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1. Introduction

Anomaly cancellation has been, for a long time, one of the main guiding principles for the

construction of consistent gauge and gravitational theories. The most familiar examples of

anomaly cancellation in four-dimensional theories are the automatic cancellation of gauge

and mixed abelian anomalies in the Standard Model as well as the necessity for the intro-

duction of a second Higgs doublet to achieve the same type of cancellation in the MSSM.

However, in these cases, anomaly cancellation cannot by itself provide serious constraints

on the gauge group and the particle spectrum of the theory, since the cancellation condi-

tions are weak and can be satisfied by a vast number of models. On the other hand, in the

case of theories living in ten or six dimensions where gravitational and mixed nonabelian

anomalies [1, 2] are present in addition to gauge and mixed abelian ones, the requirement

of anomaly cancellation may lead to powerful constraints singling out a relatively small
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number of consistent models. In the particularly interesting case of theories considered as

long-wavelength limits of fundamental theories whose detailed structure is not fully known,

the search for anomaly-free models is greatly motivated by the fact that anomaly cancel-

lation, being an infrared effect, may enable us to infer information about the high-energy

aspects of the underlying theory through low-energy considerations.

In this respect, it is instructive to recall the basic facts in the case of 10D supergrav-

ity. The string-derived chiral 10D supergravities known before the explicit calculation of

higher-dimensional anomalies were Type IIB N = 2 supergravity (realized in terms of

closed strings) and N = 1 supergravity coupled to SO(N) Yang-Mills (realized in terms

of Type I strings). A striking result of the calculation of 10D gravitational anomalies

in [1] was the complete cancellation of anomalies for the Type IIB theory; on the other

hand, N = 1 supergravity was found to be anomalous. However, Green and Schwarz

discovered that N = 1 theory can also be made anomaly-free [3] through a coupling of

the 2–form of the supergravity multiplet to a certain 8–form constructed out of curvature

invariants. The necessary and sufficient condition for anomaly cancellation was that the

anomaly polynomial must factorize. This can happen only for a gauge group of dimension

496 with no sixth-order Casimirs, in which case the factorization coefficients are uniquely

determined and result in a further constraint on certain group-theoretical coefficients. The

obvious candidate was SO(32) which indeed satisfied all the above requirements and the

corresponding string theory was subsequently shown [4] to also satisfy the RR tadpole can-

cellation condition. However, surprisingly enough, these requirements were also satisfied

by the E8 ×E8 group which at that time lacked a string-theoretical interpretation, as well

as by the physically uninteresting E8 ×U(1)248 and U(1)496 groups; the above four groups

exhaust all possibilities. The discovery of the heterotic string provided a string realization

of the E8 ×E8 model which turned out to be the most phenomenologically relevant string

unification model at the time. These developments made clear that anomaly cancellation

not only seriously constrains the particle spectrum of a theory but can also point, from the

effective-field-theory point of view, to new consistent models that may be realized through

a more fundamental theory.

The Green-Schwarz mechanism also carries over to lower-dimensional chiral theories

like the minimal 6D supergravities [5, 6, 7, 8, 9]; the relevant anomaly cancellation condi-

tions are discussed in [10, 11, 12, 13, 14, 15]. In the 6D case, things are more complicated

mainly due to the existence of the massless hypermultiplets that may transform in arbitrary

representations of the gauge group. A consequence of this is that the anomaly cancellation

conditions are somewhat weaker than those in the 10D case. First, the condition for the

cancellation of irreducible gravitational anomalies does not uniquely fix the dimension of
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the gauge group but, instead, it simply sets an upper bound on the number of non-singlet

hypermultiplets. Second, in the case that the gauge group has fourth-order Casimirs, can-

cellation of the corresponding irreducible gauge anomaly leads to an equality constraint for

the numbers of hypermultiplets. Finally, the factorization condition does not determine

how the highest-order traces in the gauge anomaly must factorize but instead leads to two

weaker constraints. The conditions mentioned above admit a large number of solutions for

the gauge group and the possible hypermultiplet representations and, in fact, a complete

classification is a very complicated task. In the related literature, a relatively small number

of the possible theories has been explored.

The search for consistent six-dimensional N = 1 supergravities is greatly motivated

by a number of reasons, namely (i) their shared properties with ten-dimensional N = 1

supergravities, (ii) their use as toy models for the study of complicated phenomena such as

flux compactifications, (iii) their connection, in the gravity-decoupling limit, to the much-

studied N = 2 supersymmetric gauge theories in four dimensions, (iv) the possibility of

vectorlike [16] or chiral [17] compactifications of the gauged theories down to flat four-

dimensional space using a gauge field residing in an internal S2 and (v) the partial solution

they provide to the cosmological constant problem in both ungauged [18, 19, 20] and gauged

[21, 22, 23] cases.

Regarding the case of Poincaré (ungauged) supergravities, most models found so far

correspond to heterotic string compactifications on K3 [24], possibly involving symmetry

enhancement either from the Gepner points of orbifold realizations of K3 [14] or by small

instantons [15, 25], as well as chains of models obtained from the above ones by Higgsing. In

[15], a few more models were found by directly solving the anomaly-cancellation conditions.

Finally, many series of models were constructed [26, 27] using geometric engineering via F-

theory. Moreover, the issue of anomaly cancellation in six dimensions has been examined

in some slightly different classes of theories. One such class corresponds to boundary

theories in Hořava-Witten–type compactifications of 7D supergravity on S1 /Z2 [28, 29, 30].

Another class corresponds to flat-space 6D gauge theories, where anomaly cancellation is

related to the existence of non-trivial RG fixed points [31, 32]. Although, the number

of known anomaly-free 6D Poincaré supergravities is quite large, it is certainly useful

to tabulate the simplest of them and it is interesting to search whether there are more

anomaly-free models or chains of models than those already found.

Turning to the gauged case, the known anomaly-free models are an E7 × E6 × U(1)R

model found in [17] as well as a recently-discovered E7 ×G2 ×U(1)R model [33]. There are

also a few models [10] involving extra “drone” U(1)’s. These models have been found from

purely supergravity considerations, guided by the requirement of anomaly cancellation.
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The uniqueness of these models and their interesting physical properties provide a great

motivation for investigating whether more models of this type exist.

It is the purpose of this paper to partially address the two problems mentioned in

the preceding two paragraphs. Here, we present a search for anomaly-free six-dimensional

N = 1 supergravities, subject to a certain set of conditions on the allowed gauge groups

and representations. Under these conditions, we do an exhaustive search for anomaly-free

models, that is, for models where the Green-Schwarz mechanism may operate. In the

course of the search, various known models are identified while there appear models not

previously found.

The paper is organized as follows. In Section 2 we review the basic facts about anoma-

lies in D = 6, N = 1 supergravity theories, we state the conditions for cancellation of

local anomalies and absence of global gauge anomalies and we state the restrictions for our

search. In Section 3, we enumerate the anomaly-free Poincaré supergravities found in our

search, while in Section 4 we do the same for gauged supergravities. Finally, in Section 5,

we discuss our main results.

2. Review of anomaly cancellation in six dimensions

In this section, we fix our notation and conventions, we describe the basics of D = 6,

N = 1 supergravities and we give a review of anomaly cancellation in these theories.

The anomaly cancellation mechanism is presented in full detail and includes discussions of

gauged theories, the generalized Green-Schwarz mechanism and global anomalies. The aim

is to provide a self-contained treatment that may facilitate further search for anomaly-free

models.

2.1 Basics of D = 6, N = 1 supergravity

The minimal N = 1 supersymmetry algebra in six dimensions is chiral and has Sp(1) as

its R-symmetry group. Its massless representations, classified in terms of the SO(4) ∼=
SU(2) × SU(2) little group and the Sp(1) R-symmetry group, and their particle content

are1:

Supergravity multiplet : (3,3;1) + (1,3;1) + (2,3;2) = (gµν , B
+
µν , ψ

i−
µ ),

Tensor multiplet : (3,1;1) + (1,1;1) + (1,2;2) = (B−
µν , φ, χ

i+),

Vector multiplet : (2,2;1) + (2,1;2) = (Aµ, λ
i−),

Hypermultiplet : 4(1,1;2) + 2(1,2;1) = (4ϕ, 2ψ+). (2.1)

1Our conventions are appropriate for the signature (−,+, +, +, +, +) for the spacetime metric.
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Here, the spinors are symplectic Majorana, the index i = 1, 2 takes values in the funda-

mental of Sp(1) and the + (−) superscripts denote positive (negative) chirality for spinors

and (anti-)self-duality for 2–forms.

A general D = 6, N = 1 supergravity theory coupled to matter is constructed by

combining one supergravity multiplet with nT tensor multiplets, nV vector multiplets and

nH hypermultiplets, where nT , nV and nH are defined so as to include group multiplicities.

The nT real scalars in the tensor multiplet parameterize the coset space SO(1, nT )/SO(nT ).

The 4nH real hyperscalars parameterize a non-compact quaternionic manifold of the form

M =
G

H × Sp(1)
, (2.2)

where the Sp(1) subgroup is identified with the R-symmetry group, while the hyperinos

furnish an appropriate representation of H. The allowed choices for (G,H) [6] are given by

(Sp(nH , 1),Sp(nH)), (SU(nH , 2),SU(nH)×U(1)), (SO(nH , 4),SO(nH)× SO(3)), (E8, E7),

(E7,SO(12)), (E6,SU(6)), (F4,Sp(3)) and (G2,Sp(1)). The vector multiplets may belong

to a gauge group G which is the product of a subgroup of the isometry group G and a

possible “shadow” group S under which all other multiplets are inert. In the first three

cases, where G is non-compact, this essentially means2 that G is a subgroup of theH×Sp(1)

holonomy group times S. For the analysis that follows, it is convenient to write this gauge

group as G = Gs ×Gr ×Ga, where (i) Gs is a semisimple group containing factors from H

and S given by the product
∏

α Gα where the Gα’s are simple, (ii) Gr is the R-symmetry

factor arising in gauged theories and can be either Sp(1) or a U(1) subgroup thereof and

(iii) Ga is an abelian subgroup of S (abelian factors arising from H would only make sense

if resulting from a fundamental model so that the charges would be fixed). Introducing

an extended index A = 1, . . . , N that runs over all group factors in Gs ×Gr (i.e. A = α

for ungauged theories and A = (α, r) for gauged theories), we write the full group as

G = (
∏

A GA) × Ga.

The transformation properties of the various fermions under the gauge group are as

follows. Under Gs, the hyperinos may transform in arbitrary representations while the

gravitino and tensorinos are inert. Under Gr, the hyperinos are inert (although the hyper-

scalars are charged) while the gravitino, tensorinos and gauginos transform non-trivially.

In particular, in the case where the whole Sp(1) is gauged, Eq. (2.1) indicates that the

gravitino, the tensorinos and the Gs gauginos transform in the fundamental 2 while the

Sp(1) gauginos transform in the 3 ⊗ 2 = 2 ⊕ 4. In the case where only a U(1) ⊂ Sp(1) is

gauged, the gravitino, the tensorinos and all gauginos have unit charge.

2For the remaining cases where G is compact, the gauge group can be any subgroup of G times S but

the hyperinos are restricted to transform only under H .
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Let us now write down the spectrum of the theories under consideration. Starting

from the tensor multiplets, we will keep nT arbitrary, bearing in mind that the case nT = 1

is rather special in the respect that it is the only one for which a covariant Lagrangian

formulation of the theory is possible and the only one that can result from the usual

perturbative heterotic string compactifications. As for the vector multiplets, their total

number is given by

nV = dimG = dimGs + dimGr + dimGa . (2.3)

Finally, for the hypermultiplets, we denote a generic representation of Gs by (Ri1, . . . ,Rik)

and we let ni1...ik be the number of hypermultiplets in that representation and ns be the

number of singlets. We then have

nH =
∑

k

ni1...ik dimRi1 . . . dimRik +ns. (2.4)

The full spectrum of the theory is thus given by

(gµν , B
+
µν , ψ

i−
µ ) + nT (B−

µν , φ, χ
i+) + nV (Aµ, λ

i−) + nH(4ϕ, 2ψ+). (2.5)

In general, the above spectrum is anomalous. The anomalies of the theory fall into two

types. The first type corresponds to the usual local gravitational, gauge and mixed anoma-

lies present in chiral theories. The second type pertains to the gauge sector of the theory

and corresponds to the global anomalies arising from gauge transformations not continu-

ously connected to the identity. Below, we shall examine the two cases in turn and we will

state the necessary and sufficient conditions for the absence of the two types of anomalies.

2.2 Local anomalies

Let us first examine the local anomalies. Starting from gravitational anomalies, we use the

normalization of Appendix A to represent the total gravitational anomaly of the theory by

the anomaly 8–form

I8(R) =
nH − nV + 29nT − 273

360
trR4 +

nH − nV − 7nT + 51

288
(trR2)2. (2.6)

Passing to the gauge and mixed anomalies, we have to introduce some notation. We let

Fα and Fr be the field strengths associated with Gα and Gr. We also let nα,i and nαβ,ij

denote the numbers of hypers transforming in the representation Ri of Gα and in (Ri,Rj) of

Gα ×Gβ. Then, using the formulas in Appendix A, we write the gauge anomaly polynomial

as

I8(F ) = −2

3

∑

α

(

TrF 4
α −

∑

i

nα,i tri F
4
α

)

+ 4
∑

α<β

∑

i,j

nαβ,ij tri F
2
α trj F

2
β
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−2

3

[

tr′ F 4
r + (dimGs + dimGa +5 − nT ) trF 4

r

]

−4TrF 2
α tr′ F 2

r , (2.7)

where “Tr” and “tri” stand for the traces in the adjoint and Ri of Gα while “tr” and “tr′”

stand for the traces in the fundamental of Gr and in the representation of the gauginos. The

four terms in (2.7) are recognized as (i) the contribution of the gauginos and hyperinos

to the anomaly under the pure Gα factors, (ii) the contribution of the hyperinos to the

anomaly under the products Gα ×Gβ, (iii) the contribution of the Gr, Gs and Ga gauginos,

gravitino and tensorinos to the anomaly under Gr and (iv) the contribution of the gauginos

to the anomaly under Gα ×Gr. In a similar manner, we find the mixed anomaly

I8(F,R) =
1

6
trR2

∑

α

(

TrF 2
α −

∑

i

nα,i tri F
2
α

)

+
1

6
trR2

[

tr′ F 2
r + (dimGs + dimGa −19 − nT ) trF 2

r

]

. (2.8)

Eqs. (2.7) and (2.8) can be brought into a more convenient form by expressing all traces

in terms of a single representation, which we take to be the fundamental. For each Gα we

will have expressions of the form

tri F
4
α = aα,i trF

4
α + bα,i(trF

2
α)2, tri F

2
α = cα,i trF 2

α, (2.9)

where the various group- and representation-dependent coefficients aα,i, bα,i and cα,i are

given in Appendix B. Similarly, for Gr we will have

tr′ F 4
r = b′r(trF

2
r )2, trF 4

r = br(trF
2
r )2,

tr′ F 2
r = c′r trF 2

r , (2.10)

where

b′r =
83

2
, br =

1

2
, c′r = 11; if Gr = Sp(1),

b′r = bR = c′r = 1; if Gr = U(1). (2.11)

Using (2.9) and (2.10), introducing the quantities

Aα ≡ aα,A −
∑

i

nα,iaα,i,

Bα ≡ bα,A −
∑

i

nα,ibα,i, Br ≡ b′r + (dimGs + dimGa +5 − nT )bR,

Cα ≡ cα,A −
∑

i

nα,icα,i, Cr ≡ c′r + dimGs + dimGa −19 − nT ,

Cαβ ≡
∑

i,j

nαβ,ijcα,icβ,j, Cα,r ≡ −cα,A, (2.12)
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and employing the extended index A, we write the gauge and mixed anomaly polynomials

of the theory in the compact forms

I8(F ) = −2

3

∑

α

Aα trF 4
α − 2

3

∑

A

BA(trF 2
A)2 + 4

∑

A<B

CAB trF 2
A trF 2

B , (2.13)

and

I8(F,R) =
1

6
trR2

∑

A

CA trF 2
A. (2.14)

Combining (2.6), (2.13) and (2.14), we finally find the total anomaly polynomial

I8 =
nH − nV + 29nT − 273

360
trR4 +

nH − nV − 7nT + 51

288
(trR2)2

+
1

6
trR2

∑

A

CA trF 2
A

−2

3

∑

α

Aα trF 4
α − 2

3

∑

A

BA(trF 2
A)2 + 4

∑

A<B

CAB trF 2
A trF 2

B . (2.15)

If the total anomaly is to cancel through a Green-Schwarz–type mechanism, the above

polynomial must factorize. A necessary condition for this is that all irreducible trR4 and

trF 4
α terms in (2.15) must vanish. Regarding the trR4 term, the fact that SO(5, 1) possesses

a fourth-order Casimir implies that the coefficient of this term must vanish. This way, we

are led to our first constraint

nH − nV = 273 − 29nT , (2.16)

which clearly shows that the presence of hypermultiplets is necessary for anomaly cancel-

lation at least for nT 6 9. Passing to the trF 4
α terms, their vanishing requires that

Aα = 0; for all α. (2.17)

This can be achieved either (i) if the relevant representations of Gα have no fourth-order

invariants (aα,i = 0 for all i) or (ii) if the nα,i’s are chosen appropriately. Provided that

(2.16) and (2.17) hold, the anomaly polynomial reads

I8 = K(trR2)2 +
1

6
trR2

∑

A

CA trF 2
A − 2

3

∑

A

BA(trF 2
A)2 + 4

∑

A<B

CAB trF 2
A trF 2

B . (2.18)

where we introduced the quantity

K =
9 − nT

8
. (2.19)

To make a general analysis of the factorization properties of this polynomial, it helps

to treat the Lorentz group in an equal footing with the other gauge groups by defining
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F0 = R as in [17]. Introducing a summation index I = 0, 1, . . . , N , we can then represent

the anomaly polynomial in the concise form

I8 = GIJ trF 2
I trF 2

J , (2.20)

where G is a real symmetric (N + 1) × (N + 1) matrix with entries

G00 = K, G0A =
CA

12
, GAA = −2BA

3
, GAB = 2CAB (A 6= B). (2.21)

The anomaly cancellation conditions depend on the properties of the matrix G as well

as on the number nT of available tensor multiplets. The two possible mechanisms are as

follows.

1. Green-Schwarz mechanism. For an arbitrary number of tensor multiplets3, anoma-

lies may be cancelled by the standard Green-Schwarz mechanism. In order for that

mechanism to be applicable, the matrix G must be a matrix of rank r 6 2; if r = 2,

the (real) nonzero eigenvalues λm, m = 0, 1, must satisfy λ0λ1 < 0. For r = 2, we

may define cmI as the eigenvectors corresponding to λm multiplied by |λm|1/2 and

write the similarity transformation of G in the form

GIJ = ǫηmnc
mIcnJ =

1

2
(uIvJ + vIuJ), (2.22)

where ǫ is the sign of λ0, ηmn = diag(1,−1) is the SO(1, 1)–invariant tensor and

uI ≡ ǫ(c0I − c1I), vI ≡ c0I + c1I . (2.23)

Using (2.22), we can write the anomaly polynomial in the factorized form

I8 = ǫηmnc
mIcnJ trF 2

I trF 2
J = uI trF 2

I v
J trF 2

J . (2.24)

This anomaly can cancel by the standard Green-Schwarz mechanism. Letting B
(0)
2 =

B+
2 be the self-dual 2–form of the gravity multiplet and B

(1)
2 be any one of the anti-

self-dual 2–forms in the tensor multiplets and setting B2 = B
(0)
2 +B

(1)
2 , we construct

the Green-Schwarz term

SGS ∼
∫

uIB2 trF 2
I , (2.25)

and we modify the gauge/Lorentz transformation law of the B2’s to

δB2 ∼ vIω1
2,I , (2.26)

where ω1
2,I is related to trF 2

I by descent. The variation of (2.25) under (2.26) exactly

cancels the anomaly of the theory. For r = 1, one may repeat the above discussion

with the appropriate cmI set to zero.
3In discussing the nT 6= 1 case, we ignore subtleties related to the construction of actions for (anti-)self-

dual 2–forms.

– 9 –



2. Generalized Green-Schwarz mechanism. In the case nT > 1, there exists a

generalization of the Green-Schwarz mechanism, found by Sagnotti [39], which allows

for anomaly cancellation under weaker constraints. For that mechanism to apply, the

matrix G must be a matrix of rank r 6 nT + 1 whose nonzero eigenvalues λm,

m = 0, . . . , r − 1, include an eigenvalue λ0 such that λ0λm < 0 for m > 0. For

r = nT + 1, we may define cmI as before and we write the similarity transformation

of G as

GIJ = ǫηmnc
mIcnJ =

1

2

nT
∑

i=1

(uiIviJ + viIuiJ), (2.27)

where now ηmn = diag(1,−1, . . . ,−1) is the SO(1, nT )–invariant metric and

uiI ≡ ǫ

(

c0I

√
nT

− ciI
)

, viI ≡ c0I

√
nT

+ ciI . (2.28)

This way, the anomaly polynomial is written as a sum of factorized terms,

I8 = ǫηmnc
mIcnJ trF 2

I trF 2
J =

nT
∑

i=1

uiIviJ trF 2
I trF 2

J . (2.29)

This anomaly can cancel by a generalization of the Green-Schwarz mechanism. Let-

ting B
(0)
2 = B+

2 and B
(i)
2 be the anti-self-dual 2–forms in the tensor multiplets, we

construct the SO(1, nT )–invariant generalized Green-Schwarz term [39, 40]

SGS ∼
∫

ǫηmnc
mIB

(n)
2 trF 2

I , (2.30)

and we modify the gauge/Lorentz transformation law of the B2’s to

δB
(m)
2 ∼ cmIω1

2,I . (2.31)

Again, for r < nT + 1, one may repeat the above discussion with the appropriate

cmI ’s set to zero.

In this paper, we will only consider theories whose anomalies cancel by the standard

Green-Schwarz mechanism. To examine the conditions for anomaly cancellation, it is very

useful to state them in a more explicit form. To do so, we compare the general form (2.21)

of G with the expression (2.22). Comparison of the G00, G0A, GAA and GAB terms leads

respectively to the conditions

u0v0 = K, (2.32)

u0vA + v0uA = CA

6 , uAvA = −2BA

3 ; for all A, (2.33)

uAvB + vAuB = 4CAB ; for all A < B. (2.34)

To begin, we note that we can set u0 = K and v0 = 1 without loss of generality. To

proceed, we have to distinguish between the cases nT 6= 9 (K 6= 0) and nT = 9 (K = 0).
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• nT 6= 9. In this case, Eqs. (2.33) imply that uA and KvA must be roots of the

equation

x2 − CA

6
x− 2KBA

3
= 0, (2.35)

and, in order for them to be real, we must have

C2
A + 96KBA > 0; for all A. (2.36)

Finally, Eq. (2.34) leads to the condition

CACB ±
√

(C2
A + 96KBA)(C2

B + 96KBB) = 288KCAB , (2.37)

for at least one choice for the uA’s and KvA’s as roots of (2.35), the plus or minus

sign depending on the particular choice. E.g. in the case of three groups, (2.34) is

satisfied when (2.37) holds for each pair AB = (12, 13, 23) with either one of the sign

combinations (−,−,−), (−,+,+), (+,−,+) and (+,+,−).

• nT = 9. In that case, the first of Eqs. (2.33) determines uA = CA/6, the second of

Eqs. (2.33) gives

CAv
A = −4BA; for all A, (2.38)

and Eq. (2.34) gives

CAv
B + CBv

A = 24CAB ; for all A < B. (2.39)

Eqs. (2.38) and (2.39) together form an overdetermined linear system of N(N +1)/2

equations for N unknowns. In the general case, the system has the form Av = b

with

A =













































C1 0 · · · 0 0

0 C2 · · · 0 0

.

..
.
..

. . .
.
..

.

..

0 0 · · · CN−1 0

0 0 · · · 0 CN

C2 C1 . . . 0 0

.

..
.
..

. . .
.
..

.

..

CN−1 0 . . . C1 0

CN 0 . . . 0 C1

...
. . .

...
...

..

.
..
.

. . .
..
.

..

.

0 0 . . . CN CN−1













































, v =













v1

v2

...

vN−1

vN













, b =













































−4B1

−4B2

.

..

−4BN−1

−4BN

24C12

.

..

24C1,N−1

24C1N

...

..

.

24CN−1,N













































, (2.40)

and the constraints determining whether it has solutions are given by

detC = 0; for every (N + 1) × (N + 1) submatrix C of (A,b). (2.41)
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From (2.40), we can see that when we have BA = CA = 0 for all A 6= Ā and

CAB = CBA = 0 for A,B 6= Ā where Ā is a given value of the index A, the system

reduces to N independent equations and has always a solution. For Poincaré super-

gravities, this corresponds to the case where the hypermultiplets transform in the

adjoint representation of N−1 group factors in Gs and in an arbitrary representation

of the remaining factor. For gauged supergravities, this corresponds to the case where

the hypermultiplets transform in the adjoint of Gs; these were the solutions found in

[10].

To summarize, the requirement of Green-Schwarz cancellation of local anomalies in D = 6,

N = 1 supergravity boils down (for nT 6= 9) to the four conditions (2.16), (2.17), (2.36) and

(2.37). The first condition fixes the number of hypermultiplets in terms of the gauge group.

The second condition either holds identically (in the absence of fourth-order Casimirs)

or constrains the numbers of representations (in the presence of fourth-order Casimirs).

The third condition is an inequality whose main effect is to forbid higher representations

(for which Bα can attain large negative values). Finally, the fourth condition imposes

a very stringent constraint on the numbers of representations; it is this latter condition

that seriously reduces the number of possible models in the case when product groups are

considered. In the special case nT = 9, the last two conditions are replaced by (2.41).

2.3 Global anomalies

Besides the perturbative anomalies described above, there is also the possibility that the

theory may suffer from global anomalies of the type first discovered by Witten [34] in

the context of a 4D SU(2) gauge theory. In our 6D case [35, 36], such anomalies may

arise if the sixth homotopy group π6(G) of the gauge group is non-trivial. If that is the

case, the space of gauge transformations is disconnected and so there exist “large” gauge

transformations not connected to the identity. Under such transformations, the fermion

determinant may pick up a phase factor and is therefore ill-defined unless the numbers

of fermions are such that this factor equals unity. This requirement provides additional

constraints on the spectrum of the theory.

The only simple groups with non-trivial sixth homotopy groups are G2, SU(3) and

SU(2). For these groups,

π6(G2) = Z3, π6 (SU(3)) = Z6, π6 (SU(2)) = Z12 . (2.42)

The conditions for the absence of global anomalies in the presence of a factor Gα =

G2,SU(3),SU(2) in the Gs part of the gauge group can be found in [27] and they amount
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to the following integrality constraints

Gα = G2 : 1 − 4
∑

i

nα,ibα,i = 0 mod 3,

Gα = SU(3) : − 2
∑

i

nα,ibα,i = 0 mod 6,

Gα = SU(2) : 4 − 2
∑

i

nα,ibα,i = 0 mod 6. (2.43)

where nα,i and bα,i are defined in §2.1. Note that, when the whole Sp(1)R ∼= SU(2)R is

gauged, there are also global R-symmetry anomalies. The condition for their absence is

given by

Gr = Sp(1) : 4 + dimGs + dimGa −nT = 0 mod 6. (2.44)

Eqs. (2.43) and (2.44) must be solved together with the local anomaly cancellation condi-

tions of the previous subsection in order to determine the possible anomaly-free models.

2.4 Searching for anomaly-free theories

The purpose of this paper is to conduct a systematic search for 6D supergravity models

satisfying the anomaly cancellation conditions stated above. Since a complete classification

seems to be very difficult, we will make several assumptions, expected to hold for many

models of potential physical interest. The restrictions to be imposed are the following.

1. The theory contains only one tensor multiplet, nT = 1.

2. The semisimple gauge group factor Gs is a product of up to two simple groups.

3. The hypermultiplets may transform in a set of low-dimensional representations of the

simple factors in Gs. The representations to be considered are shown on Table 1.

4. For Poincaré theories, the allowed exceptional groups are E8, E7, E6 and F4 and the

allowed classical groups are SU(5 6 N 6 32), SO(10 6 N 6 64) and Sp(4 6 N 6 32).

At most one simple factor in Gs may be a classical group. The abelian factor Ga is

empty.

5. For gauged theories, all exceptional groups are allowed while the allowed classical

groups are as before. At most one simple factor in Gs may be a classical group. The

abelian factor Ga can be non-trivial.

All of these assumptions have been made on a purely practical basis. In particular, the lower

bounds on the group rank as well as the restriction to at most one classical group factor were
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Group Low-dimensional Irreps Comments

E8 248

E7 56∗,133,912∗ ∗pseudoreal

E6 27,78,351,351′,650

F4 26,52,273,324

G2 7,14,27,64

SU(N) N,N2 − 1, N(N−1)
2

, N(N+1)
2

SO(N) N, N(N−1)
2

,2⌊N+1

2
⌋−1

∗
∗pseudoreal if N = 3, 4, 5 mod 8

Sp(N) 2N∗,N(2N + 1),N(2N − 1) − 1 ∗pseudoreal

Table 1: The possible simple gauge groups and their low-dimensional representations.

imposed because the proliferation of possible models in the case these assumptions were

relaxed would make the exhaustive search for anomaly-free models and their classification

an intractable task.

In the next two sections, we will present the complete lists of anomaly-free models under

these conditions, starting from the case of Poincaré supergravities and proceeding to the

case of gauged supergravities. In the course, we will identify as many of the known models

as possible and we will comment on their construction, their origin and their properties.

The results presented should be read according to the convention that each representation,

designated by its dimension, corresponds to all representations with the same dimension

and second and fourth indices, i.e. to all representations related by symmetries such as

complex conjugation and triality. Accordingly, the corresponding numbers of multiplets for

a representation are understood as the total numbers of multiplets in these representations.

For example, in the case of E6, the notation 27 refers to the two conjugate representations

27 and 27 and the field content n · 27 is understood as all combinations of the form

n1 · 27 + n2 · 27 with n1 + n2 = n. Also, the numbers of singlet hypermultiplets for each

model will not be displayed explicitly.

Finally, there are two issues referring to the reality properties of the representations

under consideration. First, when there appear pseudoreal representations, one may allow

the corresponding numbers of hypermultiplets to take half-integer values as well. For exam-

ple, in the case of E7, the notation 1
2 ·56 refers to “half” a hypermultiplet in the pseudoreal

representation 56, also understood as one hypermultiplet in the minimal representation 28.

Second, in the case where there appear complex representations, CPT invariance requires

that these representations occur in complex-conjugate pairs; it is only these representations

that will be considered here.
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3. Anomaly-free Poincaré supergravities

In this section, we begin our search by considering the case of Poincaré supergravities, i.e.

the case where the gauge group does not involve an R-symmetry subgroup. As mentioned

in the introduction, the number of these models is expected to be quite large; it turns out

that this is indeed the case. In the course of the search, we recover various known models

already found in the literature, and we find some models not previously identified.

3.1 Simple groups

Let us start from the case of one simple gauge group. In this case, the conditions to be solved

are Eq. (2.16) for the cancellation of the irreducible gravitational anomaly, Eq. (2.17) for

the cancellation of the irreducible gauge anomaly (when applicable) and the factorization

condition (2.36). Below, we present all possible models satisfying these conditions under the

assumptions introduced at the end of Section 2. To make the discussion more pedagogical,

we illustrate the procedure in detail.

For the exceptional groups, the only conditions to be solved are Eqs. (2.16) and (2.36).

Using (2.3) and (2.4) and noting that the number of singlets must be a nonnegative integer,

we see that the first condition constrains the number of charged hypermultiplets according

to
∑

i

ni dimRi 6 dimG +244. (3.1)

Also, using (2.13), the second condition takes the explicit form

(cA −
∑

i

nici)
2 + 96(bA −

∑

i

nibi) > 0, (3.2)

where the subscript “A” refers to the adjoint. Also, since G2, SU(3) and SU(2) are excluded

from the search, we need not examine global anomalies. One can immediately see that Eqs.

(3.1) and (3.2) are automatically satisfied when there is a hypermultiplet in the adjoint

plus 244 singlets or when all hypermultiplets are singlets; such solutions will be considered

as trivial and will not be displayed. Our results are shown below.

1. E8. For the E8 gauge group we must have nH = 248 + 244 = 492 and the only

available representation is the adjoint. Since the hypermultiplets can fit in at most

one adjoint, the only solutions are the trivial ones.

2. E7. Since this is the first non-trivial case to be considered, we will present it in

some detail. For the E7 gauge group we must have nH = 133 + 244 = 377 and the

available representations are the adjoint 133 and the pseudoreal fundamental 56. So,
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the condition (3.1) translates to

133n133 + 56n56 6 377, (3.3)

and is satisfied by the following matter content

n
2 · 56; n = 0, . . . , 13,

133 + n
2 · 56; n = 0, . . . , 8

2 · 133 + n
2 · 56; n = 0, . . . , 3,

plus the appropriate numbers of singlets. However, the second condition (3.2), namely

(3 − 3n133 − n56)
2 + 4(4 − 4n133 − n56) > 0, (3.4)

further restricts the possible solutions to

(a) n
2 · 56; n = 0, . . . , 13,

(b) 133 + 4 · 56. (3.5)

Regarding the models (a), one may make a shift of n to n1 = n+ 4 and rewrite them

as n1−4
2 · 56. These models are then recognized as those resulting from the E8 × E8

heterotic string on K3 by embeddding n1 units of instanton charge in an SU(2)

subgroup of the first E8 (and ignoring the other E8). These theories are the first ones

in a chain of theories related to each other by successive Higgsing; in terms of theories

to be discussed here, the relevant parts of the chain are E7(a) → E6(a) → F4(a) → . . .

and E7(a) → SO(11)(b) → SO(10)(b) → . . ..

3. E6. Now, we have nH = 322 and the available representations are 27 and 78.

Proceeding as before, we find the solutions

(a) 2n · 27; n = 1, . . . , 5,

(b) 4 · 78,
(c) 78 + 8 · 27,
(d) 2 · 78 + 6 · 27, (3.6)

where, in addition, we imposed the requirement of CPT invariance which demands

an even number of 27’s, understood as 2n · 27 → n · 27 + n · 27.

4. F4. Now, we have nH = 296 and the available representations are 26, 52 and 273.

The possible solutions are

(a) n · 26; n = 0, . . . , 11,
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(b) 52 + 8 · 26,
(c) n · 52 + (11 − 2n) · 26; n = 1, . . . , 5. (3.7)

For the classical groups, there is the extra condition (2.17) which we write explicitly

as
∑

i

niai = aA (3.8)

Again, there exist trivial solutions, corresponding to a hypermultiplet in the adjoint plus

244 singlets, that will not be displayed. The search for anomaly-free models can be con-

ducted as before and the results are summarized as follows.

1. SU(N):

5 6 N 6 18 : (a) [2N − 2n(N − 8)] ·N + 2n · N(N−1)
2

. (3.9)

N = 8 : (b) 63 + 8 · 28. (3.10)

N = 7 : (b) 48 + 8 · 7 + 8 · 21. (3.11)

N = 6 : (b) 35 + 16 · 6 + 8 · 15,
(c) 2 · 35 + 8 · 6 + 10 · 15,
(d) 8 · 6 + 2 · 21 + 12 · 15. (3.12)

N = 5 : (b) 24 + 24 · 5 + 8 · 10,
(c) 2 · 24 + 20 · 5 + 10 · 10,
(d) 4 · 24 + 6 · 5 + 12 · 10,
(e) 2 · 24 + 6 · 5 + 2 · 15 + 14 · 10,
(f) 6 · 5 + 4 · 15 + 14 · 10,
(g) 20 · 5 + 2 · 15 + 12 · 10. (3.13)

In the first series of solutions, n is restricted to all integer values such that all multi-

plicities, including the 243 −N2 + nN2−15N
2 singlets, are nonnegative.

2. SO(N):

10 6 N 6 30 : (a) (N − 8) ·N. (3.14)

10 6 N 6 14 : (b) N(N−1)
2

+ 8 · N + 28−⌊N+1
2

⌋ · 2⌊N+1

2
⌋−1. (3.15)

N = 14 : (c) (4n + 6) · 14 + n · 64; n = 1, 2. (3.16)

N = 13 : (c) (2n + 5) · 13 + n
2 · 64; n = 1, 4. (3.17)

N = 12 : (c) (n+ 4) · 12 + n
2 · 32; n = 1, . . . , 9,
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(d) 2 · 66 + 4 · 12 + 4 · 32. (3.18)

N = 11 : (c) (n+ 3) · 11 + n
2 · 32; n = 1, . . . , 9,

(d) n · 55 + (13 − 4n) · 11 + 10−n
2 · 32; n = 1, . . . , 3. (3.19)

N = 10 : (c) (n+ 2) · 10 + n · 16; n = 1, . . . , 10,

(d) n · 45 + (12 − 3n) · 10 + (10 − n) · 16; n = 1, . . . , 4. (3.20)

Let us try to identify some known models.

• In the first series of models, the SO(28)(a) model is identified with the theory

obtained from the SO(32) heterotic string onK3 by embedding all 24 units ofK3

instanton charge into one of the SU(2) factors in the decomposition SO(32) ⊃
SO(28) × SU(2) × SU(2) and breaking the other SU(2) factor by Higgsing. By

further Higgsing of this theory, one obtains all the N < 28 theories. Note

that our list also contains models for N = 29, 30 which cannot be realized in a

compactification context.

• The SO(12)(c) models are identified with the theories resulting from the E8×E8

heterotic string on K3, this time by embedding n+ 4 units of instanton charge

in an SU(2) × SU(2) subgroup of the first E8. These theories are also the

first ones in a Higgs chain; in terms of the theories to be discussed here, the

relevant parts of the chain are SO(12)(c) → SO(11)(c) → SO(10)(c) → . . . and

SO(12)(c) → SU(6)(a) → SU(5)(a) → . . .. The E7(a) and SO(12)(c) models

together form the top of the “Higgs tree” that contains all possible chains of

theories that can be obtained from them by Higgsing. All these chains were

constructed in [26] by geometric engineering via F-theory.

• The SO(13)(c) models can also be realized [27] from the E8×E8 heterotic string

on K3 by considering the decomposition E8 ⊃ SO(16) ⊃ SO(13) × SU(2) and

embedding n+ 4 units of instanton charge in SU(2).

3. Sp(N):

4 6 N 6 9 : (a) [(2N + 8) − n(2N − 8)] · 2N + n · N(2N − 1) − 1, (3.21)

N = 4 : (b) 36 + (n+ 8) · 27; n = 0, 1. (3.22)

In the first series of solutions, n is restricted to all integer values such that all multi-

plicities, including the 244−4N2−16N+n(6N2−17N−1) singlets, are nonnegative.

The first series of models has been identified in the literature [26] as models with

perturbatively enhanced symmetry resulting from F-theory compactifications on el-

liptic Calabi-Yau 3-folds based on the Hirzebruch surface; in this description, they
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originate from an A2N−1 singularity on the coordinate of the CP
1 fiber in that sur-

face. The cases n = 0, 1 in this series were also given a gauge-theory interpretation

[38] in terms of Type I D5–branes (SO(32) small instantons) placed at a Z2 orbifold

singularity. For n = 1, where the field content is given by

16 · 2N + N(2N − 1) − 1, (3.23)

the theory is on the Higgs branch. For n = 0, where the field content is

(2N + 8) · 2N, (3.24)

the positions of all instantons are fixed, the blowing-up mode is zero and the theory

rests on a non-trivial RG fixed point at the origin of the Coulomb branch.

3.2 Products of two simple groups

We now pass to the more complicated task of identifying anomaly-free models where the

gauge group contains two simple group factors, G = G1 ×G2. This time, Eq. (2.17) (when

applicable) and Eq. (2.36) must hold for each one of G1 and G2, while we also have the

strict equality (2.37) involving both group factors. Before we begin, we note that each of

the simple-group solutions for, say, G1 can be extended to a solution for G1 ×G2 by simply

adding one adjoint of G2. Such “reducible” solutions will not be written out explicitly.

We start our search from the case where both G1 and G2 are exceptional groups, in

which case there are no fourth-order Casimirs. The largest-rank group of this type is

E8 × E8, which is one of the possible gauge groups of heterotic string theory; it is easily

seen that this group admits only the trivial solutions. The group E8 × E7 (E7 × E7) is

that obtained from the reduction of the E8 ×E8 heterotic string on K3 using the standard

(non-standard) embedding(s) of the K3 instanton charge. So, in this search, we expect to

obtain all solutions corresponding to these embeddings as well as the chains produced from

these solutions by Higgsing. The solutions found are shown below.

1. E8 ×E7:

(a) 10(1,56),

(b) 3
2(1,56) + 4(1,133). (3.25)

The first model on the list is the well-known model obtained from the reduction of the

E8 ×E8 heterotic string on K3 using the standard embedding (24 units of instanton

charge in one E8).
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2. E8 ×E6:

18(1,27). (3.26)

This solution, written in full as 9(1,27) + 9(1,27), may be obtained from the E8 ×
E7(a) models by Higgsing. The chain of Higgsing continues to further subgroups.

3. E8 × F4:

(a) 17(1,26),

(b) 4(1,52) + 12(1,26). (3.27)

4. E7 ×E7:

(a) n
2 (56,1) + 16−n

2 (1,56); n = 0, . . . , 8,

(b) 9
2 (56,1) + n(133,1) + 2(1,56); n = 0, 1. (3.28)

The first class of models on the list may be written in the more suggestive form
n1−4

2 (56,1) + n2−4
2 (1,56), n1 + n2 = 24 and they are recognized as the models

constructed by reduction of the E8 × E8 theory on K3 with n1 and n2 units of

instanton charge embedded in the first and second E8 respectively.

5. E7 ×E6:

(a) n(56,1) + (14 − 2n)(1,27); n = 0, . . . , 7,

(b) 9
2(56,1) + 2(1,27),

(c) 9
2(56,1) + (133,1) + 2(1,27),

(d) 3(133,1) + 2(1,27),

(e) n+2
2 (56,1) + (5 − n)(1,78) + 2n(1,27); n = 0, . . . , 2. (3.29)

The first class of models are obtained from the E7 ×E7(a) models by Higgsing. The

chain of Higgsing continues further on.

6. E7 × F4:

(a) n
2 (56,1) + (13 − n)(1,26); n = 0, . . . , 13,

(b) 2(56,1) + 6(1,26),

(c) 9
2(56,1) + (1,26),

(d) 2(56,1) + (1,52) + 9(1,26),

(e) 2(56,1) + 3(1,52) + 6(1,26),
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(f) 2(56,1) + 6(1,52),

(g) (133,1) + 9
2 (56,1) + (1,26),

(h) 3(133,1) + (1,26),

(i) n(1,52) + (9 − n)(1,26); n = 1, . . . , 6. (3.30)

7. E6 ×E6:

(a) 2n(27,1) + (12 − 2n)(1,27); n = 0, . . . , 6,

(b) 5(78,1);

(c) 2(27,1) + 4(1,27) + 3(1,78). (3.31)

8. F4 × F4:

(a) n(26,1) + (10 − n)(1,26); n = 0, . . . , 5

(b) n(26,1) + (4 − n)(1,52) + (n+ 5)(1,26); n = 0, . . . , 4.

(c) (26,1) + 6(1,52),

(d) (26,1) + (1,52) + 9(1,26). (3.32)

We finally proceed to the case where G1 is an exceptional group while G2 is classical.

In this case, G2 does have fourth-order Casimirs and so we also have the extra condition

(2.18) for this factor. The models found are the following.

1. E8 × SU(N):

5 6 N 6 8 : (112 − 12N)(1,N) + 14
(

1, N(N−1)
2

)

. (3.33)

2. E8 × SO(N):

N = 14 : 22(1,14) + 4(1,64). (3.34)

N = 13 : 21(1,13) + 4(1,64). (3.35)

N = 12 : (a) 20(1,12) + 8(1,32),

(b) 4(1,66) + 3(1,12) + 15
2 (1,32). (3.36)

N = 11 : (a) 19(1,11) + 8(1,32),

(b) 4(1,55) + 6(1,11) + 15
2 (1,32). (3.37)

N = 10 : (a) 18(1,10) + 16(1,16),

(b) 4(1,45) + 9(1,10) + 15(1,16). (3.38)
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3. E8 × Sp(N):

N = 4 : 16(1,8) + 13 (1,27) . (3.39)

4. E7 × SU(N):

N = 12 : 2(56,1) + 6(1,66). (3.40)

N = 11 : 2(56,1) + 2(1,11) + 6(1,55). (3.41)

5 6 N 6 10 : (a) n(56,1) + [80 − 8N + 2n(N − 8)] (1,N)

+ (10 − 2n)
(

1, N(N−1)
2

)

; n = 0, . . . , 5. (3.42)

N = 5 : (b) n1

2 (56,1) + 4n1(1,5) + (7 − n1 − 2n2)(1,24)

+ 2n2(1,15) + (20 − 2n1 + 2n2)(1,10);

n1 = 0 − 7, n2 = 0 −
⌊

7−n1

2

⌋

. (3.43)

5. E7 × SO(N):

10 6 N 6 25 : (a) 9
2(56,1) + (N − 8)(1,N). (3.44)

10 6 N 6 19 : (b) 6(56,1) + (N − 8)(1,N). (3.45)

N = 16 : (c) 2(56,1) + 16(1,16) + (1,128). (3.46)

N = 15 : (c) 2(56,1) + 15(1,15) + (1,128). (3.47)

N = 14 : (c) (4 − 2n)(56,1) + (4n+ 10)(1,14)

+ (n+ 1)(1,64); n = 0, . . . , 2. (3.48)

10 6 N 6 13 : (c) 9
2(56,1) + (133,1) + (N − 8)(1,N). (3.49)

N = 13 : (d) (6 − n)(56,1) + (2n+ 5)(1,13) + n
2 (1,64); n = 0, . . . , 6. (3.50)

N = 12 : (d) 12−n
2 (56,1) + (n+ 4)(1,12) + n

2 (1,32); n = 0, . . . , 6. (3.51)

N = 11 : (d) 12−n
2 (56,1) + (n+ 3)(1,11) + n

2 (1,32); n = 0, . . . , 6,

(e) 3(133,1) + 3(1,11). (3.52)

N = 10 : (d) 12−n
2 (56,1) + (n+ 2)(1,10) + n(1,16); n = 0, . . . , 12,

(e) 3(133,1) + 2(1,10),

(f) 2(56,1) + (1,45) + 9(1,10) + 9(1,16),

(g) n+2
2 (56,1) + (5 − n)(1,45)

+ 2n(1,10) + 8(1,16); n = 0, . . . , 4. (3.53)

6. E7 × Sp(N):

4 6 N 6 12 : (a) 2(56,1) + (24 − 2N)(1,2N)
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+ 2(1,N(2N − 1) − 1). (3.54)

N = 6 : (b) 5
2(56,1) + 4(1,12) + 4(1,65). (3.55)

N = 5 : (b) 9−n
2 (56,1) + (18 − 2n)(1,10) + n(1,44); n = 0, . . . , 9. (3.56)

N = 4 : (b) 9−n
2 (56,1) + 16(1,8) + n(1,27); n = 0, . . . , 9,

(c) 2(56,1) + (1,36) + 9(1,27). (3.57)

7. E6 × SU(N):

N = 12 : 2(27,1) + 6(1,66). (3.58)

N = 11 : (a) 2(27,1) + 4(1,11) + 6(1,55),

(b) 4(27,1) + 10(1,11) + 4(1,55). (3.59)

5 6 N 6 10 : (a) 2n(27,1) + [64 − 6N + 2n(N − 8)] (1,N)

+ (8 − 2n)
(

1, N(N−1)
2

)

; n = 0, . . . , 4. (3.60)

N = 5 : (b) (2n + 1)(1,24) + 8(1,5)

+ (4 − 2n)(1,15) + (20 − 2n)(1,10); n = 0, . . . , 2,

(c) 2(27,1) + (1,24) + 16(1,5)

+ 2(1,15) + 14(1,10),

(d) 2(27,1) + 3(1,24) + 16(1,5) + 12(1,10),

(e) 4(27,1) + (1,24) + 24(1,5) + 8(1,10),

(f) (78,1) + 8(27,1) + 10(1,5). (3.61)

8. E6 × SO(N):

10 6 N 6 20 : (a) 10(27,1) + (N − 8)(1,N). (3.62)

N = 16 : (b) 2(27,1) + 16(1,16) + (1,128). (3.63)

N = 15 : (b) 2(27,1) + 15(1,15) + (1,128). (3.64)

N = 14 : (b) (6 − 4n)(27,1) + (4n+ 10)(1,14)

+ (n+ 1)(1,64); n = 0, 1. (3.65)

N = 13 : (b) (10 − 2n)(27,1) + (2n + 5)(1,13) + n
2 (1,64); n = 0, . . . , 5,

N = 12 : (b) (10 − n)(27,1) + (2n+ 4)(1,12) + n(1,32); n = 0, . . . , 5,

(c) 2(27,1) + 9(1,12) + 5
2(1,32),

(d) 2(27,1) + (1,66) + 9(1,12) + 9
2(1,32),

(e) 2(27,1) + 3(1,66) + 4(1,32). (3.66)
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N = 11 : (b) (10 − 2n)(27,1) + (2n + 3)(1,11) + n(1,32); n = 0, . . . , 5,

(c) 2(27,1) + 8(1,11) + 5
2(1,32),

(d) 2(27,1) + (1,55) + 9(1,11) + 9
2(1,32),

(e) 2(27,1) + 3(1,55) + 2(1,11) + 4(1,32),

(f) 3(78,1) + 4(27,1) + 3(1,11). (3.67)

N = 10 : (b) (10 − 2n)(27,1) + (n+ 2)(1,10) + 2n(1,16); n = 0, . . . , 5,

(c) 5(1,45) + 8(1,16),

(d) 2(27,1) + (1,45) + 9(1,10) + 9(1,16),

(e) 2(27,1) + 3(1,45) + 4(1,10) + 8(1,16),

(f) (3 − n)(78,1) + (2n + 4)(27,1)

+ (n+ 2)(1,10) + n(1,16); n = 0, . . . , 2. (3.68)

9. E6 × Sp(N):

4 6 N 6 12 : (a) 2(27,1) + (24 − 2N)(1,2N)

+ 2(1,N(2N − 1) − 1). (3.69)

N = 6 : (b) 2(27,1) + 5(1,65),

(c) 4(27,1) + 8(1,12) + 3(1,65). (3.70)

N = 5 : (b) (6 − 2n)(27,1) + (16 − 4n)(1,10)

+ (2n+ 1)(1,44); n = 0, . . . , 3. (3.71)

N = 4 : (b) (6 − 2n)(27,1) + 16(1,8)

+ (2n+ 1)(1,27); n = 0, . . . , 3,

(c) 2(27,1) + (1,36) + 9(1,27). (3.72)

10. F4 × SU(N):

N = 12 : (a) (26,1) + 6(1,66),

(b) 3(26,1) + 8(1,12) + 4(1,66). (3.73)

N = 11 : (a) (26,1) + 4(1,11) + 6(1,55),

(b) 3(26,1) + 10(1,11) + 4(1,55),

(c) 5(26,1) + 16(1,11) + 2(1,55). (3.74)

5 6 N 6 10 : (a) (2n + 1)(27,1) + [48 − 4N + 2n(N − 8)] (1,N)

+ (6 − 2n)
(

1, N(N−1)
2

)

; n = 0, . . . , 3. (3.75)
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N = 6 : (b) 3(26,1) + (1,35) + 16(1,6) + 8(1,15). (3.76)

N = 5 : (b) 2n(1,24) + 12(1,5)

+ (4 − 2n)(1,15) + (18 − 2n)(1,10); n = 0, . . . , 2,

(c) (26,1) + (1,24) + 16(1,5)

+ 2(1,15) + 14(1,10),

(d) (4 − n)(26,1) + n(1,24)

+ (28 − 4n)(1,5) + (2n+ 6)(1,10); n = 0, . . . , 3,

(e) 2(26,1) + 20(1,5) + 2(1,15) + 12(1,10),

(f) (52,1) + 8(27,1) + 10(1,5). (3.77)

11. F4 × SO(N):

10 6 N 6 20 : (a) 9(26,1) + (N − 8)(1,N). (3.78)

10 6 N 6 25 : (b) 6(26,1) + (N − 8)(1,N). (3.79)

N = 16 : (c) (26,1) + 16(1,16) + (1,128),

(d) (52,1) + 9(26,1) + 8(1,16). (3.80)

N = 15 : (c) (26,1) + 15(1,15) + (1,128),

(d) (52,1) + 9(26,1) + 7(1,15). (3.81)

N = 14 : (c) (26,1) + 14(1,14) + 2(1,64),

(d) 5(26,1) + 10(1,14) + (1,64),

(e) (52,1) + 9(26,1) + 6(1,14). (3.82)

10 6 N 6 13 : (c) 9(26,1) + (52,1) + (N − 8)(1,N). (3.83)

N = 13 : (d) (7 − 2n)(26,1) + (2n+ 7)(1,13)

+ n
2 (1,64); n = 0, . . . , 3. (3.84)

N = 12 : (d) (8 − n)(26,1) + (n+ 5)(1,12)

+ n
2 (1,32); n = 0, . . . , 8,

(e) 13(1,12) + 9
2(1,32),

(f) (26,1) + 3(1,66) + 4(1,32),

(g) (26,1) + 9(1,12) + 5
2(1,32),

(h) (26,1) + (1,66) + 9(1,12) + 9
2(1,32),

(i) 2(26,1) + 2(1,66) + 4(1,12) + 4(1,32),

(j) 2(52,1) + 7(26,1) + 5(1,12) + 1
2(1,32),

– 25 –



(k) 3(52,1) + 6(26,1) + 4(1,12),

(l) 6(52,1) + 4(1,12). (3.85)

N = 11 : (d) (8 − n)(26,1) + (n+ 4)(1,11) + n
2 (1,32); n = 0, . . . , 8,

(e) 12(1,11) + 9
2(1,32),

(f) (26,1) + 8(1,11) + 5
2(1,32),

(g) (26,1) + (1,55) + 9(1,11) + 9
2(1,32),

(h) (n+ 1)(26,1) + (3 − n)(1,55)

+ (3n + 2)(1,11) + 4(1,32); n = 0, . . . , 2,

(i) 9(26,1) + 6(1,11) + 3
2(1,32),

(j) (3 − n)(52,1) + (n+ 6)(26,1)

+ (n+ 3)(1,11) + n
2 (1,32); n = 0, . . . , 2,

(k) 6(52,1) + 3(1,11). (3.86)

N = 10 : (d) (8 − n)(26,1) + (n+ 3)(1,11)

+ (n+ 1)(1,16); n = 0, . . . , 8,

(e) 4(1,45) + 2(1,10) + 8(1,16),

(f) (26,1) + 7(1,10) + 5(1,16),

(g) (26,1) + (1,45) + 9(1,10) + 9(1,16),

(h) (n+ 1)(26,1) + (3 − n)(1,45)

+ (2n + 4)(1,10) + 8(1,16),

(i) 4(26,1) + 10(1,10) + 8(1,16),

(j) 9(26,1) + 5(1,10) + 3(1,16),

(k) (3 − n)(52,1) + (n+ 6)(26,1)

+ (n+ 2)(1,10) + n(1,16); n = 0, . . . , 2,

(l) 6(52,1) + 2(1,10). (3.87)

12. F4 × Sp(N):

4 6 N 6 12 : (a) (26,1) + (24 − 2N)(1,2N)

+ 2(1,N(2N − 1) − 1). (3.88)

N = 6 : (b) 2(26,1) + 4(1,12) + 4(1,65),

(c) 3(26,1) + 8(1,12) + 3(1,65). (3.89)

N = 5 : (b) (6 − n)(26,1) + (18 − 2n)(1,10) + n(1,44); n = 0, . . . , 6. (3.90)
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N = 4 : (b) (6 − n)(26,1) + 16(1,8) + n(1,27); n = 0, . . . , 3,

(c) 3(26,1) + (1,36) + 8(1,27). (3.91)

Before concluding this section we note that, although we have not been able to make

a thorough search for anomaly-free models when the gauge group is a product of two

classical groups, a non-systematic search did not reveal any interesting models apart from

those reported by Schwarz in [15] and some models related to them by Higgsing. For the

sake of completeness, we list the basic models below.

1. SU(N) × SU(N). There exists the infinite class of models

2(N,N). (3.92)

2. SO(N + 8) × Sp(N) with 0 6 N 6 24. There exist the well-known small-instanton

models

1
2(N + 8,2N) + 24−N

2 (1,2N) + (1,N(2N − 1) − 1). (3.93)

3. SO(2N + 8) × Sp(N). There exists the infinite class of models

(2N + 8,2N). (3.94)

The reader is referred to [15, 25] for more details on these models.

4. Anomaly-free gauged supergravities

In this section, we continue our search, turning to the case of gauged supergravities where

the R-symmetry group or a U(1)R subgroup thereof is gauged. The search for such models

is of considerable interest due to the fact that these theories can spontaneously compactify

on R
4 ×S2 through a magnetic monopole background, leading to four-dimensional theo-

ries. In the case where the magnetic monopole is embedded in the R-symmetry group,

stability [41] of the compactification is ensured and the 4D theory is vectorlike. However,

under certain conditions, it is also possible to embed the monopole in one of the other

gauge group factors and obtain a chiral 4D spectrum. The aforementioned facts, as well as

other interesting properties of the gauged models, provide enough motivation for looking

for more consistent theories of this type. In fact, it is the search for anomaly-free gauged

supergravities that motivated the work presented in this paper: given the fact that there

is no known construction of such theories following from standard string/M-theory com-

pactifications, the only way to identify consistent theories of this type is to directly solve

the anomaly cancellation conditions.
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The search for the gauged theories can be carried out in the same manner as before,

this time including an extra Sp(1)R or U(1)R factor in the gauge group. So, the gauge

group is now Gs ×Gr and the new conditions that have to be satisfied are Eq. (2.36)

for the Gr factor plus Eq. (2.37) for the gauginos that transform nontrivially under both

Gs and Gr; using (2.11) and (2.12), we easily see that the first of these conditions is

identically satisfied, leaving the second condition as the only non-trivial one. However, this

last condition amounts to a set of strict equalities and, moreover, regarding the equalities

involving Gr, the fact that the representations (or charges) of the fermions under this factor

are fixed leaves little freedom for satisfying these constraints. So, one is led to expect that

the gauged anomaly-free models will be very few.

The results of our search show that this is indeed the case. In the case of a gauge group

of the type G1 ×Gr, there is one equality constraint of the type (2.37). In our search, we

have not found any model solving the anomaly cancellation conditions. Passing to the case

of a gauge group of the type G1 ×G2 ×Gr, there are three equality constraints of the type

(2.37) which are expected to seriously restrict the number of possible solutions. For the

case where the whole Sp(1)R is gauged, we have found no solution. For the case where a

U(1)R subgroup is gauged, we have found the following models.

1. E7 ×E6 × U(1)R with the hypermultiplets transforming in

1
2(912,1), (4.1)

without singlet hypermultiplets. This is a well-known model, first found by Randjbar-

Daemi, Salam, Sezgin and Strathdee in 1985. The important property of this model

is that, besides the compactification with the monopole embedded in U(1)R, it also

admits a compactification with the monopole embedded in the “hidden” E6, leading

to an SO(10)×SU(2)KK four-dimensional theory with chiral fermions. However, the

demand for classical stability (no tachyonic modes) also fixes the monopole charge to

its minimal value and restricts the number of families to two.

2. E7 ×G2 × U(1)R with the hypermultiplets transforming in

1
2(56,14), (4.2)

again without singlets. This is a recently-found model, whose existence was reported

in a recent paper [33]. In that reference, the absence of both local and global anoma-

lies was analytically demonstrated and various properties of the resulting supergravity

theory were investigated. Unlike the previous model, this one does not admit any

stable compactification with the monopole embedded in the E7 × G2 factor, essen-

tially because, in all possible embeddings of the monopole in this group, the absolute
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value |q| of the U(1) charge of the fermions takes more than one positive value. In

particular, (i) the E7 representation of the hypermultiplets is not the adjoint so that

the decompositions of the type E7 ⊃ H × U(1) lead to different values of |q| for the

U(1)–charged E7 gauginos and hyperinos and (ii) although the G2 gauginos and the

hyperinos transform in the adjoint of G2, this group does not have a decomposition

of the type G2 ⊃ H ×U(1) with H simple which would ensure that only one value of

|q| appears.

3. F4 × Sp(9) × U(1)R with the hypermultiplets transforming in

1
2(52,18), (4.3)

again without singlets. This is a new model, first reported in this paper. Its basic

phenomenological features, as far as R
4 ×S2 compactifications are concerned, can be

analyzed by following the guidelines of [17, 33]. Again, the model does not seem to

admit a stable compactification with the monopole embedded in F4 × Sp(9) because

the Sp(9) representation of the hypermultiplets is not the adjoint and F4 is one of

the few groups that has no decomposition of the type F4 ⊃ H ×U(1) with H simple.

The appearance of adjoint representations of groups with this particular property in

this and the previous model is a curious coincidence.

The structure of the models found is truly very interesting. In particular, they have the

shared features that (i) the hypermultiplets transform in non-trivial representations (and,

in the latter two cases, in product representations), (ii) there are no singlet hypermulti-

plets and (iii) the representations involve half-hypermultiplets. Moreover, as mentioned

before, the cancellation of anomalies in these models is very delicate as can be verified

by the explicit calculations of [17] and [33] for the former two. These facts might serve

as indications that these gauged models are somehow related to critical string theory or

M-theory by means of some mechanism. However, although some progress has been made

[42] regarding the archetypal Salam-Sezgin model, the origin of the models considered here

remains mysterious up to date.

As mentioned in §2.4, in the gauged case we have also allowed for an abelian gauge group factor

Ga that does not act on hypermultiplets. In the presence of such a factor, the gauge group includes

“drone” U(1)’s under which all hypermultiplets and gauginos are singlets. Although this possibility

leads to new anomaly-free models, the usual viewpoint is that turning on a large number of U(1)’s

so that the gravitational and R-symmetry anomalies are tuned to give a factorizable polynomial

is quite ad hoc and so these models are considered to be less important than the previous ones.

Nevertheless, for reasons of completeness, we will list these models, for the case where the factor

Gs is simple and the number of U(1)’s is at most 50. The models found are the following.
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1. E8 × U(1)3 × U(1)R:

2 · 248. (4.4)

2. E7 × U(1)14 × Sp(1)R:

2 · 133 + 2 · 56. (4.5)

3. E7 × U(1)M × U(1)R:

M = 14 : 7 · 56. (4.6)

M = 18 : 133 + 9
2 · 56. (4.7)

M = 22 : 2 · 133 + 2 · 56. (4.8)

The E7 ×U(1)14 ×U(1)R model has no singlets and is related to the E7 ×G2 ×U(1)R model

of (4.2) in the sense that the G2 factor in the latter has been replaced by 14 U(1)’s. The

existence of the E7 × U(1)22 × U(1)R model was first pointed out in the footnote of [17].

4. E6 × U(1)27 × Sp(1)R:

4 · 78. (4.9)

5. E6 × U(1)M × U(1)R:

M = 21 : 12 · 27, (4.10)

M = 29 : 2 · 78 + 6 · 27, (4.11)

M = 37 : 4 · 78. (4.12)

6. SU(N) × U(1)M × U(1)R:

N = 8,M = 42 : 63 + 8 · 28. (4.13)

N = 7,M = 45 : 48 + 8 · 7 + 8 · 21. (4.14)

N = 6,M = 46 : 35 + 16 · 6 + 8 · 15. (4.15)

7. SU(N) × U(1)M × U(1)R:

6 6 N 6 12,M = 8 + 12N −N2 : (48 − 4N) ·N + 6 · N(N−1)
2

. (4.16)

N = 6,M = 16 : 28 · 6 + 8 · 15. (4.17)

The first series of models have the same field content as the SU(N)(a) Poincaré theories

found in §3.1 for n = 3.

8. SO(N) × U(1)M × Sp(1)R:

N = 10,M = 12 : 12 · 11 + 10 · 16. (4.18)
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9. SO(N) × U(1)M × U(1)R:

N = 16,M = 3 : 2 · 120 + 128. (4.19)

N = 15,M = 10 : 2 · 105 + 15 + 128. (4.20)

N = 14,M = 16 : 2 · 91 + 2 · 14 + 2 · 64. (4.21)

N = 13,M = 21 : 2 · 78 + 3 · 13 + 2 · 64. (4.22)

N = 12,M = 17 + 4n : n · 66 + (14 − 5n) · 12 + 10−n

2 · 32; n = 0, . . . , 2. (4.23)

N = 11,M = 20 + 4n : n · 55 + (13 − 4n) · 11 + 10−n

2 · 32; n = 0, . . . , 3,

N = 11,M = 36 : 12 · 11 + 9
2 · 32. (4.24)

N = 10,M = 22 + 4n : n · 45 + (12 − 3n) · 10 + (10 − n) · 16; n = 0, . . . , 4. (4.25)

10. Sp(N) × U(1)M × U(1)R:

N = 12,M = 19 : 2 · 275. (4.26)

N = 11,M = 42 : 2 · 22 + 15 + 230. (4.27)

N = 6,M = 13 : 5 · 65,

N = 6,M = 45 : 4 · 12 + 4 · 65. (4.28)

N = 5,M = 24 : 8 · 10 + 5 · 44. (4.29)

We see thus that allowing for the possibility of U(1)’s acting trivially on the hypermultiplets, we

obtain many anomaly-free gauged models, some of which are extensions of the Poincaré models of

§3.1. Increasing the number of U(1)’s leads to numerous other models. However, as stressed above,

these models are considered of limited interest.

5. Discussion and outlook

In this paper, we have made a thorough search for anomaly-free N = 1 supergravity theories

in six dimensions, within the limits set by certain restrictions on the possible gauge groups

and their representations. The search was made for both the Poincaré and gauged cases

and all CPT-invariant hypermultiplet representations satisfying the anomaly cancellation

conditions have been enumerated.

Our results are summarized as follows. In the Poincaré case, where there exist nu-

merous solutions to the anomaly cancellation conditions, we have recovered most of the

known models that have already been identified and constructed via various methods in

the literature, plus a series of closely related models. We have also found some models

that have not been, to our knowledge, previously identified. Classifying these models and

tracing their possible origin is outside the scope of the present paper.

In the gauged case, where the anomaly cancellation conditions are far more restrictive

than in the Poincaré case, our search revealed the existence of just three models. The first
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is the well-known E7 ×E6 ×U(1)R model of [17], the second is an E7 ×G2 ×U(1)R model

recently reported in [33] and the third is an F4 × Sp(9) × U(1)R model discovered in this

paper. All three models have an intriguing structure in the sense that the hypermultiplets

transform in a single “unusual” representation of the gauge group with no singlets and,

moreover, they satisfy the anomaly cancellation conditions in a “miraculous” manner. On

the physical side, these models have very interesting properties, the most important one

being the possibility of compactification to four dimensions through a monopole background

with self-tuning of the cosmological constant. These compactifications reveal, however,

some phenomenological problems with these theories, for example the fact that the demand

for stability of these compactifications leads either to too few or too many families. Allowing

for the presence of extra “drone” U(1) factors, we have identified many more anomaly-free

gauged models. However, the presence of the extra U(1)’s renders these models less elegant

than those described earlier.

The search presented in this paper can be extended towards several directions, the main

focus being on finding new consistent gauged theories. For instance, one may consider gauge

groups that contain three or more simple factors. Also, one may consider theories with more

than one tensor multiplet, where there exists the generalized Green-Schwarz mechanism

that allows anomaly freedom under weaker constraints. One could finally consider adding

extra U(1) factors that act non-trivially on the hypermultiplets but, unless there is a

physical principle that determines the U(1) charges in some way, this is a very complicated

task. We hope that the work presented here will initiate some progress along these lines.
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A. Anomaly polynomials

The anomaly polynomials used in this paper are normalized as follows

I
1/2
8 (R) =

1

360
trR4 +

1

288
(trR2)2,

I
1/2
8 (F ) =

2

3
trF 4,

I
1/2
8 (FA, FB) = 4 trF 2

A trF 2
B ,

I
1/2
8 (F,R) = −1

6
trR2 trF 2,
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I
3/2
8 (R) =

49

72
trR4 − 43

288
(trR2)2,

I
3/2
8 (F ) =

10

3
trF 4,

I
3/2
8 (F,R) =

19

6
trR2 trF 2,

IA
8 (R) = − 7

90
trR4 +

1

36
(trR2)2. (A.1)

Here, the superscripts 1/2, 3/2 and A refer to a spin 1/2 fermion, a spin 3/2 fermion

and a 2–form potential respectively. The above anomaly polynomials correspond to Weyl

spinors of positive chirality and 2–form potentials with self-dual field strengths. For a

spinor subject to a Majorana-type condition, one needs to include a factor of 1
2 , while for

a negative-chirality spinor or an anti-self-dual field strength the sign of the anomaly is

reversed.

B. Group-theoretical coefficients

Here we give, for reference purposes, the formulas for the group-theoretical coefficients a,

b and c appearing in the discussion of Section 2. We consider a simple group G and we

let R, F and A be a generic representation, the fundamental and the adjoint respectively.

The n–th index ℓn(R) of R is defined in terms of the symmetrized trace of the product of

n generators. In particular the second and fourth indices are determined by

StrR T
aT b = ℓ2(R)dab, (B.1)

and

StrR T
aT bT cT d = ℓ4(R)dabcd +

3

2 + dimAℓ2(R)2
[

dimA
dimR − 1

6

ℓ2(A)

ℓ2(R)

]

d(abdcd). (B.2)

where da1...an are the invariant symmetric tensors of G subject to the orthogonality con-

ditions da1...amda1...am...an = 0 for m < n; their normalization is determined by fixing the

values of ℓn(F). The normalization of second-order indices is irrelevant for our purposes

while the normalization of fourth-order indices can be fixed by setting ℓ4(F) = 1 for all

groups.

To compute the c–coefficients, we consider an algebra element X = XaT a and we use

(B.1) for the representations R and F to find

trRX
2 = ℓ2(R)(Xa)2, trF X

2 = ℓ2(F)(Xa)2 (B.3)

where we use the notation (Xa)n ≡ da1...anXa1 . . . Xan . So, we have

cR =
ℓ2(R)

ℓ2(F)
. (B.4)
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Group Irrep R bR cR

E8 248 1/100 1

56 1/24 1

E7 133 1/6 3

912 31/12 30

27 1/12 1

78 1/2 4

E6 351 55/12 25

351′ 35/6 28

650 10 50

26 1/12 1

F4 52 5/12 3

273 49/12 21

324 23/4 27

7 1/4 1

G2 14 5/2 4

27 27/4 9

64 38 32

3 1/2 1

SU(3) 8 9 6

6 17/2 5

SU(2) 2 1/2 1

3 8 4

Table 2: The coefficients b and c for groups with no fourth-order invariants.

To compute the a– and b–coefficients, we first consider the case where R has no fourth-order

Casimirs so that ℓ4(R) = 0. Then Eq. (B.2) leads to

trRX
4 =

3

2 + dimAℓ2(R)2
[

dimA
dimR − 1

6

ℓ2(A)

ℓ2(R)

]

((Xa)2)2, (B.5)

and so, aR = 0 and

bR =
3

2 + dimA
ℓ2(R)2

ℓ2(F)2

[

dimA
dimR − 1

6

ℓ2(A)

ℓ2(R)

]

. (B.6)

We next consider the case where R possesses fourth-order Casimirs. Then, using (B.2) for

the representations R and F , we find

trRX
4 = ℓ4(R)(Xa)4 +

3

2 + dimAℓ2(R)2
[

dimA
dimR − 1

6

ℓ2(A)

ℓ2(R)

]

((Xa)2)2, (B.7)
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Group Irrep R aR bR cR

N 1 0 1

SU(N) N2 − 1 2N 6 2N
N(N+1)

2
N + 8 3 N + 2

N(N−1)
2

N − 8 3 N − 2

N 1 0 1

SO(N) N(N−1)
2

N − 8 3 N − 2

2⌊N+1

2
⌋−1 −2⌊

N+1
2

⌋−5 3 · 2⌊N+1
2

⌋−7 2⌊
N+1

2
⌋−4

2N 1 0 1

Sp(N) N(2N + 1) 2N + 8 3 2N + 2

N(2N − 1) − 1 2N − 8 3 2N − 2

Table 3: The coefficients a, b and c for for groups with fourth-order invariants.

and

trF X
4 = (Xa)4 +

3

2 + dimAℓ2(F)2
[

dimA
dimF − 1

6

ℓ2(A)

ℓ2(F)

]

((Xa)2)2, (B.8)

Solving (B.8) for (Xa)4, substituting in (B.7) and using the second of (B.3), we find

aR = ℓ4(R), (B.9)

bR=
3

2 + dimA

{

ℓ2(R)2

ℓ2(F)2

[

dimA
dimR − 1

6

ℓ2(A)

ℓ2(R)

]

−ℓ4(R)

[

dimA
dimF − 1

6

ℓ2(A)

ℓ2(F)

]}

. (B.10)

From these expressions, one may determine all the group-theoretical coefficients of

interest using the values of the indices ℓ2(R) and ℓ4(R) which are tabulated e.g. in [43],

[44], [45]. The values of bR and cR for groups with no fourth-order Casimirs are listed on

Table 2. The values of aR, bR and cR for groups having fourth-order Casimirs are listed

on Table 3.

References
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