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Abstract

Vine copulas are a type of multivariate dependence model, composed of a collection of bivariate copulas that are
combined according to a specific underlying graphical structure. Their flexibility and practicality in moderate and
high dimensions have contributed to the popularity of vine copulas, but relatively little attention has been paid to their
extremal properties. To address this issue, we present results on the tail dependence properties of some of the most
widely studied vine copula classes. We focus our study on the coefficient of tail dependence and the asymptotic shape
of the sample cloud, which we calculate using the geometric approach of [26]. We offer new insights by presenting
results for trivariate vine copulas constructed from asymptotically dependent and asymptotically independent bivariate
copulas, focusing on bivariate extreme value and inverted extreme value copulas, with additional detail provided for
logistic and inverted logistic examples. We also present new theory for a class of higher dimensional vine copulas,
constructed from bivariate inverted extreme value copulas.
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1. Introduction

In multivariate extreme value analysis, the tail dependence properties of variables are an important consideration
for model selection. In particular, one may be interested in whether or not they exhibit so-called asymptotic depen-
dence, where the largest values can occur simultaneously across all variables; see [9]. Suppose we are interested in a
model for the d random variables X = (X1, . . . , Xd), which we assume have standard exponential margins to focus only
on dependence, i.e., Pr(Xi < x) = 1−e−x, x ≥ 0, for i ∈ {1, . . . , d}. For any subset of these variables, XC = (Xi : i ∈ C),
with C ⊆ D = {1, . . . , d} and |C| ≥ 2, and any j ∈ C, one can consider the measure

χC = lim
u→∞

Pr (Xi > u; i ∈ C)
Pr(X j > u)

= lim
u→∞

eu Pr (Xi > u; i ∈ C) , (1)

which corresponds to the limiting probability that all variables are above some high threshold u, given that any one of
the variables exceeds u. If χC > 0, all variables in XC exhibit asymptotic dependence, while χC = 0 means that not all
variables in XC can be simultaneously large. In the latter case, if |C| = 2, the two variables cannot be simultaneously
extreme, and are said to exhibit asymptotic independence; if |C| > 2, it is still possible to have χC̃ > 0 for any C̃ ⊂ C.
That is, variables indexed by C̃ could take their largest values simultaneously while at least one of those indexed by
C \ C̃ are of smaller order. The collection of all sets of variables which can or cannot be simultaneously extreme
corresponds to a more complicated extremal dependence structure; see [15] or [29].

Moreover, if χC = 0, there could be some sub-asymptotic dependence between XC, despite the lack of asymptotic
dependence in the limit, and the measure χC does not tell the full story. To investigate this behaviour further, it is
common to consider the coefficient of tail dependence, introduced by [23]. Again for a subset of exponential variables
XC, with |C| ≥ 2, this is defined via the relation

Pr (Xi > x : i ∈ C) ∼ LC(ex)e−x/ηC , (2)
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as x→ ∞, where LC denotes a function that is slowly varying at infinity, and ηC ∈ (0, 1]. If ηC = 1 and LC(x) 9 0, as
x→ ∞, the variables in XC are asymptotically dependent. For ηC < 1, these variables cannot be simultaneously large,
and the value of the coefficient quantifies the strength of sub-asymptotic dependence between the variables. The set
of measures {χC, ηC : C ⊆ D, |C| ≥ 2} therefore provide a summary of the key extremal dependence features of X.

Often, the value of ηC can be calculated directly from (2) for a given model, but in some cases, only the joint
density of XC can be specified in closed form, and not the required joint survivor function. Nolde [26] presents a
strategy to overcome this issue, based on the geometry of scaled random samples from the joint distribution of XC.
A simplified version of the approach of [26], which we discuss further in Section 2.1, assumes standard exponential
margins, and joint density fC(xC), with the idea being to study the gauge function gC(xC) such that

− ln fC(txC) ∼ tgC(xC), (3)

as t → ∞, with gC(xC) being homogeneous of order 1. The limiting shape of suitably scaled samples from XC is
described by the set of points where the gauge function is at most one, i.e., {xC : gC(xC) ≤ 1}, and studying this set
can reveal the value of ηC and provide insight into other aspects of the extremal dependence structure; see [27]. We
present some example gauge function calculations in Section 2.3 for the case where |C| = 2, for both asymptotically
dependent and asymptotically independent models, and demonstrate how they can be used to obtain ηC.

One drawback of this method is that it is only applicable when the joint density of XC can be obtained analytically.
It may be the case that we have a closed form joint density for variables X, but not for all XC with C ⊂ D. Nolde
and Wadsworth [27] show how to derive lower-dimensional gauge functions from higher-dimensional ones, and in
Section 2, we review this technique for the calculation of gC(xC) and ηC in such cases. In our study of vine copulas,
which have dimension d ≥ 3, this approach can be necessary to obtain even some bivariate results.

In this paper, we focus on investigating the tail behaviour of vine copulas. These models exploit the wide range
of existing parametric bivariate copula models to create parametric copula models for higher dimensions, where there
are fewer options available. This allows for the construction of flexible models with the possibility of capturing a
wide range of dependence features. The idea of combining bivariate copulas in this way was first proposed by [18];
developed further by [6, 7], who proposed the use of a type of graphical model called vines to aid the modelling
procedure; and further studied in an inferential context by [2]. A textbook treatment of these models is provided
by [22]. We give an introduction to vine copula modelling in Section 3. Vine copulas are widely used in financial
applications; a summary of these applications is provided by [1], with examples including [8] and [14].

Vine copulas reduce model formulation to a series of pairwise copula selections, and therefore appear to be ideal
for modelling extremal dependence since, as noted earlier, such dependence is known to have complex structure.
For vine copulas over variables indexed by D, [19] have made major progress in deriving general results about χD,
defined in (1), for any vine copula. In particular, they have determined some relationships of χD with the values of
χC (for |C| = 2) associated with the bivariate copulas used in the vine construction. Primarily, they consider the case
where all pairwise χC are non-zero, and therefore focus only on asymptotically dependent copulas. They also study
the result of imposing asymptotic independence or asymptotic dependence in certain pair copulas, and how this leads
to constraints on χD.

Some pairwise copulas have χC = 0, with a range of examples given by [16]. Particularly noteworthy cases include
the pairwise Gaussian copula and the Morgernstern copula (see Example 2.1 of [19]), with parameters −1 < ρ < 1
and −1 < θ < 1, respectively. For vine copulas, when some of the pairwise χC = 0, the results of [19] only give that
χD = 0, and they fail to give any information about the dependence in the joint tail of variables, e.g., the probability
that all of the variables are simultaneously large. In that case we are interested in the numerator of (1) (prior to it
being taken to its limit for χD). When χD = 0, all we know is that this joint probability is smaller order than the
marginal probability of one of the variables being large (as in the denominator of (1)). Such joint tail probabilities are
important in characterising the tail, and for assessing risk in applications [11, 17].

The tail parameter ηC for all C ⊆ D in (2) is important, as it captures the level of asymptotic independence, with
ηC = 1 corresponding to asymptotic dependence (for all cases where χC > 0) and 0 < ηC < 1 corresponding to levels
of asymptotic independence. For example, for the bivariate Gaussian copula, η{1,2} = (1 + ρ)/2 (with −1 < ρ < 1
denoting the usual “correlation coefficient”), and for the Morgenstern copula, η{1,2} = 1/2 for all θ. So, although these
two copulas have identical χ{1,2} values, they have different values of η{1,2} unless ρ = 0.

Our paper therefore differs from [19] in that we aim to find ηC in cases where their results simply give χC = 0, for
all C ⊆ D. With this, we seek to better understand how the bivariate copulas and underlying graphical structure used
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in the construction of a vine copula affect these additional extremal dependence features of the variables, and to be
the first to study the gauge function for vine copulas.

Throughout this paper, we consider exponential marginal distributions, but allow a variety of different bivariate
copulas to be used in the vine copula construction. If only bivariate Gaussian copulas are used in this construction,
the overall joint distribution of the variables will also be Gaussian [18, 19]. Since the tail dependence features of
the Gaussian model are well-studied in the literature, we focus on cases where the pair copulas are from extreme
value or inverted extreme value classes of distributions [24, 28]. These classes are widely studied in the extreme
value literature; while they are not in themselves parametric distributions, they do include a range of well-known
parametric examples [5, 10, 13]. Bivariate extreme value distributions exhibit asymptotic dependence, while their
inverted counterparts exhibit asymptotic independence. Studying these two classes is therefore sufficient to reveal a
rich variety of structures within the vine copula framework.

Vine copula models provide an example of when the joint distribution function of the variables generally cannot
be calculated analytically. Moreover, the joint densities corresponding to certain subsets of the variables often do not
have closed forms. To study the tail behaviour of these models, we calculate ηC for several examples, through the
application of the geometric approach of [26]. Our investigation reveals interesting features of the shape of the gauge
function in (3) for vine copula models.

Having introduced the geometric methodology for studying extremal dependence in Section 2, and provided an
overview of vine copula modelling in Section 3, the remainder of the paper is structured as follows. In Section 4,
we present calculations and results for cases where each pair copula is from the inverted extreme value family of
distributions. In higher than three dimensions, the underlying graphical structure of the copula is a further considera-
tion, and we also present results for inverted extreme value pair copulas here, with two different types of underlying
vine structure. In the trivariate and higher-dimensional examples, we present results for inverted logistic examples
as a special case. In Section 5, we return to the trivariate case, presenting results for vine copulas constructed from
combinations of extreme value and inverted extreme value pair copulas.

2. Geometric approaches for calculating ηC

2.1. The geometric approach of Nolde [26]

Nolde [26] proposes a method to calculate the coefficient of tail dependence ηC based on the shape of scaled
random samples from the vector XC. This follows earlier work by [4], who showed that the limiting shape of the
sample cloud could be used to determine the presence of asymptotic independence. Theorem 2.1 of [26] provides
the result for marginal distributions with Weibull-type tails. We take a simplified approach by focusing on the special
case where all margins have standard exponential distributions, which is possible without losing information about
the extremal dependence properties of the variables.

Interest lies with the gauge function gC(xC), satisfying equation (3). In this case, we consider the scaled random
sample

(
XC,1/ ln n, . . . , XC,n/ ln n

)
, as n → ∞, with the scaling function ln n chosen due to the exponential margins.

The sample cloud converges onto the compact set G∗
C

= {xC ∈ R|C| : gC(xC) ≤ 1} ⊆ [0, 1]|C|, which also has the
property of being star-shaped, i.e., if xC ∈ G∗

C
, then txC ∈ G∗

C
for all t ∈ (0, 1). We denote the part of the boundary of

this set where the gauge function equals one by GC = {xC ∈ R|C| : gC(xC) = 1} ⊂ G∗
C
⊆ [0, 1]|C|.

Nolde [26] shows that the coefficient of tail dependence can be calculated as

ηC = min
{
r : GC ∩ [r,∞)|C| , ∅

}
, (4)

which [27] show is equivalent to

ηC =

{
min

xC:min(xC)=1
gC (xC)

}−1

=

{
min

xC:min(xC)≥1
gC (xC)

}−1

. (5)

The case where arg minxC:min(xC)=1 gC (xC) = 1 ∈ R|C| occurs if and only if ηC = 1/gC(1), corresponding to the
intersection in (4) occurring when all variables are equal, i.e., when x j = xk for all j, k ∈ C. We also note that the
quantity 1/gC(1) will always provide a lower bound for ηC, and if gC(1) = 1, then it must be the case that ηC = 1.
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When analytical minimisation of gC is difficult or impossible, numerical investigation can be used to determine where
the minimum occurs.

This numerical minimisation may be undertaken using optimisation software such as optim in R. Implementation
is simpler using the second form in (5), i.e., with min(xC) ≥ 1, and one can check that the numerical optimisation
gives min(xC) = 1. It is advisable to compare results across a range of starting values of xC to ensure convergence. If
convergence is not reached, an alternative is to carry out the investigation across the range of subspaces of interest, i.e.,
where different subsets of xC are equal to one, and to compare these results. While it is clearly preferable to use the-
oretical results, where this is not possible, this numerical approach can be useful. Moreover, where theoretical results
are difficult to obtain, numerical studies may provide additional insight that can facilitate analytical calculations.

We subsequently drop the subscript C from the set GC, density fC and gauge function gC when discussing the
overall vector of variables X, i.e., when C = D.

2.2. Lower dimensional subsets
The method of [26] can only be used to calculate the coefficient ηC in cases where the density fC(xC) can be

obtained analytically. In some cases, including many vine copula examples, we may have the form of f (x), but no
closed form of fC(xC) for certain subsets C ⊂ D, so the method cannot be directly applied to obtain ηC. Nolde and
Wadsworth [27] use results on projections of sample clouds to show that the gauge function gC(xC) can be obtained
from the gauge function g(x) for any set C ⊂ D with |C| ∈ [1, d − 1], by

gC (xC) = min
xi:i<C

g(x). (6)

Once this gauge function has been obtained, the remainder of the procedure to calculate ηC continues as in Section 2.1.
In particular, this implies that

ηC =

{
min

xC:min(xC)≥1
gC(xC)

}−1

=

 min
x:min{xi:i∈C≥1}

min{xi:i<C≥0}

g(x)


−1

. (7)

If the gauge function still cannot be obtained analytically via the minimisation in (6), numerical methods can again be
exploited. Numerical calculation of ηC will require optimising equation (6) within equation (5), as in (7), and the result
of this optimisation procedure may again be used to motivate the theoretical calculation of ηC. In Sections 4 and 5
we will study cases where we have the form of g{1,2,3}(x1, x2, x3) and wish to deduce η{1,3}, where the analytical form
of g{1,3}(x1, x3) is not known. If theoretical arguments or numerical investigations suggest that the minimum in (5)
occurs when x1 = x3 = 1, i.e., η{1,3} = 1/g{1,3}(1, 1), one can focus solely on this case in (7). That is, only calculation
of g{1,3}(1, 1) = minv g(1, v, 1) is needed, which may be possible even when the minimisation in (6) over the full range
of (x1, x3) values is not. In addition, if we can find any x with xi ≥ 1, i ∈ C and xi ≥ 0, i < C, such that g(x) = 1, then
this must correspond to the required minimum, and ηC = 1.

2.3. Bivariate examples
To demonstrate the geometric approach discussed in Section 2.1, we consider six bivariate examples, correspond-

ing to three distributions belonging to each of the asymptotic independence and asymptotic dependence classes. We
also comment on interesting features relating to the shape of the set G in each case. In this section, we generally use
plots to determine where the intersection in (4) occurs, but we note that equation (5) also holds in all cases.

We begin with the example of independent exponential variables, where it is straightforward to obtain the gauge
function as g(x1, x2) = x1 + x2, i.e., the set G corresponds to the straight line x2 = 1 − x1 for x1, x2 ∈ [0, 1]. This is
demonstrated in case (i) of Fig. 1, and it is clear that the smallest value of r such that G and [r,∞)2 do not intersect
yields η{1,2} = 1/2. In Fig. 1 we plot scaled samples of size 1000 from the various models; note that since the gauge
function calculations are based on asymptotic results, some of this finite sample may lie outside the set G.

As a second asymptotically independent model, we consider a bivariate Gaussian copula model having exponential
margins and covariance matrix Σ with Σ1,1 = Σ2,2 = 1 and Σ1,2 = Σ2,1 = ρ ∈ [0, 1). Nolde [26] shows that this model
has gauge function

g(x1, x2) = (1 − ρ2)−1
(
x1 + x2 − 2ρx1/2

1 x1/2
2

)
,
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with x1, x2 ≥ 0. This is demonstrated in case (ii) of Fig. 1 for ρ = 0.5. Minimisation as in (5) reveals that η{1,2} =

1/g(1, 1) = (1 + ρ)/2 = 0.75, corresponding to the known coefficient for a Gaussian model [23].
Examples (iii), (v) and (vi) are based on the class of bivariate extreme value distributions, which in exponential

margins, have a joint distribution function written as

F(x1, x2) = exp
[
−V

{
−1

ln (1 − e−x1 )
,

−1
ln (1 − e−x2 )

}]
, (8)

for x1, x2 ≥ 0 and some exponent measure V(x, y) that is homogeneous of order −1 and takes the form

V(x, y) = 2
∫ 1

0
max

(
w
x
,

1 − w
y

)
dH(w), (9)

for x, y > 0, and spectral distribution H satisfying the moment constraint
∫ 1

0 wdH(w) = 1/2. We let V1, V2 and V12
denote the derivatives of the exponent measure with respect to the first, second and both components, respectively,
where these are assumed to exist. One example of a method belonging to this class is the logistic distribution, with
exponent measure

V(x, y) =
(
x−1/α + y−1/α

)α
, α ∈ (0, 1], x, y > 0, (10)

see [31]. We return to the extreme value distribution in case (v), but first use these results to consider a final asymptot-
ically independent model: the inverted bivariate extreme distribution. Models of this class are obtained by exchanging
the upper and lower tail features in extreme value distribution (8). In exponential margins, the model has distribution
function

F(x1, x2) = 1 − e−x1 − e−x2 + exp
{
−V

(
x−1

1 , x−1
2

)}
,

for x1, x2 ≥ 0. Differentiating with respect to both components to obtain the density f (x1, x2), we have

− ln f (tx1, tx2) =2 ln(tx1) + 2 ln(tx2) + V
{
(tx1)−1, (tx2)−1

}
− ln

[
V1

{
(tx1)−1, (tx2)−1

}
V2

{
(tx1)−1, (tx2)−1

}
− V12

{
(tx1)−1, (tx2)−1

}]
= 2 ln(tx1) + 2 ln(tx2) + tV

(
x−1

1 , x−1
2

)
− ln

{
t4V1

(
x−1

1 , x−1
2

)
V2

(
x−1

1 , x−1
2

)
− t3V12

(
x−1

1 , x−1
2

)}
= tV

(
x−1

1 , x−1
2

)
+ O(ln t),

(11)

as t → ∞, by exploiting the homogeneity of the exponent measure. That is, the gauge function is given by g(x1, x2) =

V
(
x−1

1 , x−1
2

)
, for x1, x2 ≥ 0. For the bivariate inverted logistic example, this corresponds to the gauge function

g(x1, x2) = (x1/α
1 + x1/α

2 )α. This is demonstrated in case (iii) of Fig. 1 for α = 0.5. The smallest value of r such
that G and [r,∞)2 do not intersect is 2−0.5 = 1/2α, occurring when x1 = x2. This corresponds to the known value of
η{1,2} for this copula [23].

We now turn our attention to asymptotically dependent models, the most simple example of which corresponds to
perfect dependence, demonstrated by case (iv) of Fig. 1. In this case, the density does not exist, but since the set G
describes the boundary of the scaled sample cloud, it is clear that this corresponds to the line x1 = x2 ∈ [0, 1], and that
considering the intersection of [r,∞)2 and G in the usual way gives η{1,2} = 1.

Returning to the bivariate extreme value copula, with exponent measure (9), general results cannot easily be
derived, as illustrated in Section F.2 of the Supplementary Material. However, progress is possible if we assume that
the corresponding spectral density h(w) places no mass on {0} or {1} and has regularly varying tails, as in [17] and
[29]. Specifically, let

h(w) ∼ c1(1 − w)s1 as w↗ 1; h(w) ∼ c2ws2 as w↘ 0, (12)

for c1, c2 ∈ R and s1, s2 > −1. In this case the gauge function, as shown in Section F.2 of the Supplementary Material,
is

g(x1, x2) =
(
2 + s11{x1≥x2} + s21{x1<x2}

)
max(x1, x2) −

(
1 + s11{x1≥x2} + s21{x1<x2}

)
min(x1, x2), (13)

5



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i)

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(ii)

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(iii)

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(iv)

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(v)

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(vi)

X1
X

2

Fig. 1: Example of the geometric interpretation of η{1,2} for (i) independence, (ii) Gaussian, (iii) inverted logistic, (iv) perfect dependence, (v)
logistic and (vi) asymmetric logistic models. For each model, we show 1000 scaled samples on exponential margins (grey); the set G = {(x1, x2) ∈
R2 : g(x1, x2) = 1} (red); and the set [η{1,2},∞)2 (blue).

x1, x2 ≥ 0. For the logistic model with dependence parameter α ∈ (0, 1), we have s1 = s2 = 1/α − 2. Hence the gauge
function is

g(x1, x2) =
1
α

max(x1, x2) +

(
1 −

1
α

)
min(x1, x2),

for x1, x2 ≥ 0. In this case, the point (x1, x2) = (1, 1) satisfies g(x1, x2) = 1, and since both variables are at most 1 in
the set G, we must have η{1,2} = 1, which is the only possible value under the known asymptotic dependence of this
model. This is demonstrated in case (v) of Fig. 1 for α = 0.5, with G being piecewise linear. In the case where s1 , s2
in (13), the set G will no longer be symmetric about the line x1 = x2, but will still correspond to two straight lines with
intercepts with the axes at

(
(s1 + 2)−1, 0

)
and

(
0, (s2 + 2)−1

)
, and intersection at the point (1, 1). This still corresponds

to η{1,2} = 1.
We finally consider the asymmetric logistic model [31] with exponent measure

V(x, y) = θ1/x + θ2/y +
[
{(1 − θ1)/x}1/α + {(1 − θ2)/y}1/α

]α
,

with x, y > 0, α ∈ (0, 1] and θ1, θ2 ∈ [0, 1]. This model does not satisfy the condition used when calculating the gauge
function for bivariate extreme value copulas, that the spectral density places no mass on {0} or {1}, since H ({0}) = θ2
and H ({1}) = θ1. However, calculating the gauge function for this model directly, we obtain

g(x1, x2) = min
{

(x1 + x2);
1
α

max(x1, x2) +

(
1 −

1
α

)
min(x1, x2)

}
,

for x1, x2 ≥ 0 and all α, θ1, θ2 ∈ (0, 1). We note that this gauge function does not depend on the values of θ1 and θ2,
i.e., the mass on the boundaries of H. This is demonstrated by case (vi) of Fig. 1 for α = 0.5, and we again find that
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since g(1, 1) = 1, the coefficient of tail dependence has value η{1,2} = 1. The bivariate asymmetric logistic copula is
essentially a mixture of independence and logistic models of cases (i) and (v); this is reflected in the gauge function,
which is a combination of the gauge functions corresponding to the two mixture components.

The geometric approach for deriving extremal properties from the gauge function does extend to cases where a
joint distribution has singular components, i.e., mass on lower dimensional subspaces. While the density representa-
tion is convenient when it exists, more general theory for deriving the limit set is available; see e.g., [3]. Examples
with singular components include perfect dependence (case (iv) of Fig. 1), and the copula of the Marshall-Olkin distri-
bution [25], which arises as the limit of the asymmetric logistic distribution as α→ 0. For this copula, and a bivariate
extreme value copula with underlying measure H placing all of its mass at a finite set of atoms, the set G is identical to
that of the independence case, but with a line y = x from (1/2, 1/2) to (1, 1), inclusive. As the set G contains (1, 1), i.e.,
g(1, 1) = 1, we have η{1,2} = 1. For a copula based on the inverted bivariate extreme value distribution with underlying
measure H placing all its mass at a finite number of atoms, the η{1,2} value follows from [23], with η{1,2} < 1 (unless
H({1/2}) = 1), and the asymptotic shape of the sample cloud following from results in [20]. However, in such cases,
extremal properties are much easier to derive directly from the joint distribution function, without studying the gauge
function.

In the bivariate examples we have studied here, the intersection of interest between the sets [r,∞)2 and G occurred
when x1 and x2 were equal, but we note that this is not the case in general. For sets G corresponding to cases (i)-(v) are
all convex, but this is not true of the asymmetric logistic model in case (vi). This links to another interesting feature
of the sets G, which is that they can be used to consider the possible values of one variable when the other variable is
large. To study the case where X1 takes its largest values, we can consider the intersection of the set G with the line
x1 = 1. For the independence and inverted logistic examples, cases (i) and (iii), we see that the intersection occurs
at (1, 0), so the largest values of X1 occur only with the smallest values of X2, while for the Gaussian case (ii), the
intersection occurs at (1, ρ2), meaning that larger (although not the most extreme) values of X2 occur when X1 takes its
largest values. For all three asymptotically dependent cases, the two variables take their largest values simultaneously,
with intersection at (1, 1), but for the asymmetric logistic example of case (vi), the line x1 = 1 intersects the set
G twice, indicating that X2 can take either its smallest or largest values with the largest values of X1. Nolde and
Wadsworth [27] elaborate further on how the shape of G links to a broader description of extremal dependence than
the coefficients ηC.

3. Vine copula modelling

3.1. Preliminaries

As discussed in Section 1, our aim is to apply the methods of Section 2 to investigate some of the extremal
dependence properties of vine copulas. These are models for d > 2 variables, created using d(d − 1)/2 bivariate
copulas according to an underlying graphical structure. We provide a summary of the key ideas here, where our focus
is on models for continuous variables.

By Sklar’s theorem [30], the joint distribution function F of variables X = (X1, . . . , Xd) with Xi ∼ Fi, for i ∈
{1, . . . , d}, can be written in terms of a unique copula function C as

F(x1, . . . , xd) = C {F1(x1), . . . , Fd(xd)} , xi ∈ R, i ∈ {1, . . . , d}.

Differentiating this with respect to each variable gives the joint density function as

f (x1, . . . , xd) = c {F1(x1), . . . , Fd(xd)}
d∏

i=1

fi(xi), (14)

for fi(xi), i ∈ {1, . . . , d}, representing the marginal densities, and copula density

c(u1, . . . , ud) = ∂dC(u1, . . . , ud)/
d∏

i=1

∂ui, ui ∈ [0, 1], i ∈ {1, . . . , d}.

7



Fig. 2: Trivariate vine structure.

As outlined by [2], the joint density can be decomposed as

f (x1, . . . , xd) = fd(xd) fd−1|d(xd−1 | xd) fd−2|d−1,d(xd−2 | xd−1, xd) . . . f1|2,...,d(x1 | x2, . . . , xd), (15)

and by repeatedly applying decomposition (14) to each term in the right-hand side of (15), it is possible to write the
joint density of the variables X in terms of only marginal and bivariate copula densities. For instance, in the bivariate
case, f (x1, x2) = f2(x2) f1|2(x1 | x2) from (15) and f (x1, x2) = f1(x1) f2(x2)c12 {F1(x1), F2(x2)} from (14), so that

f1|2(x1 | x2) = f1(x1)c12 {F1(x1), F2(x2)} .

Similarly, in the trivariate case,

f (x1, x2, x3) = f3(x3) f2|3(x2 | x3) f1|23(x1 | x2, x3) = f3(x3) f2(x2)c23 {F2(x2), F3(x3)} f1|23(x1 | x2, x3).

Again following [2],

f1|23(x1 | x2, x3) = c13|2
{
F1|2(x1 | x2), F3|2(x3 | x2)

}
f1|2(x1 | x2)

= c13|2
{
F1|2(x1 | x2), F3|2(x3 | x2)

}
c12 {F1(x1), F2(x2)} f1(x1),

so that a full decomposition of f (x1, x2, x3) is given by

f (x1, x2, x3) = f1(x1) f2(x2) f3(x3)c12 {F1(x1), F2(x2)} c23 {F2(x2), F3(x3)} c13|2
{
F1|2(x1|x2), F3|2(x3|x2)

}
. (16)

For modelling purposes, different bivariate copula densities can be chosen for each of c12, c23 and c13|2, and different
marginal distributions can be selected for each variable, i.e., F1, F2, and F3, showing the flexibility in this class
of model. A similar process can be applied to obtain models in higher than three dimensions in terms of bivariate
copulas.

The decomposition of density f is not unique, as we have a choice about the conditioning variable used in each
step of the decomposition. Bedford and Cooke [6, 7] proposed an approach to address this issue through the use of
regular vines, a class of graphical model, to represent the underlying structure of certain decompositions and help to
systematize the different possibilities. Construction (16) gives an example of a vine copula form in the trivariate case.
An introduction to the graphical representation of vine copulas is given in [12], with formal definitions provided in
[21]. We discuss this further in Section 3.2.

3.2. Graphical representations of vine copulas
Suppose we are interested in modelling variables X. A regular vine structure, first introduced by [7], corresponding

to these d variables consists of d − 1 connected trees labelled T1, . . . ,Td−1, with tree Ti having d + 1 − i nodes and
d − i edges. The nodes in tree T1 each have a different label in the set D, and the edges are labelled according to the
pair of nodes they connect. The labels of the nodes in tree Ti+1 correspond to the labels of the edges in tree Ti, for
i ∈ {1, . . . , d − 2}, creating a nested structure among the set of all trees. In tree Ti, i ≥ 2, the pair of nodes connected
by each edge will have i− 1 variable labels in common; these become the conditioning variables in the corresponding
edge label of Ti. The underlying vine structure for copula (16) is shown in Fig. 2.

Each edge in a regular vine can be used to represent one of the copula densities used in the decomposition of the
joint density. There are certain subclasses of vine copula that are often of interest. These include D-vines, where each

8



Fig. 3: Four dimensional vine copula models; D-vine (left) and C-vine (right).

tree is a path, and C-vines, where each tree has exactly one node that is connected to all other nodes. Fig. 3 gives an
example of these vine structures for d = 4. For the C-vine example, the corresponding decomposition of the density
is

f (x1, x2, x3, x4) = f1(x1) f2(x2) f3(x3) f4(x4)c12 {F1(x1), F2(x2)} c13 {F1(x1), F3(x3)} c14 {F1(x1), F4(x4)}
× c23|1

{
F2|1(x2 | x1), F3|1(x3 | x1)

}
c24|1

{
F2|1(x2 | x1), F4|1(x4 | x1)

}
c34|12

{
F3|12(x3 | x1, x2), F4|12(x4 | x1, x2)

}
,

with the result for the D-vine found in a similar way. More detail on regular vine copulas and the subclasses of
D-vines and C-vines can be found in [12].

For modelling d variables, there are d!/2 possible D-vines, and the same number of possible C-vines [2]. For
d = 3, all vine structures are equivalent, with different decompositions only occurring with different labelling of
the nodes. For d = 4, all possible structures fall into either the D-vine or C-vine category. For d ≥ 5, the more
general regular vines provide a greater range of possible structures, with structure selection considered by [14, 33],
for example, but we only study D-vines and C-vines here.

4. Vine copulas with inverted extreme value copula components

4.1. Trivariate results
We now turn our attention to applying the methods discussed in Section 2 to calculate the coefficient of tail

dependence for various vine copulas, initially focusing on cases where all bivariate copulas used in the construction
belong to the family of inverted extreme value models. Our first vine copula gauge function calculation is for a
trivariate vine, with graphical structure as in Fig. 2 and density (16), constructed from three inverted extreme value
pair copulas.

A bivariate inverted extreme value copula with exponent measure V has the form

C(u, v) = u + v − 1 + exp
[
−V

{
−1

ln(1 − u)
,
−1

ln(1 − v)

}]
, u, v ∈ [0, 1].

Let V1, V2 and V12 denote the derivative of the exponent measure with respect to the first, second, and both com-
ponents, respectively. Differentiating C(u, v) with respect to the second component gives the conditional distribution
function

F(u | v) = 1+

(
1

1 − v

)
{− ln(1 − v)}−2 V2

{
−1

ln(1 − u)
,
−1

ln(1 − v)

}
exp

[
−V

{
−1

ln(1 − u)
,
−1

ln(1 − v)

}]
, (17)

for u, v ∈ [0, 1], and subsequently differentiating with respect to the first component gives the copula density

c(u, v) =

(
1

1 − u

) (
1

1 − v

)
{− ln(1 − u)}−2 {− ln(1 − v)}−2 exp

[
−V

{
−1

ln(1 − u)
,
−1

ln(1 − v)

}]
×

[
V1

{
−1

ln(1 − u)
,
−1

ln(1 − v)

}
V2

{
−1

ln(1 − u)
,
−1

ln(1 − v)

}
− V12

{
−1

ln(1 − u)
,
−1

ln(1 − v)

} ]
. (18)
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Fig. 4: The set G = {x ∈ R3 : g(x) = 1} for a trivariate vine with three inverted logistic pair copula components (grey) and the boundary of the set
[η{1,2,3}, 1)3 (blue): α = 0.25 (left), α = 0.5 (centre), α = 0.75 (right); β = 0.25 and γ = 0.5.

In calculating values of η for a trivariate vine with density (16), we are interested in the behaviour of

− ln f (tx) = − ln f1(tx1) − ln f2(tx2) − ln f3(tx3) − ln c12 {F1(tx1), F2(tx2)} − ln c23 {F2(tx2), F3(tx3)}
− ln c13|2

{
F1|2(tx1|tx2), F3|2(tx3|tx2)

}
, (19)

for x1, x2, x3 ≥ 0, as t → ∞. In Section A of the Supplementary Material, we show that the gauge function of a
trivariate vine copula with three inverted extreme value components is

g(x) = x2 + V {13|2}
[{

V {12}
(
x−1

1 , x−1
2

)
− x2

}−1
,
{
V {23}

(
x−1

2 , x−1
3

)
− x2

}−1
]
, x1, x2, x3 ≥ 0, (20)

where the superscripts of the exponent measures V {12},V {23} and V {13|2} correspond to the pair copulas used to construct
the vine.

We note that a general exponent measure V(x, y) is non-increasing in x and y, so it follows that V(x−1, y−1) is non-
decreasing in x and y. From this, we can deduce that (20) is non-decreasing in x1 and x3, so the minimum required
to solve equation (5) must occur when x1 = x3 = 1. For x2, the problem is more subtle. In the following section, we
consider an example where all components are taken to be inverted logistic copulas, with the form of their exponent
measures given by (10). In this case, we demonstrate that the minimum also occurs at x2 = 1, and suggest that a
similar approach could be taken for other cases.

Inverted logistic example. Let V {12}, V {23} and V {13|2} have dependence parameters α, β, γ ∈ (0, 1), respectively. Then
the corresponding gauge function is

g(x) = x2 +

[{(
x1/α

1 + x1/α
2

)α
− x2

}1/γ
+

{(
x1/β

2 + x1/β
3

)β
− x2

}1/γ
]γ
, x1, x2, x3 ≥ 0. (21)

Fig. 4 demonstrates the sets G = {x ∈ R3 : g(x) = 1} for this gauge function, with α ∈ {0.25, 0.5, 0.75}, β = 0.25 and
γ = 0.5. As was the case with the bivariate inverted logistic copula, the surface corresponding to the set G is smooth
and convex, and considering the intersection of G with the lines xi = 1, i = 1, 2, 3, shows that each variable takes its
largest values while the other two take their smallest.

From Section 4.1, we already know that the minimum in (5) occurs when x1 = x3 = 1, since g(x) is increasing
with respect to both these variables. In Section B of the Supplementary Material, we show that the gauge function is
also increasing with respect to x2 ≥ 1. Hence, we know that the minimum occurs at x = 1, i.e., that the intersection of
G and [η{1,2,3},∞)3 occurs on the diagonal x1 = x2 = x3. This is supported by the plots in Fig. 4, and yields

η{1,2,3} = g(1, 1, 1)−1 =

[
1 +

{
(2α − 1)1/γ

+
(
2β − 1

)1/γ
}γ]−1

. (22)
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Fig. 5: Left: for (α, β, γ) = (0.5, 0.25, 0.5), the sets G{1,3} (grey) and [η{1,3}, 1)2 (blue). Right: values of η{1,3} for γ ∈ [0.05, 0.95] and (α, β) ∈
{(0.25, 0.25),(0.25, 0.5),(0.5, 0.5),(0.25, 0.75),(0.5, 0.75),(0.75, 0.75)} (top to bottom).

As min (α, β, γ)→ 1, η{1,2,3} → 1/3, corresponding to complete independence, and as max (α, β, γ)→ 0, η{1,2,3} → 1.

Calculation of η{1,3}. We now consider the coefficient of tail dependence for the variables X1 and X3, i.e., the pair that
is not directly linked in tree T1 of the underlying vine. The joint density of X1 and X3 cannot be found analytically for
a trivariate vine with inverted logistic pair copula components; we therefore use the method discussed in Section 2.2,
with the gauge function for this pair of variables being g{1,3}(x1, x3) = minx2≥0 g(x), for g(x) in (21). To demonstrate
the boundary of the scaled sample cloud, we carry out this minimisation numerically. In the left panel of Fig. 5, we
plot the set G{1,3} for (α, β, γ) = (0.5, 0.25, 0.5), chosen to match the parameter values for the central panel of Fig. 4.

To calculate η{1,3}, we follow the steps in Section 2.2, where we have η{1,3} =
{
minx1,x3≥1 g{1,3}(x1, x3)

}−1
={

minx1,x3≥1,x2≥0 g(x1, x2, x3)
}−1. We have already seen that g(x) is increasing with respect to x1 and x3, so we focus on

x1 = x3 = 1, and have η{1,3} = {minv≥0 g(1, v, 1)}−1. That is,

η{1,3} =

(
v +

[{(
1 + v1/α

)α
− v

}1/γ
+

{(
1 + v1/β

)β
− v

}1/γ
]γ)−1

,

with v satisfying dg(1, v, 1)/dv = 0, i.e.,

1+

[{(
1 + v1/α

)α
− v

}1/γ
+

{(
1 + v1/β

)β
− v

}1/γ
]γ−1

×

[ {
(1 + v−1/α)α−1 − 1

} {
(1 + v1/α)α − v

}−1+1/γ
+

{
(1 + v−1/β)β−1 − 1

} {
(1 + v1/β)β − v

}−1+1/γ
]

= 0. (23)

In Section B of the Supplementary Material, we show that (23) has a unique solution that lies in the range (0, 1). In
general, equation (23) has no closed form solution, except in the case where α = β, which leads to

v =
{
(1 − 2−γ)−1/(1−α) − 1

}−α
, η{1,3} =

{
(1 − 2−γ)−1/(1−α)

− 1
}α

1 − 2γ + 2γ (1 − 2−γ)−α/(1−α) ,

but it can be solved numerically when α , β. In the right panel of Fig. 5, we demonstrate the resulting value of η{1,3}
for a variety of α, β and γ values. We note that η{1,3} ∈ (0.5, 1), revealing flexibility in the asymptotic independence
features this model can capture. In particular, for the α = β case, η{1,3} = 1 − γ ln 2 + o(γ)↗ 1, as γ ↘ 0.

4.2. Higher dimensional results
We now extend the results of Section 4.1 by considering vine copulas with dimension d > 3 constructed from

inverted extreme value pair copulas, with the aim being to find the gauge function and value of ηD in each case. We
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focus on copulas with two types of underlying structure: the class of vine copulas known as D-vines, where all trees
in the vine are paths; and C-vines, which have exactly one node that is connected to all other nodes in each tree.
These correspond to the two classes demonstrated in Fig. 3 for the case d = 4. In the final part of this section, we
demonstrate the values of ηD calculated using these gauge functions for both classes of model.

Gauge functions for D-vines. A d-dimensional D-vine is made up of (d − 1) trees, labelled T1, . . . ,Td−1, and a total
of (d − 1)d/2 edges. We suppose that the pair copula represented by each edge is an inverted extreme value copula,
with the superscript on the exponent measure corresponding to the edge-label, as in the trivariate case. For the four-
dimensional example in Fig. 3, we have

− ln f (tx) = − ln f1(tx1) − ln f2(tx2) − ln f3(tx3) − ln f4(tx4)
− ln c12 {F1(tx1), F2(tx2)} − ln c23 {F2(tx2), F3(tx3)} − ln c34 {F3(tx3), F4(tx4)}
− ln c13|2

{
F1|2(tx1|tx2), F3|2(tx3|tx2)

}
− ln c24|3

{
F2|3(tx2|tx3), F4|3(tx4|tx3)

}
− ln c14|23

{
F1|23(tx1|tx2, tx3), F4|23(tx4|tx2, tx3)

}
. (24)

We note that several of these terms can be thought of in terms of lower-dimensional vine copulas that are subsets of
the four-dimensional vine. In particular, all terms in the trivariate formula (19) for the set of variables (X1, X2, X3)
appear in (24). Let f123 denote the joint density corresponding to this trivariate case. The density f234 corresponding
to variables (X2, X3, X4) also comes from a trivariate vine copula equivalent to f123 up to a labelling of the variables.
The sections of the four-dimensional vine corresponding to these two trivariate subsets are highlighted in Fig. 6, and
can be thought of as sub-vines of the overall vine copula. We note that these two sub-vines overlap in the centre,
as they share the variables (X2, X3). This suggests that if we try to represent − ln f for the overall model in terms of
− ln f123 and − ln f234, we will count the section corresponding to − ln f23 twice, with f23 denoting the joint density of
(X2, X3). Taking this inclusion-exclusion into account, equation (24) can be simplified to

− ln f (tx) = − ln f123(tx1, tx2, tx3) − ln f234(tx2, tx3, tx4) + ln f23(tx2, tx3)
− ln c14|23

{
F1|23(tx1|tx2, tx3), F4|23(tx4|tx2, tx3)

}
. (25)

Fig. 6: Trivariate subsets of the four-dimensional D-vine copula.

In Section C of the Supplementary Material, we show that the gauge function can be written in terms of the gauge
functions of the three sub-vines highlighted in Fig. 6 and the exponent measure corresponding to the pair copula in
tree T3. In particular,

g(x) = g{2,3}(x2, x3) + V {14|23}
{

1
g{1,2,3}(x1, x2, x3) − g{2,3}(x2, x3)

,
1

g{2,3,4}(x2, x3, x4) − g{2,3}(x2, x3)

}
, (26)

for x1, x2, x3 ≥ 0. For D-vine copulas, this same structure can be extended to higher dimensions, creating an iterative
formula for calculating the gauge function; this is stated in Theorem 1.
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Theorem 1. The gauge function for a d-dimensional D-vine with inverted extreme value pair copula components is
given by

g(x) = gD\{1,d}(x−{1,d}) + V {1,d|D\{1,d}}
{

1
gD\{d}(x−{d}) − gD\{1,d}(x−{1,d})

,
1

gD\{1}(x−{1}) − gD\{1,d}(x−{1,d})

}
,

for xi ≥ 0, i ∈ {1, . . . , d}.

Theorem 1 is proved in the Appendix. We discuss how to obtain ηD later in this section.

Gauge functions for C-vines. Using similar arguments as for the D-vines, we can construct an iterative formula for the
gauge functions of d-dimensional C-vines. We now consider the sub-vines as corresponding to the sets of variables
X−d and X−(d−1), which overlap at X−{(d−1),d}. This is demonstrated in Fig. 7 for the four-dimensional case. Following
the same steps as in the previous section, we obtain the gauge function

g(x) = gD\{(d−1,d}(x−{d−1,d}) + V {d−1,d|D\{d−1,d}}
{ 1

gD\{d}(x−{d}) − gD\{d−1,d}(x−{d−1,d})
,

1
gD\{d−1}(x−{d−1}) − gD\{d−1,d}(x−{d−1,d})

}
,

with xi ≥ 0, i ∈ {1, . . . , d}.

Fig. 7: Trivariate subsets of the four-dimensional C-vine copula
.

Calculating ηD for d-dimensional D-vines and C-vines with inverted logistic components. As for the trivariate vine
copula examples with inverted logistic pair copula components, numerical results suggest that the intersection of the
set G = {x ∈ Rd : g(x) = 1} and [ηD,∞)d for these D-vines and C-vines occurs when x1 = . . . = xd. As before, this
suggests that ηD = g(1, . . . , 1)−1 in this case.

Due to the nested structure of the gauge functions, the value of ηD can be written in terms of the values of ηC for
various sub-vines of the copula, and the exponent measure corresponding to tree Td−1 of the vine. In particular, for
D-vines, we have

ηD =

η−1
D\{1,d} + V {1,d|D\{1,d}}

 1
η−1
D\{d} − η

−1
D\{1,d}

,
1

η−1
D\{1} − η

−1
D\{1,d}



−1

(27)

and for C-vines,

ηD =

η−1
D\{d−1,d} + V {d−1,d|D\{d−1,d}}

 1
η−1
D\{d} − η

−1
D\{d−1,d}

,
1

η−1
D\{(d−1)} − η

−1
D\{d−1,d}



−1

.
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Fig. 8: Values of ηD for d ∈ {2, . . . , 10} for a d-dimensional D-vine or C-vine constructed from inverted logistic pair copulas all having equal
dependence parameter α ∈ {0.1, . . . , 0.9}.

Setting ηC = 1 for |C| = 1, we now have an iterative method for calculating the values of ηD for these classes of model
for d ≥ 3 dimensions.

As an example, we consider the case where all the pair copulas used in the construction of the vine copulas are
inverted logistic with the same dependence parameter α ∈ (0, 1). In this case, the known value of η{1,2} for the bivariate
copula is 2−α. We can therefore use our iterative formulas to calculate ηD for higher dimensional vine copulas. Since
the exponent is homogeneous of order −1, the expression for ηD in (27) in this case simplifies to

ηD =
{
η−1
D\{1,d} + 2α

(
η−1
D\{d} − η

−1
D\{1,d}

)}−1
, (28)

and we can use the iterative method to derive the exact value of ηD for any d-dimensional D-vine copula. For this
example, we can extend the results to higher d-dimensional vine copulas, yielding, for d ≥ 3,

ηD =


{
1 + 2α

∑(d−1)/2
k=1 (2α − 1)2(k−1)+1

}−1
, d odd,{

2α
∑d/2

k=1 (2α − 1)2(k−1)
}−1

, d even,
=


[
1 + 2α−1

2−2α

{
1 − (2α − 1)d−1

}]−1
, d odd,[

1
2−2α

{
1 − (2α − 1)d

}]−1
, d even,

(29)

which can be shown to be decreasing in d. We prove result (29) by induction in Section E of the Supplementary
Material. We note that when the pair copulas, and therefore the corresponding exponent measures, are all taken
to be identical, the value of ηD is the same for the D-vines and C-vines of the same dimension. These values are
demonstrated in Fig. 8 for α ∈ {0.1, . . . , 0.9} and d ∈ {2, . . . , 10}, where we have ηD < 1 in all cases, corresponding
to asymptotic independence. Complete independence in the d-dimensional vine copula corresponds to ηD = 1/d.
We see from Fig. 8 that for α = 0.9, we approach this case, while for α = 0.1, the values of ηD are close to 1,
corresponding to strong residual dependence. These models are therefore able to capture a range of sub-asymptotic
dependence strengths in the asymptotic independence case.

5. Trivariate vine copulas with inverted extreme value and extreme value copula components

5.1. Overview

We have so far focused on the tail dependence properties of vine copulas with inverted extreme value pair copula
components. Now, we investigate these same properties for trivariate vine copulas where the components are either
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extreme value or inverted extreme value copulas. We consider five such cases, which along with the results in Sec-
tion 4.1 cover the range of possible scenarios. In the first case, the two copulas in tree T1 of Fig. 2 belong to the
inverted extreme value class, and there is an extreme value copula in tree T2; tree T1 has one extreme value and one
inverted extreme value copula in the next two cases, with the copula in tree T2 being either inverted extreme value or
extreme value; and finally, we consider cases where both copulas in tree T1 are from the extreme value family with the
copula in tree T2 being from either the inverted extreme value or extreme value class. This section will therefore con-
sist of a series of examples, and the gauge functions resulting from these vine structures generally have a complicated
form, with the corresponding sets G exhibiting interesting shapes including non-convexity and non-smoothness. This
differs from other well-known examples such as the multivariate Gaussian distribution. The gauge function calcula-
tions are provided in Sections F to H of the Supplementary Material for each of these cases, with the extreme value
components satisfying conditions analogous to (12). Specifically, let h{12}(w), h{23}(w), h{13|2}(w) denote the spectral
density for each pair copula component. We assume that each of these densities has h{·}(w) ∼ c{·}1 (1 − w)s{·}1 as w ↗ 1
and h{·}(w) ∼ c{·}2 ws{·}2 as w↘ 0, for some c{·}1 , c

{·}

2 ∈ R and s{·}1 , s
{·}

2 > −1.
Our results are summarised in Section 5.2, where we also investigate the corresponding values of η{1,2,3} and η{1,3}

for logistic and inverted logistic examples, with exponent measure (10). In some subsections, this is achieved by
obtaining results for more general gauge functions. In other cases this is not possible, and we focus only on the
(inverted) logistic examples, but suggest that similar strategies could be used for other cases. Whether the copula is
logistic or inverted logistic, we denote the parameters associated with exponent measures of copulas c12, c23 and c13|2

by α, β, γ ∈ (0, 1), respectively. We note that in the logistic case, we have s{12}
1 = s{12}

2 = 1/α−2; s{23}
1 = s{23}

2 = 1/β−2
and s{13|2}

1 = s{13|2}
2 = 1/γ − 2.

5.2. Gauge functions for trivariate vines with extreme value and inverted extreme value components

Inverted extreme value copulas in T1; extreme value copula in T2. The calculations in the Supplementary Material
demonstrate that the gauge function is

g(x) =
(
2 + s{13|2}

m

)
max

{
V {12}

(
x−1

1 , x−1
2

)
,V {23}

(
x−1

2 , x−1
3

)}
−

(
1 + s{13|2}

m

)
min

{
V {12}

(
x−1

1 , x−1
2

)
,V {23}

(
x−1

2 , x−1
3

)}
,

with min(x1, x2, x3) ≥ 0, and

s{13|2}
m = s{13|2}

1 1{V {12}(x−1
1 , x−1

2 )≥V {23}(x−1
2 , x−1

3 )} + s{13|2}
2 1{V {12}(x−1

1 , x−1
2 )<V {23}(x−1

2 , x−1
3 )} > −1.

To calculate η{1,2,3}, we must here consider two separate cases. First, we assume that V {12}
(
x−1

1 , x−1
2

)
≥ V {23}

(
x−1

2 , x−1
3

)
,

so the gauge function simplifies to

g(x) =
(
2 + s{13|2}

m

)
V {12}

(
x−1

1 , x−1
2

)
−

(
1 + s{13|2}

m

)
V {23}

(
x−1

2 , x−1
3

)
.

Since s{13|2}
m > −1, g(x) is non-decreasing in x1 and we can set x1 = 1 to find the solution of (5). We therefore need to

minimise
g(1, x2, x3) =

(
2 + s{13|2}

m

)
V {12}

(
1, x−1

2

)
−

(
1 + s{13|2}

m

)
V {23}

(
x−1

2 , x−1
3

)
,

such that V {12}
(
1, x−1

2

)
≥ V {23}

(
x−1

2 , x−1
3

)
. Now, the function g(1, x2, x3) is non-increasing in x3, which should therefore

be taken to be as large as possible. Since V {23}
(
x−1

2 , x−1
3

)
is non-decreasing in x3, this function should also be as large

as possible, i.e., the largest value of x3 occurs when V {23}
(
x−1

2 , x−1
3

)
= V {12}

(
1, x−1

2

)
, and the gauge function becomes

g(1, x2, x3) =
(
2 + s{13|2}

m

)
V {12}

(
1, x−1

2

)
−

(
1 + s{13|2}

m

)
V {12}

(
1, x−1

2

)
= V {12}

(
1, x−1

2

)
.

Again, this is non-decreasing in x2, so the minimum occurs when x2 = 1, i.e., minx:min(x)=1 g(x) = V {12} (1, 1). For the
case where V {12}

(
x−1

1 , x−1
2

)
≤ V {23}

(
x−1

2 , x−1
3

)
, by a similar argument, minx:min(x)=1 g(x) = V {23} (1, 1). In summary, there

are two candidates for minx:min(x)=1 g(x). The first is V {12}(1, 1), which arises when x1 = x2 = 1 and V {23}(1, x−1
3 ) =

V {12}(1, 1) for some x3 ≥ 1; this can occur when V {23}(1, 1) ≤ V {12}(1, 1). The second is V {23}(1, 1), which occurs when
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Fig. 9: The set G = {x ∈ R3 : g(x) = 1} for a trivariate vine with inverted logistic copulas in T1 and a logistic copula in T2 (grey) and the boundary
of the set [η{1,2,3}, 1)3 (blue): α = 0.25 (left), α = 0.5 (centre), α = 0.75 (right); β = 0.25 and γ = 0.5.

x2 = x3 = 1 and V {12}(x−1
1 , 1) = V {23}(1, 1) for some x1 ≥ 1, and is possible when V {12}(1, 1) ≤ V {23}(1, 1). This implies

that the required minimum is given by max
{
V {12}(1, 1),V {23}(1, 1)

}
. We therefore have

η{1,2,3} =

{
min

x:min(x)=1
g(x)

}−1

=
[
max

{
V {12} (1, 1) ,V {23} (1, 1)

}]−1
= min

[{
V {12} (1, 1)

}−1
,
{
V {23} (1, 1)

}−1
]
.

For the value of η{1,3}, we observe that

g(1, 0, 1) =
(
2 + s{13|2}

m

)
max

{
V {12} (1,∞) ,V {23} (∞, 1)

}
−

(
1 + s{13|2}

m

)
min

{
V {12} (1,∞) ,V {23} (∞, 1)

}
=

(
2 + s{13|2}

m

)
−

(
1 + s{13|2}

m

)
= 1.

As discussed in Section 2.2, this is the smallest possible value of minx1,x3≥1,x2≥0 g(x), and therefore must be our required
minimum. We therefore have η{1,3} = 1.

For an example with logistic and inverted logistic components, the gauge function is

g(x) = (1/γ) max
{(

x1/α
1 + x1/α

2

)α
,
(
x1/β

2 + x1/β
3

)β}
− (1/γ − 1) min

{(
x1/α

1 + x1/α
2

)α
,
(
x1/β

2 + x1/β
3

)β}
,

with η{1,2,3} = min
(
1/2α, 1/2β

)
and η{1,3} = 1.

In Fig. 9, we demonstrate the set G = {x ∈ R3 : g(x) = 1} for this example, with α ∈ {0.25, 0.5, 0.75}, β = 0.25
and γ = 0.5, where the surface corresponding to the set G turns out to be non-convex. The plots in Fig. 9 support
our analytical calculations. The intersection of G and [η{1,2,3}, 1)3 occurs at x1 = x2 = x3 in the first panel with
α = β = 0.25, and x3 ≥ x1 = x2 in the remaining two panels, where α > β. The gauge function for the pair of vari-
ables (X1, X3) is demonstrated in Fig. 10. This plot supports that η{1,3} = 1, and we note the non-convex shape of G{1,3}.

Extreme value and inverted extreme value copulas in T1; inverted extreme value copula in T2. From the calculations
in the Supplementary Material, the gauge function for this model is

g(x) =


(
2 + s{13|2}

1

) (
1 + s{12}

2

)
(x2 − x1) + V {23}

(
x−1

2 , x−1
3

)
, 0 ≤ x1 ≤ x2,

x2 + V {13|2}
[{

(x1 − x2)
(
2 + s{12}

1

)}−1
,
{
V {23}

(
x−1

2 , x−1
3

)
− x2

}−1
]
, 0 ≤ x2 < x1.

To find η{1,2,3}, there are two cases to consider. If x1 ≤ x2, it is clear that the function g(x) is decreasing in x1, which
should therefore be taken to be as large as possible by fixing x1 = x2. The gauge function then simplifies to

g(x2, x2, x3) = V {23}
(
x−1

2 , x−1
3

)
,

16



X1

X
3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 10: The sets G{1,3} (grey) and [η{1,3}, 1)2 (blue) for (α, β, γ) = (0.5, 0.25, 0.5).

which is non-decreasing in both x2 and x3, so we find the minimum by setting x2 = x3 = 1, yielding V {23}(1, 1).
Similarly, for x2 ≤ x1, the gauge function is non-decreasing in x1, and we can again fix x1 = x2 with the resulting
gauge function being

g(x2, x2, x3) = x2 + V {13|2}
[
0−1,

{
V {23}

(
x−1

2 , x−1
3

)
− x2

}−1
]

= V {23}
(
x−1

2 , x−1
3

)
.

Again, this is non-decreasing in x2 and x3, so the minimum is given by V {23} (1, 1). Hence,

η{1,2,3} = g(1, 1, 1)−1 =
{
V {23} (1, 1)

}−1
.

For the case with logistic and inverted logistic components, the gauge function is

g(x) =


(1/γ) (1/α − 1) (x2 − x1) +

(
x1/β

2 + x1/β
3

)β
, 0 ≤ x1 ≤ x2,

x2 +

[
{(x1 − x2) /α}1/γ +

{(
x1/β

2 + x1/β
3

)β
− x2

}1/γ
]γ
, 0 ≤ x2 < x1.

An example of this gauge function is shown in Fig. 11a, and we have η{1,2,3} = g(1, 1, 1)−1 = 1/2β.
We now consider the bivariate coefficient of tail dependence between X1 and X3. Since we have already shown that

minx:min(x)≥1 g(x) = g(1, 1, 1), we must have minx:x1,x3≥1,x2≥0 g(x) ≤ g(1, 1, 1), and can focus only on the case where
x2 ≤ x1. Here, the gauge function is increasing in x1 and x3, so we fix x1 = x3 = 1, and should minimise the function

g(1, v, 1) = v +

[
{(1 − v) /α}1/γ +

{(
1 + v1/β

)β
− v

}1/γ
]γ
,

for v ≥ 0. We therefore find that η{1,3} = g(1, v, 1)−1, with v such that

1 +

[
{(1 − v)/α}1/γ +

{(
1 + v1/β

)β
− v

}1/γ
]γ−1 [

−α−1/γ(1 − v)−1+1/γ +

{(
1 + v1/β

)β
− v

}−1+1/γ {(
1 + v−1/β

)β−1
− 1

}]
= 0.

Following an argument almost identical to the one presented for the calculation of η{1,3} in Section 4.1, this equation
has a unique solution, with v ∈ (0, 1).

Extreme value and inverted extreme value copulas in T1; extreme value copula in T2. The gauge function for this
copula is

g(x) =


x2 +

(
1 + s{12}

2

)
(x2 − x1) +

(
2 + s{13|2}

2

) {
V {23}

(
x−1

2 , x−1
3

)
− x2

}
, 0 ≤ x1 ≤ x2,

x2 +
(
2 + s{13|2}

m

)
max

{(
2 + s{12}

1

)
(x1 − x2) ,V {23}

(
x−1

2 , x−1
3

)
− x2

}
−

(
1 + s{13|2}

m

)
min

{(
2 + s{12}

1

)
(x1 − x2) ,V {23}

(
x−1

2 , x−1
3

)
− x2

}
, 0 ≤ x2 < x1,
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(a) (b)

(c) (d)

Fig. 11: The sets G = {x ∈ R3 : g(x) = 1} for the remaining four trivariate vine copula cases (grey) with the boundary of the set [η{1,2,3}, 1.1)3

(blue): α = 0.5, β = 0.25, γ = 0.5.

with

s{13|2}
m = s{13|2}

1 1{(
2+s{12}

1

)
(x1−x2)≥V {23}(x−1

2 , x−1
3 )−x2

} + s{13|2}
2 1{(

2+s{12}
1

)
(x1−x2)<V {23}(x−1

2 , x−1
3 )−x2

},
so that for the case with logistic and inverted logistic components, we have

g(x) =


(1/α) x2 − (1/α − 1) x1 + (1/γ)

{(
x1/β

2 + x1/β
3

)β
− x2

}
, 0 ≤ x1 ≤ x2,

x2 + (1/γ) max
{
(x1 − x2) /α,

(
x1/β

2 + x1/β
3

)β
− x2

}
− (1/γ − 1) min

{
(x1 − x2) /α,

(
x1/β

2 + x1/β
3

)β
− x2

}
, 0 ≤ x2 < x1.

As in the previous example, we consider the two cases x1 ≤ x2 and x2 ≤ x1 separately. In the former, the gauge
function increases with x3, so that the minimum required to obtain η{1,2,3} occurs when x3 = 1. On the other hand, the
function is decreasing with respect to x1, which must therefore take its largest possible value, i.e., we can fix x1 = x2.
This implies we should focus on minimising

h(v) = g(v, v, 1) = v + (1/γ)
{(

1 + v1/β
)β
− v

}
,

under the constraint that v ≥ 1. We have

h′(v) = 1 + (1/γ)
{
v1/β−1

(
1 + v1/β

)β−1
− 1

}
= 1 + (1/γ)

{(
1 + v−1/β

)β−1
− 1

}
.
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If we solve the equation h′(v0) = 0, we obtain the root v0 =
{
(1 − γ)−1/(1−β) − 1

}−β
, and note that v0 > 1 if and only if

γ < 1 − 2β−1. In this case, the minimum value of h(v) is given by

h(v0) =

(
1 − γ
γ

) {
(1 − γ)−1/(1−β) − 1

}1−β
.

On the other hand, if γ ≥ 1 − 2β−1, h′(v) > 0 for v ≥ 1, so h(v) is an increasing function of v, and the minimum occurs
at v = 1, i.e., h(1) = 1 +

(
2β − 1

)
/γ. In summary, if x1 ≤ x2, we have

min
x:min(x)≥1

g(x) =

1 + (2β − 1)/γ, γ ≥ 1 − 2β−1,(
1−γ
γ

) {
(1 − γ)−1/(1−β) − 1

}1−β
, γ < 1 − 2β−1.

(30)

For x2 ≤ x1, the problem spilts into a further two cases. If (x1 − x2)/α ≤
(
x1/β

2 + x1/β
3

)β
− x2, the gauge function

becomes
g(x) = x2 + (1/γ)

{(
x1/β

2 + x1/β
3

)β
− x2

}
− (1/γ − 1) (1/α) (x1 − x2) .

This is an increasing function of x3, but a decreasing function of x1. These two variables should therefore take their
smallest and largest possible values, respectively. This occurs with equality at (x1 − x2)/α =

(
x1/β

2 + x1/β
3

)β
− x2, and

an equivalent argument holds for the (x1 − x2)/α ≥
(
x1/β

2 + x1/β
3

)β
− x2 case. To obtain the required minimum, we can

therefore focus on a simplified version of the gauge function, i.e.,

g∗(x2, x3) =
(
x1/β

2 + x1/β
3

)β
,

with x1 = α
(
x1/β

2 + x1/β
3

)β
+ (1 − α)x2 > x2. The function g∗(x2, x3) is increasing with respect to both x2 and x3, so we

have
min

x:min(x)=1
g(x) = g∗(1, 1) = g

[{
α2β + 1 − α

}
, 1, 1

]
= 2β.

We now have two candidates for the required minimum of the full gauge function; either 2β, or the form given in (30).
For γ ≥ 1 − 2β−1, it is straightforward to see that 1 + (2β − 1)/γ ≥ 2β. For γ < 1 − 2β−1, we have 1 − γ > 2β−1,
γ−1 >

(
1 − 2β−1

)−1
, and (1 − γ)−1/(1−β) − 1 > 1, so(

1 − γ
γ

) {
(1 − γ)−1/(1−β) − 1

}1−β
>

(
1 − γ
γ

)
>

2β−1

1 − 2β−1 >
2β

2 − 2β
> 2β.

Hence, we find that the minimum in (5) occurs when x1 > x2 = x3 = 1, and η{1,2,3} = 1/2β. This is supported by the
plot in Fig. 11b, and suggests that the inverted logistic copula in tree T1 particularly controls the level of asymptotic
independence in the overall model.

We now consider η{1,3}. Following the previous example, we can focus on the case where x2 ≤ x1. Moreover, by a
similar argument to the one used in the calculation of η{1,2,3}, we only need to consider the case where (x1 − x2)/α =(
x1/β

2 + x1/β
3

)β
− x2, yielding

g(x) = x1/α + (1 − 1/α)x2 =
(
x1/β

2 + x1/β
3

)β
.

Since these functions are increasing in x1 and x3, respectively, we set x1 = x3 = 1. Hence, the minimum of the gauge
function corresponds to minv≥0(1 + v1/β)β, with v such that (1 − v)/α =

(
v1/β + 1

)β
− v. We therefore have

η{1,3} =
(
1 + v1/β

)−β
, with v such that (1 + v1/β)β − (1 − v)/α − v = 0.

We note that if h(v) = (1 + v1/β)β − (1 − v)/α − v, we have h′(v) = (1 + v−1/β)β−1 + 1/α − 1 > 0 for v ≥ 0. Moreover,
h(0) = 1 − 1/α < 0 and h(1) = 2β − 1 > 0. Hence, h(v) is an increasing function for v ≥ 0, and the equation h(v) = 0
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has a unique root in the range (0, 1). This also implies that η{1,3} > 2β = η{1,2,3}.

Extreme value copulas in T1; inverted extreme value copula in T2. The gauge function in this case is

g(x) =



x2 +
(
2 + s{13|2}

m

)
max

{(
1 + s{12}

2

)
(x2 − x1) ,

(
1 + s{23}

1

)
(x2 − x3)

}
−

(
1 + s{13|2}

m

)
min

{(
1 + s{12}

2

)
(x2 − x1) ,

(
1 + s{23}

1

)
(x2 − x3)

}
, max(x1, x3) < x2,

x2 +
(
2 + s{13|2}

1

) (
1 + s{12}

2

)
(x2 − x1) +

(
2 + s{23}

2

)
(x3 − x2) , x1 < x2 ≤ x3,

x2 +
(
2 + s{13|2}

2

) (
1 + s{23}

1

)
(x2 − x3) +

(
2 + s{12}

1

)
(x1 − x2) , x3 < x2 ≤ x1,

x2 + V {13|2}
[{(

2 + s{12}
1

)
(x1 − x2)

}−1
,
{(

2 + s{23}
2

)
(x3 − x2)

}−1
]
, x2 ≤ min(x1, x3),

with min(x1, x2, x3) ≥ 0 and

s{13|2}
m = s{13|2}

1 1{(
1+s{12}

2

)
(x2−x1)≥

(
1+s{23}

1

)
(x2−x3)

} + s{13|2}
2 1{(

1+s{12}
2

)
(x2−x1)<

(
1+s{23}

1

)
(x2−x3)

}.
For this gauge function, we observe that g(1, 1, 1) = 1, which implies that η{1,2,3} = 1. Moreover, if ηD = 1, then
ηC = 1 for any set C ⊂ D with |C| ≥ 2. As such, we also find that η{1,3} = 1 in this case. This result agrees with the
findings of [19], who show that a vine copula will have overall upper tail dependence if each of the copulas in tree T1
also have this property and the copula in tree T2 has support on (0, 1)2, as is the case here.

For the case with logistic and inverted logistic components,

g(x) =



x2 + (1/γ) max {(1/α − 1) (x2 − x1) , (1/β − 1) (x2 − x3)}
+ (1 − 1/γ) min {(1/α − 1) (x2 − x1) , (1/β − 1) (x2 − x3)} , max(x1, x3) < x2,

x2 + (1/γ) (1/α − 1) (x2 − x1) + (1/β) (x3 − x2) , x1 < x2 ≤ x3,

x2 + (1/γ) (1/β − 1) (x2 − x3) + (1/α) (x1 − x2) , x3 < x2 ≤ x1,

x2 +
[
{(x1 − x2) /α}1/γ + {(x3 − x2) /β}1/γ

]γ
, x2 ≤ min(x1, x3),

with min(x1, x2, x3) ≥ 0. This is demonstrated in Fig. 11c.

Extreme value copulas in T1; extreme value copula in T2. The gauge function here has the form

g(x) =



x2 + V {13|2}
[{(

1 + s{12}
2

)
(x2 − x1)

}−1
,
{(

1 + s{23}
1

)
(x2 − x3)

}−1
]
, max(x1, x3) ≤ x2,

x2 +
(
2 + s{13|2}

2

) (
2 + s{23}

2

)
(x3 − x2) +

(
1 + s{12}

2

)
(x2 − x1) , x1 ≤ x2 < x3,

x2 +
(
2 + s{13|2}

1

) (
2 + s{12}

1

)
(x1 − x2) +

(
1 + s{23}

1

)
(x2 − x3) , x3 ≤ x2 < x1,

x2 +
(
2 + s{13|2}

m

)
max

{(
2 + s{12}

1

)
(x1 − x2) ,

(
2 + s{23}

2

)
(x3 − x2)

}
−

(
1 + s{13|2}

m

)
min

{(
2 + s{12}

1

)
(x1 − x2) ,

(
2 + s{23}

2

)
(x3 − x2)

}
, x2 < min(x1, x3),

with min(x1, x2, x3) ≥ 0 and

s{13|2}
m = s{13|2}

1 1{(
2+s{12}

1

)
(x1−x2)≥

(
2+s{23}

2

)
(x3−x2)

} + s{13|2}
2 1{(

2+s{12}
1

)
(x1−x2)<

(
2+s{23}

2

)
(x3−x2)

}.
As for the previous case, we note that g(1, 1, 1) = 1, which implies that η{1,2,3} = η{1,3} = 1. For a trivariate vine
consisting of three logistic pair copulas, this gives the gauge function

g(x) =


x2 +

[
{(1/α − 1) (x2 − x1)}1/γ + {(1/β − 1) (x2 − x3)}1/γ

]γ
, max(x1, x3) ≤ x2,

x2 + (1/γ) (1/β) (x3 − x2) + (1/α − 1) (x2 − x1) , x1 ≤ x2 < x3,

x2 + (1/γ) (1/α) (x1 − x2) + (1/β − 1) (x2 − x3) , x3 ≤ x2 < x1,

x2 + (1/γ) max {(x1 − x2) /α, (x3 − x2) /β} + (1 − 1/γ) min {(x1 − x2) /α, (x3 − x2) /β} , x2 < min(x1, x3),

with min(x1, x2, x3) ≥ 0; see Fig. 11d for an example.
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6. Discussion

The aim of this paper was to investigate some of the tail dependence properties of vine copulas, via the coefficient
of tail dependence of [23]. We demonstrated how to apply the geometric approach of [26] to calculate these values
from a density, and applied further theory from [27] for cases where the joint density of (Xi : i ∈ C) cannot be obtained
analytically, but the joint density of (Xi : i ∈ C′) with C′ ⊃ C is known. While values of ηC < 1 allow us to deduce
that there is asymptotic independence between the variables XC, these geometric approaches do not enable distinction
between asymptotic independence and asymptotic dependence when ηC = 1.

We focused on trivariate vine copulas constructed from extreme value and inverted extreme value pair copulas,
and higher dimensional D-vine and C-vine copulas constructed only from inverted extreme value pair copulas. In the
latter case, there is overall asymptotic independence between the variables. In the former case, the copulas in tree
T1 particularly influence the overall tail dependence properties of the vine. If there are two asymptotically dependent
extreme value copulas in tree T1, there is overall asymptotic dependence in the vine, as found by [19], otherwise, all
three variables cannot be large together, although other subsets of the variables could be simultaneously extreme.

In Section 1, we discussed the idea of extremal dependence structures, i.e., that different subsets of variables
can take their largest values simultaneously while others are of smaller order [29]. Let the extremal dependence
structure of the variables X = (X1, X2, X3) be denoted by a set A, such that if A ∈ A the variables indexed by
A ⊆ {1, 2, 3} can be simultaneously large while the others are small. For the trivariate case, our examples comprise
all possible combinations of asymptotically independent and asymptotically dependent pair copulas for the three
components of the vine. Throughout the paper, the spectral density of the asymptotically dependent components was
restricted to placing mass on (0, 1) as in (12), while asymptotic independence corresponds to mass on {0} and {1}. Our
results suggest that the only extremal dependence structures possible in this setting areA = {{1}, {2}, {3}}, {{1}, {2, 3}},
{{2}, {1, 3}}, {{3}, {1, 2}} and {{1, 2, 3}}. While it is unclear whether the structure A = {{2}, {1, 3}} is possible for the
specific form of the vine we consider (Fig. 2), it is possible with relabelling of the variables, hence its inclusion here.
This suggests that each variable is only represented in one of the simultaneously-extreme subsets, and it is likely that
this issue would also occur in higher dimensions. Obtaining more complicated structures would require pair copulas
that place extremal mass on different combinations of the sets {0}, (0, 1), and {1}, such as the asymmetric logistic model
of [32] discussed in case (vi) of Section 2.3. However, we conjecture that certain extremal dependence structures will
never be possible due to restrictions imposed by the vine.

As an example, suppose we are interested in the structure {{1, 2}, {1, 3}, {2, 3}}, so that only pairs of variables can
be large simultaneously while the third is of smaller order. If both pair copulas in tree T1 place mass on (0, 1), the
set {1, 2, 3} will be included in the extremal dependence structure [19]. This implies that at least one component of
T1 must exhibit asymptotic independence to obtain our required structure. However, any pair of variables for which
asymptotic independence is imposed in T1 can never be simultaneously extreme, i.e., it would not possible for both
{1, 2} and {2, 3} to be included in the dependence structure in this case. The structure {{1, 2}, {1, 3}, {2, 3}} can therefore
not be achieved, and actually the pairs {1, 2} and {2, 3} cannot both be included in the extremal dependence structure
unless {1, 2, 3} also is.

Although the full set of extremal dependence structures may not be captured using vine copulas, it appears that
they do allow for a wide range of possibilities, and investigating this topic further presents a possible avenue for future
work.
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Appendix A. Proof of Theorem 1

A D-vine is represented graphically by a series of d − 1 trees, labelled T1, . . . ,Td−1. Each of these trees is a path,
and we suppose that the nodes are labelled in ascending order, as in the left plot of Fig. 3 for the case where d = 4.
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Moving from a D-vine of dimension d ≥ 4 to one of dimension d + 1 involves first adding an extra node and edge onto
each tree in the graph. In tree T1, the extra node has label d + 1, and the extra edge label is {d, d + 1}. In tree T2 the
extra node is labelled {d, d + 1} and the edge is labelled {d − 1, d + 1}|d, and this continues until we reach tree Td−1,
where the extra node is labelled {3, d + 1}|{4, . . . , d} and the corresponding edge is labelled {2, d + 1}|{3, . . . , d}. We
finally must also add the tree Td, with nodes labelled {1, d}|{2, . . . , d − 1} and {2, d + 1}|{3, . . . , d}, and corresponding
edge label {1, d + 1}|{2, . . . , d}. This is demonstrated in Fig. A.12, for an example where we move from a D-vine of
dimension four to one of dimension five.

Fig. A.12: Example of the extending a four-dimensional D-vine to a five-dimensional D-vine.

Due to this iterative construction, we can consider a d-dimensional D-vine in terms of three lower dimensional
‘sub-vines’ in a similar way to in Fig. 6 for the d = 4 case. In particular, in trees T1, . . . ,Td−2, we have two sub-vines
of dimension d− 1; the first corresponds to variables with labels in {1, . . . , d− 1} = D\{d}, and the second to variables
with labels in {2, . . . , d} = D\{1}. In the graph, these two sub-vines will overlap in the region corresponding to a
further sub-vine, this time of dimension d − 2 and corresponding to variables with labels in {2, . . . , d − 1} = D\{1, d}.

In order to calculate the gauge function, we consider the behaviour of − ln f (tx), as t → ∞. By considering these
three sub-vines, we see that this can be written as

− ln f (tx) = − ln fD\{d}
(
tx−{d}

)
− ln fD\{1}

(
tx−{1}

)
+ ln fD\{1,d}

(
tx−{1,d}

)
− ln c{1,d}|D\{1,d}

{
F1|D\{1,d}

(
tx1|tx−{1,d}

)
, Fd|D\{1,d}

(
txd |tx−{1,d}

)}
,

x ∈ Rd. Note that this is the form given for the d = 4 case in equation (25). We can therefore infer that the
d-dimensional gauge function g(x), defined as − ln f (tx) ∼ tg(x) as t → ∞, satisfies

g(x) = gD\{d}
(
x−{d}

)
+ gD\{1}

(
x−{1}

)
− gD\{1,d}

(
x−{1,d}

)
+ g̃D(x), (A.1)

x ∈ Rd, where, as t → ∞,

− ln c{1,d}|D\{1,d}
{
F1|D\{1,d}

(
tx1|tx−{1,d}

)
, Fd|D\{1,d}

(
txd |tx−{1,d}

)}
∼ tg̃D(x). (A.2)

In Section D of the Supplementary Material, we present two lemmas concerning properties of inverted extreme value
copulas that will be used to find g̃D(x), and hence the form of the gauge function for a d-dimensional D-vine with
inverted extreme value components.

We claim that the d-dimensional D-vine has a gauge function of the form stated in Theorem 1. From equation (26),
we have already shown this to be the case for d = 4. To prove this more generally, we assume that the result holds for
the two (d − 1)-dimensional sub-vines of the d-dimensional D-vine, i.e.,

gD\{d} = gD\{1,d−1,d} + V {1,d−1|D\{1,d−1,d}}
(

1
gD\{d−1,d} − gD\{1,d−1,d}

,
1

gD\{1,d} − gD\{1,d−1,d}

)
, (A.3)
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and

gD\{1} = gD\{1,2,d} + V {2,d|D\{1,2,d}}
(

1
gD\{1,d} − gD\{1,2,d}

,
1

gD\{1,2} − gD\{1,2,d}

)
,

where we have dropped the arguments to simplify notation. Further, we claim that the conditional distribution func-
tions used in the calculation of (A.2) have the form

F1|D\{1,d}
(
tx1|tx−{1,d}

)
= 1 − k1|D\{1,d} exp

{
−t

(
gD\{d} − gD\{1,d}

)}
{1 + o(1)}, (A.4)

and

Fd|D\{1,d}
(
txd |tx−{1,d}

)
= 1 − kd|D\{1,d} exp

{
−t

(
gD\{1} − gD\{1,d}

)}
{1 + o(1)}, (A.5)

as t → ∞, for some k1|D\{1,d}, kd|D\{1,d} > 0 not depending on t. From result (39), we see that this claim holds for d = 4.
To prove this more generally, we assume that (A.4) and (A.5) hold in the (d − 1)-dimension case, so that as t → ∞,

F1|D\{1,d−1,d}
(
tx1|tx−{1,d−1,d}

)
= 1 − k1|D\{1,d−1,d} exp

{
−t

(
gD\{d−1,d} − gD\{1,d−1,d}

)}
{1 + o(1)},

and

Fd−1|D\{1,d−1,d}
(
txd−1|tx−{1,d−1,d}

)
= 1 − kd−1|D\{1,d−1,d} exp

{
−t

(
gD\{1,d} − gD\{1,d−1,d}

)}
{1 + o(1)},

for some k1|D\{1,d−1,d}, kd−1|D\{1,d−1,d} > 0. Results from [18] show that

F1|D\{1,d}
(
x1|x−{1,d}

)
=
∂C1,d−1|D\{1,d−1,d}

{
F1|D\{1,d−1,d}(x1|x−{1,d−1,d}), Fd−1|D\{1,d−1,d}(xd−1|x−{1,d−1,d})

}
∂Fd−1|D\{1,d−1,d}(xd−1|x−{1,d−1,d})

,

with result (17) giving the form of the required derivative of an inverted extreme value copula. Applying Lemma 2,
with b1 = gD\{d−1,d} − gD\{1,d−1,d} and b2 = gD\{1,d} − gD\{1,d−1,d}, we see that for some k1|D\{1,d}, as t → ∞,

F1|D\{1,d}
(
tx1|tx−{1,d}

)
= 1 − k1|D\{1,d}

× exp
(
− t

[
V {1,d−1|D\{1,d−1,d}}

{
1

gD\{d−1,d} − gD\{1,d−1,d}
,

1
gD\{1,d} − gD\{1,d−1,d}

}
− gD\{1,d} + gD\{1,d−1,d}

])
{1 + o(1)}

= 1 − k1|D\{1,d} exp
{
−t

(
gD\{d} − gD\{1,d}

)}
{1 + o(1)} by assumption (A.3).

Result (A.5) can be proved by a similar argument. From results (A.4) and (A.5), we see that F1|D\{1,d}
(
tx1|tx−{1,d}

)
and Fd|D\{1,d}

(
txd |tx−{1,d}

)
can be written in the form required to apply Lemma 1, with b1 = gD\{d} − gD\{1,d} and

b2 = gD\{1} − gD\{1,d}. Applying Lemma 1, we have

− ln c{1,d}|D\{1,d}
{
F1|D\{1,d}

(
tx1|tx−{1,d}

)
, Fd|D\{1,d}

(
txd |tx−{1,d}

)}
∼ t

{
2gD\{1,d} − gD\{d} − gD\{1} + V {1,d|D\{1,d}}

(
1

gD\{d} − gD\{1,d}
,

1
gD\{1} − gD\{1,d}

)}
= tg̃D(x),

and combining this with the gauge function result in (A.1), we have

g(x) = gD\{1,d}(x−{1,d}) + V {1,d|D\{1,d}}
{

1
gD\{d}(x−{d}) − gD\{1,d}(x−{1,d})

,
1

gD\{1}(x−{1}) − gD\{1,d}(x−{1,d})

}
,

hence proving Theorem 1 by induction.
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[15] N. Goix, A. Sabourin, S. Clémençon, Sparse representation of multivariate extremes with applications to anomaly detection, Journal of
Multivariate Analysis 161 (2017) 12–31.

[16] J. E. Heffernan, A directory of coefficients of tail dependence., Extremes 3 (2000) 279–290.
[17] J. E. Heffernan, J. A. Tawn, A conditional approach for multivariate extreme values (with discussion), Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 66 (2004) 497–546.
[18] H. Joe, Families of m-variate distributions with given margins and m(m − 1)/2 bivariate dependence parameters, Lecture Notes-Monograph

Series 28 (1996) 120–141.
[19] H. Joe, H. Li, A. K. Nikoloulopoulos, Tail dependence functions and vine copulas, Journal of Multivariate Analysis 101 (2010) 252–270.
[20] M. Kereszturi, J. Tawn, Properties of extremal dependence models built on bivariate max-linearity, Journal of Multivariate Analysis 155

(2017) 52–71.
[21] D. Kurowicka, R. M. Cooke, Uncertainty Analysis with High Dimensional Dependence Modelling, Wiley, Chichester, 2006.
[22] D. Kurowicka, H. Joe (Eds.), Dependence Modeling: Vine Copula Handbook, World Scientific, Singapore, 2010.
[23] A. W. Ledford, J. A. Tawn, Statistics for near independence in multivariate extreme values, Biometrika 83 (1996) 169–187.
[24] A. W. Ledford, J. A. Tawn, Modelling dependence within joint tail regions, Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 59 (1997) 475–499.
[25] A. W. Marshall, I. Olkin, A multivariate exponential distribution, Journal of the American Statistical Association 62 (1967) 30–44.
[26] N. Nolde, Geometric interpretation of the residual dependence coefficient, Journal of Multivariate Analysis 123 (2014) 85–95.
[27] N. Nolde, J. L. Wadsworth, Connections between representations for multivariate extremes, arXiv preprint arXiv:2012.00990 (2020).
[28] I. Papastathopoulos, J. A. Tawn, Conditioned limit laws for inverted max-stable processes, Journal of Multivariate Analysis 150 (2016)

214–228.
[29] E. S. Simpson, J. L. Wadsworth, J. A. Tawn, Determining the dependence structure of multivariate extremes, Biometrika 107 (2020) 513–532.
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