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Abstract

This work aimed at exploring the impact of UV-C/H2O2 and sunlight/H2O2 processes, 

applied at pilot scale, on removing: (i) ciprofloxacin and sulfamethoxazole, (ii) cultivable 

Escherichia coli and Pseudomonas aeruginosa grown in the presence and absence of sub-

minimal inhibitory concentrations of ciprofloxacin and sulfamethoxazole and (iii) the genes 16S 

rRNA and selected antibiotic resistance genes (ARGs) (i.e., sul1, blaCTX-M, qnrS, tetM, etc) from 

urban wastewater. The major antibiotic transformation products (TPs) formed, were elucidated 

and the chronic toxicity of the whole effluent mixture against Vibrio fischeri was evaluated. 

The capability of the processes, in terms of the elimination of the antibiotics present in 

urban wastewater, varied among the two light sources used: both antibiotics were fully removed 

during UV-C/Η2Ο2, whereas only ciprofloxacin was removed during the sunlight/H2O2. The 

photo-transformation of the antibiotics led to the identification of 21 and 18 TPs of ciprofloxacin 

and sulfamethoxazole, respectively, while all of them retained their core moiety, responsible for 

the antibacterial activity. All the UV-C/H2O2-treated samples were found to be toxic, whereas 

the luminescence of V. fischeri was not inhibited when tested in the sunlight/H2O2-treated 

samples. During both processes, E. coli, P. aeruginosa and the colonies of these species still 

viable in the presence of antibiotics, were successfully inactivated to values below the detection 

limit. However, sunlight/H2O2 has not achieved complete disinfection, as regrowth of E. coli and 

P. aeruginosa colonies was observed after 48 h of storage of the treated effluent. Finally, none of 

the technologies tested was able to completely remove the target ARGs, confirming their 

inability to prevent the spread of resistance determinants to the environment.  



Introduction

Water scarcity in many parts of the world has already caused and continues to cause, 

various economic problems as well as job losses [1], [2]. This situation is expected to deteriorate 

due to the increase of the global population and the water use per capita, the climate change and 

other relevant stress factors [3], [4]. According to the principles of the circular economy, 

reclaimed water coming from urban wastewater treatment plants (UWTPs), is recognized as one 

of the main measures for the mitigation of the water crisis [5], as it can be a suitable alternative 

to water supply for the irrigation of crops. This approach has recently been promoted by the 

European Union, which has proposed a regulation setting the minimum quality criteria for 

reclaimed water intended for agricultural irrigation and aquifer recharge [6]. The regulation 

acknowledges the need of assessing the risk (where relevant) associated with contaminants of 

emerging concern (CECs) and antimicrobial resistance [7], [8]. The evolution and spread of 

antimicrobial resistance is recognized as one of the major Global Health challenges of the 21st 

century by major regulatory, economic and political bodies, including the World Health 

Organisation (WHO), the United Nations (UN) and the European Commission (EC), and 

intensive monitoring is recommended for the surveillance of critical hotspots, including UWTPs, 

aiming at reducing its propagation [9]. In the literature, it is well documented that antibiotic 

compounds present in concentrations below clinical breakpoints (as is the case in wastewater) 

may select for resistant bacterial strains [10], while the lateral gene transfer and propagation of 

antibiotic resistance genes (ARGs), may be favoured in the UWTPs, because of the high 

microbial density and other selection pressures [11], [12]. In order to combat antimicrobial 

resistance spread to the environment, it is therefore  necessary to identify and/or develop 



technologies able to effectively remove both the antibiotics and the resistance determinants when 

still at the treatment plant, before reuse or disposal of the effluent [12].

Disinfection of wastewater, aiming at the microbial inactivation, may present an 

opportunity to limit the release of antibiotic-resistant bacteria (ARB) into the environment and 

contribute to the minimisation of the environmentally-related risk of spreading resistance 

determinants. The consideration of UV-driven processes, which are commonly applied in 

UWTPs for disinfection, might be useful towards this objective. Irradiation with either a light 

source (usually performed with low- or medium-pressure mercury vapor lamps) or natural 

sunlight, is a potential means of removing microcontaminants and dissolved effluent organic 

matter (dEfOM) present in urban wastewater effluents. The UV radiation can damage DNA, 

resulting in the inhibition of cell replication and, in case of lethal doses, in a loss of 

reproducibility. Although the adoption of UV for wastewater disinfection has grown significantly 

over the past few decades, research on the ability of the UV process to remove ARB&ARGs is 

only advancing during the recent years [13], [14]. To date, there is limited data available on the 

potential of light-driven processes to simultaneously remove antibiotics, ARB and ARGs from 

wastewater [15], [16], [17]. More systematic analysis of the operational parameters of the light-

driven processes and their impact on the overall efficiency of the technologies to remove such 

microcontaminants is required. Furthermore, light-driven processes combined with hydrogen 

peroxide (H2O2), yielding additional hydroxyl radicals (HO•), resulting from the dissociation of 

H2O2, can further reduce the microcontaminants present in wastewater effluents, significantly 

enhancing the efficiency of the process [18]. The superiority of the UV/H2O2 over the 

conventional UV disinfection for the inactivation of ARB in wastewater is clearly evidenced in 

the scientific literature (HO• can significantly enhance the oxidation potential of the chemical 



system, resulting in changes in the bacterial cell structure) [19], while in the case of ARGs, 

prolonged time of UV/H2O2 treatment seems to be required for their effective removal. Also, the 

possibility of using natural sunlight instead of UV lamps, to stimulate the formation of HO• 

during the process, may result to a low-cost application.

However, during the oxidation of urban wastewater, transformation products (TPs) of the 

antibiotics present can be formed, which  may be less biodegradable, more toxic and biologically 

potent, compared to the parent compounds [20]. Thus, efforts should be made to identify the 

structure of the products, while also determining, whether these retain their core moieties, 

responsible for the antimicrobial activity of the antibiotic, possibly inducing antimicrobial 

resistance to the surrounding microorganisms. 

Within this context, the possible use of UV-C/H2O2 and sunlight/H2O2 processes as 

tertiary treatment of urban wastewater is worthy of examination. Therefore, this work 

investigated the impact of UV-C/H2O2 and sunlight/H2O2 oxidation processes on: (a) the 

degradation of two antibiotics (i.e. ciprofloxacin [CIP] and sulfamethoxazole [SMX]), when 

present as a mixture in urban wastewater; (b) the inactivation of Escherichia coli and 

Pseudomonas aeruginosa including colonies of these species still cultivable in the presence of 

sub-minimal inhibitory concentrations (sub-MIC) of CIP and SMX and (c) the elimination of the 

16S rRNA gene and ARGs encoding resistance to β-lactams (blaTEM, blaOXA-A, blaSHV, blaCTX-M, 

mecA), sulphonamides (sul1, sul2), quinolones (qnrS), glycopeptides (vanA) and tetracyclines 

(tetM) in urban wastewater. The two processes were investigated at pilot-scale, using actual 

urban wastewater effluents spiked with the antibiotics, while additional experiments were 

performed for the elucidation of the major photo-transformation products of CIP and SMX. To 

evaluate the biological potency of the treated flow, a chronic toxicity test was applied. The 



selection of CIP and SMX as the target antibiotics to be investigated, was based on their high 

consumption, their frequent occurrence in UWTPs effluents [21] and the prevalence of bacteria 

harbouring resistance to these compounds in the wastewater effluents [22], [23]. 

Fluoroquinolones, including CIP, are recognized by WHO as critically important antibiotics for 

human medicine [24], while CIP is included in the Watch List of substances for EU-wide 

monitoring [25], due to its consistency with the European One Health Action Plan against 

antimicrobial resistance [26]. SMX is a sulphonamide antibiotic widely used as prophylactic and 

therapeutic medication for treating human and animal diseases and benefiting agricultural 

productivity. The presence of these compounds in the wastewater has been shown to be 

potentially associated with increased fluoroquinolone and sulphonamide resistance genes and 

resistant bacteria in UWTPs effluents [27], [28]. 

According to the authors’ knowledge, this is the first study revealing comprehensive data 

regarding not only the degradation of antibiotics during UV-C/H2O2 and sunlight/H2O2 processes 

and the assessment of the treatments in removing resistance determinants (bacteria, completely 

viable and cultivable in the presence of sub-MIC of the target antibiotics and ARGs), but also the 

elucidation of the main TPs of CIP and SMX (to examine whether the processes can oxidize the 

antibacterial moieties of the antibiotics, the quinolone ring and the amino group of CIP and 

SMX, respectively) and the assessment of the treated effluents with regard to toxicity. This work 

evaluates UV-C/H2O2 and sunlight/H2O2 processes in an integrated manner and assesses whether 

their application enables safe disposal/reuse of treated urban wastewater to the environment.



2. Materials and methods

2.1 Chemicals and reagents

The antibiotics used (CIP, SMX) were of high-purity grade (>99%) and purchased from 

Sigma-Aldrich (Spain). Stock solutions of CIP and SMX were prepared by dissolving the 

individual compound (1 g L-1) in ultrapure water and methanol respectively, due to solubility 

limitations. The stock solutions were kept in the refrigerator and their stability was routinely 

checked through chromatographic analysis. During one-month period, no statistical differences 

were observed. Required volumes of the stock solutions were directly added to the aqueous 

matrix into the reactor to obtain the initial concentration of 100 μg L-1 of each antibiotic. This 

initial concentration was chosen because it is a sufficiently high concentration to characterize the 

degradation kinetics using available analytical techniques, and a low enough concentration to 

simulate real environmental conditions (typical environmental concentrations of antibiotics in the 

wastewater effluents are in the ng-μg L-1 range). LC-MS grade acetonitrile, methanol, water and 

formic acid were purchased from Sigma-Aldrich. Ultrapure water was produced using a Milli-Q 

water purification system from Millipore (Darmstadt, Germany). H2O2 (35% w/w, Sigma-

Aldrich) was used for the oxidation experiments. For toxicity and microbiological analyses, the 

residual H2O2 was removed from the treated samples by adding bovine liver catalase solution 

(Sigma-Aldrich). For the determination of the residual H2O2 concentration in the treated samples, 

titanium (IV) oxysulphate solution (Fluka) was used, while its presence in the samples was also 

checked using Quantofix® strips (Sigma-Aldrich).

Culture collections of E. coli K-12 (CECT 4624) and P. aeruginosa (CECT 118) strains 

(Spanish Collection Culture Type) were purchased and stock suspensions were prepared for their 

spiking into the distilled water during the disinfection experiments. E. coli and P. aeruginosa 



cultures were activated by streaking on Chromocult agar (Merck) and King B medium 

(Cultimed), respectively, and incubated for 18-24 h at 37 °C. A single colony from E. coli plate 

was inoculated into 14 mL of sterile nutrient broth (Oxoid), while P. aeruginosa colony was 

inoculated into 14 mL of Luria Bertani broth (Sigma-Aldrich). Both suspensions were incubated 

at 37 °C for 18 h by constant agitation in a rotator shaker to obtain a stationary phase culture. 

Cells were harvested by centrifugation at 3000 rpm for 10 min and the pellet was re-suspended in 

14 mL phosphate buffer saline (PBS) (Oxoid), yielding a final concentration of 109 CFU mL-1, 

approximately. The bacterial suspensions were diluted into the aqueous matrix to reach an initial 

concentration of 106 CFU mL-1. In order to avoid the osmotic stress on the cells during the 

experiments with distilled water, NaCl (0.9% w/v) was added and therefore the matrix is called 

‘saline solution’ for the purposes of this work. Wastewater experiments were performed using 

bacteria already present in real urban wastewater (indigenous bacteria).

2.2 Water matrices

Both light-driven treatments were carried out using the saline solution (SS), which is 

distilled water produced at the distillation plant of Plataforma Solar de Almería (PSA) with 

added NaCl (0.9% w/v) as described in section 2.1. and urban wastewater samples (UWW) 

collected (every day in batches of 60 L) after the secondary treatment of the UWTP of El Bobar 

(Almería, Spain) and stored at 4 °C for no more than 2 h before the experiments. Experiments 

carried out in the SS matrix were performed in order to evaluate the matrix effect on the 

microorganism’s disinfection, considering that the SS matrix is commonly used for the control 

experiments. The UWTP (100,000 population equivalents [PE]; 33,000 m3/day) employs 

conventional activated sludge and decantation as secondary treatment. The main 



physicochemical characteristics of the UWW used for the experiments were: pH 7.5, 

conductivity 1645 μS cm-1, turbidity 5.2 NTU,  Na+ 198.18 mg L-1, NH4
+ 10.18 mg L-1, K+ 26.95 

mg L-1, Mg2+ 23.67 mg L-1, Ca2+ 82.32 mg L-1, Cl- 329.60 mg L-1 NO3
- 28.39 mg L-1 and SO4

-2 

80.70 mg L-1, Dissolved Organic Carbon (DOC) 15 mg L-1. The most important qualitative 

characteristics of the distilled water used for the experiments were: pH 5.7, conductivity <10 μS 

cm-1, Cl- 0.8 mg L-1, NO3
- 0.5 mg L-1, and DOC <1.5 mg L-1.

2.3 Experimental set-up and procedure

2.3.1 UV-C pilot plant

The UV-C oxidation experiments were performed using a pilot-scale UV-C reactor. The 

UV-C reactor is equipped with three UV-C lamps (254 nm peak wavelengths, 230 W) connected 

in series. The configuration allows the system to operate in recirculating batch mode or 

continuous flow mode. In this study, oxidation experiments were carried out for 90 min in 

recirculating batch mode, with an illuminated volume of 6.21 L and a total working volume of 

80 L. Firstly, the reactor was filled with the aqueous matrix (SS, UWW) and then, the mixture of 

the two antibiotics (100 μg L-1) and the bacterial suspension of E. coli and P. aeruginosa of an 

approximate known concentration (~106 CFU mL-1) were spiked in. After 15 min of 

homogenization, with the lamp still switched off, an initial sample was taken to ensure the 

presence of bacteria and antibiotics. Then, H2O2 (initial concentration in the range 0.5 - 30 mg L-

1) was added to the reactor tank and after 15 min of mixing, the experiment started, and the lamp 

was switched on. Samples were collected at regular intervals depending on the measurement to 

be performed. The samples were filtered using 0.22 μm syringe filters (Agilent) before 

chromatographic analysis. A controller (ProMinent) fixed on the back of the reactor, was 



continuously monitoring the water flow rate (46 L min-1) and the UV-C lamp intensity. During 

the tests, the equipment was registering the sensor measurements in terms of incident irradiation 

(W m-2), which is the UV-C radiation energy rate incident on a surface per unit area. The 

accumulated energy was calculated according to Eq. (1):

                                               (1)

where QUVC is the accumulated UV-C energy per litre (kJ L-1), Dose is the UV-C ultraviolet 

irradiation (W m-2) emitted by the lamp multiplied by the illumination time (in seconds), Ai 

(0.338 m2) is the irradiated surface, Vt (80 L) is the total volume of the water into the pilot plant 

and Vi (6.21 L) is the total irradiated volume. Each experiment was performed at least in 

duplicate and the results were plotted as the average of all replicates.

2.3.2 Compound Parabolic Collector pilot plant

The solar experiments were performed using a pilot-scale compound parabolic collector 

(CPC) photoreactor, located at PSA (37°84′N and 2°34′W), on sunny days between September 

and October, with a duration of 5 h. The configuration of the CPC photoreactor is described 

elsewhere [29]. The CPC photoreactor tube module, tilted at an angle of 37° relative to the 

horizontal plane, was connected to a recirculation tank and a centrifugal pump. The water flow 

rate was set at 30 L min-1. The total volume of the photoreactor was 60 L, while the illuminated 

volume and the irradiated collector surface area were 45 L and 4.5 m2, respectively. The UV 

radiation was continuously monitored using a global UVA pyranometer (300-400 nm, Model 

CUV5, Kipp & Zonen, Netherlands), which provided data in terms of incident irradiation (W m-

2) corresponding to the solar radiant energy rate incident per unit of surface area. 



During the loading of the reactor with the chemicals, the collectors were covered with a 

thick UV resistant canvas to avoid any photoreaction. The experimental procedure followed was 

the same as in the UV-C reactor and it is thoroughly described in the previous section. As soon 

as the appropriate amount of H2O2 was added (2.5-125 mg L-1) to the reactor and 15 min of 

mixing in the dark had passed, a sample was taken (zero-illumination time) and the collectors 

were uncovered. This time was considered as the start of the sunlight/H2O2 process. The 

inactivation and degradation rates were plotted as a function of the cumulative energy per unit of 

volume (QUV) received in the photoreactor, commonly used to compare results under different 

conditions [30], and calculated by Eq. (2):

                           (2)

where QUV,n and QUV,n-1 are the UV energy accumulated per litre (kJ L-1) at times n and n-1, 

UVG,n is the average incident radiation on the irradiated area, Δtn is the experimental time of 

sample, Ar is the illuminated area of the reactor (m2) and Vt is the total volume of water treated 

(L). Each experiment was performed at least in duplicate, between 10 a.m. and 16 p.m., and the 

results were plotted as the average of all the replicates.

2.4 Analytical methods

All analyses for SMX and CIP were performed by means of a reverse-phase liquid 

chromatography (UPLC) coupled to UV detection (Agilent technologies) using a C-18 column 

(Luna 5 μ, 3 × 150 mm, Phenomenex). The mobile phase used was a mixture of Milli-Q water 

and acetonitrile (70:30, v/v) acidified with 25 mM formic acid. The injected volume was 50 μL 

and the flow rate was 0.5 mL min-1.



Total carbon (TC), inorganic carbon (IC) and total organic carbon (TOC) were analysed 

by Shimadzu TOC-5050 (Shimadzu Corporation, Kyoto, Japan). Anions and cations were 

analysed using ion chromatography, 850 Professional IC - Cation coupled to Metrohm 872 

Extension Module. The samples were filtered through 0.22 μm filters prior to analysis. 

H2O2 was determined by a colorimetric method based on the use of titanium (IV) 

oxysulfate (Riedel-de Haën, Germany), following DIN 38409 H15, which forms a stable yellow 

complex with H2O2 detected by absorbance measurements at 410 nm. Absorbance was measured 

using a spectrophotometer (PG Instruments Ltd. T-60-U) and was linearly correlated with H2O2 

concentration in the range 0.1-100 mg L-1. As mentioned in section 2.1, catalase was added to 

wastewater samples in order to eliminate residual H2O2 prior to toxicity and microbiological 

analyses: Samples of 1 mL were mixed with 20 μL of 2300 U mg-1 bovine liver catalase at 0.1 g 

L-1.

2.5 Chronic toxicity evaluation

A chronic toxicity assay with V. fischeri (NRRL B-11177) was applied. The bacteria 

were grown in petri dishes with seawater complete medium agar for 72 h at 15.0 ± 0.2 °C. A 500 

mL seawater complete medium contained NaCl (15 g), NaH2PO4 (3.05 g), K2HPO4 (1.049 g), 

MgSO4.7H2O (0.102 g), (NH4)2HPO4 (0.25 g), bacto peptone (2.5 g), bacto yeast extract (0.25 g) 

and glycerine (87%, 1.5 mL). A single colony was transferred and grown in suspension (20 mL 

of growth medium without adding agar) for 12 h in a dark climatic chamber at 15.0 ± 1.0 °C 

under continuous shaking (180 rpm). A second cultivation of 5 FNU bacteria density was then 

prepared in 120 mL of medium and incubated in the same conditions for 24 h.



Each experiment consisted of triplicate samples and included a solvent control, a positive 

control (18% NaCl), a blank series (Milli-Q water) and the treated samples collected through 

UV-C/H2O2 and sunlight/H2O2 processes. The salinity of all samples was adjusted to 2% prior 

testing. The exposure time was 24 h and tests were performed in a dark climatic chamber at 15.0 

± 1.0 °C under continuous shaking. The optical density (OD) at 588 nm measured with a 

spectrophotometer (PG Instruments Ltd T-60-U) and the bioluminescence using a luminometer 

(BioFix® Lumi-10, Macherey-Nagel) were the endpoints of bacterial growth recorded. The 

procedure is described extensively elsewhere [31]. 

2.6 Enumeration of total and resistant bacteria to sub-MIC of CIP and SMX

Aliquots of samples collected during the treatment were immediately analysed using the 

spread plate technique. The volume chosen to be plated at each experimental time was dependent 

on the microbial load expected to be present in the sample. When the bacterial load was expected 

to be high, 50 μL drop of adequate dilution was plated and when the bacterial load was expected 

to be low, volume of 500 μL of sample was spread onto prepared dishes. Different selective 

media were used for each type of microorganism examined. King B agar was prepared for P. 

aeruginosa enumeration and Chromocult Coliform agar was prepared for the E. coli 

enumeration, according to the manufacturers’ instructions. The plates were incubated at 37 °C 

for 24 h. The representative colonies were dark-blue to violet for E. coli and fluorescent under 

UV light for P. aeruginosa. For each treated sample and each strain examined, two agar plates 

were prepared, one only with the proper agar and one with the agar spiked with the mixture of 

CIP and SMX at 100 μg L-1 each.  Although this concentration (100 μg L-1) is far below the 

clinical MIC of both antibiotics, for E. coli and P. aeruginosa respectively, it was chosen in 



order to investigate whether the resistant bacteria can be selectively enriched even at antibiotic 

concentrations several hundred-fold lower than previously expected, such as those found in 

urban wastewater. The colonies grown on the agar containing the antibiotics, were considered 

more tolerant compared to those that did not grow in the presence of sub-MIC of CIP and SMX 

[32].

The regrowth of bacteria after the treatment was examined by storing the treated samples 

in the dark for 48 h (25 °C) and re-plating them for enumeration. The counted colonies during 

the regrowth experiments were considered as regrowth of damaged/inactivated bacteria that were 

previously unable to grow on the selective medium. Therefore, bacterial numbers during the 

regrowth test exceeding the bacterial numbers encountered during the treatment were considered 

as repaired/reactivated bacteria. It should be noted that all the samples were plated in triplicate. 

2.7 DNA extraction and qPCR analysis

UV-C/H2O2 and sunlight/H2O2 treated samples were filtered through 0.22 μm 

polycarbonate filter membranes (Merck) and stored at -20 °C until DNA extraction. The DNA 

was performed using the PowerWater® DNA Isolation Kit (MoBio) and the resulting DNA 

extracts were shipped at room temperature for further analysis. The extracts were kept 

refrigerated at -20 °C until analysis. The 16S rRNA gene and ARGs encoding resistance to the 

antibiotic classes β-lactams (blaTEM, blaOXA-A, blaSHV and blaCTX-M, mecA), sulfonamides (sul1 

and sul2), quinolones (qnrS), glycopeptides (vanA) and tetracyclines (tetM) were quantified 

using a StepOne™ Real-Time PCR System (Life Technologies, Carlsbad, CA, USA). The DNA 

extracts were analysed using the standard curve method [33], and based on the criteria 

established in Rocha et al. [34]. For each sampling point, three independent DNA extracts were 



analysed, and each qPCR determination was performed at least in duplicate using the conditions 

listed in the supplementary information (Table S1). The abundance of the 16S rRNA gene and 

ARGs was expressed as log value per volume of water (gene copy number per mL of sample).

2.8 Transformation products (TPs) 

The experiments for the determination of the major TPs generated during UV-C/H2O2 

and sunlight/H2O2 processes were performed in distilled water spiked with 1 mg L-1 of antibiotic 

concentration. The H2O2 dose during these experiments was determined to be 30 mg L-1, which 

was added to the solution at the beginning of the experiment. The exact protocol followed for the 

determination of the TPs is provided in the Text S1. 

3. Results and discussion

3.1 Degradation of antibiotics during UV-C/H2O2 and sunlight/H2O2 processes

3.1.1 UV-C reactor

Prior to the UV-C/H2O2 oxidation experiments, preliminary trials were performed to 

determine the effect of dark recirculation of the aqueous matrices in the UV-C reactor, on the 

degradation of spiked antibiotics (hydrolysis) at a concentration of 100 μg L-1, the effect of H2O2 

on the degradation of antibiotics in the absence of light (direct oxidation), as well as the effect of 

UV-C light alone on the antibiotics (photolysis). Dark recirculation of SS and UWW in the UV-

C reactor showed no significant effect on the spiked antibiotics (100 μg L-1) for a total of 2 h in 

the dark (removal <2%). Furthermore, the effect of the oxidant alone in the dark, caused 41% 

removal of CIP and only 5% removal of SMX after 300 min. Photolytic experiments performed 

with SS showed that UV-C light alone could completely degrade the two antibiotics (>99% 



degradation of CIP was observed after 45 min and 1.03 kJ L-1, while the degradation of SMX 

took place after 20 min and 0.37 kJ L-1) (Fig.1a). In the UWW matrix, CIP reduction reached 

>99% after irradiation of 90 min and 1.15 kJ L-1, whereas the removal of SMX was achieved in 

half the time, after 45 min and 0.52 kJ L-1 (Fig.1a). 

In order to determine the optimum H2O2 dose, at which the highest removal of the target 

antibiotics could be accomplished during the oxidation experiments, several oxidant 

concentrations were tested (ranging from 0.5 to 30 mg L-1). The range of H2O2 concentrations 

examined was based on the findings of previous studies [35], [36], [37]. In order to compare the 

amount of H2O2 theoretically required for total mineralization of the antibiotics (calculated based 

on the stoichiometric reaction of the antibiotic with the oxidant), with the actual oxidant 

concentration used for the experiments, the following were considered: The stoichiometric ratio 

of H2O2 required for total mineralization of CIP, according to the following Eq. (3), is 1:47.

C17H18FN3O3 + 47 H2O2  17 CO2 + 54 H2O + 3 HNO3 + HF                                                   (3)

Therefore, the minimum concentration of H2O2 required to achieve total mineralization of the 

solution of 100 μg L-1 CIP (0.0003018 mmol L-1) is 0.01418 mmol L-1 (0.0003018 × 47) that 

corresponds to 0.48212 mg L-1 of H2O2. Similarly, the stoichiometric ratio of H2O2 required for 

total mineralization of SMX, according to the following Eq. (4), is 1:33.

C10H11N3O3S + 33 H2O2  10 CO2 + 36 H2O + 3 H2SO4 + 3 HNO3                                          (4)

Therefore, the minimum concentration of H2O2 required to achieve total mineralization of the 

solution of 100 μg L-1 SMX (0.00039482 mmol L-1) is 0.01303 mmol L-1 (0.00039482 × 33) that 

corresponds to 0.44319 mg L-1 of H2O2. 

The optimum concentration was found to be 5 mg L-1 of H2O2 for the UV-C oxidation process 

(results not shown), more than one order of magnitude higher than the H2O2 stoichiometric 



concentration calculated here, indicating the recalcitrance of the antibiotics as well as the 

complexity of the wastewater matrix (presence of dEfOM).

Both antibiotics were degraded by more than 99% during the UV-C/H2O2 treatment (SS: 

>99% degradation of CIP after 25 min and 0.50 kJ L-1 and SMX after 20 min and 0.38 kJ L-1; 

UWW:  >99% removal of CIP after 90 min and 0.9 kJ L-1 and >99% degradation of SMX under 

the same conditions). Similar observations were also made in the study of Boudriche et al. [35], 

where complete degradation of CIP was achieved in the first 30 min of UV-C/H2O2 treatment at 

the same oxidant concentration ([H2O2]=5 mg L-1). The lower energy needed for the complete 

degradation of CIP in UWW during the experiments with H2O2 (0.9 kJ L-1) compared to the 

energy needed (1.15 kJ L-1) in the photolytic experiments, can be attributed to the generation of 

highly reactive HO•, that enhance the rate of CIP degradation in the first case. However, the case 

of SMX differs, since the presence or the absence of H2O2 led to no distinct difference in its 

behaviour, indicating that SMX undergoes photolysis.

3.1.2 CPC reactor

In the case of the CPC reactor, the duration of the hydrolysis and photolysis experiments, 

was the same as in the actual sunlight/H2O2 experiments (5h), in order to establish the 

contribution of their effect on the overall antibiotic removal. Hydrolysis experiments showed no 

significant effect on the spiked antibiotics for a total of 5 h in the dark (removal <2%), which is 

in agreement with the findings of previous studies for both antibiotics [38], [39].

Photolytic experiments using SS, resulted in the reduction of CIP to the detection limit 

(>99% removal), after 60 min of irradiation and 8 kJ L-1, while the degradation of SMX was 

moderate, only 46% after 300 min of irradiation and 54 kJ L-1 (Fig.1b). Similarly, the photolysis 



of CIP in the UWW resulted in the removal of the compound (>99%) after 60 min and 8 kJ L-1. 

However, only 14% reduction was observed for SMX, after 300 min of irradiation 46 kJ L-1 

(Fig.1b). The results obtained are consistent with the findings existing in the literature, 

confirming that the fluoroquinolones, including CIP, degrade very quickly when exposed to 

sunlight [38]. Also, it is known that in slightly basic pH, CIP exists predominantly in cationic 

form (the pH of both matrices falls in the range of the dissociation constants of CIP, pKa,1=5.9 

and pKa,2=8.9), which favours the photodegradation of the compound [40]. On the other hand, 

SMX was poorly degraded under sunlight (only 14%) confirming that the neutral pH conditions 

(pH~7.5) prevailing in the reactor, in combination with the limited photolysis of SMX under 

sunlight (according to the UV spectra, only a very small fraction of sunlight [i.e., UV-A and UV-

B] is expected to promote direct photolysis of SMX, [41]), affected the degradation of the 

compound negatively [42]. This is in accordance with the study of Niu et al. [43], where the 

photolysis of SMX was shown to be favoured in acidic conditions, but the degradation rate 

decreased at near-neutral or alkaline conditions. This can be explained by the pKa values of the 

SMX molecule which are pKa,1=1.85 and pKa,2=5.60 [44]. When the pH values are between the 

pKa,1 and pKa,2 values, SMX exists mainly in the form of a neutral molecule [45], [39] which has 

stronger light absorption and higher photochemical reactivity, leading to shorter half-lives and 

higher degradation efficiency. When the pH value is higher than pKa,2, SMX is mainly 

negatively charged and has lower photochemical reactivity [45], [39] and greater stability [46]. 

In a previous study of Rizzo et al. [47], SMX was moderately degraded during photolysis (43% 

after 300 min irradiation and 53.7 kJ L-1). 

Obviously, the matrix composition is also a factor affecting the degradation of the 

compounds, as the reduction of SMX in the SS was 46 % and in the UWW 14%, which might be 



ascribed to the higher organic content of the UWW compared to the SS. The presence of natural 

organic compounds occurring in the wastewater matrix can affect the degradation rate of the 

target compounds, due to the competitive absorption of photons by other light absorbing species 

[30]. 

In order to determine the optimum H2O2 dose, in which sufficient degradation of 

antibiotics could be accomplished during the sunlight/H2O2 oxidation experiments, several 

oxidant concentrations were tested (ranging from 2.5 to 125 mg L-1). The range of H2O2 

concentrations examined was based on the findings of previous relevant studies [48], [49], [17]. 

The optimum concentration was found to be 30 mg L-1 of H2O2.

Fig.1b depicts the solar oxidation of CIP and SMX when present as a mixture in SS and 

UWW, during the experiments performed with and without H2O2. Considering the effect of 

photolysis on the degradation of CIP during control experiments, the rapid elimination of the 

antibiotic in SS was attributed to its photodegradation properties. The phenomenon was fast, as 

expected, and the degradation of CIP took place after 10 min and 1 kJ L-1. In UWW, 60 min of 

treatment and 8 kJ L-1 were needed for the same level of degradation of CIP. On the other hand, 

SMX was shown to be poorly degraded in both matrices (50% reduction and 53 kJ L-1 in SS, 

46% reduction and 42 kJ L-1 in UWW, after 300 min of treatment), affirming its strong 

persistence towards sunlight/H2O2 treatment. Comparing the degradation times of the antibiotics 

with and without the oxidant, it can be observed that the addition of H2O2 made the degradation 

of both antibiotics more rapid both in SS and UWW. The fact that SMX was not degraded to a 

great extent, may be related to the pH conditions prevailing in the reactor and the limited UV 

fraction of the sunlight, as explained in the previous paragraph. In other similar studies, this 

phenomenon was also observed. In the study of Ao et al. [50], it was shown that the 



decomposition of SMX was favoured in acidic conditions (pH 3-5), while an increase in pH (7-

11), noticeably reduced the degradation rate of SMX. Elmolla and Chauduri [51] reported that 

during oxidation processes with the use of H2O2, the latter seems to be more stable at low pH due 

to the generation of oxonium ions (H3O+). The improvement of the H2O2 stability is conducive to 

the SMX removal. Under alkaline conditions, hydroperoxide anion (HO2
−) is generated in 

UV/H2O2 system. It is a robust scavenger of HO• and can cause the decomposition of H2O2 [52]. 

The decomposition of H2O2 decreases the amount of the available HO• and eventually reduces 

the degradation rate. In addition, H2O2 shows an elevated self-decomposition rate at higher pH 

[53] which makes the molecules of H2O2 lose their oxidation capacity.

3.2 Kinetics

Degradation data obtained during light-driven oxidation experiments were fitted to a 

pseudo-first-order kinetics model (R2 > 0.95), and apparent rate constants were calculated for 

each process for both compounds (Fig.2). The degradation of antibiotics confirmed the linear 

expression of -ln(C/C0) (where C0 and C refer to the concentrations of the antibiotics at times 0 

and t [min], respectively), as a function of the treatment time. The apparent rate constant kapp was 

obtained from the slope of the linear plots. As expected, the antibiotic degradation rate differed 

greatly in the two matrices, being much lower in UWW than in SS. This was attributed to the 

high concentration of dEfOM and inorganic ions present in wastewater, which both act as 

scavengers of HO•, slowing down the degradation of antibiotics [54], [36]. It is notable that the 

consumption of H2O2 during the processes was minimal (Fig.2) and thus, no supplementary 

oxidant was added to the reactor.



The presence of microorganisms in the UWW may induce competition between organic 

matter and bacteria for radicals, contributing thereby to the slower degradation of the antibiotics 

[55]. The slower photodegradation of the antibiotics in the saline solution compared to the 

distilled water (data not shown) was attributed to the presence of Cl- anions (deriving from the 

NaCl added to the distilled water), possibly acting as HO• scavengers, reducing thus 

photodegradation efficiency.

3.3 Mineralisation and photo-transformation of CIP and SMX 

3.3.1 Mineralisation

The DOC of the reaction solution (corresponding to the inherent DOC of the wastewater) 

decreased by 8.2% and only 3.5% during the UV-C/H2O2 and sunlight/H2O2 oxidation, 

respectively. The relatively low DOC removal compared to the antibiotics’ depletion confirms 

the formation of recalcitrant organic intermediates deriving from the oxidation of the dEfOM and 

the antibiotics, as complete mineralisation was not attained in any case.

3.3.2 Elucidation of the main TPs of CIP and SMX

The TPs generated during the UV-C/H2O2 and sunlight/H2O2 treatment of CIP and SMX 

were tentatively identified and the degradation pathway was proposed. For this purpose, a 

suspect screening strategy was applied. Two suspect lists were used, including accurate masses 

of thirty and twenty-two TPs of CIP and SMX, respectively. The lists were elaborated 

considering the TPs generated by diverse photo- and bio-chemical degradation processes, 

previously reported in literature. Samples were screened for the selected masses and 

identification criteria were set to reduce false negative findings (peak intensity threshold 1000 



cps, signal-to-noise ratio >10, mass error <5 ppm and isotope ratio difference <10% for the 

precursor ion). The tentative assignation of the structures was based on the comparison of the 

acquired MS/MS spectra and retention behaviour with the information reported in literature, 

along with interpretation of the fragmentation pathways when this information was not available. 

The number of identified TPs of CIP and SMX revealed the complexity involved with the UV-C- 

and solar-driven processes and proposed the existence of various degradation routes resulting in 

multi-step and interconnected pathways.

An accurate quantification of the TPs identified was not possible due to the lack of pure 

analytical standards. Thus, the formation profile of the TPs was interpreted based on their 

relative intensity, which is expressed as the chromatographic peak area of the corresponding TP 

vs treatment time (Fig.3 and Fig.4). 

3.3.2.1 TPs of CIP

Table S2 depicts the proposed chemical structures and the exact mass information of the 

TPs identified during the degradation of CIP by the photo-oxidation processes (products 

numbered sequentially based on molecular weight). Up to twenty-one TPs could be identified. 

Although most of the TPs (fifteen compounds) were common in both treatments, five of them 

were found only in the solar-treated samples and one was found solely in the UV-C/H2O2 treated 

samples (Table S4). The proposed structures are consistent with the expected transformations of 

CIP, which were found to occur through hydroxy substitution of fluorine (TP330, TP362B, 

TP344A/B/C and TP346), defluorination (TP344D, TP288A/B and TP263), hydroxylation of the 

quinolone core (TP348A/B/C, TP362B) and mainly by oxidation and partial or total elimination 

of the piperazine ring [56], [57], [58], which has been reported through the formation of keto-



derivative intermediates (TP344A/B, TP362, TP360), ring cleavage (TP344D, TP334), 

dealkylation (TP306B, TP288A, TP263, TP245) and formation of an enamine derivative 

(TP288B, TP346, TP304, TP306A). Finally, the oxidation of the cyclopropyl group leading to 

ring cleavage was observed only in TP288B and TP306A. Fig.5a shows a tentative route that 

agrees with the ones proposed in the literature. 

Total removal of CIP TPs was obtained when UV-C/H2O2 was applied (Fig.3a), but 

sunlight/H2O2 proved to be a less efficient process. It was found that during the solar oxidation 

of CIP most TPs emerged during the first stages of the treatment, remained in the reaction 

solution after the total degradation of CIP (30 min). This finding is in accordance with the fact 

that DOC was not efficiently reduced. Fig.3b shows the profile of the abundance of the main TPs 

during the treatment. TP245, TP288A and TP348A were the most predominant at the end of the 

experiment, showing an increase-decrease profile with the reaction time with a maximum at 15 

min of treatment. On the other hand, TP330 and TP344D were generated very quickly at the 

beginning of the treatment, experiencing a gradual decrease over time. In the case of UV-C 

treatment (Fig.3a), the most abundant and persistent TPs were TP263 followed by TP334, which 

however degraded after 14 min of UV-C/H2O2 treatment.

Considering that the fluoroquinolone structure of CIP, responsible for the biological 

activity of the compound, is present in all the TPs identified, the formation of stable TPs can 

represent a potential problem. The TPs of CIP may retain toxicity to the aquatic organisms, while 

maintaining their antibacterial activity which can potentially result in antimicrobial resistance, 

when released in the environment.



3.3.2.2 TPs of SMX

The main TPs identified during the degradation of SMX are shown in Table S3. 

Degradation pathways of SMX include the rearrangement of the isoxazole ring (TP254), 

cleavage of the sulphonamide bond (TP99, TP174), hydroxylation of benzene (TP270 B/D, 

TP253 A) and isoxazole (TP270 A/C) rings, oxidation of the amine group at the benzene ring 

(TP268, TP284, TP296, TP312) and oxidation of the double bond at the isoxazole ring and 

further ring opening (TP216 A/B, TP272 A/B/C, TP288). A transformation pathway is proposed 

in Fig. S2.

From the eighteen TPs identified, thirteen were common to both light-driven oxidation 

processes. However, some differences were also observed (Table S5).

The time-evolution profile of the TPs of SMX (Fig.4) showed that during the solar 

oxidation of SMX the most predominant TP was TP254, which increased its concentration along 

the process thus pointing out the rearrangement of the isoxazole ring as the main transformation 

route. The same behaviour was observed in the treatment with UV-C/H2O2, but in this case a 

concomitant degradation of TP254 occurred after 10 min of reaction time, showing again the 

greater efficiency of this treatment in TPs removal.

In a previous study of Majewsky et al. [59] it was shown that the SMX TPs retaining the 

sulphonamide toxicophore (amino group) exhibited residual antibacterial properties, whereas 

TPs resulted from breakdown of the SMX structure lost this mechanism of action. Considering 

these results, it can be anticipated that all the TPs of SMX identified in this study, which retain 

the amino group in their molecule, will possibly be biologically active and may induce 

antimicrobial resistance.



3.4 Chronic toxicity assessment

The inhibition results for V. fischeri with the bioluminescence induction as the endpoint 

monitored, followed a different trend along the two treatments (Fig.6a and 6b). 

During the UV-C/H2O2 process, it was shown that it has not been able to eliminate 

toxicity even after 90 min of treatment (Fig.6a and 6b). No reduction in inhibition of 

bioluminescence was observed in the samples collected after 30 min of UV-C/H2O2 treatment, 

nor in the samples treated for 60 min. Α further increase in irradiation to 90 min though, led to a 

noticeably reduction in the inhibition (a decrease to 15 ± 1% of inhibition). The positive control 

caused toxicity with values 99 ± 1%, whereas the blank tests, showed no inhibition to the 

luminescence of the V. fischeri (4 ± 3%) (data not shown). 

Regarding the sunlight/H2O2 process, it was shown that the untreated effluents caused an 

inhibition of 99 ± 1%, but after 120 min of sunlight/H2O2 treatment the toxicity was eliminated. 

Since the TPs of CIP (e.g. TP245, TP330, TP344 B, TP344 and TP348 A), present in the 

reaction solution at the first stages of oxidation (5 min) until the complete degradation of CIP (30 

min) (Fig.6a), and the TPs of SMX (TP270 D, TP284, TP348 A, TP254, TP272 A and TP296) 

(Fig.6b) remained in the reaction solution until the end of the treatment, whereas the toxicity was 

eliminated, indicates that the TPs of the two antibiotics, are not the ones exerting toxicological 

effects towards V. fischeri.

The luminescence of V. fischeri was only inhibited in the UV-C/H2O2 treated samples, 

indicating that under irradiation of a lower wavelength, oxidation of both the antibiotics and the 

dEfOM existing in wastewater may lead to more toxic TPs. As mentioned before, the TPs of 

SMX remained in the solution until the end of the sunlight/H2O2 treatment, while the toxicity of 

the treated samples was eliminated. Also, although the TPs of CIP degraded after 14 min of UV-



C/H2O2 treatment, the solution was still toxic after 90 min of treatment. Therefore, the toxic 

effects observed can be ascribed to the dEfOM and its associated oxidation products. 

3.5 Inactivation and post-treatment regrowth of total and susceptible to sub-MIC of CIP 

and SMX E. coli and P. aeruginosa

The selection of E. coli, was based on its well-known role as indicator of microbiological 

contamination for the assessment of the microbiological water/wastewater quality, while that of 

P. aeruginosa, on its inclusion in the “critical” category of the WHO’s priority list of bacterial 

pathogens for which research and development of new antibiotics is urgently required [60]. Also, 

the fact that nosocomial infections caused by P. aeruginosa (i.e. pneumonia, bloodstream 

infection, urinary tract infection) have become a healthcare concern, mainly due to the high level 

of resistance to several antibiotics [61], led the authors select the investigation of this species.

The performance of the two light-driven oxidation processes during the treatment of SS 

and UWW was assessed with respect to the removal of cultivable E. coli and P. aeruginosa 

bacteria and to the inactivation of colonies of these species still viable in the presence of sub-

MIC of CIP and SMX (100 μg L-1) (Fig.7). Inactivation of the bacterial populations to values 

below or close to the detection limit (detection limit [DL]: 2 CFU mL-1) was observed at the end 

of both treatments.

As expected, the inactivation curves and rates of E. coli and P. aeruginosa in the two 

matrices were quite different, exhibiting lower reduction rates in UWW compared to those in SS. 

In the case of UV-C/H2O2 process, the inactivation of bacteria was fast (after 3 min and 0.003 kJ 

L-1 in SS and after 8 min and 0.06 kJ L-1 in UWW). In UWW, E. coli and P. aeruginosa reached 

the DL after 150 min (QUV=20.2 kJ L-1) and 120 min (QUV=15.9 kJ L-1) of sunlight/H2O2 



treatment, respectively. In SS, although the initial concentration of the bacterial population was 

similar, their inactivation reached the DL faster, after 30 min (4.1 kJ L-1) and 60 min (8.8 kJ L-1) 

of sunlight/H2O2 treatment for E. coli and P. aeruginosa respectively. This suggests that the 

inactivation mechanism, based on the stepwise damage induced by the UV irradiation which 

starts at the bacterial cell wall and gradually proceeds to the inner cell components, eventually 

causing permanent lethal damage [62], is strongly sensitive to the chemical composition of 

water. In addition, the presence of dEfOM in UWW that can act as scavenger of the HO• 

generated during photo-driven oxidation processes, may induce competition between bacteria 

and organic matter for radicals and thus, reduce the inactivation efficiency [55]. The marked 

effect of the presence of dEfOM in UWW effluents was also observed on the disinfection 

efficiency by sunlight/H2O2 in a previous study of Bichai et al. [63].

As mentioned previously, the bacterial inactivation profiles during the UV-C/H2O2 and 

sunlight/H2O2 treatments, differed greatly in terms of the time required and hence the 

accumulative energy needed for the inactivation to the DL of the microorganisms; the 

inactivation of the bacterial populations in the UV-C reactor, was much more rapid compared to 

that observed when the irradiation used was natural sunlight (UV-C/H2O2: 8 min; sunlight/H2O2: 

120 - 150 min in UWW), while the accumulated energy required was almost 3 order of 

magnitude higher (UV-C/H2O2: 0.06 kJ L-1; sunlight/H2O2: 15.9 - 20.2 kJ L-1 in UWW). This 

observation may be attributed to the fact that irradiation of H2O2 with UV-C photons generates 

more HO• compared to the sunlight (since only a small amount of sunlight is UV, under which 

the photodecomposition of H2O2 to HO• is favoured [64]), and thus, UV-C/H2O2 would be more 

efficient than the sunlight/H2O2 process. The results were also correlated to the UV dose/fluence 

in order to compare the results of this study with the real-scale conditions. Here, it should be 



noted that the UV dose/fluence commonly applied in UWTPs, is often less than 100 mJ cm-2, 

much lower than that applied in this study. In this study, the fluence rate was 26 W m-2 in 

average, which corresponds to doses/fluence of approximately 24 mJ cm-2 and 1806 mJ cm-2 for 

reaction times of 2 to 10 min, respectively. The strong germicidal power of UV-C radiation 

observed for bacterial inactivation is based on the generation of very specific damages in the 

bacterial DNA that inhibit its duplication and consequently bacterial reproduction.

In general, no significant differences in treatment times and inactivation rates were 

observed among the two species tested. In addition, E. coli and P. aeruginosa colonies still 

viable in the presence of sub-MIC of CIP and SMX reached the DL as well, in a comparable 

period to the susceptible ones. It is important to note that the difference in the susceptibility of E. 

coli and P. aeruginosa to the applied treatments is clearer in the case of UWW compared to the 

SS, which is attributed to the competition of dEfOM and bacteria for the radicals generated.

Finally, the regrowth potential of the examined types of bacteria was investigated after 24 

and 48 h of storage of the treated samples at 25±2 °C in the dark. After 48 h of incubation, the 

re-plated sunlight/H2O2 treated samples showed 8 CFU mL-1 of E. coli and 50 CFU mL-1 of P. 

aeruginosa grown on the corresponding medium. The results indicate the existence of repair 

mechanisms of E. coli and P. aeruginosa after the oxidation process (even at high fluence values, 

1806 mJ cm-2), while the fact that all the regrown colonies were observed on the plates 

containing antibiotics at sub-MIC, implies that when the stress factor (which in this case is the 

sunlight/H2O2 treatment) is gone, the microorganisms might become more tolerant. A similar 

repair of the examined bacteria was observed by Fiorentino et al. (2015), where after 

H2O2/sunlight treatment of a secondary effluent, inactivation of total and multidrug resistant E. 

coli to below the quantification limits was achieved. Despite the accomplished inactivation of the 



H2O2/sunlight process, 48 h after the treatment there were 0.3×102 CFU mL-1 E. coli re-growing 

in treated samples with 3% of the enumerated E. coli population being resistant to the examined 

mixture of antibiotics, namely ampicillin, ciprofloxacin and tetracycline.

On the other hand, no regrowth was observed in the UV-C/H2O2 treated samples. This 

might be an indication of a permanent damage to the cellular functions of the examined species 

through the UV-C/H2O2 oxidation, disabling thus their repair and highlighting the capacity of the 

process to inactivate these bacteria. When UV-C irradiation is applied, the damage is mainly at 

the genome level, due to the high absorption by the thymine and cytosine bases. This stress 

induces responses of chaperones to repair the DNA damages, but soon this response is surpassed 

[65]. Similarly, during the UV-C disinfection, the regrowth is influenced by the dose of UV-C 

received by the microorganisms. The stepwise damage induced by the UV irradiation starts at the 

bacterial cell wall and gradually proceeds to the inner cell components, eventually causing 

permanent lethal damage [66]. Also, according to Dodd, [67], UV radiation interacts with target 

moieties in bacterial cells by physical processes first, such as light absorption by certain 

chromophores (e.g L-tryptophan), which may subsequently lead to photochemical reactions that 

can change the genetic information of the cell, contributing thus to the inactivation, mutagenesis 

and death of the cell.

3.6 ARGs elimination during the light-driven oxidation processes

The long-term application of antibiotics in the protection of humans and animals has 

resulted in bacteria possessing various resistances to antibiotics that are generally controlled by 

ARGs. Several types of ARGs have been found in the environment, including genes that confer 

resistant to tetracycline, sulphonamide, aminoglycoside, vancomycin, β-lactam antibiotics etc. 



Tetracycline-resistant bacteria emerge in environments with the introduction of tetracycline, and 

at least 40 different tetracycline resistance genes (tet) have been characterized to date. Resistance 

to tetracycline is governed by tet genes, which are involved in either active efflux of the drug, 

ribosomal protection or enzymatic drug modification. Sulphonamide resistance is primarily 

mediated by the sul1, sul2 and sul3 genes encoding dihydropteroate synthetase (DHPS) with a 

low affinity for sulphonamide antibiotics [68], [69]. Sul1 and sul2 have been detected in bacteria 

isolates from faecal slurry of dairy farms, wastewater treatment facilities, water or sediments of 

aquaculture areas, and even from the river or seawater without evidence pollution [69], 

suggesting that sulphonamide resistance genes are worthy of concern. As the largest group of 

diverse and specific resistance determinants in bacteria, β-lactamase resistance genes are 

intensively explored in terms of dissemination mechanisms in the environment. B-lactamase 

resistance genes are unique because of their broad spectrum of activity against β-lactams and 

consequently, very high mutation frequency [70], [71]. For these reasons, it was decided to 

investigate the abundance of the 16S rRNA, sul1, sul2, qnrS, blaTEM, blaOXA, blaCTX-M, blaSHV, 

mecA, vanA and tetM genes, in the samples collected during the light-driven oxidation 

processes. These genes were selected considering their wide occurrence in wastewater [72] and 

their ability to confer resistance against essential classes of antibiotics used for the treatment of 

serious infectious diseases [73], [74], [75], [76], [77], [78]. The results, expressed in values of 

gene copy number mL-1 of sample, are presented in Fig.7. 

The abundance of the vanA and mecA genes, was found to be below the quantification 

limit in all samples. The 16S rRNA gene, a housekeeping gene used to measure the bacterial 

abundance, was the most abundant gene in all samples (from 6.50 to 4.11 log gene copies mL-1 

of sample during the UV-C/H2O2 and 6.50 to 5.71 during the sunlight/H2O2 processes). During 



the UV-C/H2O2 oxidation, the 16S rRNA gene was reduced for about 2.4 logs, whereas during 

the sunlight/H2O2 treatment the gene was slightly decreased (0.8 logs), indicating a greater 

sensitivity of the bacteria population to the UV-C radiation. 

Both processes seemed to be insufficient in reducing ARGs to levels below the 

quantification limit. Particularly, the occurrence of most of the tested ARGs was not remarkably 

affected after 300 min of sunlight/H2O2 treatment (≤ 0.7 log reduction). While no differences 

were observed for sul1, sul2, qnrS, blaOXA-A and blaTEM between the untreated and the samples 

collected after treatment, the tetM and blaCTX-M genes were reduced after the treatment (~1.4 

logs). 

UV-C/H2O2 process was demonstrated to be effective in reducing sul1, sul2, tetM, 

blaOXA-A and blaTEM genes for 2.0-3.7 logs and qnrS and blaSHV genes to values below the 

quantification limits (within 90 min of treatment and 0.8 kJ L-1). 

In the studies of Ferro et al. [13] and [79] which deal with the removal of selected ARGs 

by UV/H2O2 process at a dose of 20 mg L-1 H2O2 in deionized water, the process did not affect 

the blaTEM gene copy number and poorly affected the qnrS copy number of (4.3 × 104 copies mL-

1) after 240 min of treatment (accumulated energy in kJ L-1 is not calculated in this study). 

Moreover, blaTEM gene was still present even when the treatment time was extended to 300 min 

[79].

In another study of Moreira et al. [49], the efficiency of sunlight/H2O2 to reduce the 16S 

rRNA gene and intI1 genes, and selected ARGs (blaTEM, qnrS, sul1 and blaCTX-M) present in 

wastewater effluents was investigated under various operating parameters. The results obtained, 

showed that the sunlight/H2O2 treatment was able to reduce the abundance of the ARGs for 1 log 

in average, except for blaCTX-M (3 log reduction).



Based on the results presented in this study, as well as in previous studies regarding the 

removal of ARGs through the light-driven oxidation processes, it can be inferred that the 

treatments are unable to completely remove resistance determinants from urban wastewater.

A summary of the results obtained in both processes, using the UWW matrix, is provided 

in Table 1.

4. Conclusions

This study investigated two light-driven oxidation processes as possible tertiary treatment 

methods of urban wastewater, by evaluating their efficiency to perform both chemical 

decontamination and disinfection. The UV-C/H2O2 treatment was found capable of eliminating 

CIP and SMX (90 min, 0.9 kJ L-1), whereas sunlight/H2O2 process was only able to eliminate 

CIP (CIP was eliminated in 60 min and 8 kJ L-1, while SMX was removed only by 46% after 300 

min and 42 kJ L-1). Similar results were obtained for the two processes, when the matrix was SS, 

except from the shorter times required for antibiotics’ elimination (due to absence of dEfOM in 

the SS). This reveals the superiority of UV-C/H2O2 over sunlight/H2O2 process for the removal 

of antibiotics, regardless of the matrix used. The formation of recalcitrant organic intermediates 

was evident from the fact that complete mineralization was not achieved by any treatment. The 

results of the chronic toxicity bioassay applied, using the V. fischeri bacterium, showed that the 

toxicity is probably derived from the oxidation of the dEfOM itself. So, in terms of toxicity, 

which seemed to be greater throughout UV-C/H2O2, the process is accused with a drawback.

The pathways of the photo-transformations of the two antibiotics determined, showed 

that all the TPs identified for CIP and SMX still retain the core quinolone and amino moieties, 

respectively, which are responsible for the antibacterial activity of the compounds. This is an 



interesting observation, as further investigations should be carried out in order to determine the 

appropriate dose or accumulated energy, which will be capable to oxidize the antimicrobial 

moiety of the TPs, evaluating at the same time the impact of the TPs on antimicrobial resistance 

spread.

Both treatments were found able to inactivate E. coli and P. aeruginosa in SS and UWW, 

including the colonies of these species cultivable in the presence of sub-MIC of CIP and SMX, 

noting though, a quite big difference in the dose/accumulated energy required by each process 

(UV-C/H2O2: 8 min, 0.1 kJ L-1; sunlight/H2O2: 120-150 min, 16-20 kJ L-1). Moreover, after 48 h 

of post-treatment storage of the sunlight/H2O2 treated samples, bacterial regrowth occurred, 

suggesting that the treatment was not only longer, but also it did not provide complete and 

permanent disinfection. ARGs exhibited different behaviour during the two treatments, as 

specific genes were removed to values below the quantification limits and others were persistent 

throughout the treatment. Again, the UV-C/H2O2 showed its superiority over the sunlight/H2O2 

process, as during the application of the former, all the bla and qnrS genes were eliminated to the 

LOQ, while in the application of the latter, none of the examined genes were removed. However, 

the obtained findings confirmed the inability of both processes to prevent the spread of ARGs to 

the environment. The inactivation of the studied bacteria and the removal of ARGs, were faster 

than the degradation of the target antibiotics. As more knowledge is being gathered with respect 

to the potential adverse effects of the ARB and ARGs after their release to the environment, 

attention should be given so that the technologies applied at the UWTPs achieve both the 

removal of antibiotics and their TPs, and the elimination of the antimicrobial resistant bacterial 

and gene loads, while suppressing post-treatment bacterial regrowth.
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Fig.1 - Photodegradation of target antibiotics in saline solution (SS) and urban wastewater 
(UWW) matrices under UV-C light (a) and sunlight (b), shown as functions of the cumulative 
energy per unit of volume, QUV (kJ L-1). The inset graph in (a) shows clearly the degradation of 
SMX as a function of treatment time in the first 20 min of treatment.  Experimental conditions: 
[Antibiotics]0=100 μg L-1; [H2O2]0,a=5 mg L-1; [H2O2]0,b =30 mg L-1; pH=8; T=24 ± 2 °C. 
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Fig.2 - Degradation rate of the target antibiotics at the optimum H2O2 concentration during (a) 
UV-C/H2O2 and (b) sunlight/H2O2 treatment along with the consumption of H2O2 during the 
processes. Experimental conditions: [A]0=100 μg L-1; [H2O2]0,a=5 mg L-1; [H2O2]0,b =30 mg L-

1pH=8; T=24 ± 2 °C.





Fig.3 - Profile of the main TPs of CIP generated during (a) sunlight/H2O2 and (b) UV-C/H2O2 
treatment.
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Fig.4 - Intensity profile of the main TPs of SMX generated during (a) sunlight/H2O2 and (b) 
UV-C/H2O2 treatment.



Fig.5a - Tentative transformation pathway of CIP degradation by UV-C/H2O2 and sunlight/H2O2 
processes.



Fig.5b - Tentative transformation pathway of SMX degradation by UV-C/H2O2 and 

sunlight/H2O2 and processes.



Fig.6a - Main CIP transformation products profiles and chronic toxicity assessment towards 
V. fischeri (exposure time=24 h) during the UV-C/H2O2 and sunlight/H2O2 oxidation 
processes, T=20±0.5◦C. The initial spiked concentrations of antibiotic samples were 100 μg 
L-1. Positive control was NaCl (18%). The values are the mean of three independent 
experiments ± SD.
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Fig.6b - Main SMX transformation products profiles and chronic toxicity assessment towards 
V. fischeri (exposure time=24 h) during the UV-C/H2O2 and sunlight/H2O2 oxidation 
processes, T=20±0.5◦C. The initial spiked concentrations of antibiotic samples were 100 μg 
L-1. Positive control was NaCl (18%). The values are the mean of three independent 
experiments ± SD.
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Fig.7 - Inactivation of E. coli and P. aeruginosa strains by UV-C/H2O2 and sunlight/H2O2 
treatment. Experimental conditions: [A]0=100 μg L-1; [H2O2]0,a,b=5 mg L-1; [H2O2]0,c,d=30 
mg L-1;  pH=8; T=24 ± 2 °C.



Fig.8 - Abundance of 16S rRNA and ARGs (copies per mL of sample) in total DNA as a 
function of accumulated energy (a) UV-C/H2O2 and (b) sunlight/H2O2 oxidation of urban 
wastewater. Experimental conditions: [A]0=100 μg L-1; [H2O2]0,a=5 mg L-1; [H2O2]0,b=30 
mg L-1; pH0=7.5-8.0.
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Table 1 - Table summarizing the performance of the processes examined using the UWW matrix

Highlights

 Oxidation processes showed different treatability for microcontaminants

 UV-C/H2O2 proved to be more efficient in terms of time and energy required

Treatment process
and conditions of 

operation

Removal of 
antibiotics

Mineralization
(DOC removal)

Generation of TPs and maintenance 
of the antibacterial active moiety in 

the TPs

Removal of 
toxicity

Inactivation of 
cultivable bacteria

Genes log reduction

UV-C/H2O2

 Pilot-scale setup

 UV-C irradiation 

(λ=254 nm, 230 W)

 80 L of CAS effluents 

spiked with CIP&SMX 

(100 μg L-1)

 [H2O2]=5 mg L-1

 pH: inherent, 7.5-8.0

CIP: >99%

90 min, QUV=0.9 kJ L-1

SMX: >99%

90 min, QUV=0.9 kJ L-1

8.2 ± 0.7 %

CIP: 16 TPs

All the TPs 
retained the 
antibacterial 
moiety of the 

parent compound 
in their molecule 

SMX: 16 TPs

All the TPs 
retained the 
antibacterial 
moiety of the 

parent compound 
in their molecule

85 ± 1%

90 min 

QUV=0.8 kJ L-1

E. coli: 

8 min, 0.06 kJ L-1

no regrowth (48h)

P. aeruginosa: 
8 min, 0.06 kJ L-1

no regrowth (48h)

 16S rRNA: 2.4

 blaOXA-A: 3.7 (<LOQ)

 blaSHV: 3.7 (<LOQ)

 blaTEM: 3.7 (<LOQ)

 qnrS: 3.7 (<LOQ)

 tetM: 2.3

 sul1: 2.2

 sul2: 2.1

90 min, 

QUV=0.8 kJ L-1

sunlight/H2O2

 Pilot-scale setup

 Natural solar irradiation

 60 L of CAS effluents 

spiked with CIP&SMX 

(100 μg L-1)

 [H2O2]=30 mg L-1

 pH: inherent, 7.5-8.0

CIP: >99%

60 min, QUV=8 kJ L-1

SMX: ~46%

300 min, QUV=42 kJ L-1

3.5 ± 0.1 %

CIP: 20 TPs

All the TPs 
retained the 
antibacterial 
moiety of the 

parent compound 
in their molecule

SMX: 15 TPs

All the TPs 
retained the 
antibacterial 
moiety of the 

parent compound 
in their molecule

99 ± 1%

120 min 

QUV=16 kJ L-1

E. coli: 

150 min; 20 kJ L-1

regrowth (48h) 

8 CFU mL-1

P. aeruginosa: 

120 min; 16 kJ L-1 

regrowth (48h) 

50 CFU mL-1

 16S rRNA: 0.8

 blaOXA-A: 0.3

 blaCTX-M: 1.7

 blaTEM: 0.7

 qnrS: 1.6

 tetM: 1.4

 sul1: 0.8

 sul2: 1

300 min, 

QUV=42 kJ L-1
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 Resulting ecotoxicity can be attributed to the dEfOM and its oxidation products

 All the TPs identified retain the antibacterial moiety in their molecules

 blaOXA-A, blaSHV, blaTEM and qnrS resistance genes were eliminated by UV-C/H2O2
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