
1

On-demand Service Deployment Strategies for
Fog-as-a-Service Scenarios

Arash Bozorgchenani, Member, IEEE, Daniele Tarchi, Senior Member, IEEE,
and Walter Cerroni, Senior Member, IEEE

Abstract—Service deployment at the network edge is a promis-
ing area that has been studied recently in the literature. In this
work we have investigated a Fog-as-a-Service scenario, where
multiple Server Fog Nodes (SFNs) can serve multiple Client Fog
Nodes (CFNs) by exploiting different service deployment models,
i.e., SaaS, PaaS, and IaaS, in a flexible way. The system has
been modeled as a Size-Constrained Weighted Set Cover Problem
aiming at maximizing the amount of satisfied CFNs exploiting a
heterogeneous service deployment architecture, while minimizing
the service completion time in a computation offloading scenario.
In the simulation results section, we analyze the performance of
different methods in terms of percentage of CFNs’ offloading
requests satisfaction and offloading delay.

Index Terms—Fog Computing, Service Deployment, Compu-
tation Offloading, Optimization, Weighted Set Cover Problem

I. INTRODUCTION

FOG Computing can be seen as an extension of the Cloud
Computing paradigm toward the network edge consid-

ering an intermediate layer between the users and the cloud
aiming at reducing the latency while keeping the advantages of
the latter [1]. Cloud-based services are historically organized
in three main models, named Software-as-a-Service (SaaS),
Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service
(IaaS), each one involving different approaches, technologies
and levels of flexibility. When moving from a centralized
cloud architecture to a distributed edge architecture, a proper
service model deployment policy becomes of paramount im-
portance for coping with users requests while respecting their
requirements [2], [3]. Some works have considered SaaS,
PaaS or IaaS model deployment in edge networks [4]–[6].
Game-theoretic approaches have also been considered for
resource allocation in cloud and fog environments [7], [8].
However, all the previous studies focused on a specific service
model or application scenario, not taking advantage of the full
flexibility offered by a joint adoption of the different service
models. To this aim, we propose a Fog-as-a-Service (FogaaS)
approach where the Fog Computing layer is able to select
the proper models to be deployed in order to meet the user

D. Tarchi and W. Cerroni are with the Department of Electrical, Elec-
tronic and Information Engineering, University of Bologna, Italy (e-mail:
daniele.tarchi@unibo.it; walter.cerroni@unibo.it).

A. Bozorgchenani was with the Department of Electrical, Electronic and
Information Engineering, University of Bologna, Italy. He is now with the
Department of Computing and Communications, Lancaster University, the
UK (e-mail: a.bozorgchenani@Lancaster.ac.uk).

This work has been partially supported by the project “GAUChO - A Green
Adaptive Fog Computing and Networking Architecture” funded by the MIUR
Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2015 -
grant 2015YPXH4W.

requests, while keeping the overall delay low. Such a user-
centric approach is relevant with respect to the vision of future
B5G/6G systems [9].

We consider a fog environment, where some nodes can
work as Server Fog Nodes (SFNs), running applications and
services based on requests from Client Fog Nodes (CFNs). In
particular, in this letter we focus on computation offloading
applications, one of the main classes of services enabled by
fog computing [10]; the approach can be easily extended to
other kinds of applications. We advocate the possibility of
deploying the requested applications flexibly by leveraging
on the presence of multi-purpose SFNs, which are able to
implement any of the SaaS, PaaS and IaaS models. The prob-
lem is formulated as a Weighted Set Cover Problem (WSCP),
where each CFN can be served by one SFN implementing one
of the aforementioned models, whose selection depends on
the overall CFNs requests. We intend to design a mechanism
that aims to respond to all CFNs requests at the edge, and
jointly minimize the offloading delay through a proper service
model deployment. To this aim, our main contribution in this
work is introducing both an optimal and a heuristic model
deployment solution with different solution spaces. In the
simulation results, we have proved that the proposed heuristic
solution guarantees a complete CFNs coverage at the edge
while minimizing the offloading delay.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We focus on a scenario composed by two types of nodes,
namely CFNs and SFNs. While the CFNs are the nodes
performing an offloading request for a given application type,
the SFNs work as computing nodes, where the requested
application can be deployed through one of the SaaS, PaaS or
IaaS models; SaaS is able to only serve the CFNs requesting
a given application, PaaS is able to serve all the CFNs whose
requested application can be deployed on a specific platform,
and IaaS is able to change at run-time both platform and
application, hence being capable of responding to any request.
We define # as the number of CFNs and 8 as the index for
a specific CFN, while we consider to have (multi-purpose
SFNs, shown with index B, aiming at remotely processing
the requests received from the CFNs. Let us consider to
have " applications, where < identifies a specific application.
Moreover, let us assume there are at most % possible platforms,
where ? identifies a specific platform, i.e., a specific Operating
System or set of libraries able to execute a code specifically
written for that platform.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/384444066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Fig. 1. FogaaS Network Architecture.

The architecture of the considered scenario is depicted in
Fig. 1, where it is possible to notice that the CFNs can
be served by different SFNs. Applications and platforms
provided by the FogaaS network are supposed to be stored
in a repository. A deployment policy is considered, aiming
at selecting the proper service models to be deployed, with
the goal of a complete CFNs request coverage. For a better
clarity, some of the symbols used throughout the paper have
been added in the figure.

Let us define Q<? as an indicator function that takes the
value of 1 if the <-th application can be executed on the ?-th
platform. We now define the set of platforms on which the <-
th application can be executed as P< =

{
? = 1, . . . , % |Q<? = 1

}
and the set of applications that can be executed on ?-th plat-
form as M? =

{
< = 1, . . . , " |Q<? = 1

}
which are non-empty

sets, since, otherwise, the application to platform association
would be meaningless.

We suppose that every CFN can set-up one and only one
computation offloading request for a given application, hence
we can identify with #< the number of CFNs requesting
the <-th application, where # = ∑"

<=1 #<. If we define
with ��#<

8
the generic 8-th CFN when requesting the <-th

application, it is possible to define the set of CFNs requesting
the same application as

{
��#<

8

}
8=1,...,#<

.
By considering that in SaaS one SFN can only serve CFNs

having the same application request, it is possible to define the
collection of sets whose CFNs can be served with the SaaS
model as:

S(00(=
⋃

<=1,...,"

({
��#<8

}
8=1,...,#<

)
(1)

Similarly, the CFNs can be grouped depending on the
platform that can serve them. It is worth to be noticed that
there exists certain number of CFNs requesting applications
that can be executed on the ?-th platform. Hence, it is possible
to define S%00(as the collection of all the possible sets
grouping the CFNs whose application requests can be served
by a specific platform through the PaaS model:

S%00(=
⋃

?=1,...,%

(
℘

(⋃
<∈M?

{
��#<8

}
8=1,...,#<

))
, (2)

representing the union of all the platforms’ powersets1 cal-
culated over all the sets of CFNs whose application can be
supported by the ?-th platform. This corresponds to have

1The powerset ℘(·) of a set S refers to the set of all the possible
combinations of subsets composing S.

the set of all the possible groups in which the CFNs can
be organized depending on the requested application and the
platform supporting it.

Finally, the collection of the sets that can be served with
the IaaS model includes the powerset of all the possible
combinations of sets composed by the CFNs requesting a given
application and the supporting platform, hence:

S� 00(= ℘

(⋃
<∈M? , ?=1,...,%

{
��#<8

}
8=1,...,#<

)
(3)

IaaS allows the highest flexibility in composing the set of
CFNs, by mixing CFNs with different platforms and appli-
cation requests. However, the higher flexibility is obtained at
the cost of a higher deployment time. The collection of the
sets defining all the possible grouping that can be used for
serving all the CFNs can be defined as the union of the three
previously defined sets, i.e., S = S(00(∪ S%00(∪ S� 00(.
Let us focus for simplicity on the CFN requesting the <-th
application and its associated SFN.

In case of SaaS, the <-th application is considered to
be already deployed on the SFN. Hence, the CFN has to
send only the input data \<, depending on the requested
offloading application, and after the execution, the results, o<,
will be eventually sent back. This means that the offloading
completion time for any CFN requesting the application <

using the SaaS model is:

)<(00(=) \<C G +) \<?A>2 +) o<A G (4)

where)
\<
C G = !(\<)/'B and)

\<
?A>2 = $(\<)/[B are the

input data transmission and processing times for the <-th
application, respectively, while) o<A G = !(o<)/'B is the time
required to have the result back. Let us denote by !(·) the task
size to be offloaded/received to/from the Bth SFN, 'B the data
rate between the 8th CFN2 and the Bth SFN, $(·) the number
of operations to process a task, and [< the computational
capability of the Bth SFN.

In case the application is not deployed directly through
SaaS, a PaaS model can be used. In this case the platforms
are supposed to be already deployed on the SFNs, while
the application code k<? for executing a specific application
< over the platform ?, i.e., < ∈ M? , can be downloaded
at request from the repository. In this case, the offloading
completion time becomes:

)<%00(=)k
<
?

C G +)k
<
?

8=8C
+)<(00(+)'4?A>? (5)

where)
k<?
C G = !(k<?)/''4,)

k<?
8=8C

and)'4?A>? are the <-th
application code transmission time, the related initialization
time for a given ?-th platform, and the propagation delay from
SFN to repository, respectively, and ''4 represents the data
rate for accessing the repository.

Finally, in case of IaaS, the system should be able to
deploy at run-time the requested platform and application for
any CFN, if not already deployed. In the worst case when

2More specifically, the requested application is generated by the 8th CFN,
however, for the sake of simplicity of notation we omit the CFN index.

3

both platform and application requested by a CFN must be
deployed, the offloading completion time becomes:

)<�00(=) j?C G +) j?
8=8C

+)<%00(+)'4?A>? (6)

where)
j?
C G = !(j?)/''4 and)

j?
8=8C

are the times needed
to download the image and initialize a virtual machine or
container, j? , that provides the ?-th platform. In addition,
the time needed to transmit and initialize the platform-specific
application code and the parameter transmission and execution
time are considered.

The optimal service deployment can be modeled as an
optimization problem with the goal to guarantee full CFN
request coverage while minimizing the overall offloading time.
Among all possible combinations for covering all CFNs, we
define Cc = {�1, ..., �(} as a feasible grouping solution
considering policy c. Cc is composed of maximum (sets
of CFNs connected to the (SFNs, on each of which which
one of the service models is implemented.

Definition 1: A solution Cc is considered feasible if it meets
the following conditions:

C1 : 8 ∈ C+
c =⇒ 8 /∈ C−c (7a)

C2 :
(∑
B=1
|�B |= #, (7b)

where C+
c is one subset from the solution set Cc , and C−c is

the complement of C+
c w.r.t. Cc , i.e. C−c = Cc \ C+

c . The first
condition assures that a CFN does not belong to two groups,
and the second condition guarantees that all CFNs are covered
through the selected policy.

The goal of the problem is finding a policy c for grouping
the CFNs and deploying proper service models in the network
to jointly minimize the offloading delay and cover all the
CFNs. We define Φ(c) as an [# × (] allocation matrix where
each element represents the allocation of each 8-th CFN to B-th
SFN, when the policy c is selected. Moreover, we define)(c)
as a [# × (] delay matrix for policy c where each element
represents the delay for completing the offloading request of
the 8-th CFN to the allocated SFN, having implemented one of
the service models exploiting (4), (5) or (6). The considered
problem can be formulated as an Integer Linear Program as:

P1 : argmin
c

{tr [()(c) � Φ(c)) · �(×#]} , (8)

w.r.t., C1 − C2, where � refers to the Hadamard product of
the matrices, �(×# is the all-one matrix with size [(× #],
and tr(·) stands for the trace. Eq. (8) allows to find the policy
c for deploying the proper models on the SFNs, where the
offloading delay, corresponding to the sum of the delay of
all the allocated models meeting the feasibility conditions (7)
(i.e., full CFN coverage), is minimized3.

III. PROBLEM TRANSFORMATION AND SOLUTIONS

The problem can be modeled as a size-constrained WSCP,
where the goal is optimizing the set selection for covering all
the elements, while considering a predefined number of SFNs

3Note that tr(�"×# · �#×") corresponds to sum all the elements of �.

(i.e., a constrained number of sets) whose offloading time acts
as a weight for the set selection. In this section we reformulate
P1 as a WSCP where this transformation enables to group the
CFNs constrained by the number of SFNs.

A. WSCP-based service model deployment
Let us define)̂ as a [#×("+%+Λ)] delay matrix related to

each possible combination in Φ̂, which is a [# × (" + % +Λ)]
binary allocation matrix, defined as below:

Φ̂ = ©«
q̂1

1 · · · q̂
"
1 q̂"+1

1 · · · q̂"+%
1 q̂"+%+1

1 · · · q̂"+%+Λ
1

...
...

...
...

...
...

...
...

...
q̂1
#
· · · q̂"

#
q̂"+1
#

· · · q̂"+%
#

q̂"+%+1
#

· · · q̂"+%+Λ
#

ª®¬ (9)

Each column in Φ̂ represents one of the possible SaaS, PaaS,
or IaaS models to be deployed. Since each CFN can request
one application at a time, in each row only one of the
elements between column 1 and " takes the value of 1, i.e.,∑"
:=1 q̂

:
8

= 1,∀8. Moreover, in each row the number of 1s
between columns " + 1 to " + % depends on the number
of platforms supporting the application requested by the 8-th
CFN; hence, we have

∑%
?=1 q̂

("+?)
8

= |P< |,∀8. On the other
hand, Λ is the total number of possible IaaS deployments,
corresponding to the cardinality of the powerset S� 00(.

The optimal solution results in selecting (out of ("+%+Λ)
possible combinations. Since Λ corresponds to the number of
possible sets in (3), being composed by all the possible com-
binations of CFNs irrespective to their requested application
and platform, it is possible to derive the cardinality of the IaaS
sets as4 Λ = ∑"+%

;=2
("+%
;

)
. The solution space5 of the problem

reults to be equal to
(

("+%+Λ)!
("+%+Λ−()!·(!

)
where (deployments out

of (" + % + Λ) should be selected.
The WSCP is NP-complete, hence, it cannot be solved in a

polynomial time. Moreover, the solution space for the derived
problem grows exponentially w.r.t. the number of applications
and platforms leading to a non-tractable solution space. How-
ever, the NP problems, even though require exponential time,
still grow slowly enough allowing solutions for problems of a
useful size [11]. In order to solve the problem we propose two
possible solutions: an optimal solution applied to a reduced
solution space, and a heuristic solution applied to the full
solution space.

B. Solutions to the problem
1) Reduced Space Optimal Solution: In this case we con-

sider to restrict the solutions to SaaS and PaaS models.
The allocation matrix Φ̂ can be simplified considering the
deployment of SaaS and PaaS for the WSCP. Let us define
)̄ as a [# × (" + %)] delay matrix, and Φ̄ as a [# × (" + %)]
binary allocation matrix as below:

Φ̄ = ©«
q̄1

1 · · · q̄
"
1 q̄"+1

1 · · · q̄"+%
1

...
...

...
...

...
...

q̄1
#
· · · q̄"

#
q̄"+1
#

· · · q̄"+%
#

ª®¬ (10)

4The deployment of the IaaS is needed only if the CFNs request at least
two applications that are supported by two different platforms, otherwise SaaS
and PaaS is sufficient, hence going back to the solutions modeled in the first
" + % columns.

5It should be noted that not all the solutions in this space respect the
feasibility conditions defined in Def.1.

4

where q̄G
8

shows one element of the matrix. Hence, the number
of 1s in each row of Φ̄ is |P< |+1, representing all the platforms
that support the <-th requested service plus the requested <-
th service. Consequently, the total number of 1s in Φ̄ for all
CFNs equals (|P< |+1) · # .

Now we map the optimization problem to a WSCP, where
the goal is optimizing the set selection policy c for covering
all the CFNs. In other words, the set selection policy chooses
the models that should be deployed on the SFNs to cover all
the CFNs in (groups by transforming the allocation matrix Φ̄

to a matrix with (columns representing the selected models
for deployment on (SFNs. Let us define �- (c) as a linear
transformation matrix with policy c, mapping matrices Φ̄ and
)̄ to two matrices of size [# × (]. The optimization problem
can now be formulated in the following way:

P2 : argmin
c

{
tr

[(
�)̄ (c) � �Φ̄(c)

)
· �(×#

]}
, (11)

w.r.t., C1 − C2. We can define the set of CFNs in the group
�B ∈ Cc as �B =

{
8 |q̃B

8
= 1,∀8

}
, where q̃B

8
is an element of

transformed binary matrix �Φ̄(c). The goal is finding the opti-
mal policy c based on which the linear transformation function
selects the best CFNs grouping and model deployment on the
SFNs among the feasible solutions to minimize the offloading
delay. The solution space of the problem is

(
("+%)!

("+%−()!·(!

)
,

which is smaller w.r.t. the original Φ̂.
2) Full Space Heuristic Solution: In this section we pro-

pose a heuristic for full coverage of CFNs’ requests at the edge
while minimizing the delay. Our proposed XaaS-based model
Deployment Policy (XaDeP) exploits all the three service
models, where X stands for any of the three models. To
this aim, enlightened by the Concise Weighted Set Cover
(CWSC) algorithm [12], our heuristic leverages the number
of covered CFNs, i.e., |�] |, and the coverage latency for the
model selection to be deployed on the (SFNs. We denote
the latency of the |�] | covered CFNs by model] with)], as
defined in (4) or (5). Let us define the input Θ = {��#}#

8=1, as
the set of all uncovered CFNs, and in the output the indexes of
the selected models, S̄, and the group of covered CFNs with
the policy c (i.e., selected by the XaDeP algorithm), �c . We
also define V = " + %, as the set of all the SaaS and PaaS
models. The algorithm iteratively calculates)] and |�] | for all
SaaS and PaaS models and selects those maximizing |�] |/)].
The selected models are removed from V and added to S̄,
and similarly, the set of covered CFNs are removed from Θ

and added to �c . This rule allows to select at each iteration
the model that covers the maximum number of uncovered
CFNs while minimizing the cost in terms of offloading time.
In case the CFNs are not fully covered at the end of the
previous procedure, the algorithm deploys IaaS model to cover
the remaining CFNs. This is made possible thanks to the
flexibility introduced by the IaaS model, at the cost of a higher
deployment time. The pseudo-code of the algorithm has been
provided in Alg. 1.

When deploying the model for the last SFN, if C2, (7b),
is respected the algorithm stops and returns S̄ and �c (lines
13-14), otherwise, the XaDeP algorithm includes also the Λ

IaaS models in (3) and, among them, selects the one that

Algorithm 1 XaDeP Algorithm
1: Input: " , %, (, Λ, Θ
2: Output: S̄, �c
3: for B=1 to (− 1 do
4: for]=1 to V do
5: Calculate |�] |; Calculate)] using Eq. (4) or (5), ∀ |�] |
6: end for
7: S̄ ←− argmax]

|�] |
)]

; �c ←− �] ; V −]; Θ −�]
8: end for
9: for]=1 to V do

10: Calculate |�] |; Calculate)] using Eq. (4) or (5), ∀ |�] |
11: end for
12: Select the last model using argmax]

|�] |
)]

13: if C2 holds with the last model then
14: V −]; Θ −�] ; S̄ ←−]; �c ←− �] ; return S̄ and �c
15: else
16: for each] in Λ do
17: if C2 holds with] then
18: Calculate)] using Eq. (6)
19: end if
20: end for
21: V −]; Θ −�] ; S̄ ←− argmin])] ; �c ←− �] ; return S̄ and �c
22: end if

respects C2 and minimizes the delay (lines 16-21). Thanks
to this approach, XaDeP first tries to cover all the CFNs using
SaaS and PaaS models, hence minimizing the latency, and if
(7b) is not respected, exploits the IaaS model for covering the
remaining CFNs.

IV. NUMERICAL RESULTS

For the simulation results, we have set the number of SFNs
to (=3, and the number of platforms to %=5. We have set
the task size \ (either \< or \2) uniformly distributed in the
range [1 5] MB, a small-sized task-result of \/10 MB, 10
GFLOPS per MB for $(\), 150 GFLOPS for the [B , while 'B
and ''4 are maximum 200 Mb/s and 150 Mb/s, with a log-
distance path loss model, as in [10]. Regarding the PaaS and
IaaS models, the size of k and j are uniformly distributed
in the range [1 5] MB and [5 10] MB, respectively, and
their initialization time uniformly distributed in [0 0.2] s and
[0.5 2] s, respectively. These values are based on internal
measurements performed on a Docker based virtualization
infrastructure, and are comparable with other in literature [10].
We are analyzing the performance of the following solutions:
• Optimal Solution: The optimization problem P2 is solved

using standard solver CPLEX considering the reduced
space in Sec. III-B1, labeled Opt. in the figures.

• XaDeP: Our proposed heuristic is applied where IaaS is
also considered for full coverage of the CFNs’ requests,
labeled XaDeP in the figures.

• CWSC: The heuristic algorithm in [12] is applied consid-
ering to deploy only SaaS and PaaS resulting in partial
covering of the CFNs, labeled CWSC in the figures.

• SaaS: Only the SaaS model is considered for deployment
at the SFNs, labeled SaaS in the figures. This is a
benchmark for the proposed FogaaS model.

• PaaS: Only the PaaS model is considered for deployment
at the SFNs, labeled PaaS in the figures. This is a
benchmark for the proposed FogaaS model.

In order to have a fair comparison among all algorithms in
terms of service delay, we have considered that the uncovered
CFNs at the edge are able to access to a remote cloud. To this
aim, we include a CFN-Cloud offloading delay as)2;>D3 =
)
\2
C G +) \2?A>2 +) o2A G +)2?A>? where \2 is the task size to be

5

0 50 100 150 200

CFNs

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
A

v
e
ra

g
e
 O

ff
lo

a
d
in

g
 D

e
la

y
 [
s
]

M=10

Delay Opt.

Delay A-CWSC

Delay CWSC

Delay SaaS

Delay PaaS

0 50 100 150 200

CFNs

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
v
e
ra

g
e
 O

ff
lo

a
d
in

g
 D

e
la

y
 [
s
]

M=40

Delay Opt.

Delay A-CWSC

Delay CWSC

Delay SaaS

Delay PaaS

Fig. 2. Average per-CFN offloading delay.

M=10

20 50 100 150 200

CFNs

0

20

40

60

80

U
n

c
o

v
e

re
d

 C
F

N
s
 [

%
]

Opt

XaDeP

CWSC

SaaS

PaaS

M=40

20 50 100 150 200

CFNs

0

20

40

60

80

100

U
n

c
o

v
e

re
d

 C
F

N
s
 [

%
]

Opt

XaDeP

CWSC

SaaS

PaaS

Fig. 3. Average Percentage of Uncovered CFNs at edge.

offloaded/processed to/in the cloud. The propagation time to
cloud and repository are set)2?A>? = 0.2 s and)'4?A>? = 0.1 s,
respectively, while the data rate to the cloud is supposed to be
100 Mb/s. Thus, the offloading delay is)(c)+)2;>D3 , whether
the task is offloaded to the cloud or edge. It is worth to be
mentioned that both optimal and XaDeP solutions are able to
cover all the CFNs at the edge, thus for these solutions)2;>D3

can be neglected. The results have been obtained by averaging
over 1000 rounds, each representing random CFN requests.

Figs. 2 and 3 depict the average per-CFN offloading com-
pletion time (labeled Delay), and the average percentage
of uncovered CFNs, respectively, for different numbers of
applications and CFNs. CFNs are supposed to be randomly
placed in an area covered by the three SFNs. Moreover,
Table I shows the Overall Delay (O.D.) of each algorithm,
corresponding to the sum of per CFN offloading delay (in
Fig. 2) and the execution Time Complexity (T.C.) for different
number of CFNs and applications, obtained with a dual core
Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz. For "=10,
the optimal solution has the best performance in terms of
offloading delay while ensuring a full CFN coverage. However,
the offloading delay minimization is overshadowed by T.C.
whose value depends on the considered hardware when solving
the problem for every run. This high O.D. in Tab. I, is due
to the T.C. required by the optimal solution which grows
exponentially as the number of CFNs rises. This makes our
XaDeP heuristic as the alternative approach in the long run
to guarantee a full coverage of the CFNs with an offloading
delay which is the closest to the optimal one. Observing Tab. I
we can see that, except for the case of 20 CFNs, our proposed
XaDeP outperforms the other algorithms. This is because, after
deploying the IaaS model at the edge, applications/platforms
are downloaded once from the repository, hence higher the
CFNs more the gain due to the reduced offloading delay at
the edge. Based on our observations, despite SaaS and PaaS
have the smallest T.C., SaaS leaves the largest percentage of

TABLE I
OVERALL DELAY FOR " = 10 AND " = 40 EXPRESSED IN SECONDS.

20 CFN 50 CFN 100 CFN 150 CFN 200 CFN

Ben.
App.

10 40 10 40 10 40 10 40 10 40

Opt 1.38 6.3 1.68 18.2 2.77 45.1 4.61 63.5 9.1 107
XaDeP 0.65 0.8 0.57 0.72 0.54 0.66 0.54 0.63 0.53 0.61
CWSC 0.62 0.75 0.65 0.78 0.65 0.76 0.65 0.75 0.65 0.75
SaaS 0.69 0.79 0.69 0.79 0.68 0.79 0.68 0.79 0.69 0.79
PaaS 0.91 0.93 0.91 0.94 0.91 0.94 0.90 0.93 0.91 0.94

uncovered CFNs, and PaaS has the largest offloading delay;
hence, since the uncovered CFNs have to access the cloud, the
O.D increases. Similar performance can be observed for the
case of " = 40. In the end, the proposed Optimal approach has
the best performance in terms of offloading delay. However,
with higher number of CFNs or applications, its T.C. rises. The
XaDeP on the other hand, guarantees a full coverage with the
lowest O.D. thanks to the flexibility that it offers for offloading
to the network edge.

V. CONCLUSION

In this work, we have studied a FogaaS architecture able to
deploy flexibly different applications at the edge upon CFNs
requests. To the best of our knowledge this is the first study
formulating this problem for minimizing the offloading delay,
and guaranteeing a full coverage of the CFNs in the form
of WSCP. In numerical results we have analyzed the trade-
off between the CFNs’ requests coverage and service delay
arising by the different service model deployments.

REFERENCES

[1] T. Chiu, A. Pang, W. Chung, and J. Zhang, “Latency-driven fog
cooperation approach in fog radio access networks,” IEEE Trans. Serv.
Comput., vol. 12, no. 5, pp. 698–711, Sep./Oct. 2019.

[2] I. Lera, C. Guerrero, and C. Juiz, “Availability-aware service placement
policy in fog computing based on graph partitions,” IEEE Internet Things
J., vol. 6, no. 2, pp. 3641–3651, Apr. 2019.

[3] R. Moallemi, A. Bozorgchenani, and D. Tarchi, “An evolutionary-based
algorithm for smart-living applications placement in fog networks,” in
2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa Village, HI,
USA, Dec. 2019.

[4] A. Bonadio, F. Chiti, and R. Fantacci, “Performance analysis of an edge
computing SaaS system for mobile users,” IEEE Trans. Veh. Technol.,
vol. 69, no. 2, pp. 2049–2057, Feb. 2020.

[5] C. Mouradian, F. Ebrahimnezhad, Y. Jebbar, J. K. Ahluwalia, S. N.
Afrasiabi, R. H. Glitho, and A. Moghe, “An IoT platform-as-a-service
for NFV based-hybrid cloud/fog systems,” IEEE Internet Things J.,
2020, early access.

[6] S. Shaik and S. Baskiyar, “Resource and service management for fog
infrastructure as a service,” in 2018 IEEE International Conference on
Smart Cloud (SmartCloud), 2018, pp. 64–69.

[7] F. Zafari, K. K. Leung, D. Towsley, P. Basu, and A. Swami, “A game-
theoretic framework for resource sharing in clouds,” in 2019 12th IFIP
Wireless and Mobile Networking Conference (WMNC), 2019, pp. 8–15.

[8] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, “Computing
resource allocation in three-tier iot fog networks: A joint optimization
approach combining stackelberg game and matching,” IEEE Internet of
Things Journal, vol. 4, no. 5, pp. 1204–1215, 2017.

[9] S.Dang, O.Amin, B. Shihada, and M. Alouini, “What should 6G be?”
Nature Electronics, vol. 3, no. 1, pp. 20–29, 2020.

[10] A. Bozorgchenani, F. Mashhadi, D. Tarchi, and S. S. Monroy, “Multi-
objective computation sharing in energy and delay constrained mobile
edge computing environments,” IEEE Trans. Mobile Comput., May
2020, early view.

[11] C. A. Shaffer, Data Structures and Algorithm Analysis in Java, 3rd ed.
Dover Publication, 2013.

[12] L. Golab, F. Korn, F. Li, B. Saha, and D. Srivastava, “Size-constrained
weighted set cover,” in 2015 IEEE 31st International Conference on
Data Engineering, Seoul, South Korea, Apr. 2015, pp. 879–890.

