of wildcards

upon complexity a small metric was created to count the number of times wild-

cards were used in a pattern. The metric showed that wildcards were used in 23

of the 234 functions in the Peg Solitaire program and 162 of the 540 functions of

the Refactoring program.

An alternative metric might calculate the ratio of the number wildcards to

the number of variables, which would give an indication of whether a pattern is

dominated by variables or by wildcards. However, only the basic count of the

number of wildcards is used in this work.
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-- A simple shape with a size and a colour in RGB values
data Shape
= Triangle

Int Int Int -- Length side A, B and C
Int Int Int -- Fill colour RGB values

-- A shape with a size, a position, a border thickness,
-- and RGB colours for the border and for the fill colour.
data AdvancedShape
= AdvancedTriangle

Int Int Int -- Length side A, B and C
Int Int -- X and Y position
Int -- Line width
Int Int Int -- Line colour RGB values
Int Int Int -- Fill colour RGB values

redValue :: Shape -> Int
redValue (Triangle _ _ _ r _ _) = r

lineGreenValue :: AdvancedShape -> Int
lineGreenValue (AdvancedTriangle _ _ _ _ _ _ _ g _ _ _ _) = g

Example 11: Complications of using wildcards in patterns.
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Table 9 in Appendix B shows that once again the results for the Peg Soli-

taire program show no statistically significant correlation, while the Refactoring

program shows a correlation value of 0.3572. This seems to suggest that increas-

ing the number of wildcards can increase the complexity, and so the following

observation can be made.

Observation 4.1.3 Large numbers of wildcards may indicate areas of increased

subjective complexity.

This seems to contradict the generally perceived wisdom that wildcards reduce

complexity. However, an explanation that might account for this is that the

functions that use patterns with wildcards may be manipulating complex data

structures, and so changes may be due to the complexity of the data structures

rather than the appearance of wildcards.

4.1.5 Depth of nesting

When measuring the depth of nesting one must consider how to measure the

depth of nesting of patterns that contain more than one nested pattern. For

instance, [(a,b),(c,d)] contains two nested patterns. One method is to take

the maximum depth of all the nested patterns. Another method is to take the

sum of the depths of all the nested patterns.

Taking the maximum of the depths measures only how deeply nested the pat-

tern is, while taking the sum of the depths effectively measures how much nesting

is taking place, which may be more accurate. However it may be that taking the

sum of the depths will actually be measuring the size of the pattern, in which case

one would see a strong correlation between those two measures.

Consider Example 12. In this example the patterns in pattern1 and pattern2

would have the same maximum depth of nesting, both having one level of nesting,

but would each have a different sum of depths, with the pattern in pattern2

having a larger value than that in pattern1. Thus it would seem that the sum of

the depths is more discriminating that the maximum depth.
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type Tuple = (Int, Int)
type TupleList = [Tuple]

pattern1 :: TupleList -> Int
pattern1 [(a,b)] = a + b

pattern2 :: TupleList -> Int
pattern2 [(a,b),(c,d),(e,f)] = a + b + c + d + e + f

Example 12: Nested patterns.

Metrics for both measures of depth were written and the correlation results

are shown in Table 9 in Appendix B. The Peg Solitaire program shows correlation

values of 0.0582 and 0.071 for the maximum and sum depth measures respectively.

These values are not statistically significant.

The Refactoring program showed significant correlation values of 0.4208 and

0.5692 for the maximum and sum respectively. This seems to show that taking the

sum of the depths does indeed give a better prediction of the likelihood of bugs

occurring than taking the maximum depth. These results allow the following

observation to be made.

Observation 4.1.4 Increasing the amount of nesting of patterns increases the

complexity of expressions.

4.1.6 Pattern size

The previous measures on patterns have concentrated on specific components of

patterns and so it may be interesting to make a statement about a pattern as a

whole. One simple way to do this is to talk about its size.

The size of a pattern could be measured in a number of ways. For instance, one

could count the number of components in the abstract syntax tree, or one might

take the depth of abstract syntax tree as a measure of its size. For the purpose

of exploring the effect of pattern size on the number of changes, the number of
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nodes in the abstract syntax tree of the pattern was chosen as the size measure.

The metric results in Table 9 in Appendix B show that the Peg Solitaire

program had no significant correlation, while the Refactoring program had a cor-

relation of 0.5423, which seems to suggest the following observation.

Observation 4.1.5 Increasing the size of a pattern tends to increase its subjective

complexity.

4.1.7 Interaction of pattern attributes

In the previous sections several metrics have been presented, each of which mea-

sures a specific attribute of pattern expressions. On their own, none of these

metrics provide a particularly high correlation with the number of changes. The

intriguing question that arises from this is whether these attributes interact in

any way to form a more accurate measure.

The first step to investigating any possible interactions is to see if any of the

measures are correlated with each other. This can be done using a correlation

matrix. The correlation matrices for the pattern measures taken from the Peg

Solitaire and Refactoring programs are shown in Table 14 in Appendix C.

The correlation matrix for both programs show that several of the pattern

metrics are strongly correlated. In particular, it appears that “Number of pattern

variables” (p1), “Sum of depth of patterns” (p2) and “Pattern size” (p6) are

strongly correlated in both programs. In the Refactoring program “Number of

constructors in pattern” (p5) is also strongly correlated with this group. One

explanation for this is that these measures may all be measuring the size of a

pattern.

Looking at the correlation matrix again it appears that apart from the clus-

ter of strongly correlated measurements the other metrics have minimal cross-

correlation.

It is interesting to see how the metrics might be combined to provide a higher

correlation with the number of changes. This can be done using a regression
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analysis, however when variables in a regression analysis are strongly correlated

the result can be inaccurate and so it is advisable to replace the strongly correlated

metrics with a representative metric.

For this work “Sum of depth of patterns” (p2), for the Peg Solitaire program,

and “Number of pattern variables” (p1), for the Refactoring program, were chosen

as the representatives of the cluster of correlated metrics. These were chosen

because they have the highest correlation with the number of changes out of the

metrics that form the clusters.

Because the results for different metrics may not be measured in the same

scales it is important to normalise them so that they all have equal weighting

in the regression analysis. This is achieved by performing the analysis on the

“z-scores” of the metric results. The z-scores normalise the metric values such

that the z-scores have a mean value of zero and a standard deviation of one. The

results of the regression analysis are shown in Table 21 in Appendix D.

The results of the regression analysis show the multiple correlation coefficient,

R, to be 0.1584 for the Peg Solitaire program, which is not statistically signifi-

cant, and 0.6015 for the Refactoring program. These values are higher than the

highest individual correlation values for each program, although in the case of the

Refactoring program, only marginally.

These results suggest that there is only a small amount of interaction between

the metrics. The results from the Refactoring program show that 36% of the

variance can be explained by the metrics so it is worth examining this regression

analysis in more detail.

The coefficients shown in Table 21 in Appendix D for the regression analysis

of the Refactoring program shows that the largest contribution comes from the

“Number of pattern variables” (p1) metric. The correlation value for this metric

is only slightly less than the multiple correlation coefficient. This suggests the

following observation.

Observation 4.1.6 The main influence on the subjective complexity of a pattern
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is its size, as indicated by the number of pattern variables.

It seems that for pattern attributes the other measurements do not significantly

increase the correlation with the number of changes, although this may be caused

by the relatively small number of occurrences of those attributes in the Refactoring

program.

4.1.8 Summary

In this section it has been shown that there are several attributes of pattern ex-

pressions that can be measured. Each attribute measures a distinct component of

a pattern expression that might add to a pattern’s complexity. These attributes

can therefore be thought of as atomic attributes. Analysis of these atomic at-

tributes shows that some of the attributes are strongly correlated. These strongly

correlated attributes appear to be measuring the size of a pattern in various ways.

The two case studies highlight the differing results that can occur for the

measurements correlations in differing contexts. In the Peg Solitaire program

the “Number of constructors in pattern” (p5) measurement had a slight negative

correlation, while in the Refactoring program it had a positive correlation. This

may be due to the differing uses of constructors in the two programs. In the

Peg Solitaire program the constructors are used in simple data types that have

little nesting, and as such the naming of the constructors helps to document the

code. By contrast, the Refactoring program uses large, complex mutually recursive

nested data types to represent parse trees. In this case the constructor names are

sometimes generic and add little documentation to the code. The complex nature

of the data types makes it easy to introduce errors, and hence the metric has a

positive correlation.

Performing regression analysis suggests that the largest influence on the cor-

relation with the number of changes is the size of the pattern.

For some of the metrics, the type of program from which a measurement is
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taken may affect the correlation of the metric. For instance the “Number of con-

structors in pattern” (p5) measurement appears to exhibit different correlations

between programs with complex data types, such as the Refactoring program, and

programs with simple data types, such as the Peg Solitaire program. Because of

this it seems that combining such a metric with some measures of the correspond-

ing data type could produce a greater correlation, and therefore perhaps a more

accurate prediction.
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4.2 Measuring the Distance Between Declara-

tions and Their Use

In all but the most trivial program there will be several declarations which will

interact in some way. Inevitably there will be a distance between where things are

declared and where they are used and one might hypothesise that the larger the

distance between where something is used and where it is declared, the greater the

chance that an error will occur in the way one uses that item. It therefore seems

that attempting to measure that distance may indicate potentially problematic

areas of a program.

The distance between a declaration and where it is used can be measured

in a number of ways, most of which fit into one of two categories. Those that

measure the distance in the source code, such as the number of lines of code, which

one might term “spatial” distance measures, and those that measure distance

semantically, such as counting the number of new scopes introduced, which one

might term “conceptual” distance measures.

Because a function may call several different functions, there will be several

different distance measures, one for each called function, which must be aggregated

in some way to produce a single value for the calling function.

There are numerous ways one might choose to aggregate distance values and

for this work four methods were chosen, taking the sum of the distances, taking

the maximum distance, taking the product of the distances and taking the mean

distance. However, when these methods were used the product method often

produced very high values (greater than 100 digits) which proved to be difficult

to process and so the product method was discarded from this work.

There are numerous ways one might choose to measure the distance between

the use and the declaration of identifiers, four of which were chosen for this work.

These are discussed in detail later, but are briefly introduced case by case now:-

• Number of scopes (Figure 21). One method of measuring the distance is to

count the number of scopes that one must examine to find the declaration
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foo :: Int -> Int
foo a = a*a

bar :: [Int] -> [Int] -> [Int]

  where
    c = zip a b

bar a b = map fn c

    fn = \(x,y) -> foo (x+y)

foo, bar

a, b

c,fn
x,y

Number of scopes
in this ranges}

Figure 21: Example of measuring distance by the number of scopes for the
function foo.

foo :: Int −> Int
foo a = a*a

bar :: [Int] −> [Int] −> [Int]

  where
    c = zip a b

bar a b = map fn c

    fn = \(x,y) −> foo (x+y)

foo, bar

a, b

c,fn
x,y

Number of items
in these scopes}

Figure 22: Example of measuring distance by the number of declarations brought
into scope for the function foo.

of the identifier being called. This gives a “conceptual” distance measure

which might indicate how complex the name-space of the program is at a

particular point in the code. This method is discussed in more detail in

Section 4.2.2.

• Number of declarations in new scopes (Figure 22). This is another “concep-

tual” distance measure that is an extension to the previous measure. In this

measure the number of identifiers declared in the newly introduced scopes

is counted. This gives an indication of how “busy” the name-space is. This

method is discussed in more detail in Section 4.2.3.

• Number of source lines (Figure 23). This is a straightforward “spatial”

distance measure counting the number of source code lines between the dec-

laration and use. The implementation used in this work counts comment

lines and whitespace as part of the source code lines, although with a differ-

ent parser it would be possible to exclude comment lines from the counts.
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1: foo :: Int -> Int
2: foo a = a*a

4: bar :: [Int] -> [Int] -> [Int]

6:  where
7:    c = zip a b

5: bar a b = map fn c

8:    fn = \(x,y) -> foo (x+y)

Number of source lines
between these two points,
seven in this case.

3:

Figure 23: Example of measuring distance by the number of source code lines for
the function foo.

foo :: Int -> Int
foo a = a*a

bar :: [Int] -> [Int] -> [Int]

  where
    c = zip a b

bar a b = map fn c

    fn = \(x,y) -> foo (x+y)

Where

TypeSig
"foo"

FunBind
"foo"

Module "Main"

TypeSig
"bar"

FunBind
"bar"

PatBind
"fn"

Lambda

FunApp "foo" ...

Number of parse tree
nodes on the path
between the function
call and the declaration.
Seven in this case.

Figure 24: Example of measuring distance by the number of parse tree nodes for
the function foo.

This method is discussed in more detail in Section 4.2.4.

• Number of parse tree nodes (Figure 24). This is an extension of the previous

measure. Source code lines may contain differing amounts of code, so this

measure counts the number of parse tree nodes on the path between two

points in the parse tree. This is a “spatial” measure like the “Number of

source lines” measure but gives a more consistent measure of the amount

of code produced between the use and the declaration. This method is

discussed in more detail in Section 4.2.5.

Something worth considering when discussing these metrics is how reorganising

the source code of a program might affect the measures. Spatial measures, such as

the “Number of source lines” measure, are likely to change significantly if functions

in the source code are reordered. However, conceptual or semantic methods may

not be so affected, for instance the “Number of new scopes” measure should be

unaffected by reorderings.
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4.2.1 Distance metrics for multi-module programs

It is rare to find a Haskell program that consists of just a single file. Typically

programs will be divided into modules, with each module contained in a separate

file. The problem arising from this is how distance across module boundaries

should be measured.

When measuring distances using scopes, measuring distance across module

boundaries is reasonably straightforward, since any identifiers imported into a

module will be in a scope of their own at the top level.

This method is implemented in the metrics used in this study, although an

alternative method might consider the case where a function foo is imported into

a module A from a module B and then re-exported. This forms a chain of imports

that may make the function foo harder for the programmer to find. The length

of this chain of imports could be factored into the cross-module distance measure

in some way, but this is not yet implemented in the metrics used for this work.

When measuring distance in the source code the way to measure distance

across module boundaries is less clear. One crude method would be to assign a

constant distance measure to items defined in external files. This would indicate

that such items are “further away”, but would give no indication of how much

further.

A solution that attempts to give an indication of how much code the pro-

grammer might have to look through to find the declaration of a function is to

measure the cross-module distance by measuring the distance between the use of

an identifier and the import statement that brings it into scope, plus the distance

between the declaration and the start of the module in which it is defined. This

is illustrated below.
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Distance
from
use
to
import
statement

Bar.hs

import Foo
...
...
...
...
...
... fooBar ...
...
...
...

...

...

...

...

...

...

module Foo ...

...

fooBar :: ...
...

Distance
from
start

of
file

to
declaration

+
Foo.hs

This method gives an indication of how much code the programmer might

have to look through, finding the module the identifier is imported from, then

finding the identifier in the imported module. There are other variations of this

method, one might measure only the distance in the imported module, or only

the distance to the import statement which brings the identifier into scope, for

instance. Although the method illustrated here is used for this work, the best way

to measure distance across module boundaries, particularly for spatial distances

which are less obvious than conceptual distances, is largely an open question.

In the following sections these measures will be analysed to see how well they

might correlate with the number of changes in the case study programs described

in Chapter 3. This section will be organised like so

• Section 4.2.2 examines measuring distance by the number of scopes.

• Section 4.2.3 discusses measuring distance by the number of declarations

introduced into scope between the use and the declaration.

• Section 4.2.4 explores measuring distance by the number of source code lines.

• Section 4.2.5 investigates measuring distance by the number parse tree nodes.

• Section 4.2.6 discusses the ways in which the various distance measures may

interact, and examines the correlation between the various metrics.

• Section 4.2.7 presents the conclusions that can be drawn from the distance

measures.
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4.2.2 Distance by the number of scopes

One of the conceptual ways to think of the distance between a declaration and

where it is used is to consider how many scopes are introduced in between. Mea-

suring the number of scopes indicates how deeply nested the usage is, and how

complex the name-space is. This measure may therefore provide an estimate of

how widely one must look to fully understand the behaviour of the calling function.

Looking at the correlation between the various combinations of this measure

and the number of changes, shown in Table 10 in Appendix B, it can be seen that

taking the average distance to all used identifiers gives the highest correlation for

the Peg Solitaire program, while the Refactoring program has its highest corre-

lation when taking the sum of the distances. However, the correlation values for

the Peg Solitaire program are not statistically significant at the 5% level.

Examining the result from the Refactoring program shows that the interesting

measurements are the sum and maximum measures. These show very similar

correlation values, 0.632 for sum and 0.6006 for maximum. This suggests that

as more functions are called, meaning the sum measure will rise, the distance

to the furthest declaration will tend to rise, meaning the maximum measure will

increase.

4.2.3 Distance by the number of declarations in scope

An extension to measuring the distance by the number of scopes is to count

how many declarations have been introduced into the name-space by any new

scopes between the use and the declaration, not including the scope containing

the declaration. This gives an idea of how “busy” the nested scopes are. This

technique is illustrated in Figure 22 on Page 124.

Looking at the results for these measurements in Table 10 in Appendix B

it seems that counting the number of declarations in the scopes, rather than

simply counting the number of scopes, does not significantly alter the correlation

of the metric with the number of changes, indeed the results from the Refactoring
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program show that this decreased the correlation. This leads to the following

tentative observation, which could be used to help target refactorings that lift

definitions to “higher” scopes.

Observation 4.2.1 It is the nesting of local definitions that complicates program

structure rather than the number of local definitions.

4.2.4 Distance by the number of source lines

So far only “conceptual” distance measures have been considered. The alternative

way to measure distance is to consider the physical or “spatial” distance in the

source code. This can be done in several ways, the most obvious of which is to

measure the number of source code lines between the use and the declaration of

an identifier. A metric was implemented to measure distance using this method

and the results of applying this metric are presented in Table 10 in Appendix B.

Looking at these results the immediate observation is that the Peg Solitaire

program has negative correlations while the Refactoring program has positive

correlations, and that the Refactoring program has significantly higher correla-

tion values. However, the measurements from the Peg Solitaire program are not

statistically significant.

The opposite correlation trends of negative for the Peg Solitaire program and

positive for the Refactoring program, may be explained by the Main module of

the Peg Solitaire program. This module accounted for 38 of the 148 changes,

despite having a maximum size of only 27 lines of code. A large number of the

changes in this module were bug-fixes and refactoring changes occurring after the

user interface of the program changed from a purely text-based interface to a dual

text-based and graphical interface. This module may be a cause of the negative

correlation trends for the Peg Solitaire program because this small module had a

greater number of changes than many of the larger modules. However it should

be remembered that the values for the Peg Solitaire program are not statistically

significant, and as such one should be careful not to draw too many conclusions
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from these results.

4.2.5 Distance by the number of parse tree nodes

A common problem of measuring program code size by the number of source

code lines is that source lines may have varying amounts of program code. This

problem may also affect distance measures that use the number of source lines.

An alternative way to measure “spatial” distance is to count the number of parse

tree nodes on the path between the point on the parse tree where the identifier is

declared and the point where it is used, including any sub-trees rooted at any of the

nodes on the path. This method includes the sizes of any intervening definitions

between the calling function and the declared function, and may give a more

accurate measurement of the amount of program code between the declaration

and use than is obtained from counting the number of source code lines.

The correlation results for this measure, shown in Table 10 in Appendix B,

indicate that for the Refactoring program there is very little difference in corre-

lation between measuring distance by source line and measuring distance by the

number of parse tree nodes. This might imply that on average the amount of

program code per source line is reasonably consistent. The results for the Peg

Solitaire program are not statistically significant.

4.2.6 Interaction of distance measures

Having presented some ways to measure distance between declarations and where

they are used, it is important to ask how these attributes may interact. This is

done for a larger selection of programs in Section 5.1, but it is interesting to look

at this for the two case study programs here. The first step towards this is to

produce a correlation matrix for the metric results. These are shown in Table 15

in Appendix C.

The correlation matrices for the two case study programs each show two clus-

ters of strongly correlated measures. The clusters consist of the same metrics in
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each programs, with the first cluster consisting of

“Distance by the sum of the number of scopes” (d1)

“Distance by the sum of the number of declarations in scope” (d4)

“Distance by the sum of the number of source lines” (d7)

“Distance by the maximum number of source lines” (d8)

“Distance by the average number of source lines” (d9)

“Distance by the sum of the number of parse tree nodes” (d10)

“Distance by the maximum number of parse tree nodes” (d11)

“Distance by the average number of parse tree nodes” (d12)

and the second cluster consisting of

“Distance by the maximum number of scopes” (d2)

“Distance by the average number of scopes” (d3)

“Distance by the maximum of the number of declarations in scope” (d5)

“Distance by the average number of declarations in scope” (d6)

The first cluster reaffirms that there is little difference between measuring

distance by the number of source lines or by the number of parse trees nodes, and

shows that measuring the sum of the number of scopes or declarations in scopes

does not give much more information than measuring the number of source lines.

This might be because declarations that are further away in scope tend to be

further away in the source code. Likewise, as the number of declarations increases,

so the distances in the source code between declarations and where they are used

tend to increase.

However, it may also be that programmers might tend to write functions close

to where they are used in the source code. In future work it may be interesting

to see if it is possible to permutate the source code of a program to produce a

program which has minimal distance measures, or indeed to discover if a program

is already “minimal”.

The second cluster shows that the distance measured by the maximum or av-

erage number of scopes or declarations in scopes is not strongly correlated with
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measuring the sum of the number of scopes or declarations in scope. One expla-

nation for this might be that the declarations, or variables, used in a function are

generally similar distances from their declarations, for instance, all the uses of a

pattern variable in a function might have a similar distance measure. This would

cause the average and maximum values to be similar between functions, while the

sum measure would vary much more between functions because it also measures

how many declarations are used.

Having looked at the correlation matrix for the distance measures it is possible

to replace the clusters of strongly correlated metrics with single representative

metrics and perform a regression analysis on the z-scores of the metric values to

see if combining the measurements can increase the correlation with the number

of changes.

The metric with the highest correlation with the number of changes was chosen

from each cluster as the representative of that cluster. The chosen representative

metrics are “Distance by the sum of the number of source lines” (d7) and “Distance

by the average number of declarations in scope” (d6) for the Peg Solitaire program

and “Distance by the sum of the number of scopes” (d1) and “Distance by the

maximum number of scopes” (d2) for the Refactoring program. The results of the

regression analysis are shown in Table 22 in Appendix D.

The regression analysis shows a multiple correlation coefficient (R) of 0.1957

for the Peg Solitaire program and 0.6829 for the Refactoring program, both of

which are statistically significant. These are slightly higher than the correlation

values of any of the individual measurements which suggests that there is a little

interaction between them. However the regression for the Peg Solitaire program

still only accounts for a small proportion of the variance of the number of changes.

The values for the Refactoring program show that distance measures can ex-

plain nearly 50% of the variance of the number of changes in that program, in-

dicating that it may be possible to obtain good predictions from these measures.

This suggests that these metrics might be usefully combined in a visualisation tool

which could highlight functions with particularly high values of these metrics.
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Looking at the coefficients from the analysis of the Refactoring program it

seems that “Distance by the sum of the number of scopes” (d1) and “Distance

by the maximum number of scopes” (d2) make reasonably even contributions to

the correlation with the number of changes. This is probably because the two

measures are partially correlated and therefore combining them adds only a small

amount of information.

Interestingly, the coefficients from the analysis of the Peg Solitaire program

show that the “Distance by the sum of the number of source lines” (d7) metric has

a negative coefficient. This is interesting because it suggests that if the functions

used are a long way away in the source code they are less likely to introduce errors.

This result may be caused by cross-module function calls, which imply that the

calling function is using some well defined and stable interface, and hence is less

likely to have to be changed as a result of the called function being changed. This

may suggest that when measuring attributes across modules, the behaviour of the

attributes might be different than when considering them inside a single module.

4.2.7 Summary

This section has presented a selection of metrics that measure the distance between

declarations and where they are used in a variety of ways. Performing these

measurements has revealed a number of discrepancies between results for the Peg

Solitaire and Refactoring programs, and possible explanations for these have been

presented.

Investigating the cross correlation of the measures has shown that a large

proportion of the measurements are strongly correlated, suggesting they are mea-

suring the same or similar attributes.

Examining the regression analysis of the measures suggests that the attribute

that contributes most to the complexity is the semantic, “conceptual”, distance in

the program code, rather than the “spatial” distance. This suggests that errors are

more likely to be introduced into programs when there are lots of nested scopes,

although since there is a strong correlation between the metrics it is not clear from
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these results if this is an artifact of a different attribute, such as program size.

The regression analysis also showed that in some circumstances the further

away a called function is defined in the source code, the less likely an error is to

occur. This implies that cross-module function calls should perhaps be treated

differently to intra-module function calls.
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fac :: Int -> Int
fac 0 = 1
fac n = n * fac (n - 1)

Example 13: An example of trivial recursion.

4.3 Measuring Attributes of Recursive Functions

The Haskell language does not provide an explicit loop construct, instead pro-

grams use recursion to achieve looping. In many cases such recursive functions

can be optimised by the compiler into a loop. Because recursive functions are

the only way to program loops in Haskell they are used extensively, and so it

is interesting to look at what can be measured about recursive functions. This

section considers only explicit recursion and does not consider other mechanisms

for achieving looping, such as the use of foldr and other higher-order functions,

which can be considered as “black boxes” that can be trusted. Instead this section

concentrates on the visible structure of the code.

There are two ways in which a function may be recursive, which one might

term “trivial” and “non-trivial” recursion. In trivial or “direct” recursion the

function directly calls itself, as shown in Example 13.

Non-trivial or “indirect” recursion is potentially more complex. In a non-

trivial recursive function, foo, a second function, bar, is called which in turn calls

foo, producing a cyclic callgraph, or strongly connected component, although the

strongly connected component may be larger in a real program. This type of

recursion is demonstrated in Example 14.

Thus non-trivial recursion is much less obvious in the source code than trivial

recursion, and therefore may affect the complexity of the functions involved. It

is also worth noting that functions may have more than one execution path that

cause recursive behaviour, and so a function may contain both trivially recursive

execution paths and non-trivially recursive execution paths.

By generating callgraphs for a program it is possible to analyse the way in
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qsort :: [Int] -> [Int]
qsort [] = []
qsort (a:xs) = qsortLE a xs ++ a ++ qsortG a xs

qsortLE :: Int -> [Int] -> [Int]
qsortLE a xs = qsort [x | x <- xs, x <= a]

qsortG :: Int -> [Int] -> [Int]
qsortG a xs = qsort [x | x <- xs, x > a]

Example 14: An example of non-trivial recursive behaviour.

which functions may be recursive. There are several attributes that one might

wish to measure from recursive functions. These will be briefly introduced here

and then explained and analysed in detail later in this section.

• Binary measure of recursion. It is not always obvious if a function is recursive

because its cyclic callgraph might be large. In such cases it may be useful

to know if a function is recursive without knowing how the function is

recursive. Such an indication of recursion can be thought of as a binary

recursion measure. This method is discussed in more detail in Section 4.3.1.

• Number of recursive call paths. A call path is a chain of function calls.

e.g. Function a calls function bar which calls function c. If the call path

is cyclic it indicates that the functions involved are recursive. A function

may have more than one recursive call path and so functions with greater

numbers of recursive paths may be more complex. This method is discussed

in more detail in Section 4.3.2.

• Number of trivial recursive call paths and number of non-trivial recursive

call paths. Trivial recursive paths, those where a function directly calls

itself, may be easier to understand than non-trivially recursive paths, where

a function calls a second function that calls the first, for instance, and so it

is interesting to count each type of recursive path separately. This method

is discussed in more detail in Section 4.3.3.
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• Sum or Product of the lengths of the recursive paths. As the recursive paths

within a function have a length it is interesting to measure these lengths,

because it may be that longer path lengths indicate increased complexity.

If a function has more than one recursive path one must decide how to

combine the lengths of the paths. For this work we have chosen to take

the product and the sum of the lengths because these methods take account

of how many recursive paths there are as well as the lengths, although one

might also choose to take the maximum, or the average lengths, for instance.

When investigating distance measures in Section 4.2 the use of products to

combine metric values caused problems with large values being produced.

However, no such problems were encountered in the use of products for the

recursion metrics because the values being combined were much smaller than

those of the distance measures.

This method is discussed in more detail in Section 4.3.4.

In the following sections these measures will be examined in more detail, using

the case study programs described in Chapter 3. There are also other measures

that can be taken from the callgraph of a program that measure attributes of

recursion, such as the size of any strongly connected components. Measurements

of callgraph attributes are discussed in more detail later in Section 4.4.

The rest of this section is structured in the following manner.

• Section 4.3.1 looks at the binary measure of recursion.

• Section 4.3.2 investigates measuring the total number of recursive paths in

a function.

• Section 4.3.3 examines ways of measuring the number of trivial and non-

trivial recursive paths separately.

• Section 4.3.4 studies the lengths of the recursive paths present in a function.

• Section 4.3.5 discusses the possible interactions between the recursion mea-

sures, and in particular the degree of cross-correlation between them.
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• Section 4.3.6 presents the conclusions that can be drawn from this study of

these recursion metrics.

4.3.1 A binary indication of recursion

Sometimes it can be difficult to recognise that a function is in fact recursive

because its strongly connected component may be quite large. Because of this it

may be useful to have an indication that a function is recursive without actually

knowing how that recursion occurs. To do this a metric was developed that

returns either one or zero, indicating whether the function is recursive or not.

The correlation values for this “Binary recursion” (r1) metric are shown in Table

11 in Appendix B.

The interesting observation from the results is that, for the Peg Solitaire pro-

gram, this very simplistic metric appears to give the highest correlation of any

of the recursion metrics. This suggests that it is more important to know that

a function is recursive than to know exactly what makes the function recursive.

Although it is not significant at the 5% level it is significant at the 10% level.

The results for the Refactoring program are less striking. There are only 21

out of the 540 functions that make up the Refactoring program that are recursive.

Most of these recursive functions are small and have not been changed much,

resulting in the low, statistically insignificant, correlation value seen.

Recursive callgraph paths can be either trivial or non-trivial. Closer inspection

of the table shows that, for the Peg Solitaire program, there is a very similar

correlation value for the “Number of trivial recursive paths” (r3), suggesting that

the binary metric is mainly measuring the number of trivial recursive paths. This

was confirmed when the raw data from the metrics was inspected, which showed

that there were 28 functions with trivial recursive paths but only 7 functions with

non-trivial recursive paths.

This is also shown in Section 5.2.2 of Chapter 5 which studies the values of

the recursion metrics on a wider selection of programs, showing that typically the

amount of non-trivial recursion is much lower than the amount of trivial recursion.
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foo :: String -> String
foo [] = []
foo (c:cs) = toLower c : foo cs

bar :: String -> String
bar [] = []
bar (c:cs)
| isUpper c = toLower c : bar cs
| otherwise = toUpper c : bar cs

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib(n-1) + fib(n-2)

Example 15: Examples of multiple recursive paths in functions.

4.3.2 Number of recursive paths

Functions may have more than one recursive path, so may be more complex if they

have a greater number of recursive paths. For instance, consider the functions in

Example 15.

In the function foo there is one recursive path, i.e. it calls itself once. In

both the bar and fib functions there are two recursive paths, i.e. they each call

themselves twice. A higher number of recursive paths in a function might indicate

greater complexity. Although it is not entirely clear whether the recursion in fib

is more complex or less complex than that in bar.

It is important to consider the subtle difference between counting the num-

ber of recursive paths and counting the number of recursive calls. Consider the

contrived functions in Example 16. In the function altCaseStr there is only a

single recursive call, to altStr which in turn calls altCaseStr again, creating the

recursion. However, the execution path for that recursive call may take one of

two possible paths, depending on whether the first character of the string passed

to altStr is a lowercase character or not. Hence, altCaseStr has two recursive

paths but has only a single recursive call. It is also worth noting that altStr has
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-- Alternate case of characters in string,
-- e.g. altCaseStr "hello" -> "hElLo"
altCaseStr :: String -> String
altCaseStr [] = []
altCaseStr (c:cs) = toLower c : altStr cs

altStr :: String -> String
altStr [] = []
altStr (c:cs)
| isLower c = toUpper c : altCaseStr cs
| otherwise = c : altCaseStr cs

Example 16: Example of the difference between recursive paths and recursive calls
in functions.

both two recursive paths and two recursive calls.

This shows that by counting the number of recursive paths, rather than the

number of recursive calls, all functions that make up the recursive behaviour

should have the same metric value, since they will all have the same complexity

of recursive behaviour. If on the other hand one were to measure the number of

recursive calls, different metric values, and therefore different indications of the

complexity of the recursive behaviour, might be obtained depending upon which

function is being measured at the time.

One may speculate that the greater the number of recursive paths, the more

the programmer must comprehend to understand the behaviour of the function.

A metric was written to perform this measurement and the correlation values are

shown in Table 11 in Appendix B.

The correlation value for the Peg Solitaire program suggests that the number

of recursive paths does not affect the subjective complexity very much. Because

there is no statistically significant correlation for this measure it is difficult to say

anything concrete about the results for this program.

The correlation value for this measurement from the Refactoring program is

the same as that of the binary recursion measure. This is because all the recursive

functions in the Refactoring program have only a single recursive path, and so this
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measure will produce identical results to the binary recursion metric. It is unclear

whether this occurrence is specific to the Refactoring program or whether it is

a general trend, however further studies, discussed in Section 5.1 of Chapter 5,

suggest that this occurs in a number of other programs and therefore may not be

unusual.

4.3.3 Number of trivial and non-trivial recursive paths

Previously the difference between trivial and non-trivial recursive paths was in-

troduced. Trivial recursive paths are those in which there is only one function

call, e.g. foo calls itself, while non-trivial recursive paths contain other function

calls, e.g. foo calls bar which calls foo.

It is conceivable that non-trivial recursive paths may have a greater effect

upon the subjective complexity, and therefore perhaps the number of changes,

than trivial recursive paths because they are harder to recognise in the source

code. To see if this is the case, metrics were written to calculate the number of

trivial and non-trivial recursive paths and the results from each were correlated

with the number of changes. The correlation results are shown in Table 11 in

Appendix B.

As was described in Section 4.3.2, the recursive functions in the Refactoring

program are all trivially recursive. Because of this there is no correlation value

for the “Number of non-trivial recursive paths” (r2) measure and the “Number of

trivial recursive paths” (r3) measure has the same correlation value as the “Binary

recursion” (r1) measure.

The initial observations from the results for the Peg Solitaire program show no

statistically significant correlation for either metric, suggesting that distinguish-

ing between trivial and non-trivial paths does not increase the accuracy of the

recursion metrics.
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4.3.4 Sum and product of recursive path lengths

The metrics that have been discussed so far have considered only the type of

recursive path that exists for each function, be it trivial or non-trivial, but have not

considered the length of those paths. It is tempting to think that longer recursive

paths are likely to be harder to recognise in the source code, and therefore more

error prone, than shorter recursive paths.

The length of a call path can be measured in several ways, for instance one

might measure the number of calls in the call path, or one might count the number

of functions in the call path. For this work the later method was used, this means

that a trivial recursive path will have a length of two, while non-trivial recursive

paths will have a length of at least three. This method was chosen for ease of

implementation because it fitted the internal representation of a call path best,

however using either method should not affect the results, and so this is largely a

pragmatic choice.

When a function has only one recursive path the metric value for that function

is simply the length of the path, but for functions with more than one recursive

path some way of combining the lengths is needed. For this work two methods

were chosen, taking the sum of the lengths of the individual paths and taking

the product of the lengths of the paths. The correlation results for these two

measurements are show in Table 11 in Appendix B.

Once again the results for the Refactoring program show correlation values

identical to that of the Binary recursion method for the same reasons described

in Section 4.3.3.

The results for the Peg Solitaire program are slightly confusing. They show

that the sum of the lengths has a small positive correlation with the number

of changes, while the product of the lengths has a small negative correlation.

However, as neither correlation value is statistically significant this difference may

be meaningless.
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4.3.5 Interaction of attributes of recursive functions

In the previous sections several ways of measuring aspects of recursion have been

presented, none of which showed correlation that was statistically significant at

the 5% level because of the insufficient variation in the nature of the recursive

functions of the case study programs. It is therefore interesting to investigate

whether combining the recursion measures might increase the correlation. To start

this process it is worth examining the cross-correlation matrix for the recursion

metrics, shown in Table 16 in Appendix C.

The correlation matrix for the Refactoring program has been shown for com-

pleteness, but will not be considered in this section because of the identical cor-

relation values of the metrics for this program. This has occurred because the

Refactoring program does not contain non-trivial recursion, causing all the recur-

sion metrics, other than the “Number of non-trivial recursive paths” (r2) measure,

to return the same values.

The correlation matrix for the Peg Solitaire program appears to show that

the recursion measurements are all quite strongly correlated with the “Number

of recursive paths” (r4) metric. This is probably because there is only a small

number of functions with non-trivial or multiple recursive paths, which causes

all the recursion metrics to produce very similar values, and hence be strongly

correlated. Because of this it is not possible to draw any strong conclusions from

the correlation matrix.

Because of the high degree of correlation between the measurements for the Peg

Solitaire program the regression analysis may not be accurate, but it is presented

in Table 23 in Appendix D for completeness.

The results from the regression analysis of the Peg Solitaire program show

that the multiple correlation coefficient, R, is only slightly higher than that of

the highest individual measurement. This is probably because the individual

measurements are highly correlated, and so accumulating them adds very little

extra information to the analysis.
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4.3.6 Summary

In the previous sections several metrics have been presented to measure aspects

of the recursive behaviour of functions. These metrics have shown that, for the

two programs studied here, there are only a small number of recursive functions.

Because of this it is tempting to assume that recursive programming is not in fact

widely used, perhaps because of the availability of standard higher order functions

such as map and fold which are well understood by functional programmers.

However, this observation is not reflected in the work in Section 5.2 of Chapter

5 which studies a wider selection of programs, so this is most likely peculiar to

these programs.

The results of correlating the metric values with the number of changes has

produced no statistically significant correlations. However this may be caused by

the unusually small amount of recursion present in the two programs studied in

this chapter.
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4.4 Measuring Attributes of Callgraphs

Because function calls form such an intrinsic part of Haskell it would seem that

some interesting properties could be measured from the callgraph of a Haskell

program. These are described in detail in later sections, but are introduced briefly

here.

• Strongly connected component size. Because sections of a callgraph may be

cyclic it is possible to use traditional graph algorithms to find the strongly

connected components of a callgraph. A strongly connected component is a

subgraph in which all the nodes (functions) are connected (call) directly or

indirectly to all the other nodes of the subgraph. All the functions that are

part of a strongly connected component depend directly or indirectly upon

the other functions of the component. Because of this one might expect that

as the component size increases, the number of changes is likely to increase,

since changes in one function may be more likely to cause changes in the

other functions. This method is discussed in more detail in Section 4.4.1.

• Indegree. The indegree of a function in the callgraph is the number of

functions which call it. This means that the indegree estimates how much

code depends upon the given function. Therefore it may be that functions

with high indegree values may be more important, because changes to them

may affect large parts of the program. This method is discussed in more

detail in Section 4.4.2.

• Outdegree. The outdegree of a function in the callgraph is the number of

functions it calls. One might assume that the larger the outdegree, the

greater the chance of the function needing to be changed, because changes

in any of the called functions may cause changes in the behaviour of the

calling function. This method is discussed in more detail in Section 4.4.3.

• A sub-callgraph for a function. It is possible to separate out the subgraph

that represents the callgraph of a single function from a callgraph of an entire
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program. One might think that the greater the complexity of this subgraph,

the greater the chance of the function being changed, since changes in any

function that are part of the subgraph may cause changes to ripple through

the subgraph. There are several attributes one might measure from these

subgraphs.

– Arc-to-node ratio. The arc-to-node ratio is a useful indicator of how

“busy” a graph is. If a callgraph has a high arc-to-node ratio, there is

likely to be greater complexity in the interaction of the functions of the

callgraph, and therefore a greater chance of errors occurring. Therefore

this measure may indicate situations where errors may be introduced.

– Depth and Width. The subgraph of a function can be represented as

a tree that contains all the direct or indirect dependencies of the func-

tion, and it is possible to measure the size of this tree. Two common

measures of size are the depth and the width of the tree. The deeper

or wider the tree grows, the more complex the callgraph is likely to be.

These methods are discussed in greater detail in Section 4.4.4.

In the following sections these callgraph measures will be examined in more

detail, using the case study programs described in Chapter 3. The rest of this

section is organised as follows.

• Section 4.4.1 examines the strongly connected component measure.

• Section 4.4.2 studies the indegree measure.

• Section 4.4.3 discusses the outdegree measure.

• Section 4.4.4 explores ways to measure the size of a functions callgraph.

• Section 4.4.5 investigates the interaction between the various callgraph mea-

sures, and the cross-correlation between them.

• Section 4.4.6 presents the conclusions that can be drawn from the callgraph

measures.



CHAPTER 4. SOFTWARE MEASUREMENT FOR HASKELL 147

4.4.1 Measuring strongly connected components

In Section 4.3 callgraphs were presented as a way to measure attributes of recursive

functions by finding the cyclic paths caused by recursion. A more general measure

that extends this is to measure the size of the strongly connected components of

the callgraph.

A strongly connected component of a graph is a set of nodes in which there

is a path between any two nodes. Thus the strongly connected component in

a callgraph is the set of functions which all call each other, either directly or

indirectly. Measuring the size of the strongly connected component of a function

might provide useful information about the interdependencies of the function.

If a function has a large strongly connected component then it may be more

likely to suffer from changes in other functions of the program affecting its be-

haviour. Conversely a function with a small strongly connected component may be

less likely to be affected. This makes the size of the strongly connected component

an interesting attribute to measure.

A metric was written using the callgraph functionality in the Medina library,

described in Section 3.2 of Chapter 3, and King and Launchbury’s graph al-

gorithms [51] to measure the size of the strongly connected component of each

function in the case study program. The values from this measure were then cor-

related against the number of changes. The results of which are shown in Table

12 in Appendix B.

The correlation value for the Peg Solitaire program, 0.3446, suggests that there

is some correlation between the size of the strongly connected component and the

number of changes. It is conceivable that this is because changes in one element

of the strongly connected component are likely to cause changes in other elements

in the component.

However, the Refactoring program shows very little correlation between the

size of the strongly connected component and the number of changes, and is

only statistically significant at the 10% level. This is probably because there are
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only a small number of recursive functions in this program, all of which contain

only trivial recursion, and hence have equally sized, small, strongly connected

components.

4.4.2 Measuring the indegree of a function

Because a function may be called from many places it is interesting to investigate

whether that affects the complexity of the function. This can be done by measur-

ing the indegree of the functions node in the programs callgraph. The indegree

measures how many functions a given function is called by, somewhat like the

Google ranking system [75].

Measuring this attribute gives a crude measure of how “important” the func-

tion is, with more important functions being used by more functions than less

important functions. The correlation values from the two case study programs for

this metric are shown in Table 12 in Appendix B.

The correlation results showed no significant correlation for either the Peg

Solitaire program or the Refactoring program, suggesting that the indegree has

little effect on the subjective complexity of a function.

4.4.3 Measuring the outdegree of a function

Having measured the indegree of functions it is also interesting to measure the

outdegree. The outdegree measures how many functions are called by a given

function. The greater the outdegree of a function, the more things that function

directly depends upon. It may be that functions that depend upon large numbers

of other functions are more likely to be changed, since changes in any of the called

functions may require changes in the calling function.

The correlation results for this metric in Table 12 in Appendix B show that

this metric is statistically significant at the 5% level in both programs, showing

a reasonable correlation with the number of changes, with Peg Solitaire having a

correlation of 0.4783 and Refactoring having a correlation of 0.5723. Thus it is
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possible to make the following observation.

Observation 4.4.1 Functions with a high outdegree value are more likely to be

changed than functions with a low outdegree.

4.4.4 Measuring the size of a functions callgraph

Once a callgraph for an entire program has been created it is then possible to

separate out a sub-graph which represents the callgraph for a specific function. It

might be interesting to look at that sub-callgraph and examine whether attributes

of the sub-callgraph make a difference to the complexity of the function.

There are many attributes one might measure from the subgraph. Three at-

tributes that are particularly interesting for this work are the depth, the width

and the arc-to-node ratio.

The arc-to-node ratio is the ratio of the number of arcs, or function calls, to

the number of nodes, or functions. This is interesting because it gives an idea of

how “busy” the graph is.

To measure the depth and width of the sub-callgraph it is necessary to flatten

any cycles in the graph, that is, to break any loops in the graph. When flattening

cycles it is important to avoid producing duplicate nodes in the call “tree”. The

intention of the tree is to represent all the direct and indirect dependencies of the

function, and thus it is undesirable to include functions (nodes) multiple times.

For instance the subgraph for a function called readFile might look like this.

readFile

readContentsopenFile

readChar

The resulting flattened tree would look like this.

readFile

readContentsopenFile

readChar
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Since the tree represents the dependencies of the function, it may be that the

deeper or wider the tree grows, the more likely the function is to be affected by

changes in any of the other functions in the sub-callgraph. This may therefore be

an indicator of functions that are likely to require frequent maintenance.

The correlation values for the depth, width and arc-to-node ratio metrics,

shown in Table 12 in Appendix B, exhibit no statistically significant correlation

for the Peg Solitaire program, but the Refactoring program shows reasonable cor-

relation between these measures and the number of changes. The Refactoring

program also shows some correlation between these metrics and the “Outdegree”

(c3) metric, which one would expect as an increase in the number of called func-

tions will necessarily make the size of the subgraph increase.

One possible explanation for the difference in correlation values between the

two programs is to consider the size and complexity of the callgraphs of the two

programs. The Refactoring program has a larger, more complex callgraph than

the Peg Solitaire program, and therefore it may be subject to more errors when

adding functionality, due to the extra “hidden” complexity. Examining the raw

metric values showed that the Refactoring program tended to have larger values of

depth, width and arc-to-node ratio than the Peg Solitaire program, which seems

to add support to this theory.

4.4.5 Interaction of attributes of callgraphs

Having presented some measures that can be taken from a callgraph it is worth

looking at how these might interact. Table 17 in Appendix C shows the correlation

matrix for these measurements. This seems to suggest that most of the metrics are

measuring different aspects of callgraphs, since there is little correlation between

measurements.

The only exceptions to this are the “Depth” (c4) and “Width” (c5) measures,

which are strongly correlated for both case study programs. This seems to suggest

the following observation.
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Observation 4.4.2 Callgraphs for functions tend to grow uniformly in both depth

and width, and very rarely end up long and thin or short and wide.

The regression analysis for the callgraph metrics is presented in Table 24 in

Appendix D. Since the “Depth” (c4) and “Width” (c5) metrics are highly cor-

related the “Depth” (c4) measurement was used to represent both metrics in the

regression analysis.

The multiple correlation values, R, are a little higher than the greatest cor-

relation of any of the individual measurements for each program. The R2 value

shows that the callgraph measures can explain a sizeable amount of the variance

of the number of changes, 27% for the Peg Solitaire program and 36% for the

Refactoring program.

Looking at the coefficients for the metrics it seems that the most important

callgraph metric is “Outdegree” (c3) which is unsurprising because it has the

highest correlation values of the metrics. The Peg Solitaire program also has a

significant contribution from the “Strongly connected component size” (c1) metric,

while the Refactoring program has a contribution from the “Depth” (c4) metric.

This seems to suggest that for programs with non-trivial recursive behaviour the

“Strongly connected component size” (c1) metric can be used to increase the

accuracy of the callgraph measures.

4.4.6 Summary

In this section we have shown several attributes that can be measured from call-

graphs. From looking at these attributes it seems that size measures such as the

“Width” (c5), “Depth” (c4) or “Arc-to-node ratio” (c6) have some correlation

with the number of changes for programs with complex callgraphs.

For programs with non-trivial recursive behaviour measuring the strongly con-

nected component size can provide good correlations with the number of changes.

However measures that give an idea of the dependencies of functions, such as the

outdegree, give significantly higher correlations than any other single callgraph
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measure for both programs.

The study of the “Indegree” (c2) and “Outdegree” (c3) measures has also

shown an interesting comparison with object-oriented coupling measures. The

object-oriented equivalents of these metrics are export coupling and import cou-

pling respectively. Studies of these coupling measures, discussed in Section 2.3.4

of Chapter 2, have shown that it is the export coupling that offers the greatest

correlation with the number of changes, which is opposite to the results shown in

this work.

It is not clear why the object-oriented measures should produce opposite results

to the Haskell measures. One reason might be that the object-oriented measures

are dynamic and are therefore only measuring the interactions that actually take

place during a particular execution, unlike the Haskell measures that are static

and must therefore measure all possible interactions.

Another possible reason for the opposite behaviour may be that object-oriented

programs tend to concentrate complexity into a few key objects which are dis-

tributed throughout the program and are used by many other objects, making

the export coupling metric the better indicator of the complexity. Functional pro-

grams tend to have a top-down structure which concentrates complexity into “top

level” functions which are not used by many functions, but use many other less

complex functions to perform their task, making the outdegree metric the better

indicator of complexity.
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4.5 Measuring Miscellaneous Attributes of Func-

tions

As well as the specific attributes highlighted in previous sections, one may also

measure some more general attributes. These measurements are based upon mea-

surements for imperative programs. These are described in greater detail in later

sections but are briefly introduced here.

• Pathcount. Pathcount is a measure of the number of logical paths through

a function. The higher the pathcount value, the greater the complexity,

in particular high pathcount values indicate code that may be hard to test

because of the difficulty of ensuring all execution paths are exercised.

Barnes and Hopkins [10] produced encouraging results for Fortran programs

showing that pathcount values were correlated with the number of changes,

and so it is interesting to investigate the results of pathcount measures for

Haskell programs. This method is described in more detail in Section 4.5.1.

• Operators and Operands. Having talked of various measurements previously

it is important not to ignore less sophisticated measures such as function size.

The larger a function, the more complex it is likely to be.

There are many ways to measure program size. Van Den Berg [96] used a

variation of Halstead’s [42] operator and operand measures in his work with

Miranda, so that method is used for this work. This method is discussed in

greater detail in Section 4.5.2.

The remainder of this section is organised in the following manner.

• Section 4.5.1 explores the use of the pathcount metric.

• Section 4.5.2 looks at the effects of the size of functions on their complexity.

• Section 4.5.3 studies the cross-correlation between these miscellaneous mea-

sures to see if the measures are linked in any way.
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func :: [Int] -> Int
func [] = 0
func (x:xs)
| x > 0 = func xs

func (x:y:xs) = func xs

Example 17: A function with a subtle pathcount value.

• Section 4.5.4 presents the conclusions that can be drawn from these miscel-

laneous metrics.

4.5.1 Measuring the pathcount of a function

In Barnes and Hopkins [10] work, pathcount values were correlated with the num-

ber of changes. The pathcount value is a measure of the number of logical ex-

ecution paths through a particular piece of code. Because Barnes and Hopkins

produced some encouraging results using pathcount measures that showed cor-

relation between the pathcount and the number of bug fix changes in Fortran

programs, it is interesting to see if pathcount metrics may produce similar results

for Haskell programs.

To implement a pathcount metric for Haskell it is necessary to consider all the

places in which the execution path may branch, which is mostly straightforward.

Some obvious cases where branching occurs is in if ... then ... else ... and

case expressions. However, there are also some more subtle situations where the

number of execution paths is less obvious. Consider Example 17.

In this function there are three obvious execution paths, one for each pattern

expression, but there is also a fourth, less obvious execution path. If the second

pattern, (x:xs), matches then the guard x > 0 will be tested. If this guard

fails, execution drops through to the third pattern expression, creating a fourth

execution path. Thus the pathcount for this function is four. Although this

is a contrived example, this kind of “extra path” can occur quite easily in real

functions, by omitting an otherwise guard, for instance.
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Pathcount values indicate the level of complexity in the program code, and in

particular the amount of effort required to test the program, because they indicate

the number of execution paths that must be exercised in order to fully test the

code.

This may be of particular interest in relation to Haskell tracing and observation

techniques, where increasing the number of execution paths may make it harder

to utilise the techniques effectively.

The correlation results for this metric are shown in Table 13 in Appendix

B. These indicate that there is no statistically significant correlation with the

number of changes for the Peg Solitaire program, and only a small, but statistically

significant, correlation of 0.286 for the Refactoring program. Thus the following

observation can be made.

Observation 4.5.1 The pathcount value of a function has little effect on the

functions subjective complexity.

4.5.2 Measuring the size of a function

With all the measures that have been presented previously it is important not to

ignore less sophisticated measures such as function size. The larger a function is,

the more complex it is likely to be.

There are many ways one might choose to measure program size. Van Den

Berg [96] used a variation of Halstead’s [42] operator and operand measures in

his work with Miranda, and so for this work we have updated Van Den Berg’s

measures for Haskell.

We define all literals and identifiers that are not operators as operands. Oper-

ators are the standard operators and language keywords, such as :, ++, where, etc.

Delimiters such as () and [], etc, are also included as operators. Although the

number of operands and the number of operators were implemented as separate

metrics and are treated separately in the statistical analysis, they are really part

of a connected pair and as such are likely to be strongly correlated, for instance,
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the number of binary operators such as ++ and : is directly correlated with the

number of operands.

The correlation values for these metrics in Table 13 in Appendix B show that

the number of operands and the number of operators have very similar correlation

values. Both show a slight positive correlation of 0.1099 and 0.1281 respectively for

the Peg Solitaire program, which are statistically significant at the 10% level, while

the Refactoring program shows a reasonable amount of correlation, 0.5795 for the

operands measure and 0.558 for the operators measure, which are significant at

the 5% level. Thus the following observation can be made.

Observation 4.5.2 The chance of a function requiring bug fixing changes in-

creases with the size of the function.

One explanation for this observation may be that because Haskell programs are

generally quite concise, large functions are likely to be significantly more complex

than smaller functions.

4.5.3 Interaction of miscellaneous attributes of functions

Although the measures presented in this section do not appear obviously related it

is worth investigating this further. The correlation matrix for these measurements,

shown in Table 18 in Appendix C, indicates that “Number of operands” (m2) and

“Number of operators” (m3) are highly correlated which is unsurprising since

they are a pair of interconnected metrics. The correlation matrix also shows that

the “Pathcount” (m1) measure is not strongly correlated with the “Number of

operators” (m3) or “Number of operands” (m2) metrics.

This seems to indicate that the complexity of a function, as indicated by the

number of execution paths, is not dependent upon the size of the function. This

is similar to the observations about Barnes and Hopkins [10] work in Section 2.5.2

of Chapter 2, and probably shows that “Pathcount” (m1) is measuring the effort

require to test the code, while the “Number of operands” (m2) and “Number of

operators” (m3) metrics are measuring the programmer effort involved in writing
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the functions. The particularly low correlation between these metrics in this work

may be an indication of the concise nature of Haskell programs, which can express

complex behaviour in a very small amount of program code.

Table 25 in Appendix D shows the regression analysis for these metrics, using

“Number of operands” (m2) to represent the two size measures. The analysis

seems to suggest that the “Pathcount” (m1) measure adds very little new infor-

mation when combined with the “Number of operands” (m2) measurement. This

is probably because there is little correlation between the pathcount values and

the number of changes.

4.5.4 Summary

This section has presented measures derived from metrics for imperative lan-

guages. The size measures showed little correlation for the Peg Solitaire program,

but did show a fair degree of correlation with the number of changes for the Refac-

toring program. The Refactoring program is approximately twice the size of the

Peg Solitaire program, which may account for the increased correlation.

The “Pathcount” (m1) measure appears not to be correlated with the number

of changes for the two programs in this case study. However this measure may

still be of use for estimating testing effort for Haskell programs, but this use of

the metric is not investigated in this work.
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4.6 Interaction of Attributes of Haskell Programs

The preceding sections have presented several measurable attributes of functional

programs. On their own, most of these attributes show only a small correlation

with the number of changes, with only a small number having correlations greater

than 0.5, so it is interesting to see how these measures might interact, and how

combining these measurements might affect the correlation with the number of

changes. The remainder of this section is arranged in the following manner.

• Section 4.6.1 explores the cross-correlation between all the metrics presented

in the previous sections.

• Section 4.6.2 uses regression analysis to select combinations of the metrics

that give the greatest correlation with the number of changes.

4.6.1 Cross-correlation of Haskell metrics

In the previous sections the cross-correlation between metrics of the same class

was shown. These indicated metrics which were measuring similar or related

attributes. In this section the cross-correlation of metrics of different classes will

be performed.

To do this, cross-correlation matrices were produced for the metrics that have

previously been chosen to be used in a regression analysis in a previous section.

These metrics were selected so that the cross-correlations that have already been

considered in the previous sections will not reappear in this analysis. For the

recursion metrics, where the metrics all have a high degree of correlation, the “Bi-

nary recursion” (r1) metric has been chosen as the representative measurement.

Table 19 in Appendix C shows the correlation matrix for all the chosen metrics

for the Peg Solitaire program, while Table 20 in Appendix C shows the correlation

matrix for the Refactoring program.

The correlation matrix for the Peg Solitaire program seems to show no strong
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correlation, that is, correlation greater than 0.75, between any of the measure-

ments.

The correlation matrix for the Refactoring program, however, shows that the

“Number of pattern variables” (p1), “Number of operands” (m2) and “Distance

by the sum of the number of scopes” (d1) measures form one strongly correlated

cluster, while the “Distance by the maximum number of scopes” (d2) and “Out-

degree” (c3) measures form a second strongly correlated cluster.

Looking at the first cluster of strongly correlated metrics, it seems that the cor-

relation between “Number of pattern variables” (p1) and “Number of operands”

(m2) is probably understandable, because variables are counted as operands, and

so an increase in the number of pattern variables will necessarily entail an increase

in the number of operands. The correlation with the “Distance by the sum of the

number of scopes” (d1) measure is less clear. It seems to suggest that as the

number of pattern variables increases, so the distance to any called functions, as

measured by the sum of the number of scopes, increases. A possible explanation

for this is that patterns occur where new scopes are introduced, therefore as the

number of pattern variables increases, the number of scopes will tend to increase

as well. This increase in the number of scopes will cause the “Distance by the

sum of the number of scopes” (d1) measure to exhibit higher values.

The second cluster of strongly correlated metrics suggests that the largest

semantic or “conceptual” distance, measured by the “Distance by the maximum

number of scopes” (d2) metric, to any function called from any single function

will increase as the number of called functions increases. This may be because

functions that call many other functions tend to have a greater number of local

declarations, and therefore the semantic distance, measured by the number of

newly introduced scopes, will also tend to increase.

The cross-correlation of the metrics is much easier to calculate than the cor-

relation of metric values with the number of changes, and as such it is easier to

study a larger number of programs. This is explored in Chapter 5.
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4.6.2 Regression analysis of Haskell metrics

If one takes all the metrics and combines them it might be possible to achieve

a greater correlation with the number of changes than is possible with a single

metric. This can be investigated using a regression analysis.

To perform the regression analysis of the measurements the clusters of strongly

correlated metrics were replaced by representative measurements, “Distance by

the sum of the number of scopes” (d1) for the first cluster and “Distance by

the maximum number of scopes” (d2) for the second. These were chosen as

representatives because they had the highest individual correlation values of the

measurements that made up the clusters. The results of the subsequent regression

analysis are shown in Tables 26 and 27 in Appendix D for the Peg Solitaire and

Refactoring programs respectively.

The regression analysis for the Peg Solitaire program shows that the multiple

correlation coefficient, R, is 0.583 which suggests that the metrics are at least

partly correlated with the number of changes. The R2 value shows that over 30%

of the variance of the number of changes can be explained by these metrics.

Looking at the coefficients from the regression shows that the largest contri-

bution comes from the Outdegree metric, suggesting that the most important

attribute is how many functions a given function directly depends upon.

The coefficient for the “Distance by the sum of the number of source lines”

(d7) distance measure is -0.2673. This is interesting because it suggests that if

the functions used are a long way away in the source code they are less likely

to introduce errors. This observation may be caused by cross-module function

calls, which imply that the calling function is using some well defined and stable

interface, and therefore is less likely to have to be changed as a result of the called

function being changed.

The regression analysis for the Refactoring program shows that the multiple

correlation coefficient, R, is 0.6973, indicating a good degree of correlation with

the number of changes. The R2 value shows that nearly 50% of the variance of
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the number of changes may be explained by these measures.

Examining the coefficients from the regression analysis shows that the largest

contribution, by some margin, comes from the “Distance by the sum of the number

of scopes” (d1) metric. This suggests that, for the Refactoring program, it is

important to know how complicated the name-space is for each function.

These results could be used to implement a program that could highlight sec-

tions of program code that may have unusual behaviour, and which are therefore

worth closer inspection.
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4.7 Summary

This chapter has taken some of the ideas from Chapter 2 and presented a selection

of metrics that measure a wide range of attributes of Haskell programs, such as

recursion, patterns, callgraphs, and distance between declarations and where they

are used.

There are, however, a number of other “targets” for which metrics could be

devised, but which have not been covered in this chapter.

Functional languages often provide powerful abstraction mechanisms such as

polymorphic and higher-order functions, or abstract data types. These languages

features suggest that useful metrics could be defined to measure attributes of

abstraction in programs.

For example, one might measure how polymorphic a function is by counting

the number of different type variables present in the function’s type signature, or

by counting how many different types the function is used as. Likewise one might

measure how abstract a given algebraic data type is by counting the number of

constructors which are exported for that data type. Similar metrics could also

be created to measure attributes of higher-order functions and other abstraction

mechanisms.

These extra measurements are not discussed further in this thesis because

implementing such metrics typically requires a type system, which the Medina

library, which is used to implement the metrics presented in this thesis, does not

currently contain. However it would be possible to implement such metrics if

the Medina library used a different “front-end”, such as Programatica[41], which

includes a type system. Because of this, it was decided that these extended metrics

should be left for future research.
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4.7.1 Statistical analysis

As well as presenting a selection of metrics, this chapter has also attempted to

perform statistical analysis of the results of applying them to two Haskell pro-

grams. This work has shown that some of the metrics are strongly correlated,

indicating that the attributes they measure are related, for instance the number

of patterns in a function is closely related to the number of scopes in the function.

These correlations between metrics are examined in greater detail in Chapter 5.

Looking at the correlation between the metric values and the number of bug-

fixing or refactoring changes each function has undergone has shown that in gen-

eral there is no single metric which gives good predictions, although some of the

metrics such as “Outdegree” (c3) can give reasonable predictions. Combining the

metrics which exhibit the highest correlations can give better predictions. From

this we can see that there is no single attribute that makes a Haskell program hard

to understand, but rather that the subjective complexity lies in the combination

of features.

Unfortunately, due to the time consuming nature of analysing program change

histories, the analysis of correlation between metrics and bug-fixing changes is lim-

ited to only two programs. Because of this one must be careful not to over gen-

eralise the results of this study. To acquire greater confidence in these statistical

results it would be necessary to carry out further case studies.

However, there are other interesting studies that can be performed with the

metrics that were presented in this chapter. Therefore the work in this chapter is

extended in Chapter 5 to examine a wider selection of Haskell programs.



Chapter 5

Trends and Characteristics of

Haskell Metrics

Chapter 4 presented a selection of metrics that measure various individual at-

tributes of Haskell programs and analysed the correlation between the individual

metrics and the change history of two case study programs, as well as the cross-

correlation between the various metrics.

This chapter extends that work by examining a wider selection of Haskell

programs. Due to the time consuming nature of examining change histories this

chapter does not compare metrics with change histories, but instead concentrates

on the relationships between attributes measured by the metrics.

The methodology used for the work presented in this chapter was described in

detail in Chapter 3. It is worth noting that the following case study programs all

perform tasks which involve language processing.

• Haddock - A tool for generating API documentation from Haskell source

code.

• Happy - A parser generator for Haskell, similar to yacc.

• Hat - A collection of tools for debugging Haskell programs by using tracing.

• Haxml - A library of tools for processing XML, including parsing, pretty

164



CHAPTER 5. TRENDS AND CHARACTERISTICS OF HASKELL METRICS165

printing and transformations.

• Hunit - A unit testing framework for Haskell.

• Thih - A Haskell program that implements a type checker for the Haskell

language.

Typically, when writing programs that involve processing of complex tree-like

data structures such as parse trees, programs are constructed in a manner that

closely follows the data structure. It is therefore possible that because these

programs perform similar tasks they may cause the results to be biased. However

for the work presented in this chapter, the presence of these programs does not

appear to cause bias because these six programs appear to show the same common

metric characteristics as the other eight programs. Therefore this issue is not

addressed further.

This chapter also studies the values that the metrics produce in order to de-

termine the typical values for the metrics and to discover what values may be

classed as unusual, and which therefore indicate programs and functions which

deviate from the typical style of Haskell programs.

The commonly held view of the style of typical Haskell programs can be sum-

marised as the following.

Functional programs typically contain many pattern expressions,

such as in the argument lists of functions, for manipulating data types

and for control flow such as performing if-then-else style selective

execution. Looping behaviour is typically achieved using groups of

recursive functions. Functional programmers tend to break problems

down into small parts, which results in programs which consist of

many small functions “plumbed” together with a few large functions.

Abstraction is usually achieved through the use of polymorphism and

higher-order functions.
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However, there is little hard evidence that this “folklore” is actually represen-

tative of real Haskell programs. Thus by examining the metric values it may be

possible to provide a more concrete idea of the features that typify the “average”

Haskell program.

The remainder of this chapter is divided into the following sections.

• Section 5.1 examines the interaction between the various metrics on a larger

body of programs.

• Section 5.2 discusses the values that the various metrics typically show on

a selection of programs and suggests ways in which these values may be

incorporated into a tool.

• Section 5.3 summarises the conclusions from the work in this chapter and

suggests some ways to utilise this information.
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5.1 Analysis of Cross-correlation of Metrics on

a Larger Body of Programs

The work in Chapter 4 concentrated on examining the correlation between the

various metrics and the number of changes a program has undergone, but that

work is based on only two case study programs.

To obtain a much clearer picture of the behaviour of the metrics it would be

useful to analyse more programs. However, analysing the program change histories

is a prohibitively time consuming process, as described in Chapter 3, so this has

not been done in this study, and is instead left as future work.

An alternative method of analysing the metrics on a larger body of programs

is to study the relationships between the metrics by analysing a single snapshot

of each program. Because analysing a single snapshot of a program can be done

quickly and mostly automatically it is possible to examine a larger sample of

programs. This allows for greater confidence in any conclusions drawn from the

study.

In the following sections the cross-correlation of the metrics will be analysed

on a further fourteen Haskell programs. The methodology used for this work and

the programs studied were described in Section 3.3.4 of Chapter 3. The cross-

correlation matrices for each of the programs are shown in Appendix E, and will

be examined in detail in the following sections.

• Section 5.1.1 examines the cross-correlation of the recursion metrics.

• Section 5.1.2 studies the cross-correlation of the callgraph metrics.

• Section 5.1.3 looks at the cross-correlation of the distance measurements.

• Section 5.1.4 investigates the cross-correlation of the pattern metrics.

• Section 5.1.5 studies the cross-correlation of the miscellaneous metrics.

• Section 5.1.6 examines the cross-correlation between metrics of different

classes.
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• Section 5.1.7 presents the conclusions that can be drawn from the study of

the cross correlation.

5.1.1 Cross-correlation of recursion metrics

The tables of cross-correlation values for the recursion metrics, shown in Section

E.1, indicate that only five of the fourteen programs feature any non-trivial re-

cursion, as indicated by Tables 32, 33, 35, 36 and 40. However only one program,

Getopt, does not include any recursion. Thus one might make the following

observation.

Observation 5.1.1 The occurrence of non-trivial recursion in Haskell programs

is quite unusual, and is associated with complex program behaviour. However the

occurrence of trivial recursion is common.

Because of this observation, and those discussed in Section 4.3 of Chapter 4, it

is not surprising that for most of the programs in the study the recursion metrics

were exactly correlated.

It is worth noting that four of the programs which did contain non-trivially

recursive functions were language processing programs. As was described at the

start of this chapter, the program structure of language processing programs often

quite closely follows the structure of the data types used in the program.

However, three of the programs which did contain non-trivially recursive func-

tions still exhibited strong correlation between the recursion metrics. As discussed

in Section 4.3 of Chapter 4, this suggests that only a small proportion of the re-

cursive functions in those programs are non-trivially recursive, adding another

indication that such functions are unusual.

For the two remaining programs with non-trivial recursion, Haddock and

Hat, it appears that “Number of non-trivial recursive paths” (r2), “Number of

recursive paths” (r4) and “Sum of lengths of recursive paths” (r5) are strongly

correlated. This seems to suggest that for these programs there is a significant pro-

portion of the recursive paths that are non-trivially recursive, because the number
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of non-trivial paths is strongly correlated with the total number of paths. Both of

these programs contain large parsers for the Haskell language which have complex

recursive behaviour, and are therefore the probable cause of this correlation.

5.1.2 Cross-correlation of callgraph measures

In Section 4.4.5 of Chapter 4 the correlation between the “Depth” (c4) and the

“Width” (c5) metrics was highlighted. Studying the cross-correlation values in

Section E.2 it appears that these measures are strongly correlated in all fourteen

of the programs in this study. This provides strong evidence for the following

observation.

Observation 5.1.2 The callgraphs of functions in Haskell programs generally

grow uniformly in both depth and width.

Apart from the “Depth” (c4) and “Width” (c5) measures there is little con-

sistent strong correlation between any of the callgraph measures. This suggests

that they are probably measuring distinct attributes.

5.1.3 Cross-correlation of distance measures

Examining the correlation between the distance measures in Section E.3, it ap-

pears that in all fourteen of the programs in this study the “Distance by the sum

of the number of source lines” (d7) and the “Distance by the sum of the number of

parse tree nodes” (d10) measures are strongly correlated. Therefore the following

observation can be made.

Observation 5.1.3 Lines in the source code of a Haskell program generally con-

tain similar amounts of program code.

The correlation matrices also show that the “Distance by the sum of the num-

ber of scopes” (d1) and the “Distance by the sum of the number of declarations

in scope” (d4) metrics are strongly correlated in thirteen out of the fourteen pro-

grams. This is not surprising as the number of declarations in scope is necessarily
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likely to increase as the number of scopes increases, however the high degree of

correlation suggests the following observation.

Observation 5.1.4 The number of declarations in scope tends to increase rela-

tively evenly with the number of scopes.

The one program that did not have a high degree of correlation between these

two measures was Haddock. This program had a correlation of 0.5753 between

these two measures, and as such there is still a fair degree of correlation between

them. The Haddock program contains some large pieces of IO monad code, and

these large do blocks may be a reason for the lower correlation.

A large group of the distance measures, consisting of “Distance by the max-

imum number of source lines” (d8), “Distance by the average number of source

lines” (d9), “Distance by the maximum number of parse tree nodes” (d11) and

“Distance by the average number of parse tree nodes” (d12), appears to form a

cluster of correlated metrics in thirteen of the fourteen programs. In the other

program the “Distance by the average number of source lines” (d9) and “Distance

by the average number of parse tree nodes” (d12) were still correlated, as were

“Distance by the maximum number of source lines” (d8) and “Distance by the

maximum number of parse tree nodes” (d11). This observation again shows the

correlation between number of source lines and number of parse tree nodes.

The correlation between the maximum and the average values of these mea-

sures may suggest that distances to called functions tend to be of similar lengths,

but it may equally be a result of the average value naturally increasing with the

maximum value.

This may also account for “Distance by the maximum of the number of dec-

larations in scope” (d5) and “Distance by the average number of declarations in

scope” (d6) being strongly correlated in eleven of the programs, with the remaining

programs still having correlations greater than 0.5 between these two measures,

and “Distance by the maximum number of scopes” (d2) and “Distance by the

average number of scopes” (d3) being strongly correlated in ten of the programs.
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5.1.4 Cross-correlation of pattern measures

In Section 4.1.7 of Chapter 4 the correlation between “Number of pattern vari-

ables” (p1), “Sum of depth of patterns” (p2) and “Pattern size” (p6) was discussed.

Studying the correlation matrices in Section E.4, this correlation appears to hold

across all fourteen of the programs, which emphasises that these measures all

appear to be measuring the size of a pattern.

It is also worth noting that “Maximum depth of patterns” (p3) or “Number of

constructors in pattern” (p5) are often correlated with these measures, indicating

that these measures may also be measuring the size of a pattern.

5.1.5 Cross-correlation of miscellaneous measures

Investigating the miscellaneous measures shows that the “Pathcount” (m1) mea-

sure is not consistently correlated with any other metric. This suggests that the

“Pathcount” (m1) metric is likely to be measuring a distinct attribute.

Looking at the other two miscellaneous measures, “Number of operands” (m2)

and “Number of operators” (m3), shows that they are strongly correlated in thir-

teen of the programs. As has been discussed in Section 4.5.3 of Chapter 4, this is

expected since the two measures form a connected pair.

What is curious, however, is the one program in which these two measures were

not correlated, Crypto. This program includes some modules which contain large

tables of literal values. This will lead to the “Number of operands” (m2) measure

having significantly higher values than the “Number of operators” (m3) measure

for those identifiers, which may be the cause of the lower correlation seen for this

program.

5.1.6 Cross-correlation between different classes of met-

rics

In the previous sections the cross-correlation within the various classes of metrics

has been examined for the fourteen programs. In this section the cross-correlation
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between the different classes of metrics will be examined. Looking at the cross-

correlation tables in Appendix E shows that there are a number of metrics of

different classes which are correlated in at least some of the programs in this

study.

The most consistent correlation between metrics of different classes is between

“Distance by the sum of the number of scopes” (d1) and “Number of pattern

variables” (p1), which are correlated in thirteen of the programs. In ten of those

thirteen programs “Sum of depth of patterns” (p2) is also strongly correlated with

these two measures.

One possible explanation for this correlation is that patterns are often used

where new scopes are introduced, and so the measures will tend to increase to-

gether. The one program that did not exhibit this correlation is the Thih program.

This program contains several declarations that consists of large lists containing

lots of nested function calls. These lists have quite high values for the “Distance

by the sum of the number of scopes” (d1) measure, but only low values, often zero,

for the “Number of pattern variables” (p1) measure because the declarations are

not parameterised and therefore do not use patterns. This might explain the low

correlation value for this program.

In eleven of the programs “Pattern size” (p6) and “Distance by the sum of the

number of scopes” (d1) are strongly correlated. As was described above, this is

probably a consequence of the tendency for patterns to occur where scopes are

introduced.

The “Number of operands” (m2) and “Number of operators” (m3) measures

are correlated with the “Distance by the sum of the number of scopes” (d1)

measure in eleven programs. This suggests that as the size of a function increases,

as indicated by the “Number of operands” (m2) and “Number of operators” (m3)

measures, the number of new scopes introduced in that function increases as well,

causing the “Distance by the sum of the number of scopes” (d1) measure to

increase. This may be because larger functions tend to involve local declarations,

e.g. in a where clause which introduces more scopes. This leads to the following
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observation.

Observation 5.1.5 Large functions tend to include a proportionally greater num-

ber of local declarations than small functions.

This observation may provide an interesting way of targeting refactorings that

lift declarations, since this observation suggest that larger functions might be more

likely to have local declarations worth lifting.

Nine of the programs show a correlation between the “Number of operands”

(m2), “Number of operators” (m3), “Number of pattern variables” (p1), “Sum of

depth of patterns” (p2) and “Pattern size” (p6) measures. This seems to suggest

the following observation.

Observation 5.1.6 The size and complexity of pattern expressions within a func-

tion tends to increase as function size increases.

This may be due to patterns often being part of the left hand side of function

bindings, which will cause the number of patterns to increase as the number of

function bindings increases.

There are also a number of metrics which are correlated less consistently, some

of these are shown here:

• “Outdegree” (c3) and “Distance by the maximum number of scopes” (d2)

are correlated in six of the programs.

• “Number of pattern variables” (p1) and “Distance by the sum of the number

of declarations in scope” (d4) are correlated in six of the programs.

• “Number of pattern variables” (p1) and “Distance by the sum of the number

of source lines” (d7) are correlated in five of the programs.

• “Sum of depth of patterns” (p2) and “Distance by the sum of the number

of declarations in scope” (d4) are correlated in five of the programs.
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Interestingly, the recursion metrics show no correlation with any other class of

metrics in ten of the programs, and only inconsistent correlation in the remaining

four programs. This seems to show that the recursion metrics are measuring a

distinct class of attributes.

5.1.7 Summary

This section has examined the cross-correlation between the various metrics de-

scribed in Sections 4.1 through 4.5 of Chapter 4 on a selection of fourteen programs

collected mainly from the Haskell.org web site.

A number of observations have been made from this work, many of which

confirm those made from studying the Refactoring and Peg Solitaire programs.

For instance, this study provided further evidence to support the observation

made in Section 4.4.5 of Chapter 4 that callgraphs of functions generally grow

uniformly in both depth and width.

The observations of Section 4.1.7 of Chapter 4, in which the correlation be-

tween “Number of pattern variables” (p1), “Sum of depth of patterns” (p2) and

“Pattern size” (p6) was highlighted, are also evident in this study, providing more

weight to the hypothesis that the pattern metrics are generally measuring the size

of a pattern.

Section 4.3 of Chapter 4 observed that non-trivial recursion was quite rare.

This study also agrees with that observation, showing that while trivial recursion

is quite often present in the programs in this study, non-trivial recursion is quite

unusual. Non-trivially recursive functions can be quite complex, and may not be

easily identified by a programmer, so the “Number of non-trivial recursive paths”

(r2) metric could possibly be used to direct a programmers attention to such

functions in order to refactor them into a less complex arrangement.

This study has also shown that the recursion metrics do not show strong

correlation with any of the other classes of metrics, and therefore are likely to be

measuring a distinct attribute of the programs.
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Examination of the distance measures on these programs showed that the dis-

tance metrics mostly exhibited the same clustering of strongly correlated distance

metrics that was seen in Section 4.2.6 of Chapter 4.

Looking at the cross-correlation between different classes of metrics has shown

that “Distance by the sum of the number of scopes” (d1) is often correlated with

the “Number of pattern variables” (p1) and “Pattern size” (p6) metrics. This

was also seen for the Refactoring program in Section 4.6.1 of Chapter 4, and

is probably caused by the tendency for patterns to occur where new scopes are

introduced.

The cross-correlation also seems to suggest that as the size of a function in-

creases, the number of scopes in the function tends to increase, as does the number

or complexity of the pattern expressions contained in the declaration.



CHAPTER 5. TRENDS AND CHARACTERISTICS OF HASKELL METRICS176

5.2 Typical Values of Metrics

So far the correlation between metrics and the number of bug fix changes and the

cross-correlation between the various metrics has been investigated. However, it

is also interesting to consider the actual values of the metrics. If one is to use

these metrics to make decisions about software it is necessary to have an idea of

what values the metrics typically show. In this section the typical values of the

metrics will be discussed. The methodology for this work, and the programs used

for the study were described in Chapter 3.

Appendix F contains tables showing the mean, mode, median and standard

deviation values for each of the metrics for each of the programs discussed in Sec-

tion 5.1. These values give a summary of the metrics and Appendix G presents

histograms of the values of the metrics for each program, providing similar in-

formation pictorially. The remainder of this section is organised in the following

manner.

• Section 5.2.1 discusses the typical values of the pattern metrics.

• Section 5.2.2 examines the typical values of the recursion metrics.

• Section 5.2.3 looks at the typical values of the callgraph metrics.

• Section 5.2.4 studies the typical values of the distance measures.

• Section 5.2.5 explores the typical values of the miscellaneous metrics.

• Section 5.2.6 presents the conclusions that can be drawn from these inves-

tigations into the typical values of the metrics.

5.2.1 Typical values of pattern metrics

The mode values in Table 97 show that generally pattern metrics have very low

values, typically zero or one. The standard deviation values seem to show that
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most of the pattern metrics have quite a small range of values. The main excep-

tions are “Number of pattern variables” (p1), “Sum of depth of patterns” (p2) and

“Pattern size” (p6), with “Pattern size” (p6) having the largest range of values.

The histograms for the pattern metrics show that most of the metrics show

the same behaviour, with most of the metric values being in the first quarter of

the graphs.

5.2.2 Typical values of recursion metrics

Looking at the values in Table 98, it seems that recursive functions are quite rare

because all the metrics have mean and mode values of zero. The histograms for

the “Binary recursion” (r1) measure, shown in Figure 68 show very well that the

majority of the functions in the programs are not recursive. The histograms for

“Number of non-trivial recursive paths” (r2) (Figure 69) shows that non-trivial

recursion is very rare, with the exception of Haddock which contains a machine

generated parser with complex recursive behaviour.

None of the metrics show particularly large standard deviations, with the

exception of “Number of non-trivial recursive paths” (r2), “Number of recursive

paths” (r4), “Sum of lengths of recursive paths” (r5) and “Product of lengths

of recursive paths” (r6) when applied to the Haddock program, and “Sum of

lengths of recursive paths” (r5) and “Product of lengths of recursive paths” (r6)

when applied to the Hat program. Both of these programs are quite large and

contain parsers which tend to have complex recursive behaviour and hence the

lengths of recursive paths in these programs will be larger than those in the other

programs which have much simpler recursive paths.

5.2.3 Typical values of callgraph metrics

The values from the callgraph measurements (Table 99) show that most of the

callgraph metrics have only a small range of values. However the “Width” (c5)
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measure shows a significantly wider range of values than the other callgraph met-

rics, particularly for the six program-processing programs. Likewise, the “Strongly

connected component size” (c1) measure shows a wide range of values for Had-

dock and Hat.

The Haddock program tends to show wide ranges of values because of its

parser, and this can be seen in the histograms (Appendix G) by the large spikes

appearing midway though the graphs. A similar effect may be causing the wider

range of values for the Hat program, which also contains a parser.

The reasons for the increased range of values of the “Width” (c5) measure is

less clear. The histograms show that most of the values are clustered around the

low end of the graphs, but there are a number of outlying values. The reason for

these outlying values is unknown.

5.2.4 Typical values of distance metrics

The first observation of the mode values from Table 100 is that the distance

measures typically show small values, with the largest mode value being eight.

However the mean and standard deviation values show that many of the programs

exhibit quite a large range of values for the metrics.

Looking at the histograms for the distance measures seems to show that spatial

measures, such as “Distance by the maximum number of source lines” (d8) and

“Distance by the maximum number of parse tree nodes” (d11) generally show low

values, while conceptual measures such as “Distance by the maximum number of

scopes” (d2) seem to have a more even spread of values.

This suggests that functions generally use functions that are close to them

in the source code, but which may be conceptually further away. This might

be a result of local declarations in where blocks and let expression. One might

therefore make the following observation.

Observation 5.2.1 The functions used by a single function, foo, will tend to be

located close to foo in the source files.
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5.2.5 Typical values of miscellaneous metrics

Inspecting Table 102 shows that “Pathcount” (m1) values are typically quite low,

with a value of one being the most common, and that the standard deviation is

also typically low, as can be seen in the histograms for this measure shown in

Figure 81. Thus the following observation might be made.

Observation 5.2.2 The complexity of a function is more likely to be in its inter-

action with other functions than in its “local” execution path.

This does, however, mean that functions with higher pathcount values are

likely to have unusual behaviour and are therefore worth examining more closely

for possible refactoring. Thus the pathcount metric may be a useful tool in com-

bination with a visualisation technique such as a source code browser.

One exception in this selection of programs is the Happy program. This

program has high mean and standard deviation values. Investigating the source

code for this program revealed that one function has a high degree of nested

local declarations, and consequently has a high pathcount value. Removing this

function from the measurements produces a mean value of 1.9084 and a standard

deviation value of 1.9129, which brings the Happy program back in line with the

other programs in the selection.

The “Number of operands” (m2) and “Number of operators” (m3) metrics

show mode values of 0.0 in several of the programs. This is caused by modules that

re-export imported identifiers. This is because re-exported symbols are treated

by the metrics as if they were defined in the importing module, but as they are

imported they do not have code in the importing module to be analysed, and

so they receive a value of zero. This allows for a simpler implementation of the

metrics, although a more sophisticated implementation could treat re-exported

identifiers differently.

The mean and standard deviation values for the operand and operator mea-

sures show that there is a reasonably small range of function sizes in the programs.

The one exception to this observation is the Thih program. The large range of
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values in this program are caused by some large data structures representing the

Haskell Prelude module, and other standard Haskell modules, which are statically

constructed in the source code. Some of these data structures consist of hundreds

of lines of code.

5.2.6 Summary

In the preceding sections the typical values of the various metrics have been exam-

ined by looking at the mean, mode, median and standard deviation of the values,

along with the histograms of the metric values, for each of the fourteen programs

chosen from the Haskell.org web site.

These investigations have shown that the metrics generally have values clus-

tered around the low end of their ranges. This might be exploited by implementing

a tool which places a threshold on the metric values, whereby functions with met-

ric values greater than the threshold are indicated to the programmer for manual

inspection, and hence possible refactoring.

It is also worth noting that some of the metrics seem largely unaffected by

program size, such as “Pathcount” (m1), while others such as the semantic dis-

tance measure “Distance by the sum of the number of declarations in scope” (d4)

are particularly sensitive to the program size.

This is important because it is easier to set thresholds for metrics that are

not affected by program size because the threshold is likely to be the same across

most programs, whereas thresholds for metrics which are affected by changes

in program size are more likely to need tuning to the particular program being

examined, although it may also be possible to combine such metrics with another

metric, such as a program size measurement for instance, to nullify the effect of

changes in program size.

The investigation has also shown that only a small proportion of functions

are recursive and only a very small proportion are non-trivially recursive, however

most programs do contain some recursion. This provides more evidence to support

the observations from Section 4.3 of Chapter 4 and Section 5.1.1 of this chapter.
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Examination of the distance measures has shown that typically spatial dis-

tances are low, while conceptual distances tend to have a larger range of values.

One possible explanation for this is that functions might call functions that are

close in the source code, but which might be further away in scope. This locality

of functions may occur because functional programmers often write the functions

in their program to mirror the structure of their data types.

This might imply that programmers tend to group related functions together

in the source code. One obvious example of this is the grouping of functions in

modules, however it may be that this principle extends to functions within a single

module.

As was discussed in Section 4.2.6 of Chapter 4, it may be interesting to use

this hypothesis and attempt to permute source code to produce an arrangement

of the functions in the source code which in some way exhibits a “minimal” set

of distances. Such an arrangement should group together related functions, and

may reveal the extent to which this is already achieved by programmers. This

project is left as future work.
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5.3 Summary

This chapter has extended the work presented in Chapter 4 to examine a wider

selection of programs. This work has shown that some of the metrics are corre-

lated, indicating that the attributes they measure are related. For instance, the

number of patterns in a function is closely related to the number of scopes in the

function. These correlations are summarised in Tables 7 and 8. Furthermore, we

make a number of observations from studying the metrics.

• Observation 5.1.1. The occurrence of non-trivial recursion in Haskell pro-

grams is quite unusual, and appears to be associated with complex program

behaviour. However the occurrence of trivial recursion is common.

• Observation 5.1.2. The callgraphs of functions in Haskell programs generally

grow uniformly in both depth and width. Short and wide, or deep and

narrow callgraphs appear to be unusual.

• Observation 5.1.3. Lines in the source code of a Haskell program generally

contain similar amounts of program code.

• Observation 5.1.4. The number of declarations in scope tends to increase

relatively evenly with the number of scopes.

• Observation 5.1.5. Large functions tend to include a proportionally greater

number of local declarations than small functions.

• Observation 5.1.6. The size and complexity of pattern expressions within a

function tends to increase as function size increases.

• Observation 5.2.1. The functions used by a single function, foo, will tend

to be located close to foo in the source files.

• Observation 5.2.2. The complexity of a function is more likely to be in its

interaction with other functions than in its “local” execution path.



CHAPTER 5. TRENDS AND CHARACTERISTICS OF HASKELL METRICS183

c1
c2

c3
c4

c5
c6

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

d
9

d
10

d
11

d
12

c1
+

+
c2

+
+

c3
+

+
?

c4
+

+
+

+
c5

+
+

+
+

c6
+

+

d
1

+
+

+
+

d
2

?
+

+
+

d
3

+
+

+
d
4

+
+

+
+

d
5

+
+

+
d
6

+
+

+
d
7

+
+

+
+

d
8

+
+

+
+

+
+

+
+

d
9

+
+

+
+

+
+

+
+

d
10

+
+

+
+

d
11

+
+

+
+

+
+

+
+

d
12

+
+

+
+

+
+

+
+

m
1

m
2

+
m

3
+

p
1

+
+

?
?

p
2

+
?

p
3

p
4

p
5

p
6

+
p
7 r1 r2 r3 r4 r5 r6

++ At least 12 out of 14 programs exhibited a correlation of at least ± 0.75
+ At least 9 out of 14 programs exhibited a correlation of at least ± 0.75
? At least 5 out of 14 programs exhibited a correlation of at least ± 0.75

blank Indicates no consistent correlation

Table 7: A summary of the typical correlation between various metrics. Contin-
ued by Table 8 on Page 184. See Appendix A for a key of metric names.



CHAPTER 5. TRENDS AND CHARACTERISTICS OF HASKELL METRICS184

m
1

m
2

m
3

p
1

p
2

p
3

p
4

p
5

p
6

p
7

r1
r2

r3
r4

r5
r6

c1 c2 c3 c4 c5 c6 d
1

+
+

+
+

+
+

+
+

+
d
2

d
3

d
4

?
?

d
5

d
6

d
7

?
d
8

d
9

d
10

d
11

d
12 m
1

+
+

m
2

+
+

+
+

+
+

+
m

3
+

+
+

+
+

+
+

p
1

+
+

+
+

+
+

?
?

+
+

p
2

+
+

+
+

+
+

?
?

+
+

p
3

?
?

+
+

?
p
4

+
+

p
5

?
?

+
+

?
p
6

+
+

+
+

+
+

?
?

+
+

p
7

+
+

r1
+

+
+

+
+

+
+

+
+

+
+

+
r2

+
+

+
+

+
+

+
+

+
+

+
+

r3
+

+
+

+
+

+
+

+
+

+
+

+
r4

+
+

+
+

+
+

+
+

+
+

+
+

r5
+

+
+

+
+

+
+

+
+

+
+

+
r6

+
+

+
+

+
+

+
+

+
+

+
+

++ At least 12 out of 14 programs exhibited a correlation of at least ± 0.75
+ At least 9 out of 14 programs exhibited a correlation of at least ± 0.75
? At least 5 out of 14 programs exhibited a correlation of at least ± 0.75

blank Indicates no consistent correlation
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One of the aims of investigating metrics is to determine ways to identify parts

of a program that require programmer attention. To do this it is necessary to

know what metric values are common, so that it is possible to spot anomalous

values. By looking at the metric values from a range of programs it has been shown

that most functions have metric values at the lower end of the scale, suggesting

that it should be possible to set thresholds above which metric values should be

considered anomalous.

This examination of the values of the metrics has also contradicted part of

the commonly held notion of the “typical” programming style used by functional

programmers. This notion of programming style was discussed at the beginning

of this chapter, but this work has shown that it is rare for functional programmers

to use recursion, and particularly that it is extremely rare for non-trivial recursive

behaviour to be present.

This contradicts the belief that functional programmers often use recursion,

and instead highlights that functional programmers are more likely to use ab-

straction mechanisms. For instance by using polymorphic higher-order functions

such as map and fold to abstract much of the “control” behaviour that one might

normally associate with recursion.

A general observation from the work in both this chapter and that in Chapter

4 is that the metrics can generate a vast amount of data. Because of this it can

be easy to miss an anomalous metric value, or to obtain a skewed picture of the

program by a few unusual values, such as in Section 5.2.5 where one function in

the Happy program caused the mean and standard deviation of the “Pathcount”

metric values to give significantly different overview of the program.

Because of this it would be desirable to have an integrated way of visualising

the metric values to help highlight the pertinent aspects of the data, while reducing

the clutter of the normal values. The visualisation of software and metric data is

explored in Chapters 6 and 7.



Chapter 6

Software Visualisation

As software systems grow larger and legacy systems become increasingly com-

mon, the ability to explore, reverse engineer, and refactor them is becoming ever

more important. To effectively re-engineer or refactor software requires a good

understanding of the program being studied. Tools that automate the refactor-

ing process can help reduce the chance of errors being introduced, but it is likely

that at some point a developer will have to make manual changes, for instance to

add new features. When this happens it is imperative that the developer has a

clear understanding of the software system in order to ensure that changes do not

introduce defects.

Software metrics can help in understanding such large pieces of software by in-

dicating areas of the program with particular properties, however metrics on their

own are not always sufficient. Metrics provide numerical values which summarise

a selection of attributes of a program, but it can be hard to relate these numerical

values to the program code. For instance, a metric might show that a function

has a high degree of coupling, but it may not be clear just from the metric value

why that occurs. One way to increase the usefulness of software metrics is to

combine them with software visualisation systems, which allow other attributes

of a program, such as callgraphs, to be viewed together with the metric data.

Software visualisation may be as simple as pretty printing program source code

or may be a sophisticated abstract view of the software system. Such visualisation

186
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systems may also include extra support for exploring the source code, for instance

by allowing a user to perform queries, such as “highlight all the functions with

a pathcount greater than X” or “highlight all the functions with pathcount less

than X, but with coupling greater than Y”. Queries like this allow the user to

quickly explore, and then focus on, specific properties or parts of the software.

Software visualisation can be considered from two perspectives, as described

by Oudshoorn, Widjaja and Ellershaw in [74]: from the point of view of the

visualisation system and from that of the user. From the system point of view,

desirable properties of visualisation systems are:

• Scalability. Visualisation systems should be able to cope with large amounts

of data, because software systems continue to grow in size.

• Extensibility. Visualisation systems should be flexible, being able to cope

with tasks the original designer had not conceived of and be able to be cus-

tomised to the users’ needs. This is also echoed by Knight and Munro [57],

who acknowledge that the ability for users of the system to have a degree

of control over configuration is likely to lead to greater acceptance and use.

Sidarkeviciute [88] takes this further, stating that users may have their own

highly individual “mental map” of the program being examined. Sidarkevi-

ciute also points out that the potential users of program visualisation tools

are most probably programmers themselves, and may therefore be capable of

specifying their own visualisation systems. Additionally, programmers may

be happy using a programmatic interface to specify their own visualisation

systems, rather than using a graphical user interface to construct their cus-

tom visualisation systems. However, it should not be necessary for users

to have to customise the system to perform common tasks. Customisation

should only be needed for specialist or unusual tasks.

Although extensibility may require increased effort from implementors of

visualisation systems, the effort may be rewarded by greater usability and
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usefulness, and therefore greater acceptance of the system by the user com-

munity.

• Portability. Being able to view visualisations without being limited to a

single platform can increase the usefulness and popularity of visualisation

systems. A tool must be exceedingly compelling if it is to entice end users

to switch between platforms.

From the perspective of the user, desirable properties of visualisation systems

include:

• Minimal disturbance to users program. This applies to both the program

performance and to the source code of the program, so that the tool works

with existing source code without that code needing alteration.

• Little or no programmer intervention. The programmer should be able to

just apply the tool to their code. Acceptable programmer intervention might

include instructing the visualisation system of the location of source files that

are not directly part of the program being investigated, such as library code.

• Handle real-world problems. This normally means being able to handle large

software systems with many thousands of lines of code in multiple files, but

visualisation systems should also be designed to address a real need, such

as finding unreachable “dead code”, or finding parts of a program that are

highly coupled and therefore inflexible.

Sidarkeviciute [88] states that most common visualisation tools are code view-

ers. Code viewers are tools which provide the user with a fixed set of graphical

presentations of an input program. A selection of code viewers are described later

in this chapter. Various graphical presentations may be used by code viewers,

such as:

• Graph structures, such as control flow, data flow, callgraphs and module

dependency graphs.
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• Backward and forward slicers, which show the minimal subset of the code

that affects a set of variables, known as backward slicing, or the minimal

subset of code affected by a set of variables, known as forward slicing.

• Dicers, which show the minimal subset of code that can be executed when

a given assertion is true.

• Dead code views, which show “unreachable” code which therefore cannot be

executed. This is often useful in legacy systems where sections of code can

become unreachable as changes are made to the system.

Storey, Fracchia and Mueller [91] also identify that software exploration tools

have much in common with hypermedia document browsers, such as web browsers.

This observation influences some of the work in Chapter 7 of this thesis. Knight

[53] also highlights the importance of being able to switch between high level and

low level views in order to understand how programs work, allowing a programmer

to use the high level view to find interesting places in the program, and then focus

in on them at a low level. The notion of switching between high and low level

view is often encountered in many forms of visualisation.

In [57] Knight and Munro also describe how navigation is important to the

visualisation system because it affects the ease of exploration. Navigation should

be designed into the visualisation system from the start so that the necessary

“signposts” are integrated into the visualisation. If it is added as an afterthought

it may be difficult to create an intuitive method of navigation.

Software visualisation can also be used to help aid understand the dynamic

behaviour of programs. Dynamic behaviour of a program might be captured

using tracing tools such as the Hat system of Chitil, Runciman and Wallace [20].

However, this thesis concentrates on static properties of software. Therefore this

chapter mainly considers visualisation systems for static data and presents some

examples of work using software visualisation, both with and without metrics, to

aid in the understanding of programs. The remainder of this chapter is divided

into the following sections.
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• Section 6.1 discusses ways to gain an overview of a system.

• Section 6.2 examines ways to investigate specific properties of a system.

• Section 6.3 examines ways in which one might visualise time series.

• Section 6.4 discusses how three dimensional visualisations can be used to

overcome the limitations of two dimensional displays.

• Section 6.5 describes existing methods of visualising software systems.

• Section 6.6 summaries the chapter.

6.1 Visualisation for Gaining An Overview

The aim of software visualisation is to enhance a programmer’s ability to under-

stand a software system. Often the complexity of understanding a large software

system is not caused by the low level details but instead by the high level interac-

tions. This might occur where programmers are allocated to their own sub-systems

and have detailed knowledge of those sub-systems, but at the same time they may

be unable to gain a high level overview of how the system is connected.

Similar problems arise in many types of data analysis, where it is difficult to see

low-level details while still being able to spot high level trends. The visualisation

community has developed many ingenious methods of addressing this problem,

many of which may be applicable to visualisation of software. Some of these

methods will be described in the following sections.

• Section 6.1.1 presents ways of providing high level views of a software system.

• Section 6.1.2 describes a common method of simultaneously displaying both

a high level and a low level view.

• Section 6.1.3 introduces some methods of introducing interaction into a vi-

sualisation system, giving the user some degree of control over the views.
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• Section 6.1.4 presents a visualisation method that combines high level views,

low level views and interaction to produce a more exploratory visualisation

system.

6.1.1 Scaling, thumbnail views and greeking

One common method used to gain an overview of data is the use of scaling. By

showing components of a visualisation at a smaller scale, a greater number of

components can be fitted within the bounds of a computer screen. An example of

this might be the use of thumbnail views for browsing an image catalogue. The

small scale thumbnail pictures are used to browse and select an image, and then

a large scale view is used to view that selected thumbnail at the actual size of the

image. This is illustrated in Figure 25.

However, when one considers textual data it is necessary to be aware that

there is a limit to the degree to which text can be scaled before it becomes too

small to be readable. Greeking is a method which does not attempt to display

individual character glyphs at a small scale, but instead displays a single solid

block of colour. This is illustrated in Figure 26. Greeking is a very effective

method for seeing the “shape” of a block of text, and can be augmented by using

different colours to highlight various attributes. Greeking systems like these are

often called pixel representations in software visualisation systems, due to their

use of a single screen pixel to represent a single character of a source file. Pixel

representations are put to good use in systems such as SeeSoft [9] and Tarantula

[29].

6.1.2 Focus + Context

While showing a single high level view of a data set can be very useful, in the

field of software visualisation one often wishes to focus in on a particular area or

aspect of the system being examined.

A common way in which this can be achieved is called focus + context. In
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(a) Viewing images at a small scale

(b) Viewing images at a large scale

Figure 25: An example of the use of scaling in an image browser, showing both
a small scale (a) and a large (b) scale view.

for(f=0; f < 10; f++) {
x = doSomethingWith(f);
y = someFunctionOf(x);
displayResult(x,y);

}

Figure 26: Example of greeked text.
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Figure 27: An example of a focus + context visualisation in SeeSoft.

such a system a high level view is used to provide the context and some method

of selecting the focus of attention is provided, such as a cursor. The currently

focused item is then displayed as a low level view on the same screen. Such a

system allows a user to scan a high level overview for anomalies and quickly focus

on them. An example of the use of a focus + context visualisation is shown in

Figure 27.

Focus + Context views are particularly suited to cases where one needs to see

low level details, while simultaneously being able to view the high level details, and

when combined with a pixel representation view, can make an effective system to

navigate the source text of a program, as can be seen in Figure 27 which illustrates

part of the SeeSoft [9] system.
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Figure 28: Example of a fisheye lens over text.

6.1.3 Zooming and fisheye lenses

Closely related to both the focus + context and the scaling systems described pre-

viously is the notion of zooming. Zooming is the process of dynamically adjusting

the scaling of the components in a visualisation system. Zooming differs from

focus + context views because one does not see a high level (small scale) view

simultaneously with a low level (large scale) view as separate items, but instead

one only sees a single view at a specific scale. The most common use of zooming

is in image manipulation programs, which allow the user to zoom in to or out of

an image, but not to see two levels of magnification at the same time.

Zooming is a feature that allows a user to adjust the scale of a visualisation to

best suit their needs for seeing enough detail without being overwhelmed, however

it suffers from not simultaneously showing a high level overview. This can be ad-

dressed by incorporating zooming into a focus + context system, or by displaying

multiple independent windows at different scales.

An alternative method of addressing the focus + context issue when using

zooming is to use fisheye lenses. A fisheye lens has varying magnification, or

zoom, across its dimensions, with the greatest magnification at its centre, and

reducing towards its edges. This is illustrated in Figure 28.

A fisheye system typically lets a user move the lens over a high level view, and

thus the user can see both an overview and detail at the same time.
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Figure 29: An example of the Mac OS X Dock system using fisheye lenses. Note
the sizes of the icons change as the mouse cursor is moved.

Fisheye systems have been used in many visualisation systems, but perhaps

their most recent claim to fame is its use in the magnification feature of Apple

Computer’s Mac OS X Dock system [5] which is used to show the running appli-

cations in their operating system. The Mac OS X Dock is illustrated in Figure

29.

6.1.4 Perspective wall

The perspective wall, first implemented by Mackinlay and his co-workers [63], is a

similar idea to fisheye lenses. Consider the data to be visualised as a wall. The

viewer sees a central section of a wall shown at full scale, with the rest of the

wall, to the left and right, tapering off into the background in such a way that

the whole of the wall is still visible. The user can scroll along the wall, with the

selected part of the wall always being shown in the centre of the screen at full

scale. This is illustrated in Figure 30.

The perspective wall thus allows a part of the data to be focused, while the

remainder of the data can be viewed from a higher level. The perspective wall

is in some ways like a fisheye lens whose magnification changes in the horizontal

direction, but is constant in the vertical direction.

Despite the perspective wall most commonly being arranged in a horizontal

manner, scrolling left and right, there is no reason why it cannot be used in a
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Figure 30: Example of perspective wall.

vertical orientation, for instance to scroll through source code listings.

6.2 Visualisation for Seeing Specifics: Dynamic

Queries

Section 6.1 presented methods of simultaneously showing high level overviews and

low level details. The attraction of such systems is that a user can quickly browse

the high level view to find interesting or anomalous points on which to focus their

attention. However, in practice the high level views may contain large amounts of

data, much of which may be uninteresting, or which can obscure the points that

one may be searching for.

One way to reduce the amount of extraneous information a user must examine

is to use filtering operations prior to visualisation, however this can be quite rigid

and inflexible, and can inhibit the exploration of the data. For instance, one

might decide to filter out those values below a certain threshold. If subsequently

the visualisation shows that the threshold is set too low or too high it is then

necessary to modify and re-apply the filter and then restart the visualisation.

A more flexible approach is to incorporate the filtering into the visualisation

such that the user can dynamically alter the filter and therefore adjust what is

displayed on screen in real time. The notion of such dynamic queries was first

discussed by Williamson and Shneiderman [102] in their Homefinder system, illus-

trated in Figure 31, and was later adopted by the FilmFinder system of Ahlberg
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Figure 31: The Homefinder system of Wiiliamson and Shneiderman.

and Shneiderman [3], illustrated in Figure 32.

Homefinder is a system that plots the locations of houses for sale on a map,

based on a customers dynamic query. The query, or filter, selects the houses to

display, and is adjusted by means of slider controls, which are used to select the

range of values of various attributes of the houses, such as price, number of bed

rooms, distance to work, etc. The system automatically updates the map display

as the sliders are dragged.

Such as system can provide a very powerful mechanism for a user to quickly

filter out the uninteresting items and focus on the important aspects, and has

been used in many data visualisation systems. Dynamic queries have also been

used to good effect in software visualisation systems such as SeeSoft [9] to control

the range of values in a colour scale that are displayed, for example, displaying

only values in the red portion of the colour scale. SeeSoft is described in greater
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Figure 32: The FilmFinder system of Ahlberg and Shneiderman.
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detail later in Section 6.5.2.

6.3 Visualising Time

So far this chapter has concentrated on general concepts of visualisation and how

they relate to software visualisation, but has dealt little with specifics. One specific

concept not dealt with so far is that of displaying time sequences.

It is often interesting to examine how a piece of software has changed over

time, for instance, to discover how a module has changed over time and which

changes made it more complex. It is not clear what constitutes the best method

of incorporating such temporal ideas into a visualisation system, however there

are a number of possibilities which will be discussed in this section in two parts.

Section 6.3.1 examines using animation, while Section 6.3.2 presents an alternative

method.

6.3.1 Animation

One obvious method of presenting time in a visualisation system is to use anima-

tion, where each time “slot” may be presented as a single frame of the animation.

It is important to realise here that time may not necessarily be clock time but

may be, for instance, iterations of an algorithm in algorithm animation, or bytes

of memory allocated in a memory management visualisation tool, such as GCSpy

[50], a tool for visualising the behaviour of garbage collection algorithms in Java

virtual machines, which is illustrated in Figure 33.

Animation is particularly useful where the degree of difference between two

consecutive frames of the animation is small enough that a user can still see what

the changes have affected. The usefulness of animation breaks down when the

amount of change is so great the user can no longer recognise common features

between the frames, and therefore each frame may just as well be a different

visualisation.

This can be a particular problem for “arcs and nodes” style graph displays,
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Figure 33: The GCSpy system by Jones and Printezis.

such as program callgraphs, where the addition or subtraction of only a small

number of nodes or arcs to the graph structure can result in a very different layout

of the graph, even though the change may have little effect on the complexity of

the program. For this reason, using animation to depict how the callgraph of a

program changes over time may not be effective unless significant effort is applied

to maintaining as much of the layout as possible between frames of the animation.

Despite this problem, sometimes a large change between frames can be useful as

an indication that something unusual or untoward has happened.

6.3.2 Bracketing

As was stated in the previous section, the effectiveness of animation is reduced

when there is too much change between frames of the animation, and this is

a particular problem for graph representations. One way in which this can be

addressed is the notion of bracketing, introduced by Roberts in [82] and illustrated

in Figure 34. Bracketing takes its inspiration from the photographic technique of

exposure bracketing.
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Figure 34: A bracketing visualisation by Roberts.
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The basic idea of bracketing is to present a “current” view and two alternative

views. For viewing time sequences, these two extra views would be the previous

time slot and the next time slot. In some ways this technique is an extension of

the focus + context ideas, with the “current” view providing the focus and the

two extra views providing the context.

Bracketing addresses the problems of animation by allowing the user to visu-

ally compare adjacent frames of the animation in order to see what has changed.

Although current bracketing systems show two views side by side for compari-

son, it might also be possible to overlay them. This may make it easier to spot

small changes, but may make it harder to understand large changes if the display

becomes “messy” and confused.

Bracketing can also be combined with dynamic queries to adjust the “width”

of the bracketing, for instance by showing the Nth previous and next frames, with

the width adjusted using a sliding control that the user can drag.

Bracketing is a very intuitive method of allowing a user to browse through

a time sequence, and can be combined with animation to provide the positive

benefits of both techniques.

6.4 The Use (and Abuse) of 3D

In [55], Knight and Munro highlight how the size and complexity of many modern

and legacy software systems often show the shortcomings of graph structured

visualisations, such as callgraph displays, because the cluttered and confusing

displays they generate when attempting to layout the large number of elements.

While traditionally three dimensional graphics have been expensive and dif-

ficult to work with, cheap high performance hardware-accelerated three dimen-

sional graphics has become increasingly widespread in recent years and is now

available on many desktop PC’s and even laptop computers. Because of this it

seems feasible that practical visualisation systems could move away from some of

the constraints of two dimensional views. However, three dimensional views must
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Figure 35: An example of a Cone-Tree visualisation.

still be rendered onto a two dimensional computer screen, and as such pose inter-

esting questions about issues such as navigation and how to avoid views becoming

cluttered. Systems such as VRML [43] browsers may help provide navigation fa-

cilities, but consideration must still be given to how this might be integrated into

the visualisation.

While attempts have been made to transfer two dimensional graph views such

as callgraphs or inheritance trees into a three dimensional space, for instance

the work by Robertson, Mackinlay and Card on Cone-Trees [83] which is illus-

trated in Figure 35, it has been shown by Young and Munro [105] and Knight

and Munro [57] that in most cases this does not produce effective and usable vi-

sualisations because the use of the third dimensional must still be rendered into

a two dimensional screen and therefore tends to add clutter, rather than useful

information. Instead attention has focused upon exploiting the third dimension

by either producing different abstract representations, discussed below in Section

6.4.1, or generating real world views, examined in Section 6.4.2.
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6.4.1 Abstract views

Because two dimensional graph techniques do not scale well to three dimensions,

some effort has been spent on devising other abstract methods of presenting in-

formation about software.

Young and Munro [105] and Young [104] describe a visualisation based around

three dimensional geometric shapes such as cubes and cylinders. Their system

consists of two parts, CallStax and FileVis, which can be combined into a single

visualisation system.

CallStax, illustrated in Figure 36, is used to display the calling structure of a

program written in C, and so is essentially an alternative to callgraphs. CallStax

represents calling paths through a program as stacks of coloured blocks. FileVis,

illustrated in Figure 37, is a visualisation that shows individual source code files

as platforms floating in a three dimensional space. Each function in a file is

represented as a block on the platform representing the file. When viewing from

a distance, blocks on a platform show two attributes of their function, the length

of the function and its complexity relative to all other functions in the program.

Length is represented by adjusting the height of a block, while complexity is

indicated by adjusting the colour. When viewed from a short distance, blocks

are modified to show extra information such as a breakdown of the lines of code,

comments and blank lines in the function.

However, CallStax and FileVis are so abstract that it can sometimes be difficult

to relate the visualisation to the source code. Additionally, it is still not clear that

the system scales well.

A more recent visualisation technique presented by Simon, Steinbrücknet and

Lewerentz in [89] is less abstract and less confusing. Their system, illustrated in

Figure 38, is used to aid refactoring of software systems by moving methods and

attributes between classes of a Java program, such that methods and attributes

are contained in the class to which they are most related.

Their system uses a cohesion metric to measure the “distance” between the
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Figure 36: An example of the CallStax visualisation system.

Figure 37: An example of the FileVis visualisation system, showing a file con-
taining some low-detail function representations.
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Figure 38: An illustration of visualising distance metrics by Simon, Steinbrücknet
and Lewerentz.
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methods and attributes of a Java program. It then uses a spring embedder to

layout spheres and cubes, representing methods and attributes respectively, in a

three dimensional VRML world. All elements are coloured according to the class

to which they belong, for instance, all methods and attributes of class Foo might

be green, while those of class Bar may be blue.

This visualisation system will show methods and attributes that are closely

related as clusters of spheres and cubes. The most useful aspect of this display

is that one can instantly see if a method or attribute should be moved between

classes, because this will show up as a differently coloured element amongst a

group of elements of a common colour. In an ideal system, in which methods and

attributes which are related are grouped in common classes, the elements of the

visualisation would be clustered in distinct groups, and each group would consist

of elements of only a single colour.

This visualisation system can be very useful in small systems but suffers, as

many software visualisation techniques do, from problems with scalability. The

display can quickly become cluttered and hard to read as the number of classes,

methods and attributes increases. This is avoided to some extent by allowing the

user to select the classes to inspect, thereby limiting the amount of information

displayed, however it is not clear if limiting the classes in this way reduces the

usefulness of the system by possibly hiding interesting relationships between items

in the diagram and items which have been excluded. Other methods of address-

ing scalability issues include the use of filtering techniques or dynamic queries, as

discussed in Section 6.2. The issue of scalability is a general problem when at-

tempting to visualise complex hierarchical data, and requires careful consideration

when designing a visualisation system.

6.4.2 Real-world views

A problem with abstract views of software is that they are sometimes so abstract

that it requires effort to relate the visualisation to the artifacts being examined.

One way to avoid this problem is to attempt to represent the artifacts being
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Figure 39: An example of the Software World system by Knight and Munro.

examined as a real-world scene.

One such example of using real-world visualisation is Software World, de-

scribed in more detail by Knight and Munro in [54, 55, 56] and illustrated in

Figure 39. Software World is a system to display Java source code as virtual

worlds depicting buildings, districts, cities, and at the highest level, atlas views.

The various elements of Software World represent the source code at varying lev-

els of granularity, with buildings representing methods, in which the number of

doors and windows on the buildings represent the number of local variables and

parameters respectively, districts representing classes, cities representing packages

of classes and atlas views showing the whole program.

Visualisation systems such as Software World show how it is possible to rep-

resent software systems in three dimensions without resorting to obscure abstract

representations. Questions still remain about the scalability and the ease of nav-

igation of such systems, but these are issues that affect all visualisation systems,

and are acknowledged by Knight and Munro in [57].
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6.5 Visualising Software

The previous sections of this chapter have presented some basic concepts and ideas

relating to software visualisation. These concepts and ideas have not remained

purely theoretical, but have been implemented in real systems. A selection of

these systems are presented in the remainder of this chapter. Several of these

systems also show how visualisation systems can enhance the usefulness of software

measurement techniques. The rest of this section consists of the following parts.

• Section 6.5.1 discusses SeeSys, a system that displays hierarchical data in a

space efficient manner.

• Section 6.5.2 explores SeeSoft, a descendent of SeeSys that introduced many

visualisation techniques to software visualisation.

• Section 6.5.3 presents a system for exploring test case usage in software

systems, using some of the ideas from SeeSoft.

• Section 6.5.4 presents methods for displaying large amount of data in a small

area using aliasing to merge data points.

• Section 6.5.5 shows how software metrics can be incorporated into graph-

style visualisations.

• Section 6.5.6 shows how metrics can be integrated into a tree visualisation

in a flexible manner using fisheye lenses.

• Section 6.5.7 presents a system that allows user scripted actions to control

and adjust the visualisation of metric values.

6.5.1 Space-Filling software visualisation

When applied to production-sized systems, routines for producing flow charts,

function callgraphs, and structure diagrams often break down because the display
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Figure 40: An illustration of SeeSys by Baker and Eick.

becomes too complicated and illegible due to the complex nature of the interac-

tions they are modelling.

In [8] Baker and Eick developed a space-filling technique for displaying source

code related software statistics, such as metrics, by visualising program source

code in files, directories and subsystems. Their system, SeeSys, is based on the

work of Johnson and Shneiderman [49] on using tree maps to show hierarchical

data.

SeeSys, illustrated in Example 40, represents the entire software system as

rectangles on screen, with each rectangle representing a separate sub-system. The

area of each of the rectangles is proportional to some metric taken from the cor-

responding sub-system.
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Each rectangle is further partitioned vertically, with each partition represent-

ing a directory in the sub-system, and the area of the partition being determined

by a metric taken from the directory.

This system allows for a straight-forward visual comparison of directories

within a sub-system because the area of each visual component is always propor-

tional to the metric value for the corresponding software component. Additional

information can be presented by vertically filling each directory rectangle with a

colour.

To further aid exploration, SeeSys also supports zooming to view a single

sub-system. In this view each directory rectangle is horizontally partitioned to

represent the files within that directory. Once again the area of the partitions is

proportional to some attribute of the corresponding file.

This technique provides a hierarchical view that immediately relates files to

their directories and directories to their sub-systems, and colour filling allows

outlying values to be quickly identified.

In visualising large software systems, it is often important to utilise screen real-

estate efficiently. Objects placed on the screen must be large enough to convey

information, but small enough to allow room for many other objects. SeeSys does

this by placing rectangles next to one another in such a way that 100% of the

display area is utilised. This has a small drawback when new elements are added

to a program, which can cause the layout of objects in the visualisation to change.

However, this is a problem with many visualisation techniques that use layout

engines.

6.5.2 SeeSoft

As software grows larger, the need for some way to visualise data about such

software increases. An often cited work on software visualisation is that of Ball

and Eick [9]. They describe their visualisation tool, SeeSoft, and identify three

basic properties of software which need to be visualised:
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    -- And finally setup the IORef for the
    st <- newIORef (GLGraphState 0 bbArr edgeArr

    -- Setup the windows we need.
    -- The graph layout code is a bit tight wi
    -- bounding box, so we'll add some extra
    let (_,_,w,h) = boundingBox lgr
        bbW       = w + 18
        bbH       = h + 10
        -- Now calculate how big we can make
        gsubW = wW - 11
        gsubH = wH - 11

    -- Create a container window that will hold
    widContWin <- createSubWindow pWin (WindowP
    setDisplayCallback $
      (do
        putStrLn "widContWin display: Start"
        pushWindow
        setWindow widContWin
        clear [ColorBufferBit]
        swapBuffers
        popWindow
        putStrLn "widContWin display: End"
      )

    -- Create the window in which the graph
    grphCanvasWin <- createSubWindow widContWin

    setWindow widContWin
    -- Create any necessary scrollbars
    xScroll <- newScrollBarWidget $ ScrollBar
      (\x ->
        do
          gST <- readIORef $ st
          (_,y) <- return $ graphScrollOffset
            writeIORef st $ gST { graphScrollOffset
          postWindowRedisplay grphCanvasWin
      )
    moveWidget xScroll (WindowPosition 0 (fromInteg

-- Create a container window
widContWin <- createSubWindow pWin
setDisplayCallback $
  (do
    putStrLn "widContWin display: Start"
    pushWindow
    setWindow widContWin
    clear [ColorBufferBit]
    swapBuffers
    popWindow
    putStrLn "widContWin display: End"
  )

Figure 41: An illustration of the SeeSoft line representation.

• Software structure. This is generally represented using directed graphs.

• Run-time behaviour. Algorithm animation generally uses graphical repre-

sentations of data structures and motion.

• The code itself. Pretty printers are basic and widely used.

The general strategy for visualisation of this data has been to decompose

the program into modules and visualise each module separately. This tends to

lose the bigger picture of how the modules interact. SeeSoft uses four different

representations of programs:

• Line Representation. The screen is divided into three panels. Each panel

displays the program text at progressively smaller scales. The left hand

panel shows the program text at normal size, the middle panel shows the

text at the smallest font size that is still readable, and the right hand panel

shows the program text such that each line is represented by an appropriate

line of pixels. In each panel, the text is colour coded. For example, if

visualising code age, new code may be red, old code may be green. This

three-part view is illustrated in Figure 41.

• Pixel Representation. In this representation each line of code is represented

by a colour coded single pixel, or a small number of pixels, which are ordered
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Figure 42: An illustration of the SeeSoft pixel representation.

left to right in rows within a column. This is illustrated in Figure 42. The

ordering may be on either the line’s position in the source file or the line’s

colour. Pixel representations are often used as a scroll bar for other visuali-

sation system such as pretty printers. Systems that use pixel representations

in this manner are described later in Chapter 7 of this thesis.

• File Summary Representation. This representation displays file-level statis-

tics, and is illustrated in Figure 43. Each file is represented as a rectangle.

Each rectangle may be one of four heights representing file size as measured

by lines of code. Having only four heights ensures all files are visible, re-

gardless of their size. Within each rectangle other representations, such as

pixel representations, may be used to summarise the files contents.

• Hierarchical Representation. This representation is used to represent hier-

archically stored systems. It uses a generalisation of a pie-chart called a

tree-map. In a tree-map a square is divided into rectangles, with each rect-

angle representing a sub-system or directory. Each rectangle is proportioned

to match the size of the code within that subsystem. This method was orig-

inally used by the SeeSys system, which was described earlier in Section
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Figure 43: An example of the SeeSoft File Summary Representation.
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6.5.1.

Further examples of the representations provided by SeeSoft are presented by

Ball and Eick [9].

One of the problems of pixel and line views is that they can become quite

busy when applied to large systems, making it harder to spot patterns within the

display. To combat this a dynamic query system was used to allow the user to

adjust the colour scale and turn on or off specific colour ranges, thereby reducing

display clutter. The system also includes an intersection operation. This allows a

user to, for example, show the bug fixing code written by a specific programmer by

selecting a programmer and switching the visualisation to use a “bug fix count”

metric to control the colour scale. The intersection operation allows for many

interesting visualisation combinations to be achieved. A particularly interesting

combination is to colour code program text by programmer. “Rainbow” files,

those that contain many colours, will have been modified by many programmers

suggestion that there have been many errors, or that the code is heavily coupled

to other modules, and that the code may therefore benefit from re-engineering.

6.5.3 Tarantula

Eagan and his co-workers [29] have used some of the ideas from SeeSoft and the

notion of dynamic queries in their Tarantula system, which is illustrated in Figure

44. Tarantula is a system that uses the line representation style used in SeeSoft

to allow developers to quickly see which source lines have been executed by test

cases. Source lines are colour coded to depict whether they have been executed

only by passed tests, failed tests, no test or a mixture. Tarantula has several

modes of operation which are described below.

• Default. In this mode, the source lines are simply shown in grey. No lines

are colour coded.

• Discrete. This mode colour codes source lines in one of four colours. A line

is coded grey if it is not executed by the test cases, green if it is executed
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Figure 44: An example of the Tarantula system by Eagan, Harrold, Jones and
Stasko.

only by test cases that were passed, red if it is executed only by test cases

that failed and yellow if it is executed by a mixture of passed and failed test

cases.

• Continuous. This is the most complex mode of operation. In this mode

all executed lines are rendered in a spectrum from red to green and with

varying brightness. The hue of a line is determined by the percentage of the

tests executing the line that failed and the percentage of tests executing the

line that passed. The brightness of the line is determined by the greater of

the two percentages. This results in lines that have either passed all their

tests or have failed all their tests being displayed at full brightness, while

lines that have passed half their tests and failed the other half would be

shown at half brightness.

• Passes, Fails and Mixed. In these three modes only the listed lines are shown.

For instance in Passes mode only those lines executed in test cases that were

passed are shown. In each mode, the brightness of the lines is determined

by the percentage of test cases that execute the line. For example lines
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(a) A graph of a neural network shown without the use of an Information Mural

(b) A graph of a neural network shown using an Information Mural

Figure 45: An example of data shown with and without the use of the information
mural technique.

executed by all failed test are bright red, while lines executed by only a

small percentage of failed tests are dark red.

6.5.4 Information mural

An interesting variation of the SeeSoft work is the information mural which is

described in detail by Jerding and Stasko in [48]. Information murals provide a

technique in which large data sets are represented in miniature using attributes

such as greyscale shading, intensity, colour, and pixel size along with anti-aliasing.

This is illustrated in Figure 45.

One problem which occurs when displaying large data sets is the limited size

of a computer’s screen. It is common to scale the data set down to the size of

the screen, but this can result in many data points being mapped to the same

screen pixel. If this occurs, some information will be lost because it will not be

apparent how many data points map to the same pixel. This is called aliasing.

Information murals attempt to solve this problem by adjusting the intensity of
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pixels to indicate the number of data points mapped to the individual pixels.

Information murals can be combined with the line view from SeeSoft to provide

even greater compression. SeeSoft’s line representation requires one line of pixels

per text line which for large files or small screens may not be available. Using an

information mural allows this to be scaled into the available number of pixels.

This use of information murals is particularly useful where pixel representa-

tions are used as scroll bars in software visualisation systems. The information

mural technique allows the pixel representation to be scaled to the available screen

space with only minimal information loss. Information murals have also been used

to enhance graph displays such as callgraphs. When there are many overlapping

edges in a callgraph it can become difficult to trace the individual edges, or even

to see groups of edges. Using an information mural technique to draw edges as

a greyscale can show much greater detail in these hard to read areas by showing

groups of edges that follow similar paths brighter than individual paths. This can

be seen in Figure 45. Jerding and Stasko illustrate many such uses of information

murals in [48].

The information mural does have some limitations however. Information mu-

rals use greyscale shading to indicate density. It can be difficult for humans to

distinguish between fine variations of greyscale, however, when colour is used dis-

tinguishing density can be even harder, because colour information is better suited

to categorised data. However, it can still be difficult to spot small amounts of one

colour amongst large amounts of a different colour. For these reasons it is impor-

tant to carefully choose the colours or hues that will be used, in order to maximise

the clarity of the display.

6.5.5 Graph display of software

In [25] Demeyer and others show how combining simple, easy to implement soft-

ware metrics with inheritance graphs can significantly help understanding of such

legacy systems. Figure 46 illustrates one of their systems which represents classes

as nodes and inheritance relationships as edges. They claim each node in a graph
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Figure 46: An example of graph display of software in which node width, height
and colour are all used to indicate different attributes.

can simultaneously display up to five different metric values by adjusting the

height, width, x and y positions and colour. Zooming and scaling can be used

to focus on interesting parts of the graphs. In order to use the x and y position

of nodes to display metric values it is necessary that there is an absolute fixed

origin in the display system, and this rules out some layout systems. It is also

interesting to note that they do not offer an example of a layout system in which

it could be used.

Although it is not clear from their work whether adding five different attributes

to each node of a graph actual increases understanding, their work does highlight

that combining software metrics with visualisation techniques increases the power

and usefulness of the metrics.

6.5.6 Software visualisation using C++ lenses

In [18] Cain and McCrindle present a class inheritance hierarchy browsing tool for

C++ programs, utilising a lens technique. Their tool presents a class inheritance

hierarchy as a tree, with the names of the classes appearing at the nodes of the

tree as textual labels.

Their system, illustrated in Figure 47, then applies various “lenses” to the tree

to adjust the font size of the class name labels. With no lenses applied, all the

class name labels will be displayed in the same font size. By applying a lens to the

tree the class name labels are displayed in a font size that is proportional to the
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Figure 47: An illustration of the lens technique used by Cain and McCrindle.

importance of the class, as defined by the chosen lens, such that more important

items are displayed in larger text than those items which are of little interest.

Lenses in this system use software metrics to quantify the importance of the

various classes of the system being examined. Two such lenses are supplied with

the tool.

• Reference Lens. This lens uses a metric that counts the number of references

made anywhere in the program to a particular class. The most visible classes

in the resultant hierarchy diagrams therefore have the most important in-

terfaces in the program. This can allow for interesting observations about

the design of a program. For instance if a base class is drawn small while

its derived classes are drawn large, then the base class may not be acting as

an effective interface and the dependencies are on the wrong objects.

• Uses Lens. This lens is used to answer the question “How easy will this

class be to reuse in another setting?” and uses a coupling metric to rate the

importance of a class. If a class is printed in a larger font, then it is tightly

coupled with other system components and is therefore likely to be difficult

to extract and reuse.
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Figure 48: An illustration of the Shimba system.

6.5.7 Analysing Java software using metrics and visuali-

sation

In [93] Systa, Yu and Muller introduce Shimba, a prototype reverse engineering

environment for analysing Java software.

Shimba, illustrated in Figure 48, supports the exploration, visualisation and

analysis of the structure of a Java program by extracting the program structure

from the byte code of the program being examined. It then uses a graph model

to represent information about software entities, relationships, attributes and the

abstractions over them.

Queries and analyses can be encoded by the user into a script which oper-

ates on the dependency graph and the annotated object-oriented complexity mea-

sures taken from the program being examined. Scripts are a flexible and versatile

method of allowing the user to customise the tool to explore and investigate the
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measures in their own way, but does require the user to learn the scripting lan-

guage.

Shimba extracts software artifacts such as classes, interfaces, methods, con-

structors, variables, and static initialisation blocks directly from the Java class

files. It also extracts dependency information about these artifacts, such as im-

plementation relationships between classes and their interfaces, containment re-

lationships, call relationships, access relationships and assignment relationships.

These artifacts are depicted visually as nodes and directed edges between nodes

in a graph. Different types of nodes or edges are represented by different colours.

Software metric values are added to the display as attribute values. By default,

the attribute values of nodes are not visible, but instead can be examined by

selecting a node and opening a pop-up dialog for that node. This helps to avoid

cluttering the display, but does not make the metric values as clear. However,

this behaviour can be changed by writing the appropriate script.

6.6 Summary

This chapter has discussed the need for methods of visualising and exploring large

and complex software systems, and has presented some of the methods discussed

in the visualisation literature, such as pixel representations which gives a user a

high level overview, and the notion of focus + context to help a user navigate and

explore a system.

Using three dimensions to display visualisations has also been described in this

chapter. Although an interesting area of research, it is not clear that such sys-

tems are significantly more useful than traditional two dimensional visualisations.

This may partly be due to the necessity to render three dimensions on to a two

dimensional computer screen.

This chapter has also presented a selection of visualisation systems, such as the

often cited SeeSoft, and its precursor, SeeSys. SeeSoft shows how it is possible to

display a large amount of information about software systems in a relatively small
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space, and the idea of Information Murals provides a method to further compress

the information, although it does highlight the necessity for very carefully choosing

when to apply colour, and which colours to use.

Further tools, such as Tarantula and Shimba, show how combining visualisa-

tion systems with other program attributes, taken from test cases or metrics, for

instance, can greatly simplify common tasks, such as evaluating the usefulness of

test cases, or of determining when and where to apply re-engineering effort.

Many of the ideas and systems discussed in this chapter could be implemented

for visualising and exploring Haskell programs. The next chapter presents some

initial work in this direction.



Chapter 7

Software Visualisation for Haskell

The work in Chapter 4 presented a selection of metrics for use with Haskell pro-

grams. Metrics can generate a large amount of data for non-trivial programs and

while the results can be manipulated with languages such as perl and UNIX

tools such as sort and grep, it would be desirable to have a method of gaining

an overview of the results without having to consider the actual data.

One common solution to this problem is to use visualisation techniques to

graphically present the data from the metrics. Typically this might involve anno-

tating some form of program visualisation with metric values.

The metrics that have been presented in this thesis all associate numeric mea-

surements with individual functions, and thus all of them are suitable for use in

a visualisation tool. Some of the metrics, such as those that measure attributes

of patterns, capture features of the individual function and may therefore be best

combined with a visualisation technique such as pixel representations. Other

metrics, such as arc-to-node ratio, capture features which are associated with the

interaction between functions and so may be better suited to visualisation using

a callgraph, for instance.

Tools such as QuickCheck [21], an automatic testing tool, and HaRe [60], a

refactoring tool, have been well received by the Haskell community. This suggests

that there is a need for tools which help support an Extreme Programming style

for functional languages such as Haskell. Software metrics in combination with

224
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software visualisation can form a useful addition to this family, for instance, by

acting as “drivers” for the targeted use of other tools.

As was described in Chapter 6, there are various ways in which software may

be visualised. This chapter will present implementations of three basic software

visualisation techniques for Haskell programs.

• Pretty printed source files

• Pixel representation of source files

• Graph representations of module hierarchy and callgraphs

Additionally this chapter presents some methods to visualise the evolution of

a Haskell program over time. The rest of this chapter is divided into the following

sections.

• Section 7.1 presents designs for a number of visualisation techniques which

could be used to increase the usefulness of metrics for Haskell programs.

• Section 7.2 describes how the visualisation systems were implemented, and

discusses some of the problems encountered in doing so.

• Section 7.3 summarises the chapter.

7.1 Designing Visualisation Systems for Haskell

When considering how one might visualise metric values taken from a Haskell pro-

gram, it is important to decide what goals or tasks the visualisation is attempting

to achieve. This work attempts to provide tools for the following tasks which are

common when attempting to comprehend large software systems.

• Exploring a single Haskell module to find functions with unusual metric

values.

• Finding modules in a program which have unusual properties.
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• Browsing the dependencies between functions and modules.

• Investigating the evolution of a module through its development history.

The remainder of this section presents designs for visualisation systems that

address these tasks and is divided into the following parts.

• Section 7.1.1 presents a visualisation technique for exploring a single Haskell

module which uses greeking to reduce the amount of screen space a source

text occupies.

• Section 7.1.2 shows how a large number of files may be examined quickly

and easily using multiple pixel representation views.

• Section 7.1.3 describes a system to explore the module hierarchy and call-

graph of a Haskell program.

• Section 7.1.4 discusses a method of examining how a single source file evolves

and changes over time.

7.1.1 Exploring a single Haskell module

When attempting to inspect a single module of a program it can sometimes be

difficult to maintain a high level overview of the module while still viewing low

level details. Chapter 6 presented a widely used mechanism known as focus +

context for addressing this issue.

The focus + context visualisation presented in this chapter uses a pixel rep-

resentation of the module being explored as a scroll bar for a source code view,

such that clicking on parts of the pixel representation would move the source code

view to the corresponding location. Using a pixel representation rather than a

real scroll bar provides the user with a degree of context, by allowing them to see

the overall “shape” of the source code text.

Metric values are incorporated into the visualisation by colour coding the

source code and pixel representations such that individual functions in the mod-

ule being explored are coloured according to their metric value. The exact colour
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Figure 49: Final version of the focus + context tool. The pathcount metric is
used to colour code functions in this example, although it is of course possible to
use other metrics instead.

scale used is not specified, and should be chosen to suit the individual metric

being examined. An illustration of an implementation of this design is shown in

Figure 49.

This basic visualisation could be further enhanced by the inclusion of a dy-

namic query system for adjusting the colour scale and for hiding common values,

much like that used in SeeSoft and described in Section 6.5.2 of Chapter 6.
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7.1.2 Finding modules in a program which have unusual

properties

Section 7.1.1 presented a visualisation system that allows a single module to be

examined. However one still needs to discover which modules, or files, in a multi-

module program may need closer inspection.

One method of achieving this is to display all the modules simultaneously,

thereby allowing one to visually browse the collection of modules before focusing

on those of interest.

In order to display many modules on screen at once it is necessary to use

techniques such as pixel representations to reduce the amount of screen space

required by each file. SeeSoft, described in Section 6.5.2 of Chapter 6, uses a

system of tiled pixel representations as one method of displaying multiple files.

The representation used by SeeSoft uses variable sized tiles for each source

file, such that long source files have long tiles and short source files have short

tiles. This allows one to immediately see the relative sizes of the files, but can

complicate the layout of the tiles if the system is to fit the maximum number

of files into the available screen space. One drawback of this system is that the

layout of the tiles may change if the sizes of the files change, as tiles may flow

from one column to the next as tiles shrink or expand. The effect is much like

that occurring when adding extra words to a line in a word processor, with other

words moving to different lines as the text is modified. This can make it hard to

find specific files, for instance, when comparing two versions of a program.

In this work, a similar mechanism to SeeSoft is suggested, but in our design

every file is represented by a tile of a fixed maximum size, although tiles smaller

than the maximum size are left unchanged. This allows for a simpler and more

consistent layout of tiles, with files being laid out left to right, top to bottom in

alphabetical order. The fixed maximum size of the tiles means that the layout of

the tiles will only change if files are added or removed, but does mean that very
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small areas of colour may not be seen, due to the scaling of the pixel representa-

tions. If a file cannot be parsed1, it is represented by a rectangle containing a red

cross. Our implementation is illustrated in Figure 50.

Clicking on a rectangle highlights that tile and displays the name of the corre-

sponding module at the bottom of the screen. This mechanism could be extended

in many ways. For instance, the visualisation could display the module name

when the mouse is held over a tile and could use the mouse click to start up a

more focused visualisation tools on the selected module.

This browsing tool also has applications in refactoring [36], where one often

wants to know how much of the program code will be modified by a refactoring

such as changing the name of a function. This tool can provide an effective means

of displaying the areas that will be modified by using a simple binary colour

scheme. Such a display is illustrated in Figure 51, which shows all the functions

which use the map function in red, while displaying all other functions in green.

7.1.3 Browsing the dependencies between functions and

modules

When confronted with large programs written in Haskell it can be hard to obtain

a coherent overview of the structure of the program. Pixel representations can be

useful for exploring metric values, but do not convey the structure of a program.

Callgraphs can provide a convenient way to display structure information,

particularly for functional programming languages in which the function call is

such an important aspect. However a naive use of callgraphs, particularly for large

programs, can suffer from “information overload” because the large number of

functions and calls between them can cause a callgraph to become a jumbled mess

of edges. This section presents a callgraph and module browser which provides

a method of hierarchically browsing callgraphs, which attempts to minimise the

1There are several reasons why a file in a project might not parse, but which do not indicate
an error, such as the use of CPP pre-processor macros in a source file, or the use of language
extensions not supported by our current parser.
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Figure 50: A tool for browsing multiple source files. This example use pathcount
for colour coding the functions in the source files, although other metrics can be
selected.
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Figure 51: A file browser tool showing all functions which use the map function
red. This is achieved using a simple binary metric to indicate usage of the map
function.
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ModFoo

ModBar

fooFunc1

fooFunc2

fooFunc3

barFunc3

barFunc1

barFunc2

Figure 52: Example of a callgraph for two modules.

problem.

Why hierarchical browsing?

One of the first questions that comes to mind when exploring a program is “what

calls what?”. A common way to answer this question is to use callgraphs, as was

shown in Section 6.5 of Chapter 6 of this thesis. Callgraphs represent functions

or other similar objects, such as type constructors, as nodes in a directed graph.

Calls between functions are shown as edges between nodes.

Callgraphs can be expanded to include calls between functions in different

modules of the program. In such a graph it makes sense to partition the graph so

that the nodes that make up functions in a single module are clustered together

in some way. Figure 52 shows an example of this type of callgraph.

However, for complicated or large programs this type of callgraph can quickly

become impossible to read, with many parallel or crossing edges which make it

difficult to trace edges accurately, as shown in Figure 53. This problem was also

described in Section 6.4 of Chapter 6 of this thesis. In these circumstances it makes

sense to split such “flat” callgraphs into a hierarchy of callgraphs, so that it is
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PathCount.hsExpPaths

PathCount.hsExpPaths.RHsDo.stmts PathCounPathCount.hsExpPaths.ec1

Figure 53: Part of a callgraph in which edges are hard to distinguish.

possible to obtain a top level overview while hiding some parts of the callgraph.

Dividing a callgraph

When deciding how to split a callgraph into sections it makes sense to think of

there being two levels. At the top level there is the import graph which is a graph

in which nodes represent modules and edges represent import statements. At a

level below this there are callgraphs for individual modules. Having decided how

to partition the callgraph it is necessary to decide how the irrelevant sections of

the graph may be hidden from view while the relevant sections are highlighted.

One intriguing method is to have the nodes of the import graph expand to

become callgraphs for their corresponding module when clicked upon. However,

if one wishes to view callgraphs for multiple modules simultaneously the graph

display may quickly become messy and difficult to navigate, suffering from the

same problems described earlier in the previous section.

An alternate approach is to have callgraphs for modules appear in separate

windows when their nodes in the import graph are clicked. This allows the call-

graphs of several modules to be displayed simultaneously while leaving the import

graph clear. The disadvantage of this method is that calls between functions in

different modules are not shown as clearly as they may be if all the callgraphs

are displayed in a single graph, as in the previous suggestion. This approach can

also result in display clutter if many windows are opened simultaneously, although

this is some what mitigated by the likelihood of the user already having their own
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method of managing multiple windows, and thus not requiring them to learn a

new method.

The import graph provides a useful high level overview of the structure of a

program, but on its own this can be rather uninformative. To increase the useful-

ness of the import graph the edges can be decorated with additional information,

such as the number of exported or imported symbols, or the number of times

symbols from the imported module are used.

It is important not to provide too much information on the edges, otherwise

important aspects may be lost amongst a mountain of routine information. For

this work the following information was chosen.

• The number of symbols used from an imported module.

• The number of symbols exported from the module.

• The list of symbols involved.

However, this choice is an implementation choice and as such it should be

possible for the user to specify the information they wish to be displayed, for

instance, the user may wish to specify a metric to be used for the decoration.

There is a distinct possibility that the list of symbols could contain too much

information for edge decoration to be viable. Because of this it may be wise to

split the display in two, with the left hand side showing the import graph in

which edges are decorated with labels showing the number of used symbols and

the number of exported symbols, while the right hand side displays the list of

symbol names when an edge was clicked.

Two problems remain with this system. Firstly, adding labels to the edges in

the graph can result in a very cluttered display, and secondly, callgraphs can be-

come hard to interpret when the layout engine places several edges close together.

Solutions to both of these problems are related.

Labels on edges can be avoided by using a system of “mouse overs”, where

holding the mouse cursor over an edge shows the information for that edge. This
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Figure 54: An illustration of mouse overs in the module and callgraph browser.
Edges are colour coded according to how many symbols are imported along them.

is particularly useful if edges are colour to give a brief indication of the importance

of the information they are decorated with.

Mouse overs can also be used to address the second problem, that of groups

of edges being close to each other and therefore hard to trace. As well as showing

information for an edge when the mouse cursor is held over it, it is also possible to

redraw the edge in a thicker line style. This greatly increases the ease of following

the path of the edges, particularly in the case of over lapping or grouped edges.

These two uses of mouse overs greatly increase the usefulness of callgraphs.

The visualisation system outlined in this section is illustrated in Figure 54 in

the Safari web browser.
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7.1.4 Investigating the evolution of a module

Section 7.1.1 presented a design for a visualisation system using pixel represen-

tation views, colour coded with metric values, for exploring a single source file.

This gives a tool that may prove useful for identifying places in a file which show

unusual characteristics, or where one might wish to target development or testing

effort. However, such a system does not easily help answer questions about the

evolution of a source file.

For instance, one might discover that some part of a source file is particularly

complex but it may not be clear why that is the case and so it may be useful to find

out when it became complex, e.g. after feature X was added, or when function Y

was refactored, etc. To answer this type of question with the pixel representation

source code view described in Section 7.1.1 requires manual intervention to gather

all the necessary versions of the source file, and does not allow any easy way

to browse multiple versions. Because of this it is interesting to investigate an

alternative solution.

If the source code of the program being explored is stored in a revision control

system such as CVS [35], it is possible to programatically extract individual ver-

sions of source files. This mechanism can form the basis of a visualisation system,

but careful consideration of how to display these various versions is still needed.

One possible mechanism is to use animation to show each version of a source

file as a frame of an animation. However, as was described in Section 6.3.1 of

Chapter 6, this can often be unhelpful because large changes between version of

a source file can make it hard to keep context between frames of the animation.

Section 6.3.2 of Chapter 6 discussed the technique of bracketing. Bracketing

is a system which addresses the issue of maintaining context between frames of an

animation by extending the idea of focus + context displays. Bracketing systems

show the context in the time sequence by showing the “next” and “previous” time

slots which appear either side of the focused time slot.

The system proposed here and illustrated in Figure 55, brings bracketing and
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focus + context displays closer together by using a focus + context display for

the “current” time slot, and using bracketing to supply the context in the time

sequence.

The currently selected snapshot is displayed as full size text in the top left

pane, and as a larger scale pixel representation in the top right pane. These two

panes provide the same focus + context functionality as the pixel representation

described in Section 7.1.1, allowing the user to jump to particular parts of the file

by clicking in the pixel representation.

The two medium scale pixel representation panes on the lower right hand side

provide the bracketing by displaying the snapshots either side of the currently

selected snapshot in the sequence.

This tool allows one to explore the evolution of a source file, using the time line

at the bottom of the screen to quickly identify where unusual characteristics have

been introduced. One possible future addition to the system might be the ability

to play the sequence of snapshots as an animation, however as was discussed in

Section 6.3.1 of Chapter 6 of this thesis, if there is too much change between

frames of an animation the result can be confusing.

Another feature which may be a useful addition to the system is integration

with a visual diff tool, such as VDiff [101] or TkDiff [72], which displays the

changes between two files. Integration could occur in several ways, for instance,

one might indicate what has changed between successive snapshots by using a

VDiff style display in the timeline frame at the bottom of the screen, or one might

provide a mechanism to select two snapshots, which could then be passed to VDiff

for display.

7.1.5 Summary

The previous sections have outlined mechanisms that can be used to visualise

metrics to address four common tasks that are faced when attempting to under-

stand large software systems. In order to test the ideas discussed in this section

it is necessary to implement these systems. The implementation of these systems,
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Figure 55: A browser for exploring the history of a source file. Functions are
colour coded using the pathcount metric, but any of the Haskell metrics presented
in this thesis can be used.
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and the issues encountered while doing so, are described in the following sections.

7.2 Implementing Visualisation Systems for Haskell

When considering the implementation of software visualisation systems there are

a number of issues that must be considered. These were discussed in detail in

Chapter 6, but are briefly enumerated here for reference.

• Visualisation systems should be scalable to cope with large programs.

• Visualisation systems should be flexible and should not constrain a program-

mer to a specific method of working. Ideally a programmer would be able

to customise the visualisation system to their own needs, as discussed by

Oudshoorn and co-workers [74], Knight and Munro [57], and Sidarkeviciute

[88].

• Visualisation systems should be portable, in order not to impose unnecessary

changes or restrictions upon a programmer.

When examining how visualisation systems can be made flexible, a number

of interesting possibilities arise. In [88] Sidarkeviciute makes the point that the

potential users of program visualisation tools are most probably programmers

themselves, and should therefore be capable of specifying their own visualisation

systems.

An obvious method of leveraging the expertise of the users in order to increase

the flexibility of the visualisation systems is to implement the systems as a library

for a programming language. The programming interface, or API, then provides

the core of a domain specific language in which the programmer can program their

own visualisations. One can then provide a selection of visualisation systems, each

of which would consist of little more than a veneer over the library. If the library

API is well designed and documented, the users can gain tremendous flexibility

to modify or combine existing visualisation systems or to create their own.
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Addressing the portability of a visualisation system consists of two main issues,

the language used to implement the system, and the method of displaying the

results. For instance, one might use a platform independent language, such as Perl,

and generate GIF or PNG images as output. Such a system would be portable,

but may be of limited use due to the lack of user interaction with the output. In

order to accommodate interaction in a visualisation system, it is probable that

the implementation will require the use of some form of GUI toolkit to display

windows, menus and such like, and so it is therefore important that this is taken

into consideration when selecting an implementation language.

Storey, Fracchia and Mueller [91] identify that software exploration tools have

much in common with hypermedia document browsers, such as web browsers. This

raises an interesting question, if software exploration and visualisation tools have

much in common with hypermedia browsers, why not implement visualisation

tools within such a system?

Modern web browsers have numerous means of supporting interactive displays,

such as Flash and SVG plugins, and are supported on many computing platforms.

Using a web browser for the display system removes the issue of cross platform

portability, and so web browser based implementations seem an ideal mechanism.

However, it is important to realise that web browsers were not designed for imple-

menting complex GUI systems, so using web browsers for visualisation tools may

stretch the capabilities of the browsers.

7.2.1 An initial design

Taking the dual issues of portability and flexibility into consideration, along with

the points outlined above, our initial design was to implement the visualisation

systems as a library of Haskell modules, utilising web browsers as the display

medium.

The choice of Haskell as the implementation language has two main advan-

tages. Firstly, Haskell is a cross platform language and secondly, the purpose

of the visualisation systems is to analyse Haskell software and so therefore the
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potential users will be familiar with Haskell. Implementing the library in Haskell

allows users to modify and implement their own custom visualisation systems in

the language they are most familiar with.

7.2.2 Using a web browser as a display engine

The initial goal when implementing the visualisation systems presented in this

chapter was to enable their cross-platform use by leveraging the functionality

provided by web browsers. This was first achieved by generating HTML files and

associated GIF images to produce a static web page. However, as the various

visualisation systems evolved it became necessary to include more sophisticated

use of interaction than could be provided by static HTML. This extra interaction

was first implemented by generating SVG files. SVG [30], or Scalable Vector

Graphics, is a format for displaying vector graphics on the web and is standardised

by the W3C [97], the organisation responsible for standardising the web. SVG

files contain support for interaction using scripting with JavaScript [34] and can

be opened in most common web browsers with the aid of a free plugin.

Unfortunately, although SVG supports a fair degree of interaction it can be

complex to implement user interface elements such as scroll bars, and can suffer

performance problems when working with large numbers of elements. This was

a particular problem when implementing the module browser, discussed later in

Section 7.2.4, which generates graph structures containing many lines and boxes.

Because of these problems it was necessary to investigate alternative methods

of implementing the visualisation systems. The ideal candidate would be a graph-

ical user interface library for Haskell with cross-platform support. Unfortunately

the available libraries at the time of writing are neither sufficiently cross-platform,

nor robust enough for our purposes. It was therefore decided that HOpenGL [76],

a Haskell binding to the OpenGL graphics libraries, would be used.

HOpenGL is cross-platform, robust, and is high performance. Although quite

primitive in its user interface capabilities, it nonetheless provides all the support

needed for the visualisation systems presented in this chapter.
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The issues arising from the implementation of each of the visualisation systems

presented in Section 7.1 will be discussed in the following sections.

7.2.3 Implementing a tool for exploring a single Haskell

module

Section 7.1.1 presented a design for a visualisation tool for exploring a single

module. The implementation uses a pixel representation of a source file as a

scrollbar, providing the context and a pretty printed version of the same source file

to provide the focus. Both the pixel representation and the pretty printed source

code are colour coded, such that each function in the file is coloured according to

its metric value.

This system initially used a web browser as a display engine by generating

a selection of HTML and GIF files and using client side image maps to enable

mouse clicks in the pixel representation GIF image to scroll a source code frame.

This is illustrated in Figure 56 in the Safari browser for Mac OS X. A system such

as this allows one to quickly examine a source file and spot areas with unusual

characteristics in the pixel representation, and then to jump to those sections by

clicking on them.

Later implementations of this system were implemented using HOpenGL in

a modular way, such that the components of the visualisation such as the pixel

representation or the source code frame, could be reused as components of other

systems. The final implementation of this visualisation was illustrated in Figure

49 on page 227.

7.2.4 Implementing a tool for browsing the dependencies

between functions and modules

Section 7.1.3 outlined a visualisation system for browsing the dependencies be-

tween function and modules in a Haskell program. To implement this program the
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Figure 56: First version of the focus + context tool. Colour coding is performed
using the pathcount metric, although other metrics could be used.
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first decision to be made was the choice of layout engine for the graph. The visu-

alisation could have used a system in which nodes that represent modules might

expand or contract to show or hide the details of the modules. However, such

a system can be confusing for the user, and also requires some form of dynamic

graph layout algorithm because it necessarily involves modifying the layout of the

import graph as nodes are expanded or collapsed. The alternative solution put

forward by the design in Section 7.1.3 is to have the callgraphs for the individ-

ual modules appear separately when their corresponding nodes are clicked. This

method requires only a static graph layout.

To implement this system a graph layout tool called dot [39] was used. dot

is part of the GraphViz [31] suite of tools from AT&T Research Labs. dot reads

a description of a graph in the DOT [27] language and can generate several image

formats as output, as well as image map information that can be used within a

web browser. The image map information lists the coordinates of areas of the

graph that may be clicked upon. In this work, that is the coordinates of the edges

and the coordinates of the boxes around the nodes.

To generate the callgraph browsing output the initial version of the visualisa-

tion tool produced a DOT file from the callgraph and used the dot tool to make a

GIF format image of the import graph and to produce image map information.

The tool then used the files generated by dot to produce a collection of HTML

files, each representing the callgraph of one of the modules, which could be loaded

into a web browser to explore the module hierarchy and callgraphs, as illustrated

in Figure 57.

Although this initial version worked reasonably well, as the import graph be-

came larger it became harder to navigate the graph because there was no way of

zooming in or out of the import graph. One of the alternate output formats sup-

ported by dot is Scalable Vector Graphics or SVG [30]. The plugins to view SVG

images in a web browser support zooming and scrolling operations, and SVG also

has built-in support for interaction. By switching to SVG format it was no longer

necessary to generate separate image map information, since this was embedded
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Figure 57: The first version of the module and callgraph browser.

in the SVG file by the dot tool.

While experimenting with import graphs that had a large number of edges it

was noted that the labels attached to the edges often made the graph much more

cluttered. One way to deal with this would be to remove the labels altogether,

but an alternative is to have this information displayed only when the mouse is

hovered over the edges. However, without the labels on the edges it is difficult

to tell which edges are interesting. To combat this, the ratio of used symbols to

exported symbols is used to colour code the edges, although it would, of course,

also be possible to use any suitable metric value to determine the colour.

Additionally, edges connected to module nodes that have not been parsed,

either due to a parse error or being unable to find the modules source file2, are

displayed with a dotted line and edges on which zero symbols are used are dis-

played as a dashed line. This is illustrated in Figure 58.

To provide additional feedback to the user about which edge is currently being

2Many Haskell libraries are distributed in binary form, and as such source code for them may
not be available to the visualisation system.



CHAPTER 7. SOFTWARE VISUALISATION FOR HASKELL 246

Figure 58: The module and callgraph browser implemented in SVG using colour
and line styles.
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inspected, edges become wider when the mouse is hovered over them. These mouse

overs make it significantly easier to inspect parts of the graph where there are

many interwoven edges. This was illustrated in Figure 54 on page 235.

Unfortunately, the mouse overs can cause a large processing overhead when

inspecting non-trivial callgraphs, resulting in significant delays between the mouse

cursor being positioned over an edge and the appropriate mouse over action oc-

curring. More unfortunately, there is no way to optimise such systems in an SVG

document, because these issues are controlled by the implementor of the SVG

plugin.

Because of this, and also because of the use of HOpenGL to implement the

other visualisation systems described in this chapter, the module browser was

reimplemented using HOpenGL which allowed considerable effort to be focused

on reducing the overhead of processing mouse over actions, resulting in a more

responsive user interface. The final version of the module browser is illustrated in

Figures 59, 60 and 61.

When reimplementing the module browser in HOpenGL, the first issue that

needed to be addressed was how to layout and draw the graphs. Previously graph

layout had been performed by the dot tool, which generated all the required

images. However, for the HOpenGL implementation all the line drawing must be

performed using calls to HOpenGL, so it was necessary to find out the coordinates

of the edges and nodes. Fortunately, as well as producing image formats, dot can

produce a description of a graph, annotated with the necessary layout information.

This information can then be read in via a UNIX pipe or an intermediate file and

used to generate HOpenGL calls that will draw the graph.

Functions such as zooming and scrolling are all implemented using calls to the

HOpenGL transform and translate functions, which on supported hardware

may be performed in the graphics card giving very good performance.

The most crucial aspect in determining the user interface responsiveness was

the support for mouse over actions. Delays between the mouse being placed over

an edge, and the appropriate action taking place can make the system seem slow
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(a) Basic import graph view (b) Mouse over on an edge

Figure 59: The final version of the module browser. Colours for the edges are
chosen based on the number of symbols imported and used along those edges. It
would also be possible to use metrics to colour code nodes. The general colour
scheme used, such as the background colour, etc, can be configured to the users
taste and needs.
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Figure 60: Popup window after clicking an edge.
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Figure 61: Popup window after clicking a module node.
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and frustrating to use, and it is therefore important to reduce such delays.

HOpenGL supports mouse over actions using a simple method which involves

placing the graphics pipeline into a selection state, in which drawing commands

are not directed to the screen, but instead are remembered in a list of selection

hits if they draw into pixels under the mouse cursor, or are otherwise ignored. The

list of selection hits can then be retrieved to determine which drawing commands,

and therefore which screen elements such as edges or nodes, are underneath the

cursor at any particular time. This must be repeated every time the mouse cursor

moves in order to update the list of selection hits.

The simplistic use of this mechanism is to redraw the entire graph each time

the mouse moves, in order to determine if the mouse is over an item. This can

result in unacceptable delays between the mouse moving and the appropriate

action taking place. One way to optimise this method is not to draw the entire

graph, but instead only the parts that are likely to be near the mouse cursor.

This is achieved by calculating a bounding box for each edge and node when

they are read from the graph description. When the graph is redrawn due to

the mouse being moved, only those elements whose bounding box contains the

mouse cursor location are drawn. This significantly reduces the number of calls to

the HOpenGL library, and subsequently to the graphics card, resulting in greatly

increased responsiveness of the user interface.

This type of optimisation is impossible to achieve in a format such as SVG

and instead one must rely on the implementors of SVG plugins to perform similar

optimisations. However, the performance problems seen with the module browser

occur only because of the large number of mouse over actions required, which it

appears, is an unusual requirement for SVG and other similar systems. Because

of that, it appears this type of optimisation has not been applied, making formats

such as SVG unsuitable for non-trivial visualisation systems.
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7.2.5 Implementing a tool for investigating the evolution

of a module

Section 7.1.4 discussed a visualisation system using bracketing to study the evo-

lution of a module, which is illustrated in Figure 55. The implementation uses an

interface to the commonly used revision control system CVS [35] to extract “snap-

shots” of the source file from the user’s CVS repository over a specified period

of time. The range of dates and the time between snapshots is configurable from

the command line, or alternatively it is possible to provide a list of “tags”, which

are symbolic names attached to particular versions of the source file in the CVS

repository. Each of these snapshots is displayed as a fixed sized miniature pixel

representation at the bottom of the screen, with the currently selected snapshot

displayed with a red border.

The user interface of the visualisation reuses the HOpenGL components of the

pixel representation focus + context system described in Section 7.2.3. This reuse

highlights the usefulness of implementing the visualisation systems as components

of a library.

7.3 Summary

This chapter has outlined designs for several visualisation systems that can in-

crease the utility of the software metrics that have been presented in previous

chapters, and has shown that software visualisation tools are useful not only for

exploring metric data, but also for answering questions raised during other soft-

ware development activities such as refactoring or testing. There are many areas of

software development that may benefit from such visualisation techniques, for in-

stance, visualisation tools could be combined with refactoring tools such as HaRe

[60], debugging tools such as Hat [20] or testing tools such as QuickCheck [21],

somewhat like the Tarantula tool discussed in Section 6.5.3 of Chapter 6 of this

thesis. The investigation of such combinations is left for future work.
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As well as outlining designs for visualisation systems, this chapter has also

presented a library containing implementations of these tools which can be com-

bined with metrics to allow a programmer to both analyse and explore collections

of files, using the file browser described in Section 7.1.2 and the callgraph and

module browser described in Section 7.1.3, and individual files using the focus +

context tool described in Section 7.1.1 and the bracketing tool described in Section

7.1.4.

The initial goal of implementing the visualisation tools within a web browser

suffered from two main problems

• Combining elements from different visualisation tools, particularly the user

interaction involving the various elements, can be complex within a web

browser. This may be because browsers are not designed in general to

support complex GUI interactions, although this is starting to be addressed

by new standards such as XForms [28].

• The performance of complex displays, such as the callgraph and module

browser tool, can be difficult or impossible to optimise, resulting in poor

user interface performance in some situations.

Because of these problems the tools are currently implemented using the

Haskell OpenGL binding, HOpenGL. While this offers good performance, due

to OpenGL’s support for hardware acceleration and low level API which allows

for further optimisations, the GUI features provided are somewhat primitive. Fu-

ture implementations may use one of the emerging cross platform GUI libraries,

such as wxHaskell [59].



Chapter 8

Conclusions and Further Work

This thesis has discussed the twin topics of software measurement and visualisa-

tion. These topics go hand-in-hand but do not exist in isolation and are instead

part of a wider software development process.

Software measurement is recognised as an important tool in imperative and

object-oriented software development, which is indicated by the large body of re-

search in those areas, and is used in practice by many companies, as was discussed

in Chapter 2. However, functional programming languages such as Haskell cur-

rently lack a widely adopted software engineering process and so correspondingly

there has been relatively little research into software engineering topics.

The emergence of Extreme Programming [13] as a development methodology in

the object-oriented community raises interesting parallels to the ad-hoc method-

ologies often used to develop Haskell programs, such as the focus on very short

iterations of the development cycle, on working from a functioning prototype as

early as possible, on performing unit tests as early and as often as possible, and

on refactoring code whenever the opportunity arises. The interest in tools such as

the Haskell refactorer HaRe [60] shows that the Haskell community is receptive to

tool support for such methodologies, which suggest that measurement tools may

be equally valuable.

254
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8.1 Summary of Conclusions

The investigation of software metrics for functional programming languages, in

particular Haskell, has been little studied despite the interest in software metrics

in other programming disciplines. Therefore this thesis attempts to address this

gap with the following contributions.

• A collection of metrics for use with functional programs has been identified

from the existing metrics used with other paradigms.

• The relationship between the metrics and the change history of a small

collection of programs has been explored.

• The relationships between the individual metrics on a large collection of

programs has been explored.

• Visualisation tools have been developed for further exploring the metric

values in conjunction with program source code.

The work presented in this thesis, in particular the analysis of Chapters 4, 5

and 7, leads to a number of conclusions which are summarised here.

• Several of the metrics presented are strongly correlated. This suggests they

are measuring closely related attributes, such as the number of patterns in a

function and the number of scopes in a function. Analysing the correlation

between metrics led to the following observations.

– The occurrence of non-trivial recursion, e.g. recursion in which a func-

tion does not directly call itself, in Haskell programs is quite unusual,

and is associated with complex program behaviour. However the oc-

currence of trivial recursion, where a function directly calls itself, is

common.

– The callgraphs of individual functions generally grow uniformly in both

depth and width, rather than becoming long and thin, or short and

wide.
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– Large functions tend to include a greater number of local declarations

than small functions. This is most likely because local declarations

allow one to attach names to parts of a large, perhaps complex, func-

tion. Therefore functions which are large, but do not have many local

declarations may well be difficult to understand.

– The functions used by a single function, foo, will tend to be located

close to foo in the source files.

• In the selection of metrics studied in this thesis, there does not appear to be a

single metric that, for all programs, gives a good correlation with the number

of bug-fixing or refactoring changes, although “Outdegree” (c3), a measure

of the number of functions called by a given function, can give reasonable

predictions for most programs. Instead, combinations of metrics can be

used to give increased correlation, and therefore more accurate predictions.

This suggests that there is no single attribute that makes a Haskell program

complex, rather that the complexity is a result of a number of attributes.

• Typically the metrics presented generate values that are distributed at the

low end of their scales, e.g. mode ≤ median ≤ mean, suggesting that it

should be possible to select thresholds to indicate when the various attributes

are exhibiting unusual values, because any values above a threshold are very

likely to indicate unusual behaviour that may warrant further investigation.

• Software metrics can generate large amounts of data and so there is a clear

need for tools that can present the interesting points of the data to the user,

while hiding the bulk of the uninteresting data.

Unfortunately, analysing program change histories in order to perform statis-

tical analysis of the relationship between metric values and the number of bug

fixing or refactoring changes is time consuming.
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Therefore, although we were able to observe some correlation between metric

values and changes, and were able to show that typically metric values were to-

wards the lower end of their scales, we are unable to suggest values for thresholds

above which it may be advisable to re-engineer the offending code section.

Visualisation tools are an important addition to the metric tools, and as such

this thesis has presented a selection of visualisation tools which can be used to

explore the metric values and the Haskell programs they are taken from. These

studies have highlighted the following points.

• The initial experiments, which implemented visualisation systems within a

web browser, showed that web browsers are not currently suitable for imple-

menting user interfaces of any non-trivial visualisation system because it can

be difficult to program non-trivial interactive behaviour using a standards

compliant mechanism. This was a disappointment because a web browser

offers an excellent cross-platform interface, and presents a familiar browsing

metaphor to the user.

• Some of the visualisations, in particular the callgraph and module browser

system, needed significant effort to provide the user with a suitably respon-

sive user interface. Although such optimisations do not directly affect the

visualisation technique, the responsiveness of the user interface forms a large

part of the overall usability and utility of such systems.

• Visualisation tools, combined with software metrics, have applications in

other parts of the software engineering process. Tools such as Tarantula [29]

have shown the use of visualisation tools for analysing measurements about

the testing process. Work in this thesis has shown that visualisation systems

such as the file browser tool, presented in Section 7.1.2 of Chapter 7, have

uses in the refactoring process, for example, indicating all the sections of a

program’s source code that may be affected by a particular refactoring.
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The visualisation systems described in this thesis are currently proof of con-

cept implementations, but they have shown that combining metrics with visuali-

sation is more useful than simply presenting the user with a list of metric values.

Implementing the visualisations as a Haskell library has provided flexibility and

extensibility for end users to customise visualisations to their own needs, as well

as providing easy mechanisms to extend the library with new visualisations in the

future.

8.2 Future Work

Although this thesis has presented an examination of a selection of metrics for

Haskell programs, and has shown how data from such metrics might be presented

to the user using visualisation tools, there remains significant future work. This

work falls loosely into two categories.

• Further validation of the metrics. This thesis has attempted to provide some

validation of metrics by analysing the correlation between metric values

and the occurrence of bug fixes and refactorings in the change history of a

program. However, as has been discussed in Section 3.3.4 of Chapter 3, the

process of analysing the change history of a program to find the bug fixing

changes is extremely time consuming. Future work could dedicate greater

effort to this task in order to produce a more comprehensive selection of case

study programs.

An alternative validation method that is somewhat less rigorous but may

be of equal interest, is to gather anecdotal evidence from large real world

projects. The goal of such work would be to investigate any correlation be-

tween functions in the programs that anecdotally have caused development

or maintenance problems, and the metric values taken from the program.

• Using metrics as an integral part of the refactoring process. Fowler [36]

introduced the notion of bad smells, which are features of source code that
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strongly suggest a particular refactoring should be applied. It is possible to

build catalogues of refactorings and the bad smells that indicate when they

should be applied. It therefore seems likely that software measurement tech-

niques could be used to both discover sites in source code that would benefit

from refactoring, and to indicate which refactorings should be applied.

Combining metrics with refactoring catalogues in this way opens up the pos-

sibility of using evolutionary computation techniques in combination with

software measurement and refactoring to evolve the source code of programs

to make them cleaner, more maintainable or more extensible.

As well as these specific areas, there are also more general areas where the work

in this thesis could be extended. For instance, there are language features that

have not been explicitly investigated in this work, such as monads and types, which

may require extra metrics to adequately assign numerical measures to programs

using them.

A particularly interesting area may be measures of abstraction, which might

be applied to higher order or polymorphic functions. Such metrics might aid the

refactoring or redesigning of large programs by indicating both parts of a program

that can be reused easily, as well as indicating those parts of the program which

are hard to reuse and which may therefore benefit from attention.

It would also be interesting to examine the use of dynamic software metrics

for Haskell, which may produce different results than the static metrics presented

in this thesis. Equally, it would be interesting to investigate whether dynamic

metrics could be combined with static metrics, or with other dynamic runtime

information such as the trace information provided by tools such as Hat.

The visualisation systems also offer room for improvement. One obvious im-

provement is to add support for dynamic queries, which would offer greater sup-

port for exploring metric values by allowing uninteresting values to be hidden

by the user. This could be further extended with greater integration with the

metrics. For instance by allowing the results of various metrics to be “overlaid”
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within a single visualisation and using dynamic queries to adjust the visibility of

each metric. Such a system may make it easier to highlight functions with unusual

characteristics. Closer integration of the metrics and visualisations systems might

also encourage the creation of tools to further aid the exploration of software sys-

tems by automatically selecting the most interesting metrics for a given source

file.

Extending beyond metrics, there is scope for improving the tool support for

various parts of the software development process. One way this might be achieved

may be to gather together existing tools such as QuickCheck, HaRe, and the

metrics and visualisation tools presented in this thesis, and integrate them into a

sophisticated Integrated Development Environment (IDE) such as Eclipse [19] or

Visual Studio, for which Haskell support is currently being added by Frenzel [38]

and Marlow [65] respectively.

It is important not to underestimate the importance that software develop-

ers place on the availability of comprehensive development tools, and thus the

importance of metrics and visualisation, in the wider adoption of functional pro-

gramming technology.



Appendix A

Key of Metric Variable Names

c1 Strongly connected component size

c2 Indegree

c3 Outdegree

c4 Depth

c5 Width

c6 Arc-to-node ratio

d1 Distance by the sum of the number of scopes

d2 Distance by the maximum number of scopes

d3 Distance by the average number of scopes

d4 Distance by the sum of the number of declarations in scope

d5 Distance by the maximum of the number of declarations in scope

d6 Distance by the average number of declarations in scope

d7 Distance by the sum of the number of source lines

d8 Distance by the maximum number of source lines

d9 Distance by the average number of source lines

d10 Distance by the sum of the number of parse tree nodes

d11 Distance by the maximum number of parse tree nodes

d12 Distance by the average number of parse tree nodes
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m1 Pathcount

m2 Number of operands

m3 Number of operators

p1 Number of pattern variables

p2 Sum of depth of patterns

p3 Maximum depth of patterns

p4 Number of overridden or overriding pattern variables

p5 Number of constructors in pattern

p6 Pattern size

p7 Number of wildcards in pattern

r1 Binary recursion

r2 Number of non-trivial recursive paths

r3 Number of trivial recursive paths

r4 Number of recursive paths

r5 Sum of lengths of recursive paths

r6 Product of lengths of recursive paths
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Peg Solitaire

Measurement Correlation r Significance P

Number of pattern variables (p1) 0.0209 0.751
Sum of depth of patterns (p2) 0.071 0.2805
Maximum depth of patterns (p3) 0.0582 0.3765
Number of overridden or overriding pattern
variables (p4)

-0.0278 0.6729

Number of constructors in pattern (p5) -0.0649 0.324
Pattern size (p6) 0.0682 0.2999
Number of wildcards in pattern (p7) 0.0324 0.6227

Refactoring

Measurement Correlation r Significance P

Number of pattern variables (p1) 0.5927 P < 0.0001
Sum of depth of patterns (p2) 0.5692 P < 0.0001
Maximum depth of patterns (p3) 0.4208 P < 0.0001
Number of overridden or overriding pattern
variables (p4)

0.3731 P < 0.0001

Number of constructors in pattern (p5) 0.3645 P < 0.0001
Pattern size (p6) 0.5423 P < 0.0001
Number of wildcards in pattern (p7) 0.3572 P < 0.0001

Note. The significance is tested by means of a two-tailed Student t-test.

Table 9: Measurements of pattern attributes and their correlations with change
history.



APPENDIX B. CORRELATION OF METRIC VALUES AND CHANGES 265

P
eg

S
ol

it
ai

re
M

ea
su

re
m

en
ts

C
or

re
la

ti
on

r
S
ig

n
ifi

ca
n
ce

P

D
is

ta
n
ce

by
th

e
su

m
of

th
e

nu
m

b
er

of
sc

op
es

(d
1)

-0
.0

63
6

0.
33

38
D

is
ta

n
ce

by
th

e
m

ax
im

u
m

nu
m

b
er

of
sc

op
es

(d
2)

0.
07

42
0.

25
93

D
is

ta
n
ce

by
th

e
av

er
ag

e
nu

m
b
er

of
sc

op
es

(d
3)

0.
11

21
0.

08
78

D
is

ta
n
ce

by
th

e
su

m
of

th
e

nu
m

b
er

of
d
ec

la
ra

ti
on

s
in

sc
op

e
(d

4)
-0

.0
55

4
0.

39
99

D
is

ta
n
ce

by
th

e
m

ax
im

u
m

of
th

e
nu

m
b
er

of
d
ec

la
ra

ti
on

s
in

sc
op

e
(d

5)
0.

08
56

0.
19

29
D

is
ta

n
ce

by
th

e
av

er
ag

e
nu

m
b
er

of
d
ec

la
ra

ti
on

s
in

sc
op

e
(d

6)
0.

12
0.

06
75

D
is

ta
n
ce

by
th

e
su

m
of

th
e

nu
m

b
er

of
so

u
rc

e
li
n
es

(d
7)

-0
.0

96
3

0.
14

28
D

is
ta

n
ce

by
th

e
m

ax
im

u
m

nu
m

b
er

of
so

u
rc

e
li
n
es

(d
8)

-0
.0

66
9

0.
30

92
D

is
ta

n
ce

by
th

e
av

er
ag

e
nu

m
b
er

of
so

u
rc

e
li
n
es

(d
9)

-0
.0

48
3

0.
46

31
D

is
ta

n
ce

by
th

e
su

m
of

th
e

nu
m

b
er

of
p
ar

se
tr

ee
n
od

es
(d

10
)

-0
.0

88
0.

18
07

D
is

ta
n
ce

by
th

e
m

ax
im

u
m

nu
m

b
er

of
p
ar

se
tr

ee
n
od

es
(d

11
)

-0
.0

37
2

0.
57

21
D

is
ta

n
ce

by
th

e
av

er
ag

e
nu

m
b
er

of
p
ar

se
tr

ee
n
od

es
(d

12
)

-0
.0

17
9

0.
78

58

R
ef

ac
to

ri
n
g

M
ea

su
re

m
en

ts
C

or
re

la
ti

on
r

S
ig

n
ifi

ca
n
ce

P

D
is

ta
n
ce

by
th

e
su

m
of

th
e

nu
m

b
er

of
sc

op
es

(d
1)

0.
63

2
P

<
0.

00
01

D
is

ta
n
ce

by
th

e
m

ax
im

u
m

nu
m

b
er

of
sc

op
es

(d
2)

0.
60

06
P

<
0.

00
01

D
is

ta
n
ce

by
th

e
av

er
ag

e
nu

m
b
er

of
sc

op
es

(d
3)

0.
46

52
P

<
0.

00
01

D
is

ta
n
ce

by
th

e
su

m
of

th
e

nu
m

b
er

of
d
ec

la
ra

ti
on

s
in

sc
op

e
(d

4)
0.

54
6

P
<

0.
00

01
D

is
ta

n
ce

by
th

e
m

ax
im

u
m

of
th

e
nu

m
b
er

of
d
ec

la
ra

ti
on

s
in

sc
op

e
(d

5)
0.

46
43

P
<

0.
00

01
D

is
ta

n
ce

by
th

e
av

er
ag

e
nu

m
b
er

of
d
ec

la
ra

ti
on

s
in

sc
op

e
(d

6)
0.

39
48

P
<

0.
00

01
D

is
ta

n
ce

by
th

e
su

m
of

th
e

nu
m

b
er

of
so

u
rc

e
li
n
es

(d
7)

0.
43

47
P

<
0.

00
01

D
is

ta
n
ce

by
th

e
m

ax
im

u
m

nu
m

b
er

of
so

u
rc

e
li
n
es

(d
8)

0.
53

34
P

<
0.

00
01

D
is

ta
n
ce

by
th

e
av

er
ag

e
nu

m
b
er

of
so

u
rc

e
li
n
es

(d
9)

0.
36

08
P

<
0.

00
01

D
is

ta
n
ce

by
th

e
su

m
of

th
e

nu
m

b
er

of
p
ar

se
tr

ee
n
od

es
(d

10
)

0.
44

84
P

<
0.

00
01

D
is

ta
n
ce

by
th

e
m

ax
im

u
m

nu
m

b
er

of
p
ar

se
tr

ee
n
od

es
(d

11
)

0.
54

P
<

0.
00

01
D

is
ta

n
ce

by
th

e
av

er
ag

e
nu

m
b
er

of
p
ar

se
tr

ee
n
od

es
(d

12
)

0.
37

37
P

<
0.

00
01

N
ot

e.
T

h
e

si
gn

ifi
ca

n
ce

is
te

st
ed

by
m

ea
n
s

of
a

tw
o-

ta
il
ed

S
tu

d
en

t
t-

te
st

.

Table 10: Distance measures and their correlations with change history
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Peg Solitaire

Measurement Correlation r Significance P

Binary recursion (r1) 0.1119 0.0883
Number of non-trivial recursive paths (r2) -0.0753 0.2523
Number of trivial recursive paths (r3) 0.1077 0.1010
Number of recursive paths (r4) 0.0428 0.5156
Sum of lengths of recursive paths (r5) 0.0145 0.8258
Product of lengths of recursive paths (r6) -0.0349 0.5961

Refactoring

Measurement Correlation r Significance P

Binary recursion (r1) -0.0154 0.7213
Number of non-trivial recursive paths (r2) N/A N/A
Number of trivial recursive paths (r3) -0.0154 0.7213
Number of recursive paths (r4) -0.0154 0.7213
Sum of lengths of recursive paths (r5) -0.0154 0.7213
Product of lengths of recursive paths (r6) -0.0154 0.7213
Note. The significance is tested by means of a two-tailed Student t-test.

Table 11: Measures of recursion and their correlations with change history.

Peg Solitaire

Measurement Correlation r Significance P

Strongly connected component size (c1) 0.3446 P < 0.0001
Indegree (c2) -0.0905 0.1686
Outdegree (c3) 0.4783 P < 0.0001
Depth (c4) -0.064 0.3307
Width (c5) -0.0942 0.1518
Arc-to-node ratio (c6) 0.0636 0.3338

Refactoring

Measurement Correlation r Significance P

Strongly connected component size (c1) 0.0699 0.105
Indegree (c2) 0.0842 0.0507
Outdegree (c3) 0.5723 P < 0.0001
Depth (c4) 0.4932 P < 0.0001
Width (c5) 0.3285 P < 0.0001
Arc-to-node ratio (c6) 0.4258 P < 0.0001
Note. The significance is tested by means of a two-tailed Student t-test.

Table 12: Callgraph measurements and their correlations with the number of
changes.



APPENDIX B. CORRELATION OF METRIC VALUES AND CHANGES 267

Peg Solitaire

Measurement Correlation r Significance P

Pathcount (m1) 0.0883 0.1792
Number of operands (m2) 0.1099 0.0942
Number of operators (m3) 0.1281 0.0508

Refactoring

Measurement Correlation r Significance P

Pathcount (m1) 0.286 P < 0.0001
Number of operands (m2) 0.5795 P < 0.0001
Number of operators (m3) 0.558 P < 0.0001

Note. The significance is tested by means of a two-tailed Student t-test.

Table 13: Measures of miscellaneous attributes of functions and their correlations
with change history.
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Peg Solitaire
p1 p2 p3 p4 p5 p6 p7

p1 1 0.9008 0.6016 0.2844 0.2466 0.9231 0.2128
p2 0.9008 1 0.7231 0.2269 0.4993 0.9899 0.3804
p3 0.6016 0.7231 1 0.1146 0.5855 0.7305 0.2894
p4 0.2844 0.2269 0.1146 1 0.0143 0.2371 0.1054
p5 0.2466 0.4993 0.5855 0.0143 1 0.4651 0.1958
p6 0.9231 0.9899 0.7305 0.2371 0.4651 1 0.3466
p7 0.2128 0.3804 0.2894 0.1054 0.1958 0.3466 1

Refactoring
p1 p2 p3 p4 p5 p6 p7

p1 1 0.9591 0.5956 0.5754 0.6447 0.9447 0.5363
p2 0.9591 1 0.639 0.5118 0.7719 0.9922 0.7214
p3 0.5956 0.639 1 0.2927 0.7209 0.6598 0.4577
p4 0.5754 0.5118 0.2928 1 0.2302 0.486 0.2109
p5 0.6447 0.7719 0.7209 0.2302 1 0.7993 0.703
p6 0.9447 0.9922 0.6598 0.486 0.7993 1 0.7377
p7 0.5363 0.7214 0.4577 0.2109 0.703 0.7377 1

Table 14: Correlation matrix for pattern attributes.
See Appendix A for key.
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Peg Solitaire
r1 r2 r3 r4 r5 r6

r1 1 0.3863 0.9628 0.8183 0.7443 0.229
r2 0.3863 1 0.3333 0.7747 0.8666 0.8488
r3 0.9628 0.3333 1 0.8128 0.7265 0.2217
r4 0.8183 0.7747 0.8128 1 0.9869 0.6975
r5 0.7443 0.8666 0.7265 0.9869 1 0.7671
r6 0.229 0.8488 0.2217 0.6975 0.7671 1

Refactoring
r1 r2 r3 r4 r5 r6

r1 1 1 1 1 1
r2
r3 1 1 1 1 1
r4 1 1 1 1 1
r5 1 1 1 1 1
r6 1 1 1 1 1

Table 16: Correlation matrix for recursion measurements.
See Appendix A for key.
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Peg Solitaire
c1 c2 c3 c4 c5 c6

c1 1 -0.0275 0.3437 0.0201 -0.0235 0.1643
c2 -0.0275 1 -0.2512 0.0938 0.0345 -0.0196
c3 0.3437 -0.2512 1 -0.0745 -0.0833 0.0746
c4 0.0201 0.0938 -0.0745 1 0.9273 0.4799
c5 -0.0235 0.0345 -0.0833 0.9273 1 0.3973
c6 0.1643 -0.0196 0.0746 0.4799 0.3973 1

Refactoring
c1 c2 c3 c4 c5 c6

c1 1 0.3479 0.018 -0.0005 0.0047 -0.0049
c2 0.3479 1 0.0583 0.0185 -0.0224 0.1142
c3 0.018 0.0583 1 0.6331 0.4039 0.6303
c4 -0.0005 0.0185 0.6331 1 0.7728 0.5934
c5 0.0047 -0.0224 0.4039 0.7728 1 0.3191
c6 -0.0049 0.1142 0.6303 0.5934 0.3191 1

Table 17: Correlation matrix for callgraph measurements.
See Appendix A for key.

Peg Solitaire
m1 m2 m3

m1 1 -0.0896 -0.0929
m2 -0.0896 1 0.8963
m3 -0.0929 0.8963 1

Refactoring
m1 m2 m3

m1 1 0.3098 0.2917
m2 0.3098 1 0.9747
m3 0.2917 0.9747 1

Table 18: Correlation matrix for function measurements.
See Appendix A for key.
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p2 p3 p4 p5 p7 d6 d7

p2 1 0.7231 0.2269 0.4993 0.3804 0.2421 0.4756
p3 0.7231 1 0.1146 0.5855 0.2894 0.3296 0.2622
p4 0.2269 0.1146 1 0.0143 0.1054 0.1104 0.1701
p5 0.4993 0.5855 0.0143 1 0.1958 -0.0597 0.1394
p7 0.3804 0.2894 0.1054 0.1958 1 0.106 0.1992
d6 0.2421 0.3296 0.1104 -0.0597 0.106 1 0.3834
d7 0.4756 0.2622 0.1701 0.1394 0.1992 0.3834 1
r1 0.4432 0.3082 0.1636 0.059 0.0731 0.0483 0.4107
c1 0.1295 0.1471 0.0804 0.0463 0.0537 0.0896 0.0064
c2 0.0988 0.0553 -0.0202 0.0317 -0.035 0.0514 0.0255
c3 -0.0046 -0.0079 0.0591 -0.0673 0.1254 0.1497 -0.0685
c4 0.4179 0.2672 0.2089 0.0691 0.1471 0.2942 0.607
c6 0.3443 0.4118 0.1079 0.0568 0.0905 0.6138 0.3708
m1 0.6818 0.5632 0.0551 0.4859 0.3576 0.1101 0.4634
m2 -0.123 -0.1188 -0.0397 -0.0794 -0.0191 0.1831 0.1026

r1 c1 c2 c3 c4 c6 m1 m2

p2 0.4432 0.1295 0.0988 -0.0046 0.4179 0.3443 0.6818 -0.123
p3 0.3082 0.1471 0.0553 -0.0079 0.2672 0.4118 0.5632 -0.1188
p4 0.1636 0.0804 -0.0202 0.0591 0.2089 0.1079 0.0551 -0.0397
p5 0.059 0.0463 0.0317 -0.0673 0.0691 0.0568 0.4859 -0.0794
p7 0.0731 0.0537 -0.035 0.1254 0.1471 0.0905 0.3576 -0.0191
d6 0.0483 0.0896 0.0514 0.1497 0.2942 0.6138 0.1101 0.1831
d7 0.4107 0.0064 0.0255 -0.0685 0.6070 0.3708 0.4634 0.1026
r1 1 0.057 -0.0407 0.0126 0.5390 0.2194 0.4138 -0.0314
c1 0.057 1 -0.0275 0.3437 0.0201 0.1643 0.1227 0.0092
c2 -0.0407 -0.0275 1 -0.2512 0.0938 -0.0196 0.0051 -0.0127
c3 0.0126 0.3437 -0.2512 1 -0.0745 0.0746 -0.0177 0.0348
c4 0.539 0.0201 0.0938 -0.0745 1 0.4799 0.3084 0.0389
c6 0.2194 0.1643 -0.0196 0.0746 0.4799 1 0.3213 0.039
m1 0.4138 0.1227 0.0051 -0.0177 0.3084 0.3213 1 -0.0896
m2 -0.0314 0.0092 -0.0127 0.0348 0.0389 0.039 -0.0896 1

Table 19: Correlation matrix for all measurements from the Peg Solitaire program.
See Appendix A for key.
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p1 p3 p4 p7 d1 d2 r1

p1 1 0.5956 0.5754 0.5363 0.8979 0.6562 -0.0163
p3 0.5956 1 0.2927 0.4577 0.3912 0.5640 0.0449
p4 0.5754 0.2927 1 0.2109 0.5119 0.4068 -0.0056
p7 0.5363 0.4577 0.2109 1 0.4441 0.3189 -0.0477
d1 0.8979 0.3912 0.5119 0.4441 1 0.6338 -0.0153
d2 0.6562 0.5640 0.4068 0.3189 0.6338 1 0.0568
r1 -0.0163 0.0449 -0.0056 -0.0477 -0.0153 0.0568 1
c1 0.2044 0.0820 -0.0123 0.3504 0.0978 0.0578 -0.0102
c2 0.1044 0.1583 0.0741 0.1323 0.0376 0.0828 0.0765
c3 0.5880 0.3779 0.3408 0.3105 0.6025 0.7541 0.1489
c4 0.5394 0.3821 0.3039 0.2187 0.5466 0.6932 0.0777
c6 0.3580 0.3736 0.1884 0.1756 0.3701 0.6387 0.0750
m1 0.3116 0.2777 0.2526 0.2126 0.2884 0.3247 0.3477
m2 0.9333 0.4776 0.5368 0.5116 0.9175 0.6095 -0.0061

c1 c2 c3 c4 c6 m1 m2

p1 0.2044 0.1044 0.5880 0.5394 0.3580 0.3116 0.9333
p3 0.0820 0.1583 0.3779 0.3821 0.3736 0.2777 0.4776
p4 -0.0123 0.0741 0.3408 0.3039 0.1884 0.2526 0.5368
p7 0.3504 0.1323 0.3105 0.2187 0.1756 0.2126 0.5116
d1 0.0978 0.0376 0.6025 0.5466 0.3701 0.2884 0.9175
d2 0.0578 0.0828 0.7541 0.6932 0.6387 0.3247 0.6095
r1 -0.0102 0.0765 0.1489 0.0777 0.0750 0.3477 -0.0061
c1 1 0.3479 0.0180 -0.0005 -0.0049 -0.0168 0.1619
c2 0.3479 1 0.0583 0.0185 0.1142 0.0277 0.0464
c3 0.0180 0.0583 1 0.6331 0.6303 0.5245 0.5667
c4 -0.0005 0.0185 0.6331 1 0.5934 0.3158 0.5158
c6 -0.0049 0.1142 0.6303 0.5934 1 0.3226 0.3320
m1 -0.0168 0.0277 0.5245 0.3158 0.3226 1 0.3098
m2 0.1619 0.0464 0.5667 0.5158 0.3320 0.3098 1

Table 20: Correlation matrix for all measurements from the Refactoring program.
See Appendix A for key.
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Peg Solitaire

R 0.1584
R2 0.025
Significance 0.3255

Measurement Coefficient

Sum of depth of patterns (p2) 0.1263
Maximum depth of patterns (p3) 0.107
Number of overridden or overriding pattern variables (p4) -0.0731
Number of constructors in pattern (p5) -0.2063
Number of wildcards in pattern (p7) 0.009

Refactoring

R 0.6015
R2 0.3618
Significance < 0.0001

Measurement Coefficient

Number of pattern variables (p1) 0.4035
Maximum depth of patterns (p3) 0.0856
Number of overridden or overriding pattern variables (p4) 0.0527
Number of wildcards in pattern (p7) 0.0378

Table 21: Regression analysis of measurements of pattern attributes.



APPENDIX D. REGRESSION ANALYSIS OF METRIC VALUES 277

Peg Solitaire

R 0.1957
R2 0.0383
Significance 0.0112

Measurement Coefficient

Distance by the average number of declarations in scope (d6) 0.2273
Distance by the sum of the number of source lines (d7) -0.2058

Refactoring

R 0.6829
R2 0.4663
Significance < 0.0001

Measurement Coefficient

Distance by the sum of the number of scopes (d1) 0.3581
Distance by the maximum number of scopes (d2) 0.2849

Table 22: Regression analysis of distance metric measurements.

R 0.1978
R2 0.0391
Significance 0.1683

Measurement Coefficient

Binary recursion (r1) 0.4136
Number of non-trivial recursive paths (r2) -0.6805
Number of trivial recursive paths (r3) -0.2852
Number of recursive paths (r4) -0.6058
Sum of lengths of recursive paths (r5) 0.9592
Product of lengths of recursive paths (r6) 0.1898

Table 23: Regression analysis of recursion measurements from the Peg Solitaire
program.
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Peg Solitaire

R 0.5176
R2 0.268
Significance < 0.0001

Measurement Coefficient

Strongly connected component size (c1) 0.2483
Indegree (c2) 0.0285
Outdegree (c3) 0.5039
Depth (c4) -0.0639
Arc-to-node ratio (c6) 0.0312

Refactoring

R 0.6017
R2 0.362
Significance < 0.0001

Measurement Coefficient

Strongly connected component size (c1) 0.0434
Indegree (c2) 0.0292
Outdegree (c3) 0.3526
Depth (c4) 0.1774
Arc-to-node ratio (c6) 0.0323

Table 24: Regression analysis of callgraph measurements.



APPENDIX D. REGRESSION ANALYSIS OF METRIC VALUES 279

Peg Solitaire

R 0.1476
R2 0.0218
Significance 0.0794

Measurement Coefficient

Pathcount (m1) 0.1219
Number of operands (m2) 0.1463

Refactoring

R 0.5902
R2 0.3483
Significance < 0.0001

Measurement Coefficient

Pathcount (m1) 0.1004
Number of operands (m2) 0.4628

Table 25: Regression analysis of function measurements.



APPENDIX D. REGRESSION ANALYSIS OF METRIC VALUES 280

R 0.583
R2 0.3399
Significance < 0.0001

Measurement Coefficient

Sum of depth of patterns (p2) 0.1516
Maximum depth of patterns (p3) -0.0341
Number of overridden or overriding pattern variables (p4) -0.083
Number of constructors in pattern (p5) -0.1392
Number of wildcards in pattern (p7) -0.0692
Distance by the average number of declarations in scope (d6) 0.1532
Distance by the sum of the number of source lines (d7) -0.2673
Binary recursion (r1) 0.1691
Strongly connected component size (c1) 0.2314
Indegree (c2) 0.0127
Outdegree (c3) 0.4731
Depth (c4) -0.0699
Arc-to-node ratio (c6) -0.0774
Pathcount (m1) 0.1979
Number of operands (m2)s 0.1440

Table 26: Regression analysis of all measurements from the Peg Solitaire program.

R 0.6973
R2 0.4863
Significance < 0.0001

Measurement Coefficient

Maximum depth of patterns (p3) 0.0558
Number of overridden or overriding pattern variables (p4) 0.021
Number of wildcards in pattern (p7) 0.0471
Distance by the sum of the number of scopes (d1) 0.315
Distance by the maximum number of scopes (d2) 0.1753
Binary recursion (r1) -0.0447
Strongly connected component size (c1) -0.0108
Indegree (c2) 0.0268
Depth (c4) 0.0393
Arc-to-node ratio (c6) 0.063
“Pathcount” (m1) 0.047

Table 27: Regression analysis of all measurements from the Refactoring program.
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E.1 Tables of Cross-correlation of Recursion Met-

rics
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Table 28: Correlation between recursion metrics and others for the CGI Library.
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Table 29: Correlation between recursion metrics and others for the Haskell Cryp-
tographic Library.
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Table 30: Correlation between recursion metrics and others for the Haskell DSP
Library.
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Table 31: Correlation between recursion metrics and others for FGL.
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Table 32: Correlation between recursion metrics and others for the Library of
Geometric Algorithms.
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Table 33: Correlation between recursion metrics and others for Haddock.
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Table 34: Correlation between recursion metrics and others for Happy.
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Table 35: Correlation between recursion metrics and others for Hat.

r1
r2

r3
r4

r5
r6

c1
0.

48
38

0.
48

91
0.

34
51

0.
53

95
0.

53
99

0.
27

75
c2

0.
00

01
-0

.0
16

5
0.

00
48

-0
.0

04
5

-0
.0

12
2

-0
.0

10
4

c3
0.

41
44

0.
09

64
0.

38
98

0.
37

62
0.

24
28

0.
06

36
c4

0.
27

5
0.

20
06

0.
24

18
0.

30
53

0.
27

46
0.

14
98

c5
0.

18
28

0.
11

13
0.

16
2

0.
19

28
0.

15
83

0.
06

78
c6

0.
27

79
0.

11
22

0.
25

36
0.

27
01

0.
19

83
0.

07
38

d
1

0.
14

04
0.

03
45

0.
12

99
0.

12
66

0.
08

54
0.

01
18

d
2

0.
17

75
0.

08
76

0.
16

57
0.

18
37

0.
14

87
0.

05
62

d
3

0.
06

37
0.

04
74

0.
06

36
0.

07
76

0.
07

29
0.

03
05

d
4

0.
17

38
0.

01
59

0.
17

83
0.

15
76

0.
08

84
0.

00
42

d
5

0.
11

8
0.

03
32

0.
12

39
0.

12
09

0.
08

37
0.

02
9

d
6

0.
01

48
-0

.0
13

1
0.

02
52

0.
01

44
0.

00
28

-0
.0

08
9

d
7

0.
05

68
0.

02
65

0.
04

64
0.

05
25

0.
04

55
0.

01
08

d
8

0.
03

75
0.

03
52

0.
02

95
0.

04
28

0.
04

84
0.

02
63

d
9

-0
.0

08
9

0.
02

98
-0

.0
15

8
0.

00
19

0.
02

69
0.

01
95

d
10

0.
10

61
0.

02
71

0.
09

6
0.

09
44

0.
06

59
0.

00
95

d
11

0.
09

24
0.

02
49

0.
08

71
0.

08
57

0.
05

74
0.

01
47

d
12

0.
02

38
0.

02
46

0.
02

01
0.

02
94

0.
03

55
0.

01
39

m
1

0.
02

89
-0

.0
02

8
0.

02
88

0.
02

27
0.

00
91

-0
.0

02
2

m
2

0.
17

67
0.

00
95

0.
17

24
0.

14
95

0.
07

82
0.

00
09

m
3

0.
15

84
0.

02
19

0.
14

91
0.

13
63

0.
08

11
0.

00
76

p
1

0.
19

87
0.

01
04

0.
19

5
0.

16
89

0.
08

7
-0

.0
00

1
p
2

0.
16

77
-0

.0
05

8
0.

16
85

0.
13

84
0.

06
22

-0
.0

05
8

p
3

0.
17

92
-0

.0
25

5
0.

18
36

0.
14

09
0.

05
08

-0
.0

13
8

p
4

-0
.0

18
3

-0
.0

04
9

-0
.0

17
1

-0
.0

16
9

-0
.0

10
8

-0
.0

03
1

p
5

0.
14

97
-0

.0
36

2
0.

15
82

0.
11

42
0.

03
14

-0
.0

18
p
6

0.
16

24
-0

.0
07

4
0.

16
3

0.
13

3
0.

05
87

-0
.0

06
8

p
7

0.
01

72
-0

.0
22

9
0.

02
25

0.
00

72
-0

.0
10

5
-0

.0
12

7

r1
1.

0
0.

26
67

0.
93

78
0.

92
29

0.
59

23
0.

16
96

r2
0.

26
67

1.
0

0.
04

11
0.

54
57

0.
90

46
0.

80
61

r3
0.

93
78

0.
04

11
1.

0
0.

85
97

0.
43

1
0.

10
69

r4
0.

92
29

0.
54

57
0.

85
97

1.
0

0.
82

39
0.

50
17

r5
0.

59
23

0.
90

46
0.

43
1

0.
82

39
1.

0
0.

78
18

r6
0.

16
96

0.
80

61
0.

10
69

0.
50

17
0.

78
18

1.
0

Table 36: Correlation between recursion metrics and others for HaXml.
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Table 37: Correlation between recursion metrics and others for HUnit.

r1
r2

r3
r4

r5
r6

c1
0.

53
43

0.
53

43
0.

53
43

0.
53

43
0.

53
43

c2
0.

19
82

0.
19

82
0.

19
82

0.
19

82
0.

19
82

c3
0.

71
45

0.
71

45
0.

71
45

0.
71

45
0.

71
45

c4
0.

32
71

0.
32

71
0.

32
71

0.
32

71
0.

32
71

c5
0.

36
02

0.
36

02
0.

36
02

0.
36

02
0.

36
02

c6
0.

38
51

0.
38

51
0.

38
51

0.
38

51
0.

38
51

d
1

0.
52

03
0.

52
03

0.
52

03
0.

52
03

0.
52

03
d
2

0.
38

37
0.

38
37

0.
38

37
0.

38
37

0.
38

37
d
3

0.
20

21
0.

20
21

0.
20

21
0.

20
21

0.
20

21
d
4

0.
45

57
0.

45
57

0.
45

57
0.

45
57

0.
45

57
d
5

0.
31

65
0.

31
65

0.
31

65
0.

31
65

0.
31

65
d
6

0.
22

23
0.

22
23

0.
22

23
0.

22
23

0.
22

23
d
7

0.
59

09
0.

59
09

0.
59

09
0.

59
09

0.
59

09
d
8

0.
67

42
0.

67
42

0.
67

42
0.

67
42

0.
67

42
d
9

0.
29

96
0.

29
96

0.
29

96
0.

29
96

0.
29

96
d
10

0.
52

95
0.

52
95

0.
52

95
0.

52
95

0.
52

95
d
11

0.
68

07
0.

68
07

0.
68

07
0.

68
07

0.
68

07
d
12

0.
53

73
0.

53
73

0.
53

73
0.

53
73

0.
53

73
m

1
0.

65
23

0.
65

23
0.

65
23

0.
65

23
0.

65
23

m
2

0.
56

84
0.

56
84

0.
56

84
0.

56
84

0.
56

84
m

3
0.

59
59

0.
59

59
0.

59
59

0.
59

59
0.

59
59

p
1

0.
64

73
0.

64
73

0.
64

73
0.

64
73

0.
64

73
p
2

0.
66

08
0.

66
08

0.
66

08
0.

66
08

0.
66

08
p
3

0.
52

78
0.

52
78

0.
52

78
0.

52
78

0.
52

78
p
4

p
5

0.
64

02
0.

64
02

0.
64

02
0.

64
02

0.
64

02
p
6

0.
66

26
0.

66
26

0.
66

26
0.

66
26

0.
66

26
p
7

0.
48

57
0.

48
57

0.
48

57
0.

48
57

0.
48

57

r1
1.

0
1.

0
1.

0
1.

0
1.

0
r2 r3

1.
0

1.
0

1.
0

1.
0

1.
0

r4
1.

0
1.

0
1.

0
1.

0
1.

0
r5

1.
0

1.
0

1.
0

1.
0

1.
0

r6
1.

0
1.

0
1.

0
1.

0
1.

0

Table 38: Correlation between recursion metrics and others for PCF implemen-
tation.
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Table 39: Correlation between recursion metrics and others for Pretty Printer
Library.
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Table 40: Correlation between recursion metrics and others for Typing Haskell
in Haskell.
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E.2 Tables of Cross-correlation of Callgraph Met-

rics
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Table 41: Correlation between callgraph metrics and others for the CGI Library.
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Table 42: Correlation between callgraph metrics and others for the Haskell Cryp-
tographic Library.
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Table 43: Correlation between callgraph metrics and others for the Haskell DSP
Library.
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Table 44: Correlation between callgraph metrics and others for FGL.
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Table 45: Correlation between callgraph metrics and others for the Library of
Geometric Algorithms.
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Table 47: Correlation between callgraph metrics and others for Haddock.
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Table 48: Correlation between callgraph metrics and others for Happy.
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Table 49: Correlation between callgraph metrics and others for Hat.
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Table 50: Correlation between callgraph metrics and others for HaXml.
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Table 51: Correlation between callgraph metrics and others for HUnit.
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Table 52: Correlation between callgraph metrics and others for PCF implemen-
tation.
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Table 53: Correlation between callgraph metrics and others for Pretty Printer
Library.
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Table 54: Correlation between callgraph metrics and others for Typing Haskell
in Haskell.
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Table 55: Correlation between distance metrics and others for the CGI Library.
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Table 56: Correlation between distance metrics and others for the Haskell Cryp-
tographic Library.
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Table 57: Correlation between distance metrics and others for the Haskell DSP
Library.
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Table 58: Correlation between distance metrics and others for FGL.
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Table 59: Correlation between distance metrics and others for the Library of
Geometric Algorithms.
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Table 60: Correlation between distance metrics and others for GetOpt.



APPENDIX E. TABLES OF CROSS-CORRELATION 307

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

d
9

d
10

d
11

d
12

c1
-0

.0
75

9
-0

.2
33

8
0.

22
18

-0
.1

64
4

-0
.2

40
2

-0
.2

35
9

0.
04

76
0.

35
09

0.
27

54
0.

04
52

0.
34

4
0.

27
68

c2
-0

.0
04

8
-0

.0
40

6
-0

.1
05

6
0.

03
96

0.
05

38
0.

02
86

-0
.0

16
5

-0
.0

93
2

-0
.0

81
4

-0
.0

18
3

-0
.0

94
6

-0
.0

82
1

c3
0.

54
94

0.
39

86
0.

14
54

0.
27

46
0.

11
16

0.
03

82
0.

84
34

0.
06

52
0.

01
14

0.
85

28
0.

07
49

0.
01

03
c4

0.
06

21
-0

.0
82

3
0.

29
29

-0
.0

77
4

-0
.2

68
8

-0
.2

92
8

0.
05

34
0.

37
02

0.
26

86
0.

05
81

0.
37

44
0.

27
51

c5
-0

.0
18

6
-0

.1
90

2
0.

25
36

-0
.1

36
4

-0
.2

41
7

-0
.2

42
3

0.
05

03
0.

35
82

0.
26

91
0.

04
94

0.
35

36
0.

27
12

c6
0.

25
13

0.
40

96
0.

53
08

0.
14

98
-0

.1
40

1
-0

.1
82

1
0.

05
38

0.
27

84
0.

18
67

0.
06

69
0.

30
12

0.
20

02

d
1

1.
0

0.
52

66
0.

31
02

0.
57

53
-0

.0
03

9
-0

.0
40

6
0.

28
65

-0
.0

13
5

-0
.0

61
3

0.
31

31
0.

01
31

-0
.0

55
6

d
2

0.
52

66
1.

0
0.

51
07

0.
53

83
0.

42
31

0.
28

87
0.

07
33

0.
06

24
-0

.0
22

4
0.

09
31

0.
08

66
-0

.0
17

6
d
3

0.
31

02
0.

51
07

1.
0

0.
27

46
0.

20
23

0.
27

89
0.

02
42

0.
01

81
0.

05
14

0.
02

67
0.

02
99

0.
06

06
d
4

0.
57

53
0.

53
83

0.
27

46
1.

0
0.

54
38

0.
39

76
0.

09
11

0.
01

73
-0

.0
46

0.
11

23
0.

04
02

-0
.0

40
3

d
5

-0
.0

03
9

0.
42

31
0.

20
23

0.
54

38
1.

0
0.

89
3

0.
06

24
-0

.0
72

2
-0

.0
57

6
0.

06
33

-0
.0

71
9

-0
.0

61
8

d
6

-0
.0

40
6

0.
28

87
0.

27
89

0.
39

76
0.

89
3

1.
0

0.
02

05
-0

.2
06

7
-0

.1
26

7
0.

01
43

-0
.2

11
-0

.1
30

2
d
7

0.
28

65
0.

07
33

0.
02

42
0.

09
11

0.
06

24
0.

02
05

1.
0

0.
19

08
0.

16
64

0.
99

84
0.

18
43

0.
15

81
d
8

-0
.0

13
5

0.
06

24
0.

01
81

0.
01

73
-0

.0
72

2
-0

.2
06

7
0.

19
08

1.
0

0.
91

96
0.

20
76

0.
99

67
0.

91
57

d
9

-0
.0

61
3

-0
.0

22
4

0.
05

14
-0

.0
46

-0
.0

57
6

-0
.1

26
7

0.
16

64
0.

91
96

1.
0

0.
17

9
0.

91
51

0.
99

85
d
10

0.
31

31
0.

09
31

0.
02

67
0.

11
23

0.
06

33
0.

01
43

0.
99

84
0.

20
76

0.
17

9
1.

0
0.

20
32

0.
17

17
d
11

0.
01

31
0.

08
66

0.
02

99
0.

04
02

-0
.0

71
9

-0
.2

11
0.

18
43

0.
99

67
0.

91
51

0.
20

32
1.

0
0.

91
45

d
12

-0
.0

55
6

-0
.0

17
6

0.
06

06
-0

.0
40

3
-0

.0
61

8
-0

.1
30

2
0.

15
81

0.
91

57
0.

99
85

0.
17

17
0.

91
45

1.
0

m
1

0.
51

05
0.

26
82

0.
26

53
0.

14
44

-0
.0

09
2

-0
.0

09
6

0.
00

64
-0

.0
05

5
-0

.0
19

7
0.

01
66

0.
00

35
-0

.0
17

2
m

2
0.

81
21

0.
41

01
0.

11
44

0.
39

15
-0

.0
14

2
-0

.0
60

8
0.

58
2

0.
01

04
-0

.0
39

0.
60

93
0.

03
11

-0
.0

36
9

m
3

0.
69

94
0.

31
12

0.
09

79
0.

32
66

-0
.0

03
-0

.0
37

3
0.

73
37

-0
.0

02
1

-0
.0

35
0.

75
41

0.
01

2
-0

.0
35

9
p
1

0.
72

71
0.

58
94

0.
09

29
0.

38
58

-0
.0

12
4

-0
.1

21
8

0.
04

74
0.

02
46

-0
.0

47
8

0.
08

24
0.

05
24

-0
.0

42
3

p
2

0.
66

71
0.

49
84

0.
06

68
0.

34
77

-0
.0

08
5

-0
.0

97
1

0.
04

41
0.

01
34

-0
.0

50
2

0.
08

33
0.

03
99

-0
.0

44
4

p
3

0.
30

01
0.

53
83

0.
03

89
0.

29
43

0.
11

52
-0

.1
03

4
0.

06
25

0.
11

59
0.

02
8

0.
08

1
0.

13
68

0.
03

16
p
4

0.
20

09
0.

14
98

-0
.0

12
2

0.
03

39
-0

.0
32

3
-0

.0
33

-0
.0

02
2

-0
.0

36
-0

.0
48

0.
00

75
-0

.0
18

3
-0

.0
46

4
p
5

0.
28

49
0.

22
84

0.
02

76
0.

18
13

0.
02

24
-0

.0
17

3
0.

01
72

0.
04

18
0.

00
19

0.
03

07
0.

05
42

0.
00

67
p
6

0.
63

26
0.

47
18

0.
04

76
0.

31
6

-0
.0

13
4

-0
.0

98
0.

04
52

-0
.0

01
6

-0
.0

59
1

0.
08

7
0.

02
48

-0
.0

53
2

p
7

0.
20

55
0.

15
86

0.
00

11
0.

09
57

-0
.0

41
2

-0
.0

50
7

-0
.0

05
2

-0
.0

69
6

-0
.0

78
2

0.
00

25
-0

.0
60

1
-0

.0
76

1
r1

-0
.0

30
9

-0
.1

54
7

0.
20

41
-0

.1
68

-0
.2

67
3

-0
.2

67
1

0.
03

24
0.

25
42

0.
18

3
0.

03
05

0.
25

25
0.

18
55

r2
0.

20
6

0.
06

47
0.

03
21

0.
22

72
0.

08
8

0.
02

39
0.

63
52

0.
07

86
0.

01
98

0.
63

17
0.

07
06

0.
01

43
r3

0.
11

85
0.

15
98

-0
.0

23
9

0.
08

12
-0

.0
31

2
-0

.0
62

1
-0

.0
08

1
-0

.0
75

-0
.1

05
4

-0
.0

05
7

-0
.0

67
6

-0
.1

03
7

r4
0.

20
66

0.
06

57
0.

03
19

0.
22

75
0.

08
77

0.
02

35
0.

63
44

0.
07

8
0.

01
91

0.
63

1
0.

07
0.

01
36

r5
0.

20
62

0.
06

5
0.

03
2

0.
22

73
0.

08
79

0.
02

38
0.

63
49

0.
07

84
0.

01
95

0.
63

14
0.

07
04

0.
01

41
r6

0.
01

72
0.

05
82

-0
.0

17
2

0.
08

07
0.

07
16

-0
.0

09
4

-0
.0

00
4

0.
00

13
-0

.0
23

1
-0

.0
00

1
0.

00
01

-0
.0

23
3

Table 61: Correlation between distance metrics and others for Haddock.
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Table 62: Correlation between distance metrics and others for Happy.
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Table 63: Correlation between distance metrics and others for Hat.
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Table 64: Correlation between distance metrics and others for HaXml.
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Table 65: Correlation between distance metrics and others for HUnit.
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Table 66: Correlation between distance metrics and others for PCF implementa-
tion.
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Table 67: Correlation between distance metrics and others for Pretty Printer
Library.
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Table 68: Correlation between distance metrics and others for Typing Haskell in
Haskell.
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Table 69: Correlation between pattern metrics and others for the CGI Library.
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Table 70: Correlation between pattern metrics and others for the Haskell Cryp-
tographic Library.
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Table 71: Correlation between pattern metrics and others for the Haskell DSP
Library.
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Table 72: Correlation between pattern metrics and others for FGL.
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Table 73: Correlation between pattern metrics and others for the Library of
Geometric Algorithms.
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Table 74: Correlation between pattern metrics and others for GetOpt.
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Table 75: Correlation between pattern metrics and others for Haddock.
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Table 76: Correlation between pattern metrics and others for Happy.
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Table 77: Correlation between pattern metrics and others for Hat.
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Table 78: Correlation between pattern metrics and others for HaXml.
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Table 79: Correlation between pattern metrics and others for HUnit.
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Table 81: Correlation between pattern metrics and others for Pretty Printer
Library.
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Table 82: Correlation between pattern metrics and others for Typing Haskell in
Haskell.
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Table 83: Correlation between miscellaneous metrics and others for the CGI
Library.
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Table 84: Correlation between miscellaneous metrics and others for the Haskell
Cryptographic Library.
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Table 85: Correlation between miscellaneous metrics and others for the Haskell
DSP Library.
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Table 86: Correlation between miscellaneous metrics and others for FGL.
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Table 89: Correlation between miscellaneous metrics and others for Haddock.
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Table 90: Correlation between miscellaneous metrics and others for Happy.
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Table 91: Correlation between miscellaneous metrics and others for Hat.
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Table 92: Correlation between miscellaneous metrics and others for HaXml.
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Table 93: Correlation between miscellaneous metrics and others for HUnit.
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mentation.
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Table 95: Correlation between miscellaneous metrics and others for Pretty Printer
Library.
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Table 96: Correlation between miscellaneous metrics and others for Typing
Haskell in Haskell.
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Cgi

Mean 1.961 2.3853 0.9784 0.0476 0.2944 2.6364 0.0563
Mode 1.0 1.0 1.0 0.0 0.0 1.0 0.0

Median 1.0 1.0 1.0 0.0 0.0 1.0 0.0
Stddev 2.8427 3.692 0.8294 0.4581 1.0609 4.378 0.2962

Dsp

Mean 4.2359 4.8356 1.2753 0.1319 0.0038 5.304 0.2505
Mode 1.0 1.0 1.0 0.0 0.0 1.0 0.0

Median 2.0 2.0 1.0 0.0 0.0 2.0 0.0
Stddev 4.8649 5.758 0.984 0.713 0.0617 6.3941 0.9542

Geomlib

Mean 3.5408 4.4775 1.5901 0.0697 0.4238 5.5848 0.4152
Mode 1.0 0.0 1.0 0.0 0.0 0.0 0.0

Median 2.0 2.0 1.0 0.0 0.0 2.0 0.0
Stddev 5.1532 6.4419 1.4662 0.5734 0.9659 8.4785 1.2063

Pcf

Mean 2.7258 4.0645 0.9032 0.0 0.6452 4.4032 0.1129
Mode 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 1.0 1.0 1.0 0.0 0.0 1.0 0.0
Stddev 6.778 10.592 1.0733 0.0 2.0168 11.7466 0.4058

Crypto

Mean 2.9452 3.1507 0.9726 0.0685 0.0411 3.8356 0.0685
Mode 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Median 1.0 1.0 1.0 0.0 0.0 1.0 0.0
Stddev 4.9377 5.4764 1.0724 0.3444 0.1985 7.5199 0.302

Fgl

Mean 2.8974 3.3803 1.4957 0.0107 0.3034 4.594 0.3718
Mode 1.0 1.0 1.0 0.0 0.0 1.0 0.0

Median 1.0 2.0 1.0 0.0 0.0 2.0 0.0
Stddev 3.7219 4.4713 1.3083 0.1219 0.7085 6.3355 0.8738

Getopt

Mean 7.2941 15.5882 1.8824 0.0 1.2941 19.2941 3.4706
Mode 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Median 5.0 12.0 2.0 0.0 0.0 14.0 0.0
Stddev 9.6514 23.0321 1.745 0.0 2.0513 29.1986 6.9037

Pretty

Mean 5.0964 6.8313 1.506 0.1566 1.0602 7.7229 0.3253
Mode 1.0 1.0 1.0 0.0 0.0 1.0 0.0

Median 2.0 2.0 1.0 0.0 0.0 2.0 0.0
Stddev 8.6284 11.6224 1.0223 1.3124 2.026 13.4883 0.9953

Haddock

Mean 2.7498 3.4298 1.4252 0.0326 0.3561 4.1572 0.1872
Mode 1.0 1.0 1.0 0.0 0.0 1.0 0.0

Median 1.0 1.0 1.0 0.0 0.0 1.0 0.0
Stddev 5.1464 8.0982 1.4286 0.4408 2.1895 11.0895 1.4681

Happy

Mean 4.5192 7.6539 2.0481 0.1058 0.6322 9.3726 0.988
Mode 1.0 1.0 1.0 0.0 0.0 1.0 0.0

Median 1.0 2.0 1.0 0.0 0.0 2.5 0.0
Stddev 11.8279 15.7755 2.0865 0.8311 1.6847 20.5541 2.4382

Hat

Mean 4.3946 6.2811 1.4726 0.0797 0.7858 8.1158 0.8609
Mode 1.0 1.0 1.0 0.0 0.0 1.0 0.0

Median 1.0 1.0 1.0 0.0 0.0 1.0 0.0
Stddev 14.782 22.1189 1.516 0.7751 2.5456 29.3409 3.9795

Haxml

Mean 3.1271 4.8802 1.5196 0.0856 0.7188 5.6394 0.2812
Mode 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Median 1.0 2.0 1.0 0.0 0.0 2.0 0.0
Stddev 8.0327 13.4373 1.5257 1.5424 1.7459 15.8864 1.0796

Hunit

Mean 2.5462 3.0084 0.9076 0.084 0.2017 3.3277 0.0504
Mode 0.0, 1.0 0.0, 1.0 1.0 0.0 0.0 0.0, 1.0 0.0

Median 1.0 1.0 1.0 0.0 0.0 1.0 0.0
Stddev 5.3448 6.836 0.8599 0.74 0.8752 7.7385 0.2855

Thih

Mean 1.8937 2.2143 0.9967 0.0 0.1645 2.49 0.0465
Mode 1.0 1.0 1.0 0.0 0.0 1.0 0.0

Median 1.0 1.0 1.0 0.0 0.0 1.0 0.0
Stddev 4.0234 5.1265 0.8684 0.0 0.7501 6.3173 0.4365

Table 97: Mean, Mode, Median and Standard Deviation values of pattern metrics.
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Cgi

Mean 0.0649 0.0 0.0649 0.0649 0.1299 0.1299
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0
Stddev 0.2464 0.0 0.2464 0.2464 0.4928 0.4928

Dsp

Mean 0.1721 0.0 0.1721 0.1721 0.3442 0.3442
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0
Stddev 0.3775 0.0 0.3775 0.3775 0.7549 0.7549

Geomlib

Mean 0.0622 0.0021 0.0601 0.0622 0.1288 0.1288
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0
Stddev 0.2416 0.0463 0.2376 0.2416 0.508 0.508

Pcf

Mean 0.129 0.0 0.129 0.129 0.2581 0.2581
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0
Stddev 0.3352 0.0 0.3352 0.3352 0.6705 0.6705

Crypto

Mean 0.0411 0.0 0.0411 0.0411 0.0822 0.0822
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0
Stddev 0.1985 0.0 0.1985 0.1985 0.397 0.397

Fgl

Mean 0.1197 0.0 0.1197 0.1197 0.2393 0.2393
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0
Stddev 0.3246 0.0 0.3246 0.3246 0.6491 0.6491

Getopt

Mean 0.0 0.0 0.0 0.0 0.0 0.0
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0
Stddev 0.0 0.0 0.0 0.0 0.0 0.0

Pretty

Mean 0.2289 0.0 0.2289 0.2289 0.4578 0.4578
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0
Stddev 0.4201 0.0 0.4201 0.4201 0.8403 0.8403

Haddock

Mean 0.2462 1.8301 0.03 1.8601 9.1979 1442270
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0
Stddev 0.4308 26.4121 0.1765 26.4412 132.116 35478900

Happy

Mean 0.0962 0.0 0.0962 0.0962 0.1923 0.1923
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0
Stddev 0.2948 0.0 0.2948 0.2948 0.5896 0.5896

Hat

Mean 0.0832 0.1851 0.0611 0.2462 1.6304 5478920
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0
Stddev 0.2762 1.5793 0.2395 1.591 13.2342 76065400

Haxml

Mean 0.0978 0.0159 0.0917 0.1076 0.2958 1.8888
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0
Stddev 0.297 0.181 0.2969 0.354 1.517 33.825

Hunit

Mean 0.0084 0.0 0.0084 0.0084 0.0168 0.0168
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0
Stddev 0.0913 0.0 0.0913 0.0913 0.1826 0.1826

Thih

Mean 0.0565 0.0233 0.0415 0.0648 0.1993 0.3239
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 0.0 0.0 0.0
Stddev 0.2308 0.1983 0.1995 0.2778 1.0597 2.3277

Table 98: Mean, Mode, Median and Standard Deviation values of recursion
metrics.
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Cgi

Mean 1.0476 1.6796 4.658 3.8788 18.7922 1.3599
Mode 1.0 0.0 0.0 4.0 1.0 0.0

Median 1.0 1.0 4.0 4.0 13.0 1.4706
Stddev 0.213 3.7372 4.39 2.6682 28.3746 0.856

Dsp

Mean 1.0057 1.13 5.8317 4.065 23.1434 2.2041
Mode 1.0 0.0 0.0 3.0 1.0 0.0

Median 1.0 1.0 6.0 3.0 12.0 2.3333
Stddev 0.0755 2.734 3.959 3.1815 38.8046 1.2908

Geomlib

Mean 1.03 2.0761 5.8573 4.0407 22.9571 1.4208
Mode 1.0 0.0 0.0 2.0 1.0 0.0

Median 1.0 1.0 5.0 3.0 10.0 1.5357
Stddev 0.2763 5.3606 4.8649 2.9803 40.3149 0.8945

Pcf

Mean 1.3548 1.1774 4.0807 3.8065 22.0806 0.91
Mode 1.0 0.0 0.0 1.0 1.0 0.0

Median 1.0 0.0 3.0 2.0 3.5 1.15
Stddev 0.8249 2.0831 5.8152 3.7582 32.5067 0.8406

Crypto

Mean 1.0274 1.7808 4.0411 4.6712 20.5068 1.967
Mode 1.0 1.0 2.0 2.0 1.0 2.0

Median 1.0 1.0 4.0 3.0 7.0 2.2
Stddev 0.2325 2.0423 3.3164 4.5482 27.745 1.0263

Fgl

Mean 1.1175 2.25 6.1688 4.5556 19.5812 1.5997
Mode 1.0 0.0 6.0 2.0 1.0 0.0

Median 1.0 1.0 6.0 4.0 11.0 1.7292
Stddev 0.5857 7.6964 4.8806 2.7455 26.4928 0.8117

Getopt

Mean 1.2353 2.1765 5.2941 4.2941 26.7059 1.1723
Mode 1.0 1.0 0.0 1.0, 2.0 1.0 0.0

Median 1.0 2.0 6.0 2.0 6.0 1.5
Stddev 0.9412 1.917 4.0112 3.9372 33.3233 0.8103

Pretty

Mean 1.2651 2.6386 5.8554 4.4579 29.6265 1.279
Mode 1.0 0.0 4.0 4.0 9.0 1.0909

Median 1.0 1.0 5.0 4.0 9.0 1.1875
Stddev 0.7458 5.8979 5.5778 2.8804 40.8977 0.5371

Haddock

Mean 75.9222 2.3856 5.1907 6.6907 503.116 1.4632
Mode 1.0 1.0 2.0 2.0 2444.0 2.09396

Median 1.0 1.0 4.0 3.0 8.0 1.4
Stddev 150.865 9.4334 10.0403 6.9637 966.279 0.709

Happy

Mean 1.0289 2.5697 5.762 4.5649 44.1875 1.3382
Mode 1.0 1.0 3.0 2.0 1.0 0.0

Median 1.0 1.0 4.5 3.0 10.0 1.3415
Stddev 0.2483 6.0558 5.333 3.6302 116.323 0.6887

Hat

Mean 6.8038 2.4628 6.2899 4.2969 64.2055 1.5903
Mode 1.0 0.0 0.0 1.0 1.0 0.0

Median 1.0 1.0 4.0 3.0 6.0 1.6711
Stddev 29.6067 7.3198 9.5026 4.5608 178.178 1.1156

Haxml

Mean 1.3325 3.2604 6.4536 4.3741 49.7616 1.3253
Mode 1.0 1.0 0.0 1.0 1.0 0.0

Median 1.0 1.0 5.0 4.0 14.0 1.5
Stddev 1.6112 10.7851 6.4532 3.4732 100.743 0.8541

Hunit

Mean 1.0 1.21 4.4454 2.8151 14.5378 1.4238
Mode 1.0 1.0 0.0 1.0 1.0 0.0

Median 1.0 1.0 3.0 2.0 4.0 1.8333
Stddev 0.0 1.4603 5.3995 2.0166 24.8027 1.1711

Thih

Mean 1.1246 2.3937 7.7375 3.8372 35.9734 2.38
Mode 1.0 0.0 0.0 1.0,4.0 1.0 0.0

Median 1.0 1.0 6.0 3.0 11.0 1.875
Stddev 0.7794 6.0024 11.7023 3.4737 87.4426 4.1931

Table 99: Mean, Mode, Median and Standard Deviation values of callgraph
metrics.
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Cgi

Mean 13.5455 2.4978 1.4026 47.6883 16.8139 7.2597
Mode 0.0 0.0 2.0 0.0 0.0 0.0

Median 5.0 3.0 2.0 17.0 7.0 3.0
Stddev 25.5142 2.0191 1.1388 76.7027 19.8766 9.3555

Dsp

Mean 69.0727 3.7323 1.7667 298.885 20.2218 10.109
Mode 0.0 6.0 2.0 0.0 0.0 0.0

Median 32.0 4.0 2.0 86.0 14.0 6.0
Stddev 106.59 2.2333 1.0545 470.231 23.6458 12.6907

Geomlib

Mean 29.8026 3.088 1.5129 129.912 20.9742 9.2436
Mode 0.0 4.0 2.0 0.0 0.0 0.0

Median 8.0 3.0 2.0 40.0 16.0 6.0
Stddev 72.2214 2.4957 1.1732 339.775 21.6627 10.9142

Pcf

Mean 12.2258 1.9194 0.7097 43.6452 10.2903 3.4194
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 3.0 2.0 1.0 3.0 2.0 1.0
Stddev 42.0941 1.9617 0.7908 168.895 11.5051 4.9008

Crypto

Mean 26.7671 2.8082 1.4247 81.5069 10.3425 4.5616
Mode 0.0 0.0 2.0 0.0 0.0 0.0

Median 6.0 3.0 2.0 16.0 6.0 2.0
Stddev 54.4521 2.333 1.0969 172.23 11.6657 5.0123

Fgl

Mean 16.2179 2.9039 1.4979 79.1154 24.4231 11.4402
Mode 0.0 4.0 2.0 0.0 0.0 0.0

Median 8.0 3.0 1.5 42.5 16.0 5.5
Stddev 25.8055 2.0655 1.10264 119.253 24.4452 14.6126

Getopt

Mean 31.4118 2.9412 1.1765 93.0 13.0 5.3529
Mode 0.0 0.0, 3.0 2.0 0.0 0.0 0.0

Median 19.0 3.0 1.0 62.0 15.0 7.0
Stddev 37.2228 2.2353 0.9226 117.982 9.2291 4.3917

Pretty

Mean 17.241 2.3615 1.2651 85.0482 32.747 7.5301
Mode 2.0 2.0 1.0 2.0 2.0 2.0

Median 6.0 2.0 1.0 9.0 3.0 2.0
Stddev 36.6845 1.3041 0.6601 169.566 38.7267 11.8924

Haddock

Mean 17.412 2.9695 1.5956 444.306 265.872 111.686
Mode 4.0 2.0 2.0 4.0 2.0 2.0

Median 5.0 3.0 2.0 7.0 3.0 2.0
Stddev 63.5327 1.8181 0.8604 1027.23 468.627 219.189

Happy

Mean 47.1562 2.6827 1.2909 365.584 22.6755 8.6683
Mode 0.0 1.0 1.0 0.0 1.0 1.0

Median 4.0 2.0 1.0 5.0 2.0 2.0
Stddev 308.784 2.8046 0.958 3515.93 34.9214 16.6081

Hat

Mean 30.6746 2.4983 1.383 404.342 53.8097 24.4197
Mode 0.0 0.0 2.0 0.0 0.0 0.0

Median 4.0 2.0 2.0 6.0 2.0 2.0
Stddev 116.948 2.1432 1.1093 1702.23 87.9073 47.4474

Haxml

Mean 27.4535 2.7249 1.3961 281.286 53.1822 22.4095
Mode 0.0 0.0 2.0 0.0 0.0 0.0

Median 8.0 3.0 1.0 42.0 27.0 6.0
Stddev 80.3673 2.2028 1.1187 618.783 70.7306 32.0744

Hunit

Mean 27.5042 2.4202 1.2689 139.303 14.5042 8.0924
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 4.0 2.0 1.0 5.0 2.0 2.0
Stddev 64.6817 2.6106 1.2482 373.844 20.2143 13.3744

Thih

Mean 129.924 2.5066 1.5183 3270.71 81.3987 47.897
Mode 0.0 4.0 0.0 0.0 0.0 0.0

Median 8.0 3.0 2.0 39.5 11.0 4.5
Stddev 1195.4 2.1844 1.3221 47018.5 114.159 74.1336

Table 100: Mean, Mode, Median and Standard Deviation values of distance
metrics (Part 1 of 2).
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Cgi

Mean 91.4978 50.4719 24.2078 917.68 491.056 243.502
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 9.0 8.0 2.0 127.0 80.0 42.0
Stddev 207.131 83.2839 43.2679 1756.29 691.87 408.912

Dsp

Mean 115.998 48.4245 7.5545 2677.07 801.379 164.736
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 16.0 4.0 1.0 485.0 155.0 62.0
Stddev 224.127 89.0246 14.854 5038.73 1481.0 271.31

Geomlib

Mean 96.7425 36.22 9.1856 1938.27 639.535 176.468
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 3.0 2.0 0.0 120.0 62.0 33.0
Stddev 299.156 78.9768 23.671 5831.79 1339.96 405.918

Pcf

Mean 14.7903 3.1452 0.7258 571.9194 90.8387 27.6613
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 12.0 9.5 8.0
Stddev 59.8161 8.1237 1.7976 2600.3784 232.2869 56.118

Crypto

Mean 49.8219 18.6575 6.1507 1213.548 364.17807 122.274
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 1.0 1.0 0.0 46.0 28.0 16.0
Stddev 142.697 35.2312 13.9418 3373.9866 688.7945 250.3776

Fgl

Mean 91.7628 60.3291 23.3953 1475.1389 857.5021 352.6581
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 5.0 3.0 0.0 209.5 79.0 38.0
Stddev 196.578 114.9033 54.3042 2846.5662 1455.517 713.2242

Getopt

Mean 36.9412 11.9412 1.0588 1341.6471 402.0588 49.4706
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 94.0 35.0 23.0
Stddev 59.5191 22.5818 2.8588 1950.6168 672.498 80.2211

Pretty

Mean 310.048 105.9277 47.8072 3860.3613 1097.976 430.7229
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 140.0 122.0 11.0 1108.0 1045.0 145.0
Stddev 575.902 111.0424 60.672 8240.875 1375.1448 508.3607

Haddock

Mean 2108.14 906.6882 479.6211 19150.428 8301.375 4334.1724
Mode 0.0 0.0 0.0 8.0 8.0 8.0

Median 292.0 210.5 108.0 2922.0 2102.0 1194.0
Stddev 16640.5 1208.7306 701.5303 129811.4 10742.999 6193.4043

Happy

Mean 1100.65 159.9087 84.125 11688.863 1682.6947 841.5697
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 27.0 10.0 2.0 801.0 242.5 68.5
Stddev 11629.1 231.1287 147.8707 120231.33 2381.0564 1451.2504

Hat

Mean 738.112 113.103 52.1583 12451.8125 1743.8656 761.3242
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 8.0 5.0 1.0 245.0 100.0 42.5
Stddev 4649.32 270.1736 96.0151 79907.45 4250.184 1458.2773

Haxml

Mean 1369.93 217.8447 123.9328 13345.854 2272.3594 1199.2201
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 34.0 26.5 5.0 722.0 431.0 109.0
Stddev 4997.49 286.5177 190.8073 39982.402 2958.1797 1778.6891

Hunit

Mean 101.882 35.395 9.7647 1561.1848 470.5882 143.6218
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 0.0 0.0 0.0 26.0 19.0 14.0
Stddev 287.644 78.293 26.1761 4245.846 1088.9442 369.1778

Thih

Mean 6306.53 143.2359 72.8422 244017.2 2952.1396 1511.8323
Mode 0.0 0.0 0.0 0.0 0.0 0.0

Median 4.0 3.0 1.0 181.5 92.0 52.0
Stddev 129874.4 276.8581 160.0003 4907302.0 7274.8975 3624.7903

Table 101: Mean, Mode, Median and Standard Deviation values of distance
metrics (Part 2 of 2).
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Cgi

Mean 1.2035 8.658 2.7619
Mode 1.0 0.0 0.0

Median 1.0 5.0 2.0
Stddev 0.9657 12.5398 3.5517

Dsp

Mean 1.3614 29.8298 9.7361
Mode 1.0 0.0 1.0

Median 1.0 18.0 6.0
Stddev 1.2481 37.2392 13.6341

Geomlib

Mean 1.294 16.5418 6.0891
Mode 1.0 0.0 1.0

Median 1.0 9.0 3.0
Stddev 1.0104 26.0182 9.8312

Pcf

Mean 1.7258 13.0161 4.4355
Mode 1.0 0.0 0.0

Median 1.0 6.0 1.0
Stddev 2.522 34.0159 8.5187

Crypto

Mean 1.0 39.9315 5.9041
Mode 1.0 0.0 0.0

Median 1.0 18.0 4.0
Stddev 0.4682 61.5909 9.0798

Fgl

Mean 1.3205 12.8526 5.5214
Mode 1.0 0.0 0.0

Median 1.0 7.0 4.0
Stddev 0.9562 16.7238 7.3253

Getopt

Mean 1.4706 29.5882 15.5294
Mode 1.0 0.0 0.0

Median 1.0 27.0 9.0
Stddev 1.1437 34.9656 22.5078

Pretty

Mean 2.2651 16.8313 5.253
Mode 1.0 3.0 1.0

Median 1.0 8.0 2.0
Stddev 3.7323 27.2727 8.0238

Haddock

Mean 1.6027 11.3901 3.674
Mode 1.0 3.0 1.0

Median 1.0 4.0 1.0
Stddev 11.9111 29.7117 11.5678

Happy

Mean 223.4423 22.1202 8.3245
Mode 1.0 0.0 1.0

Median 1.0 6.0 3.0
Stddev 4512.9995 83.7473 19.6534

Hat

Mean 2.0437 21.6659 7.6024
Mode 1.0 3.0 1.0

Median 1.0 6.0 2.0
Stddev 6.1626 66.3639 22.4257

Haxml

Mean 3.7213 19.5513 6.824
Mode 1.0 0.0 0.0

Median 1.0 9.0 3.0
Stddev 49.6457 42.7052 14.862

Hunit

Mean 1.0252 16.8067 4.8235
Mode 1.0 0.0 0.0

Median 1.0 5.0 2.0
Stddev 0.6144 27.8804 8.5687

Thih

Mean 1.1728 83.8787 31.9751
Mode 1.0 0.0 0.0

Median 1.0 10.0 4.0
Stddev 1.4785 699.0071 284.9418

Table 102: Mean, Mode, Median and Standard Deviation values of miscellaneous
metrics.



Appendix G

Histograms of Metric Values

341



APPENDIX G. HISTOGRAMS OF METRIC VALUES 342

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0  5

O
cc

ur
an

ce
s

Metric Value

CGI

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0  7

O
cc

ur
an

ce
s

Metric Value

DSP

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  5

O
cc

ur
an

ce
s

Metric Value

GEOMLIB

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0  5.5
O

cc
ur

an
ce

s
Metric Value

HADDOCK

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0  7.5

O
cc

ur
an

ce
s

Metric Value

HAT

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0  6

O
cc

ur
an

ce
s

Metric Value

HUNIT

 0
 5

 10
 15
 20
 25
 30

 0  2.37037

O
cc

ur
an

ce
s

Metric Value

PCF

 0
 2
 4
 6
 8

 10
 12
 14

 0  5.5

O
cc

ur
an

ce
s

Metric Value

CRYPTO

 0
 10
 20
 30
 40
 50
 60
 70

 0  4

O
cc

ur
an

ce
s

Metric Value

FGL

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0  2.04412

O
cc

ur
an

ce
s

Metric Value

GETOPT

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0  4

O
cc

ur
an

ce
s

Metric Value

HAPPY

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0  4.5

O
cc

ur
an

ce
s

Metric Value

HAXML

 0
 2
 4
 6
 8

 10
 12

 0  2.2

O
cc

ur
an

ce
s

Metric Value

PRETTY

 0
 20
 40
 60
 80

 100
 120
 140

 0  62.5

O
cc

ur
an

ce
s

Metric Value

THIH

Figure 62: Histograms of “Arc-to-node ra-
tio” values.
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Figure 63: Histograms of “Strongly con-
nected component size” values.



APPENDIX G. HISTOGRAMS OF METRIC VALUES 343

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  40

O
cc

ur
an

ce
s

Metric Value

CGI

 0
 50

 100
 150
 200
 250
 300

 0  50

O
cc

ur
an

ce
s

Metric Value

DSP

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  102

O
cc

ur
an

ce
s

Metric Value

GEOMLIB

 0
 2000
 4000
 6000
 8000

 10000
 12000

 0  296
O

cc
ur

an
ce

s
Metric Value

HADDOCK

 0
 100
 200
 300
 400
 500
 600
 700

 0  136

O
cc

ur
an

ce
s

Metric Value

HAT

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0  9

O
cc

ur
an

ce
s

Metric Value

HUNIT

 0
 5

 10
 15
 20
 25
 30
 35

 0  12

O
cc

ur
an

ce
s

Metric Value

PCF

 0
 5

 10
 15
 20
 25
 30

 0  9

O
cc

ur
an

ce
s

Metric Value

CRYPTO

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0  147

O
cc

ur
an

ce
s

Metric Value

FGL

 1
 2
 3
 4
 5
 6
 7

 0  7

O
cc

ur
an

ce
s

Metric Value

GETOPT

 0

 50

 100

 150

 200

 250

 0  90

O
cc

ur
an

ce
s

Metric Value

HAPPY

 0
 50

 100
 150
 200
 250
 300

 0  151

O
cc

ur
an

ce
s

Metric Value

HAXML

 0
 5

 10
 15
 20
 25
 30
 35

 0  49

O
cc

ur
an

ce
s

Metric Value

PRETTY

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0  118

O
cc

ur
an

ce
s

Metric Value

THIH

Figure 64: Histograms of “Indegree” values.
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Figure 65: Histograms of “Outdegree” val-
ues.
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Figure 66: Histograms of “Depth” values.
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Figure 67: Histograms of “Width” values.
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Figure 68: Histograms of “Binary recursion”
values.
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Figure 69: Histograms of “Number of non-
trivial recursive paths” values.
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Figure 70: Histograms of “Number of trivial
recursive paths” values.
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Figure 71: Histograms of “Number of recur-
sive paths” values.
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Figure 72: Histograms of “Sum of lengths of
recursive paths” values.
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Figure 73: Histograms of “Product of lengths
of recursive paths” values.
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Figure 74: Histograms of “Number of pat-
tern variables” values.
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Figure 75: Histograms of “Sum of depth of
patterns” values.
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Figure 76: Histograms of “Maximum depth
of patterns” values.
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Figure 77: Histograms of “Number of over-
ridden or overriding pattern variables” val-
ues.
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Figure 78: Histograms of “Number of con-
structors in pattern” values.
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Figure 79: Histograms of “Pattern size” val-
ues.
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Figure 80: Histograms of “Number of wild-
cards in pattern” values.
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Figure 81: Histograms of “Pathcount” val-
ues.
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Figure 82: Histograms of “Number of
operands” values.
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Figure 83: Histograms of “Number of opera-
tors” values.
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Figure 84: Histograms of “Distance by the
sum of the number of scopes” values.
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Figure 85: Histograms of “Distance by the
maximum number of scopes” values.
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Figure 86: Histograms of “Distance by the
average number of scopes” values.
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Figure 87: Histograms of “Distance by the
sum of the number of declarations in scope”
values.
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Figure 88: Histograms of “Distance by the
maximum of the number of declarations in
scope” values.
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Figure 89: Histograms of “Distance by the
average number of declarations in scope” val-
ues.
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Figure 90: Histograms of “Distance by the
sum of the number of source lines” values.
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Figure 91: Histograms of “Distance by the
maximum number of source lines” values.
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Figure 92: Histograms of “Distance by the
average number of source lines” values.
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Figure 93: Histograms of “Distance by the
sum of the number of parse tree nodes” val-
ues.
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Figure 94: Histograms of “Distance by the
maximum number of parse tree nodes” val-
ues.
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Figure 95: Histograms of “Distance by the
average number of parse tree nodes” values.
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[26] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refac-

torings via change metrics. In Proceedings of the 15th ACM SIGPLAN

conference on Object-Oriented Programming, Systems, Languages, and Ap-

plications, pages 166–177, Minneapolis, Minnesota, USA, 2000. ACM Press.

[27] A formal description of the DOT language. AT&T Labs Research, Florham

Park, NJ, USA. http://www.graphviz.org/cvs/doc/info/lang.html,

March 2003.

[28] Micah Dubinko. XForms Essentials. O’Reilly & Associates, Inc., Cambridge,

MA, USA, 2003.

[29] James Eagan, Mary Jean Harrold, James A. Jones, and John Stasko. Visu-

ally encoding program test information to find faults in software. Technical

Report GIT-GVU-01-09, College of Computing / GVU Center, Georgia In-

stitute of Technology, 2001.

[30] J. David Eisenberg. SVG Essentials. O’Reilly & Associates, Inc., Cam-

bridge, MA, USA, 2002. http://www.w3.org/TR/SVG/.

[31] J. Ellson, E.R. Gansner, E. Koutsofios, S.C. North, and G. Woodhull.

Graphviz and Dynagraph – static and dynamic graph drawing tools. In

M. Junger and P. Mutzel, editors, Graph Drawing Software, pages 127–148.

Springer-Verlag, Berlin, Germany, 2004.

[32] Norman E. Fenton. Software Metrics: A Rigorous Approach. Chapman &

Hall, London, UK, 1992.

[33] Norman. E. Fenton and R. W. Whitty. Axiomatic approach to software met-

rication through program decomposition. The Computer Journal, 29(4):330–

339, 1986.



BIBLIOGRAPHY 363

[34] David Flanagan. JavaScript (2nd ed.): The definitive guide. O’Reilly &

Associates, Inc., Cambridge, MA, USA, 1997.

[35] Karl Franz Fogel and Moshe Bar. Open Source Development with CVS. Cori-

olis Group Books, Scottsdale, AZ, USA, 2001. http://cvsbook.red-bean.

com/.

[36] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:

Improving the Design of Existing Code. Addison-Wesley, Boston, MA, USA,

1999. http://www.refactoring.com/.

[37] R.S. Freedman. Testability of software components. IEEE Transactions on

Software Engineering, 17(6):553–564, 1991.

[38] Leif Frenzel. Haskell support for the Eclipse IDE. http://eclipsefp.

sourceforge.net/, April 2004.

[39] Emden Gansner, Eleftherios Koutsofios, and Stephen North. User guide for

the GraphViz dot tool. AT&T Labs Research, Florham Park, NJ, USA.

http://www.graphviz.org/Documentation/dotguide.pdf, March 2003.

[40] Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey P. Siy. Predict-

ing fault incidence using software change history. Software Engineering,

26(7):653–661, 2000.

[41] Thomas Hallgren. Haskell tools from the Programatica project. In Proceed-

ings of the ACM SIGPLAN workshop on Haskell, pages 103–106, Uppsala,

Sweden, 2003. ACM Press.

[42] Maurice H. Halstead. Elements of Software Science. Elsevier, New York,

USA, 1977.

[43] Jed Hartman and Josie Wernecke. The VRML 2.0 Handbook: Building

Moving Worlds on the Web. Addison-Wesley, Boston, MA, USA, 1996.



BIBLIOGRAPHY 364

[44] Les Hatton. Safer C: Developing for High-Integrity and Safety-Critical Sys-

tems. McGraw-Hill, New York, NY, USA, January 1995.

[45] S. Henry and D. Kafura. Software structure metrics based on information

flow. IEEE Transactions on Software Engineering, 7(5):510–518, 1981.

[46] Paul Hudak. The Haskell School of Expression: Learning Functional Pro-

gramming Through Multimedia. Cambridge University Press, Cambridge,

UK, 2000.

[47] C. D. Ince and S. Hekmatpour. An approach to automated software design

based on product metrics. Software Engineering Journal, 3(2):53–56, 1988.

[48] Dean Jerding and John Stasko. The information mural: A technique for

displaying and navigating large information spaces. IEEE Transactions on

Visualization and Computer Graphics, 4(3):257–271, 1998.

[49] Brian Johnson and Ben Shneiderman. Tree-maps: A space-filling approach

to the visualization of hierarchical information structures. In Proceedings

of the IEEE Conference on Visualization, pages 284–291, San Diego, CA,

USA, October 1991. IEEE Computer Society Press.

[50] Richard Jones and Tony Printezis. GCspy: An adaptable heap visualisation

framework. Technical Report 5–02, University of Kent at Canterbury, March

2002.

[51] David J. King and John Launchbury. Lazy depth-first search and linear

graph algorithms in Haskell. In John T. O’ Donnell and Kevin Hammond,

editors, Glasgow Workshop on Functional Programming, pages 145–155,

Ayr, Scotland, 1993. Springer-Verlag.

[52] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Pe-

ter W. Jones, David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg.

Preliminary guidelines for empirical research in software engineering. IEEE

Transactions on Software Engineering, 28(8):721–734, 2002.



BIBLIOGRAPHY 365

[53] Claire Knight. System and software visualisation. In S. K. Chang, edi-

tor, Handbook of software engineering and knowledge engineering, volume 2,

pages 82–92. World Scientific, Hackensack, NJ, USA, 2002.

[54] Claire Knight and Malcolm Munro. Comprehension with[in] virtual envi-

ronment visualisations. In Proceedings of the 7th International Workshop

on Program Comprehension, pages 4–11, Pittsburgh, Pennsylvania, USA,

1999. IEEE Computer Society.

[55] Claire Knight and Malcolm Munro. Visualising software - a key research

area. Technical Report Computer Science Technical Report 8/99, University

of Durham, Computer Science, University of Durham, UK, June 1999.

[56] Claire Knight and Malcolm Munro. Virtual but visible software. In Pro-

ceedings of the International Conference on Information Visualisation, pages

198–205, London, UK, 2000. IEEE Computer Society.

[57] Claire Knight and Malcolm Munro. Software visualisation conundrums.

Technical Report Computer Science Technical Report 05/01, University of

Durham, Computer Science, University of Durham, UK, July 2001.
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