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Abstract

Martin�L�of�s intuitionistic type theory has been under investigation in recent years
as a potential source for future functional programming languages� This is due to
its properties which greatly aid the derivation of provably correct programs� These
include the Curry�Howard correspondence 	whereby logical formulas may be seen
as speci
cations and proofs of logical formulas as programs� and strong normal�
isation 	i�e� evaluation of every proof�program must terminate�� Unfortunately
a corollary of these properties is that the programs may contain computationally
irrelevant proof objects� proofs which are not to be printed as part of the result
of a program�

We show how a series of static analyses may be used to improve the e�ciency
of type theory as a lazy functional programming language� In particular we show
how variants of abstract interpretation may be used to eliminate unnecessary
computations in the object code that results from a type theoretic program�

After an informal treatment of the application of abstract interpretation to
type theory 	where we discuss the features of type theory which make it particu�
larly amenable to such an approach� we give formal proofs of correctness of our
abstract interpretation techniques with regard to the semantics of type theory�

We subsequently describe how we have implemented abstract interpretation
techniques within the Ferdinand functional language compiler� Ferdinand was
developed as a lazy functional programming system by Andrew Douglas at the
University of Kent at Canterbury�

Finally we show how other static analysis techniques may be applied to type
theory� Some of these techniques use the abstract interpretation mechanisms
previously discussed�
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Chapter �

Introduction

In this thesis we intend to show how static analysis techniques may be applied to
the intuitionistic type theory of Per Martin�L�of ��� ����� Our aim is to demon�
strate that the information generated by such analyses may be used to improve
the e�ciency of programs written in a functional system based upon type theory�
Consequently not only will the programs be derived as witnesses to a logical spec�
i
cation but they will be automatically converted to a computationally e�cient
form�

This approach may be contrasted with suggestions by amongst others the
Nuprl and G�oteborg groups 	see ���� and ����� respectively� that the type theory
be altered 	to form separate classi
cations of types and propositions for instance�
so that certain �computationally irrelevant� proof objects may be removed dur�
ing program development� These methods have primarily to be employed at the
discretion of the program developer to form more e�cient programs� We argue
instead that such modi
cations are unnecessary and that abstract interpretation
for instance can be used to enhance the e�ciency of type theory when it is imple�
mented as a lazy functional programming language The principal goal therefore
is to produce an optimised form of lazy evaluation for a language based upon type
theory� This means that proof objects that de
nitely will not be required by the
computation will be removed during compilation and that only those proof objects
that have to be computed will be processed to normal form� The main technique
which shall be investigated will be a form of abstract interpretation known as
backwards analysis� With this technique it is possible within a single analysis
to detect both computational redundancy and possibilities for optimisations such
as transforming call�by�need evaluation to call�by�value�

��� Functional programming

High�level imperative languages such as FORTRAN were developed in order to
speed up the development of programs that would behave correctly with respect
to an informal speci
cation� Such languages have an operational semantics that

�
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re�ects the von Neumann computer architecture ���� on which they were devel�
oped� values are assigned to and retrieved from named memory locations� There
is also an explicit �ow of control so that the overall meaning of a sequence of
statements in a language depends upon their ordering�

The explicit �ow of control together with assignments to an implicit global
state of such procedural languages means that the programs may be referentially
opaque� In other words two calls to the same procedure with the same arguments
may produce di�erent results according to the position of the call within the
dynamic execution of the program and what side�e�ects may be e�ected by each
procedure� 	Side�e�ects are alterations to the global state that are distinct from
the input�output behaviour of a procedure��

This referential opacity makes reasoning about imperative programs problem�
atic� a semantics for a program must be given in terms of a state to state function�
	Potentially this is worse if GOTO statements are included as the semantics then
has to be based additionally on continuations which denote the future path of
the execution of the program�� Furthermore the semantics of a procedure is not
re�ected in the types of its input and output variables� This also means that the
potential for correct parallelisation of imperative programs is weakened�

To enable programs to be reasoned about more easily the functional pro�
gramming paradigm has been advocated ��� and developed� Functional program�
ming languages are based on the ��calculus developed by Church�� Pure functional
programming languages such as Miranda� ����� and Haskell ���� which contain
no imperative features are side�e�ect free and referentially transparent� These
languages however not only remove the potential for actions upon the global
state to be altered but add the concept of functions as �rst�class citizens� This
means that any function may be passed as an input parameter or form the result
of another function� A function that takes a function as input or produces one
as its result is termed higher�order�

Pure functional programming languages are also usually based upon a lazy
reduction strategy� Lazy reduction is a re
nement of the normal order 	i�e� left�
most and outermost� reduction strategy for the lambda calculus whereby each
argument to a function is evaluated at most once and structured data is not nec�
essarily fully evaluated� In practice however some functional languages such as
LML ��� are not fully lazy� 	Some pure functional languages have been developed
such as HOPE ���� which combine a basically strict evaluation strategy with lazy
evaluation of data structures such as lists and trees��

It has been suggested by Hughes ���� that higher�order functions together
with lazy evaluation form the perfect �glue� for constructing large programs in
a modular way� In particular it allows the input to a function to be an in
nite
stream with the function being applied demanding as little of the stream as is
necessary for its computations� This allows input�output dialogues to be written

�Church�s own account of his work is given in ����� A comprehensive survey of lambda
calculus is given by Barendregt in ��� and an introduction in �	
��

�Miranda is a trademark of Research Software Ltd�
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in pure functional languages� Functional languages which do not have this lazy
evaluation strategy at all usually have impure features such as reads and writes
upon the state of the machine in order to implement input and output� 	see for
example SML ������

There are some disadvantages with lazy functional languages however� One
major problem has been with regard to e�ciency� Since the inputs to a func�
tion cannot be evaluated prior to calculating the function closures have to be
formed� Closures consist of an expression to be evaluated and an environment
of variables 	the formal parameters� and their associated expressions 	the actual
parameters�� The formation of closures is costly in terms of space complexity and
the associated memory retrievals have a deleterious e�ect on the time e�ciency
as well� One method of remedying this has been through strictness analysis a
form of abstract interpretation� This method has allowed the detection of which
function parameters must be evaluated during the evaluation of the function�
Consequently such parameters can be evaluated prior to the execution of the
function and closures may be simpli
ed�

Secondly whilst languages such as Miranda have polymorphic strong typing
and allow rapid prototyping that may be seen as speci
cations for more e�cient
implementations ����� their type mechanism is not strong enough to re�ect fully
the speci
cation of a program� For example ��� �� ��� is the type of quicksort in
Miranda� It is also the type of the identity function over polymorphic lists� Hence
it is not possible to have integrated programming and proofs of correctness within
existing functional programming systems� It should be mentioned however that
it is possible to develop functional applications readily from formal speci
cation
languages � an example of the development of a screen editor in Miranda from
the speci
cation language Z ���� is given in �����

Finally computations may not necessarily terminate� If a program terminates
at all it will do so under the lazy evaluation strategy by the normalization theo�
rem ���� In this sense therefore the lazy semantics is the greatest �xpoint 	in the
sense of being the most informative�� It is still impossible to decide in general
however whether a program will terminate� Whilst this does not create the same
problems as the implicit state and side�e�ects of imperative languages it does
make program analysis more complicated since each semantic domain is lifted by
the unde
ned object� This is illustrated in the work of Thompson on Miranda and
Haskell ���� ��� ���� where it is necessary to establish the truth of a predicate
for both the de
ned objects of a type and the unde
ned value� In view of this
Turner has proposed a particular paradigm of functional programming whereby
termination will be guaranteed ������ It would seem however that this system
of elementary strong functional programming has the drawback of restricting the
expressive power of a Miranda�like language whilst not providing the rich system
of types and the �programs as proofs� correspondence present in the theory of
Martin�L�of which we describe below�

�Input�output functions could be performed in a purely functional manner in a strict language
by the use of continuation or monadic based input�output�
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��� Type theory

Martin�L�of�s intuitionistic type theory has received much attention over recent
years as a basis for future functional programming languages� Originally however
it was developed to provide a system to formalise the constructive mathematics�

of systems such as Bishop� ����� Bishop�s work showed that constructive math�
ematics was not lacking the expressiveness of its classical counterpart as had
been thought even by Brouwer the founder of the intuitionistic philosophy of
mathematics �����

In constructive mathematics for a logical formula to be proved an explicit proof
object has to be exhibited for it� Consequently the law of the excluded middle
of classical logic is not valid� As is stated by Bridges and Richman in �����

The constructive mathematician interprets the logical connectives and
quanti
ers according to intuitionistic logic�

They go on to elaborate on the e�ect the rejection of the law of the excluded
middle has on the connectives � and � and the quanti
er �� 	For instance it
is not possible to derive ��P � P  for an arbitrary predicate P  in intuitionistic
logic��

It is known by the Curry�Howard correspondence ��� ��� that the proof
objects may be interpreted as programs � in Martin�L�of�s theory they are in
a form of Church�s explicitly typed lambda calculus� � whilst the intuitionistic
logical formulas which they witness are isomorphic to types 	and speci
cations�
in programming�

This has several important consequences in that programs may only be formed
if they are proof objects of logical theorems in the system of type theory� Hence
programs may be developed with the aid of automatic theorem provers and should
consequently be easier to transform correctly than those of previous programming
languages� This is a consequence of the absence of unde
ned expressions which
make mathematical laws invalid� For instance in Miranda the following idempo�
tency law does not hold if it is possible for either a or b to be unde
ned�

a �	 
b �	 a� � b �	 a

Hence we cannot in general make a program transformation by replacing the less
e�cient left hand side by the right hand side� Examples of program transformation
in type theory are given in ���� Section ����� Moreover any language developed
from type theory should already have most of its semantics explained by the term
models 	consisting of the reduction rules and the canonical proof objects� of the
theory �����

���� covers constructive mathematics thoroughly�
�It should be stressed that MartinL�of was not only interested in formalising Bishop�s work�
�As compared to languages such as Miranda which are based on Curry�s implicitly typed

calculus� Types may be assigned via the algorithms of Hindley ���� and Milner ����� and
programmersupplied types checked via Mycroft�s algorithm ������
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Type theory provides two main improvements upon the functional languages
that have been developed up to the present� Firstly it provides a much richer type
structure than contemporary functional languages� This type structure means
that types may also be viewed as specications unlike in traditional languages
	both imperative and functional� where the types only help in making secure pro�
grams� the types are not precise enough to re�ect the intension of the speci
cation�
For instance Burstall�s idea of deliverables ��� ��� may be represented within the
types of the theory 	although we would suggest that the explicit distinction made
between propositions and types is unnecessary�� Also the availability of dependent
types where for instance the type of the second element of a pair may depend
on the value of the 
rst element allows modules and abstract datatypes to be
de
ned elegantly ��� ����� Secondly unlike languages such as Miranda Haskell
etc� it provides strong normalization�� every program will terminate� This is
a desirable property for a programming language to have as it means that as all
programs are total we have a consequent improvement in the ability to verify pro�
grams� 	Unde
ned objects do not have to be considered so the results of programs
will truly lie within their declared type� if an expression is unde
ned it could be
of any type�� Moreover since the Church�Rosser theorem ��� also holds every
reduction sequence must result in the same normal form for a given expression�
This means that we have in a sense more latitude in de
ning reduction sequences
for programs than in languages such as Haskell�

Languages developed from type theory should continue the progress away from
the traditional imperative languages and improve upon current practice in func�
tional programming� It should be admitted that there are some drawbacks to the
use of type theory as a functional programming language�

�� General recursion over arbitrary data structures is not available in type the�
ory� Without this restriction strong normalization could not be guaranteed�
However this does mean that certain algorithms cannot be presented as ele�
gantly or as e�ciently as a language such as Miranda� Fortunately however
Martin�L�of�s system is deliberately an open one and new structures can be
added to the system provided that they do not produce inconsistency� For
example lists are added to the theory in ����� and Chisholm added parse
trees in ����� Attempts have been made 	in ����� for instance� to introduce
well�founded recursion which is more general than primitive recursion but
which is guaranteed to terminate�

�� Some proof objects may be seen to be computationally redundant and break
the Curry�Howard correspondence between proofs and programs� This idea
is covered in Section ����� of ��� and is discussed in the section below�

�The strong normalization property is due to the fact that the terms of the theory are based
on those of Church�s explicitly typed lambda calculus� This was shown to be strongly normalising
by Tait ������ The proof is actually based on establishing a stronger property called variously
stability ��
�� or strong computability �	
��
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����� Computationally redundant proof objects

This work is primarily concerned with the problem of computationally redundant
proof objects in type theory� It may be seen that some of the proof objects are
not relevant to the computation in which we are interested� For example consider
the index function upon lists where we wish to retrieve the nth element of a list
l� This is de
ned in Miranda as the  function�


� �� ��� �� num �� �


x�xs�  � � x


x�xs�  
n��� � xs  n

However in type theory the function is de
ned as follows 	using the informal
presentation style of type theoretic functions that comes from ����� � typing
is denoted by !�� and list construction by !��� i�e� the reverse of the Miranda
convention� where A denotes an arbitrary type�

index � 	�l � �A���	�n � N��		n � "l� � A�

index �� n p �df abortA p

index 	a��x� � p �df a

index 	a��x� 	n � �� p �df index x n p

Apart from the type 	which is more explicit than its Miranda counterpart � the
type asserts the domain of indices for which it makes sense to apply the index
function for a given list� the parameter p and the 
rst clause of the type theoretic
de
nition form the di�erence between the two presentations�

The parameter p is a proof that the second parameter is less than the length
of the list� This and the 
rst clause guard against the possibility 	which may
happen in Miranda� that an out of range element may be asked for� The 
rst
clause takes care of the case where we have a pathological proof object 	which
will be of type bottom �� that is e�ectively claiming that the empty list has a
greater length than a natural number� This clause ensures that the function is
completely presented so that we can recover easily from any mistakes in program
development� an error of this kind shows us the type of the object that should
have been correctly derived and the type scheme tells us the error in the derivation
that occurred�

The abort expression simply returns an object of the required type A and halts�
This object may e�ectively be anything since we have detected an abnormality
in the proof derivation� abortA p is a witness to ex falso quodlibet�

However we may note that p is neither of the result type A nor is it printable�
it exists solely as a check upon the correct derivation of a program� Nevertheless
it would seem that we have to evaluate it to normal form in order to evaluate to
a printable value any program in which it occurs�
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����� Removal of proof objects

In attempting to remove redundant proof objects the main approach that has
been tried has been to remove these proof objects from the theory itself� This was

rst done by introducing a subset type ���� �� of the form�

fx � A j B g

This represents the type of all elements a of A which satisfy B�a�x�� It is
a weakening of the existential type with the second member of each pair 	the
witness that a satis
es the predicate B� being discarded�

The subset type has a number of undesirable properties however� Firstly
the introduction and elimination rules do not adhere to the inversion princi�
ple ����� that elimination rules should follow in a uniform way from the intro�
duction rules� Secondly proof objects do not have a unique type 	a � A and
also a � fx � A j P g for a range of predicates P �� Finally as is shown in �����
	�x � f z � A j B	z� g��B	x� can only be derived if 	�x � A��B	x� is derivable any�
way� 	Even in the extensional version of Martin�L�of�s type theory ���� Salvesen
and Smith show that 	�x � f z � A j B	z� g��B	x� cannot be derived for arbitrary
formulas A and B��

The squash type of the Nuprl group ���� sought to represent the judgement A
is true via�

Triv � ft � � j Ag

This of course reduces the witnessing information further than the subset type�
This too has disadvantages and Salvesen has shown ����� that it has a similar
weakness with regard to universal quanti
cation�

Thus a new theory has been produced by the University of G�oteborg group
called the subset theory ����� which was 
rst mooted in Salvesen and Smith�s
original ���� piece on the subset type ������ This theory distinguishes between
propositions and types and adds a notion of a predicate being �True�� Whilst the
new theory may be interpreted in the original it clearly lacks the direct Curry#
Howard correspondence� types are represented solely in set theoretic notation 	e�g�
$ %� with the propositions expressed via the symbols of predicate logic 	e�g� �
��� Moreover it is argued by Thompson in ����� and Section ��� of ����� that
such an approach is not necessary as the main objectives of the development of
the subset theory can be met without altering the basics of the system� The 
rst
objective of the subset theory was to make speci
cations 	and hence the derived
functions� more �natural�� Thompson suggested that this aim may be met by a
simple process of skolemization of the type speci
cation 	where in this case the
type is viewed as a logical statement�� In other words we distinguish those objects
in which we are interested and bring them to outermost level of scope in the type�

The other objective of the subset theory is to improve the e�ciency of the
system by removing the computationally redundant witnessing information� How�
ever if a language based upon type theory is evaluated lazily then only those
objects that absolutely have to be computed will be processed to normal form�
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Nevertheless we still need to avoid the computationally wasteful creation of ex�
pressions 	and their associated closures� which will never be used� To do this
we need to perform analyses upon type theory programs in order to 
nd the
most e�cient means of computing such a program� We shall use static analysis
techniques which to date have been developed to enhance traditional functional
programming implementations� These techniques should help us to both elimi�
nate the type theoretic witnessing information from our programs and to allow
the remainder of the program to be evaluated in the most e�cient way possible�
Hence we strongly suggest that the distinction between propositions and types
is unnecessary� the computationally redundant proofs of the propositions will be
eliminated automatically by a compiler practising the techniques we present�

��� Static analysis and abstract interpretation

Static analysis is the term used to describe a variety of techniques which may be
applied to computer programs when they are compiled� The idea is to deduce
properties about a source program which may then be used to optimise the object
code produced� The crucial point is of course that the properties are deduced
without actually running the program� We shall focus upon the most commonly
used static analysis technique for applicative languages known generally as ab�
stract interpretation� More speci
cally we shall use the form of abstract in�
terpretation known as backwards analysis� Below we review the development
of this increasingly important area of analysis of computer programs�

����� History of abstract interpretation

Patrick and Radhia Cousot were the 
rst to attempt to develop abstract inter�
pretation and relate it to the semantics of a programming language ��� ���� The
idea they developed was to use partial information about the inputs of a model
imperative language to derive partial information about the outputs� They ob�
served that the static semantics of a language did not have computational content
in that it simply indicated the result 	or a sequence of intermediate results� of a
program� They established what was meant by a safe abstract interpretation of
a language in that there would be abstraction and concretisation maps between
the static semantics of a language and its abstract interpretation and an abstrac�
tion followed by a concretisation would leave a result consistent with the static
semantics� An introduction to the optimisation of imperative programs is given
in ������

Mycroft was the 
rst to apply the ideas of abstract interpretation to functional
languages in his PhD thesis in ���� ������ This analysis was rather restricted
in that it only dealt with 
rst�order programs and did not properly analyse lazy
data structures� In ���� Burn Hankin and Abramsky described a method for the
abstract interpretation of higher�order functions ���� and Abramsky extended the
theory to polymorphic functions ���� In ���� Wadler made a major contribution
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to solving the problem of lazy data structures ������
The above methods were all forms of forwards analysis where abstract values

are propagated from the inputs to discover 	partial� information about the outputs
of a program� A survey of this form of abstract interpretation of lazy functional
programs is given in ����� An alternative however is to do the reverse i�e� derive
information about the inputs from the context of the output� The prime moti�
vations for this approach were to try to capture the property of head�strictness
which would indicate whether lists were strict in their individual elements� In�
deed it was shown by Kamin ���� that this property could not be captured by
forwards analysis� Hughes and Launchbury also showed that the analysis of prod�
ucts could be performed more accurately by a backwards analysis with forwards
analysis giving no advantage for sums ����� It was thought moreover that the
�ow of information from a result to a function�s parameters was more natural for
properties such as strictness� In addition backwards analysis has been seen to be
more e�cient than forwards analysis 	although this is shown not to be a property
of the direction of analysis in ���� � it is due to the fact that backwards analysis
does not usually consider the relationships between parameters�� A discussion of
methods to improve the e�ciency of forwards abstract interpretation is given in
�����

The backwards analysis method was 
rst developed for the functional idiom
by Johnsson in ���� ����� Backwards analysers were later developed by Hughes
���� and Wray ������ Much of the theoretical work in this area has been done by
Hughes ��� �� �� ��� with a main strand of the work being the presentation
of backwards strictness analysis using projections� ������ Relationships between
forwards and backwards analysis are given in for example ��� ���� Much of this
work is reviewed in greater detail in Chapter ��

����� Abstract interpretation used in this work

This work concentrates upon the backwards analysis techniques of Hughes �����
We have chosen this method for the following reasons�

�� As noted above it is capable of detecting abstract properties of data struc�
tures more accurately than forwards analysis�

�� In the forms of forwards and backwards analysis commonly used backwards
analysis may be seen to be more e�cient than forwards analysis�

�� For the properties which we wish to capture such as computational rele�
vance there is a more natural �ow of information backwards rather than
forwards� The results of the function applications that we compute are
clearly computationally relevant and so we see how this propagates back�
wards to the parameters of a function�

�Projections are continuous� idempotent functions over domains which approximate �in the
sense of being less de�ned than� the identity function�
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We examine a hierarchy of analyses ranging from simple neededness anal�
ysis which distinguishes between computationally relevant and redundant proof
objects to sharing analysis� Sharing analysis subsumes simple strictness analy�
sis 	where we distinguish between those objects which must be evaluated i�e� are
strict and those which may not be evaluated i�e� are lazy� detects parameters
which will be evaluated more than once and so should be �shared� by di�erent
parts of the program and di�erentiates between those objects that are needed
and not needed by a computation�

��� The scope of this work

Chapter � gives more detail on the issue of computational irrelevance in type
theory techniques which have been used to try to solve the problem and develops
the theory of backwards analysis as an alternative solution� The theory developed
enables parameters that will be unused in a computation to be automatically
detected� The work presented includes the sharing analysis presented by Hughes
���� and implemented by Fairbairn and Wray ����� This sharing analysis detects
whether parameters are used or unused as well as determining whether functions
are strict in certain parameters and whether inputs to functions may be shared
during the reduction of a function application� Thus a single analysis allows both
the irrelevant proof objects to be detected and for the optimisations that have
been applied to other functional programming languages to be applied to type
theoretic programs�

A formal account of the neededness aspect of the analysis with regard to the
theory TT of ����� is given in Chapter �� This includes a proof of correctness of
the analysis with respect to the computational necessity of elements of the formal
computation rules of type theory� This thus shows that the analysis is sound and
will not indicate that a parameter is unused when in fact it may be required by
the computation�

Chapter � describes how the ideas presented earlier were implemented within
a compiler for a functional language Ferdinand based upon TT � This work
thus enhances the research performed by Douglas ���� into producing a practical
functional programming system based upon type theory� Of particular note in
this Chapter is the presentation of a method for removing parameters that have
been detected as redundant�

Chapter � reports on how other forms of static analysis may be applied to type
theory with particular focus on the time complexity of type theoretic programs�
We show how the necessity analysis developed in Chapter � may be applied to the
time analysis of the programs of TT  which was originally developed by Bjerner
����� The use of the necessity analysis may be seen to provide an upper bound
	worst case� for the time complexity of type theoretic programs� We also show
how an analysis may be used to provide a lower bound 	best case��

We present our conclusions and suggestions for further research in Chapter ��
There are also two appendices� the 
rst Appendix A gives examples of the
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application of backwards analysis to type theoretic programs whilst the second
Appendix B gives further documentation upon the implementation of the analysis
within the Ferdinand compiler�

��� Related work

As mentioned above this work is primarily designed to show that modi
cations
to the type theory such as the subset theory ����� are unnecessary in order to
remove computationally irrelevant proof objects� The subset theory is embedded
within the ALF theorem prover ����

The AUTOMATH system of de Bruijn ���� like the subset theory separated
types and propositions in order to remove irrelevant 	constructive� proofs from
classical deductions� It has also been argued recently ����� that the proper place
for the subset theory is to elide information in proofs 	and thus re�ect the actual
practice of Bishop in his book ������

Paulin�Mohring ����� presents a method of extracting programs with compu�
tationally irrelevant material removed from proofs in the calculus of constructions
���� with a scheme for realizations added� This system makes a distinction be�
tween propositions that have a �computational informative� content and those
that have only �logical� content� The process of realizing proofs is performed by
marking parts of the propositions that are redundant computationally� Takayama
����� followed up Paulin�Mohring�s work in designing a partially automated tech�
nique for pruning natural deduction proof trees as a prelude to the realization of
executable functions in a non�type�theoretic version of constructive logic QPC
������ Berardi and Boerio ��� ��� built upon this by casting a lambda expression
as a tree to be pruned� This was improved upon in ���� where a notion of subtyp�
ing was developed to produce a simpli
cation relation which allowed optimized
��terms to be deduced� We discuss this brie�y in Section ����

Luo has produced an extended calculus of constructions ��� ��� in which
again types and propositions are kept separate� It also adds a single impredicative
universe of propositions� It is intended to be a uni
cation of the calculus of
constructions and Martin�L�of�s type theory� 	One of Martin�L�of�s earliest works
on type theory ���� also had the impredicative notion of a type of all types�� The
LEGO proof development system ���� was developed to accompany this work and
McKinna has developed a category�theoretic approach to developing programs in
that system �����

Systems based upon Feferman�s theory of types ���� may also be contrasted
with this work� Such systems 	e�g� TK ���� and PX ����� separate entirely the
theory of functions and operations and the theory of types with a scheme of logical
assertions being de
ned over the simple types� Moreover programs which unlike
those of Martin�L�of�s type theory are not strongly normalising are extracted
from proofs by a process of realizability� Such systems are described in general
in ������ Of particular note is the paper by Henson ���� which discusses how the
realizability process removes computationally redundant proof objects�



Chapter �

Backwards analysis of

type theory

��� Introduction

In this chapter we explore 
rst the computational relevance of proofs with regard
to program development in type theory� We compare approaches to the speci
ca�
tion of programs and examine how a separation between the purely proof theoretic
and the computationally relevant is made� We argue that such a distinction is
unnecessary given the form that we believe speci
cations should take and the
abstract interpretation theory that we subsequently develop�

The development of the theory is preceded by a discussion of the relative merits
of forwards and backwards analysis� We then proceed to develop the basic theory
of a backwards analysis based on the work of Hughes ��� �� ��� of the system
called TT in ������ Of particular note is Section ��� which presents the treatment
of elements of types which exhibit computational redundancy in the phraseology
of ����

We then show how the theory presented thus far may be used to analyse
the index function presented in Section ����� of the introduction� This example
demonstrates that the computationally irrelevant third argument to index may
be automatically detected and removed�

Following the index example we develop the theory into more advanced areas
particularly higher�order functions� We subsequently give a formal presentation
of the theory in order to make precise the preceding work�

Whilst our main concern is with regard to the terms of the theory that may be
computed we then discuss the analysis of the types of the theory� This is neces�
sary since the types are �
rst�class citizens� 	unlike the functional programming
languages that were analysed by Hughes�� terms may appear within types and
types may be the inputs and results of functions�

Finally we give the analysis of quicksort as a larger example which as it calls
the 
lter function illustrates our approach to higher�order functions and present
our conclusions�

��
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��� The subset theory � program speci�cation

The purpose of the introduction of the subset type ����� and more recently the
subset theory ����� was to separate computationally redundant proof theoretic in�
formation from programs� This would have the bene
t of increasing the e�ciency
of programs constructed in type theory since proof objects that would witness
for instance the fact that a list was non�empty would not appear in the resulting
program and would not have to be computed�

Elements of subset types are introduced by the following rule 	which is Thomp�
son�s interpretation in Section ��� of ����� of the rule given in Section ���� of �������

a � A p � B�a�x�

a � fx � A jB g
	Set Intro�

This should be compared with the introduction rule for the existentially quanti
ed
types�

a � A p � P �a�x�

	a� p� � 	�x � A��P
	� Intro�

Note that the premises to both rules are the same but that the introduction rule for
Set discards what is the second component of the pair that witnesses membership
of the existential type� It is this information loss that is precisely the point of
the subset type in that the second component of the pair which witnesses the
existential type may be a witness to a proposition such as the 
rst element of the
pair a being a sorted list�

Elements of a subset type are eliminated via the following rule�

�x � A& y � B�
���

a � fx � A jB g c	x� � C	x�

c	a� � C	a�
	Set Elim�

This rule has the side condition attached that y may not appear free in c or C�
Again this may be contrasted with its counterpart for existential types�

�x � A& y � B�
���

p � 	�x � A��B c � C�	x� y��z�

Casesx�y p c � C�p�z�
	� Elim�

Here both c and C will in general depend on y as well as x and Casesx�y p c
is computed by substituting the 
rst and second components of the pair p for x
and y respectively in c� The subset type however does not have an associated
computation rule since no new selector is introduced� the computation rule is just
that for C	x��
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The drawback of the subset type lies precisely in the fact that it does discard
information� Its weakness in practice is shown in the integer division by two
example given in Section ���� of ������ There it is acknowledged that the subset
type is too weak to interpret the following proposition as a set�

	�x � N��	�y � N��		I	N�x� 	y 	 ���� � 	I	N�x� 		y 	 �� � �����

	Above I	N�x� 	y	��� and I	Nx		y'�� ���� are equality types�� Also it is argued
in Section ��� of ����� that functions to take the head and tail of a non�empty list
cannot be derived via subset types� The problem lies in the fact that the rules for
subsets encapsulate an ad hoc disposal of information& in the elimination rule for
instance the assumption y � B can be used in the proof of C but it cannot occur
in either c or C� As Martin�L�of says in ������

So you have to use your skill in deciding whether to keep the infor�
mation in a proof explicit or to forget it� And if you throw away
something that you need later on then you are in a bad position�

The theoretical weakness of the subset type is discussed in ������
Propositions and types are separated in the subset theory which was proposed

���� ���� to overcome the problems of the subset type whilst separating the
computationally relevant from the proof theoretic� Subsets are introduced by the
rule

a � A P 	a� true

a � fx � A jP 	x� g
	Subset Intro�

Note that the premise P 	a� true has replaced p � P �a�x� of the subset type� It is
the need to have such propositional judgements that we regard as the weakness
of the subset theory in that a parallel set of rules needs to be provided to form
propositions and to derive judgements which show that a predicate is true� We
suggest that the rules of Martin�L�of�s type theory 	which are presented in Chap�
ter �� are su�ciently complex to make any such augmentation undesirable from
the viewpoint of people working with type theory in practice� More importantly
the separation of propositions and types does not increase the proof theoretic
strength of the original theory although it may be seen to increase the ease of
expression�

A justi
cation for the development of the subset type and theory given in �����
is that the speci
cation of a function should be of the form�

	�x � A��	�y � B��P 	x� y�

A proof of this type will be a function which returns a pair for each input the

rst part of the pair being the value that we are interested in and the second part
being a proof that x and y meet the speci
cation relation P � Even if we accept
this Thompson shows in ����� that it is still possible to convert the above form
to the speci
cation

	�f � A� B��	�x � A��P 	x� f x�
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This is done via the application of the axiom of choice and the elimination rule
for implication� The axiom of choice� may be derived from the � Elim rule given
above� The above may be seen as a Skolemization process whereby we assert
the existence of a function named !f �� Thompson shows in Section � of �����
how the Dutch national �ag partitioning problem ���� may be speci
ed without
recourse to the subset type used in Section ���� of ������ Thompson also mentions
that certain functions such as hashing operations do not naturally have the
form of speci
cation given in ������ The Skolemization process thus results in
speci
cations in which the proofs will be pairs of functions and witnesses that the
behaviour of a function meets a predicate�

This leaves the other reason for the use of subsets computational e�ciency�
The lazy evaluation strategy 	whereby arguments to functions are calculated only
if they are required to calculate the 
nal result of a program� will if used in a type
theoretic program ensure that the purely proof theoretic parts of the program are
never actually calculated� However the e�ciency of a resulting object program
may be hampered if computationally redundant proof objects are included within
it since closures 	and hence machine space� will have to be allocated for the proof
information which is never actually used�

We will show how the computationally irrelevant expressions will be detected
by the use of the ABSENT expression in a backwards analysis of type theory�
With the use of a suitable context lattice of values which abstract properties of
programs this will allow computational irrelevance to be detected and removed
at compile time� Indeed if p is the witness to

	�f � A� B��	�x � A��P 	x� f x�

then if we use only the functional part via Fst p then the second part of the pair p
will be detected as unused and therefore may be removed during compilation�
Here computationally redundant proof information occurs due to the form of
the speci
cation and can be readily detected and removed� However it will not
always be the case that the second part of a witness to an existential type can
be discarded� 	Such proof objects may be seen as variant records for example
where the type of the second part of the pair depends upon the value of the 
rst
part�� Also some computationally redundant proof information is essential so as
to witness the fact that other inputs are valid� For instance we would have to
supply a proof that a divisor was non�zero or that a given index was meaningful
with respect to a list 	i�e� between zero and the length of the list�� Thus it is these
proof objects that maintain the strong normalization property of type theory�
These proof objects have to be represented by the domain type A of the Skolem
function f  in the above formula� For instance for the tail of list function over

�It should be noted that the axiom of choice that may be derived in MartinL�of�s type theory
is intuitionistically valid in that it does not give rise to a proof of the law of the excluded middle�
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natural number lists a possible speci
cation is�

	�tl � 		�l � �N ���	nonempty l� �N ����

	�l� � �N ���	�p � 	nonempty l����

I	�N �� l�� 		hd l� p� � 	tl l� p���

The above says that as input to the Skolem function f  we require both a list and
a proof that the list is non�empty� The second part of the speci
cation relates
the Skolem function tl to the hd 	head of list� function whereby a list must be
equivalent to constructing the list with its head and tail components� It should
be noted here that hd also requires as input a proof that the list is non�empty�

Hence whilst we can remove some purely proof theoretic information using the
axiom of choice and the Fst selector there will still remain some computationally
redundant parameters in the functions in which we are interested for calculations
such as tl�

Berardi and Boerio�s subtyping optimisation Berardi and Boerio follow�
ing on from the work of Paulin�Mohring ����� and Takayama ����� have developed
an algorithm to detect and remove �useless computations� from a ��calculus sys�
tem based upon G�odel�s system T ����� They develop a notion of subtyping where
(�types are used to develop a simpli
cation relation� The base (�type consists
of the natural numbers identi
ed together i�e� one solitary element� The set of
natural numbers N  is considered as a subtype of ( and each type of the simply
typed lambda calculus is a subtype of some (�type� Optimisation consists of re�
placing computationally redundant terms of a type A with dummy constants of
the corresponding (�type of which A is a subtype�

Whilst it would appear that their method could be extended to type theory to
deal with computational redundancy the system which we present has a signi
�
cant advantage over theirs in that it is more modular 	analysis and optimisation
phases are separate� and can be used to obtain optimisations in addition to the
elimination of computational redundancy such as strictness detection� Moreover
we would suggest that our system is more easily extensible to new constructs in
type theory than their algorithm�

��� Forms of abstract interpretation

The idea of abstract interpretation is to discover without executing the program
partial information about the parameters of a program so that the program may
be complied more e�ciently� In other words we simplify the range of values that
objects may take so that we may compute a restricted amount of information
about the variables in which we are interested� We therefore produce an abstract
semantics for a particular interpretation of a language� The actual semantics for
the language is in a sense too exact in that it only stipulates the results of a
computation in terms of a given expression� it does not give us data about parts
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of the computation or how the result may be categorised� Abstract interpretation
allows us to categorise results� A simple example of this is the �rule of signs�
for multiplication in arithmetic 	two numbers of the same sign produce a positive
number two numbers of opposite sign produce a negative� in which we are only
interested in the sign of a number rather than its actual value 	e�g� 
���

The basic form of abstract interpretation is forwards analysis where we prop�
agate abstract values as inputs to produce an abstract result� The rule of signs is
an example of a forwards analysis� Backwards analysis naturally is the reverse�
we take abstract information for the output of an expression to be analysed and
propagate it to give information about the inputs of the program� We can thus
tell for example whether an input parameter has to be evaluated in order to
evaluate the main expression of the program�

����� Forwards analysis

Forwards analysis pioneered for functional languages by Mycroft ���� ���� is
probably the most natural form of abstract interpretation� instead of running the
actual program on concrete arguments we �run� an abstract version of the pro�
gram on abstract arguments� The abstract arguments have initial values assigned
to them via an environment� These initial values represent contexts i�e� sets of
expressions having a particular property� It is fairly straightforward to translate
directly from a function in the concrete syntax of an implementation of type the�
ory to produce an abstract version� In fact the main di�erences are simply the
addition of some symbol such as 	 to denote the fact that we are dealing with
abstract variables and functions and an environment � say which gives us the
abstract values bound to the variables� Also operators such as t 	to denote an
�or��like operation� and u 	like �and�� are used to combine expressions in the ab�
stract version of the program� Since we ensure that we are dealing with a domain
of abstract values we may deal with recursion in a similar way to the method
for backwards analysis we present later i�e� by 
nding the 
xed point of an as�
cending chain of approximations� Here however we meet the prime drawback to
forwards analysis since 
nding 
xpoints of recursive equations involving abstract
functions may in the worst case have an order of complexity exponential in the
number of arguments� Even for Mycroft�s simple two�point domain of values �����
	with � abstracting the strict property and � the non�strict� �n calculations of
the abstract function will be required for just one iteration in the 
xpoint cal�
culation where n denotes the number of parameters of the function� 	There are
two possibilities for each abstract input and thus �n permutations for all abstract
parameters�� Similarly �n comparisons have to be made after each iteration to
determine whether the 
xpoint has been reached� Moreover in the worst case
the number of iterations to 
nd the 
xpoint may also be �n� The complexity of
the calculations may be seen from the fact that 
xpoint calculations with abstract
values can be represented as a truth table in classical propositional logic 	see Sec�
tion ��� of ����� and thus is equivalent in complexity to the satis
ability problem
which is NP�complete ������
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This complexity di�culty is exacerbated when we abstract from data struc�
tures 	by for example the four�point domain for lists devised by Wadler ������
or higher�order functions 	each abstract value of a functional argument will form
a lattice of values � see ������ There have been various attempts to improve
this situation� Clack and Peyton Jones 
rst proposed the idea of frontiers for
forwards strictness analysis ����� Frontiers allow the number of comparisons for
each iteration to be reduced by partitioning the lattice of possible input abstract
values into two portions� This idea was developed and formalised in ��� �� ����
In addition an outline for the implementation of frontiers using lattices developed
via the type class mechanism of Haskell was proposed in �����

However as the frontiers algorithm does not change the number of approxi�
mations that have to be calculated this approach was found to be insu�cient to
improve computational e�ciency in practice so Hankin and Hunt have developed
their ideas of approximation further which they show to be a form of widening and
narrowing 	����& widening and narrowing were 
rst introduced by the Cousots to
cope with large lattices in the abstract interpretation of imperative programs ������
Widening allows the lattice of approximations to be traversed more quickly to 
nd
a safe approximation to the 
xpoint whilst narrowing allows a more informative
approximation to the 
xpoint to be found� Unfortunately whilst a narrowing op�
eration can be de
ned as the meet over a lattice there is no uniform method for
de
ning a widening operator ��� Section ��� The approximation method which
we de
ne over structured contexts and is described in Sections ����� and ������
is an example of a widening operator�

Forwards analysis has a more serious defect with regard to the analysis of
type theoretic programs in that it cannot gain information about components of
data structures satisfactorily� For instance it has been shown by Kamin ���� that
head�strictness cannot be captured by the 	usual� abstraction methods of forwards
analysis�

����� Backwards analysis

As noted in ���� backwards analysis is in fact a particular type of forwards
analysis where the abstract values are themselves functions upon contexts rather
than being simply contexts themselves� 	We shall however following the work of
Hughes and others ��� �� �� ���� use the term context for the abstract values
in our analysis�� The abstract values of backwards analysis may be seen as sets
of continuations ���� whereby an abstract value such as �unused� will mean that
the expression will de
nitely not be evaluated in the future computation of the
program�

The backwards analysis of Hughes ��� �� ��� however has linear complexity
in relation to the number of arguments� This is due to the fact that only a single
input value 	which represents a property of the result of the function� is required
by each abstract function in the 
rst�order case� Davis and Wadler have shown
���� however that the complexity of the analyses is not due to the direction of
the analyses but whether relationships between the variables of a function may be
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considered 	what they term a high��delity analysis� or not� We may for example
capture a property such as joint redundancy where if one parameter is needed
for a particular application of a function then another will be unused in that
application� For instance we may form a function cond from the if�then�else
construct�

cond a b c ) if a then b else c

Here it may be seen that if parameter b is used then c will not be used and
vice versa� Such information can be used to generate more e�cient object code
in that closures can be reduced more rapidly� as soon as any reduction of one
parameter p say takes place then information contained within the closure on
other parameters which are jointly redundant with p can be discarded� An example
of a forwards analysis which detects joint strictness 	i�e� if one parameter is not
necessarily evaluated then the other must be� is given for the lesseq function in
Appendix A����� A high�
delity backwards analysis will have the same order of
complexity as the forwards analyses that we have described above� The backwards
analysis that we shall develop is a low�
delity one in that we do not consider the
possible properties of the parameters in conjunction� However for higher�order
functions we are forced to make the analysis partly high�
delity ���� in order to
gain non�trivial information�

With regard to data structures the work of Hughes and Launchbury ����
shows that backwards analysis is either better than 	in the case of products� or
incomparable with 	in the case of sums� the corresponding forwards analysis in
the 
rst�order case�

Much of the work in the area of backwards analysis has been the modelling of
contexts by Scott projections ���� ���� Dybjer showed ���� that it is also possible
to perform backwards analysis by using the inverse images of Scott�open sets 	cf
the model of abstract values in forwards analysis as Scott�closed sets�� In this
work however we shall take contexts to be sets of continuations�

There have been a number of works which relate forwards and backwards
analysis� Apart from the works of Hughes and Launchbury ���� and Davis and
Wadler ���� already mentioned Burn has compared the power of forwards analysis
with projection�based backwards analysis in the respect of strictness information
about lists ����� Hughes and Launchbury show in a later work that analyses may
be reversed ���� although some loss of precision may occur if the reversals are not
fully relational� Hunt developed the idea of analyses based on partial equivalence
relations� ��� ��� which subsumes both projection�based analysis and forwards
analysis based upon Scott�closed sets�

�A partial equivalence relation is a symmetric and transitive relation
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��� Context lattices

����� Introduction to context lattices

The basic idea is that we are presented with some closed expression as 	part
of� a program in type theory which has to be evaluated to a normal form� In
our analysis we assume that this evaluation occurs in some sort of context � this
context in a sense represents partial information about the evaluation such as
whether the result will be required a multiple number of times whether it has to be
stored on the heap or indeed whether it is necessary to evaluate the expression at
all� To express this more formally contexts represent sets of possible continuations
of the program � for example continuations where a certain sub�expression will
de
nitely not be evaluated�

The information we obtain from a backwards analysis thus depends upon the
context lattice which we use� the more distinct contexts we have the more infor�
mation we obtain about a program� Naturally however this will also mean that
any analysis we do may be more complex� We only use basic lattice theory here
enough to give some �esh to the analysis which we are attempting� The reader
is referred to �An Introduction to Abstract Interpretation� in ��� which covers
relevant information about domain theory and the 
nding of 
xed points and
to ���� which covers the necessary lattice theory� In particular we shall use the
Knaster�Tarski theorem which allows the least 
xpoint of a recursive functional
over a complete lattice to be found�

����� Lattice theory

Denition �

A poset 	partially ordered set� is a set P  with an ordering relation v 	�less
than or equal to�� so that the following three properties hold�

�� Re�exivity� a � P implies that a v a�

�� Antisymmetry� a� b � P implies that if a v b and b v a then a ) b�

�� Transitivity� a� b� c � P implies that if a v b and b v c then a v c�

Denition �

A lattice is a poset L where each pair of elements 	as a set� has a least upper
bound and a greatest lower bound� We call the least upper bound the join 	de�
noted � or t� and the greatest lower bound the meet 	denoted � or u�� More
generally the join and meet may range over any 
nite non�empty subset of the
underlying set�
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Denition �

A complete lattice is a lattice where every subset of the lattice has a least upper
bound� 	It can be shown that it follows that every subset will have a greatest
lower bound as well��

Result �

Every complete lattice is bounded i�e� it has bottom and top elements�

Proof

See pp���#�� of �����

�

Result �

Every lattice with a 
nite number of elements is complete�

Proof

See p��� of �����

�

Result �

If A and B are complete lattices then their product AB and their linear sum
A�B are also complete lattices�

Proof

See p��� of �����

�

Denition �

A map f between lattices L and M is order�preserving 	or monotone� i�
whenever x v y

f x v f y

Denition 	 �Ascending Kleene chain�

The ascending Kleene chain for an order�preserving map f � L � L on a
	complete� lattice L is the sequence

fn 	��

where we use � here to mean the bottom element of L� Note that

f	 	�� ) �
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and
fn
� 	�� ) f 	fn 	���

Denition �

x is termed a xpoint of a map f � L � L on a lattice L if f x ) x� The least
such element of L if it exists is termed the least xpoint and is denoted �	f��

Result � �Knaster�Tarski theorem�

If L is a complete lattice and f � L� L is an order�preserving map then the least

xpoint of f  �	f� exists� Furthermore if L is 
nite then

�	f� )
G
n�	

fn 	��

That is the least 
xpoint is the least upper bound of the ascending Kleene chain
formed for f �

Proof

The existence of the least 
xpoint is shown on pp� ��#�� of ����� Also if the
lattice is 
nite then the ascending Kleene chain must be 
nite and so if

� )
G
n�	

fn 	��

then necessarily as L is complete � is in L� Furthermore there exists i such that
� ) f i 	�� and for any j � i f j 	�� ) �� Hence � is a 
xpoint� If 	 is any
other 
xpoint of f then fn 		� ) 	� However as � v 	 and f is order�preserving
fn 	�� v 	� Hence � v 	 and thus � ) �	f��

�

Denition 
 �Context lattice�

A context lattice is a 
nite lattice with a distinguished elementABSENT and
an operation contand 	 � � which is an associative operation that is monotonic
with respect to each of its arguments and for which ABSENT is the identity and
the least element of the lattice CONTRA is a zero� We also denote the context
join as contor 	t � for which CONTRA is of course the identity�

����� ABSENT and CONTRA

We shall 
rst discuss the two contexts which must be present within any context
lattice� They may not however be necessarily distinct from other contexts in the
lattice� 	Indeed we shall see that in the neededness analysis lattice they are the
same point��

ABSENT is the context which results when a variable x is computationally
redundant with respect to E� This may be due to the following possibilities�
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�� x does not occur free in the expression E� For example ABSENT is the
relevant context with respect to x for the expression y � ��

�� x only occurs in E as 	part of� an applicand to a function which does not
use that parameter� For example suppose that the function const takes two
parameters and simply returns the second as its result� Suppose then that
E is the expression

const x �

ABSENT again pertains to x as it is computationally redundant here due
to const not using its 
rst parameter�

�� E has no computational content and is itself of a computationally redundant
form� An example of this is an abort expression in TT which is used to ensure
complete presentation in a strongly normalizing system� pathological proof
objects of the empty type � are eliminated using abort expressions� For
example for the hd of list function in TT we may have�

hd � 	�l � �A���		nonempty l� � A�

hd �� p �df abortA p 	��

hd 	a �� x� p �df a

In 	�� p must be a proof that the empty list is not empty and therefore is
an impossible proof of type �� abortA p is a normal form of type A� It is
nonsensical to evaluate p further� in this case p represents an error in proof
derivation and its actual form is semantically irrelevant� It is su�cient to
know that p � � whilst it is axiomatic to type theory that � is not inhabited�

As demonstrated above the idea of the ABSENT context is vital to our
development of a system which automatically detects computational redundancy
in expressions of TT� In the neededness analysis lattice 	Section ������ ABSENT
and CONTRA both correspond to the context U representing the fact that a
parameter is unused during a computation�

CONTRA represents the most precise context information we can assert
about an object via a context lattice� It always corresponds to the bottom el�
ement of the context lattice� Its name comes from the fact that it represents
CONTRAdictory information in the sharing analysis lattice 	Section ������� In
that lattice if a variable has context CONTRA then it indicates that the pa�
rameter must both be used and unused by the computation�

We shall see that ABSENT is the identity for the context operator � and
that CONTRA is the identity for the context operator t � We shall abbreviate
ABSENT by AB and CONTRA by CR�

����� The contand and contor operations

There are two primitive operations upon each context lattice contand 	 � � and
contor 	t �� Contand has to be de
ned according to the abstract semantics
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of each analysis� It should represent the idea of combining the properties of two
contexts in an analogous way to a logical�AND operation� For example the
result of applying contand to a context U denoting the fact that a parameter
is de
nitely unused and a context N indicating that the parameter may be used
should be N� this captures the idea that if a parameter is required by one or more
sub�expressions then it is required for the computation as a whole� Contand is
used to combine contexts resulting from di�erent actual parameters to a function
application� This is discussed in Section ����� on context propagation with respect
to function applications� There are the following restrictions upon the de
nition
of the � operator�

�� The ABSENT context 	Section ������ must be an identity for � � This
re�ects the idea that if a parameter is not computationally needed by one
sub�expression then the context for the parameter will only depend on other
sub�expressions�

�� � should be associative and commutative so that

a� 	b� c� ) 	a�b� � c

and
a�b ) b� a

Associativity and commutativity guarantee the fact that the deduction of
abstract properties can be computed in an order�independent way& if a pa�
rameter is needed in an application for instance then it is irrelevant whether
that results from the 
rst or last applicand�

�� � should be monotonic so that

a�b v a� c

whenever b v c� This stipulation means that the combination of properties
must preserve the information ordering� This is what we would demand
intuitively as contexts higher up the lattice re�ect less precise information
than those lower down�

The companion operation to contand contor 	t � should unlike contand
always be identical to the join operation 	�� on the context lattice� Consequently
t is associative commutative and monotonic and it has CONTRA has its
identity� As the name implies this is somewhat similar to a disjunction of contexts�
In sharing analysis Section ����� it does indeed correspond to set union� We
use t to denote uncertainty in for example pattern�matching clauses guarded
expressions and if�then�else statements and more generally for computation rules
which are de
ned by more than one clause� This re�ects the fact that we do
not know in advance which branch of a conditional expression will be evaluated�
Section ����� shows how contor is used to de
ne context propagation with respect
to expressions which branch on di�erent possibilities�



CHAPTER �� BACKWARDS ANALYSIS OF TYPE THEORY ��

����� The strict operator

We also need a unary operator that can remove absence from a context so that the
context which pertains to a parameter in the case that it is used in a computation
will be produced� This will be convenient for the calculation of context functions
as shown in Section ������

The operator to do this we call strict�

Denition �

A context c
�

is equal to strict c i�

ctABSENT ) c
�

tABSENT

and if c
��

is any other context so that

ctABSENT ) c
��

tABSENT

then c
�
v c

��
where v partially orders the lattice of contexts�

For example in the sharing analysis lattice which is discussed in Section ����� and
where t corresponds to set union this operation corresponds to subtracting the
set f�g theABSENT context from a context such as f�� �g� In this case f�g will
be the result of strict f�� �g� For the neededness analysis lattice 	Section ������
strict is simply the identity function as AB ) CR�

This operation is used to ensure the correct calculation of context functions
	Section ������ over structured data 	Section �����

Finally we show that strict is the identity over contexts not containing AB�
SENT that it is a monotonic operator over contexts and that it preserves joins
in contexts�

Result 	

If ABSENT �v c then
strictc ) c

Proof

Suppose that ABSENT �v c but we have

strict c ) c�

where c �) c�� Then by the de
nition c is always an upper bound for the
candidates for strictc and so

c� � c

However then it must follow that as ABSENT �v c

c� tABSENT � ctABSENT



CHAPTER �� BACKWARDS ANALYSIS OF TYPE THEORY ��

which means that
strict c �) c�

which contradicts our original assumption� Hence

strictc ) c

as required�

�

Result �

The strict operator is order�preserving�

Proof

Suppose that we have two contexts a and b such that

a v b

Suppose we have

strict a ) a�

strict b ) b�

Then as from the de
nition of strict

strictx v x

it follows that
a� v a v b v b�

This gives the result�

�

Similarly we can prove that�

Result 


The strict operator is uncertainty�preserving� That is

strict 	atb� ) 	strict a�t 	strict b�

��� Lattices for the analysis of TT

In this section we develop context lattices which may be used for the abstract
interpretation of programs in TT� We shall start by developing the neededness
analysis lattice 	Section ������ which allows the property of computational redun�
dancy to be captured� We can however deduce other properties about programs
in type theory such as strictness 	Section ������� This allows classes of optimisa�
tions which have previously been applied to functional languages such as Haskell
to be made to TT programs� We show how di�erent properties may be combined
into a single context lattice in Sections ����� and ������
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����� The neededness analysis lattice

Neededness analysis consists of a two�point context lattice as its basic abstract
domain� This lattice allows distinctions to be made between those parameters
which might be required by a computation and those which de�nitely will not
be� It is the latter property which is essential to our study of computational
redundancy in TT� We seek to determine which parameters are de
nitely compu�
tationally redundant 	with respect to lazy evaluation� and those which may not
be� For example for the simple function const which is de
ned as�

const x y �df x

we can readily see that the parameter y is unused by the computation whilst x
is always needed whenever the result of const is required by a computation� We
assign the context U to denote the property of a parameter such as y being
unused by the computation� Here ABSENT corresponds to the abstract value
U�

There is no decision procedure to show exactly which parameters are required
by a computation and those which will de
nitely be unused& this undecidability
property is proven in Result �� on page ��� Consequently the other point N
in this lattice is less precise in terms of its informative content� It denotes the
property that a parameter may or may not be used by a computation� In the above
example the context pertaining to the parameter x is N� Below is an example of
a function where in order to provide an abstraction that is sound 	i�e� so that we
will not determine a parameter as being unused when in fact it may be needed�
we have to assign the N context as the abstract value of a parameter when in fact
it may be unused�

condfn b x y �df if b then 	x � �� else y

Here b must be used in evaluating condfn and so its context is N� However it is
not necessarily the case that either x or y will de
nitely be used at all 	although
one of the two must be if condfn is called�� For instance condfn might only ever
be called where b reduces to False� Consequently y would in such a program be
used but the parameter x would be unused� However since both x and y might
be used 	we assume that addition always uses its arguments� they must each be
assigned the abstract value N�

We order the two values by U � N� Thus more precise information is ordered
below the less precise� This re�ects the idea of contexts as sets of possible contin�
uations� U denotes all continuations 	under a lazy evaluation strategy� where a
parameter is not used� However the context N denotes every continuation both
those where the parameter is unused and those where the parameter is evaluated�
Consequently U is a subset of N and hence the ordering that we have presented�

Since CR and AB are equal the � and t operations are consequently iden�
tical on this lattice� The strict operation is simply the identity function over
contexts�
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N

U Unused:
Definitely will not be 

Needed:
May or may not be
computed during the
calculation of the

computed during the
calculation of the

result of the program.

result of the program.

Figure �� The neededness analysis lattice�

Once we detect a parameter has having the context U we can then remove it
from the object code produced at compile time� The neededness lattice is shown
as a Hasse diagram in Figure ��

����� The strictness analysis lattice

The most common analysis used to improve the e�ciency of lazy functional pro�
grams is strictness analysis� Here we attempt to 
nd which sub�expressions
of a program may be evaluated and passed as values to functions rather than as
names� This enables us to make the following gains in e�ciency�

�� We avoid the creation and updating of an as�yet�unevaluated closure�

�� We may use a single piece of storage for an evaluated object rather than a
pointer to a place in heap storage�

�� We eliminate extra evaluations of the same piece of code�

Here we wish to determine which parameters must be evaluated during a com�
putation i�e� those in which a function is strict� If we determine that a parameter
has the context S then the function may be evaluated by call�by�value on that
parameter� If we return to our example

condfn b x y �df if b then 	x � �� else y

then the context pertaining to b should be S since b must be evaluated during the
evaluation of condfn� However both x and y should each have the context L to
denote the fact that the function is �lazy� in those two arguments and that they
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S

L
evaluated even if the
expression it is 
contained within
is fully evaluated.

     Definitely will be
evaluated if the 
enclosing expression
is evaluated.

Strict: 

     May not be 
Lazy:

Figure �� The strictness analysis lattice�

should be passed as names rather than values� In both cases x and y might not be
used and so in the interests of having a sound abstract interpretation we assign
the 	less informative� context L to them� The lattice ordering is S � L� This again
re�ects the fact that the more informative context S represents a subset of the
continuations denoted by L� Also as for neededness strictness is an undecidable
property over programs in TT�

In this analysis � corresponds to the lattice meet whilst ABSENT is equiv�
alent to L� 	If a parameter is ABSENT then we obviously cannot say that it
is de
nitely used�� The strict operator is equivalent to the constant function
returning S i�e�

strict c ) S

The Hasse diagram of the strictness lattice 
rst proposed in ���� is shown in
Figure ��

����� The strictness and absence analysis lattice

We may produce a lattice which encapsulates both the strictness and neededness
properties� This extended analysis is called strictness and absence analysis�

To do this we construct the Cartesian closed product of the two sets of contexts
as shown in Table �� Each possible pair re�ects a unique possibility in that no
redundant information is provided as a result of the product formation� If a
parameter is both unused U and strict S then contradictory information has
been found i�e� an error has occurred in the analysis� In the lattice that we are
constructing we give this the value C or CONTRA representing the empty
set of continuations� If the contexts U and L resulted then we can say that the
parameter is de
nitely absent 	i�e� computationally redundant� which we denote
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Context pair Strictness and absence

	NL� L

	NS� S

	UL� A

	US� C

Table �� Product of the neededness and strictness contexts�

by A or ABSENT� The other two possibilities are given the same labels as the
strictness lattice values namely S and L� The lattice ordering may be de
ned
from the product construction i�e�

	a�b� v 	c�d� i� a vNd c and b vSt d

wherevNd and vSt denote the orderings on the neededness and strictness lattices
respectively� Thus for example A � L but A and S are incomparable�

The context C ensures that we preserve a lattice structure whilst maintaining
the natural structure of the properties encoded� 	A three�point chain would not
be particularly natural since we would want the join of A and S to be L�� The
four�point strictness�and�absence lattice is shown in Figure �� Here � has the
de
nition given in Table � which is reproduced from ����� Note that C acts like
a multiplicative zero whilst A is an identity� The strictness and absence lattice
is an example of what Hughes terms in ���� a concrete context domain where the
ABSENT and CONTRA elements are distinct from the other elements in the
lattice 	L and S�� The strict operation is equal to S for the contexts S and L and
to C for A and C�

The contexts of this lattice may be illustrated in the following example�

condstra b x y �df if b then 	x � �� else �

Here the context S pertains to b L to x and A to y 	since it is not used at all in
the de
ning expression��

The strictness analysis lattice is what Hughes calls an abstract context domain
	since we can perform an abstract interpretation projection from the concrete
domain to the abstract one� as ABSENT is identi
ed with L and CONTRA
is identi
ed with S� The neededness lattice is also a projection of the four�point
domain with C and A being mapped to U and S and L being mapped to N�

����� The sharing analysis lattice

When implementing type theory we would like a mechanism which detects�

� Expressions that do not actually need to be evaluated during the computa�
tion 	i�e� �absent� objects��
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L

SA

C

Absence:
     the object in question
     does not occur in the 
     expression  being 
     analysed.

Contradiction:
     this corresponds to
     contradictory requirements
     e.g. where a parameter
    must be both absent and needed.

Figure �� The strictness and absence analysis lattice�

� C A S L

C C C C C

A C A S L

S C S S S

L C L S L

Table �� De
nition of � for strictness and absence analysis�
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{1,M}

{}

{M}{1}{0}

{0,M}{0,1}

{0,1,M}

Lazy

Strict
contexts

contexts

Figure �� The sharing analysis lattice�

� Expressions that must be evaluated 	so that we gain e�ciency in places
where the value of an expression may be stored rather than its code��

� Expressions to be shared 	so that we may optimise call�by�need to call�by�
name in the cases where an expression is used only once��

Sharing analysis is a form of abstract interpretation which 
nds such infor�
mation� it subsumes strictness and absence analysis whilst also telling us which
objects may be shared by di�erent parts of the evaluation� 	Details of an actual
implementation of this method are given in ������

The sharing analysis lattice of context values consists of the power set of
f�� ��Mg with the join and meet operations on this lattice being set union and
intersection respectively� This lattice is shown in Figure �� �� ��M are called
usage values� They refer to how often a parameter is used in a computation�

� � means that the parameter is not used�

� � means that the parameter is used exactly once�

� M means that the parameter is used more than once�

Sets of these values denote uncertainty� f�� �g for instance indicates that the
object in question may not be used or may be used just once� Note that this
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Context pair Full sharing equivalents

	LM� f��Mg

	L�� f�g

	SM� f�Mg

	S�� f�g

	AM� f�g

	A�� fg

	CM� fg

	C�� fg

Table �� Product of the strictness�and�absence and simple sharing contexts�

uncertainty dictates that we use a power set construction rather than for example
a chain involving the abstract values � � and M� If say we abstracted both the
contexts f�� �g and f�g by the value � then our analysis would either be unsound
or lacking in precision with respect to the properties which we are abstracting� If
we deduced that the value � was propagated to a parameter of a function then it
would be unsound to conclude that the function must be strict in that parameter&
� might represent f�� �g� Conversely we thus must lose precision in the case when
� actually represents f�g�

However we can detect an optimisation of the sharing analysis lattice if we
take the following approach to its construction� Firstly we should note that in
detecting possible call�by�need to call�by�name optimisations 	i�e� closure simpli�

cation� we only have to distinguish between the cases where a parameter is used
exactly once 	which we shall denote by the context �� and those where a parame�
ter is used some indeterminate number of times 	M�� Here � �M� Now we can
take the product of the strictness�and�absence lattice and our simple two�point
sharing detection lattice� The resulting pairs and their equivalents in the full
sharing lattice can be seen in Table �� Note that there are two redundant pairs in
the table in that three products are equivalent to the empty set 	i�e� are contra�
dictory�� However no equivalents to either fMg or f��Mg result� This is because
the context M in the simple two point sharing analysis denotes any number of
usages including zero one and multiple usage� Consequently from this approach
we deduce that neither fMg nor f��Mg are necessary in our sharing analysis
and may be identi
ed with f��Mg and f�� ��Mg respectively� This follows the
intuition that in our analysis and optimisation we are not interested in deducing
that a parameter must be used more than once � we only need to know when a
parameter is used exactly once� Finally we note that we could derive a four�point
sharing�and�absence lattice from the neededness and two�point sharing lattices in
a similar way to that of the strictness�and�absence lattice�
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The following illustrates the contexts that we would expect to derive�

condshar b x y �df if b then 	x � �� else 	x � y�

Here the context of b should be f�g as it is used precisely once� The context of x
should be f��Mg since x is used more than once and the context of y should be
f�� �g since it may be used once only or not at all�

Since the existence of di�erent usage values within a set denotes uncertainty
about possible continuations we identify t with set union which is the join 	��
on the lattice� f�g is the ABSENT context and it follows from De
nition � that
on the sharing analysis lattice�

strict c ) c
 f�g

� is more involved as it does not correspond to the meet or the join on this
lattice�

Description of the � operator in sharing analysis

The contand operator 	 � � combines two contexts in a manner similar to that of
logical �and�� we wish to produce a resulting context which is equivalent to the
meaning of both operands being true� For example if one context tells us that
a parameter must be used just once 	i�e� the context f�g� whilst another tells us
that the same object may not be used or may be used a multiple of times 	i�e�
f��Mg� then if both these contexts are true then the resulting context should
tell us that the object in question is used once or a multiple of times� We are thus
in a sense adding usage values to re�ect this combination of contexts� 	Here it is
useful to remember that contexts are sets of possible program continuations��

We thus arrive at the following de
nition of � in sharing analysis�

Denition �

The contand 	 � � context operator is de
ned in sharing analysis as follows�

c�d ) fa�b j a � c� b � dg

	a and b are usage values��
��� is de
ned so that we form a simple commutative monoid of usage values
with � as the obvious identity�

��� ) �

��M ) M

��� ) M

��M ) M

M�M ) M
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����� Properties of the context operations

Unfortunately � and t are not related in general even though they correspond
to greatest lower bound and least upper bound respectively in simple strictness
analysis� In sharing analysis for example we may easily refute the notion that
t is distributive over � �

f�gt 	f�g� f�g� ) f�gt f�g

) f�g

but

	f�gt f�g� � 	f�gt f�g� ) f�g� f�g

) fMg

	As discussed in Section ����� we can equate the latter result with f��Mg�� How�
ever we do have one useful result which follows directly from the de
nition of �
and � 	which is the subset relation� for sharing analysis�

Distributivity law

Result �

In sharing analysis
c� 	dt e� ) 	c�d�t 	c� e�

Proof

The result holds for the trivial cases where one or more of the contexts is CON�
TRA�

Suppose where none of the three contexts is CONTRA that

a � 	c� 	dt e��

This is so i� �b � c and �c � 	dt e� such that a ) b � c�
From the de
nition of t we have�

c � 	dt e� �� 	c � d� or 	c � e�

and�
c � d i� a � 	c�d��
c � e i� a � 	c� e��
This is true if and only if

a � 	c�d�t 	c� e�

This together with the de
nition of � gives the result�

�
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��	 Structured types and contexts

����� Introduction to structured contexts

So far we have dealt only with atomic contexts � contexts which refer only to
a variable as an object without structure and without type� Often however we
wish to 
nd out information about the components of a term of structured type�
For example we may want to 
nd out information about the head of a list or
the second part of a pair� This becomes particularly relevant when we consider
functions de
ned by pattern matching on the structure of the type of a parameter�

To do this we introduce structured contexts� We thus broaden the domain of
contexts so that contexts re�ect the structure of the type in the actual syntax�
We thus have types of contexts in one�to�one correspondence with the types of
the language� Each of these structured contexts have constructors akin to those
in the syntax of type theory� However since the �ow of information is backwards
it should be noted that constructors in the type theory 	such as ��� give rise to
selectors in the abstract interpretation and visa versa�

These structured contexts have two parts�

�� An atomic part which gives the context for the object as a whole e�g� for
an entire list�

�� A structured part which gives the contexts of the components of the
object e�g� the head and tail of a list parameter� These contexts are �glued�
together by context constructors�

We are thus able to build up a set of context types which correspond to the
types of a language based on intuitionistic type theory� In general for a structured
context�

AB ) AB
�

�CR�

where AB
�

means the context ABSENT for the type of the atomic contexts and
�CR� means that all the subscripted contexts have the value CONTRA�

����� Examples of structured contexts

The following are examples of structured contexts�

�

f�g
f�g�f	g�

Tuple structured context� The two subscripted contexts refer to each ele�
ment of the pair� In this case the 
rst part of the pair will be used exactly
once but the second part of the pair will be unused�
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�

f�� �g
��� f�g ��f	��g

List structured context� the head of the list will de
nitely be used if the list
itself is� 	We include the empty list context for completeness to show that
the expression may evaluate to the empty list and hence that the contexts
for the head and the tail of the list will not be relevant in that case��

�

f��Mg
��Succf	���Mg�

Natural number structured context� the subscripted contexts refers to the
predecessor of the natural number variable� 	Again � indicates that the
natural number might evaluate to ���

�

f�� ��Mg
Null� Nodef��Mg

��Succ�f����Mg�
f	��gf��Mg�

Binary tree 	with natural number data carried at the nodes� structured
context� Here Null refers to the possibility of an empty tree� Note that a
natural number context is carried by the tree context as each node in the
tree carries a natural� There are two contexts in the subscripted part which
represent the contexts pertaining to each of the two subtrees�

Note that nullary context constructors such as � and �� are included in the above
examples� Since these do not contain any extra contextual information 	they will
be present in all structured contexts of the relevant types� we shall often omit
them for the sake of notational convenience�

Note that we thus have typed contexts where the subscripted parts indicate
the contexts of the components of the di�erent head normal forms that may occur
for each type� A complete list of the context types which may occur in the
backwards analysis of TT is given in the formalisation of the backwards analysis
Section �������

����� The at and str functions

We often wish to refer to the atomic part of a structured context� 	Indeed due to
pattern matching upon a structured object the atomic part of a context is quite
often unchanged during the backwards analysis of a function�� In order to do this
we introduce the functions at and str�

Denition ��

at	c� ) The atomic part of c

str	c� ) The structured part of c
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This informal de
nition may be made more precise by stipulating that contexts
are pairs consisting of an atomic part and a structured part� The structured
part will contain context constructors and contexts 	which may themselves be
structured��

����� Semantics of the structured parts

It is possible for an atomic part of a context to be greater than or equal to
ABSENT� Of course if the atomic part was actually unused by the computation
then the subscripted contexts would be meaningless� Hence the structured part
of a context is taken to be meaningful for the strict part of the atomic context�
That is the part of the context which describes possible continuations where the
data structure will be used by the computation�

For example in
L
���S ��S

the subscripted contexts mean that both the head and the tail must be used if
the list itself is used�

When combining contexts however we have to factor in the possibility that
the atomic parts do indeed correspond to ABSENT� This is why the de
nition
of � in Section ����� below is not simply pointwise as is the case with t �

This semantics of structured contexts is the reason also for the de
nition of
the calculation of context functions given in Section ����� which allows the strict
part of input contexts to be propagated to the structured components�

����� De�nition of � upon structured contexts

Suppose we have c and c� of the following form�

c ) a
C c����cm

c� ) a�
C c�����c

�
m

	In other words c and c
�
are structured contexts with the structured part consisting

of the combination of m contexts 	which themselves might be structured�� These
subscripted contexts are combined using the context constructor C��

We then using � upon atomic contexts de
ne � upon such structured con�
texts as follows�

c� c� ) 	at	c� �at	c���
C ���

where * is the combination of contexts given below�

* )

�����
����

	ly c� c�� t 	ly c c��� t 	c� � c����
���

	ly c� cm� t 	ly c c�m� t 	cm � c�m�
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where

ly ed )

��
� d  if e w ABSENT

CONTRA  otherwise

where CONTRA is the bottom of the context domain that includes d� 		ly ed�
means �the context d with respect to the laziness of the atomic context e��� Note
that � is still monotonic after this adjustment since for any given context e if
a v b then

ly e a v ly eb

The results of � are approximated as in ������

����� Recursive data structures and context approxima	
tion

A problem with backwards analysis arises when we consider recursive data struc�
tures in type theory� The di�culty occurs because such structures may be of
arbitrary size� we do not know in advance for example how long an arbitrary
list may be� Whilst such structures are not in
nite in the sense that a list such as
����� is in Haskell 	in type theory we need co�inductions to obtain such streams�
their arbitrary size gives rise to in
nite contexts� For example a list context has
as its structured part contexts for both the head of the list and the tail of the list�
The tail of list context is itself a list context which is therefore structured and
has a tail�of�list context which is again a list context and so on� We may retain a

nite lattice of contexts by assuming that all head contexts and all tail contexts
are the same for a particular list i�e� a list context is assumed to be of the form�

c
d ��e

d ��e
d ��e���

The above is represented as simply�

c
d ��e

Nevertheless we must remember that e is a list context and that its 	implicit�
subscripted contexts must be used during a computation of contexts� During a
computation we often 
nd that a resulting context is not of the correct form� The
following example in simple strictness analysis and taken from ���� shows what
may occur�

S
S ��L �S

L ��S ) S
S ��L

S ��L���

�S
L ��S

L ��S���
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) 	S�S�
S�L� �� L

S ��L���

�� S
L ��S���

��

) S
S �� L

S ��L���

�� S
L ��S���

��

) S
S �� L�S�

��S�L�tL��� ��L
S ��L

�S
L ��S

�tS
L ��S

�
�

It may be observed that we have a repetition in the calculation 	a repetition
which is guaranteed by the restriction we have placed upon the form of structured
contexts� and that we have as a result a context of the form�

c
d ��e

d� ��e�
d� ��e�

���

In such a situation we approximate such a context in order to maintain the con�
vention of having 
nite structured contexts of the form�

c
d ��e

We achieve this by taking the join of the head contexts to produce a 
nal head
context and similarly with the tail contexts i�e� using the notation above we have
as an approximation�

c
dtd�� �� ete� �

To denote this process of approximation we use the symbol
�

�� Going back to our
example we have�

S
S �� L�S�

��S�L�tL� �� ��L
S ��L

�S
L ��S

�tS
L ��S

�
�

�� S
St S�L�tL� ��St L�S�tS�

) S
St StL� ��St StS�

) S
L ��S

These approximations are safe in that if e is the context that would actually
result from the combination of two 	
nite� contexts and e

�
is an approximation

to e then�
e v e

�

where v partially orders the lattice of structured contexts that contains both e
and e

�
� In other words our approximate result will remain valid with regard to the
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actual semantics of a language based upon type theory but potentially there will
be a reduction in the precision of the information we obtain� The approximation
operator

�� is an example of a widening operation ��� ��� in that it serves to

nd a 
xpoint more readily even if in general it will not be the least one�

In the TT system there are two other recursively de
ned data structures
natural numbers and binary trees where natural number data is contained at
the nodes� With both these cases the procedure is the same� we perform the
calculation with the structured contexts expanded so that the recursive nature of
the contexts is made explicit� We then perform the calculation which will result
in a structured context which is not of the required form in that the recursive
parts do not repeat from the 
rst subscripted level downwards� This is shown in
the case of the following tree context�

c
Noden l

�Noden� l� r��
r
�Noden� l� r��

Such a context is then approximated by joining corresponding parts of the struc�
tured context so that left subtrees are joined with left subtrees etc�

We can also factor the idea of approximation into the de
nition of the �
operator� For instance we can produce an expression for the combination of two
natural number contexts as follows�

c
Succc�

�d
Succd�

) c
Succc�

Succc�
���

�d
Succd�

Succd�
���

) c�d
Succ c��d��ta� tb��

Succ��c� �d��ta� tb��

Succ ��c� �d��ta� tb�����
�

� c�d
Succ c��d��ta� tb� ta� tb��

In the above

a� ) ly dc�

b� ) ly cd�

a� ) ly d� c�

b� ) ly c� d�

The formal de
nitions for � and the approximation operator for each of these
recursively de
ned types are given in Section �������
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��
 Context functions

��
�� Introduction to context functions

Context functions are used to calculate the context which pertains to each pa�
rameter of every function de
ned for a program in TT� That is there will be
a one�to�one correspondence between function parameters of TT programs and
context functions� If a function in TT has the name f then we shall denote its
context functions by f� � � � fn assuming that f has n parameters�

We shall see how context functions are derived from expressions in TT in the
section on context propagation ���� A context function is de
ned in terms of some
context expression E where E contains one context variable v which is bound
by the context function� The basic abstract syntactical structure of a context
expression ce 	of the syntactic domain Cexp� is

ce ��) AB j v j ce� � ce� j ce� t ce� j gi ce�

ce� and ce� are also context expressions� This structure is a simpli
cation of the
full syntax of context expressions which is given in Section ������� That takes
into account the additional complication of higher�order functions the analysis of
which is described in Section �����

Context functions are evaluated by substituting an input context for occur�
rences of v and applying the basic context operations� For example suppose that
the context function f is de
ned as follows�

f v�df v� 	ABtv�

Then in the strictness�and�absence lattice

f S ) S� 	AtS�

) S�L

) S

The above example evaluates context functions over atomic contexts so that
here a context function g will have the type C � C where C is the context
lattice being used� With structured contexts however the types of the input and
output may di�er�

��
�� Additional constraints upon context functions

For the neededness strictness�and�absence and sharing lattices we impose the
following additional constraints upon context functions�

�� Absence i�e�
f ABSENT ) ABSENT

This must be preserved as otherwise we may deduce that an expression must
be evaluated when it need not be�
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�� Contradiction i�e�
f CONTRA ) CONTRA

This must be preserved as otherwise we would be adding possible program
continuations which were not possible in the original expression that we are
analysing�

�� Uncertainty i�e�
f 	ctd� ) 	f c�t 	f d�

This is not a constraint as such but simply follows from the fact that context
functions are de
ned by the � and t operations�

Properties � and � also apply to the strictness lattice�
The above properties were stipulated by Hughes in ���� for concrete context

domains� Both the strictness�and�absence and sharing lattices are examples of
concrete context domains where the ABSENT and CONTRA elements are
made distinct from the other elements of the lattice� It is reasonable to impose
properties � and � on context functions over the neededness lattice since if the
result of a function is unused then it follows that any parameter of that function
must also be unused� Furthermore property � follows immediately from prop�
erty ��

Properties � and � can be proved for the context functions which we derive
as is shown in Section ������

We also have to make an alteration to the method by which context functions
are calculated in order to be consistent with the semantics of structured contexts
	see Section �������

fi c )
�
E�c��v�tABSENT� if ABSENT v c
E�c�v�� otherwise

In the above c� ) strict c 	strict is de
ned in Section ������� If we did not do this
then only lazy contexts 	i�e� those ordered above ABSENT� would appear in the
structured parts of the result if the input context was lazy� However we desire
that the contexts of the structured parts should be predicated on the assumption
that the whole structure is used�

��
�� Order	preservation by context functions

In this section we prove that the context functions and expressions that we use
in the analysis of TT are order�preserving 	monotonic�� Also we show that the
constraints of absence and uncertainty upon context function which we presented
in Section ����� can be proven for the context functions of the form that we have
given in ������

Result � �Monotonicity of context functions�

The context functions used in our backwards analysis are order�preserving if and
only if their de
ning context expressions are order�preserving�
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Proof

We assume that we have a context function f de
ned in the following manner�

f v�df E	v�

We aim to show that if a v b then

f a v f b�

i�
E�a�v� v E�b�v�

Suppose that a v b and let a� ) strict a and b� ) strict b Then there are
the following cases to consider�

��

ABSENT �v a�b

Then

f a ) E�a�v�

f b ) E�b�v�

Hence the result follows�

��

ABSENT v a�b

Then by the monotonicity of strict 	Result �� we have

a� v b�

Also

f a ) E�a��v�tAB

f b ) E�b��v�tAB

It follows from the monotonicity of t that

f a v f b

i�
E�a��v� v E�b��v�

The latter expression is equivalent to monotonicity of context expressions
over strict contexts�
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��

ABSENT v b

but
ABSENT �v a

Now from Results � and �

a ) strict a v b�

We thus have that�

f a ) E�a�v�

f b ) E�b��v�tAB

Hence from the monotonicity of t

f a v f b

i�
E�a�v� v E�b��v�

Thus the result has been proven for all possible cases�

�

Result ��

The context expressions that we form in our backwards analysis are order�preserving�

Proof

We give an outline of the proof� The crucial point is that context expressions are
built around the � and t operators which must be monotonic 	see Section �������

The proof is by structural induction over a context expression E�

Base case Here the expression E must either be a constant AB or a variable
v� If it is the former then we have proved monotonicity as

f a ) f b ) AB

when a v b� In the latter case then if a v b

f a ) a v b ) f b
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Inductive cases Here we have the following cases�

�� We need to prove that when E has the form ce� t ce� it preserves mono�
tonicity assuming that both ce� and ce� do� This is follows immediately
from the monotonicity of the contor operator t � That is if a v b then

ce�	a� v ce�	b�

ce�	a� v ce�	b�

where ce	x� means that x is substituted for free occurrences of the context
variable v in E� It follows that

	ce�	a�t ce�	a�� v 	ce�	b�t ce�	b��

�� If we assume that monotonicity is preserved by sub�expressions ce� and ce�
then as � must be monotonic the result follows similarly to the above�

�� If E has the form
g ce�

then we may assume that monotonicity is preserved by the context function
g i�e� that a v b implies

g a v g b

This assumption is valid since g is monotonic i� its de
ning context expres�
sion is i�e� our induction hypothesis actually concerns the de
ning expression
of g�

We also assume that if a v b then

ce�	a� v ce�	b�

Since ce�	a� v ce�	b� it follows that

g 	ce�	a�� v g 	ce�	b��

Hence the monotonicity result follows for context expressions�

�

Results � � and �� guarantee the fact that the recursive equations that we
form with respect to a context lattice may be solved by 
nding the limit of the
ascending Kleene chain�

Result �� �Uncertainty preservation by context functions�

The context functions used in backwards analysis preserve uncertainty i�e� for any
contexts a and b we have�

f 	atb� ) f at f b
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Proof

We will show by structural induction that the result holds for the evaluation of
context expressions� From this the result will then follow for context functions
due to the preservation of uncertainty by the strict operator 	Result ���

Base case Both possibilities are trivial� For example where the context expres�
sion E is v we have�

E�	atb��v� ) atb

) E�a�v�tE�b�v�

Inductive cases We give the case for the contor operation� The other two
cases are similar�

E � ce� t ce�

Now we have from the induction hypothesis that�

ce�	atb� ) ce�	a�t ce�	b�

ce�	atb� ) ce�	a�t ce�	b�

From the associativity of t we have�

ce�	atb�t ce�		atb� ) 	ce�	a�t ce�	b��t 	ce�	a�t ce�	b��

) 	ce�	a�t ce�	a��t 	ce�	b�t ce�	b��

This illustrates the proof method�

�

Result �� �Absence preservation by context functions�

The context functions used in backwards analysis preserve absence i�e�

f ABSENT ) ABSENT

Proof

This may be proved by a similar inductive argument to that given for Result ���

�

Finally we show that the requirement to preserve contradiction for all of our
context lattices apart from the strictness one does not a�ect the monotonicity
of context functions�

Result ��

The preservation of contradiction property 	number � in Section ������ preserves
the monotonicity of context functions�
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Proof

Suppose that a ) CONTRA Then for any context b

a v b

Now by the preservation of contradiction property

f a ) CONTRA v f b

Hence monotonicity is preserved�

�

Thus we have shown that the extra constraints imposed on context functions
in Section ����� do not a�ect the monotonicity of context functions�

��� Context propagation

In this section we describe how contexts are propagated with respect to most of
the expressions of type theory� This process of context propagation allows context
expressions and functions to be formed with respect to a context variable� Such
expressions will be evaluated with respect to certain input contexts for the analyses
in which we are interested� In Section ��� we shall give de
nitions for expressions
in TT which exhibit computationally redundancy in the terminology of ����

����� Basic de�nitions

Suppose then that we have some closed expression E a variable x which is a
formal parameter of the function in which E occurs and some initial context
c� When unambiguous we shall often refer to actual parameter sub�expressions
by the formal parameters 	e�g� x� to which they correspond� 	In order to gain
context information about sub�expressions we have to deduce the contexts of the
parameters to which they will be assigned�� c is the context of the entire expression
E� The information that we are attempting to gain about x is itself a context� we
call this mapping context propagation and it is described by the following notation�

c
E

� x

c is said to be propagated through E to x�
This reversal of the ��ow� of a function is what gives backwards analysis its

name� contexts the inputs to the analysis propagate from the expression being
evaluated to what correspond to the inputs of the actual program�

We start our analysis with the following axiom�

Denition ��
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For any variable x where x is not of the type � we have�

c
x

� x ) c

where x is an arbitrary variable�

We use ABSENT in our de
nition for the converse situation where the vari�
able whose context we are trying to 
nd is not present in the TT expression� For
example the context which propagates to x from the expression y � � will be
ABSENT�

Denition ��

c
y

� x ) ABSENT

where x and y are distinct variables�

This is generalised by the following de
nition�

Denition ��

c
E

� x ) ABSENT

where x does not occur free in E�

However since expressions in TT are built up from applications De
nition ��
is unnecessary as it follows from De
nition �� and the method of propagating
contexts with respect to function applications given in Section ������

����� Conditional expressions

As noted in Section ����� the contand operation �  is used to combine together
contexts in a manner similar to logical�AND� Also the contor operation t  is
used to denote uncertainty and joins contexts together like logical�OR� These
operations are useful in de
ning context propagation with respect to Booleans
and selection over 
nite types since we know that one sub�expression must be
evaluated in order to determine which other sub�expression will be the result of
the conditional�

Boolean conditionals and more generally selection over 
nite types are thus
handled by the following de
nitions�

Denition ��

c
if b then c else d











� x ) 	c

b

� x� � 		c

c

� x�t 	c

d

� x��
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Denition �	

c
casesn v c� � � � cn











� x ) 	c

v

� x� � 	

i�nG
i��

	c
ci

� x��

The above de
nitions capture the intuition that we must evaluate the boolean
expression in an if�then�else or the 
rst argument of a casesn expression before
evaluating one of the branches� However we cannot know in advance in general
which branch will be evaluated�

����� Function application

In a functional language based upon type theory we will often want to ascertain
the context of x with respect to a function application of the form�

f E� � � � En

where E� � � � En are expressions� E� � � �En are the actual parameters which will
be substituted for f �s formal parameters x� � � � xn� We thus wish to 
nd�

c
f E� � � �En







� x

Naturally x may occur in any of the subexpressions of the application of f �
It is thus necessary to deduce the context of a formal parameter xi of f which
will consequently give us the context to be propagated through the corresponding
Ei to x� Starting with the context c as above we denote the context of f �s ith
formal parameter as

fi c

We may form an expression given in terms of c for fi c as is described in Sec�
tion ������ As mentioned above fi c is then used as the initial context to be
propagated through Ei the ith actual parameter of f  to x� That is the resulting
context is expressed as�

	fi c�
Ei

� x

Naturally applying this procedure to each parameter we end up with n contexts�
These contexts have to be combined using contand �  to produce the context
which is derived from the original application � the resulting context represents

the information common to all n contexts of the form 	fi c�
Ei

� x� Thus we have�

Denition ��

c
f E� � � �En







� x ) 		f� c�

E�

� x� � 		f� c�

E�

� x� � � � � � 		fn c�

En

� x�
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����� Function de�nitions

We may form an expression given in terms of c for fi c � we thus call fi c the
context function of f �s ith argument� If f has n parameters it will have n
context functions� Furthermore as shown in Section ��� context types may be
formed in correspondence to the types of the concrete semantics� Thus if we have
a function f where�

f � T� � T� � � � � � Tn

then fi has the following context type�

fi � CTn � CTi

Here CTn is the type of contexts corresponding to the output type Tn in the
original function� CTi is the type of contexts corresponding to the type of the ith
input� We discuss how di�erent context types are formed relative to the types
of TT in Section ��� and more formally in Section ������� In general the basic
procedure to 
nd an expression for a context function is de
ned as follows�

Denition �


fi c ) c
E

� xi

where E is the expression over which f is abstracted� In other words f is de
ned
in the following way�

f x� � � � xn ) E

We discuss the context functions that arise from the use of pattern matching to
de
ne type theoretic functions in Section ������

����� Pattern matching

As with other functional programming systems we may de
ne functions in type
theory using pattern matching� Naturally we must develop a theory of context
propagation with regard to this kind of function de
nition�

In our theory we assume that functions are de
ned in the following way�

f p� ) E�

���

f pn ) En

We assume 	and this is true in type theory for the basic computation rule
selectors� that the pis are exhaustive over the type whilst being mutually exclusive�
In other words any object of the type must match one and only one of the patterns
given� To analyse such a function we may suppose that we have an application of
the following form�

f e
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where e is of the same type as each pi�
In order to perform a pattern match we have to evaluate e to a certain extent

until one of the patterns is matched i�e� the structure of the partially computed
version of e will match one and only one of the pis� If however there is only one
pattern and none of the variables in the pattern is used on the right�hand side of
the de
nition of f  then there is no need to evaluate e in order to perform the
pattern match � we call such a pattern trivial� An example of a trivial pattern
is that which occurs in the case selector for the � type� There we have

case Triv c� c

There is no need to evaluate x in the expression

case x c

as if x is of type � then it must evaluate to Triv� Furthermore Triv does not
contain any components which are used to evaluate c�

The patterns will contain sub�variables and constructors which together indi�
cate the pattern being matched� The expression e will match a pattern pi 	i�e�
e )PM pi� if pi is of the form�

Ci pi�� � � � pi�m

	where pi�� � � � pi�m are variables and Ci is a constructor�

and e may be reduced to the form�

Ci t� � � � tm

for some terms t� � � � tm� If CTRi is the context constructor corresponding to Ci

then we obtain for f� c where f is de
ned by a non�trivial pattern match�

at	c�
��i�n� CTRic

Ei

�pi�������c

Ei

�pi�m���

Thus it is functional de
nitions by pattern matching which lead to the construction
of structured contexts�

����� Other expressions in TT

We may analyse other expressions in TT using the methods described in the
preceding sections� In particular our approach consists of treating each of the
selectors of type theory as a primitive function from which context functions may
be derived� For example the Fst selector over existential type elements has the
following computation rule�

Fst 	p� q� � p

This gives rise to the following context function�

Fst� c ) at	c�
c�AB�
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The analysis of some selectors will depend upon the analysis of higher�order func�
tions which we describe in Section ����� We give the formal de
nitions of the
context expressions derived from all the expressions of TT in Section ������� In
Section ��� we discuss context propagation with respect to computationally re�
dundant proofs in TT�

��� Computationally irrelevant proof objects

We now discuss how computationally redundant proof objects are dealt with by
our system of analysis� We cover the � � and equality types� These are the
types which correspond to the class prop in the subset theory� 	� corresponds to
propositions which are contradictory whilst � corresponds to a valid proposition�
Equality types are the counterparts to propositions asserting equality between
elements of a type��

The �ow of contextual information will ensure that any other terms con�
structed using expressions of these computationally redundant types will also have
the computationally irrelevant information identi
ed by the analysis 	cf Section
����� of ����� Thus the abstract property of computational redundancy will be
traced through the program by our backwards analysis�

Computational redundancy occurs where we are simply interested in whether a
type is inhabited or not� For example if we have t � � then both the syntactic form
of t and its computation to normal form are unimportant since if the program is
well�formed then it must be the case that

t � Triv

since � is inhabited by one element only� As is stated in ���

The important point to note about such types and those exhibiting
computational redundancy in general is that their objects can always
be transformed to equal objects containing no free variables�

����� The � type and the abort term

The type theory selector abort provides us with a witness to ex falso quodlibet�
It is included for the sake of completeness to guard against the possibility of
an incorrect program derivation occurring� 	The abort construct provides extra
strength to programming in type theory� not only will any program which is
correct in the system of type theory terminate � a syntactically correct Miranda
program may not terminate � but programming errors may also be dealt with
elegantly in the system logic rather than by some run�time system call��

The abort object capturing the spirit of ex falso quodlibet is an arbitrary ob�
ject of a type A� The term abortA p has no computation rule associated with it and
is in normal form� it is nonsensical to try to reduce the pathological proof object
p� Since p and abortA p where p � � may not be reduced further any parameter
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must be computationally irrelevant with respect to such expressions� This is simi�
lar to the idea that parameters are ABSENT with respect to constants such as ��

Denition ��

For an initial context c an arbitrary type A and an object of type bottom p�

c
p

� x ) ABSENT

and

c
abortA p





� x ) ABSENT

Note that our idea of the propagation of contexts will mean that the AB�
SENT context will result for the bound variables of the functions corresponding
to negation types 	where �A�df A� �� for instance� For example suppose we
have the following�

neg � 	A� ��

neg a �df p	a�

Here p is some arbitrary pathological proof object which may or may not refer to
a� The context which is propagated to a here will be ABSENT as an instance
of the above de
nition so that in neededness analysis a will be detected as be�
ing unused� If we have functions built from negated types then absence will be
propagated to the relevant parameters� For instance if we have�

bnega � B � �A

bnega b a �df neg a

Then ABSENT will be propagated as the context of a 	as the sole parameter
of neg is ABSENT� whilst b will also be detected as ABSENT since it does
not appear in the de
ning expression� We can complicate matters by introducing
conditionals or other expressions but the analysis will still detect absence due to
the � type� As an example suppose we have�

NnegN � N � �N

NnegN mn �df if 	m ) �� then neg 	n � �� else neg n

Here the second parameter n will be detected as ABSENT although the 
rst
parameter m will have the context N in neededness analysis if we start the
analysis with N� The starting context is of course essential in that if the input
context to the analysis of the function was ABSENT then ABSENT would be
the resulting context for all the parameters� Indeed the input context to the
context functions of NnegN will always be ABSENT since the output type of
the function is �� That is the context propagated to a term corresponding to
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the output of NnegN will be ABSENT which will thus propagate to each of the
parameters of NnegN�

An example of how computational redundancy may be detected with regard
to proof objects of type � and abort expressions may be seen in the analysis of
the index function in Section �����

����� The � witness

The single element type � may be seen as corresponding to the judgement �P
is true� in the subset theory� It has the following elimination and computation
rules in the theory�

x � � l � C	Triv�

case x c � C	x�
	� Elim�

case Triv c� c

We assume that we are dealing entirely with closed terms� Hence any occurrence
of the expression case p c must compute to the value of c since p being of type
� must compute to Triv� Thus as noted in Section ����� reducing the term
p is unnecessary since we know that it may be of one form only� Indeed when
we abstract over p and c expressions of the form case p c may be thought of as
witnesses to types of the form

� � 	A� A�

A simple function of this kind would be�

casefn � �� 	A� A�

casefn p c �df case p c

It can be seen that by removing the computationally redundant p we will have the
identity function over A� Similarly the dependent type C	p� must be equivalent
to C	Triv��

Thus we make the following de
nition�

Denition ��

c
case p c




� x ) c

c

� x

for any variable x�

Note that this is saying that if we regard the case selector as a function

case� c ) ABSENT

It should be observed that the di�erence between the case selector over the �
type and the general cases selector over the 
nite types in general 	i�e� Nn� lies in
the fact that we have a unique pattern that must be matched for a term of the �
type�

Also the propagation of contexts means that if any function has � as its
output type then the ABSENT context will pertain to the parameters of that
function as well�
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����� Equality types

The equality types which are written in the form I	A� a� b� denote the equality
of two terms a and b of type A� The elimination and computation rules are�

c � I	A� a� b� d � C	a� a� r	a��

J	c� d� � C	a� b� c�
	Equal Elim�

The above is equivalent to the Leibnitz law that equals may be substituted for
equals � some occurrences of a are replaced by b in C�

J	r	a�� d� � d

Again assuming that we are dealing with closed terms A a b and c must all be
bound with respect to an enclosing abstraction in the expression J	c� d� and so a
and b must be bound variables in d� Also all closed terms of an equality type can
be proven to be equal 	see ���� Section �������� so that for any a b of type A

r	a� � r	b�

Here the a and b which occur in the terms exist only as labels for the purposes of
complete presentation 	so that we know how each equality term originated� and to
ensure that each term in the TT system has a unique type � if we had a generic
eq equality witness then that would belong to every equality type� Nevertheless
it should be stressed that the witnesses of each equality type are unique and have
no internal structure� The purpose of a term such as r	a� is simply to assert
the validity of I	A� a� b� say where a and b are interconvertible by the reduction
rules of TT� c must evaluate to a term which is equivalent to any other witness
of I	A� a� b�� Also C	a� a� r	a�� must be equivalent to C	a� b� c�� Thus we are in
a similar situation as to that for the � type which has a unique witness� As in
that instance we can avoid computing the equality witness due to it being the
sole inhabitant of its type�

We can bind the free variables to form the function�

jayfn � 	�a� b � A��	�c � I	A� a� b���	C	a� a� r	a��� C	a� b� c��

jayfn a b c d �df J	c� d�

Here all parameters apart from d will be redundant and have the ABSENT
context induced as their abstract values� As a result the above function may be
reduced to the identity function�

Consequently for such closed terms we state that it is not necessary to eval�
uate c � I	A� a� b� 	cf p��� of ����� which says that c should be 
rst be evaluated
to compute the open term J	c� d�� and hence we have the following de
nition for
our analysis�

Denition ��

c
J	c� d�



� x ) c

d

� x

for any variable x�
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It follows that computational redundancy from all equality types such as I	A� a� b�
will be propagated throughout a TT program� In neededness analysis equality
type parameters will be detected as unused�

��� Example� the index function

This section presents a backwards analysis performed on the arguments of index�
The analysis shows that the 
rst two arguments may or may not be used 	i�e�
they are lazy� but that the third argument which witnesses the fact that the
given index is less than the length of the list is not actually relevant to the
computation� We may thus produce an optimized form of the object code for this
function which does not compute the value of the third argument�

����� De�nition of the function in TT

The function is that 
rst presented in Section ������

index � 	�l � �A���	�n � N��		n � "l� � A�

index �� n p �df abortA p 	��

index 	a��x� � p �df a 	��

index 	a��x� 	n � �� p �df index x n p 	��

����� Analysis of the �rst argument

We 
rst formulate the context function of the 
rst argument of index for an
arbitrary initial context c� The index function may be divided into two parts�
the 
rst which deals with the case that the 
rst argument evaluates to �� 	clause
	�� of the index function� and the second which deals with a non�empty 
rst
argument� We naturally do not know which of these parts will apply in the actual
execution of the function� this uncertainty is shown in the sharing analysis by the
t operator� In other words we are joining together the contexts which result
from each of the possible two parts� Here the structured part has two context
variables which have to be evaluated namely the arguments of �� � these context
variables gives us information about the head and tail parts of the argument�
We may thus form the following expression for the context function of the 
rst
argument of index �

index� c ) at	c�

��� c

	��� 	��




�a� �� c

	��� 	��




�x�

The head and tail contexts may as they refer to clauses 	�� and 	�� of index
be split into two parts� Here the two cases arise from the form of the second
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argument which may be zero or not� For this part of the analysis we thus have�

c
	��� 	��




� a ) 	c

a

� a�t 	c

index xn p







� a�

) ctAB

The above follows from a not being present in the expression index xn p� Also

c
	��� 	��




� x ) 	c

a

� x�t 	c

index xn p







� x�

) ABt index�c

For the sake of notational convenience we shall leave out the �� context constructor
as this information is invariant in what follows� We have thus to solve the following
recursive equation�

index�c ) at	c�
ctAB� �� ABt index�c�

The above may be solved by performing the following 
xpoint iteration using
the ascending Kleene chain of pre�
xpoints� The 
rst 	zeroth� approximation to
the 
xpoint is de
ned to be CR whilst the 	n � ��th approximation is formed
by substituting the nth approximation to the 
xpoint for every occurrence of
	index�c� in the above equation� As shown below the third in a series of 
xpoint
iterations gives the 
xpoint�

	index� c�
	 ) CR

	index� c�
� ) at	c�

ctAB� ��AB

	index� c�
� ) at	c�

ctAB� �� ABtatc�
�ctAB� ��AB

�

�

� at	c�
ctAB� �� ABtatc��

	index� c�
� ) at	c�

ctAB� �� ABtatc�
�ctAB� �� �ABtat�c��

�

�� at	c�
ctAB� �� ABtatc��

Note that we have to make approximations to the resulting context after the
second iteration since the context has more than one level of subscripting� we
assume that the list contexts have the non�empty list subscript d �� e� The latter
case means that we assume that e represents a list context of the form e

d ��e�

The above illustrates how a 
xpoint solution may be found by using purely
algebraic manipulation upon an arbitrary argument c� Mechanically however
this may not be straightforward in more complicated cases�

As an example of a concrete rather than an algebraic result the following is
the result produced when the context function is applied to a strict single�use
argument� The argument is a member of the type of polymorphic contexts� these
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are basically atomic contexts that are used when the corresponding type in the
concrete semantics is polymorphic� 	Here the result of index is an element of an
arbitrary type A��

index� f�g
Poly

) f�g
f	��g

Poly
�� f	gtf�g��

) f�g
f	��g

Poly
��f	��g�

����� Analysis of the second argument

index� c ) c
abortA p





� nt 	at	c�

�� Succindex� c��
�

) AB t at	c�
Succindex� c��

	We are using a similar notational shorthand to that which we employed for the

rst argument��

The solution to this is again found by a 
xpoint iteration�

	index� c�
� ) AB t at	c�

SuccCR�

	index� c�
� ) ABtat	c�

SuccABtatc�
Succ�CR�

�

�

� ABtat	c�
SuccABtatc��

It follows immediately that this is the least 
xpoint� Hence the second argu�
ment is lazy and even if it is used it may not be fully evaluated� This is illustrated
by the following result�

index� f�gPoly ) f�� �g
���Succf	��g�

However it should be noted that the second parameter will be fully evaluated in
the two non�pathological cases�

����� Analysis of the third argument

The analysis of the third argument which witnesses the fact that the index is not
greater than the length of the list is fairly simple�

index� c ) ABt 	ABt index� c�

) ABt index� c

The least 
xpoint solution of the above is trivially ABSENT� We have that�

index� f�g ) f�gPath�Triv

where the subscript �PathTriv� denotes the fact that the proof object p is of a
dependent type which may be either� or �� We conclude that the third argument
is not �necessary� when computing an application of index to normal form�
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���� Higher�order functions

Hughes and Launchbury wrote in ���� that�

� � �backwards analyses in general have di�culty with higher�order
functions�

This di�culty is due to applications of formal parameters in the de
ning ex�
pression of a higher�order function� If a parameter f  is applied to some sub�
expression e then we will not in general be able to determine the precise context
of a parameter x with respect to f e� We will only be able to deduce safely that
the parameter x has the context � 	the top element� in the appropriate 
nite
lattice�

To obtain more precise information we need to extend the backwards analysis
so that each context function which results from a higher�order function has extra
parameters which are the context functions that correspond to each functional
argument�

������ Hughes�s approach to higher	order functions

As a 
rst attempt Hughes argues ���� that higher�order functions will have higher�
order context functions as their counterparts in backwards analysis since the
context functions of parameters are unknowns 	they may be arbitrary context
functions�� This means that the corresponding context functions will take ex�
tra parameters one for each functional parameter in the original function� The
contexts that are propagated to the parameters are found by supplying a set of
possible functions for each context function parameter�

Hughes says however that such an approach 	which was implemented in the
Ponder compiler by Wray ���� ����� is only possible for the simplest type of
higher�order function where the parameters of functions are not extracted from
data structures and where functions are not de
ned by partial application� An
example of such a function in a Miranda�like language would be�

compose �� 
�� �� ���� �� 
� �� ����� � �� ���

compose f g x � f
g x�

Hughes gives the following as an example of a function which would not be covered
by this simple analysis�

composeall �� �
� �� ��� �� � �� �

composeall �� x � x

composeall 
f�r� x � f
composeall r x�

Here the functions are extracted from a list� He thus develops a more sophisticated
theory with a simple forwards analysis included in the form of an environment
of abstract values to guide the subsequent backwards analysis� The idea is that
using such a forwards analysis we should be able to gain context information
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for all possible contextual arguments of a higher�order function� This forwards
analysis is a form of arity check upon the expression being analysed� objects of
ground type have their abstract values to be de
ned as � which means that the
original version of the theory still holds� Otherwise the abstract values are those
of context function spaces 	which may themselves include abstract values��

This naturally makes the entire analysis more complicated with in particular
an environment of abstract values being included� Context propagation is con�
sequently much more complex for analyses involving parameters that are not of
ground type� For this reason although he formalises completely how higher�order
constructs should be analysed Hughes chooses not to give an example of this form
of backwards analysis�

������ The approach to higher	order functions used

Our approach is similar to that of Wray mentioned above� There are three points
to be followed when analysing higher�order functions�

�� The formation of context expressions from applications of formal parameters
may proceed in the same way as for named functions except that instead of
the name of the context function we have a variable name� This will allow
context expressions to be substituted for the variable name� So we have
variable context function applications of the form�

	p��

�� Each context function application will require additionally a set of context
expressions as parameters� 	Recursively these expressions may also require
context expression parameters�� So instead of having say

lter� c

we may have

lter� �lesseq� �plus� �AB�AB���AB� c

which would be part of the context expression resulting from

�lter 	lesseq 	� � ��� l

	where l is some list constant�� This will also apply with regard to formal
parameters so we may have�

	p �	a�� �����

�� When the actual parameter context expressions are substituted for variables
the context function indices and the lists of actual parameter expressions
have to be suitably combined� For instance if we substituted

lesseq� �plus� �AB�AB��
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for p in
	p �AB���

we would get�
lesseq� �plus� �AB�AB��AB�

The above means that each context propagation is performed relative to a set
of context expressions� Context propagation thus will have the following general
form�

�e� � � � en� c
e

� x

For higher�order functions function applications are of the following general form�

ap f a

which has the informal semantics that f is evaluated to a lambda abstraction
which is then applied to a� We then make the following de
nition�

�a� � � �an� c
ap f a



� x ) 	�a� � � �an� 	F c�

a

� x� � 	�a� � � �an� c

f

� x�

Where

F�df efm f � �efm a � �� �a� � � �an��

efm f i �b� � � �bj��c� � � � ck��df���
��
fi �c� � � � ck� if f is a named function
efm g 	i � �� �d�b� � � �bj� �c� � � �ck�� if f is of the form ap g d
G l i �b� � � �bj� �c� � � � ck�� if f is the parameter xi

d�df 	efm d � �c� � � � ck��

G l i �b� � � �bj � �c� � � �ck��df�����
����

fni
r �d� � � �dm�b� � � �bj �� if l � k and
cl is of the form fnr �d� � � �dm�

topq� otherwise

The last clause in the de
nition of G expresses the idea that if not all the necessary
expressions are supplied then we must safely approximate by using the top context
function which produces the top element of the context lattice for an input context�

Functions dened by partial application

We may overcome the problem of functions de
ned by partial application by
adding extra variables to a function de
nition in order to make sure that it be�
comes fully applied� This is easily done in the monomorphic case since we know
the type 	and the arity� of the function and therefore will know precisely how
many variables to add�

In the polymorphic case we may add an arbitrary vector of variables to each
de
nition in order to generalise the function to accept an arbitrary number of
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arguments� For instance if we consider the primitive recursion operator in type
theory as a function i�e�

prim � c f �df c

prim 	n � �� c f �df f n 	prim n c f�

then we may imagine this to be extended to take an arbitrary vector of additional
parameters 
�x  thus�

prim� � c f 
�x �df c
�x

prim� 	n � �� c f 
�x �df f n 	prim� n c f�
�x

Hence for i 
 � we get�

primi �n� c� f �
�x � �df 	ci

�x �t 	fi �AB�prim� �AB� c� f ��
�x ��

where 
�x is the set of context expressions corresponding to each of the parameters
in 
�x �

Functions extracted from data structures

Unfortunately the above method does not cope with functions extracted from
data structures� If we had an explicit list of functions then the method could cope
since in order to analyse

composeall �idN � addone� e

we could just form a context function which gave the least upper bound of the
results of the context functions corresponding to idN and addone� However this
does not work with for example

composeall 	adders ��� �� ��� e

where the list of functions is itself formed by another function� 	In this case
adders forms the 	x�� function for each member x of the input list��

Hence if we have any occurrence of an application of a pattern matching
variable then we must safely approximate by using the top context function�

���� Polymorphism

By building up a set of context expressions we can allow contexts of various types
to propagate� We analyse polymorphic variables by assuming that their contexts
are basically atomic and tagging their structured parts to indicate that they are
polymorphic� For example we might have�

f�g
PolyA
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The A above is used to indicate polymorphism with respect to a type variable A�
However whenever a context function f that corresponds to a function with a

polymorphic result type is applied within another context function the polymor�
phic structured part may be replaced by the structured part of the input context
to f� Hence f will have various instantiations depending on the contexts with
which it is called�

���� Example� The quicksort function

As a larger example and especially to illustrate our ideas with regard to higher�
order functions we present the analysis of the quicksort function�

������ The analysis of the �lter function

As part of our analysis of the quicksort function we show how the higher�order
function �lter may be analysed�

Denition of lter

�lter � 	A� bool� � �A� � �A�

�lter p �� �df ��

�lter p 	a �� x� �df a �� 	�lter p x� � if 	p a�

�lter p 	a �� x� �df �lter p x �otherwise

The rst argument

It may be shown that the 
rst argument of 
lter 	the predicate which operates on
the second argument the list� will always have the atomic context�

f�� ��Mg

if the initial context is non�trivial 	i�e� not AB or CR�� This means that the
functional argument is �fully lazy� i�e� we cannot determine in advance whether
it has to be evaluated or whether it may be evaluated more than once�

The reason for the above is as follows�

lter� c ) c
��

� pt 		c

p a

� p� � 		c

a��	�lter p x�








� p�t 	c

�lter p x





� p���

) ABt 	at	c�
Fun

� 		lter� 	��� c�t 	lter� c���

Now for the input context f�g
��� f�g�� f�g

��� f�g
���f�g �� f�g ) f�g

��� f�g ��f�g
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Hence

lter� f�g
��� f�g ��f�g ) f�gFunt 	f�gFun � 	lter� f�g

��� f�g�� f�g��

A 
xpoint iteration gives the solution�

f�� ��Mg
Fun

The analysis of the second argument to lter

The analysis of the second argument of �lter proceeds as follows�

lter� �p� l� c ) at	c�
��� d� ��d��

d� ) 		at	c�
TF

�
p a

� a�

�

		c
a��	�lter p x�








� a�t 	c

�lter p x





� a��

	Above we are writing TF to stand for True� False��

	at	c�
TF

�
p a

� a ) 	p�� �top� ��� 	at	c�

TF
�

In the interests of conciseness we shall omit the context expression argument
�top� ��� � this argument simply means that if the predicate parameter p applies
its argument 	which is the head of the input list to �lter� then the TOP context
will result�

c
a��	�lter p x�








� a ) ��� c

d� ) 	c
a���lter p x






� x�t 	c

�lter p x





� x�

) 		��� c�
�lter p x





� x�t 	c

�lter p x





� x�

) 	lter� �	p�� ��� top� ��� 	��� c��t 	lter� �	p�� ��� top� ��� c�

	The second context parameter is AB since a list cannot be applied to an argu�
ment�� Hence we obtain

lter� �p� l� c ) at	c�
n� ��n�

Where

n� ) 		f��	at	c�
TF

�� � 		���c�tAB�

n� ) 	lter� �	p�� ��� top� ��� 	���c��t 	lter� �	p�� ��� top� ��� c�
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Writing simply p instead of 	p�� �� and x instead of top� �� we have

lter� �p� x� 	��� c� ) at	��� c�
r� ��r�

where

r� ) 		p�� 	at	��� c�
TF

�� � 		��� c�tAB�

r� ) lter� �p� x� 	��� c�

	The above follows since ��� 	��� c� ) ��� c due to the stipulation placed upon list
contexts to ensure 
niteness�� The above recursive equation may be solved by a

xed�point iteration as shown below�

	lter� �p� x� 	��� c��
	 ) CR

	lter� �p� x� 	��� c��
� ) at	��� c�

r� ��CR

	lter� �p� x� 	��� c��
� ) at	��� c�

r� ��at��� c�

	lter� �p� x� 	��� c��
� ) at	��� c�

r� ��at��� c�

This establishes the 
xpoint�
Consequently

lter� �p� l� c ) lter� �p� x� c
�� at	c�

n�t r�� �� at��� c�t lter� �p�x� c��

We may again employ a 
xpoint iteration in order to 
nd the least 
xpoint of this
recursive expression�

	lter� �p� x� c�� ) at	c�
n� tr�� ��at��� c�

	lter� �p� x� c�� ) at	c�
n� tr�� �� at��� c�tatc�

�n�tr�� �� �at���� c��
�

�� at	c�
n� tr�� �� at��� c�tatc��

	lter� �p� x� c�� ) at	c�
n� tr�� �� at��� c�tatc�

�n�tr�� �� �at���� c�tat�c��
�

) at	c�
n� tr�� �� at��� c�tatc��

Thus we have found the 
xpoint and thus have a non�recursive expression for the
context function of the second argument of 
lter�

������ De�nition of quicksort in type theory

We shall use the de
nition of quicksort which appears on p� ��� of �Thompson
����� i�e�

qsort � 	�n � N��	� l � �N ���		"l � n� � �N ��
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qsort n �� p �df �� 	��

qsort � 	a �� x� p �df abort �N � p
� 	��

qsort 	n � �� 	a �� x� p �df

qsort n 	�lter 	lesseq a�x� p� 	��

�� �a��� 	��

qsort n 	�lter 	greater a�x� p� 	��

Note that this is the actual sorting algorithm although a function based on this
which takes just a list as its single argument may be given by the expression�

qsort 	"l� lTriv

Each argument pi is the result of a function gi of type�

	�a � N��	�n � N��
	�x � �N ���	�p � 	"	a��x� � 	n � �����

	"	�lter 	ord i a�x� � n�

where

ord� �df lesseq

ord� �df greater

We shall write h for g� and j for g��

������ Analysis of the �rst argument

We assume that the natural number argument is absent with respect to the terms
p� and p�� This is valid since an analysis shows that the third argument is unused
	see section ��������

qsort� c ) AB t at	c�

�� Succc

	�����a���	��









�n�

c
		�����a���	���










� n ) 	��� c�

	�� �� �a�






� n

� 	��� c�
	��

� n

	��� c�
	�� �� �a�





� n ) ���	��� c�

	��

� n

) c
	��

� n

	Since ��� c ) c��
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) qsort� c

	��� c�
	��

� n ) qsort�	��� c�

) qsort�	c t ���	c��

Then we have�

qsort� c ) AB tat	c�
�� Succqsort� c �qsort�c t ���c���

Now
��� f�g

��� f�g
��Succ�f�g�

� ��f�g ) f�g
��� f�g

��Succ�f�g�
� ��f�g

and so

qsort� d ) f�� �g
��Succqsort� d�� qsort� d��

where
d ) f�g

��� f�g
��Succ�f�g�

� ��f�g

This may be solved by the following 
xpoint iteration

	qsort� d�	 ) fg

	qsort� d�� ) f�� �g
��Succfg�

	qsort� d�� ) f�� �g
��Succf	��g

��Succ�fg�
� f	��g

��Succ�fg�
�

) f�� �g
��Succf	���Mg

��Succ�fg�
�

�

� f�� �g
��Succf	���Mg�

	qsort� d�� ) f�� �g
��Succf	��g

��Succ�f����Mg�
� f	��g

��Succ�f����Mg�
�

�� f�� �g
��Succf	���Mg�

This establishes the 
xpoint�
This result may be seen to be disappointing since by this analysis we cannot

eliminate the natural number argument from an object code version of the qsort
function� The analysis detects that the 
rst argument may be used since pattern
matching is performed upon it� We do not think that it is possible for a safe
analysis even one capable of detecting the dependencies of properties between
parameters to avoid detecting the 
rst argument as being used because of the
pattern matching& the clauses constructed by pattern matching are a syntactic
sugaring of a primitive recursion� Without the natural number argument it would
not be possible to formulate quicksort as a primitive recursive function� We spec�
ulate that the only way to eliminate such an argument is to introduce a form of
terminating general recursion as proposed by ������
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������ Analysis of the second argument

qsort� c ) at	c�
��tc� ��c�

Where

c� ) ABt c
	�����a���	��









� a

c� ) ABt c
	�����a���	��









� x

c
	�����a���	��









� a ) �	��� c

	��

� a� � 	��� c

�a�

� a��

� 	��� c
	��

� a�

��� c
�a�

� a ) ���	��� c�

) ��� c

��� c
	��

� a ) qsort�	��� c�

�lter 	lesseq a� x











� a

) lter�	qsort�	��� c��
lesseq a




� a

) lesseq� 	lter�	qsort�	��� c���

��� c
	��

� a ) greater�	lter�	qsort�	��� c���

) lesseq�	lter�	qsort�	��� c���

c
	�����a���	��









� x ) �	��� c

	��

� x� � 	��� c

�a�

� x��

� 	��� c
	��

� x�

��� c
�a�

� x ) AB

��� c
	��

� x ) lter� �lesseq� �top� ����	qsort�	��� c��

��� c
	��

� x ) lter� �greater� �top� ����	qsort�	��� c��

Note that�

��� c ) c

��� c ) ct ���	c�
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In particular

��� f�g
��� f�g

��Succ�f�g�
� ��f�g ) f�g

��� f�g
��Succ�f�g�

� ��f�g

��� f�g
��� f�g

��Succ�f�g�
� ��f�g ) f�g

��� f�g
��Succ�f�g�

� ��f�g

Hence we have a recursive expression in

qsort� d

where
d ) f�g

��� f�g
��Succ�f�g�

� ��f�g

This may be solved by a 
xpoint iteration� 	We omit nullary constructors to
simplify the notation��

	qsort� d�	 ) fg

	qsort� d�� ) f�g
f	��g

Succ�f�g�
� ��f	g

This is so since
��� f�g

��� f�g
��Succ�f�g�

� �� f�g ) f�g
Succf�g�

and all the other contexts must be fg due to the preservation of contradiction
property of context functions in sharing analysis�

	qsort� d�� ) f�g
e ��m

where

e ) ABt 	f�g
Succf�g�

� f�� ��Mg
Succf	���Mg�

�

) f�� ��Mg
Succf��Mg�

	This is due to the result for lter���

m ) ABt 		lter� �lesseq�� 	f�g
f�g

Succ�f�g�
�� fg��

� 	lter� �lesseq�� 	f�g
f�g

Succ�f�g�
��fg���

Now if we let
n ) f�g

f�g
Succ�f�g�

��f	g
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then

lter� �lesseq�� n ) f�g
r �� s

r ) 	lesseq� f�g� 	f�� �g
Succf�g�

��

t 	lesseq� f�g� f�� �g
Succf�g�

�

) f��Mg
Succf��Mg�

s ) f�gt f�g

) f�� �g

This is so since
lesseq� f�g ) f�� �g

Succf	��g�

At the next iteration we thus get the 
xpoint which is

f�g
��� f	���Mg

��Succ�f����Mg�
�� f	���Mg

������ Analysis of the third argument

qsort� c ) 	c
��

� p�t 	c

abort �N � p
�







� p�t 	c
	��

� p�

) ABtABt 		qsort� c
h a n x p





� p� � 	qsort� c

j a n x p





� p��

) ABt 		h�	qsort� c�� � 	j�	qsort� c���

Now as both h� and j� are context functions they must preserve absence and
contradiction over the sharing analysis lattice� Hence we get�

	qsort� c�
� ) AB

	qsort� c�
� ) AB

This gives us that
qsort� f�g ) f�g

Thus the third argument of quicksort in type theory is never used�

���� Formalisation of the backwards analysis

In order to make the preceeding ideas more precise we give a formalisation of the
backwards analysis in the form of a denotational abstract semantics for each of
the constructs of TT� We 
rstly stipulate the form that contexts may take and
the operations that may be applied to structured contexts� Then we present the
syntax of context expressions and a semantic function from the domain of context
expressions to contexts� Finally we show how the expressions of TT are mapped
to context expressions�
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������ Structured contexts

In order to determine the contexts of components of data structures structured
contexts are formed via the product C  SC where C is the context lattice set
	see Section ���� and SC is the set of the structured parts which is enumerated
below� This enables types to be given to contexts and we de
ne the ABSENT
	abbreviated AB� and CONTRA 	abbreviated CR� constants and the t and
� operators for each type� 	t is de
ned pointwise over the structured contexts��
In each the lattice TOP is the dual of the CONTRA i�e� the structured TOP
may be formed from the de
nition of the structured CONTRA by replacing
every occurrence of CONTRA 	from the basic context lattice� in the structure
with TOP� These de
nitions are recursive in that they appeal to the de
nitions
of ABSENT etc� upon the components of each structured context� 	The function
ly is used below� It is the same function as that de
ned in Section ������� The
approximation operator apx is de
ned for all the recursive types � for non�
recursive types it is equivalent to the identity�

The function at which 
nds the atomic part of a context is equivalent to
the fst projection on C  SC� Similarly str is equivalent to snd� The lattice
ordering v is extended to structured contexts via the lexicographical ordering
on the product�

s� v s�

i� either
	at s�� � 	at s��

or if 	at s�� ) 	at s�� then for each corresponding pair of components p�� p� of
the structured parts

p� v p�

�

CBot ) C fPathg

CBot is the set of contexts for the � type and such contexts are written�

�c�Path


For CBot 

AB ) �AB�Path


CR ) �CR�Path


�c�Path
t�d�Path
 ) �ctd�Path


�c�Path
��d�Path
 ) �	c�d��Path


�c�Path
 v �d�Path
 i� c v d

�

CTop ) C  fTrivg
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CTop is the set of contexts for the � type� These contexts have the form�

�c�Triv


For CTop 

AB ) �AB�Triv


CR ) �CR�Triv


�c�Triv
t�d�Triv
 ) �	ctd��Triv


�c�Triv
��d�Triv
 ) �	c�d��Triv


�c�Triv
 v �d�Triv
 i� c v d

�

CBool ) C  	fTrueg  fFalseg�

CBool is the set of contexts for the Bool type� Each context of this type is
written as�

�c� 	True�False�


For CBool 

AB ) �AB� 	True�False�


CR ) �CR� 	True�False�


�c� 	True�False�
t�d� 	True�False�
 ) �	ctd�� 	True�False�


�c� 	True�False�
��d� 	True�False�
 ) �	c�d�� 	True�False�


�c� 	True�False�
 v �d� 	True�False�
 i� c v d

�

CNn ) C 	f�ng  � � �  fnng�

CNn is the set of contexts for each 
nite type Nn� These contexts are
written�

�c� 	�n� � � �nn�


For CNn 

AB ) �AB� 	�n� � � �nn�


CR ) �CR� 	�n� � � �nn�


�c� 	�n� � � �nn�
t�d� 	�n� � � �nn�
 ) �	ctd�� 	�n� � � �nn�


�c� 	�n� � � �nn�
��d� 	�n� � � �nn�
 ) �	c�d�� 	�n� � � �nn�


�c� 	�n� � � �nn�
 v �d� 	�n� � � �nn�
 i� c v d
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�

CIA�a�b� ) C fEqIA�a�b�g

CIA�a�b� is the set of contexts for each equality type I	A� a� b�� The contexts
are written�

�c�EqIA�a�b�


For CIA�a�b�

AB ) �AB�EqIA�a�b�


CR ) �CR�EqIA�a�b�


�c�EqIA�a�b�
t�d�EqIA�a�b�
 ) �	ctd��EqIA�a�b�


�c�EqIA�a�b�
��d�EqIA�a�b�
 ) �	c�d��EqIA�a�b�


�c�EqIA�a�b�
 v �d�EqIA�a�b�
 i� c v d

�

C�x�A��B ) C  fFung

C�x�A��B and each context is written�

�c�Fun


For C�x�A��B

AB ) �AB�Fun


CR ) �CR�Fun


�c�Fun
t�d�Fun
 ) �	ctd��Fun


�c�Fun
��d�Fun
 ) �	c�d��Fun


�c�Fun
 v �d�Fun
 i� c v d

�

C�x�A��B ) C  	CA CB�

C�x�A��B is the set of contexts for each product type� Each context of this
type is written in the form�

�c� 	Pair ab�


This may be represented graphically as�

c
a�b�
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For C�x�A��B

AB ) �AB� 	PairCRCR�


CR ) �CR� 	PairCRCR�


�c� 	Pair c� c��
t�d� 	Pair d� d��
 ) �	ctd�� 	Pairw x�


�c� 	Pair c� c��
��d� 	Pair d� d��
 ) �	c�d�� 	Pair y z�


�c� 	Pair c� c��
 v �d� 	Pair d� d��
 i� 	c � d� or

		c ) d� and

	c� v d�� and 	c� v d���

where

w ) c� td�
x ) c� td�

y ) 	c� �d��t 	ly cd��t 	ly dc��

z ) 	c� �d��t 	ly cd��t 	ly dc��

�

CA�B ) C 	CA CB�

CA�B is the set of contexts for each disjunction type� Each context of this
type is written in the form�

�c� 		inla�� 	inr b��


This has a graphical counterpart in�

c
inla��inrb�

For CA�B

AB ) �AB� 	inlCR� inrCR�


CR ) �CR� 	inlCR� inrCR�


�c� 		inl c��� 	inr c���
t�d� 		inl d��� 	inrd���
 )

�	ctd�� 		inlw�� 	inr x��


�c� 		inl c��� 	inr c���
��d� 		inl d��� 	inrd���
 )

�	ctd�� 		inly�� 	inrz��


�c� 		inl c��� 	inrc���
 v �d� 		inl d��� 	inrd���
 i�

	c � d� or

		c ) d� and 	c� v d�� and 	c� v d���
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where

w ) c� td�

x ) c� td�
y ) 	c� �d��t 	ly cd��t 	ly dc��

z ) 	c� �d��t 	ly cd��t 	ly dc��

�

CNat ) C  	f�g C�

CNat is the set of contexts for expressions of natural number type� Such
contexts are written�

�c� 	��Succ d�


These contexts may be written in the graphical form as follows�

c
�� Succd�

For CNat 

AB ) �AB� 	��Succ CR�


CR ) �CR� 	��Succ CR�


�c� 	��Succ c��
t�d� 	��Succ d��
 )

�	ctd�� 	��Succ x�


�c� 	��Succ c��
��d� 	��Succ d��
 )

�	c�d�� 	��Succ y�


�c� 	��Succ c��
 v �d� 	��Succ d��
 i�

	c � d� or

		c ) d� and 	c� v d���

where

x ) c� td�

y ) 	c� �d��t 	ly cd��t 	ly dc��t 	ly c� d��t 	ly d� c��

apx maps from f�g CNat to f�g C as is shown�

apx 	�� 	Succ�c� 	��Succ d�
�� ) 	�� 	Succ 	ctd��

Note that in our de
nition of the � operator apx has been factored in
along with the idea of using

�c� 	��Succ�c�� 	��Succ c��
�


and
�d� 	��Succ�d�� 	��Succd��
�


This concept is explained in Section ������



CHAPTER �� BACKWARDS ANALYSIS OF TYPE THEORY ��

�

C�A� ) C 	f��g  	CA C��

C�A� is the set of contexts for lists� These contexts are written�

�c� 	��� 	cons h t��


These contexts may be written in the following graphical form�

c
��� h ��t�

For C�A�

AB ) �AB� 	��� 	cons CRCR��


CR ) �CR� 	��� 	cons CRCR��


�c� 	��� 	cons c� c���
t�d� 	��� 	cons d� d���
 )

�	ctd�� 	��� 	cons w x��


�c� 	��� 	cons c� c���
��d� 	��� 	cons d� d���
 )

�	c�d�� 	��� 	cons y z��


�c� 	��� 	cons c� c���
 v �d� 	��� 	cons d� d���
 i�

	c � d� or

		c ) d� and 	c� v d�� and 	c� v d���

where

w ) c� td�

x ) c� td�

y ) 	c� �d��t 	ly cd��t 	ly dc��t 	ly c�d��t 	ly d�c��

z ) 	c� �d��t 	ly cd��t 	ly dc��t 	ly c�d��t 	ly d�c��

apx maps from f��g  	CA C�A�� to f��g  	CA C� as is shown�

apx 	��� 	cons h�t� 	��� cons de�
�� ) 	��� 	cons 	htd� 	tt e���

Again apx has been factored into the de
nition of the � operator�

�

CTree ) C 	fNullg  	CNat CC��

CTree is the set of contexts for binary trees which carry natural numbers at
the nodes� These contexts are written�

�c� 	Null� 	Node n l r��
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Consequently these contexts may be written using the following form of
graphical notation�

c
Null� Noden l r�

For CTree 

AB ) �AB� 	Null� 	NodeCRCRCR��


CR ) �CR� 	Null� 	NodeCRCRCR��


�c� 	Null� 	Node c� c� c���
t�d� 	Null� 	Node d� d� d���
 )

�	ctd�� 	Null� 	Node n� l� r���


�c� 	Null� 	Node c� c� c���
��d� 	Null� 	Node d� d� d���
 )

�	c�d�� 	Null� 	Node n� l� r���


�c� 	Null� 	Node c� c� c���
 v �d� 	Null� 	Node d� d� d���
 i�

	c � d� or

		c ) d� and 	c� v d�� and 	c� v d�� and 	c� v d���

where

n� ) c� td�

l� ) c� td�

r� ) c� td�

n� ) 	c� �d��t

	ly cd��t 	ly dc��t

	ly c� d��t 	ly d� c��t

	ly c� d��t 	ly d� c��

l� ) 	c� �d��t

	ly cd��t 	ly dc��t

	ly c� d��t 	ly d� c��t

	ly c� d��t 	ly d� c��

r� ) 	c� �d��t

	ly cd��t 	ly dc��t

ly c� d��t 	ly d� c��t

	ly c� d��t 	ly d� c��

apxmaps from fNullg  	CNat CTree �CTree to fNullg C as is shown�

apx 	Null� 	Node n�l� 	Null�Node n� l� r��
�r� 	Null�Node n� l� r��
�� )

	Null� 	Node 	ntn� tn�� 	lt l�t l�� 	rt r� t r����

	Note that this could be applied when one of the subtree contexts is simply in
C�� As previously apx has been built into the de
nition of the � operator�
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�

CPolyA
) C fPolyAg

CPolyA
is the set of contexts for polymorphic terms 	with respect to a type

variable A�� These contexts may be written as follows�

�c�PolyA


For CPolyA


AB ) �AB�PolyA


CR ) �CR�PolyA


�c�PolyA
t�d�PolyA
 ) �	ctd��PolyA


�c�PolyA
��d�PolyA
 ) �	c�d��PolyA


�c�PolyA
 v �d�PolyA
 i� c v d

������ Syntax of context expressions

The abstract syntax of context expressions 	i�e� the domain Cexp� is as follows�

ce ��) ab Absent

j cr Bottom

j tp Top

j c Context variable

j at	ce�� Atomic part operation

j ce� t ce� Contor operation

j ce� � ce� Contand operation

j ��f� � � � fj
��c�ce� Context function de
nition

j ce� ce� Context function application

j fnamei�a� � � � aj
 Named context function

j 	fi�j�a� � � � ak
 Formal parameter context function

j �ce�� sce�
 Structured context expressions
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Above ce i refers to an instance of ce� The abstract syntax for structured parts of
context expressions is described below�

sce ��) Path Correspondent to a pathological proof

j Triv Truth witness constructor

j EqA�a�b� Equality witness

j 	True�False� Booleans

j 	��n� � � �n
n
n� Finite types

j pair ce� ce� Products

j 	Inl ce�� Inr ce�� Sums

j 	��Succ ce�� Natural numbers

j 	���Cons ce� ce�� Lists

j 	Null�Node ce� ce� ce�� Trees

j PolyA Polymorphic type

������ Semantics of context expressions

We give a semantics for context expressions�� The semantic function is�

V � Cexp� ExpEnv� Cexpn � CB � CA

An ExpEnv is an environment of context function de
nitions i�e�

ExpEnv � 	FunNameNat� � Cexp

The clauses are as follows 	with constants and operations being over contexts
of the appropriate type��

�

V ��ab ����e� � � � en
 c ) AB

�

V �� cr ����e� � � � en
 c ) CR

�

V �� tp ����e� � � � en
 c ) TOP

�

V ��v ����e� � � � en
 c ) c

�Note that some of the operations �e�g� t � in the syntax of context expressions and their
semantic counterparts have the same syntactic form� We trust that this does not cause confusion�



CHAPTER �� BACKWARDS ANALYSIS OF TYPE THEORY ��

�

V ��at	ce�� �� ��e� � � � en
 c ) at	V �� ce� ����e� � � � en
 c�

�

V �� ce� t ce� ����e� � � � en
 c )

V �� ce� ����e� � � � en
 c

t

V �� ce� ����e� � � � en
 c

�

V �� ce� � ce� ����e� � � � en
 c )

V �� ce� �� ��e� � � � en
 c

�

V �� ce� �� ��e� � � � en
 c

�

V ����f� � � � fm
��v�ce ����e� � � � en
 c )�����
����
CR� if the analysis is not strictness and c ) CR
AB� if c ) AB
V �� ce� ����e� � � � en
 c�� if AB v c
V �� ce� ����e� � � � en
 c� otherwise

Where

c� ) strict c

ce � ) ce �subst�e� � � � en
�f� � � � fm
�

ce �subst �e� � � � en
�f� � � � fm
� means that assuming each ei is of the
form

fnameu�a� � � � aj


then any occurrence of
	fi�v �b� � � � bk


in ce is replaced by

fnamew�a� � � � aj� b� � � � bk


where w is the index formed from the sum of the numerals corresponding
to u and v�
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�

V �� ce� ce� ����e� � � � en
 c ) V �� ce� �� ��e� � � � en
 c
�

Where c� ) V �� ce� ����e� � � � en
 c

�

V �� 	fi�j�a� � � � ak
 ����e� � � � ek
 c ) topi�


	Since fi must represent a variable that could not be replaced during sub�
stitutions of context expressions� It thus represents an arbitrary context
function and so must be replaced by the top context function��

�

V �� fnamei �a� � � � aj
 �� ��e� � � � ek
 c ) x 	V ��F ����a� � � � aj
 c�

where x is the least 
xpoint operator�

�

V ���ce�� sce�
 ����e� � � � en
 c )

�	V �� ce� ����e� � � � en
 c��apx 	V � �� sce� �� ��e� � � � en
 c�


Where V � 	which is not given explicitly here� is V mapped over each context
expression in the structured part of the expression�

������ Formation of context expressions

Context expressions are formed from the expressions of TT via the function�

E � TTexp� var� Cexp

For each function de
nition of the form

f x� � � � xn�df E

we add the n�context functions of f to an environment �� Each context function
fi is formed by�

E ��E ��xi

A modi
ed environment �� is thus formed by�

�� ) ��f � i
 �� E ��E ��xi� �

E is de
ned by the following clauses�
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�

E �� p ��x ) ab

E �� abortA p ��x ) ab

whenever p � �

�

E �� y ��x )
�
v� if y � x
ab� otherwise

�

E ��J	c� d� ��x ) E �� d ��x

�

E �� case x c ��x ) E �� c ��x

�

E �� if b then c else d ��x ) E �� b ��x � 	E �� c ��x t E �� d ��x�

�

E �� casesn v c� � � � cn ��x ) E �� v ��x � 	
i�nG
i��

E �� ci ��x�

�

E ��Fst p ��x ) �at	v�� 		E �� p ��x��ab�


�

E ��Snd p ��x ) �at	v�� 	ab� 	E �� p ��x��


�

E �� cases i f g ��x ) �at	v�� 	inl a� inr b�
� E �� f ��x� E �� g ��x

In the above

a ) efm �� f �� ��befm �� i ��
 v

b ) efm �� g �� ��befm �� i ��
 v

�

E �� ap f a ��x ) 		E �� a ��x� 	efm �� f �� ��befm �� a ��
 v�� � 	E �� f ��x�
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�

E �� prim n c f ��x ) 	prim� pargs	E ��n ��x�� �

	prim� pargs	E �� c ��x�� �

	prim� pargs	E �� f ��x��

where pargs ) �absi�
�befm �� c ���befm �� f ��


�

E �� lrec l c f ��x ) 	lrec� largs	E �� l ��x�� �

	lrec� largs	E �� c ��x�� �

	lrec� largs	E �� f ��x��

where largs ) �absi�
�befm �� c ���befm �� f ��


�

E �� trec t c f ��x ) 	trec� targs	E �� l ��x�� �

	trec� targs	E �� c ��x�� �

	trec� targs	E �� f ��x��

where targs ) �absi�
�befm �� c ���befm �� f ��


Above efm is an context expression former for functions� Its function space is

efm � TTexp� Nat� Cexpn � Cexp

It is de
ned thus�

efm�� f �� i�a� � � � an
�df

�������
������

fi �a� � � � an
� if f � Fnames
efm �� g �� 	i � ���	befm �� b ���� a� � � � an
� if f � ap g b
topi�
� if f � PMvar
	f�i �a� � � � an
� if f � FPvar
absi�
� if f � Consts

where Fnames PMvar Consts and FPvar are the syntactic domains of named
functions pattern matching variables constants and formal parameter names
respectively� befm is also used above� It is de
ned as

befm �� f ���df efm �� f �� ��


The context functions for the primitive recursive operators are of the following
form�

prim� �n� c� f
 c �df �at	c�� 	�� succ s�


prim� �n� c� f
 c �df ct 	prim� prargs 		f�� fargs c��

prim� �n� c� f
 c �df abt c
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Above

s ) abt 			f�� fargs c� � 	prim� prargs 		f�� fargs c���

fargs ) �absi�
� 	prim� prargs�


prargs ) �absi�
� 	befm �� c ���� 	befm �� f ���


The context functions for lrec and trec are similar to the prim functions listed
above�

The context functions absi and topi are simply constant functions that always
return ABSENT or TOP respectively�

���� Analysis of types

In type theory unlike in languages such as Miranda types are �
rst�class citizens�
i�e� types may be the inputs and results of functions� Also terms may occur in
types� Such mixing of types and terms is facilitated by two constructs of higher�
order logic which occur in the theory equality types and universes� The equality
types of the form I	A� a� b� allow terms to occur within types whilst the system
of universes allows every type to be given a type itself� For example bool � U	

where U	 is the base universe in a hierarchical system of non�cumulative universes�
For example we may form the following function 	taken from p���� of �������

nonempty � �A� � U	

nonempty �� �df �

nonempty 	a �� x� �df �

This de
nition may be taken a step further� The function ranges over a type
variable A� We may quantify over this variable as follows�

nonempty � � 	�A � U	���A� � U	

nonempty � A �� �df �

nonempty � A 	a �� x� �df �

Note that the type variable may be seen to be unused with respect to the de
nition
of function but is required by the type de
nition� It should also be noted that we
may go further if we admit trans
nite universes such as U� since we may then
range over the indices of universes�

Whilst there would appear to be less of a scope for optimisations with regard
to the analysis of type information it may be useful to determine how much a
term has to be evaluated in order to typecheck another term of a dependent type�
Also expressions may be detected as being shared by a type and its associated
term�

The analysis of types in terms is as before with atomic contexts representing
whether a type variable is needed or unused strict or lazy etc� For example

nonempty��c ) 	c
�

�A�t 	c

�

�A�
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We explain context expressions such as

c
T

� x

where the term T represents type information in Section ������ below�

������ Analysis of terms in types

The analysis of the base types 	including booleans natural numbers and natural
numbers� of the system is straightforward� These types are simply constants of
some universe� For example we have as the formation rule for the type of natural
numbers�

N � U	
	N Form�

The pertinent point for such types is that they are formed without any premises
and thus cannot depend on any terms�

We thus have

c
B

� x ) AB

where B is one of Uk 	where k is a natural number� � � bool  Nn N and tree�
For type variables such as V  the context propagated is just the same as for

the original case i�e�

c
V

� x )

�
c� if V � x
AB� otherwise

If we have a list type denoted �A� then the context propagated is just that
for the type carried by the list i�e�

c
�A�

� x ) c

A

� x

Disjunction types and non�dependent products and function spaces are all
dealt with similarly� the resulting context is the combination of the contexts
propagated through the types that are used to form the type e�g�

c
A �B



� x ) 	c

A

� x� � 	c

B

� x�

The reason for the above is that a type constructor such as � is just like a
pairing operation for terms�

Likewise equality types are the combination of the contexts propagated through
each of their three components i�e�

c
I	A� a� b�





� x ) 	c

A

� x� � 	c

a

� x� � 	c

b

� x�

Suppose we have a dependent type which is de
ned via functions with universes
such as nonempty above� These dependent types induce context functions as
before e�g�

nonempty� c ) at	c�
��� AB ��AB�
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In general we use the notation Pi to denote the ith context function of a de�
pendent type P  and equivalently we use the notation Px to denote a context
function of a formal parameter x�

There are also context functions induced by the quantiers� For example
if we have

	�x � A��B

then there is an induced context function Bx which is de
ned as

Bx c�df c
B

� x

Such context functions are invoked whenever a substitution is made into a type
family� For example one of the elimination rules given in ����� for the existential
type is as follows�

p � 	�x � A��P

Snd p � P �Fst p�x�
	� ElimS�

Now

c
P �Fst p�x�







� y ) 	Fst� 	Px c��

p

� y

In general for such a substitution in a dependent type we have

c
A�s�y�



� x ) 	Ay c�

s

� x

The general form for the type of a function is�

	�x� � A��� � � � 	�xn � An��B

For each function parameter xi bound by the quanti
cation the context of xi
with respect to the type of the function is just�

Pxi c

where P is just B if i ) n or otherwise

	�xi
� � Ai
��� � � � 	�xn � An��B

In the case of a variable which is not bound in the quanti
ed type the context
propagated is just the combination of the contexts resulting from each of the
constituent types e�g�

c
	�a � A��P






� x ) 	c

A

� x� � 	c

P

� x�

To denote the context function with respect to the type information a super�
script T is used� For example we have

nonempty�
T
� c ) c

	�A � U	���A� � U	













�A



CHAPTER �� BACKWARDS ANALYSIS OF TYPE THEORY ��

) 	c
U	

�A� � 	c

�A� � U	






�A�

) AB� 	c
�A� � U	






�A�

) 	c
�A�

�A� � 	c

U	

�A�

) 	c
A

�A� �AB

) c

Consequently the 
rst argument to nonempty� is needed with respect to the typing
information�

���	 Conclusion

We have developed a theory of backwards analysis based upon the work of Hughes
which is capable of automatically detecting computational irrelevance within a
type theoretic program� We chose the backwards analysis form of abstract inter�
pretation due to its ability to capture abstract properties of data structures more
precisely than forwards analysis and for its superior e�ciency in the 
rst�order
case�

It has been shown that a hierarchy of analyses including neededness may
be employed to gain information about di�erent properties of a program� This
hierarchy culminates in sharing analysis which subsumes both neededness and
strictness analysis and also indicates whether an expression may be shared dur�
ing computation� Thus as well as removing computational redundancy we can
perform optimisations on a type theoretic program due to information that results
from just a single backwards analysis�

Subjects for possible further investigation in the areas which we have described
are the analysis of higher�order functions which produce or apply functions con�
tained within data structures and the analysis of polymorphic functions�

We have described the application of backwards analysis to the whole of the
system TT described in ����� including the list and 	binary� tree well�founded
types� Future work may focus upon applying the techniques which we have de�
scribed to the general case of well�founded types the W �types which are described
in Section ������ of ������ Related to this would be a study of the backwards anal�
ysis of possible schemes for well�founded recursion in type theory ���� ��� �����
There is also scope for work on inductively de
ned ���� ��� and co�inductive
types ���� Section ����� which are the least and greatest 
xpoints of recursive
type equations respectively�



Chapter �

Correctness of the

neededness analysis

��� Introduction

In this chapter the formal rules of Martin�L�of�s intuitionistic type theory and a
characterisation of neededness of expressions in the theory are given� In particular
it is shown how the backwards analysis that has been developed may be demon�
strated to be safe with respect to neededness i�e� consistent with the semantics of
type theory�

It is necessary to be able to show that the analysis that has been developed
is correct 	i�e� the abstract information that is deduced is consistent with the
original semantics of the program being analysed� since if it is not then there
will be potentially catastrophic and unpredictable consequences for the program
optimised as a result of the analysis� It may well be the case that the resulting
program may not be strongly normalising if we incorrectly remove arguments that
are in fact needed by the computation�

In order to de
ne safety rigorously a de
nition of an unused function argument
must 
rst be given� Since this property of neededness is undecidable we cannot
show that the analysis will always detect an unused argument 	i�e� that the analysis
is complete�� Instead it remains to prove that the analysis is sound i�e� that any
function which does require an argument x in order to be evaluated will be
shown by the analysis to have x as a needed parameter� This proof is done for
each of the constructs of type theory�

Our characterisation of an unused argument is slightly di�erent from that
usually presented for functional programming languages� For instance a function
is termed strict in its argument i� �

f � ) �

where � is the unde
ned element that inhabits every semantic domain� Similarly
a function parameter is termed unused or absent i� �

f a ) f �

��
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for every possible a� However we do not have the element� inhabiting every type
in TT� Hence the idea of a computationally absent parameter has to be modi
ed�
Furthermore we need to ensure safety at two levels� The 
rst level is the atomic
one where the need to evaluate parts of the sub�structure of a parameter is not
considered� It then remains to examine the structured level where the safety of
the analysis with respect to the components 	e�g� the head of a list� of a parameter
is considered�

We do not prove the safety of the analysis with respect to strictness since TT
is strongly normalising and has the Church�Rosser property� This means that
every reduction sequence for a term must terminate with the same normal form�
Consequently in TT unlike in programming languages such as Miranda denoting
a function as being strict in its argument cannot a�ect the semantics of a type
theoretic program� In this sense therefore strictness analysis must be safe with
respect to type theory�

��� De�nitions and theorems

In this section we present the main de
nitions which will characterise our safety
argument and the main theorems of this chapter�

����� Abstractions of context lattices

In the discussion that follows we shall simply be concerned with the contexts
N and U i�e� whether a parameter 	or component of a parameter� is needed or
unused� Information on whether a parameter is needed is embedded within the
sharing and strictness�and�absence lattices� we need to perform an abstraction on
the contexts of these lattices to give contexts in fN�Ug� These abstractions of
the context lattices are as follows for atomic values�

abscxt c )
�
U� if c v AB
N� otherwise

So for instance abscxtf�g ) U and abscxtf�� �g ) N� It may be noted that
the context lattices that we have used are all abstractions of the eight�point sharing
analysis lattice 	based on the power set of f�� ��Mg�� Note for example that we
would map both points of the simple strictness lattice S 	which corresponds to
non�empty subsets of f��Mg in the sharing lattice� and L 	f�� �g� f��Mg and
f�� ��Mg� to N�

The idea of abstractions of context domains�lattices comes from �����

����� Basic de�nitions

Denition ��

We say that a single parameter function f  of the generalised function space type
	�x � A��B is independent of its argument i�
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��

B	a� ) B	b�

��

f a ) f b

for any ab of type A� This can be expressed within TT in that f is independent
of its argument if we can derive�

	�a� b � A��		I	Uk� B	a�� B	b���� 	I	B	a�� 	f a�� 	f b����

where Uk is a universe containing both B	a� and B	b��

Equivalently we say that f �s 
rst parameter is unused�

Note that we are primarily concerned with term reduction rather than type check�
ing which we shall assume has been done as a separate phase� Consequently the
use of the input element within the type of the output shall not be considered in
general� Also the de
nition of independence ensures that if a parameter is unused
then we will be dealing with the non�dependent function space� Below therefore
we shall use A� B to mean the generalised function space 	�x � A��B where the
type of the result depends upon the input element� Also in the de
nitions which
follow we shall implicitly assume that the type equality of condition 	�� holds
so that the assertions of equality between applications of a function to di�erent
arguments is meaningful�

The above may be extended naturally to functions of more than one argument�

Denition ��

If there exists a j such that

f a� � � � aj � � � an ) f b� � � � bj � � � bn

whenever ai ) bi for all i such that � � i � n and i �) j then we say that f is
independent of its jth argument 	parameter��

Also we say that the jth argument 	parameter� is unused�

Evidently there is the converse de
nition�

Denition ��

f is dependent upon its jth parameter if it is not independent of that argument�

Similarly we say that the jth argument of f is needed if it is not unused�
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If f is independent of its argument then we may remove its formal parameter
in its de
nition to form a new function f �� Similarly we may replace a call
f c say with f �� Since it is intended to produce a modi
ed form of f with the
unused parameters removed it is essential that the analysis only detects arguments
which are de�nitely unused� Otherwise we are certain to produce an �optimised�
program which gives incorrect results�

The analysis uses the 	atomic� abstract values�

N 	�May be needed if the result of the function is needed��
and
U 	�Always unused��

It is necessary to show that if a function�s jth argument is needed then the back�
wards analysis will show that the context for that parameter will be N� We shall
use the symbol

N

to denote a context whose atomic part is N�
An abstraction map abstr from the de
nition of 	in�dependent parameters

in the concrete semantics to the neededness context lattice is de
ned as follows�

Denition ��

abstr fj )
�
N� if f is dependent on its jth parameter
U� if f is independent of its jth parameter

Denition �	 �Safety�

The analysis is safe with respect to neededness if whenever the jth argument of
f is needed then

at	fj N � ) N

where fj is the context function of f �s jth parameter�

From de
nitions �� and �� we obtain�

Result ��

The analysis is safe if and only if�

abstr fj v at	fjN �

Proof

Suppose the contrary i�e�
at	fj N � � abstr fj

Now
at	fj N � � abstr fj

i� at	fj N � ) U and abstr fj ) N
i� at	fj N � ) U and f is dependent on its jth parameter�
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i� the analysis is unsafe�

�

So by the above result safety may be proved by con
rming that the inequality
holds�

����� Main theorems

We present the two main theorems which are relevant to establishing the correct�
ness of the analysis� Firstly we show that the property of absence is undecidable
so that there does not exist an algorithm with which to calculate the abstr map�
ping� As a consequence it is impossible for our neededness analysis to be complete
for TT in the sense that there will be some programs for which absence cannot
be determined precisely� Secondly we state the safety result that the analysis
does not detect parameters 	or components of parameters� as being unused when
in fact they may be used� This is a soundness result in the sense that for every
function that we can prove by the analysis that it does not use its argument it
will be valid to do so�

Result �	 �Undecidability of the absence property�

The absence property is undecidable�

Proof

The undecidability of the absence property is a consequence of the undecidability
of extensional equality which we shall demonstrate� Suppose that we have a
function to simulate the operation of a Turing machine in TT over a 
nite number
of steps which will return True if it halts within that number of steps� That is
we have the following function�

turingsim � N � TuringMach � Bool

turingsim n t �df

��
� True� t halts in n steps

False� otherwise

In the above TuringMach is the type of Turing machine representations� Suppose
that we can compute abstr for any function and any parameter� Then we will be
able to calculate�

abstr turingsim �

That is we will be able to determine whether

turingsim mt ) turingsim n t

for all m and n for an arbitrary t� If this held then we would have a solution to
the halting problem� This is impossible and so our original assumption about the
decidability of abstr must be false�

�
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Result �� �Correctness of the neededness analysis�

Our neededness analysis is safe with respect to the absence property� That is if
the analysis detects a parameter as being unused then that parameter will not be
required during computation with a lazy evaluation strategy� Formally

abstr f j v at	fjN �

Also where the data is structured the analysis is sound for each component of
the data� That is

abstrprj f j v 	at � prj � str � fj�N

In the above abstrprj is the abstraction function with respect to the component
of the parameter extracted via the projection prj� prj is the projection over
contexts which is the counterpart to prj�

The rest of this chapter will be devoted to proving Result ��� This proof will be
performed using the method presented in Section ������

����� Method of proof

The approach is to consider the base types of the system and then to examine types
constructed from other types� In proving the safety of our necessity analysis we
shall thus appeal to the principle of induction over types� This consists of showing
that our analysis gives a safe analysis for�

�� Functions over the base types of the system�

�� Assuming that safety holds for types A� � � � An showing that it holds for a
type B constructed from A� � � � An and for functions whose inputs are from
A� � � � An�

We shall use NC to indicate an input context corresponding to a type C where
the atomic part is N and where any components of the structured part of NC

are also N at the atomic level� In other words we are simply assuming that the
result of a function is needed� 	The analysis will be trivially safe in the case that
the result is not needed��

If the type is structured then we will additionally prove safety for each of the
components of the data structure� 	Note that the natural numbers being based
on the Peano arithmetic system are considered to be structured here��

��� Base types

The 
rst step in proving correctness is to examine the base types of the system
i�e� those which are not constructed from other types�
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����� The empty type� �

� which may be interpreted as the absurd proposition is not inhabited by any
elements and consequently does not have an introduction rule� Its formation rule
is�

� � U	
	� Form�

Its elimination rule is�
p � �

abortA p
	� Elim�

In abortA p the p occurs in order to adhere to the principle of complete presenta�
tion� Essentially due to the notion of �ex falso quodlibet� abortA p may represent
any element of type A� abortA p of course has no computational content� it is
nonsensical to try to reduce a term which has resulted from a pathological proof
object that should have never been derived� For any given type A we may say
that all �abortA � terms are equivalent so that if

f a ) abortA p

f b ) abortA q

then f a ) f b� Furthermore since � is uninhabited the condition that in the
case that f � �� C

f a ) f b

for any a� b � � is vacuously satis
ed as � is uninhabited� 	� is isomorphic to
the empty set�� Hence if f � � � C then f must be independent of its 
rst
argument� Thus the safety condition must also hold as

abstr f j ) U

where the jth parameter is of type ��

����� The single	element type� �

The type � which may be viewed as the �true� proposition contains just one
element Triv� Its formation introduction elimination and computation rules are
as follows�

� � U	
	� Form�

Triv � �
	� Intro�

x � � c � C	Triv�

case x c � C	x�
	� Elim�

case Triv c � c

Clearly as there is only one inhabitant of �

f a ) f b
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for any elements a� b � � as necessarily a ) b ) Triv � This is exhibited in
the computation rule for case which is independent of its 
rst argument and
consequently�

abstr case � ) U

Hence the safety condition is satis
ed with regard to the 
rst argument to case�
For the second argument of case the abstract interpretation gives the follow�

ing�
at	case� N � ) N

Hence it must follow that the safety condition is met i�e�

abstr case � v at	case� N�

����� Booleans

The boolean type is the 
nite type inhabited by two elements denoted True and
False� Its formation and introduction rules are�

bool � U	
	bool Form�

True � bool
	bool Introt�

False � bool
	bool Introf�

Its elimination rule is

tr � bool l � C�True�x� d � C�False�x�

if tr then l else d � C�tr�x�
	bool Elim�

and the computation rule is de
ned via pattern matching on the boolean argu�
ment�

if True then l else d � l

if False then l else d � d

Here the abstract interpretation results in the 	atomic� context N for each of the
three arguments to the if�then�else construct� 	N results for the 
rst argument
due to pattern matching�� Consequently the abstract interpretation is safe over
the booleans�

����� Finite types in general

We denote Nn to be the 
nite type inhabited by exactly n elements� The 
nite
types are formed and elements of Nn are introduced by the following rules�

Nn � U	
	Nn Form�

�n � Nn

	Nn Intro�� � � �
nn � Nn

	Nn Intron�

The elimination rule is�

e � Nn l� � C�c��x� � � � ln � C�cn�x�

casesn e c� � � � cn � C�e�x�
	Nn Elim�
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There are n associated parts to the computation rule�

casesn �n c� � � � cn � c�
���

���
���

casesn nn c� � � � cn � cn

As in the boolean case the abstract interpretation will show that for all i when
n � �

at		casesn�i N � ) N

This is so since ci appears as the result to one of the parts of computation rule and
pattern matching is performed on the element of type Nn� Again this indicates
that the analysis must be safe on Nn�

��� Inductive cases

We now examine the inductive cases� That is we prove the safety property for
the cases of types that are constructed from other types 	products lists trees
� � � � or where the safety argument with respect to the computation rule of the
type depends upon the hypothesis that the safety result holds over the type of
the argument which is being abstracted� In most cases apart from the equality
and function types the data will be structured so that it will be necessary to
consider correctness with regard to the components of parameters as well as the
parameters themselves�

����� Equality types

The equality types form the primitive predicates upon each type A� They are
written as

a )A b

or
I	A� a� b�

The above means that equality between two elements a and b of the type A holds�
The formation rule is the 
rst that we have exhibited where terms may be

embedded in the type�

A � Un a � A b � A

I	A� a� b� � Un

	Equality Form�

The introduction rule depends upon the relation of convertibility between terms�
An explanation of this equivalence relation� 	��� is given on pp� ������� of ������

a�� b a � A b � A

r	a� � I	A� a� b�
	Equality Intro�

�Brie�y� ��� is the smallest equivalence relation extending the reduction relation� �� The
latter is the re�exive� transitive closure of the computation rules that we are presenting�
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r	a� witnesses the equality between two terms�
The elimination rule for the equality types which embodies Leibnitz�s law 	that

�equals may be substituted for equals�� is�

c � I	A� a� b� d � C	a� a� r	a��

J	c� d� � C	a� b� c�
	Equality Elim�

The computation rule is�
J	c� d� � d

Note the similarity in this computation rule and that for �� In fact it can be
shown 	p� ��� of ������ that all elements of the equality type are equal� Moreover
if we regard the selector J as a two�parameter function 	by currying� then we see
that J is independent of its 
rst argument� The analysis must consequently be
safe with respect to the equality witness c� Conversely at	J� N � ) N in our
analysis and so safety is guaranteed in this case as well�

����� Product types

In the case of products it is su�cient to consider the generalised type of products
	�x � A� � B i�e� where the type of the second component of the pair may depend
upon the 
rst component� The formation and introduction rules are�

�x � A�
���

A � Um P � Un

	�x � A��P � Umax m�n�
	� Form�

a � A p � P �a�x�

	a� p� � 	�x � A��P
	� Intro�

There are two elimination rules for this type 	which can be shown to be equivalent
to the single elimination rule 	� E � given on p���� of �������

p � 	�x � A��P

Fst p � A
	� Elimf �

p � 	�x � A��P

Snd p � P �Fst p�x�
	� Elims�

The computation rules for products are�

Fst	a� b� � a

Snd 	a� b� � b

For each of the computation rules the analysis detects that the parameter of
type �x � A �B must be used � due to the pattern matching over the pair� That
is 	for the atomic parts of the analysis�

Fst� N ) N

and
Snd� N ) N
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However the analysis also produces contexts for the components of the pair� Con�
sequently it is necessary to expand the de
nition of a function being independent
of its arguments�

We may say that a function is independent of components of its argument as
follows�

Denition �� �Dependent product � second component�

Suppose that�

�� f � 	�x � A �B� � C

�� a � A where a is arbitrary�

Then if
f	a� b� ) f	a� c�

for any b� c � B	a� we say that
f is independent of the second component of its argument�

The case of the 
rst component of the generalised product is more complicated
due to the possible variation in the type of the second�

Denition �
 ��Non��dependent product � rst component�

Suppose that�
f � 	�x � A �B� � C

If then for any a� b � A
B	a� � B	b�

	i�e� we have a non�dependent product which is isomorphic to A � B� and for an
arbitrary c � B

f	a� c� ) f	b� c�

then we say that
f is independent of the rst component of its argument 	of non�dependent
product type��

Denition �� �Dependent product � rst component�

If f � 	�x � A �B� � C and

f	a� b� ) f	c� d�

for any a� c � A� b � B	a�� d � B	c� we say that
f is independent of both components of its argument�

Note that if we consider type checking and term reduction as one indivisible
process it is impossible for a function to be independent of the 
rst component
of a product if the second component is needed and its type depends upon the

rst component� However we are primarily concerned with the behaviour of the
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reduction of terms of the system and assume that type checking has already been
completed as an independent phase� 	This is the case in the Ferdinand system for
instance�� Making this assumption we may apply the de
nition �� to all elements
of product types even if the type of the second component depends upon the 
rst�

We have naturally the dual notion of dependence upon components of a pair
and the abstraction map abstr is extended to the components of products as
follows�

Denition ��

abstrfstfj )
�
N� if f is dependent on the 
rst component of its jth parameter
U� if f is independent of the 
rst component of its jth parameter

Likewise we may de
ne abstrsnd fj�

Denition �� �Safety for components of products�

We say that for a function f � 	�x � A �B� � C the analysis is safe with regard
to the components of the input parameter i� �

	at � fst � str � f��NC ) U

implies that f is independent of its 
rst component of its parameter�
Above
str extracts the structured part of a context�

fst projects the 
rst component of the structured part of a context i�e�

fst � CA CB � CA

NC is a needed element of the structured contexts corresponding to the type C
i�e� with atomic part equal to N�

We have a similar de
nition of safety for the second component of an element of
product type� 	The context projection snd simply needs to be substituted for fst
in the above��

As in the basic atomic case the above de
nition implies that safety is assured
if and only if�

abstrfst fj v 	at � fst � str � fj�NC

and
abstrsnd fj v 	at � snd � str � fj�NC

If we assume that type checking has been done as a separate phase then
we see that Fst and Snd are independent of the second and 
rst components
respectively of their parameters� Conversely the analysis gives�

Fst� 	N A� ) N
N A�U�
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and so
	at � fst � str � Fst��N A ) N

Similarly
	at � snd � str � Snd��NB ) N

Hence the analysis is safe with respect to the components of the pair in each case
as well�

����� Disjunction types

The cases where the input type of a function is that of a disjunction type 	i�e�
A �B� are relatively straightforward� These types are formed as follows�

A � Um B � Un

	A � B� � Umax m�n�
	� Form�

Elements of disjunction types are introduced by the following rules�

q � A

inl q � 	A �B�
	� Introl�

q � B

inr q � 	A �B�
	� Intror�

The elimination rule is as follows�

p � 	A � B� q � 	�x � A��C�inl x�z� r � 	�y � B��C�inr y�z�

cases p q r � C�p�z�
	� Elim�

The computation rule is de
ned via pattern matching on the proof object of the
disjunction type�

cases 	inl a� q r � q a

cases 	inr b� q r � r b

This pattern matching means that the analysis shows that the 
rst parameter of
cases is needed whenever the result of cases is needed� The analysis also indicates
that the two other arguments will also be required� Hence at the atomic level
the analysis must be safe with regard to disjunction types�

It is also necessary to check safety within the structure of the disjunctive proof
object�

Denition �� �Disjunction type�

If f � 	A �B� � C and for any a� b � A�

f	inl a� ) f	inl b�

Then we say that f is independent of a left injection component of its
parameter
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A similar de
nition may be formulated for a right injection component�
The abstr mapping is extended naturally in a similar manner to that done for

product types and the analysis will be safe for a function f with jth parameter
of type A �B if and only if�

abstrinl f j v 	at � fst � str � fj�NC 	���

and
abstrinr f j v 	at � snd � str � fj�NC 	���

The jth parameter of the function f must reduce to the forms inl a and inr b
in 	��� and 	��� respectively� 	Note that as with the product fst and snd are
used as the projections from the context domain CA�B since the structured part
of that domain consists of pairs of contexts from CA and CB��

It follows from the de
nitions of cases and abstr that

abstrinl cases � ) abstr q �

Also the analysis gives the result�

at	q� NC� v 	at � fst � str � cases��NC

	Normally the analysis will give equality in the above� However if the parameter
q is a partial application then the analysis may give a less precise result�� As
an induction hypothesis we assume that safety holds over the type of q 	�x �
A��C�inl�x�� That is

abstr q � v at	q� NC�

This implies that

abstrinl cases � v 	at � fst � str � cases��NC

Hence by the principle of induction over types safety has been shown for a left
injection component of the 
rst parameter of cases� Similarly safety for a right
injection component may also be proven�

����� Function types

Function types which are represented in the general case by universal quanti
ca�
tion have the following formation introduction and elimination rules� 	Below Ui

represents the ith universe��

�x � A�
���

A � Um P � Un

	�x � A��P � Umax m�n�
	� Form�
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�x � A�
���

p � P

	�x � A��p � 	�x � A��P
	� Intro�

a � A f � 	�x � A��P

	ap f a� � P �a�x�
	� Elim�

The computation rule is�

ap 		�x � A��p� a� p�a�x�

Note that we know that the analysis must be safe in the function being applied
in the computation rule for the universally quanti
ed type since�

at	ap� N � ) N

Suppose as the induction hypothesis that the analysis is safe with respect to
the function f which ranges over A� Then

abstr f � v at	f� N �

Now ap requires its second argument i� f requires its 
rst argument i�e�

abstr ap � ) abstr f �

Also
ap� c ) f� c

Consequently from the induction hypothesis�

abstr ap � v at	f� N � ) at	ap� N �

����� Natural numbers

The natural number type is formed simply by�

N � U	
	Nat Form�

Natural numbers in the theory have the same structure as in Heyting arithmetic
	and its classical counterpart Peano arithmetic� as illustrated by the following
introduction rules�

� � N
	Nat Intro	�

n � N

	succ n� � N
	Nat Intros�

Natural numbers are eliminated by the following rule�

n � N l � C���x� f � 	�n � N��	C�n�x� � C�	succ n��x��

prim n c f � C�n�x�
	Nat Elim�
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Note that the proof object deduced is a primitive recursion over natural numbers
and the elimination rule encapsulates proof by induction� The computation rule
simply states the general form of primitive recursion over the natural numbers�

prim � c f � c 	���

prim 	succ n� c f � f n 	prim n c f� 	���

The safety at the top�level is assured as the analysis indicates that the 
rst pa�
rameter of prim may be used 	as the argument of natural number type must be
reduced to weak�head normal form for pattern matching to be performed�� Also
the second argument c may be used 	due to the base case 	����� Finally f will
be shown by the analysis to be �needed� due to its application in clause 	����

However in keeping with the way the naturals are de
ned the analysis treats
natural numbers as �structured�� here the structured part re�ects whether a non�
zero number needs to be evaluated beyond the form 	succ n�� This will indicate
whether the predecessor to the element of natural number type has to be evaluated�
We thus make the following de
nition�

Denition ��

If f � N � C and for any ab�N

f 	succ a� ) f 	succ b�

then we say that f is independent of the predecessor of its parameter�

Again the abstraction mapping abstr is extended to predecessor contexts so
that the following safety condition applies to a function g of type N � C�

abstrpred g j v 	at � pred � str � gj�NC

With regard to the computation rule for prim if f is independent of both its
arguments then�

abstrpred prim � ) U

Hence
abstrpred prim � v 	abstr f ��t 	abstr f ��

Now we assume the following as an induction hypothesis in an induction over
types��

abstr f � v at	f� c
��

and
abstr f � v at	f� c

���

�Note that we are eliding the fact that the context functions may depend� in the higher
order case� upon the arguments n and primn c f � This omission� for the sake of notational
convenience� does not a�ect the validity of the argument presented�
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where at	c�� ) N and at	c��� ) N� Now as noted above the 
rst parameter of
prim must be used at the atomic level and so

at	prim�NC� ) N

It then follows from the induction hypothesis that�

abstrpred prim � v at	f�N C�t at	f�	prim�NC�� 	���

) at		f�N C�t 	f� 	prim�NC��� 	���

) at	ABt 		f�N C� � 	f� 	prim�NC���� 	���

v 	at � pred � str � prim��NC 	���

Note that�

	��� Follows from the de
nition of t over structured contexts�

	��� Follows from the equivalence of � and t over the lattice of values of neces�
sity�

Hence safety has been proven for primitive recursion over the natural numbers
via the principle of induction over types�

����� Lists

The following is the formation rule for list types�

A � Un

�A� � Un

	List Form�

List structures composed with elements of a type A are introduced via the fol�
lowing rules�

�� � �A�
	List Introe�

a � A l � �A�

	a �� l� � �A�
	List Intron�

The elimination rule is equivalent to a proof by induction over lists� The proof
itself is the generalised form of primitive recursion over lists�

l � �A�

s � C����x�

f � 	�a � A��	�l � �A���	C�l�x�� C�	a �� l��x��

lrec l s f � C�l�x�
	List Elim�

The elimination rule for lrec shows how primitive recursion over lists is reduced�

lrec ��s f � s

lrec 	a �� l� s f � f a l 	lrec l s f�
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Due to the de
nition via pattern matching on the 
rst argument the analysis
will indicate that the list argument will de
nitely be used� Similarly the second
and third arguments will be detected as used 	due to the result of the 
rst clause
and the application in the second clause respectively�� Consequently the analysis
must be safe at the atomic level with regard to recursion over lists�

Since the analysis also attempts to determine whether the head and tail com�
ponents of a list parameter are used we require the following de
nitions 	which
naturally may be extended to functions of any number of parameters��

Denition ��

If f � �A� � C and for any a� b � A and l � �A�

f 	a �� l� ) f 	b �� l�

then we say that f is independent of the head component of its argument�

Denition ��

If f � �A� � C and for any a � A and l�m � �A�

f 	a �� l� ) f 	a �� m�

then we say that f is independent of the tail component of its argument�

Corresponding to the above de
nitions there is an extension to the abstr
mapping so that safety may be characterised by the following equations�

abstrhd f j v 	at � hd � str � fj�NC 	���

abstrtl f j v 	at � tl � str � fj�NC 	���

	Naturally the above only apply when the argument of list type reduces to a
non�empty value� Also in 	��� hd projects from the structured part of C�A� to
CA and in 	��� tl is a projection from the structured part of C�A� to C�A���

With respect to head components

abstrhd lrec � ) abstr f �

Now as an induction hypothesis we assume that for the type of f
		�a � A��	�l � �A��	C�l�x�� C�	a �� l��x����

abstr f� v at	f�N �

Hence

abstrhd lrec � v at	f�N �

v 	at � tl � str � lrec��NC
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and safety has thus been shown 	via the principle of induction over types� with
respect to list recursion and head components of lists�

For tail components if the function f 	the third parameter to lrec� does not
use its second or third parameters then certainly

abstrtl lrec � ) U

Consequently
abstrtl lrec � v 	abstr f ��t 	abstr f ��

Again it may be assumed as an induction hypothesis that�

	abstr f �� v at	f� c
��

and
	abstr f �� v at	f� c

���

where at	c�� v N and at	c��� vN� Also as have already noted

at	lrec�NC� ) N

and so�

abstrtl lrec � v 	abstr f ��t 	abstr f �� 	���

v at	f�N C t at	f� 	lrec�NC�� 	���

) at	ABt 	f�NC t at	f� 	lrec�NC���� 	���

v 	at � tl � str � lrec��N C 	���

Hence it has been proven 	by the principle of induction over types� that the
analysis is safe with respect to list recursion and tail components of lists�

����
 Binary trees

Binary tree types and objects containing elements of natural number� type may
be formed and introduced by the following rules�

tree � U	
	tree Form�

Null � tree
	tree IntroN �

n � N u � tree v � tree

	Bnode nu v� � tree
	tree IntroT �

�In fact� an arbitrary type may be substituted instead of �natural number�� we have assumed
that the node information consists of naturals simply to be consistent with the presentation given
in ��
���
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The elimination rule corresponds to proof by induction over the tree�

t � tree

l � C�Null�x�

f � 	�n � N��	�u � tree��	�v � tree��

	C�u�x� � C�v�x� � C�	Bnode nu v��x��

trec t c f � C�t�x�
	tree Elim�

The proof object that is derived by the elimination rule corresponds to primitive
recursion over the binary tree� It thus has the computation rule�

trec Null c f � c

trec 	Bnode nu v� c f � f nu v 	trec u c f� 	trec v c f�

Note that the analysis shows that if its result is required then all three arguments
to trec must be needed at least at the atomic level� It must follow therefore that
the analysis is safe with respect to trec at the atomic level�

It is also necessary to ensure safety for the components of a binary tree type
object� In fact by extending the de
nition of abstr in the obvious way we may
obtain the following safety conditions for each component of non�empty binary
tree object�

abstrnode g j v 	at � node � str � gj�NC 	���

abstrlsub g j v 	at � lsub � str � gj�NC 	���

abstrrsub g j v 	at � rsub � str � gj�NC 	���

	Above g is a function whose jth parameter is of tree type� node lsub and
rsub are projections from the structured part of a tree context� The 
rst is a
projection to natural number contexts and the latter two are projections to tree
contexts��

	��� for trec follows simply from the induction hypothesis that

abstr f � v at	f�	NC��

	��� may be shown with respect to trec as follows� If the third parameter to trec
is independent of its second and fourth arguments then

abstrlsub trec � ) U

Thus
abstrlsub trec � v 	abstr f ��t 	abstr f ��

We may assume as an induction hypothesis that

abstr f � v at	f�C
�� 	���

abstr f � v at	f�C
��� 	���
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where at	C�� ) at	C��� ) N� Now since the analysis indicates that the 
rst
parameter of trec must be needed at the atomic level 	i�e� at	trec�NC ) N��

abstrlsub trec � v 	abstr f ��t 	abstr f �� 	���

v at	f�N C�t at	f�	trec�NC�� 	���

v at	ABt 		f�N C� � 	f�	trec�NC��� 	���

v 	at � lsub � str � trec��N C 	���

	��� follows from 	��� due to the de
nitions of at and t and the fact that t
is equivalent to � over the neededness lattice� It has thus been shown by the
principle of induction over types that the analysis is safe with respect to trec
and the left subtree component of a binary tree proof object� It may be shown
similarly that 	��� holds with regard to trec� 	The above argument may basically
be altered by considering the third and 
fth parameters of f instead of the second
and fourth��

��� Conclusion

We have developed the idea of the result of a function being independent of its
parameter� Additionally the idea of safety with respect to neededness for the
analysis has been de
ned� Safety has been shown at the atomic level and also for
the components of elements of structured proof objects� This proof of safety has
used the principle of induction over types�

Consequently whilst the necessity of computing a sub�expression within a type
theory program is undecidable in general without reducing the entire program we
have shown that the analysis that has been presented will always indicate correctly
that �needed� parameters will indeed have to be evaluated�



Chapter �

Implementation within

Ferdinand

In order to investigate the practicability and e�ectiveness of the techniques de�
scribed earlier an implementation was developed within a prototype compiler for
a language based upon intuitionistic type theory� We sought to modify the Ferdi�
nand language compiler ���� so that an optimised form of the object code would be
produced� Ferdinand compiles its scripts into Functional Language Intermediate
Code 	FLIC& ������ The aim was to produce a fully higher�order implementation of
backwards analysis within the compiler� The compiler itself and the implementa�
tion of backwards analysis which we describe were both written in the Miranda�

functional programming language ������ We give an overview of Ferdinand and a
detailed examination of each of the phases that constituted the implementation
of the abstract interpretation mechanism in Ferdinand� Additionally an account
is given of the theoretical and practical basis for the removal of computationally
redundant parameters� We discuss the results produced by the system and con�
clude with the areas of future work that may be be undertaken with regard to
this project�

��� An overview of Ferdinand

Ferdinand which is described in full detail in ���� is a functional programming
language based on the theory TT given in ������ However it di�ers in that it has
a system of cumulative universes which is claimed to be similar to that proposed
by Luo ����� Also a form of extensional equality is used where each equality
type represents extensional equality i�e� extensional equality is axiomatic to the
system� Also a single proof object eq is the sole inhabitant of every non�empty
equality type� This leads to a system which is not strongly normalising and so ex�
tensional equality was not permitted over functions with universes as their result
types� Even with this restriction it was not proven that all Ferdinand programs

�Miranda is a trademark of Research Software Ltd�

���
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do indeed terminate� although we have assumed this when applying some opti�
misation techniques to Ferdinand� If the system is not strongly normalising then
any program which includes the use of the equality eliminator J  may be analysed
incorrectly�

Ferdinand generalises sums and products to form arbitrarily sized existential
and universal quanti
er types i�e� we may form tuples of any length and similarly
have any number of constructors for sum types� However in order to translate
the terms of Ferdinand into the primitive recursive selectors of the theory 	e�g�
prec and lrec for natural numbers and lists respectively� the following restriction
is placed upon functions de
ned by pattern matching�

� � � the only valid recursive calls are those which are performed on
arguments which are structurally smaller proper sub�expressions of
the pattern declared which have the correct type�

	Taken from �����

Furthermore patterns are matched on a �best�
t� basis rather than the sequential
scheme of Miranda for example� This is explained further in Section ����� of �����

Ferdinand is compiled into FLIC code� The FLIC code is then translated
into machine code via the fc compiler which was produced by Thomas as part
of the PG�TIM project 	see ����� and in particular the manual for the system
������� FLIC is compiled using a lazy evaluation model by fc and consequently
Ferdinand programs may be seen to run lazily� Unfortunately fc recognises only
strictness annotations and does not allow comments in FLIC code� 	The strictness
annotations are used by fc to ensure that unnecessary closures are not formed
during the graph reduction process�� This means that annotations which indicate
that a term is only used once 	i�e� the term is unshared� cannot be processed by
the fc compiler� Consequently although the system that we have implemented
is capable of detecting which parameters may be shared or used only once this
information cannot be used to produce any optimisations upon the FLIC code
produced�

The Ferdinand system has been implemented in Miranda� Since the Miranda
system ����� used is an interpretive one compiling scripts to an intermediate
code Ferdinand is actually invoked by executing a Bourne shell script within the
UNIX operating system� This script runs Miranda which interprets the top�level
ferdinand function acting upon an input program� The actions of the Ferdinand
compiler may be modi
ed by certain input parameters to its top level function�
the input parameters are determined by options given to the Bourne shell script�
The shell script of the original Ferdinand system 	ferd� written by Douglas was
signi
cantly altered to allow options which determined the kind of optimisation
to be performed thus producing the script ferd�� The new script made several
enhancements to the original including automatically running the fc compiler

�Douglas is currently working on a strong normalisation proof for Ferdinand � this may
result in a restriction to the universes that can be used in the system�
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script written in

the Ferdinand

language

FLIC code Machine code
(Sun 4)

fc (FLIC compiler)ferdinand function 
(interpreted by Miranda)

File containing

Figure �� The process performed by the ferd� shell script�

on the FLIC code produced� An additional script mferd was also developed
which allowed Ferdinand programs to be compiled automatically with respect to
every possible analysis�optimisation performed by the modi
ed compiler� Figure �
shows the process performed by the ferd� script� A UNIX manual page for ferd�
and mferd was also developed as part of this work and is in Appendix B���

The input to the Ferdinand system should consist of a 
le containing a set of
function de
nitions� One of these should be distinguished as the main expression
to be evaluated� Ferdinand would syntactically analyse the script 	and any scripts
which may have been recursively included� perform type checking and translate
a resulting set of combinator de
nitions to FLIC� We have added an additional
phase of program analysis and modi
ed the translation phase so that using the
information gleaned from the analysis optimised code was produced� One prob�
lematic aspect of the implementation was that the types of the combinators were
lost during the lambda lifting phase� The phases of the modi
ed form of the
Ferdinand compiler are shown in Figure �� Further information on compiling lazy
functional languages in general 	and hence all the phases covered by the Ferdinand
and fc compilers� is given in ������

��� Development of the implementation

The following is an account of the main phases involved in the implementation
of backwards analysis within the Ferdinand compiler� In this implementation we
aimed to produce a system that would build up during each Ferdinand compila�
tion a database of the context functions that would result from the script being
compiled� The system was designed to cope with higher�order functions� The
information included in this structure then allowed us to produce optimised FLIC
code�
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FLIC code

Combinator definitions

information
and abstract interpretation

Combinator definitions
of type tc_Elem

expressions

Set of pfl_expr type

Ferdinand script

Syntax analysis, translating the
Ferdinand program to an untyped,
pattern-free representation

Typechecking, lambda lifting and
supercombinator abstraction

Backwards analysis of

combinator definitions

Translation to object code using
abstract interpretation information

Figure �� The phases of the Ferdinand compilation process with the stages added
shown in bold�
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Environment of structured
contexts for the combinators

expressions: each parameter
Environment of context

of each function has an associated
context expression

(expressions of 

Table of combinator definitions

tc_Elem type)

Initial environment of

context expressions

(Context expressions for the

SOLUTION of the 
context expressions for
a given analysis

CONSTRUCTION of the
context expressions for the 
given set of definitions

basic operators)

Figure �� The analysis and translation phases added to Ferdinand�

The key phases to this project were the translation from the tc Elem type
of the Ferdinand compiler to context expressions and the solution of such ex�
pressions� Figure � shows these phases� The construction and solution of context
expressions depended upon as a foundation a database of the context expressions
for the basic operations of Ferdinand and the implementation of context lattice
structures� In our implementation we attempted to produce a system which was
largely independent of the particular form of analysis involved� Our aim was
to produce an analysis mechanism which would cope with analyses other than
neededness analysis and in particular analyses such as sharing analysis which
would provide neededness information� This would eventually enable us to pro�
duce a combination of static analyses which should consequently produce the best
optimisations of the code produced by Ferdinand�

����� Top	level functions

Since the changes to the Ferdinand system were entirely at the end of the com�
pilation process 	at the point where FLIC code was produced� it was only neces�
sary to alter the top�level module newmain�m of the existing Ferdinand system�
The alterations included the addition of a parameter to the compilation function
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ferdinand that would indicate the kind of analysis�optimisation being under�
taken� Also an environment 	accessed via combinator names� of combinator
de
nitions was built up and the main function of the new analysis�translation
system analysed translation applied to a pair of the top�level expression and
the combinator de
nition environment� 	It is necessary to include the translation
of the top�level expression since optimisations due to the removal of unused pa�
rameters may a�ect the form of this expression�� analysed translation has the
type�

analysed�translation ��

analysis�type ��

�tc�Elem� fnDefn�Env� ��

�flic�simple�part� flic�program�

The 
rst parameter is the kind of analysis being performed and the second
the pair of the expression and the de
nitions environment� The function produces
a pair of results in abstract FLIC syntax� flic simple part is the type of the
translated form of the top�level expression whilst flic program is the type of
the translated form of the combinators� 	In the abstract a flic program is
a set consisting of flic binding elements which are pairs of names and FLIC
expressions of type flic simple part��

The translation function is partitioned into two cases� The 
rst case deals with
simple translations where no analysis has to be performed� This is so where the
translation should be the same as for the original Ferdinand 	i�e� following a lazy
evaluation strategy� and in the case where an eager version 	with all parameters
denoted as being strict� should be produced� The second case is where analysis
and optimisation has to be performed� The three main stages of this process
were implemented via the functions all anno translate all Context Expr Val
and all Context Prop Expr� These functions have the types shown in Figure ��
Each of these functions may be seen to produce a new environment which is
related to the original environment of combinator de
nitions� 	A flic�program
can be seen as an environment of FLIC function de
nitions�� The latter two
functions are de
ned via a foldr over the list of combinator names to build up a
new environment from the previous one e�g� a context Exp Env 	an environment
of context expressions� is constructed from a fnDefn Env 	the environment of
combinator de
nitions� by all Context Prop Expr� Each of the three functions
named above calls a subsidiary function which looks up the function name in the
relevant environment and applies a function to create a new version of a result
environment� For instance all Context Prop Expr calls�

cxt�expr�form ��

fnDefn�Env ��

fn�name ��

context�Exp�Env ��

context�Exp�Env

cxt�expr�form takes an environment of function de
nitions a function name
an existing context expression environment and produces a new expression envi�
ronment� 	The new environment is formed by adding the set of context expressions
pertaining to the given function to the original environment��
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all�anno�translate ��

analysis�type ��

context�Env ��

fnDefn�Env ��

�fn�name� ��

flic�program

all�Context�Expr�Val ��

analysis�type ��

context�Exp�Env ��

�fn�name� ��

context�Env

all�Context�Prop�Expr ��

fnDefn�Env ��

�fn�name� ��

context�Exp�Env

Figure �� The Miranda types of the top�level functions�

����� Main data structures

The analysis and translation phase added to Ferdinand may be seen as transfor�
mations between data structures� we start with a set of function de
nitions and
from that form a database of context expressions� That collection of expressions
may then be solved to form a database of contexts which is then used with the
original set of function de
nitions to produce an optimised set of FLIC de
nitions�
The environment of function de
nitions 	type fnDefn�Env� was modelled as an
instance of a simple abstract type environment with values bound to names�

Each of the databases of context information however required a more sophis�
ticated data structure where each 	function� name was bound to a table contain�
ing context information� Each table would contain information on each parameter
of the function to which the table was bound� Moreover it was important that
information in the table could be accessed by both indices 	e�g� to look up the ith
context function of a named function� and variables 	e�g� to determine whether
the variable could be omitted from the resulting code�� Hence two abstract data
structures were created� idx�table 	�indexed tables�� and fnParam�Env 	�envi�
ronments of parameter expressions��� The latter were implemented in terms of
the former viz��

fnParam�Env 	 

 environment �idx�table 	�

This concept is illustrated in Figure �� The context�Expr�Envand context�Env
are instantiations of fnParam Env with the types of the values contained within the
index tables being context�Expression and structured�context respectively�
That is
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Index
Parameter

name
Value corresponding

to parameter

var_10 Needed1

Function names Index tables (of type idx_table )

f19

Figure �� Conceptual diagram of fnParam Env and idx table types�
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context�Exp�Env 

 fnParam�Env context�Expression

context�Env 

 fnParam�Env structured�context

In order to ensure correctness the result of each lookup in an environment
was given by a term of the abstract type value� This is similar to the exception
monad given in ������

����� Formation of context expressions

The formation of a set of 	analysis independent� context expressions for each
parameter of each function represented the 
rst stage in the optimisation process�
The main function 	which is the counterpart of the E operator of Section �������
to do this was�

context�Prop�Expr ��

prop�Var ��

�param� ��

tc�Elem ��

context�Expression

The type prop�Var enables a distinction to be made between the case where
context information is being propagated to a variable and the case where a proxy
context expression is being formed as part of a list of supplementary parameters
to a context function� 	These supplementary expressions will only be needed in
the case of higher�order functions�� The second parameter is a list of the formal
parameters of the function being analysed and the 
nal parameter is the de
ning
expression of the function�

Naturally context�Prop�Expr is de
ned via pattern matching over the tc�Elem
type which represents types and terms of the type theory� For example

context�Prop�Expr v params �Jay tc�El tc�El��




context�Prop�Expr v params tc�El�

The above captures the semantics of the J selector over the equality types i�e�
that only the second part of the pair that J is acting upon is of computational
signi
cance 	see Section �������

Below we describe the implementation of the type of context expressions elab�
orate on the process of expression construction and give a description of the initial
environment of context expressions formed for the basic operators of Ferdinand�

Implementation type of context expressions

Context expressions are implemented via the following algebraic type 	cf Sec�
tion ��������
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context�Expr ��


ABSENT �

CONTRA �

E�TOP �

Initial �

Cxt structured�context �

Contor context�Expression context�Expression �

Contand context�Expression context�Expression �

Func fn�name num �context�Expression� �

Lambda�Cxt num num �context�Expression� �

App�Cxt context�Expression context�Expression �

Struct context�Expression struct�context�Expr �

STR context�Expression �

Fixpoint

The above have the following meanings�

� ABSENT CONTRA and E�TOP correspond to the 	analysis independent� AB�
SENT CONTRA and TOP respectively 	see Section �������

� Initial indicates that the initial or input context to the expression should
be substituted at this point�

� Cxt structured�context represents a constant context expression i�e� a
structured context� 	This has little use during expression construction since
we are forming analysis independent expressions� However it has been em�
ployed during testing��

� Contor and Contand represent the t and � context operators respectively
	see �������

� Func fn�name num �context�Expression� represents a context function
fi say � the second component indicates the index of the context func�
tion whilst the 
rst component indicates the function name� The third
component is a list of context expressions corresponding to a list of actual
parameters� These supplementary expressions will be used if the context
function is higher�order 	see ��������

� Lambda�Cxt num num �context�Expression� indicates that a supplemen�
tary context expression should be substituted at this point� The 
rst compo�
nent indicates the number of the parameter that should be substituted e�g�
if it is � then the third expression in the list of supplementary expressions
should be used� The second component is the index to be used when apply�
ing the resulting context expression� Finally the third component is a list of
additional supplementary expressions� This construct is necessary to allow
higher�order functions to be analysed more precisely � see Section �������

� App�Cxt represents the application of one context expression to another�
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� Struct context�Expression struct�context�Expr represents a structured
context expression 	see below�� The 
rst component is an atomic expression
whilst the second component is a structured set of context expressions 	the
homologue of structured parts of contexts��

� STR context�Expression represents the strict function 	see ������ upon
the result of a context expression�

� Fixpoint indicates that the current approximation to the 
xpoint of an
iteration should be substituted at this point�

The structured context expressions allow for example a context expression to be
given for the head of a list� Each structured context expression is a counterpart
to a structured type in Ferdinand and is implemented via the following�

struct�context�Expr ��


Cex�END �

Cex�TOP �

Cex�TRUNC �

Cex�INIT �

Cex�Succ context�Expression �

Cex�Cons context�Expression context�Expression �

Cex�Node context�Expression context�Expression context�Expression �

Cex�Tuple �context�Expression� �

Cex�Inj context�Expression

The last 
ve cases are reasonably self�explanatory since they are just the con�
text constructions 	see Section ������ corresponding to those of the types of Ferdi�
nand� Cex�END denotes the end of a structured context expression 	and is hence
equivalent to the bottom element of the context lattice CONTRA�� Cex�TOP
denotes an arbitrary structured expression where all basic elements will be equiv�
alent to the top element of the underlying lattice 	e�g� a structured list context
with both head and tail needed�� Cex�INIT is similar to Cex�TOP except that
instead of the top element of the basic lattice we shall have the initial context of
the relevant lattice� 	The initial context will of course depend upon the analysis
employed� For example in the case of neededness analysis the initial context will
be N 	needed��� Cex�TRUNC indicates that a recursive structure has been termi�
nated at that point 	in order to preserve a 
nite set of lattices�� Cex�TRUNC may
thus be seen as denoting a cycle in the graph of the structured context�

The structured context expressions are not actually used during the formation
of context expressions� This is because the type checking phase of Ferdinand re�
duces all recursive expressions 	and pattern matching� to instances of the primitive
recursive selectors prec lrec and trec� Consequently the structured expressions
only occur within the initial context expression environment 	see page ���� where
they are used for some of the basic operators�
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Main functions of context expression formation

The context�Prop�Expr function depends upon the following functions to con�
struct context expressions from application expressions 	of type tc Elem��

cxt�appl�mk ��

prop�Var ��

�param� ��

tc�Elem ��

context�Expression

cxt�appl�mk forms a context expression relative to an input variable 	the

rst parameter to cxt�appl�mk� and the set of formal parameters for the func�
tion being analysed from an application 	the third parameter�� This is done by
partitioning the application into the name of the function being applied and the
actual parameters� The name of the function being applied determines whether
cxt�fn�app 	for named functions� or cxt�lda�app 	where the function being
applied is a parameter of the function under analysis� should be used�

cxt�fn�app ��

prop�Var ��

�param� ��

fn�name ��

�tc�Elem� ��

context�Expression

cxt�fn�app produces a context expression corresponding to a named function
	the third parameter� being applied to a list of applicands 	the fourth parameter��
This calls a function cxt�app�form which actually forms the context expression
for each applicand� The type of this function is�

cxt�app�form ��

prop�Var ��

�param� ��

fn�name ��

num ��

tc�Elem ��

�context�Expression� ��

context�Expression

The fourth parameter of type num denotes the index of the context function
to be applied� The 
fth parameter of tc�Elem type is the applicand expression�
The 
nal parameter is a list of context expressions� The context expressions thus
formed are combined by recursively using the Contand constructor 	to indicate
that the results of the context expressions should be combined��

cxt�lda�app is similar to cxt�fn�app except that the function being applied
is a parameter of the current function being analysed� Hence this will result
in a context expression involving the application	s� of a Lambda�Cxt form� Like
cxt�fn�app cxt�lda�app calls a function cxt�lda�form to construct the actual
expression for each applicand�
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Finally a function is required to form supplementary context expressions i�e�
expressions which may be regarded as extra actual parameters to context functions
and which are used if and only if the context function is higher�order�

cxt�free�prop�exp ��

�param� ��

tc�Elem ��

context�Expression

In fact cxt�free�prop�exp just invokes context�Prop�Expr again but with
the variable being set to Input� This means that the context expressions built up
by cxt�fn�app and cxt�lda�app will di�er slightly 	with only one context func�
tion application being formed and no combination of expressions via Contand��
The clauses of context�Prop�Expr for variable names also vary according to the
form of the variable in question e�g�

context�Prop�Expr Input params

�Assume vr tc�El�




Lambda�Cxt vind � ��

�� Input matches any variable� the context lambda abstraction

�� indicates that we have to input a context expression at this point

�� instead of the variable�

� if ok�par�index




ABSENT

� otherwise

�� If vr does not correspond to any formal parameter� Really this

�� could be considered an error� as vr must be a variable in scope�

where

�� vind is the parameter index of the variable�

vind




param�index vr params

��

�� ok�par�index indicates whether the variable is amongst

�� the formal parameters�

ok�par�index




vind � �

��

context�Prop�Expr �Ord v� params

�Assume vr tc�El�




Initial

� if v 
 vr �� i�e� the variables match�




ABSENT

� otherwise �� i�e� the variables are different�
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Initial context expression environment

There are some operators of Ferdinand which are built�in to the language� most
of these operators are not primitive to TT but on the other hand they form a
more restricted set than that of a functional language like Miranda� For example
the subtraction operator is not primitive to Ferdinand� Corresponding to these
operators an initial environment of context expressions was required� the context
expressions of the combinators of the program being compiled would then be
added to these primitives to form a new context expression environment�

Analysing these operators and building the expression database for them was
fairly trivial apart from the cases of the primitive recursive operators upon natural
numbers lists and binary trees� For example the context expression for the length
of list operator is�

Struct Initial �Cex�Cons ABSENT Initial�

The context expression for the 
rst parameter of prec is�

Struct Initial �Cex�Succ �Contor ABSENT cl�exp��

where

� cl�exp is the context expression arising from the second clause of the de
�
nition of prec�

cl�exp




Contand

�App�Cxt �Lambda�Cxt �  cl�acts� Initial�

�App�Cxt �Func �Prec�  prec�acts� fapp��

� fapp� is the context expression formed from the application of the parameter
f to its second argument 	prec n c f ��

fapp�




App�Cxt �Lambda�Cxt � � cl�acts� Initial

� cl�acts is the actual parameter list resulting from the second clause of the
de
nition of prec�

cl�acts




�nat�exp�prec��

� nat�exp is a context expression for the successor of the natural number
argument�
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nat�exp




E�TOP

� prec� is a context expression corresponding to prec n c f �

prec�




App�Cxt �Func �Prec� � prec�acts� Initial

� prec�acts consists of the context expressions corresponding to the argu�
ments of prec�

prec�acts




�nat�exp��Lambda�Cxt �  �����Lambda�Cxt � � ����

The Ferdinand standard environment is a script 	stdenv�fe� which unlike
in Miranda is only loaded if it is explicitly inserted within a script� Whilst
these functions are not built into the compiler it was originally envisaged that a
database of context expressions for these functions such as map would be added
to the expressions for the basic operations� However whilst the functions them�
selves were tractable to analysis 	the only di�erences from their Miranda coun�
terparts being explicit polymorphism via universes rather than implicit polymor�
phism and some additional proof objects� it was realised that to do this would
require a substantial alteration to the existing type checking phase of the Ferdi�
nand compiler so that the standard environment functions would be recognised
rather than compiled to a set of combinators like the other functions� In addition
each of the standard environment functions would have to be encoded in FLIC�
Whilst it would seem that it is essential for the future development of Ferdinand
as an e�cient programming language that these standard environment functions
	and their context expressions� be fully integrated within the compiler it was
believed that this was not germane to the current work�

����� Evaluation of context expressions

The main function 	which is the counterpart of the V function of Section �������
used to 
nd the structured context resulting from a context expression and an
input context was�

context�Expr�Evaluation ��

analysis�type ��

structured�context ��

context�Exp�Env ��

fn�name ��

num ��

�context�Expression� ��

context�Expression ��

structured�context
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The 
rst parameter denotes the kind of analysis being performed 	and which
determines the primitive context functions that are employed�� The second pa�
rameter is the input context and the third is the environment of context function
expressions� The fourth and 
fth parameters are the name of the function be�
ing analysed and the index of the context function being evaluated respectively�
	These are necessary so that recursive context expressions may be detected�� The
sixth parameter is a list of input context expressions� these are the supplementary
expressions which will be used if the context function is higher�order� The 
nal
parameter is the context expression to be evaluated�

In general evaluation of context functions is done in the following stages�

�� Using the function context�Expr�Reduction to produce a triple of type

�structured�context� bool� context�Expression�

The 
rst component of the triple is a structured context which will be the
result of the function if no recursion has occurred� If recursion has occurred
then it will be the 
rst non�bottom approximation to the least 
xpoint
as the bottom context is substituted for any recursive form found� The
second component indicates whether the expression being evaluated contains
any recursion 	and consequently whether a 
xpoint iteration should be
performed�� The 
nal component is a modi
ed form of the original context
expression being evaluated� it is this form that will be used in any subsequent
iterations� It is optimised in the sense that any occurrences of recursion in
the original expression will be replaced by the constructor Fixpoint which
will indicate in subsequent iterations that the current approximation to the

xpoint should be substituted at this point� This means that Fixpoint

will occur at the points in the expression where the bottom context was
substituted to form the 
rst approximation to the 
xpoint�

�� The calculation of the least 
xpoint 	see Section ������ for a recursive context
expression� This uses the context�Expr�Valuation function to produce
successive approximations to the 
xpoint�

least�fixpoint antype iCxt fpCxt cExpEnv fNm vInd act�Exprs cE




cxt�limit antype �iterate cxt�expr�fn fpCxt�

where

�� cxt�expr�fn is a function based upon the context

�� expression whose value is being calculated�

cxt�expr�fn cxt




context�Expr�Valuation

antype iCxt cxt cExpEnv fNm vInd act�Exprs cE

context�Expr�Valuation is very similar to the function context�Expr�Reduction

except that only the structured context value of the expression is returned�
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	It is already known of course that the expression is recursive and the con�
text expression has already been simpli
ed�� The cxt�limit is similar to
the limit function of the Miranda standard environment in that it checks
whether two successful members of a list of approximations to the 
xpoint
are equal contexts for a given analysis�

Both context�Expr�Reduction and context�Expr�Valuation determine the
values of expressions using the rule�

e c ) ABt 	e 	strict c��

if AB v c� 	See Sections ����� and ������� Each function calls subsidiary functions
which are de
ned via pattern matching over the structure of context expressions�
In addition there are functions to reduce structured context expressions�

The most signi
cant part of context expression evaluation is concerned with
the evaluation of a context function application� This is shown in the clause of the
function context�Expr�Reduce 	which is called by context�Expr�Reduction�
given below�

context�Expr�Reduce antype iCxt fpCxt cExpEnv fNm vInd act�Exprs

�App�Cxt �Func fname ind a�cExps� cE�




�fpCxt� True� Fixpoint�

� if recursive�call




�context�Fn�val� input�is�recursive� new�appl�expr�

� if � recursive�call � index�known




�top�cxt� input�is�recursive� E�TOP�

� if � recursive�call � � index�known

where

recursive�call




context�Expr�Match antype

�App�Cxt �Func fname ind subst�cExps� �Cxt str�cE�val��

�App�Cxt �Func fNm vInd act�Exprs� �Cxt iCxt��

��

new�appl�expr




App�Cxt �Func fname ind a�cExps� cE�

��

index�known




ind �
 fname�size

��

top�cxt




lattice�SCTOP antype
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��

fname�size




value�elim size�err�message fn�size�lkup

��

fn�size�lkup




fn�size cExpEnv fname

��

context�Fn�val




context�Expr�Evaluation

antype cE�val cExpEnv fname ind subst�cExps cExpFn�exp

��

�vname� cExpFn�exp�




value�elim error�message tag�cExpFn�exp

��

tag�cExpFn�exp




idx�lkup�param cExpEnv fname ind

��

subst�cExps




sub�actual�exps antype act�Exprs a�cExps

��

�cE�val� input�is�recursive� cE��




context�Expr�Reduce

antype iCxt fpCxt cExpEnv fNm vInd act�Exprs cE

��

str�cE�val




lattice�SCSTR antype cE�val

��

error�message




�context�Expr�Reduce� Error in lookup of � ��

fname �� � � �� �shownum ind�

��

size�err�message




�context�Expr�Reduce� Error in lookup of size of � �� fname

In the above code fragment�

� In the 
rst case above we have a recursive expression and the current
approximation to the 
xpoint is substituted at this point� In the second
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case the context function expression does not result in a recursion� However
the context function for the given function and index is known� In the third
case the context function expression does not result in a recursion but the
context function for the given function and index is unknown�

� recursive�call indicates whether we have a recursive call of the function�
This is discovered by attempting to match the components of the current
function being evaluated and that speci
ed by the Func construction�

� new�appl�exp is the new application expression to be used in any subse�
quent 
xpoint iterations�

� index�known indicates whether the context function for the given function
and index is known�

� top�cxt is the top element of the context lattice�

� fname�size is the size 	i�e� number of parameters� of fname�

� fn�size�lkup is the result of looking up the size of fname�

� context�Fn�val is the value of the context function looked�up relative to
the initial context cE�val�

� cExpFn�exp is the untagged context expression found from the current en�
vironment of context expressions cExpEnv and vname is the name of its
corresponding variable� The call of value�elim will trap any errors that
have occurred during the lookup�

� tag�cExpFn�exp is the tagged context expression found from the current
environment of context expressions cExpEnv�

� subst�cExps are the actual parameter context expressions of the function
with appropriate substitutions made for lambda context expressions�

� cE�val is the result of evaluating the expression cE which will be the initial
context given to the context expression looked up� input�is�recursive

indicates whether the expression for the initial context is recursive� cE� is
the expression to be used in any 
xpoint iteration�

� str�cE�val is the strict version of cE�val�

� error�message is the header error message to be used when a lookup has
resulted in some error occurring�

� size�err�message is the header error message to be used when a lookup
for the function�s size has given an erroneous result�
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It should be noted from the above that it is possible for the index of the context
function not to be recognised� This will occur for a function de
ned by partial
application where the number of actual parameters supplied to the function is less
than the number of formal parameters� In this case a safe approximation is taken
by de
ning the results as the top structured context and top context expressions�
It is possible to be more precise than this although matters are complicated
by the fact that we do not know the precise types of the combinators produced
by the Ferdinand type checking phase since they are lost during lambda lifting�
Methods to remedy this 	and thus produce a system which is fully higher�order�
are discussed in the conclusion Section ����

Two important aspects of context expression reduction are evident in the given
code fragment 
rstly that of the recognition of recursive patterns and secondly the
substitution of actual context expressions for �dummy expressions� which refer to
formal parameters 	the Lambda�cxt form�� In the case of the former it is necessary
to check that the function name the index of the context function the input con�
text and the actual parameter expressions 	for higher�orders� must all match� To
ensure that the supplementary expressions match a function context�Expr�Match

	and a subsidiary function to deal with structured expressions� is used� The sub�
stitution of expressions is dealt with by a function sub�actual�cxt�exp 	and
again a function to deal with structured expressions��

Of course evaluation of expressions depends upon operations over the under�
lying set of structured contexts� These are described below�

Structured Contexts

Structured contexts 	see Sections ��� and ������� were implemented within the
module context�calc�m as the following type�

structured�context 

 �context�Lattice�Value� struct�context�

That is we simply follow the theory in having structured contexts represented
by a pair of an atomic part ranging over the basic lattice values 	represented
by the context�Lattice�Value type� and a structured part consisting of context
constructors and basic lattice values 	represented by the struct�context type��
The struct�context is an algebraic type similar to that for structured context
expressions� 	We considered the �atomic types� of Ferdinand to be the following�
Char Boolt and Triv� As our phrase suggests we assumed that variables of
these types had no �structure� and their contexts would thus be atomic ones��
Operations such as the combination of structured contexts were de
ned over
the structures using the relevant functions over the lattices of simple values� For
example the following is the implementation of the t operator over structured
contexts�

lattice�SCOR an�ty �at� str� �at�� str��




�at�� str��

where

at� 
 lattice�COR an�ty at at�
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str� 
 struct�COR an�ty str str�

struct�COR is naturally the t operator over the structured part of contexts
and lattice�COR the t operation over the basic atomic values�

Functions were developed which gave the top element of a given structure 	i�e�
a structured context with all values contained being the top element of the basic
lattice� and the initial element of a given structure� This allowed contexts to be
built which would match other structures � for instance we could produce a
list context with the atomic context and the head and tail contexts all being the
top elements of the context lattice� Also functions to determine equality over
structured contexts were developed which facilitated a cxt�limit function� This
was similar to the limit function of the Miranda standard environment but with
equality over structured contexts 	the lattice�SEQ function� replacing !)��

Most importantly as required by the functions to calculate �  this module
included functions to approximate contexts for the recursive types list and tree�
The function used to do this over structured parts was�

approx�Cxt ��

analysis�type ��

struct�context ��

struct�context

Thus the structured part of context was approximated with respect to a partic�
ular analysis� This was implemented in general by gathering together the contexts
corresponding to similar parts of the structure 	e�g� the head contexts for lists�
in one list and mapping the lattice�SCOR function over those contexts� The
results of these subsidiary computations are then reassembled as a new structured
part�

Basic context lattices

The aim in the implementation of the basic lattice�domain theoretic aspects 	see
Section ���� of the static analysis was to produce a series of functions and struc�
tures which would be generic in the sense that they would be capable of acting
upon more than one form of backwards analysis� To that end we attempted to
emulate a simpli
ed version of the lattice theory implemented in Haskell by Jones
����� Whilst since we used the Miranda language as our implementation tool we
did not enjoy the full power of Haskell�s type classes and could not therefore pro�
duce a generic lattice structure we did implement a generalised context lattice

type with associated functions 	in the module general lattice�m�� This allowed
us to abstract the implementation with functions parameterised upon the type of
analysis being performed� 	If it were possible to use Jones�s implementation of
lattices however the system of type classes would mean that the indicator of the
kind of analysis being used would not have to be stated explicitly throughout the
context evaluation phase��

The lattices that were implemented were mainly two�point ones e�g� Needed
and Unused for neededness analysis 	see ����� 	Note that we choose to be �explicit�
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with regard to the basic contexts used� a more e�cient implementation for each
two�point domain would have been to make each set of contexts equivalent to
the Miranda bool type�� The four�point lattice of strictness and absence analysis
	shown in ���� was also constructed as was the eight�point one 	arising from a
power set construction� of full sharing analysis 	see ������� However the latter
could not be usefully employed due to problems in the translation phase which
we outline below�

����� Translation into FLIC

The 
nal stage of the modi
ed implementation was the translation into FLIC� In
the original version of Ferdinand the tc�Elem expressions were translated directly
into strings of characters� However we decided instead to produce an abstract
syntax of FLIC and provide pretty�printing functions upon that abstract syntax�
The bene
ts of this were to allow errors to be detected more easily and to enable
future modi
cations to the FLIC syntax to be made more smoothly� 	Indeed
the abstract syntax developed is really that of the ���� revision of FLIC as
described in ���� and we translate into the earlier version of FLIC of ������ This
was basically a smaller version of the ���� language with minor variations in the
concrete syntax� However it was the only variant of FLIC accepted by the fc
compiler��

A separate module was produced for each kind of translation� As will be
explained in the section below the optimisations requiring neededness information
would not only need reference to the context information of the parameters of the
function being translated but also the entire context environment�

In order to provide functions which could be used by all the translation pro�
cesses two modules were created� One was developed to capture the idea of
predicates upon variables with regard to contexts 	e�g� to determine whether a
variable is strict or not by a lookup in the indexed table of contexts for the func�
tion being translated� and the other to give generic translation functions� The
latter set of functions are mainly concerned with implementing the algorithm for
the removal of unused parameters which is described below�

Strictness annotations which indicate to the FLIC compiler that the input
may be evaluated before evaluating the function and so that a closure need not
be formed for that parameter are given via the FLIC concrete syntax ��� This
indicates that the function which follows is strict in its argument� 	Multiple
argument functions are de
ned by nesting of lambda abstractions�� For example
the translation function for simple strictness analysis is�

st�flictrans ��

idx�table structured�context ��

tc�Elem ��

flic�simple�part

st�flictrans par�cxts tc�El
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st�flictrans�lambda par�cxts tc�El

� if isLambda tc�El




new�flictrans tc�El

� otherwise

�� Strictness information is only used with lambda abstractions�

st�flictrans�lambda par�cxts �Lambda v t c�




Anno STR v�abstraction

� if v�is�Strict

�� i�e� we add the FLIC annotation to denote strictness in that

�� variable�




v�abstraction

� otherwise

��

where

�� v�abstraction is the lambda abstraction� binding v�

v�abstraction




Abs �Single�Abs v �Simple fl�c��

�� Note that although Single�Abs is used� fl�c may contain

�� subsequent abstractions�

��

�� fl�c is the FLIC translation of the defining expression�

fl�c




st�flictrans par�cxts c

��

�� v�is�Strict indicates whether v is a �strict� variable or not�

v�is�Strict




lkup�pred is�Str par�cxts v

	Above new�flictrans is the function for performing the translation into
FLIC without the use of any abstract interpretation information� The 
rst pa�
rameter to st�flictrans is the table of context information for the function being
translated whilst the second parameter is the expression to be translated��

Unfortunately it was unclear as to how sharing analysis information could be
used to improve the e�ciency of the code produced� no annotations other than
that for strictness are recognised by the fc compiler� Thus whilst it would seem
that the fc compiler implements full laziness there would appear to be no way of
informing the compiler that an expression is used at most once�
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��� Optimisation due to neededness

In this section we describe how neededness analysis information may be used to
optimise the object code produced by a lazy functional language with particular
reference to the practicalities of this operation within the Ferdinand compiler�

����� First	order case

Example

In the 
rst�order case we have only complete applications e�g�

add�� � � �

where
add�� �df �x��y��z� 	x � z�

Such functions are easily transformed� In the example given the second parameter
of add�� is unused and so we may remove it completely to form a new de
nition
add��� where

add��� �df �x��z� 	x � z�

Similarly the call of add�� � � � is transformed to become�

add��� � �

Generalisation

Generally in the 
rst�order setting we have a function f  say where

f �df �x� � � � xm� E

We may transform the de
nition of f to be f � where

f � �df �y� � � � yl� E
�

where l � m� The sequence of variables hyii is the natural sequence derived from
the variable indices of the elements of Nd fx� � � � xmg i�e� the subset of the variables
of f which are needed� Also E� is formed from E by making any necessary
transformations of calls of functions within E� In addition any occurrence of an
unused variable in E is replaced by � in E��

Transformations of calls of functions are handled recursively as follows� We
have the application�

f e� � � � em

This becomes�
f � e�� � � � e

�
l

Each e�i corresponds to a needed actual parameter of f and unused actual param�
eters will simply be deleted from the call� Also each actual parameter of f � is of
course the result of call transformation as well�
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����� Higher	order case

Example

In the higher�order case the scenario is complicated by partial applications e�g�

map 	const �� l

or
map 	const� �� l

where

const �df �x��y� x

const� �df �x��y� y

We may transform the de
ning expressions as before� The new functions are�

const� �df �x� x

const
�

� �df �y� y

	So in e�ect const and const� are both mapped to the identity function��
The calls above are transformed respectively to�

map 	�x�const� �� l

and
map 	const

�

�� l

Note that in the 
rst case we have to add a �dummy abstraction� so that the
function argument is applied with the correct arity�

Generalisation

The de
nitions of higher�order functions are transformed as before with unused
bound variables being removed� In addition applications of a formal parameter
are translated as normal since we do not have any information about the need�
edness of the arguments of the formal parameter� An alteration to the method
occurs when we analyse calls of the form�

	� � � 		f e�� e�� � � � en�

where f is not a parameter of the function being analysed� We also assume that
the arity 	i�e� the number of formal parameters� of f is m�

For � � i � n and i � m we either remove ei completely from the application
if the ith parameter of f is unused or alternatively transform ei to become e�j
	with j � i�� As we mentioned in the 
rst�order case this is a recursive process�
each e�j results from a transformation of its sub�expressions�
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Consequently we now have as our 
rst step�

	� � � 		f � e��� e
�
�� � � � e

�
l�

where f � is the transformation of f and l � n � m� If m � n then f and
consequently f � are fully applied 	to the 
rst n arguments� and the situation is
equivalent to the 
rst�order case� If m 
 n then we must add dummy abstractions
to ensure that the applications which we form are of the correct arity 	i�e� we do
not have any leftover variables�� These abstractions e�ectively throw away any
unused arguments� We thus obtain�

�x� � � � xk�	� � � 		� � � 		f � e
�
�� e

�
�� � � � e

�
l�y�� � � � yj�

The yj variables represent the j 	with j � 	m
n�� needed variables of f amongst
those having indices ranging from n � � to m� Each yv will be syntactically the
same as some xw� We can omit binding any new variables if all those with indices
from n � � to m are needed since

�x� � � � xk� 	� � � 	e x�� � � � xk�

is n�equivalent to e� This is why in our example above map 	const� �� l is
transformed to become map 	const

�

�� l rather than map 	�x�const
�

� x� l�

����� Practical considerations

When translating functions we shall assume that two environments have been
constructed to store neededness analysis information� The 
rst environment L
consists of the neededness information of the formal parameters of the particular
function being translated� L itself may be considered a subset of the main en�
vironment M� This should contain neededness information about all the formal
parameters of each function de
ned in the program� In the case of the Ferdinand
compiler M is of type context Env� L is of type idx table structured context

i�e� an indexed table of structured contexts� M consists of bindings of function
names to indexed tables of contexts�

The 
rst stage in translating the de
nition of a function consists of forming
lambda abstractions using the needed variables� The variables are looked up in
L and either ignored if they are unused or translated to a lambda abstraction if
needed� The abstraction formed will thus contain a subset of the original variables�

The second stage consists of translating the de
ning expression of a function�
If the innermost function of an application is a formal parameter of the function
being translated then we translate the entire application as normal� Otherwise
the following steps should be followed�

�� Find the leftmost and innermost function being applied and determine the
size of the application 	i�e� the number applicands� a say� This may be
done by putting all the components of the application in a list�
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�� Determine the arity in terms of the number of formal parameters of the
function being applied 	F  say�� This arity b say may be found from a
lookup in M�

�� If b 
 a then again via M determine the number c of the parameters of F
which have indices ranging from a � � to b and are also unused�

�� If c 
 � then preface the application with 	b
 a� distinct bound variables�
These are the dummy abstractions� Similarly extra applications are added
for those new bound variables which are needed�

�� For each of the b parameters of F and using M translate each actual pa�
rameter that corresponds to a needed variable of F and ignore each actual
parameter that would be unused by F �

�� If a 
 b then the sub�expressions indexed from a � � to b are simply trans�
lated�

The last two stages may be done by 
ltering the list of applicands so that only
needed sub�expressions remain and then forming a FLIC application by folding
translation over the list� If any sub�expression contains an unused formal param�
eter then that variable is translated to ABORT in FLIC syntax�

The main functions used to perform the above translation ndd�flic�appl�expr
and ndd�opt�appl�trans are given in Appendix B����� These are functions are
generic in the sense that they are used in the translation based upon neededness
and that based upon strictness and absence�

��� Results

Qualitative assessment An illustration of the e�ects of applying the optimised
translation phase is given by the following example� The Ferdinand version of the
index function 	see ����� is shown in Figure ���� The FLIC code produced when
no analysis�optimisation is applied is shown in Figure �� and the FLIC code
produced when strictness�and�absence analysis is applied is shown in Figure ���
The FLIC programs have the form�

EXPORT �Pmain�

�

�List of function names�

�The main expression� �topdog�

�Combinator definitions� in the same order as in the list�

�Note that the index function presented is in a slightly di�erent form to that given in ��
���
This is due to a problem in the type checking phase of the Ferdinand compiler�
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lt �� nat �� nat �� �Un ��

lt m � 
 bot

lt � �n�� 
 top

lt �m�� �n�� 
 lt m n

index �� �a �� Un �� 
�

�l �� �List a�� �� �n �� nat� �� ��lt n �� l�� �� a�

index �� � p 
 abort p a

index �� �n�� p 
 abort p a

index �a�x� � p 
 a

index �a�x� �n�� p 
 index x n p

main �� nat

main 
 index ������������ � unique

Figure ��� The Ferdinand version of the index function�

The optimised piece of code shows how strictness annotations may be added
with unused parameters discarded and some dummy variables inserted� A sample
of the tc�Elem expressions and context expressions for this program are given
in Appendices B���� and B���� respectively� In addition the structured contexts
that result are given in Appendix B�����

Quantitative results In an attempt to quantify the e�cacy of the optimisa�
tions implemented some Ferdinand programs 	which are given in Appendix B���
were compiled with respect to each possible optimisation method� 	The fc com�
piler was used with optimisation disabled of the C code produced as an inter�
mediate phase�� There were two controls for each test program� The 
rst was
the executable produced with no alteration to the translation 	i�e� as in the orig�
inal Ferdinand�� The second was a fully eager executable 	with every parameter
marked as strict�� Execution times and the number of garbage collections required
were recorded for each program run� Due to the fc compiler these statistics were
given as part of the output produced by the program executed� Due to variances
within the system being used 	SunOS ����� running on a Sun� architecture� each
program was run eleven times to produce a mean execution time� These times
are shown in Table �� The numbers of garbage collections required during each
execution are shown in Table �� In the tables the following are used to indicate
the analysis�optimisation types�

None No analysis optimisation performed i�e� the code that would have been
produced by the original Ferdinand results�

Eager A fully eager version of the program is produced i�e� with every parameter
of each function annotated as being strict�
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EXPORT �Pmain�

�

��topdog f�� f�� f�� f�	 f
 f� f� f f� f� f� f� f	 f�� ��printit Pmain�

������f��� �PACK���� � �PACK���� � �PACK���� � �PACK���� �

�PACK���� � �PACK����  PACK�	�	������� �� PACK�	�	��

�� ��Var��� ���lrec� ��Var��� �f�� �f�����

�� ��Var��� ��f��� ��Var�����

�� ��Var��� �� ��Var��� ��f�	� ��Var������

�� ��Var��� �� ���hyp�Var��� ���f
� ��Var���� ���hyp�Var������

�� ��Var��� �� ���hyp�Var��� �� ��Var�
� ���prec� ��Var�
�

��f�� ��Var���� ��f�� ���hyp�Var��������

�� ���hyp�Var��� �� ��Var��� ���f�� ���hyp�Var���� ��Var������

�� ���hyp�Var��� �� ��Var��� �� ���hyp�Var��� ���f� ���hyp�Var���� ��Var�������

�� ���hyp�Var��� �� ��Var��� �� ��Var��� �����hyp�Var��� ��Var���� ��Var�������

�� ��Var��� �� ��Var�	� ��Var�����

�� ��Var�� ���prec� ��Var�� �f	� �f����

�� ��Var��� �f���

�� ���hyp�Var��� �f	��

�� ��Var��� PACK�	�	�

�f���

���pr�input� ���itos �pr�input����

�����input� ��� ����printit� ��topdog�� �PACK���� ��n PACK�	�	����

Figure ��� The FLIC code produced for the index function with no optimisation�

Need The program produced when neededness analysis has been employed�

Strict Strictness analysis�optimisation�

Strab Strictness and absence analysis�optimisation�

Commentary on the results The results are extremely encouraging in some
of the cases examined such as permsort whilst in others such as acker they
appear to be rather disappointing�

Results for the two simple programs acker and polymap were disappointing
with no statistically signi
cant� improvements for the various analyses� Indeed
the strictness and strictness and absence analyses actually gave slightly worse
execution time results than the original Ferdinand compiler for the acker script�
However for the translations which added strictness annotations including the
simple eager translation reduced the number of garbage collections from ��� to
���� However since these programs result in fewer FLIC combinators as shown in
Table � there would appear to be less scope for optimisations to have a signi
cant
e�ect� In addition the speed of the process is constrained by the e�ciency of the

�At the �	� con�dence level with Student�s ttest for the di�erence of two means� �The
assumption was made that the underlying variances of the program run times were the same��
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EXPORT �Pmain�

�

��topdog f�� f�� f�� f�	 f
 f� f� f f� f� f� f� f	 f�� ��printit Pmain�

����f��� �PACK���� � �PACK���� � �PACK���� � �PACK���� �

�PACK���� � �PACK����  PACK�	�	������ � PACK�	�	��

��� �� ��Var��� ���lrec� ��Var��� �f�� �f�����

�� ��Var��� �� �dummy��� ��f��� ��Var������

�� ��Var��� ��f�	� ��Var�����

�� ��Var��� �� ���hyp�Var��� ��f
� ��Var��� ���hyp�Var������

�� ��Var��� �� ���hyp�Var��� ��� �� ��Var�
� ���prec� ��Var�
�

�� �dummy��� ��f�� ��Var����� ��f�� ���hyp�Var��������

��� �� ���hyp�Var��� �� ��Var��� �� �dummy��� ��f�� ���hyp�Var��� ��Var�������

��� �� ���hyp�Var��� �� ��Var��� ��f� ���hyp�Var��� ��Var������

��� �� ���hyp�Var��� �� ��Var��� �� ��Var��� ����hyp�Var��� ��Var��� ��Var�������

��� �� ��Var��� ��Var����

��� �� ��Var�� ���prec� ��Var�� �� �dummy��� ��f	��� �� �dummy��� ��f������

�� �dummy��� ��f����

�f	�

PACK�	�	

�f���

���pr�input� ���itos �pr�input����

�����input� ��� ����printit� ��topdog�� �PACK���� ��n PACK�	�	����

Figure ��� The FLIC code produced for the index function with strictness�and�
absence optimisation�

Test program Translation method

None Eager Need Strict Strab

acker ������ ������ ������ ������ ������

polymap ���� ����� ���� ���� ����

bubblesort ����� ����� ����� ����� �����

mergesort ����� ����� ����� ����� �����

permsort ����� ����� ����� ����� �����

treesort ����� ����� ����� ����� �����

Table �� Mean execution time in seconds for each executable produced�
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Test program Translation method

None Eager Need Strict Strab

acker ��� ��� ��� ��� ���

polymap �� �� �� �� ��

bubblesort ��� ��� ��� ��� ���

mergesort �� ��� �� �� ��

permsort �� �� �� �� ��

treesort �� ��� �� �� ��

Table �� Number of garbage collections for each executable�

Test program Translation method

None Eager Need Strict Strab

acker ���� ���� ���� ���� ����

polymap ���� ���� ���� ���� ����

bubblesort ����� ����� ����� ����� �����

mergesort ���� ���� ���� ���� ����

permsort ����� ����� ����� ����� �����

treesort ����� ����� ����� ����� �����

Table �� Compilation times in seconds 	single compilation in each case��

Test program Combinators

acker �

polymap ��

bubblesort ��

mergesort ��

permsort ��

treesort ��

Table �� Number of combinators produced in the FLIC code for each test program�
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object code produced by the fc compiler and in particular the way it deals with
strictness annotations natural numbers and output generally�

More promising results were observed with the mergesort and permsort scripts�
Each of the three analyses produced statistically signi
cant improvements for
mergesort with need strict and strab producing ���+ ����+ and ���+ speed gains�
It is unclear why strictness and absence analysis should not produce improvements
at least as good as the others� The simple eager translation produced a marked
degradation of performance with mergesort almost doubling both the execution
time and the number of garbage collections�

As already mentioned the most spectacular results were produced in the case
of permsort� Need strict and strab produced improvements in speed of respec�
tively ���+ �����+ and �����+ and garbage collections were reduced by � ��
and �� respectively� The last 
gure represents a ��+ reduction in the number of
garbage collections� The simple eager translation increased the execution speed
by ����+ and reduced the number of garbage collections by a third� It should
be noted however that this was still signi
cantly worse than strict or strab�
the latter two translation methods were ����+ and ����+ faster than the eager
translation with similarly large reductions in the number of garbage collections�

The treesort and bubblesort tests produced results which may be seen to be
anomalous� in the case of the former strictness analysis produced a speed increase
of ���+ but the neededness and strictness and absence analyses produced slightly
worse results compared to the executable produced by the original Ferdinand� In
the case of bubblesort neededness and strictness analyses produced degradations
in performance whilst the strictness and absence analysis produced results sim�
ilar to the original� This is unexpected and disappointing since the bubblesort
program which may be seen in Appendix B���� includes a number of computa�
tionally redundant proof objects� As a number of parameters have been removed
and some dummy variables added in the resulting FLIC code it is unclear why
the performance should not have been enhanced�

It should be noted that the fully eager translation did produce a severe degra�
dation of performance in terms of both execution time and garbage collections
for some of the cases examined and in the other cases such as with permsort it
did not produce results as good as that for strictness analysis� This was the case
even with Ackermann�s function where no 	lazy� list structures were involved�
This would appear to be a result of the way the fc compiler handles strictness
annotations and garbage collections�

It should be noted from Tables � and � that optimisations which reduced
garbage collections the most consequently reduced execution times most�

Enhancements to the optimisation process in particular to remove more un�
used expressions are considered in the conclusion below�
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Compilation times� The degradation in compilation times due to back�
wards analysis and optimisation varies for strictness and absence analysis from
���+ in the case of acker to ����+ for mergesort as can be seen in Table �� There
appears to be a weak correlation between the compilation times and the number of
FLIC combinators produced for each test program� 	Table � shows the number of
combinators for each program�� Programs with a greater number of combinators
produce worse compilation times for each of the abstract analyses as would be
expected since calculations have to be done for each parameter of every function�
However the addition of the analyses does not produce as severe a degradation
in performance as might be feared� We speculate that this is due to the following
reasons�

�� The original Ferdinand compiler is itself a prototype which has not as yet
been optimised� Compared to the complex phases that the main part of the
compiler performs such as type checking and lambda lifting the abstract
interpretation module is not particularly signi
cant�

�� The abstract analyses that we have implemented and tested have small basic
domains� the most complicated is strictness and absence analysis which con�
sists of just four points� Whilst structured contexts add to the complexity
this is alleviated by point � below�

�� The Ferdinand system is a Miranda program which is thus evaluated lazily�
Often it is the case that only the atomic parts of contexts have to be cal�
culated in order to determine the form of the output to be produced� For
example if with neededness analysis the atomic part of a list context evalu�
ates to Needed then there may be no need to calculate the abstract values of
the head and tail parts since the optimisations are based upon whether the
entire parameter is needed or not� Only when a standard function which
uses pattern matching such as lrec is used will the subscripted parts be
calculated�

An unexpected feature of these results is that the strictness and absence anal�
ysis compilation times are little worse than or in some cases better than those
for neededness analysis�

��� Conclusion

The theory of backwards analysis has been implemented within a compiler for a
functional language system Ferdinand that is based upon type theory� The imple�
mentation was intended to cope with various di�erent analyses within one generic
framework� Most importantly the analysis was able to deal with higher�order

�It should be noted that the compilation times are for a single compilation only and therefore�
because of variation in the processing speed by the operating system� are statistically less precise
than the execution times detailed above�
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functions although with some simpli
cations in the case of partial applications�
	This simpli
cation was due simply to the fact that the types of the Ferdinand
combinators were lost during the lambda lifting phase of the compiler��

The implementation was designed with modularity rather than e�ciency in
mind� This has the bene
cial aspect that modi
cations to the compiler should
be more straightforward to create in future� However it has meant that for
instance lookups upon the same name in di�erent structures are performed� It was
originally envisaged in the interests of e�ciency that the function de
nitions of
tc�Elem type would be paired with their context information in a single structure�
This however was found not to be easily tractable� A further loss of e�ciency
may be perceived due to the lattice operations being generic and not specialised
with regard to any particular lattice� Furthermore it is not necessary in many
cases to use structured contexts and expressions� it would be better if these could
be reduced to the basic lattice values� Also as mentioned it would be more
elegant to use Jones�s implementation strategy for lattices using the type classes
of Haskell �����

There have been some encouraging results produced as a result of this exercise�
In particular there have been some small yet signi
cant improvements produced
by neededness analysis alone� Moreover there have been some dramatic improve�
ments produced by the strictness and strictness and absence analyses� It should
also be noted that applying a simple eager reduction strategy to the programs does
not generally give good results� In other cases results have not been so impressive
and in some cases where the results appear to be anomalous may deserve further
study� However we conjecture that some of these more disappointing results are
due to the following factors�

�� The fc compiler does optimisations of its own upon the FLIC code provided�
	In testing we attempted to keep these to a minimum in particular disabling
the optimisation of the C language code produced by fc as an intermediate
step��

�� It would be better if as in the case of strictness we could use annotations to
denote the fact that a parameter was unused with the optimisations being
performed within the fc compiler�

�� As noted above some approximations arise with regard to partially applied
functions� This problem is analysed further below�

�� More redundant code could be removed and this is discussed below�

It has been noted that the optimisations do produce satisfyingly tangible re�
sults in terms of alterations to the code produced�

Further optimisations

Functions dened by partial application It would be more satisfactory if
we could take account of de
nitions by partial application without approximating
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by the topmost context in the case where the context function was unknown i�e�
in the case where a function is de
ned with x parameters but it is applied to
y where y 
 x � the context functions for indices ranging from x � � to y
will be unde
ned� If this could be overcome then we would have a fully higher�
order analysis� We could do this easily if we had accurate type information for
each combinator� However such type information is discarded during the lambda
lifting phase of the compiler�

Alternatively we could adopt an �on the �y method� where for each function
we generate an additional context expression 	representing application to other
unnamed variables�� When we then encounter the case where we require the
context expression of a parameter that does not exist for a function we use the
additional context expression� This is similar to the concept of generating context
expressions 	which may be used in a higher�order context function� for each ac�
tual parameter of an application in the Ferdinand code� This idea is similar to the
concept of producing context functions for an arbitrary vector of additional pa�
rameters given in Section ������� However that addition would only be necessary
for functions of polymorphic result type� Here though since we do not have ac�
curate type information it would be necessary to create an additional expression
for every function�

Removal of extra redundant code The FLIC code may be optimised fur�
ther to remove certain ine�ciencies that may occur in the code produced� The
ine�cient code that we describe was present in the original version of Ferdinand�
It may be argued however that the following might reap the full bene
ts of the
analyses performed especially as the forms described might occur more often due
to the removal of unused parameters�

Trivial denition removal � remove functions which have de
nitions of the
form �fi� where �fi� is another function name� This will include constants�

Identity function detection and removal � replace functions which reduce to
the form �x�x with the 	untyped� identity function and applications that
are equivalent to 	�x�x�e with e�

Eta�equivalent expression removal � Function de
nitions of the form

�x� � � � �xn�	� � � 	e xn� � � � x��

where each xi is not free in e may be replaced simply by e� Eta�equivalent
expression removal is the general form of the trivial and identity function
cases described above� Apart from analysing the FLIC code produced it is
possible that variables which are �not needed� may be detected by abstract
interpretation� The needed context would have to be split into two one
context indicating that the parameter was needed generally and the other
meaning that the parameter was only required by an expression which may
be reduced to an eta�equivalent form� In addition if the latter context
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applied then the contexts of other parameters would decide whether the
parameter could be removed� A discussion of how selective eta�expansion
as a form of partial evaluation ���� can be used to specialise terms in ��
calculus is given in �����

Polyvariant specialization We only have one set of backwards analysis results
for each function� This means that we simply take the function and deter�
mine the contexts for its parameters relative to one set input context in
each case� Optimisation of the function is done only with regard to this
one set of data� It may be however that during the analysis of another
function f  say a function g is analysed to produce di�erent results from
that produced by the stand�alone analysis� In order to optimise f fully a
specialized version of g g� should be produced which is based upon the
contexts propagated during the analysis of f � f should then call g� instead
of g in the optimised code produced� This is known as polyvariant special�
isation 	as opposed to the monovariant specialisation we have done� and is
explained with regard to partial evaluation in �����

It should be noted however that the above optimisations would mean that al�
terations would have to be made to the list of combinator names produced at the
top of the FLIC code produced�

Standard environment functions A major improvement to the e�ciency of
Ferdinand would be to have the standard environment functions fully integrated
within the compiler� This would involve an alteration to the built�in tables of
functions so that each function of the standard environment had a FLIC repre�
sentation� Also it would be necessary to modify the initial context expression
environment so that it included context expressions for each parameter of every
standard environment function�

Scope for further modications

Other analyses There are the following stages to be performed when adding
any new analyses to the compiler�

�� A module containing the basic lattice de
nitions should be created� This
should include a ���tuple comprising all the basic de
nitions� the lattice
top bottom absent and initial contexts& the strict operation& the lattice
ordering and equality predicates& the t and � operations& and the lattice
meet� This module should then be integrated within the general�lattice

module by adding to the algebraic types contained therein� In particular
the analysis�type enumeration of all possible analyses should be extended�

�� A module to translate the tc�Elem expressions into FLIC should be created�
This will probably require the use of predicates upon structured contexts and
so it may be necessary to extend the cxt�pred module as a result� To assist
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in the creation of a new translation module a generic translation template
temp�translate has been formulated�

Extensions to the Ferdinand language Extensions to the Ferdinand lan�
guage are more problematic with regard to alterations that have to be made to
the analysis and translation phases� Firstly new clauses within the context expres�
sion formation function will have to be created for each new language construct�
More importantly for each new Ferdinand data type the syntax for structured
expressions and contexts will have to be extended to maintain correspondences
between the formation functions of Ferdinand and the context selectors and vice
versa� It follows that the initial context expression environment will have to be
extended to have context expressions for each new selector over expressions� An�
other consequence will be that all functions for expression matching substitution
etc� will have to be extended for the new construct� If the new data structure
is recursive then new cases will have to be added to the context approximation
function 	so that 
nite lattices are maintained��



Chapter �

Other static analyses of

type theory

��� Introduction

In this chapter we examine how other static analysis techniques may be applied
to type theory� We shall focus particularly on developing a new approach to
the time complexity analysis of type theoretic programs which uses the abstract
interpretation techniques discussed earlier�

��� Time complexity of type theory

An active area of computer science has been the investigation the measurement of
the complexity in terms of space or time of programs� The development of such
metrics is useful to compare the e�ciency of separate algorithms which meet the
same speci
cation� In TT there will usually be more than one witness to each
function speci
cation� For instance a function to sort a list of natural numbers
may have the following type�

�f � 	�N � � �N ����l � �N � � 	Sorted f l� � 	Perm 	fl� l�

	The intention of the Sorted and Perm predicates whose details we omit is to
ensure that the resulting list 	fl� is both sorted and a permutation of the original
list respectively�� There are several functions which are proofs of the above such
as quicksort ���� pages ���#���� or insertion sort ������ Additionally sorting
algorithms may not be de
ned by primitive recursion as in the two examples
cited but in an augmented type theory employ well�founded recursion� For
example Paulson ����� de
nes quicksort using such a relation�

Furthermore it is desirable to automate this process so that we may have a
program which assists in the measurement of complexity� 	Algorithmic methods
are limited however in that the measurement of time or space complexity is an
undecidable process�� For example pioneering work in this area was performed by

���
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Wegbreit ����� who produced a system �Metric� which analysed the complexity
of simple Lisp programs relative to the properties of the input�

The idea of time complexity analysis is that we can give some closed�form
expression that expresses the number of computation steps required to analyse a
program by some metric usually with respect to the complexity of possible inputs
such as the length of a list or the modulus of a natural number�

In this section we give an account of the work of Bjerner on the time complexity
analysis of type theoretic programs ����� We shall give an example of the kind
of analysis performed and this will provide a contrast with the work that follows
in the next section� There we shall use our proceeding work on the abstract
interpretation of TT and some of the ideas of Wadler ����� to produce a time�
complexity analysis for the whole of TT� We believe that the analysis that we
shall present is more modular than Bjerner�s in that a time complexity measure
can be derived from an absence analysis that has been previously calculated�
Hence the results of the absence analysis may be used in a dual role both as
a starting point for optimisations and to calculate the time complexity under
the assumption that a fully lazy evaluation strategy is employed� Also our work
being built upon the analysis of TT is of greater scope than Bjerner�s� his analysis
covers a primitive recursive subset of lazy functional languages� For instance
we may derive complexity measures for terms in types or functions which return
types� Additionally our method of time complexity analysis should be more easily
extensible than that of Bjerner in that adding new types to the theory should
involve little more work than extending the absence analysis to those types�

����� Analysis of strict languages

As is pointed out by Wadler ����� the analysis of strict functional languages is
relatively straightforward� This follows since arguments to a function must be
calculated before computing the value of the function the time complexity of a
strict functional program may be found using the following composition rule�

�� f	g x� ��T ) �� f y ��T � �� g x ��T

In the above

�� e ��T is the time complexity of the expression e

y is the normal form of g x

The only exception to this are conditional constructs such as if�then�else which
will have the following complexity�

�� if b then texp else fexp ��T ) �� b ��T �

�
�� texp ��T � if b � True
�� fexp ��T � otherwise

Worst or best case complexities can be derived for the di�erent normal forms of
b� For example a simple expression for the worst case in the above would be�

�� b ��T � max 	�� texp ��T � �� fexp ��T �
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Here the maximum is taken of the complexity of the expressions of each branch
of the conditional� More precise estimates may be found by estimating the prob�
ability that the conditional expression b will evaluate to True�

In lazy functional functional languages however the arguments to each func�
tion are not necessarily evaluated� Hence the composition rule mentioned above
is not applicable� The above outline for the time complexity of a strict functional
language thus provides a method for obtaining an upper bound for the time com�
plexity of a type theoretic based functional programming language� 	This does
mean that the time complexity in terms of the number of sub�computations in�
volved of using a strict evaluation strategy for a TT based language is typically
worse than that of a lazy one� However in practice on an actual machine the
lazy evaluation strategy will generally give worse performance in terms of the clock
time required to evaluate a given program� This is due to the fact that the space
complexity of the lazy strategy is generally worse due to the closures that have
to be formed during evaluation� Thus the lazy evaluation strategy will typically
require more memory accesses in the machine with a consequent degradation in
the speed of computation��

Bjerner�s method for approaching the problem of 
nding the time complexity
of type theoretic programs evaluated using a lazy evaluation strategy is outlined
below�

����� Description of Bjerner�s method

Bjerner uses notation similar to that used in ������ Bjerner separates the time
complexity of an expression in type theory� by specifying two component parts�

Constant time cost # the time complexity due to the evaluation of a function
body�

Constant evaluation degree # a measure of how much an argument has to be
evaluated in order for the entire application to be evaluated�

The evaluation degrees are necessary in order to account for the lazy evaluation
strategy�

Since we will typically not be dealing with fully applied expressions the time
complexity will be given in terms of a function relative to either or both of the
following�

� The size of an input�

� The particular normal form of the input�

�We shall use the notation and system of TT given in ��
���
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The size of an expression in TT

Denition �	

The size of an expression e � A 	denoted jej� in TT is the number of constructors
of the type A that appear in the normal form of e� This is equivalent to the
following�

jej ) � �
kX

p��

japj

where C	a� � � � ap� is the value of e i�e� e � C	a� � � � ap� and C is a constructor of
the type of e�

For example the size of the number � is � since the formal representation of
� in type theory is�

Succ	Succ	Succ ���

In the above there are three instances of the N selector Succ and one of the
selector �� In general

jnj ) F ��n �� � �

where F is the semantic function mapping from the TT type N to the natural
numbers� Similarly for a list l its size is�

jlj ) length l � �

How time complexity is measured

Bjerner takes one cycle of the following computation procedure to count as a
unit of the time complexity metric for a program� The computation procedure
is iteratively applied until a computational normal form 	similar to head normal
form but taking into account the possible sharing of arguments� is achieved�

�� Compute the value of the major argument� The major argument of an
expression e � A is the leftmost and outermost proper sub�expression of
type A in e� For example in

prim n c f

the major argument is n since prim n c f and n are both of type N �

�� The construction of the selected program� This is the expression associ�
ated with the pattern of the major argument for the relevant computation
rule�

�� The computation of the selected program�

In other words this corresponds to a single iteration of the application of the
computation rules�

The above computation procedure leads to a de
nition of the time cost func�
tion in terms of the sequence of needed programs 	SNP��
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Denition ��

The sequence of needed programs SNP 	e� for an expression e consists of�

� The expression itself�

� Additionally if e is a non�canonical program the concatenation of the two
sequences SNP 	m� and SNP 	s� where m is the major argument of e and
s is the selected program�

Denition �


The time cost function �	e� for an expression e is de
ned as follows�

�	e� )

��
�

�� if e is canonical
� � �	m� � �	s�� if e is non�canonical

with m the major argument and s the selected program

It is straightforward to see why the time cost function is so de
ned in light of the
computation procedure above� the � comes from the application of the procedure
for the whole expression whilst the other two expressions are the time costs
associated with computing the major argument 	the 
rst step� and the selected
program 	the last step��

The time cost is linked to the length of the sequence of needed programs by
the following theorem 	��� in ������

Length	SNP	e�� ) � � � �	e�

A proof by induction 	on the length of SNP 	e�� of this is given by Bjerner�

Time cost of abstraction applications

The sequence of needed programs can similarly be used to give the following result
	theorem ��� in ����� for abstraction applications�

�	e	a�� ) �	e	aV �� � k  �	a�

where k is the number of occurrences of the subsequence SNP 	a� in SNP 	e	a��
and aV is the value of a i�e�

aV ) C	a� � � � an�

where C is a constructor of the type of A and a � aV �
It follows by induction from the above that have the abstraction application

time cost principle�

The time cost of 	e	a�� is equal to the time cost of each program
derivative of a 	i�e� components of the value of a� multiplied by the
number of occurrences�
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V Gives the evaluation degree of an expression so that eV 	e� 	e evalu�
ated to the degree V 	e�� is the value of e i�e� e evaluated to canonical
form 	but not necessarily normal form��

W Gives the evaluation degree of an expression so that eW 	e� is the
normal form of e�

Spine Gives the evaluation degree of e required to �unfold� the recursive
parts of e 	e�g� the tail of a list the subtrees of a tree��

Table �� Many�valued evaluation degrees�

Time cost of arguments to applications

We must also determine the time cost of an argument to an application� As
has been already discussed this is problematic since we do not know whether
arguments will be evaluated under the lazy evaluation strategy� Bjerner�s solution
to this problem is to introduce the idea of evaluation degrees� These measure the
extent to which a sub�expression must be evaluated in evaluating the enclosing
expression�

Evaluation degrees

Denition ��

Evaluation degrees are de
ned as follows�

� � is an evaluation degree�

� ��� � � � �n� is an evaluation degree�

A more restrictive de
nition that of proper evaluation degrees is also made
by Bjerner� The additional restriction is that the only proper evaluation degree
for an abstraction is ��

	We shall see in Section ��� that the evaluation degree � corresponds to the
contextU in the neededness analysis lattice� Indeed proper evaluation degrees are
combined with the t operator& this gives the least upper bound of two evaluation
degrees whilst � is implicitly the bottom element of the lattice of evaluation
degrees��

Bjerner also de
nes �many�valued evaluation degrees� which may vary accord�
ing to the form of the expression to which they refer� The three evaluation degree
functions are given in Table ��

Relative evaluation degrees

The evaluation degrees of sub�expressions are relative to the enclosing expression
being evaluated� These are described in Table �� Hence a

e
 is the generalisation

of �	a� e� and a��
e
 is the generalisation of ,	�� a� e��
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�	a� e� The evaluation degree of a for e�
a

e
 The smallest evaluation degree to which a has to be evaluated when

e is evaluated to degree  �

,	�� a� e� The evaluation degree of a for e when a is already evaluated to
degree ��

a��
e
 The evaluation degree of a for e when e has to be evaluated to

degree  and a has already been evaluated to degree ��

Table �� Relative evaluation degrees�

Time costs relative to proper evaluation degrees

The time cost of an expression that has to be evaluated to the degree � is denoted
by�

a � �

where � is a proper evaluation degree for a� If it is assumed that arguments to
functions are evaluated at most once the following result is obtained 	corollary
��� in ������

e	a� �  ) 	e	aW � �  � � 	a �
aW

e	aW �
 � 	���

where aW means aW a��
Note that the above is a generalisation of the abstraction application time cost

principle 	see Section ����� above��

Open expressions

Normally we attempt to 
nd the time complexity of a particular function de
ni�
tion relative to an arbitrary argument� However the equation 	��� is expressed
with respect to fully evaluated arguments� Bjerner describes how the constant
time cost 	e	x� �   where x is an arbitrary input� and the constant evaluation
degree 	 x

ex�
 � may be expressed as a function of the fully evaluated form of the

input� The function obtained may thus be relative to one or both of the following�

� The size of the input�

� The possible canonical forms of the input 	or worst�average�best case sce�
narios based upon the various canonical forms��

Bjerner presents some additional rules which generalise the above for an arbitrary
vector of unknown input arguments�
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Specialist rules for each type

Having formulated a set of general rules for open expressions Bjerner specialises
these for the main datatypes of type theory� For natural numbers and lists
this leads to the following set of additional terminology�

Course of values sequence This is the sequence of fully evaluated values of
the relevant recursion operator 	prim or lrec� for each possible input that
is structurally less than or equal to the given major argument�

Recursive Pattern This is the sequence of evaluation degrees for each one of
the course of values sequence�

Recursion Depth The number of iterations that must actually be performed to
calculate the value of the recursion operator expression�

Component Evaluation Degrees These denote how far structural sub�components
of the major argument have to be evaluated when evaluating the functional
argument to the recursion operator�

In each case the evaluation degree of the major argument is de
ned in terms of a
specialised subsidiary function applied to the component evaluation degrees and
the recursion depth�

Boolean type expressions are analysed by taking the various cases possible
arising from whether the boolean argument reduced to True or False�

With higher�order functions the results obtained for open expressions are
used with the ap selector which applies a function to its argument� With higher�
order functions recurrence relations are obtained as expressions for the constant
time cost and the constant evaluation degree� This may be compared with the
recursive equations which are solved by 
xpoint iterations we obtain during
abstract interpretation�

��� Example of Bjerner�s Analysis

In this section we present an example of the application of Bjerner�s analysis to a
TT program� The max function may be de
ned informally thus�

max �n �df n

max 	succ m�n �df succ 	max m 	pred n��

where pred is the predecessor function on the natural numbers including �� The
above is a naive de
nition of a function to compute the maximum of two natural
numbers� The formal de
nitions of the functions are as follows�

max �df �m��n�	prec mn 	�a��b�	succ	b	pred n����� 	���

pred �df �n�	prec n � 	�p��v� p�� 	���
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Now the constant time cost of pred when fully evaluated is�

pred m � W ) � � � � � �
jnj��X
j��

		�p��v� p�nj zj�� � j
� 	���

where n is a fully evaluated value equivalent to the arbitrary input m� � is the
recursion depth of the function pred� It measures the number of recursive
iterations that have to be performed� 	If the primitive recursion is translated
to an imperative form via a tail�recursive representation then it will equal the
number of times that a while�loop is performed�� The recursion depth naturally
depends upon whether the recursive calls of prim have to be evaluated at all�
The recursive pattern which is the sequence hii denotes the extent to which
the recursive calls have to be evaluated� The values of the recursive calls are the
course of values sequence denoted zj� where�

zj� ) 	prim yj d f�W )

�
dW � if j ) �
f yj�� z

W
j��� if jyj � j 
 �

In the above yj represents a canonical form of a natural number e�g� y� corresponds
to � whilst y� corresponds to �� jnj represents the size of the natural number n�

Returning to the example the recursive pattern is calculated as follows�

 )
	�p��v� p�n z

n
W )

n

n
W ) W

for any values of n� z� The evaluation degree W shows that the expression n
must be fully evaluated if pred is fully evaluated�

In the above therefore each one of the recursive pattern is equal to W � It
also follows that the recursion depth is equal to jnj� The component evaluation
degrees 	which represent the degree to which the components of the argument
have to be evaluated� are thus calculated as follows�

� )
n

	�p��v� p�n z
W ) W

Now

		�p��v� p�nj zj�� � j
� ) nj � j
� ) �

for all j since nj is a 	fully evaluated� component of the fully evaluated n�
It follows that�

predm �W ) � 	���

where !�� indicates one cycle of the computation procedure�
The constant evaluation degree of pred may be found as follows�

y

pred y
W ) RMA 	�� � � � �jyj���	�� 	���

) W 	���
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In the above RMA means the �rec major argument�� 	Bjerner refers to prim as
rec�� 	��� follows from theorem ��� in ����� 	��� follows from the de
nition of
RMA in ���� and the fact that the recursion depth is equal to jyj�

We treat the two�argument function max in a higher�order manner�

	max xy� �W ) 	ap 	max x�� y� �W 	���

) � � w	� y �W � 	max x�� � W fw ) max x�g 	���

) � � w	� y �W 	���

) � � y � W 	���

where w	� is the only component of the fully evaluated form of max x��

	ap 	max xx
�� y� �W ) � � w	� y � W � 	max xi
�� �W

fw ) max xi
�g 	���

) � � w	� y � W 	���

) � � 		�n�Succ 	ap 	max xi� 	pred n��� y� � W 	���

Let
f ��df �n�Succ 	ap 	max xi� 	pred n��

	f � y� � W ) 	f � y�� �W � y � 	
y�

	f � y��
W � fy� ) yg 	���

) �	f � y�� � 	f ��y��n� � W � � y � 	
y�

	f ��y��n��
W � 	���

) � � 	Succ 	ap 	max xi� 	pred y���� �W

�

y � 	
y�

ap 	max xi� 	pred y��
W � 	���

) � � 	ap 	max xi� 	yjy� j���� � W � y �W 	���

	��� follows since

p

	ap 	max xi�p�
W )

y�

pred y�
W

) W

where p is a fully evaluated version of pred y�� 	See the constant evaluation degree
of pred above 	�����

The equations 	��� and 	��� indicate that we have a simple recurrence relation�
This may be solved to produce the following equality for the constant time cost
of max�

max xy �W ) � jxj 
 � � 	y � W � 	���

A similar recurrence relation for the constant evaluation degree of x can
also be constructed which when solved gives W � This means that both parameters
of max must be fully evaluated�



CHAPTER �� OTHER STATIC ANALYSES OF TYPE THEORY ���

��� Neededness analysis aids time analysis

Wadler observed ����� that the work of Bjerner covered in Section ��� could be
applied to lazy functional programming languages in general� Moreover Wadler
noted that abstract interpretation techniques could be used to assist in the process
of analysing the time complexity of functional programs�

In this section we comment on Wadler�s approach 	which is based upon the
concrete strictness analysis domain� and show how the simple neededness analysis
will perform the same function� Moreover we indicate how a neededness analysis
may be used to give an upper bound 	or worst case� for the time complexity of
a program whilst a simple strictness analysis may give a lower bound 	or best
case��

����� Description of Wadler�s method

The technique proposed by Wadler ����� consists of replacing the evaluation de�
grees of Bjerner by the contexts of abstract interpretation� 	Correspondingly
the evaluation degrees are undecidable in general like contexts�� In particular
Wadler uses the concrete context domain for strictness analysis� This is a four�
point domain which is equivalent to the strictness and absence lattice presented
earlier in Section ���� It should also be noted that the contexts used by Wadler
are domain projections as discussed in ������ Wadler�s method is to use the
contexts and context functions 	termed �projection transformers� by Wadler� to
determine whether the parameters to functions are needed by the computation
and hence whether they make a contribution to the time complexity of the whole
expression being analysed� The scheme devised by Wadler was applied to a simple
language consisting of constants variables if�then�else conditionals and function
de
nitions as described below�

Denition of Wadler�s lazy time analysis

fT x� � � � xn c

is the number of call steps 	called iterations of the computation procedure in �����
required to evaluate

f x� � � � xn

relative to the context c�
Now it is assumed that f must have a de
nition of the form�

f x� � � � xn�df e

This is de
ned as having the following time complexity relative to a given context�

fT x� � � � xn c )
�

�� if c ) AB
� � eT c� otherwise

	���
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In the above eT c is the time complexity of the de
ning expression e�
The time complexity of expressions is de
ned as follows� eT AB ) � but if

c �) AB then eT c has the following de
nition�

kT c ) � 	���

xT c ) � 	���

	f e� � � � en�T c ) 	fT e� � � � en c� �

	eT� 	f� c�� � � � �� 	eTn 	fn c�� 	���

	if e	 then e� else e��
T c ) 	eT	 S� 	if e	 then eT� c else e

T
� c� 	���

In the above fi is the ith context function of the function f  that is fi c gives
the context corresponding to the ith parameter of f � Clauses 	��� 	��� 	��� and
	��� correspond to the time complexities of constants variables applications and
conditionals respectively�

As in the case of Bjener�s method conditionals are typically analysed by taking
the worst best or average cases according to the possible outcomes of the boolean
conditional expression 	e	 above��

����� Applying the Wadler method to type theory

We describe how Wadler�s method may be extended so that it can be applied to
type theory thus providing an alternative method to that of Bjerner which was
described in Section ���� We suggest that this method is more easily mechanised
than Bjerner�s since we have already provided a practical method for neededness
analysis in Chapter �� It is unclear however how Bjerner�s method which involves
more ad hoc algebraic manipulation may be automated�

It should be noted that the Wadler lazy time analysis method may be simpli�

ed immediately since the analysis only depends on whether the given context is
ABSENT or not� This means that the neededness analysis lattice 	see Sec�
tion ���� would be suitable for time analysis as it makes a distinction between
those which de
nitely will be unused by the computation and those which may
be evaluated� Thus time analysis only requires the two�point neededness lattice
rather than the four�point strictness and absence analysis one�

The time cost semantic function T mapping fromTT expressions and contexts
to time complexity expressions is de
ned as follows� We assume that we have some
environment � of named function de
nitions� Also V is the context expression
evaluation function 	see Section ������� � is an environment of context function
de
nitions and �e� � � � en
 is a set of input context expressions� The context
expression formation functions efm and befm used below are described in �������
For ease of presentation we have omitted � � and �e� � � � en
 wherever they are
not essential�

T is de
ned by the following clauses�

�

T �� e ��U ) �



CHAPTER �� OTHER STATIC ANALYSES OF TYPE THEORY ���

for any expression e�

�

T �� f ��c ) � � T �� e ��c

where f is a function name so that � f ) e�

�

T ���a� e ��c ) � � T �� e ��c

�

T ��C	a� � � � an� �� c ) T �� a� ��c� � � � �� T �� an ��cn

where
ci ) 	V��Ci �� ��e� � � � en
c�

where Ci is the ith context function corresponding to the TT constructor
C�

�

T �� p ��c ) �

T �� abortA p �� c ) �

whenever p � �

�

T �� y ��c ) �

where y is a variable�

�

T ��J	c� d� ��c ) T �� d ��c

�

T �� case x c �� c ) T �� c ��c

�

T �� if b then c else d �� c ) T �� b ��c�
�
T �� c ��x� if b � True
T �� d ��x� otherwise

�

T �� casesn v c� � � � cn �� c ) T �� v ��c �

���
��
T �� c� ��c� if v � �n
���

���
T �� cn ��c� if v � nn
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�

T ��Fst	p� q� ��c ) T �� p ��c

�

T ��Snd	p� q� ��c ) T �� q �� c

�

T �� cases i f g ��c ) T �� i ��c �
�
T �� ap f q ��c� if i � inl q
T �� ap g r ��c� if i � inr r

�

T �� ap f a ��c ) 	T �� f ��c� � 	T �� a ��c��

where

c� ) V�� cexp ����e� � � � en
ccexp ) efm �� f �� ��befm �� a ��
 v

�

T �� prim n c f ��c ) 	jnj 
 ��  	T �� f � ��c� 	���

�

	T ��n ��d� 	���

�

	T �� c ��e� 	���

�

	T �� f ��m� 	���

where jnj represents the size of n and f � is the normal form of f � Also

d ) V�� 	prim� pargs� ����e� � � � en
c

	Similarly for e and m with regard to prim� and prim� respectively�� In
the above pargs ) �absi�
�befm �� c ���befm �� f ��
� The context func�
tions of prim prim� prim� and prim� are de
ned in �������

	��� arises from the solution to a recurrence relation for the time complexity
of prim�

� The time complexity expressions for lrec and trec are similar to that for the
prim function listed above�
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����� Strictness analysis and lower bounds

It has been noted above that time complexity analysis is undecidable in general
just as properties such as necessity are undecidable� The use of neededness analysis
thus gives an upper bound for the complexity of a program since some parameters
will be detected as unused when in fact they will be unused by the computation�

Suppose however we took the time complexity of each actual parameter to
be � if there was the possibility that it would not be used� This may be done by
employing the strictness analysis lattice where L 	which corresponds to �might
be evaluated�� is the abstract value which will induce a time complexity of ��

��� Additional forms of static analysis

Type theoretic programs may be specialized to produce computationally more
e�cient forms using the ideas of partial evaluation ����� This consists of pro�
ducing new forms of functions where possible normal forms have been substituted
for one or more of the static parameters where the possible values of a parameter
can be obtained during compilation� The process is similar to the idea of currying
and de
nition by partial application in functional programming� It would be pos�
sible in type theory to thus specialise each of the primitive recursive operators by
unfolding their calls according to possible values of the major argument 	i�e� the
one which controls the number of iterations performed�� We speculate that the
strongly normalizing nature of type theory will mean that such specialization may
be performed more easily in that a large number of arguments may be detected as
static� However to detect that an argument is static in general requires binding
time analysis� Indeed this can be combined with strictness analysis but the �ow
of information is more naturally forwards �����

It should be noted however that the strong normalization property of type
theory does place a restriction on the idea of building program generators such
as compilers by self�application� 	Such techniques are known as the Futamura
projections which are described in ��� ���� Jorgensen has shown how such ideas
can be used to produce e�cient compilers for lazy functional languages ��� �����
This self�application is impossible in type theory 	unlike the untyped lambda
calculus in which a self�interpreter can be built ���� and so we would have to
restrict the type theory to say the �th universe in order to build an interpreter
in a type theory including the � � �th universe�

It would also be interesting to investigate a development of Burstall and Dar�
lington�s fold�unfold program transformation technique ���� in the setting of TT
where strong normalization is guaranteed� In particular there would be a need
to establish fold rules which were consistent with the proof rules of TT�

Additional static analyses that may be applied to type theory include space
complexity analysis and the automatic detection of possible parallel processing
	which has been investigated for lazy functional programs in ������
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��	 Conclusion

We have described Bjerner�s method for calculating the time complexity of type
theoretic programs under a lazy evaluation strategy� Subsequently we have ex�
panded upon Wadler�s idea of using abstract interpretation to detect the compu�
tational demand required of each sub�expression in order to produce a method of
time analysis based upon the neededness analysis of Chapter �� This time com�
plexity analysis could thus be used mechanically in the implementation presented
in Chapter ��

In addition other possible forms of static analysis and optimisation such as
partial evaluation have been discussed� We speculate that a combination of these
analyses may be used to provide an e�cient implementation of type theory�



Chapter �

Conclusions

In this chapter we present a review of the foregoing work outline areas for possible
further research and give our conclusions�

	�� Review

We have discussed how modi
cations to type theory have been made in order to
remove computationally redundant proof objects so as to improve the e�ciency of
type theory as a functional programming language� However we have argued that
such modi
cations complicate the original theory of Martin�L�of and moreover
are unnecessary if abstract interpretation techniques such as the one that we have
developed are employed�

In Chapter � we presented a scheme for backwards analysis of type theory
building on the ideas of Hughes ��� ���� This backwards analysis method allows
computationally redundant proofs to be detected automatically at compile�time�
Furthermore the property of whether a parameter is required by the computation
may be detected by a single analysis which will also detect other properties of the
program� These other properties which indicate whether expressions are required
for evaluation or if they may be shared can also be used to make compile�time
optimisations on type theoretic programs� The basic theory of backwards analysis
was extended to structured data and higher�order functions and two examples
were given which demonstrated how the backwards analysis technique may detect
computationally redundant parameters and dually those parameters which must
be computed� To give the analysis a 
rm theoretical backing the analysis was
formalised by giving a denotational abstract semantics to each of the constructs
of the TT system presented in ������ Finally since types and terms may be
intertwined in type theory we discussed how types might be given an abstract
interpretation�

The backwards analysis techniques developed would be valueless if they pro�
duced results which were incorrect with respect to the computational semantics
of type theory� Thus in Chapter � we gave a proof of the correctness of the
abstract interpretation in conjunction with a formal presentation of the rules of

���
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type theory� This showed that the analysis was indeed safe with regard to the
property of neededness and so any parameter that was detected by the analysis as
being computationally redundant would indeed not be required in a normal order
computation of the program�

In Chapter � we reported on how the abstract interpretation was implemented
within the Ferdinand functional programming language which is based upon type
theory� The implementation showed that the backwards analysis scheme could
have practical bene
ts and there were signs of promise for e�cient practical
programming systems to be developed from type theory�

Chapter � showed how other static analysis techniques may be applied to type
theory and how the backwards analysis techniques that were presented earlier to
detect neededness may be used to re
ne time complexity analysis of type theo�
retic programs� This gave an insight into how type theory may be analysed and
optimised further�

	�� Possible developments of the work presented

In Chapter � the analysis we presented did not indicate possible relationships
with regard to an abstract property between the parameters for a function� So
our analysis did not detect joint neededness 	where each parameter is needed if
and only if the others are� for example� If this method was developed then it
might allow further optimisations to be made to the programs of type theory�
However this conversion to a high��delity analysis will make the analysis less
e�cient� High�
delity analyses for a basic lazy functional programming language
have been given in ��� ����

It would also be useful if a practical scheme could be developed to analyse
precisely functions which apply functions extracted from lists� The present system
simply approximates such occurrences by the top element of the lattice since it
is possible for an arbitrary function to be included within a data structure� the
top element will always be a safe abstraction of such applications�

An investigation of possible schemes for the resolution of typing information
within type theoretic systems would be instructive� This would give a background
to the discussion of the analysis of types in Chapter �� 	In the Ferdinand system
of Chapter � type checking is carried out as a separate phase before abstract
interpretation and code generation�� It may be more e�cient to attempt to inte�
grate the type checking and code generation phases if terms are detected as being
required in both type checking and in program computation�

There are several possible areas for future improvement of the Ferdinand
system and the backwards analysis that we have integrated within it� One of
the main di�culties encountered in implementing backwards analysis within the
compiler was the fact that the types of functions had been lost during the lambda
lifting phase� If the types could be preserved throughout type checking then this
would allow the backwards analysis to proceed more e�ciently and also to give
more precise results with regard to functions de
ned by partial application�
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We suggest that other possible improvements to the Ferdinand implementation
would be�

� A mechanism for implementing an optimisation based upon sharing analy�
sis� We were able to determine which expressions may or may not be shared
within an implementation but it was unclear how optimisations to the result�
ing FLIC code could be made� We speculated that these optimisations could
only be done by some mechanism within the back�end to the compilation
process 	the fc compiler��

� Further optimisations could be made to the FLIC code produced by Ferdi�
nand� This is due to the fact that many trivial function de
nitions 	which
could be removed from the code� remain at the end of the compilation pro�
cess� For instance some function de
nitions consist solely of the name of
another function� In general we would like to be able to remove such de
�
nitions which are eta�equivalent to others�

� A full integration of the standard environment functions within Ferdinand
would we speculate improve e�ciency greatly� At present the standard en�
vironment is not treated di�erently to any other script and is not automat�
ically included by the compiler� If the standard environment was included
automatically then the initial environment of context expressions could sim�
ilarly be augmented to provide the context functions of functions such as
map� The full�integration of the standard environment within the compiler
would thus have the following bene
ts�

�� E�cient object code forms of the standard environment could be called
by the compiler for each occurrence of a standard function�

�� The backwards analysis process would be faster 	since the standard
functions would not have to be re�analysed during every compilation�
and probably more precise since the pre�supplied context information
which would be derived by hand would not have as many safe approx�
imations included as those generated by an automated analysis�

� Partial evaluation may be employed within the Ferdinand compiler in con�
junction with the backwards analysis optimisations� This would allow func�
tion de
nitions to be folded or unfolded to reach a more e�cient form�
The Ferdinand system would in its current form appear to be particularly
amenable to such an approach since there are no input or output streams
and all programs are translated to the primitive recursive forms of type
theory� Hence there would appear to be a sizeable amount of static in�
formation available during a Ferdinand compilation which may be used to
create specialized programs�

� It would be helpful to have an estimate of the e�ciency of the backwards
analysis phase in the Ferdinand compiler and in general to have a set
of statistics describing the computations required to analyse a Ferdinand
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program� This may be done by adding an output monad which will capture
the trace of the execution ������

In Chapter � we proved that the analysis was correct with respect to the
property of neededness� However it remains to be shown that the optimisations
thus employed in the Ferdinand compiler in Chapter � are correct� Burn and
Le M-etayer have done this with respect to strictness analysis of lazy functional
programs ����� Their method consists of giving a continuation�passing model to
a program and its optimised form� It is unclear however whether this method
would be appropriate for the optimisation that we have given�

	�� Areas for further research

����� Additions to type theory

In the work presented we have applied our backwards analysis techniques to the
whole of the system TT ����� including lists� In order to have a fully�featured
programming system however some additions need to be made to the system�

Inductively dened types

In the system studied the inductively de
ned data structures list and tree have
been included� These are examples of how rules for new types were added to
the open system of type theory ������ Indeed new structures modelling mutually
recursive types have been added to type theory in Section � of ��� following on
from the development of parse trees by Chisholm �����

It may be desirable however to have a general method of producing induc�
tively de
ned types such as the W types� The W types were proposed in ����
and have the following introduction elimination and computation rules 	as given
in Section ���� of �������

a � A f � 	B	a� � 	W x � A��B	x��

node a f � 	W x � A��B	x�
	W Intro�

Above the function f gives the set of predecessors to the node�

w � 	W x � A��B	x� R � Ind	A�B�C�

	Rec wR� � C	w�
	W Elim�

Here Ind 	A�B�C� represents the induction step over the W �type� It is a general�
isation of a formula such as

	�n � N��	C�n�x� � C�	succ n��x��

which is the induction step for natural numbers� The computation rule is�

Rec 	node a f�R� R af 	�x�Rec 	f x�R�
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This generalises a computation rule such as�

lrec ��s f � s

lrec 	a �� l� s f � f a l 	lrec l s f�

The problem with the W type however is that it contains many elements
which are extensionally equal but di�erent intensionally� 	See pp� ������� of �����
with regard to modelling the tree type via a W type�� The potential di�culties
of implementing the W types in practice are given in �����

It may also be seen that the use of W types will produce a loss of precision
in any backwards analysis upon them� For instance for the tree type we were
able to deduce an atomic context for the entire structure with contexts for the
natural term and the left and right subtrees at each node� However if tree is
formulated as a W �type then we will only be able for the structured part of the
context to deduce a context for the natural number object and a single context
representing the subtrees� Indeed it would appear that this is the best that may
be hoped for since our backwards analysis is purely intensional in nature� we
rely upon the syntax of pattern matching to induce structured contexts� Hence
unless the structural recursion over W types is made explicit by pattern matching
over various constructs our structured contexts will not capture very accurate
information about a structured type�

Conversely however an excess of structured information leads to a rapid ex�
pansion in the size of the context lattices and thus the performance of a backwards
analyser may su�er� It is therefore an open problem as to how much contextual
information about an arbitrary data structure is required in order to make signif�
icant gains in e�ciency in the resulting object code�

An alternative method to form inductively de
ned structures is to take the
least 
xed point of a monotonic operator . over types ���� ���� The introduction
rules for inductively de
ned types then follow from the fact that we have the
following convertibility relation�

Fix .��. 	Fix .�

The computation rule for these types is similar to the above and has the following
form�

�x g � g 	�x g�

This arises from the elimination rule�

�T � Fix . �
���

g � 	�x � T ��C � 		�y � .T ��C�y�x��

�x g � 	�z � Fix .��C�z�x�
	Ind Elim�

	Above T � Fix . is the judgement introduced by Mendler ����� to indicate the
ordering of a type hierarchy with regard to recursive equations for types��
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The computation rule 	which is a 
xpoint calculation� as seen above may be
seen to give little promise for deducing contexts of parts of structures� However
it is argued in ���� that introduction and elimination rules for each inductively
de
ned type may be read from the de
nition of the corresponding monotonic
operator .� It would seem therefore that using this approach there would be
more scope for a backwards analyser to deduce the contexts of substructures of
inductively de
ned types� However as noted on p���� of ����� the disadvantage
of this system is that equality between types becomes undecidable�

Another formulation for a general scheme of inductively de
ned types is given
by Luo in Section ����� of ���� as a development of the extended calculus of con�
structions� The method used there is similar to the scheme of W types which we
have mentioned above� It would be interesting to determine how much contextual
information may be deduced from the structures of Luo�s system�

Well�founded recursion

The recursion schemes that we have seen for lists trees and the more general
forms of inductively de
ned types have all been forms of primitive recursion over
the structure of types� There have been suggestions for adding restricted forms of
general recursion which preserve the strong normalisation property of type theory�

The idea which has been proposed by Paulson ����� and in collaboration by
Saaman and Malcolm ����� and Nordstr�om ����� has been to use well�founded
orderings 	which are partial orders with no in
nitely descending chains�� Paulson
makes a de
nition of a well�founded ordering and it then remains to prove that
a given partial order is thus well�founded� The approach of Nordstr�om Saaman
and Malcolm however is to use sequences of elements of a partial order which do
not form an in
nite descending chain � these are called the accessible elements
of a type� However it has the disadvantage that additions have to be made to the
system particularly the addition of a proposition indicating membership of the
accessible elements at each type ������ We hypothesise that the latter system is
one that is implicitly formulated in terms of the subset theory whilst the system
of Paulson follows the pattern of the original type theory� This is also borne out
by the computation rules for the two systems� For that of Nordstr�om Saaman
and Malcolm we have�

rec e p� e p 	rec e�

where p is a member of the accessible elements of the type and e simply calculates
the values at each node� In Paulson�s system however we have�

wfrec PFx� F 	�y��r�	wfrec PFy��

	Originally the place of � was taken by equality but the reduction symbol may be
validly inserted instead�� Here the 
rst parameter P is a proof that an element y is
less than x with respect to the well founded relation� It is readily seen that such
a proof is computationally irrelevant but we suggest that a backwards analysis
would automatically detect this redundancy� 	Indeed Paulson does this ad hoc
for his derivation of a quicksort algorithm in ���� Section ����
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Co�inductions

As a dual notion to the idea of presenting inductively de
ned types as the least

xed point of a monotonic recursive type equation we may form the greatest

xed point of such equations� These constructs are thus in�nite and allow us to
characterise lazy streams in type theory� The details of how such in
nite objects
are de
ned in type theory by co�inductions are given in Section ���� of ������

The interesting aspect of these in
nite data structures is that the contexts
of their recursive parts must be lazy 	i�e� a proper tail context of an in
nite list
must be w ABSENT� since it is obviously impossible to evaluate completely an
in
nite list� Thus the distinction made in type theory made between 
nite and
in
nite data structures will allow us to make a division between the contexts used
for the two kinds of structure� The knowledge that recursive parts of an in
nite
data structure must be lazy should allow the analysis to be more e�cient and
precise than in the case of lazy languages such as Miranda where the 
nite and
in
nite structures are not di�erentiated by their types�

����� Other static analyses

In Chapter � we mentioned the scope for future work using static analysis tech�
niques such as partial evaluation ���� and how we may determine other properties
of type theoretic programs such as the detection of the possibility of parallelisation
����� An interesting alternative method to the abstract interpretation techniques
that we have employed is abstract reduction ����� which has been applied to
the Concurrent Clean lazy functional programming language ����� in order to
determine strictness� This technique involves applying the reduction rules of a
functional system using abstract values� 	The �ow of information is therefore for�
wards�� Abstract reduction deals with recursion by analysing the abstract reduc�
tion sequences 	termed reduction path analysis� rather than by solving a 
xpoint
equation� Since abstract reduction has shown good results with both higher�order
functions and data structures this would appear to be a fruitful technique to
apply to type theory� In particular it would be interesting to discover whether
the strong normalisation property of type theory aids the reduction path analysis
method�

Such static analysis methods would all be employed at the compile�time level�
We speculate below whether a form of static analysis is feasible during program
development�

Analyses in logical form

It has been observed that it is possible to perform strictness analysis using a
Hindley�Milner type inference system ��� ���� with abstract types which denote
strictness ���� �� ��� and Hankin and Le M-etayer have given a technique for
deriving e�cient static analysis algorithms from type inference systems ����� Con�
sequently each inference of a type of a term during compilation may thus allow
the strictness of the term to be inferred�
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It has been intended that the type inference method of deducing strictness
properties would be applied at compile�time during the type checking phase�
However if we have a theorem�proving system such as ALF ��� in which the
programs of type theory may be derived then for each deduction made 	which
will prove some type in the theory� we speculate that it would be possible for this
to entail the automatic deduction of an abstract type by the theorem prover�

There are however some problems that may be foreseen with this idea� Firstly
the system of types in TT is richer 	including dependent types for instance� than
for the systems proposed by Benton ���� and others� Consequently it would be
necessary to make a substantial augmentation to the existing program logics� Sec�
ondly the underlying models of the abstract properties deduced by these systems
are based upon Scott�closed sets and it has been shown by Kamin ���� that 
nite
combinations of these are inadequate for expressing the property of head strictness
of a list for example�

Nevertheless the development of such a logic for type theory would provide
an interesting contrast with both the system of backwards analysis that we have
presented and the alterations to the type theory that have been proposed in order
to eliminate computational redundancy� Such a system of deducing abstract prop�
erties via types would operate during program development rather than compile�
time but unlike the additions to type theory such as subsets or the system of
Paulin�Mohring for marking redundant proof objects ����� the process would not
be visible to the programmer�

	�� Concluding remarks

We have shown that static analysis techniques in particular the backwards anal�
ysis form of abstract interpretation may be used to optimise type theoretic pro�
grams� Speci
cally we have developed an analysis which is capable of providing
an automatic means of detecting both computational redundancy and properties
used to perform optimisations on lazy functional languages such as Haskell� Con�
sequently we conclude that modi
cations to the theory in order to remove com�
putational redundancy such as the subset type and the subset theory of ����� are
unnecessary and we may adhere to a type theory based upon the original ideas of
Martin�L�of ��� ���� which identi
es logical propositions and types�

Our theory of backwards analysis has been applied to the whole of the TT
system including lists described in ������ The abstract interpretation theory
has been directed towards obtaining a method for a practical implementation
within a compiler for a language based upon type theory� With our proof of the
soundness of the analysis in Chapter � we believe that we have satis
ed Nielson�s
dictum ����� that an abstract interpretation should consist of an induced 	i�e�
purely theoretically driven� analysis an implementable analysis and correctness

�Hankin and Le M�etayer have used their lazy type inference technique �	�� to emulateWadler�s
fourpoint strictness analysis for lists ����� but this does not capture head strictness�
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veri
cation�
We conclude that the type theory of Martin�L�of not only provides a system for

the integration of proofs and program development but that static analysis tech�
niques may be developed that automatically improve the e�ciency of programs
written in the formalism�



Appendix A

Examples of backwards analysis

A�� Introduction to the examples

In this part of the report we present several examples of the application of back�
wards analysis to type theory� Most of the examples are functions used in the
de
nition of quicksort which is analysed in Section ����� The syntax is that used
in ������

Section A�� covers numerical functions in type theory� The lesseq function 	a
boolean function ordering the natural numbers� covers many aspects of the way
we perform sharing analysis upon functions� It covers the two distinct methods for
calculating 
xpoints of our context functions� the 
rst method is to 
nd 
xpoints
for particular contexts and the second is to 
nd 
xpoints for arbitrary contexts
where we perform algebra to 
nd the solution for an arbitrary initial value� We
naturally 
nd the same results by both methods� Only the 
rst method is con�
sidered in ����� We suggest that the 
rst method will be better for mechanical
evaluation in practice but that the second method is more e�cient 	and elegant�
when we are 
nding results for �simple� functions 	such as the basic selector func�
tions of type theory� as a prelude to mechanical evaluation of more complicated
functions� In this example we also show how we can improve upon the information
we gain from backwards sharing analysis by distinguishing between contexts cor�
responding to di�erent nullary constructors� This is again distinct from Hughes�s
approach�

Section A�� gives analyses of functions upon lists in type theory� The particular
example to note here is that of append � the generalised results that we obtain may
again be compared to the point�by�point analyses of the same function given in
����� Included also is the higher�order function map�

���
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A�� Numerical functions

A���� Backwards analysis of the lesseq and greater func	
tions in TT

Introduction

This subsection gives a sharing analysis of the lesseq function in type theory� The
analysis 
rst shows that the 
rst argument must be used although its predecessor
may not necessarily be fully evaluated� In addition the second argument may
not necessarily be evaluated at all and even if it is it may not be fully evaluated�
Further analysis is done to indicate the mutual dependency between the two ar�
guments and a method is developed in which contexts depend upon the boolean
results of lesseq� The analysis of the greater function upon natural numbers is
subsequently presented� it is de
ned in terms of the lesseq function�

Denition of the function

lesseq � 	N � N � bool�

lesseq � x �df True 	���

lesseq 	n � �� � �df False 	���

lesseq 	n � �� 	m � �� �df lesseq n m 	���

Analysis of the rst argument

We 
rst formulate the context function of the 
rst argument of lesseq for an
arbitrary initial context c� In order to simplify the process of analysis it is useful
to assume that we are dealing only with strict contexts and that since lesseq is
de
ned by pattern matching we will not be altering the atomic part of the context
we begin with c� 	It should be emphasised that these assumptions do not make
the analysis invalid� The 
rst assumption is valid by f 	ABt c� ) ABt f	c�� this
equation allows us to use atst below� The second follows from the de
nition of
context propagation with regard to pattern matching given in Section ������� To
emphasise this we use the notation atst	c� 	the atomic strict part of c� for the
atomic part of the resulting context� The lesseq function may be divided into two
parts� the 
rst which deals with the case that the 
rst argument evaluates to �
	clause 	��� of the lesseq function� and the second which deals with a non�zero 
rst
argument� We naturally do not know which of these parts will apply in the actual
execution of the function� this uncertainty is shown in the sharing analysis by the
t operator� In other words we are joining together the contexts which result
from each of the possible two parts� The subscripted contexts below re�ect the
fact that we are dealing with these two cases� One context has as a subscripted
context the context constructor �� this is the context corresponding to a zero
natural number� 	We may also view this as saying that an argument has to be



APPENDIX A� EXAMPLES OF BACKWARDS ANALYSIS ���

fully evaluated in order to have such a context�� The context from the other part
uses the Succ context constructor as its structured part re�ecting the fact that
we are dealing with a non�zero natural number argument� Here the structured
part has a context variable which has to be evaluated namely the argument of
Succ� this context variable gives us information about the predecessor value of the
argument� 	This helps us discover the level to which a natural number argument
may have to be evaluated�� We may thus form the following expression for the
context function of the 
rst argument of lesseq�

lesseq�c ) atst	c�

��Succc

	���� 	���






�n�

The subscripted part of the second of this disjunction of contexts may as it refers
to clauses 	��� and 	��� of lesseq be split into two parts� Here the two cases arise
from the form of the second argument which may also be zero or not� For this
part of the analysis we thus have�

c
	���� 	���






� n ) c

False



� nt c

lesseq nm






� n

) ABt lesseq�c

The above follows from n 	the numerical predecessor to the 
rst argument� not
being present in the boolean expression False and the second context follows
directly from our de
nition of the analysis of function applications� For the sake
of notational convenience we shall leave out the 
rst part 	with the � context
constructor� this part is solved as � is nullary�� We have thus to solve the following
recursive equation�

lesseq�c ) atst	c�
SuccABt lesseq�c�

This can be solved via a 
xpoint iteration� We can guarantee that we will 
nd
a 
xpoint due to the fact that the context functions are computable and that we
are dealing with 
nite lattices of contexts� As shown below the third in a series of

xpoint iterations gives the 
xpoint� Note that we have to make approximations
to the resulting context after the second iteration since the context has more than
one level of subscripting� we assume that natural number contexts have either the
subscript � or the subscript Succ	d�� The latter case means that we assume that
d itself is of the form Succ	d��

	lesseq� c�
	 ) CONTRA

	lesseq�c�
� ) atst	c�

SuccAB�

	lesseq�c�
� ) atst	c�

SuccABtatstc�
Succ�AB�

�

�� atst	c�
SuccAB t atstc��
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c f�g f��Mg

	lesseq�c�	 CR CR

	lesseq�c�� f�g
Succf	g�

f��Mg
Succf	g�

	lesseq�c�� f�g
Succf	��g�

f��Mg
Succf	���Mg�

	lesseq�c�� f�g
Succf	��g�

f��Mg
Succf	���Mg�

lesseq�c f�g
Succf	��g�

f��Mg
Succf	���Mg�

Table ��� Iteration using speci
c elements in the context domain�

	lesseq�c�
� �

� atst	c�
SuccABtatstc�

Succ�AB tatst�c��
�

) atst	c�
SuccABtatstc��

The above illustrates how a 
xpoint solution may be found by using purely
algebraic manipulation upon an arbitrary argument c� Mechanically however
this may not be straightforward in more complicated cases� Therefore in practice
results for particular contexts will be obtained� This is illustrated in Table ���
Note that these results agree with those obtained for the algebraic method for
these contexts 	given in Table ����

Analysis of the second argument

lesseq�c ) c
True


� x

tatst	c�
Succc

lesseq n m






�m�

) AB

tatst	c�
Succlesseq�c�

A 
xpoint iteration shows that the second argument may not be used with
any predecessor not necessarily being used even if the argument is�

	lesseq� c�
	 ) CR

	lesseq� c�
� ) ABt atst	c�

SuccCR�

	lesseq� c�
� ) ABt atst	c�

SuccABtatstc�
Succ�CR�

�

�

� ABt atst	c�
SuccABtatstc��
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c f�g f��Mg

lesseq� c f�g
Succf	��g�

f��Mg
Succf	���Mg�

lesseq� c f�� �g
Succf	��g�

f�� ��Mg
Succf	���Mg�

Table ��� Table of results for the context functions of lesseq�

	lesseq�c�
� �� ABt atst	c�

SuccABtatstc�
Succ�ABtatst�c��

�

) ABt atst	c�
SuccABtatstc��

Values given by the context functions

Whilst the atomic values are as might be expected from an inspection of the
de
nition of the function the subscripted contexts provide us with something
of an anomaly� they indicate that in no case is either argument necessarily fully
evaluated� We can show however that one or other of the arguments must be fully
evaluated by applying the following forwards analysis where � stands for �may
not be fully evaluated� and � indicates �must be fully evaluated�� Naturally we
wish the result of lesseq to be fully evaluated i�e� it should be ��

Let n� and m� represent the two variables�

lesseq � �n��� �m��� ) 	PM�
� �n��� �m����

u 		PM�
� �n��� �m����

u 	True� t False�

t lesseq � �n��� �m�����

) �n���

u 	�m��� u

	� t � t lesseq � �n��� �m�����

) �n��� u 	�m��� u ��

) �n��� u �m���

	Above the asterisked names indicate the appropriate abstract functions� In par�
ticular PM�

� is the abstract function formed from pattern matching upon the 
rst
argument��

So
lesseq� �� ) �

We thus have a contradiction to our assumption about the result of lesseq being
fully evaluated if we also assume that neither argument need be fully evaluated�
This means that at least one argument must be fully evaluated�
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c f�g f��Mg

lesseq� c f�g
�T��t �F�Succf	��g�

f��Mg
�T��t �F�Succf	���Mg�

lesseq� c f�� �g
�F��t �T�Succf	��g�

f�� ��Mg
�F��t �T�Succf	���Mg�

Table ��� Modi
ed table of results for the context functions of lesseq�

Reanalysing Lesseq

To remedy the original analysis we simply distinguish between the two possible
results of lesseq i�e� c

True
and c

False
�

We then obtain the following�

lesseq� cTrue
) at	c

True
�
�

) 	strict c�
�

The context function of the second argument of lesseq is found similarly in the
other possible case�

lesseq� cFalse
) 	strict c�

�

We thus conclude that the 
rst argument of lesseq should be fully evaluated
to � if the result of the function is True but otherwise only the second argument
need be fully evaluated 	again to ���

It might appear that such an analysis is rather irrelevant 	and rather trivial�
since we cannot tell at compile time what will be the result of the function�
However such information may well be useful to analyse functions which call
lesseq�

Nevertheless such an analysis is only practical with the 
nite types of low
orders 	� or �� as we otherwise run into the levels of computational complexity
that occurred with forward analysis� As however the booleans are probably
amongst the most frequently used of the 
nite types this approach has some merit�
Moreover this teaches us to be more careful when combining contexts� we may
label the results so that we may be clear as to which Nat context constructor has
been substituted for which Bool context constructor� This is shown in Table ���

The Greater function

The greater function is de
ned using not and lesseq and hence its analysis is
relatively simple�
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Denition of the function

greater � 	N � N � bool�

greater x y �df not 	lesseq x y�

Denition of the not function

not � 	bool � bool�

not True �df False

not False �df True

Analysis of the not function

not� cFalse
) c

True

not� cTrue
) c

False

Analysis of the rst argument

greater� c ) c
not 	lesseq x y�










� x

) not� c
lesseq x y





� x

) lesseq� 	not� c�

	Note that the context function not� does not alter the atomic part of c and only
�negates� the boolean context constructor��

Analysis of the second argument

Similarly
greater� c ) lesseq�	not� c�

A���� Simon Thompson�s example

Introduction

We perform sharing analysis upon one of the functions given by Simon Thompson
at a UKC Theoretical Computer Science seminar� This analysis shows that the
second argument is not needed and that the 
rst argument is �strict� may be
shared and will be fully evaluated�
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Denition of the function

The function is de
ned as follows�

g a b �df g 	a
 �� 	b � a� � if a 
 �

�df �� � otherwise

Basic analysis of the rst argument

g� c ) 		greater� 	at 	c�
True

��

� 	c
g 	a
 �� 	b � a�











� a��

t

		greater� 	at 	c�
False

��

� 	c
��

� a��

) 	at 	c�
SuccAB t at c��

� 	g� c��

t

		at 	c
�
�� � AB�

) 	at 	c�
SuccAB t at c��

� 	g� c��

t

	at 	c
�
��

The above is due to the following results�

greater� 	c
True

� ) c
SuccAB t c�

greater� 	c
False

� ) 	c
�
�


� 	g� c� ) 	g� c�

�� 	g� c� ) 	g� c�

g� c ) AB

The result for greater� follows from that of lesseq�� The result for g� c is
explained on page ���� Note also that

AB ) f�g
CR
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Fixpoint iteration to nd the rst context function

If we let F ) g�	f�g
�� Succf�g�

� then we can determine F by a 
xpoint iteration

using the above equation to de
ne successive approximations�
The results of iteration to 
nd the least 
xpoint are summarised in the table

below�

F 	 CR

F � f�g
�

F � f�g
�� Succf	��g�

F � f��Mg
�� Succf��Mg�

F � f��Mg
�� Succf��Mg�

F f��Mg
�� Succf��Mg�

This shows that the function is strict in its 
rst argument and that the 
rst
argument may be shared� In addition this shows that it has to be fully evaluated�

Details of the xpoint iteration

The details of the 
xpoint iteration to 
nd the 
rst context function are quite
interesting and are given below�

F � ) 	f�g
Succf	��g�

�

t

f�g
�

) f�g
�

F � ) 		f�g
Succf	��g�

�

� f�g
�
�

t

f�g
�

) f�g
�� Succf	��g�

t

f�g
�

) f�g
�� Succf	��g�
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F � ) 		f�g
Succf	��g�

�

� 	f�g
�� Succf	��g�

��

) fMg
�� Succf��Mg�

t f�g
�

) f��Mg
�� Succf��Mg�

F � ) 		f�g
Succf	��g�

�

� f��Mg
�� Succf��Mg�

�

t f�g
�

) fMg
�� Succf��Mg�

t f�g
�

) f��Mg
�� Succf��Mg�

N�B� In order to keep the notation relatively concise the contexts belonging
to the � and Succ parts have been merged� This abuse of notation should be
treated with caution however since clearly the 
rst argument is not shared if it
evaluates to ��

Analysis of the second argument

The analysis of the second argument is as follows�

g� c ) AB

�

	ABt 	c
g 	a
 �� 	b � a�











� b��

) ABt 	c
g 	a
 �� 	b � a�











� b�

) ABt 		g� c�
	b � a�




� b�

) ABt 	��	g� c��

) ABt g� c

It may readily be seen that the 
xpoint of this is AB for all c� This means that
the second argument is never used�
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A�� Analysis of list functions

A���� The tail of list function

Denition of the function

tail � 	�l � �A���	nonempty l� � �A�

tail 	��� r� �df abort�A� r

tail 		a �� x�� r� �df x

Backwards Analysis of tail�s argument

tail�	c� ) atst	c�
mkpair�tail�c����mkpair�tail�c����

mkpair�	tail�	c�� ) atst	c�
��� atc�

x

�a� �� c

x

�x��

) atst	c�
��� AB ��c�

mkpair�	tail�	c�� ) 	c
abort �A� r






� r�t 	c

x

� r�

) ABtAB

) AB

Hence
tail�	c� ) atst	c�

atstc�
��� �AB ��c�

��AB�

Since c is an arbitrary list context 	and is therefore structured� we approxi�
mate the above as follows�

atst	c�
atstc�

��� �AB t �mkpair��c�� �� �at�c� t �mkpair��c����
��AB�

A���� The head of list function

Denition of the head function

head � 	�l � �A���	nonempty l� � �A�

head 	��� r� �df abort�A� r

head 		a �� x�� r� �df a
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Analysis of the context propagated to the rst argument of head

head�	c� ) atst	c�
mkpair�head�c����mkpair�tail�c����

mkpair�	head�	c�� ) atst	c�
��� atc�

a

�a� �� c

a

�x��

) atst	c�
��� atc� ��AB�

mkpair�	head�	c�� ) 	c
abort �A� r






� r�t 	c

x

� r�

) ABtAB

) AB

Hence
head�	c� ) atst	c�

atstc�
��� �at�c� ��AB�

��AB�

A���� The length function over lists

Denition of the length ��� function

" � �A� � N

"�� �df �

"	a �� x� �df "x� �

Sharing analysis of the length of list function ���

"�c ) atst	c�

��� atc�

	"x� � �





�a� �� atc�

	"x� � �





�x�

) atst	c�
���AB �� ��c�

We thus perform a 
xpoint iteration�

	"�c�
	 ) CR

	"�c�
� ) atst	c�

���AB ��CR

	"�c�
� ) atst	c�

���AB �� atstc�
���AB ��CR

�

�� atst	c�
���AB ��atstc�

This is the 
xpoint�
Hence we deduce that the tail of the list is used �as much� as the whole list�
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A���� The append ���� function

The following is a backwards analysis upon the list append 	��� function in type
theory�

Denition of the function

�� � �A� � �A� � �A�

����y �df y

	a �� x���y �df a �� 	x��y�

Analysis of the rst argument

���c ) atst	c�
���c�� ��������c��

���	���	c�� ) atst	���	c��
���c�� ��������c��

As by our notion of repeating contexts in data structures

���	���	c�� ) ���	c�

���	���	c�� ) ���	c�

A solution to this is achieved by performing the following 
xpoint iteration�

	���	���	c���
	 ) CR

	���	���	c���
� ) atst	���	c��

���c�� ��CR

	���	���	c���
� ) atst	���	c��

���c�� �� atst���c��
�����c�� ��CR

�

�� atst	���	c��
���c�� ��atst���c��

	���	���	c���
� ) atst	���	c��

���c�� ��atst���c��

So we have

���c ) atst	c�
���c�� ��atst���c��

�����c����atst�����c��

) atst	c�
���c�� ��atst���c��

) c
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Analysis of the second argument

���c ) c
y

� y t c

a��	x��y�





� y

) ct 	���	c�
x��y


� y�

) ct���	���	c��

���	���	c�� ) ���	c�t���	���	c��

It is easily shown 	via iteration� that we therefore have�

���	���	c�� ) ���	c�

Hence
���c ) ct ���	c�

	Note that only the atomic part of the second argument�s context will be
distinct from c��

A���� The map function

Denition of the function

map � 	A� B� � �A� � �B�

map f �� �df ��

map f 	a��x� �df 	f a���	map f x�

Analysis of the rst argument

map� c ) ABt c
	f a���	map f x�











� f

c
	f a���	map f x�











� f ) 	c

f a

� f� � 	c

map f x





� f�

) ap� c�map� c

In the case of sharing analysis

ap� c ) at	c�

The above may be solved by performing an iteration to 
nd the 
xpoint�

	map� c�
	 ) CR

	map� c�
� ) AB

	map� c�
� ) ABtat	c�
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	map� c�
� ) ABt 	at	c� � 	ABtat	c���

) ABt 	at	c�t 	at	c�tat	c���

	map� c�
� ) ABt 	at	c� � 	ABt 	at	c�t 	at	c� �at	c�����

) AB

t

	at	c�t 	at	c� � 	at	c�t 	at	c� �at	c�����

) ABt 	at	c�t 	at	c� �at	c���

	Note that the last two transformations only apply to sharing analysis��
Thus we have found the 
xpoint�

Analysis of the second argument

map� �f � c ) at	c�
�
t at	c�

c

f a

�a� �� c

f a

�x�

c
f a

� a ) map� �f � c

	Note that f may be a partial application e�g� lesseq a which will a�ect subscripting��

c
map f x





� x ) map� �f � c

So

map� �f � c ) at	c�
�t map� �f � c� �� map� �f � c�

A solution to this may be found through an iteration�

	map� �f � c�	 ) CR

	map� �f � c�� ) at	c�
map� �f � c� ��CR

	map� �f � c�� ) at	c�
map� �f � c� �� atc�

�map� �f � c� ��CR
�

�� at	c�
map� �f � c� ��atc�

	map� �f � c�� ) at	c�
map� �f � c� ��atc�

�map� �f �c� ��at�c�
�

� at	c�
map� �f � c� ��atc�

The above is the 
xpoint�



Appendix B

Further documentation on

Ferdinand

B�� Source code

B���� The top	level module main

�nolist

������������������������������������������������������������������

�� ��

�� main�m �� The main script for analysed translations� ��

�� ��

�� Author� Alastair J� Telford ��

�� Place� University of Kent at Canterbury ��

�� Last modified� ��th February �

� ��

�� ��

�� Description� Coordinates all the analysis and ��

�� translation phases� ��

�� ��

������������������������������������������������������������������

������������������������������������������������������������������

����� Exports and Imports�����

�export

analysed�translation

��

analysis�type

��

fnDefn�Env

environment

empty�env

add�env

��

new�flictrans

��

���
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����Flic�Syntax�Flic�

�include

����typecheck�type�

�include

����Translate�new�translate�

�include

����Eager�translate�eager�translate�

�include

����Nd�translate�nd�new�translate�

�include

����St�translate�st�new�translate�

�include

����Stab�translate�stab�translate�

�include

����Gen�translate�gen�translate�

�include

����Context�expressions�context�expr�m�

�include

����Structured�context�calc�

�include

����FnParam�Env�fnParam�Env�

�include

����Environment�environment�

�include

����Index�table�index�table�

�include

����Values�values�

�include

����Flic�Syntax�Flic�

������������������������������������������������������������������

�� fn�name is the type of function names�

fn�name

��

�char�

�� fnDefn�Env is the type of the function definition environment�

fnDefn�Env

��

environment tc�Elem

������������������������������������������������������������������

�� Functions

������������������������������������������������������������������

�� ��

�� analysed�translation analyses the top�level expression and ��

�� the combinators and translates them into their appropriate ��
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�� FLIC representations� ��

�� ��

�� Parameters� ��

�� ��� The type of the analysis� ��

�� ��� The top level expression of the program and the set ��

�� of function definitions� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

analysed�translation ��

analysis�type �� �� ���

�tc�Elem� fnDefn�Env� �� �� ���

�flic�simple�part� flic�program�

analysed�translation antype �top�expr�fn�names�defs�

�

�flic�simple�tl�Expr� flic�simple�bindings�

� if is�simp�trans antype

�

�flic�antrans�tl�expr� flic�antrans�bindings�

� otherwise

where

��

�� flic�simple�tl�Expr is the FLIC translation of the top�level

�� expression� The translation does not use any abstract

�� interpretation information�

�� flic�simple�tl�Expr �� flic�simple�part

flic�simple�tl�Expr

�

simp�translator antype top�expr

��

�� flic�simple�bindings is the FLIC translation of the function

�� definitions� The translation does not use any abstract

�� interpretation information�

�� flic�simple�bindings �� flic�program

flic�simple�bindings

�

all�simp�translate antype fn�names�defs fn�names

��

�� flic�antrans�tl�expr is the FLIC translation of the top�level

�� expression using abstract interpretation information�

�� �N�B� The top�level expression has an empty set of parameters

�� and contexts��

�� flic�antrans�tl�expr �� flic�simple�part

flic�antrans�tl�expr

�

func�anno�trans

antype empty�idx�table context�environ top�expr

��

�� flic�antrans�bindings is the FLIC translation of the function

�� definitions using abstract interpretation information�

�� flic�antrans�bindings �� flic�program

flic�antrans�bindings
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�

all�anno�translate

antype context�environ fn�names�defs fn�names

��

�� context�environ is the environment of contexts found by

�� evaluating the context expressions�

�� context�environ �� context�Env

context�environ

�

all�Context�Expr�Val antype cxt�Expr�Env fn�names

��

�� cxt�Expr�Env is the context expression environment produced

�� from the function definitions�

�� context�Expr�Env �� context�Expr�Env

cxt�Expr�Env

�

all�Context�Prop�Expr fn�names�defs fn�names

��

�� fn�names is the list of function names�

�� fn�names �� ��char��

fn�names

�

env�keys fn�names�defs

������������������������������������������������������������������

�� ��

�� all�simp�translate is the translation to FLIC code of a set ��

�� of function definitions without using any abstract ��

�� interpretation information� ��

�� ��

�� Parameters� ��

�� ��� The type of the analysis being performed� ��

�� ��� The environment of function definitions� ��

�� ��� The list of function names� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

all�simp�translate ��

analysis�type �� �� ���

fnDefn�Env �� �� ���

�fn�name� �� �� ���

flic�program

all�simp�translate antype fnDefs fns

�

map �simp�bind�trans antype fnDefs� fns

������������������������������������������������������������������

�� ��

�� simp�bind�trans produces a FLIC binding for a function� the ��

�� translation will not use any abstract interpretation ��
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�� information� ��

�� ��

�� Parameters� ��

�� ��� The type of the analysis� ��

�� ��� The function definition environment� ��

�� ��� The function name� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

simp�bind�trans ��

analysis�type �� �� ���

fnDefn�Env �� �� ���

fn�name �� �� ���

flic�binding

simp�bind�trans antype fnDefs fn

�

�fn� simp�translator antype fnDef�

where

�� fnDef is the function definition of the function named fn�

�� fnDef �� tc�Elem

fnDef

�

fnDefn �simp�bind�trans�� fnDefs fn

������������������������������������������������������������������

�� ��

�� simp�translator performs translation for a specific function ��

�� but with no use of abstract interpretation information made� ��

�� ��

�� Parameters� ��

�� ��� The type of the analysis� ��

�� ��� The function definition� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

simp�translator ��

analysis�type �� �� ���

tc�Elem �� �� ���

flic�simple�part

simp�translator antype fnDef

�

new�flictrans fnDef

� if antype � NONE

�

eager�flictrans fnDef

� if antype � Eager

�

error ���n�t�   

�Unknown or unsuitable analysis for simple translation���
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� otherwise

������������������������������������������������������������������

�� ��

�� all�anno�translate is the translation to FLIC code of a set ��

�� of function definitions and using corresponding abstract ��

�� information� ��

�� ��

�� Parameters� ��

�� ��� The type of the analysis being performed� ��

�� ��� The environment of context information� ��

�� ��� The environment of function definitions� ��

�� ��� The list of function names� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

all�anno�translate ��

analysis�type �� �� ���

context�Env �� �� ���

fnDefn�Env �� �� ���

�fn�name� �� �� ���

flic�program

all�anno�translate antype cEnv fnDefs fns

�

map �anno�translator antype cEnv fnDefs� fns

������������������������������������������������������������������

�� ��

�� anno�translator performs translation for a specific function���

�� ��

�� Parameters� ��

�� ��� The type of the analysis� ��

�� ��� The context environment� ��

�� ��� The function definition environment� ��

�� ��� The function name� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

anno�translator ��

analysis�type �� �� ���

context�Env �� �� ���

fnDefn�Env �� �� ���

fn�name �� �� ���

flic�binding

anno�translator antype cEnv fnDefs fname

�

�fname� trans�func�

��
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where

�� trans�func is the FLIC translation of the function�

�� trans�func �� flic�simple�part

trans�func

�

func�anno�trans antype paramAnnos cEnv fnDef

��

�� paramAnnos is the set of formal parameters and their

�� contexts found from a lookup via the function name�

�� paramAnnos �� idx�table structured�context

paramAnnos

�

value�elim cxt�lkup�err �param�idx�table cEnv fname�

��

�� fnDef is the function definition� found from a lookup via

�� the function name in the definition environment�

�� fnDef �� tc�Elem

fnDef

�

fnDefn �anno�translator�� fnDefs fname

��

�� cxt�lkup�err is the main error message produced when an error

�� in the lookup of parameters and contexts occurs�

�� cxt�lkup�err �� �char�

cxt�lkup�err

�

�anno�translator� Error in lookup of contexts��

������������������������������������������������������������������

�� ��

�� func�anno�trans translates a function definition into its ��

�� corresponding FLIC code� using the context information ��

�� obtained for each parameter and� possibly context information��

�� from other functions� ��

�� ��

�� Parameters� ��

�� ��� The kind of analysis being performed� ��

�� ��� An indexed table of formal parameters and their ��

�� contexts� ��

�� ��� The environment of contexts for all parameters of ��

�� every function� ��

�� ��� The function definition to be translated� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

func�anno�trans ��

analysis�type �� �� ���

idx�table structured�context �� �� ���

context�Env �� �� ���

tc�Elem �� �� ���

flic�simple�part
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func�anno�trans antype paramAnnos cEnv fnDef

�

nd�flictrans paramAnnos cEnv fnDef

� if antype � Neededness

�

st�flictrans paramAnnos fnDef

� if antype � Strictness

�

stab�flictrans paramAnnos cEnv fnDef

� if antype � Strabsence

�

error �func�anno�trans� Unknown analysis type�

� otherwise

������������������������������������������������������������������

�� ��

�� all�Context�Expr�Val is the solution of all context ��

�� expressions so as to form an environment of structured ��

�� contexts� ��

�� ��

�� Parameters� ��

�� ��� The type of the analysis� ��

�� ��� The context expression environment� ��

�� ��� The list of function names� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

all�Context�Expr�Val ��

analysis�type �� �� ���

context�Exp�Env �� �� ���

�fn�name� �� �� ���

context�Env

all�Context�Expr�Val antype cExp�Env fn�names

�

foldr �cxt�evaluator antype cExp�Env� empty�Param�Env fn�names

������������������������������������������������������������������

�� ��

�� cxt�evaluator adds to a given context environment by ��

�� evaluating the context expressions associated with the ��

�� parameters of a function� ��

�� ��

�� ��

�� Parameters� ��

�� ��� The type of analysis being performed� ��

�� ��� The context expression environment� ��

�� ��� The name of a function� ��

�� ��� The current context environment� ��

�� �See the type declaration for a key to the above�� ��

�� ��
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������������������������������������������������������������������

cxt�evaluator ��

analysis�type �� �� ���

context�Exp�Env �� �� ���

fn�name �� �� ���

context�Env �� �� ���

context�Env

cxt�evaluator antype cExpEnv fnm cEnv

�

add�Param�Env cEnv fnm params str�cxts

where

�� params is the list of parameters for the function�

�� params �� ��char��

�� cExps is the corresponding list of context expressions�

�� cExps �� �context�Expression�

�params� cExps�

�

value�elim param�lkup�err params�exps

��

�� param�lkup�err is the main error message when an exception

�� occurs when looking up the function in the context expression

�� environment�

�� param�lkup�err �� �char�

param�lkup�err

�

�cxt�evaluator� Error in parameters�expressions lookup��

��

�� params�exps is the �params� cExps� pair above� but tagged

�� to indicate whether it has been retrieved successfully�

�� params�exps �� value ���char����context�Expression��

params�exps

�

param�vrs�vls cExpEnv fnm

��

�� str�cxts is the list of structured contexts resulting

�� from the evaluation of the context expressions�

�� str�cxts �� �structured�Context�

str�cxts

�

�

context�Evaluation �i �� �cExps�i� �

i !� index cExps

�

��

�� context�Evaluation finds the context that is the result of

�� evaluating a context expression with a given initial context�

�� context�Evaluation ��

�� num �� context�Expression �� structured�Context

context�Evaluation ind

�

context�Expr�Evaluation

antype initial�cxt cExpEnv fnm ind ��
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��

�� initial�cxt is the initial context supplied as input to the

�� evaluation of each context expression�

�� initial�cxt �� structured�Context

initial�cxt

�

lattice�SCINIT antype

������������������������������������������������������������������

�� ��

�� all�Context�Prop�Expr produces all the context expressions ��

�� which correspond to a set of function definitions� ��

�� ��

�� Parameters� ��

�� ��� The environment of function definitions� ��

�� ��� The list of function names� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

all�Context�Prop�Expr ��

fnDefn�Env �� �� ���

�fn�name� �� �� ���

context�Exp�Env

all�Context�Prop�Expr fn�defs fn�names

�

foldr �cxt�expr�form fn�defs� initial�cxt�Exp�Env fn�names

������������������������������������������������������������������

�� ��

�� cxt�expr�form formulates a set of context expressions� one ��

�� for each parameter of a given function� and thus modifies ��

�� the context expression environment� ��

�� ��

�� Parameters� ��

�� ��� The function definition environment� ��

�� ��� The given function� ��

�� ��� The current context expression environment� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

cxt�expr�form ��

fnDefn�Env �� �� ���

fn�name �� �� ���

context�Exp�Env �� �� ���

context�Exp�Env

cxt�expr�form fn�def�env fnm cExpEnv

�
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add�Param�Env cExpEnv fnm params cExps

where

�� fndef is the function definition found�

�� fndef �� tc�Elem

fndef

�

fnDefn �cxt�expr�form�� fn�def�env fnm

��

�� params is the list of parameters for the function�

�� params �� ��char��

�� defn�exp is the defining expression for the function�

�� defn�exp �� tc�Elem

�params� defn�exp�

�

func�def�split fndef

��

�� cExps finds the list of context expressions corresponding to

�� each parameter for a function�

�� cExps �� �context�Expression�

cExps

�

map �expr�Formulation params fndef� params

��

�� expr�Formulation formulates a context expression for

�� a particular parameter of a function�

�� expr�Formulation ��

�� ��char�� ��

�� tc�Elem ��

�� �char� ��

�� context�Expression

expr�Formulation ps fdef p

�

context�Prop�Expr �mk�ord�par p� ps fdef

�� mk�ord�par converts a variable name to its prop�Var equivalent�

mk�ord�par v

�

Ord v

������������������������������������������������������������������

�� ��

�� fnDefn is the function definition corresponding to a given ��

�� name� The definition is found from an environment lookup� ��

�� ��

�� Parameters� ��

�� ��� A message to be used in case the lookup of the ��

�� function definition fails� ��

�� ��� The function definition environment� ��

�� ��� The function name� ��

�� �See the type declaration for a key to the above�� ��

�� ��
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������������������������������������������������������������������

fnDefn ��

�char� �� �� ���

fnDefn�Env �� �� ���

�char� �� �� ���

tc�Elem

fnDefn message fnDefs fn

�

value�elim lkup�errmess �env�lkup fnDefs fn�

where

�� lkup�errmess is the error message produced if the lookup of

�� a function�s definition goes wrong�

�� lkup�errmess �� �char�

lkup�errmess

�

message   ��nFunction definition not found for �   fn

B���� Neededness optimisation functions

������������������������������������������������������������������

�� ��

�� ndd�flic�appl�expr is a FLIC simple part which represents a ��

�� function application� The translation to FLIC is done with ��

�� respect to neededness analysis information� ��

�� ��

�� Parameters� ��

�� ��� A translator for subexpressions� ��

�� ��� An environment of contexts� ��

�� ��� The tc�Elem expression to be translated� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

ndd�flic�appl�expr ��

�context�Env �� tc�Elem �� flic�simple�part� �� �� ���

context�Env �� �� ���

tc�Elem �� �� ���

flic�simple�part

ndd�flic�appl�expr fltrans cEnv appl

�

flic�appl�expr fltrans� flic�fun orig�acts

� if fn�is�formal

�

ndd�opt�appl�trans fltrans� fn�par�cxts flic�fun fn�arity orig�acts

� otherwise

��

where

�� fn�is�formal indicates whether the leftmost and innermost

�� function being applied is a formal parameter�
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�� fn�is�formal �� bool

fn�is�formal

�

is�Assump inner�fun

��

�� inner�fun is the leftmost and innermost function in the

�� application�

�� inner�fun �� tc�Elem

inner�fun

�

hd applic�list

��

�� orig�acts is the original list of actual parameters in the

�� application�

�� orig�acts �� �tc�Elem�

orig�acts

�

tl applic�list

��

�� applic�list is the list of all components of the application�

�� applic�list �� �tc�Elem�

applic�list

�

appl�list appl

��

�� fltrans� is the actual translation function formed using

�� the context environment�

fltrans�

�

fltrans cEnv

��

�� flic�fun is the FLIC translation of inner�fun�

�� flic�fun �� flic�simple�part

flic�fun

�

Fl�Name fn�name

��

�� fn�name is the name of the function being applied�

�� fn�name �� �char�

fn�name

�

tc�Elem�name inner�fun

��

�� fn�par�cxts is the table of parameters and their contexts

�� associated with the given function�

�� fn�par�cxts �� idx�table structured�context

fn�par�cxts

�

value�elim lkup�errmess �param�idx�table cEnv fn�name�

��

�� lkup�errmess is the error message produced by an incorrect

�� lookup of the function name in the context environment�

�� lkup�errmess �� �char�

lkup�errmess
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�

�ndd�flic�appl�expr� Error in lookup of contexts of �   fn�name

��

�� fn�arity is the arity �i�e� the number of parameters� of the

�� function�

�� fn�arity �� num

fn�arity

�

value�elim arity�lkup�errmess �fn�size cEnv fn�name�

��

�� arity�lkup�errmess is the error message produced if a fault

�� occurs during the lookup of the function�s arity�

�� arity�lkup�errmess �� �char�

arity�lkup�errmess

�

�ndd�flic�appl�expr� Error in lookup of arity of �   fn�name

������������������������������������������������������������������

�� ��

�� ndd�opt�appl�trans is the optimised translation of an ��

�� application to FLIC� The leftmost and innermost function is ��

�� the one to be applied to the applicands and it is the ��

�� characteristics of this function which determine how the ��

�� application may be optimised� ��

�� ��

�� Parameters� ��

�� ��� A translator from tc�Elem objects to FLIC for ��

�� the sub�expressions� ��

�� ��� An index table of contexts for the parameters of the��

�� functions being applied� ��

�� ��� The function being applied in FLIC form� ��

�� ��� The size �arity� of the function being applied� ��

�� ��� The applicands of the application� in tc�Elem form� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

ndd�opt�appl�trans ��

�tc�Elem �� flic�simple�part� �� �� ���

idx�table structured�context �� �� ���

flic�simple�part �� �� ���

num �� �� ���

�tc�Elem� �� �� ���

flic�simple�part

ndd�opt�appl�trans fltrans par�cxts flic�fun fsize act�list

�

dummy�abs�make dummy�appl�expr dummy�no

� if dummies�reqd

�

ord�appl�expr

� otherwise

��



APPENDIX B� FURTHER DOCUMENTATION ON FERDINAND ���

where

�� dummies�reqd denotes whether any dummy variables have to be

�� added to the application�

�� dummies�reqd �� bool

dummies�reqd

�

"ndd�unapp�nos ! dummy�no

��

�� ndd�unapp�nos is a list of the indices of the parameters of

�� the function which are needed but which do not have any

�� actual counterparts i�e� they are unapplied�

�� ndd�unapp�nos �� �num�

ndd�unapp�nos

�

filter ��� num�acts� ndd�indices

��

�� num�acts is the number of actual parameters�

�� num�acts �� num

num�acts

�

"act�list

��

�� ndd�indices is a list of all of the parameter indices of the function

�� which are needed�

�� ndd�indices �� �num�

ndd�indices

�

needed�par�nos par�cxts fsize

��

�� dummy�no is the number of parameters of the function which

�� are �unapplied��

�� dummy�no �� num

dummy�no

�

fsize � num�acts

��

�� dummy�appl�expr is a FLIC application expression which includes

�� dummy variables�

�� dummy�appl�expr �� flic�simple�expr

dummy�appl�expr

�

flic�appl�expr fltrans flic�fun �ndd�acts   dummy�acts�

��

�� ndd�acts is a list of all the actual parameters which are

�� needed by the function�

�� ndd�acts �� �tc�Elem�

ndd�acts

�

select ndd�indices act�list

��

�� dummy�acts is a list of dummy actual parameters which stand

�� for needed parameters of the function which are not included in

�� the application�

dummy�acts



APPENDIX B� FURTHER DOCUMENTATION ON FERDINAND ���

�

dummy�var�list ndd�unapp�nos

��

�� ord�appl�expr is a FLIC application expression which does not

�� include dummy variables�

�� ord�appl�expr �� flic�simple�expr

ord�appl�expr

�

flic�appl�expr fltrans flic�fun �ndd�acts   extra�acts�

��

�� extra�acts is a list of the actual parameters which are

�� superfluous to the function being applied as the function�s

�� arity is smaller than the number of applicands�

�� extra�acts �� �tc�Elem�

extra�acts

�

drop fsize act�list

������������������������������������������������������������������

�� ��

�� ndd�flic�name�expr is the translation of a function name to ��

�� FLIC with regard to the neededness of the function�s ��

�� parameters� We are assuming that the function name occurs as ��

�� a �null� application� ��

�� ��

�� Parameters� ��

�� ��� The environment of context information� ��

�� ��� The name of the function� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

ndd�flic�name�expr ��

context�Env �� �� ���

�char� �� �� ���

flic�simple�part

ndd�flic�name�expr cEnv nm

�

dummy�abs�make dummy�appl�expr fn�arity

� if dummies�reqd

�

name�trans

� otherwise

��

where

�� dummies�reqd denotes whether any dummy variables have to be

�� added to the application�

�� dummies�reqd �� bool

dummies�reqd

�

ndd�no ! fn�arity

��
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�� ndd�no is the number of needed parameters of the function�

ndd�no

�

"ndd�indices

��

�� ndd�indices is a list of all of the parameter indices of the function

�� which are needed�

�� ndd�indices �� �num�

ndd�indices

�

needed�par�nos fn�par�cxts fn�arity

��

�� dummy�appl�expr is a FLIC application expression which includes

�� dummy variables�

�� dummy�appl�expr �� flic�simple�expr

dummy�appl�expr

�

Expr �appls �Simple name�trans� dummy�acts�

��

�� dummy�acts is a list of dummy actual parameters which stand

�� for needed parameters of the function�

�� dummy�acts �� �flic�simple�part�

dummy�acts

�

dummy�simples ndd�indices

��

�� name�trans is the FLIC translation of the given function name�

�� name�trans �� flic�simple�expr

name�trans

�

Fl�Name nm

��

�� fn�par�cxts is the table of parameters and their contexts

�� associated with the given function�

�� fn�par�cxts �� idx�table structured�context

fn�par�cxts

�

value�elim lkup�errmess �param�idx�table cEnv nm�

��

�� lkup�errmess is the error message produced by an incorrect

�� lookup of the function name in the context environment�

�� lkup�errmess �� �char�

lkup�errmess

�

�ndd�flic�name�expr� Error in lookup of contexts of �   nm

��

�� fn�arity is the arity �i�e� the number of parameters� of the

�� function�

�� fn�arity �� num

fn�arity

�

value�elim arity�lkup�errmess �fn�size cEnv nm�

��

�� arity�lkup�errmess is the error message produced if a fault
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�� occurs during the lookup of the function�s arity�

�� arity�lkup�errmess �� �char�

arity�lkup�errmess

�

�ndd�flic�name�expr� Error in lookup of arity of �   nm

������������������������������������������������������������������

�� ��

�� needed�par�nos is the list of parameter numbers which are ��

�� needed for a function� The �neededness� of each parameter ��

�� is found from an index table of structured contexts� ��

�� There are size parameters to be examined in all� ��

�� N�B� The indices produced are numbered from 	� ��

�� ��

�� Parameters� ��

�� ��� The index table of structured contexts for the ��

�� function� ��

�� ��� The size of the function� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

needed�par�nos ��

idx�table structured�context �� �� ���

num �� �� ���

�num�

needed�par�nos par�cxts size

�

��i��� �

i !� ����size�#

ilkup�pred is�Ndd par�cxts i

�

������������������������������������������������������������������

�� ��

�� dummy�abs�make adds �dummy� abstractions to the front of a ��

�� FLIC defining expression� ��

�� ��

�� Parameters� ��

�� ��� The FLIC defining expression� ��

�� ��� The number of dummy abstractions to be added� ��

�� ��� The list of indices of which variables are needed� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

dummy�abs�make ��

flic�simple�part �� �� ���

num �� �� ���

flic�simple�part
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dummy�abs�make flExp n

�

foldr abst�form flExp �dummy�names n�

������������������������������������������������������������������

�� ��

�� dummy�names is a list of a given number of dummy variable ��

�� names� ��

�� ��

�� Parameters� ��

�� ��� The number of dummy names to be generated� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

dummy�names ��

num �� �� ���

�param�

dummy�names n

�

map dummy�var�name ����n�

������������������������������������������������������������������

�� ��

�� dummy�var�list is a list of tc�Elem dummy variables derived ��

�� from a list of numbers� �c�f� dummy�simples� ��

�� ��

�� Parameters� ��

�� ����� The list of numbers from whence the list of dummy ��

�� variables is derived� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

dummy�var�list ��

�num� �� �� �����

�tc�Elem�

dummy�var�list

�

map �tc�var�expr � dummy�var�name � � ���

������������������������������������������������������������������

�� ��

�� dummy�var�name is a dummy parameter name derived from a given��

�� natural number� ��

�� ��

�� Parameters� ��

�� ��� The number being used to derive a name� ��

�� �See the type declaration for a key to the above�� ��
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�� ��

������������������������������������������������������������������

dummy�var�name ��

num �� �� ���

param

dummy�var�name n

�

�dummy��   �shownum n�

������������������������������������������������������������������

�� ��

�� dummy�simples is a list of FLIC simple parts corresponding to��

�� a list of dummy names� The number of dummy names results from��

�� a list of natural numbers� �c�f� dummy�var�list� ��

�� ��

�� Parameters� ��

�� ����� The given natural number� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

dummy�simples ��

�num� ��

�flic�simple�part�

dummy�simples

�

map �dummy�simple�part � � ���

������������������������������������������������������������������

�� ��

�� dummy�simple�part is a FLIC simple part corresponding to a ��

�� dummy name� The dummy name is derived from a natural number� ��

�� ��

�� Parameters� ��

�� ��� The given natural number� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

dummy�simple�part ��

num �� �� ���

flic�simple�part

dummy�simple�part n

�

Fl�Name �dummy�var�name n�

������������������������������������������������������������������
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�� ��

�� abst�form is a FLIC abstraction formed from a given variable ��

�� name and a FLIC simple part �representing the defining ��

�� expression�� ��

�� ��

�� Parameters� ��

�� ��� The variable name� ��

�� ��� The FLIC simple part� ��

�� �See the type declaration for a key to the above�� ��

�� ��

������������������������������������������������������������������

abst�form ��

param �� �� ���

flic�simple�part �� �� ���

flic�simple�part

abst�form v def�exp

�

Abs �Single�Abs v �Simple def�exp��

B�� Results produced from indextest

B���� Sample of the tc Elem expressions

Defining functions�

Environment�

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

������������������������������

Name� f��

Value�

Lambda ��Var��� Triv �Lrec �Assume ��Var��� �List �UAssume �a� �U 	����

�Name �f��� �Name �f�����

������������������������������

������������������������������

Name� f��

Value�

Lambda ��Var��� Triv �App �Name �f���� �Assume ��Var��� Triv��

������������������������������

������������������������������

Name� f��

Value�

Lambda ��Var��� Triv �Lambda ��Var��� Triv �App �Name �f�	�� �Assume

��Var��� Triv���

������������������������������

������������������������������

Name� f�	

Value�
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Lambda ��Var��� Triv �Lambda ���hyp�Var��� Triv �App �App �Name �f
��

�Assume ��Var��� Triv�� �Assume ���hyp�Var��� Triv���

������������������������������

B���� Examples of the context expressions formed

Context expressions�

Environment�

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

������������������������������

Name� f��

Value�

Table�

                    

�� Name� �Var��

Value�

CONTAND

First op��

CXT�APPL

Applied fn�

INITIAL

Input expression�

CXT�APPL

Applied fn�

CXT�FUNC Lrec �

Actuals�

CXT�LAMBDA

Input Param "� � Function index� 	

Actuals�

�No actuals�

ABSENT

ABSENT

Input expression�

INITIAL

Second op��

CONTAND

First op��

CXT�APPL

Applied fn�

ABSENT

Input expression�

CXT�APPL

Applied fn�

CXT�FUNC Lrec �

Actuals�

CXT�LAMBDA

Input Param "� � Function index� 	

Actuals�

�No actuals�

ABSENT
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ABSENT

Input expression�

INITIAL

Second op��

CXT�APPL

Applied fn�

ABSENT

Input expression�

CXT�APPL

Applied fn�

CXT�FUNC Lrec �

Actuals�

CXT�LAMBDA

Input Param "� � Function index� 	

Actuals�

�No actuals�

ABSENT

ABSENT

Input expression�

INITIAL

����������

                    

������������������������������

������������������������������

Name� f��

Value�

Table�

                    

�� Name� �Var��

Value�

CXT�APPL

Applied fn�

INITIAL

Input expression�

CXT�APPL

Applied fn�

CXT�FUNC f�� �

Actuals�

CXT�LAMBDA

Input Param "� � Function index� 	

Actuals�

�No actuals�

Input expression�

INITIAL

����������

                    

������������������������������
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������������������������������

Name� f��

Value�

Table�

                    

�� Name� �Var��

Value�

CXT�APPL

Applied fn�

INITIAL

Input expression�

CXT�APPL

Applied fn�

CXT�FUNC f�	 �

Actuals�

CXT�LAMBDA

Input Param "� � Function index� 	

Actuals�

�No actuals�

Input expression�

INITIAL

����������

�� Name� �Var��

Value�

CXT�APPL

Applied fn�

ABSENT

Input expression�

CXT�APPL

Applied fn�

CXT�FUNC f�	 �

Actuals�

CXT�LAMBDA

Input Param "� � Function index� 	

Actuals�

�No actuals�

Input expression�

INITIAL

����������

                    

������������������������������

������������������������������

Name� f�	

Value�

Table�

                    

�� Name� �Var��

Value�

CONTAND
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First op��

CXT�APPL

Applied fn�

INITIAL

Input expression�

CXT�APPL

Applied fn�

CXT�FUNC f
 �

Actuals�

CXT�LAMBDA

Input Param "� � Function index� 	

Actuals�

�No actuals�

CXT�LAMBDA

Input Param "� � Function index� 	

Actuals�

�No actuals�

Input expression�

INITIAL

Second op��

CXT�APPL

Applied fn�

ABSENT

Input expression�

CXT�APPL

Applied fn�

CXT�FUNC f
 �

Actuals�

CXT�LAMBDA

Input Param "� � Function index� 	

Actuals�

�No actuals�

CXT�LAMBDA

Input Param "� � Function index� 	

Actuals�

�No actuals�

Input expression�

INITIAL

����������

�� Name� ��hyp�Var��

Value�

CONTAND

First op��

CXT�APPL

Applied fn�

ABSENT

Input expression�

CXT�APPL
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Applied fn�

CXT�FUNC f
 �

Actuals�

CXT�LAMBDA

Input Param "� � Function index� 	

Actuals�

�No actuals�

CXT�LAMBDA

Input Param "� � Function index� 	

Actuals�

�No actuals�

Input expression�

INITIAL

Second op��

CXT�APPL

Applied fn�

INITIAL

Input expression�

CXT�APPL

Applied fn�

CXT�FUNC f
 �

Actuals�

CXT�LAMBDA

Input Param "� � Function index� 	

Actuals�

�No actuals�

CXT�LAMBDA

Input Param "� � Function index� 	

Actuals�

�No actuals�

Input expression�

INITIAL

����������

                    

������������������������������

B���� The resulting structured contexts

Context environment�

Environment�

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

������������������������������

Name� f��

Value�

Table�
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�� Name� �Var��

Value�

�Strict�

END�

����������

                    

������������������������������

������������������������������

Name� f��

Value�

Table�

                    

�� Name� �Var��

Value�

�Lazy�

END�

����������

                    

������������������������������

������������������������������

Name� f��

Value�

Table�

                    

�� Name� �Var��

Value�

�Lazy�

END�

����������

�� Name� �Var��

Value�

�Absent�

END�

����������

                    

������������������������������

������������������������������

Name� f�	

Value�

Table�

                    

�� Name� �Var��

Value�

�Lazy�

END�

����������

�� Name� ��hyp�Var��

Value�

�Lazy�

END�

����������
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������������������������������

������������������������������

Name� f


Value�

Table�

                    

�� Name� �Var��

Value�

�Lazy�

END�

����������

�� Name� ��hyp�Var��

Value�

�Lazy�

END�

����������

�� Name� �Var�


Value�

�Strict�

END�

����������

                    

������������������������������

������������������������������

Name� f�

Value�

Table�

                    

�� Name� ��hyp�Var��

Value�

�Strict�

END�

����������

�� Name� �Var��

Value�

�Lazy�

END�

����������

                    

������������������������������

������������������������������

Name� f�

Value�

Table�

                    

�� Name� ��hyp�Var��

Value�

�Strict�

END�

����������
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�� Name� �Var��

Value�

�Lazy�

END�

����������

�� Name� ��hyp�Var��

Value�

�Absent�

END�

����������

                    

������������������������������

������������������������������

Name� f

Value�

Table�

                    

�� Name� ��hyp�Var��

Value�

�Strict�

END�

����������

�� Name� �Var��

Value�

�Lazy�

END�

����������

�� Name� �Var��

Value�

�Lazy�

END�

����������

                    

������������������������������

������������������������������

Name� f�

Value�

Table�

                    

�� Name� �Var��

Value�

�Strict�

INIT�

����������

�� Name� �Var�	

Value�

�Absent�

END�

����������

                    

������������������������������
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������������������������������

Name� f�

Value�

Table�

                    

�� Name� �Var�

Value�

�Strict�

END�

����������

                    

������������������������������

������������������������������

Name� f�

Value�

Table�

                    

�� Name� �Var��

Value�

�Absent�

END�

����������

                    

������������������������������

������������������������������

Name� f�

Value�

Table�

                    

�� Name� ��hyp�Var��

Value�

�Absent�

END�

����������

                    

������������������������������

������������������������������

Name� f	

Value�

Table�

                    

�� Name� �Var��

Value�

�Absent�

END�

����������

                    

������������������������������

������������������������������

Name� f��
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Value�

EMPTY table

������������������������������

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

B�� Test scripts

B���� acker

The function below is an implementation of Ackermann�s function�

ack �� nat �� nat �� nat

ack 	 n � �n  ��

ack �m �� 	 � �

ack �m �� �n �� � ack m �ack �m  �� n�

main �� nat

main � ack �� ��

B���� polymap

Polymap is a de
nition of map with explicit polymorphism�

map �� �a#b �� Un 	� �� �a �� b� �� �List a� �� �List b�

map a b f �� � ��

map a b f �x�y� � �f x���map a b f y�

gen �� nat �� �List nat�

gen 	 � ��

gen �n �� � ��n ����gen n��

main �� List nat

main � map nat nat g �gen �				�

where

g �� nat �� nat

g z � z  �

B���� mergesort

msort �� �List nat� �� �List nat�

msort �� � ��

msort �a� � �a�

msort �a�b�c� � merge �a� �msort �b�c��

where

merge �� �List nat� �� �List nat� �� �List nat�

merge �� b � b

merge a �� � a

merge �a�x� �b�y� � a��merge x �b�y�� � if � a !� b �

� b��merge �a�x� y� � otherwise



APPENDIX B� FURTHER DOCUMENTATION ON FERDINAND ���

gen �� nat �� �List nat�

gen 	 � ��

gen �n �� � ��n ����gen n��

reverse �� �List nat� �� �List nat�

reverse �� � ��

reverse �a�x� � append �reverse x� �a�

append �� �List nat� �� �List nat� �� �List nat�

append �� y � y

append �a�x� y � �a��append x y��

take �� nat �� �List nat� �� �List nat�

take 	 x � ��

take �n �� �� � ��

take �n �� �a�x� � �a��take n x��

drop �� nat �� �List nat� �� �List nat�

drop 	 y � y

drop �n �� �� � ��

drop �n �� �a�x� � drop n x

len �� �List nat� �� nat

len �� � 	

len �a�x� � �  �len x�

main �� �List nat�

main � msort �append �drop �div �len x� � �convert �� �� 	� True�� x�

�take �div �len x� � �convert �� �� 	� True�� x��

where

x �� �List nat�

x � �gen �			�

B���� bubblesort

�insert �identityproofs��fe�

�insert �msort�fe�

bsort �� �List nat� �� �List nat�

bsort l � passes �"l� l

passes �� nat �� �List nat� �� �List nat�

passes 	 x

� x

passes �n �� x

� pass �"pv� pv �nateqrefl �"pv��

where
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pv �� �List nat�

pv � �passes n x�

nateqrefl �� �n��nat� �� �Id bool True �n�n��

nateqrefl 	

� identify True

nateqrefl �n ��

� nateqrefl n

pass �� �n��nat� �� �l���List nat�� �� �Id bool True ��"l��n�� �� �List nat�

pass 	 l p

� l

pass �n �� �� p

� abort �feqtimpbot p� �List nat�

pass �n �� �a� p

� �a�

pass �n �� �a�b�x� p

� �a��pass n �b�x� newp��

� if a!�b

� �b��pass n �a�x� q��

� otherwise

where

q �� �Id bool True ��"�a�x���n��

newp �� �Id bool True ��"�b�x���n��

main �� �List nat�

main � bsort �reverse �gen ����

B���� permsort

compose �� �ca#cb#cc��Un 	� � �cb �� cc� �� �ca �� cb� �� ca �� cc

compose f g x � f �g x�

include �� �a �� Un 	� � a �� �List �List a�� �� �List �List a��

include x s

� concat �map �compose �map smallins� mkpairs� s�

where

smallins �� ��List a� " �List a�� �� �List a�

smallins �t��t�� � t�   �x�   t�

mkpairs �� �List a� �� �List ��List a� " �List a���

mkpairs �� � ���������

mkpairs �h�t� � �����h�t�� � �map acons �mkpairs t��

where

acons �� ��List a� " �List a�� �� ��List a� " �List a��

acons �r�s� � �h�r� s�



APPENDIX B� FURTHER DOCUMENTATION ON FERDINAND ���

perms �� �a �� Un 	� �� �List a� �� �List �List a��

perms l � foldr include ���� l

sorted �� �List nat� �� bool

sorted �� � True

sorted �a� � True

sorted �a�b�c� � sorted �b�c� � if a !� b

� False � otherwise

psort �� �List nat� �� �List �List nat��

psort l � take � �filter sorted �perms l��

main �� List �List nat�

main � psort ����������������������

B���� treesort

Some functions are used below whose de
nitions appear in the mergesort program�

flatten �� �Tree nat� �� �List nat�

flatten NilT � ��

flatten �Node x b c� � �flatten b�   �x�   �flatten c�

mktree �� �List nat� �� �Tree nat�

mktree �� � NilT

mktree �a�x� � place a �mktree x�

place �� nat �� �Tree nat� �� �Tree nat�

place a NilT � Node a NilT NilT

place a �Node b p q� � Node b �place a p� q � if a ! b

� Node b p �place a q� � otherwise

tsort �� �List nat� �� �List nat�

tsort � compose flatten mktree

main �� �List nat�

main � tsort �append �drop �div �len x� � �convert �� �� 	� True�� x�

�take �div �len x� � �convert �� �� 	� True�� x��

where

x �� �List nat�

x � �gen �			�

B�� The UNIX manual page

The manual page for the scripts that act as interfaces to the Ferdinand system is
shown on the following pages�
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NAME

ferd�� mferd� � interfaces to the Ferdinand functional programming system

SYNOPSIS

ferd� 	 �cfhl 
 	 �a analysis 
 �lename

mferd� 	 �cfhl 
 �lename� � �

DESCRIPTION

Ferdinand is a lazy functional programming language� based upon intuitionistic
type theory� which was developed by Andrew Douglas at the University of Kent
at Canterbury�

ferd� compiles a Ferdinand language input �le �which should have the �fe ex�
tension� to produce FLIC �Functional Language Intermediate Code�� Also� by
default� the FLIC code produced is subsequently compiled �using fc� to produce
an executable program�

Ferdinand scripts consist of a set of function de�nitions� one of which should be
called main this will give the topmost expression to be evaluated� The normal
form of this expression should be the result given by the executable program�
Ferdinand syntax is quite similar to that of Miranda �seemira����� The Ferdinand
language is described fully in Andrew Douglas�s PhD thesis �see below��

Since the Ferdinand compiler is written in Miranda� the ferd� script actually
invokes the Miranda system� evaluating the ferdinand compilation function for a
given input �le and a given set of options� The set of options depends upon those
�ags given to ferd� �see below��

The Ferdinand compiler has been modi�ed by Alastair Telford at UKC so that
certain optimisations based upon abstract interpretation analyses may be per�
formed� The mferd� script simply performs batches of compilations each pos�
sible analysis�optimisation �including no optimisation� is invoked for every input
�le� Consequently� the �a �ag is not valid for mferd�� The resulting FLIC �les
and executable code �les are placed in a di�erent directory for each input �le�
These �les are given appropriate su�xes which indicate the optimisation tech�
nique which produced them� In addition� a �le giving a record of the compilation
process is produced�

OPTIONS

�c The Ferdinand script in �lename is simply compiled� with no FLIC code

Sun Release ��� �
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being produced� �This means that the �f �ag is set as well as there will be
no FLIC code to compile��

�f By default� not only is a FLIC code 	le produced but the FLIC 	le is then
compiled to produce an executable object 	le� The �f �ag is used to avoid
the compilation of the FLIC code to an executable� Consequently� if this
�ag is used then only FLIC 	les will be produced�

�h Displays a help message�

�l The Ferdinand script in �lename is a literate script�

�a analysis �This option is not allowed with the mferd� script�� An optimisation
technique� analysis� is used when compiling the Ferdinand program� This
will normally be an abstract interpretation� the results of which will a
ect
the FLIC code produced� The analysis type which follows the �a option may
be one of Eager�Neededness� Strictness and Strabsence �strictness and
absence� or other valid forms of those names� Valid abbreviations are�

e�E�eager and EAGER
for making the evaluation totally eager �strict��

n�N�need and NEED
for performing neededness analysis and optimisation�

s�S� strict and STRICT
for performing strictness analysis and optimisation�

a�A�strab and STRAB
for performing strictnessandabsence analysis and opti
misation�

FILES

Below� basename refers to the name of the Ferdinand 	le with the �fe extension
stripped o
�

basename�� The FLIC 	le produced by ferd��

basename The executable 	le produced by compiling basename���

basename d�basename analysis�� The FLIC 	les produced by mferd� for each
di
erent analysis �including no optimisation� which is signi	ed by
NONE��

basename d�basename analysis The executable 	les produced by mferd� from
each of the above FLIC 	les�

basename d�basename out A record of the compilation process produced bymferd��

Sun Release ��� �
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SEE ALSO

A Compiled Functional Language With A Martin�L�of Type System� Andrew M�
Douglas� PhD thesis� University of Kent at Canterbury� ���	


mira���


Type Theory and Functional Programming� Simon J� Thompson� Addison Wesley�
����


FLIC � a Functional Language Intermediate Code� Simon L� Peyton Jones and
M�S� Joy� Computing Science Departmental Report� University of Glasgow� ����


The Tempest� W� Shakespeare� �����

DIAGNOSTICS

The following errors and warning messages may be generated by the ferd� and
mferd� scripts� Other errors may be given by the Ferdinand compiler itself� When
appropriate a help message is given in addition to one of the diagnostics below�

Need �lename�

Too many arguments� One and only one �lename should be given to ferd�� �How�
ever� the latter error will not occur with mferd� since that will
take more than one �lename��

� � �does not exist�

� � � is not readable�

� � � is empty� The given �le cannot be found�is not readable�is empty� re�
spectively�

Unknown option� � � � An unrecognised option has been given�

WARNING MESSAGES

There are also some �non�fatal� warning messages�

Extra analysis option ignored� � � � The �a option can be used just once� If it
is used more than once then its �rst usage
will determine the analysis used�

Unrecognised type of analysis ignored��

Sun Release 	�� �
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BUGS

Please email any bug reports�suggestions to either amd��ukc	ac	uk or ajt��ukc	ac	uk	

AUTHORS

Andrew M	 Douglas
 amd��ukc	ac	uk
 who wrote the main Ferdinand system	

Alastair J	 Telford
 ajt��ukc	ac	uk
 who wrote the analysis�optimisation phase

the ferd� and mferd� scripts and this manual page	

Stephen P	 Thomas
 spt�cs	nott	ac	uk wrote the fc compiler	

COPYRIGHT

The Ferdinand system is copyright �C� Andrew M	 Douglas
 ����
 with parts
copyright �C� Alastair J	 Telford
 ���	

This manual page is copyright �C� Alastair J	 Telford
 ���	

TRADEMARK NOTICE

Miranda is a trademark of Research Software Ltd	
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