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We present a new anomaly-free gauged N = 1 supergravity model in six dimensions. The gauge

group is E7 × G2 × U(1)R, with all hyperinos transforming in the product representation (56,14).

The theory admits monopole compactifications to R
4
×S2, leading to D = 4 effective theories with

broken supersymmetry and massless fermions.

I. INTRODUCTION

Minimal supergravity theories in six dimensions have

a remarkably rich structure and have attracted much in-

terest over the years. Some of the reasons motivating the

study of such theories are their connection to superstring

vacua, their relation to N = 2 theories in D = 4 and

the framework they provide for cosmological investiga-

tions. Among the most interesting models of this type

are D = 6 gauged supergravity models which have the

important property that they spontaneously compactify

on lower-dimensional spaces. A prototype for such com-

pactifications is employed in the Salam-Sezgin model [1],

a D = 6 supersymmetric Einstein-Maxwell theory. This

theory admits an R
4 ×S2 solution that preserves half the

supersymmetries, obtained through a magnetic monopole

background residing on S2 and, as has recently been

shown [2], it is the unique maximally-symmetric solution

in this class of models.

One further interesting aspect of the monopole com-

pactification in the supersymmetric models is the possi-

bility of making all the U(1) factors in the gauge group

massive. In the non-supersymmetric Einstein-Maxwell

theory in six dimensions, the monopole compactification

gives rise to an effective D = 4 chiral gauge theory with

gauge group SU(2)KK×U(1). The chirality of the D = 4

effective theory is due to the U(1) factor which remains

massless and has complex representations. In the su-

persymmetric generalizations, such as the Salam-Sezgin

model or the non-Abelian theories discussed in this pa-
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per, the vector potentials associated to the U(1) factors of

magnetic monopoles acquire a mass due to their Chern-

Simons coupling to the second-rank antisymmetric po-

tentials. This coupling is an essential ingredient of all

such models.

In addition to the nonzero mass for the U(1) gauge

potentials in the monopole directions, most D = 6 su-

pergravity theories, including the Salam-Sezgin model,

suffer from the breakdown of local symmetries due to the

presence of gravitational, gauge and mixed anomalies [3]

which render such theories inconsistent at the quantum

level. In fact, anomaly cancellation has turned out to be

a crucial guiding principle for the identification of consis-

tent D = 6 theories for the same reason as in the D = 10

case. Although the D = 6 anomaly cancellation condi-

tions are weaker than those in D = 10, they are still very

stringent, especially in the case of gauged supergravity

theories.

Regarding Poincaré supergravities, there are numer-

ous anomaly-free theories in the literature. Most of

these were found by compactifying heterotic string theory

on K3 using various methods [4] of embedding the K3

holonomy group in the SO(32) or E8 × E8 gauge group.

There are also theories with enhanced symmetry origi-

nating from the Gepner points of orbifold realizations of

K3 [5] or from the non-perturbative mechanism of small

instantons [6], as well as theories found by solving the

anomaly cancellation conditions alone [7]. Such theo-

ries can also be constructed as boundary theories on the

six-dimensional orbifold fixed points in seven dimensions

compactified on S1 /Z2 [8, 9].

However, in the case of gauged supergravities, there is

only one known non-trivial anomaly-free model, namely

the E7 × E6 × U(1)R model of [10]. This model

contains 456 hypermatter fields, identified as a half-

hypermultiplet in the pseudoreal 912 of E7. The theory
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satisfies a set of highly non-trivial anomaly constraints

which make it possible to completely cancel all anomalies

by the Green-Schwarz mechanism. Moreover, gauging of

U(1)R gives rise to a positive-definite potential which im-

plies that one may turn on a magnetic monopole back-

ground in a U(1) subgroup of the gauge group and com-

pactify the theory on R
4 ×S2. In the particular case con-

sidered in [10], where the monopole is embedded in the

“hidden” E6, the fermionic zero modes come exclusively

from the E6 gauginos. The resulting D = 4 theory has

an SO(10) × U(1)R gauge symmetry. Unlike the Salam-

Sezgin model, supersymmetry is completely broken. For

the minimal value of the monopole number, which is re-

quired by the stability of the compactification, one ob-

tains two chiral families of SO(10) in the 16-dimensional

spinor representation.

One very attractive property of the minimal gauged

supergravities in D = 6 is that, unlike the super-

string theories in D = 10, they do not admit the flat

spaces as their most symmetric solutions. On the other

hand the R
4 ×S2 configuration is the unique maximally-

symmetric compactification [2]. Furthermore, the expec-

tation values of all the scalars in the model, with the

exception of the dilaton, are uniquely determined at the

tree level. Hence there is only one modulus accompany-

ing these vacua. Like the D = 10 supergravities, these

models also admit brane solutions of various dimensions

[2, 13, 14, 16, 17]. Because of the uniqueness and sim-

plicity of the R
4 ×S2 compactification as well as many

shared features with the D = 10 heterotic theory it is

useful to construct more models of this type and study

their low-energy physics.

In this paper, we demonstrate the existence of a

new gauged anomaly-free D = 6, N = 1 model, be-

sides the known one of [10]. The gauge group here is

E7 × G2 × U(1)R and so the theory contains 148 vec-

tor multiplets. Restricting to onnly one tensor multiplet,

cancellation of the irreducible gravitational anomaly de-

mands then 392 hypermultiplets. These fit exactly into

a half-hypermultiplet of the pseudoreal product repre-

sentation (56,14) of E7 × G2. Again, it is remarkable

that all anomalies of the theory cancel in a non-trivial

way. Moreover, the model is also free of global anomalies

[18, 19] that could potentially arise due to the presence

of the G2 factor. Regarding the bosonic sector, the 1568

real hyperscalars parameterize the quaternionic mani-

fold Sp(392, 1)/Sp(392) × Sp(1) and gauging of U(1)R

contained in Sp(1) and E7 × G2 contained in Sp(392)

yields a positive-definite potential allowing R
4 ×S2 com-

pactifications. Unlike the E7 × E6 × U(1)R case, there

are fermionic zero modes coming from both the gaug-

inos of the E7 × G2 subgroup where the monopole is

embedded and the hyperinos, since the latter transform

non-trivially under both E7 and G2 factors. These com-

pactifications generate a rich spectrum of chiral fermions

in the 27’s (or 16’s ) of the unbroken E6 (or SO(10)).

However, as we shall show, they are perturbatively un-

stable. To find an anomaly-free model with a realistic

D = 4 fermion spectrum still remains a challenging and

unsolved problem.

This paper is organized as follows. In Section II we

fix our notation, we describe the basic aspects of gauged

D = 6 supergravity theories and we write the bosonic La-

grangian of our model. In Section III we explicitly show

that the theory is free of anomalies. In Section IV we

discuss compactification of the theory on R
4 ×S2 and we

briefly consider various aspects of the effectiveD = 4 the-

ory. In Section V we discuss the spectrum ofD = 4 chiral

fermions in detail and show the existence of the tachyonic

mode in the spectrum of most compactifications. Finally,

in Section VI, we summarize and conclude.

II. THE MODEL

The building blocks of D = 6, N = 1 supergravity

theories are the massless representations of the minimal

supersymmetry algebra which is chiral and has Sp(1) as

its R-symmetry group. The field content of these repre-

sentations is summarized in the following multiplets

Supergravity multiplet : (gMN , B
−
MN , ψ

i−
M ),

Tensor multiplet : (B+
MN , φ, χ

i+),

Vector multiplet : (AM , λi−),

Hypermultiplet : (4ϕ, 2ψ+), (1)

where, the + (−) superscripts denote positive (nega-

tive) chirality for the spinors and (anti-)self-duality for

2–forms and the index i = 1, 2 takes values in the funda-

mental of Sp(1)R.

A general D = 6, N = 1 supergravity theory cou-

pled to matter is constructed by combining one super-

gravity multiplet with nT tensor multiplets, nV vector

multiplets and nH hypermultiplets. Generic string and

M-theory compactifications may produce all of these mul-

tiplets with arbitrary values of nT . Anomaly cancellation

using the Green-Schwarz mechanism, however, restricts

these numbers by the constraint [10]

nH = nV + 273 − 29nT . (2)

Starting from the tensor multiplets, we will restrict to the

case nT = 1, where there exists a covariant Lagrangian

description of the model. For this case, the constraint

given above reduces to

nH = nV + 244. (3)
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Regarding the hypermultiplets, the 4nH hyperscalars

must parameterize a non-compact quaternionic mani-

fold, whose possible forms are given in [11]; here, we

will consider the case where the hyperscalar manifold is

Sp(nH , 1)/Sp(nH) × Sp(1)R. Finally, the vector multi-

plets must belong to a gauge group that is a subgroup of

the Sp(nH , 1) isometry group of the quaternionic mani-

fold, possibly times extra factors under which the hyper-

multiplets transform as singlets (the E6 in [10] is one such

example). Aside from such factors, one usually chooses

the gauge group to be a product of a subgroup of Sp(nH)

and a subgroup of Sp(1)R. Under the first factor, the hy-

perinos may transform in arbitrary representations while

the gravitino and tensorino are inert. Under the second

factor, the hyperinos are inert (although the hyperscalars

are charged) while the gravitino, tensorino and gauginos

transform non-trivially. Here, we will consider a U(1)R

subgroup in which case the gravitino, the tensorino and

the gauginos as well as the hyperscalars have all unit

charge.

In our model, we pick the gauge group to be E7×G2×
U(1)R. Thus, we have a total of 133+14+1 = 148 vector

multiplets and Eq. (3) requires that the total number of

hypermultiplets be equal to 148+244 = 392. The hyper-

inos fit nicely (no singlets!) into a half-hypermultiplet of

the pseudoreal 784-dimensional representation (56,14).

So, the transformation properties of the various fermions

under the three gauge group factors are as follows

ψ−
M : (1,1)1,

χ+ : (1,1)1,

λ− : (133,1)1 + (1,14)1 + (1,1)1,

ψ+ :
1

2
(56,14)0, (4)

where the subscripts indicate U(1)R charges.

Passing on to the hyperscalars, they parameterize the

manifold

M =
Sp(392, 1)

Sp(392)× Sp(1)R
, (5)

where the holonomy group in the denominator corre-

sponds to the (unbroken) local symmetry of the scalar

sector. One may then gauge a subgroup of the isometry

group Sp(392, 1); in our case we will consider the gaug-

ing of E7 × G2 × U(1)R. The embedding of E7 × G2 in

Sp(392) is defined by identifying (56,14) with the pseu-

doreal fundamental representation 784 of Sp(392).

The construction of the gauged supergravity theory

proceeds along the steps described in [11, 12]; for the

E7×E6×U(1)R case, this procedure was outlined in [10]

and discussed in great detail in [16] and can be applied

with minor modifications to our model as well. The only

aspects of this construction that need attention refer to

the hyperscalar sector. To begin, we let α = 1, . . . , 4×392

label the coordinates on M and a = 1, . . . , 2 × 392 label

the fundamental of Sp(392). We then pick a gauge-fixed

coset representative L and we decompose its Maurer-

Cartan form into the coset vielbein and the Sp(392) and

Sp(1)R connections

V ai
α = (L−1∂αL)ai,

Aab
α = (L−1∂αL)ab,

Aij
α = (L−1∂αL)ij , (6)

whose pullbacks on the spacetime manifold define the

composite vielbein and connections

P ai
M = (L−1∂ML)ai = ∂MϕαV ai

α ,

Qab
M = (L−1∂ML)ab = ∂Mϕα Aab

α ,

Qij
M = (L−1∂ML)ij = ∂Mϕα Aij

α , (7)

that are used to construct scalar kinetic terms and spinor

covariant derivatives respectively. Gauging E7 × G2 ×
U(1)R entails introducing the E7 gauge fields AI

M , I =

1, . . . , 133, the G2 gauge fields AI′

M , I ′ = 1, . . . , 14 and

the U(1)R gauge field A3
M and replacing ordinary deriva-

tives by gauge-covariant ones. In particular, the covari-

ant derivative acting on the hyperscalars is

DM ϕα = ∂Mϕα − g(AI
MξIα +AI′

MξI′α)− g′A3
Mξ3α, (8)

where T I , T I′

and T 3 are the antihermitian E7, G2 and

U(1)R generators, ξIα = (T Iϕ)α, ξI′α = (T I′

ϕ)α and

ξ3α = (T 3ϕ)α are Killing vectors associated with the re-

spective isometries and g and g′ are the E7 × G2 and

U(1)R couplings. Accordingly, the composite vielbein

and connections in (7) are replaced by the gauged ver-

sions

Pai
M = (L−1 DM L)ai = DM ϕαV ai

α ,

Qab
M = (L−1 DM L)ab = DM ϕα Aab

α ,

Qij
M = (L−1 DM L)ij = DM ϕα Aij

α −g′A3
M (T 3)ij .(9)

A direct consequence of the gauging of U(1)R is the

emergence of a scalar potential in the theory. This comes

about due to the fact that the commutator [DM ,DN ]ǫi

appearing in the supersymmetry variation of the grav-

itino kinetic term acquires an extra term involving the

gauge field strengths and the functions

CI
ij = (L−1T IL)ij , CI′

ij = (L−1T I′

L)ij ,

C3
ij = (L−1T 3L)ij . (10)

Restoring local supersymmetry requires then a set of

modifications to the Lagrangian and transformation

rules; in the bosonic sector, this induces a hyperscalar

potential.
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The Lagrangian of the gauged supergravity theory was

first derived in [11] and further elaborated upon in [12].

Its bosonic part may be written as

e−1 L =
1

4
R − 1

4
∂Mφ∂Mφ− 1

12
e2φGMNPG

MNP

−1

4
eφvA tr(FAMNF

MN
A )

−gαβ(ϕ)DM ϕα DM ϕβ

+
1

8
e−1ǫMNPQRSBMNvA tr(FAPQFARS)

−1

4
e−φ[g2(v−1

7 CI
ijC

Iij + v−1
2 CI′

ijC
I′ij)

+g′2v−1
1 C3

ijC
3ij ]. (11)

Here, the summation index A = 7, 2, 1 runs over the three

gauge group factors, vα are a set of constants to be deter-

mined later and the various traces are interpreted as e.g.

tr(F7MNF
MN
7 ) = F I

MNF
IMN . In this form of the La-

grangian, the field strength of BMN is given by the usual

definition GMNP = 3∂[MBNP ] and the Green-Schwarz

term is explicit.

III. ANOMALY CANCELLATION

In this section, we demonstrate that the theory de-

scribed above is anomaly-free. Generally, D = 6 chiral

supergravities suffer from gravitational, gauge and mixed

anomalies arising from box diagrams with four external

gravitons and/or gauge bosons and one chiral spinor or

(anti-)self-dual 2–form running in the loop. Starting from

the gravitational anomalies, we first note that the contri-

butions from the 2–forms from the supergravity and ten-

sor multiplets cancel each other so that the only nonzero

terms come from the gravitino, tensorino, gauginos and

hyperinos. Summing these contributions (in that order)

using the formulas of the Appendix, we find the expres-

sion

I8(R) = −
[

49

72
trR4 − 43

288
(trR2)2

]

+(1 − 148 + 392)

[

1

360
trR4 +

1

288
(trR2)2

]

= (trR2)2, (12)

which confirms that the irreducible trR4 terms cancel

and explains the particular normalization chosen. Turn-

ing to the gauge anomalies, these may be split into (i) E7

and G2 anomalies (contributions from gauginos and hy-

perinos), (ii) U(1)R anomalies (contributions from grav-

itino, tensorino and gauginos), (iii) E7 × G2 anomalies

(contributions from hyperinos) and (iv) E7 × U(1)R and

G2 × U(1)R anomalies (contributions from gauginos).

Writing down the various contributions in the order in-

dicated above, we find

I8(F ) =
2

3
(−TrF 4

7 + 7 trF 4
7 ) +

2

3
(−TrF 4

2 + 28 TrF 4
2 )

+
2

3
(−5 + 1 − 148)F 4

1

+2 trF 2
7 TrF 2

2

−4 TrF 2
7F

2
1 − 4 TrF 2

2F
2
1

= −2

3
TrF 4

7 +
14

3
trF 4

7 + 18 TrF 4
2 − 304

3
F 4

1

+2 trF 2
7 TrF 2

2 − 4 TrF 2
7F

2
1 − 4 TrF 2

2F
2
1 . (13)

where “tr” and “Tr” stand for fundamental and adjoint

traces respectively. Finally, we have to consider the

mixed anomalies. Splitting them into (i) mixed E7 and

G2 anomalies (contributions from gauginos and hyperi-

nos) and (ii) mixed U(1)R anomalies (contributions from

gravitino, tensorino and gauginos), we write

I8(F,R) =
1

6
trR2(TrF 2

7 − 7 trF 2
7 + TrF 2

2 − 28 TrF 2
2 )

+
1

6
(−19 − 1 + 148) trR2F 2

1

= trR2

(

1

6
TrF 2

7 − 7

6
trF 2

7 − 9

2
TrF 2

2

)

+
64

3
trR2F 2

1 . (14)

Eqs. (13-14) can be simplified by expressing all traces in

the fundamental representations. Moreover, since both

E7 and G2 factors do not possess fourth-order invariants,

all of the above traces can be expressed exclusively in

terms of second-order traces. For the two factors, we

have the identities

TrF 2
7 = 3 trF 2

7 , TrF 2
2 = 4 trF 2

2 ,

trF 4
7 =

1

24
(trF 2

7 )2, trF 4
2 =

1

4
(trF 2

2 )2,

TrF 4
7 =

1

6
(trF 2

7 )2, TrF 4
2 =

5

2
(trF 2

2 )2. (15)

Substituting these in (13) and (14), we write the gauge

and mixed anomalies in the simplified form

I8(F ) =
1

12
(trF 2

7 )2 + 45(trF 2
2 )2 − 304

3
F 4

1

+8 trF 2
7 trF 2

2 − 12 trF 2
7F

2
1 − 16 trF 2

2 F
2
1 ,(16)

and

I8(F,R) = trR2

(

−2

3
trF 2

7 − 18 trF 2
2 +

64

3
F 2

1

)

. (17)

Putting the three contributions (12), (16) and (17) to-

gether, we find that the total anomaly polynomial is given

by

I8 = (trR2)2
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+ trR2

(

−2

3
trF 2

7 − 18 trF 2
2 +

64

3
F 2

1

)

+
1

12
(trF 2

7 )2 + 45(trF 2
2 )2 − 304

3
F 4

1

+8 trF 2
7 trF 2

2 − 12 trF 2
7F

2
1 − 16 trF 2

2 F
2
1 . (18)

In order for the Green-Schwarz mechanism to operate,

the above polynomial must factorize as

I8 = (trR2 + uA trF 2
A)(trR2 + ũA trF 2

A). (19)

To check whether this is possible, one must (i) compare

the (trF 2
A)2 and trR2 trF 2

A terms to determine (uA, ũA)

and (ii) check if, for the values of (uA, ũA) thus deter-

mined, the trF 2
A trF 2

B cross-terms match as well. Re-

markably, it turns out that all conditions are indeed sat-

isfied with

u7 = −1

2
, u2 = −3, u1 = −4,

ũ7 = −1

6
, ũ2 = −15, ũ1 =

76

3
. (20)

Cancellation of anomalies is then a straightforward mat-

ter. One may set the undetermined constants vA in (11)

equal to

vA = −uA, (21)

and modify the BMN gauge transformation law to

δB2 ∼ ω1
2L + ũAω

1
2Y,A, (22)

where ω1
2L and ω1

2Y,A are related to trR2 and trF 2
A by

descent. The corresponding anomalous variation of the

Green-Schwarz term in (11) (including a gravitational

term) cancels exactly the variation of the effective action.

Apart from the perturbative anomalies discussed

above, our model may also have global anomalies. In

particular, since the G2 factor in the gauge group has

a non-trivial sixth homotopy group, π6(G2) = Z3, there

exist gauge transformations not continuously connected

to the identity. Under such transformations, the effective

action may pick up a phase factor and is thus ill-defined.

The condition for the absence of global anomalies in the

case of the G2 gauge group is given by [20]

1 − 4
∑

R

nRbR = 0 mod 3, (23)

where nR is the number of hypermultiplets transform-

ing in the representation R of G2 and bR is defined by

trR F 4
2 = bR(trF 2

2 )2. In our model, the hypermultiplets

are in the adjoint of G2 and we have n14 = 1
2 × 56 = 28

and b14 = 5
2 . For these numbers, the condition (23)

is indeed satisfied and thus the theory is free of global

anomalies as well.

IV. COMPACTIFICATION

The bosonic Lagrangian (11) contains a hyperscalar

potential given by its last term. Employing the defini-

tions g7 = g/
√
v7, g2 = g/

√
v2 and g1 = g′/

√
v1, we

rewrite this potential as

V (ϕ) =
1

4
e−φ(g2

7C
I
ijC

Iij+g2
2C

I′

ijC
I′ij+g2

1C
3
ijC

3ij), (24)

where the various C–functions are given in (10). In [16],

it was shown that a convenient parameterization of the

scalar coset is given by the 784 × 2 matrix

ϕ =







ϕ1

...

ϕ392






, (25)

where ϕn, n = 1, . . . , 392, are themselves 2 × 2 matrices

satisfying the reality condition ϕ∗
n = σ2ϕnσ2. With this

parameterization, one may define the coset representative

as the (784 + 2) × (784 + 2) matrix

L =





1 +

(√
1+ϕ†ϕ−1

ϕ†ϕ

)

ϕϕ† ϕ

ϕ†
√

1 + ϕ†ϕ



 , (26)

where the factor inside parentheses is understood as a

scalar (since ϕ†ϕ is proportional to the identity). Using

the definition (26), it can be shown that the C–functions

take the form

CI
ij = (ϕ†T Iϕ)ij , CI′

ij = (ϕ†T I′

ϕ)ij ,

C3
ij =

[

1 + tr(ϕ†ϕ)
]

(T 3)ij . (27)

Then the potential is given by the simple expression

V (ϕ) =
1

16
e−φ

[

−g2
7(ϕ

†T Iϕ)2 − g2
2(ϕ

†T I′

ϕ)2
]

+
1

8
e−φg2

1

[

1 + tr(ϕ†ϕ)
]2
. (28)

Using this expression and recalling that T I and T I′

are

antihermitian, we immediately see that the potential is

strictly positive-definite and attains its unique global

minimum at ϕα = 0. Among other things, this implies

that the E7 × G2 gauge symmetry cannot be sponta-

neously broken by the hyperscalars at tree level.

At ϕα = 0, the potential (28) takes the exponential

form

Vmin =
1

8
e−φg2

1 , (29)

and, for the case of constant φ, it acts like a cosmological

constant. It is this effective cosmological constant and

the particular form of the dilaton coupling which picks
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up the R
4 ×S2 among other maximally-symmetric spaces

[1]. In the non-supersymmetric theory, de Sitter or anti-

de Sitter spaces would also be possible solutions [15].

In the E7 × E6 × U(1)R model of [10], the monopole

was embedded in the E6 factor, yielding aD = 4 effective

theory with SO(10) × U(1)R gauge symmetry where all

massless fermions originate from the E6 gauginos since

only the latter couple to the monopole; in [16] this was

generalized to include monopole embeddings in E7 where

zero-mode fermions arise from the hyperinos as well. In

the model considered here, one can embed as many mag-

netic monopoles as the rank of the gauge group which

is 10. In general we will thus have a maximum of 10

monopole charges. This will give rise to fermionic zero

modes from the associated gauginos but, since the hy-

perinos are charged under both E7 and G2 gauge group

factors, it will also necessarily give rise to fermionic zero

modes from the associated hyperinos. In the absence of

a vev for the vector potential associated to U(1)R, the

gravitino, tensorino and the rest of the gauginos will be

massive. Turning to the bosons, the squared mass of each

one of the lightest hyperscalar fluctuations will receive

two contributions, one being proportional to the associ-

ated eigenvalue of ∂2V
∂ϕα∂ϕβ at ϕα = 0 and the other being

proportional to D2 where D is the covariant derivative

acting on the hyperscalar fluctuations in the background

of the monopole vector potential(s). The first contri-

bution will make all hyperscalars massive. The second

contribution, if the monopole charges do not add up to

zero, will be a positive quantity proportional to 1/a2,

where a is the radius of S2. Furthermore in the case of

a nonzero net monopole charge of the hyperscalar even

the leading (lightest) D = 4 scalar modes resulting from

it will belong to a non trivial irreducible representation

of the Kaluza-Klein SU(2). We shall comment on the

masses of some other bosonic modes in Section VI.

In the absence of a vev for the U(1)R gauge field, the

supersymmetric variation of the gravitino will be nonzero

and thus this class of compactifications will break all su-

persymmetries.

To write down the ansatz for monopole compactifica-

tion, we employ the rescalings AI
M → AI

M/g, AI′

M →
AI′

M/g and A3
M → A3

M/g′ and we set the metric, the

U(1) ⊂ E7 gauge field and the dilaton equal to

ds26 = ηµνdx
µdxν + a2(dθ2 + sin2 θdϕ2),

A± = n
2Q(cos θ ∓ 1)dϕ; F = n

2Q sin θdθ ∧ dϕ,
φ = φ0 = const. (30)

Here, A+ and A− correspond to the potentials on the

northern and southern hemisphere which, on the equator,

should be connected by a gauge transformation parame-

terized by U = einQϕ. In order for U to be single-valued

as ϕ changes by 2π, the quantity nqmin, where qmin is the

minimal U(1)M charge in the theory, must be an integer.

In the above, Q is any generator of the gauge group and,

in general, can be a linear combination of all commut-

ing generators with appropriate quantization conditions

on the coefficients. This ansatz solves the field equations

[10].

To prepare the setting for the spectrum analysis of

the next section let us consider some examples. A first

example is given by embedding U(1)M in E7 according

to the maximal-subgroup decomposition

E7 ⊃ E6 × U(1). (31)

Using the branching rules [21]

56 → 271 + 27−1 + 13 + 1−3,

133 → 780 + 27−2 + 272 + 10, (32)

we see that qmin = 1 so that n = integer. Discarding

neutral fields, we see that the fermion representations

under E6 × G2 × U(1)M which can give rise to fermion

zero modes on S2 are,

(27,14)1 + (27,14)−1 + (1,14)3 + (1,14)−3, (33)

for the E7 hyperinos and

(27,14)−2 + (27,14)2, (34)

for the E7 gauginos.

As a second example, consider the successive maximal-

subgroup decompositions

E7 ⊃ SO(12) × SU(2) ⊃ SO(10) × SU(2) × U(1), (35)

and identify the last U(1) factor with U(1)M . Using the

branching rules

56 → (12,2) + (32,1),

133 → (1,3) + (32′,2) + (66,1), (36)

for E7 ⊃ SO(12) × SU(2) and

12 → 11 + 1−1 + 100,

32 → 161 + 16−1,

32′ → 16−1 + 161,

66 → 10 + 102 + 10−2 + 450, (37)

for SO(12) ⊃ SO(10)×U(1), we see again that, qmin = 1

and n = integer. Discarding neutral fields, we find that

the muliplets of SO(10) × SU(2) × G2 × U(1)M which

can have fermion zero modes on S2 are

(1,2,14)1 + (1,2,14)−1

+(16,1,14)1 + (16,1,14)−1, (38)
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for the hyperinos and

(16,2,14)−1 + (16,2,14)1

+(10,1,14)2 + (10,1,14)−2, (39)

for the E7 gauginos. In the above examples, the

representations (33) and (38) are understood as half-

hypermultiplets.

V. THE CHIRAL SPECTRUM AND

(IN-)STABILITIES

The monopole embeddings discussed in the previous

section give rise to many chiral fermions in the complex

representations of the unbroken gauge group in the ef-

fective D = 4 theory. Using the formalism of [15] we

can evaluate the content of the effective D = 4 theory.

Here we apply this formalism to the two examples of the

previous section.

In the first example the unbroken gauge group is E6 ×
G2 × U(1)R × SU(2)KK , where SU(2)KK denotes the

Kaluza-Klein gauge group originating from the isometries

of S2. The chiral fermions originate from the 27’s and

the 27’s. We can regard all the D = 4 fermions as left-

handed Weyl spinors. The chiral fermions originating

from the decomposition of 56 of E7 then are

2(27,14,n)0, (40)

while the fermions originating from the decomposition of

the adjoint of E7 produce

(27,14,2n)1 + (27,14,2n)−1, (41)

with the subscripts here denoting the U(1)R charges.

In the second example the unbroken gauge group in

D = 4 is G = SO(10)×SU(2)×G2×SU(2)KK ×U(1)R.

The spectrum of the D = 4 chiral fermions is given by

2(16,1,14,n)0, (42)

and

(16,2,14,n)1 + (16,2,14,n)−1. (43)

It is clearly seen that the spectrum in both cases is free

from all chiral anomalies, because E6 and SO(10) are safe

groups in D = 4 and the U(1)R couplings are obviously

vectorlike. It is also seen that there is no value of n which

produces a realistic spectrum. One can study other em-

beddings with the aim of reducing the gauge group and

the number of families. For example, the group G2 can

be broken completely by the embedding of a monopole in

an SU(2) subgroup of G2 relative to which the branch-

ing is 14 = 3 + 11. By itself this will produce only

a vectorlike theory in D = 4 with an unbroken group

E7 × SU(2)KK × U(1)R. However, combined with other

monopoles in the manner described above, one can break

the group down to SO(10) × SU(2)KK . The number of

families will nevertheless be still large.

Apart from the proliferation of the number of fami-

lies and other shortcomings for a realistic model build-

ing with tree level considerations (such as the absence

of a realistic Higgs spectrum and Yukawa couplings at

tree level), there is a fundamental difficulty with all such

compactifications. In fact it seems that, with the ex-

ception of the simplest compactifying solution in which

the monopole is embedded in the U(1)R factor, all other

compactifications are unstable. To see this, let us embed

the momopole in one or both of the non-Abelian factors.

Denote by V one of the excitations of the vector potential

tangent to S2 and charged with respect to U(1)M . This

vector has the components V± with respect to a complex

basis in the tangent space of S2. We also have the re-

ality condition V = V †. As a Lie-algebra-valued vector

we can write V as V = U r
+Tr +W r

+T
†
r , where U and W

are complex fields and the T ’s are among the charged

generators of the gauge group. For example they can be

the generators of E7 in the directions of 102 or 161 of

the previous section. In order to be able to write down

a general formula which can be applied for any model of

this kind, denote the U(1)M charge of U or W by q. The

mass spectrum of D = 4 spin-zero fields resulting from

such a D = 6 object is given by [22]

a2M2 = ℓ(ℓ+ 1) − (λ− 1)2, (44)

where ℓ = |λ|, |λ| + 1, ... and λ = 1 + n
2 q. It is easy to

see that for all those fields for which nq ≤ −2 there is a

tachyon. For example, with positive n, the leading mode

in the spectrum of 102 will be a tachyon of squared mass

−n/2a2.

The only way to avoid this conclusion is to find an

embedding for which |nq| = 1 for all the excitations.

With integer n and q we then need to have n = ±1 and

q = ±1 for all the fields. Such an embedding is guar-

anteed to exist in all cases where there is a gauge group

factor GA that has a maximal-subgroup decomposition

Gα ⊃ H × U(1) with H simple and where all fermions

charged under this group transform in the adjoint. This

is exactly what happens in the E7 × E6 × U(1)R model,

where the monopole can be embedded in the “hidden”

E6 that gives rise to 16’s of SO(10) with q = ±1. The

monopole with the minimal charge of ±1 gives thus a sta-

ble compactification with two chiral families of SO(10)

in the 16-dimensional representation transforming as sin-

glets under the unbroken E7×SU(2)KK but charged rel-

ative to the unbroken U(1)R. It seems difficult to obtain

an analogous result for the new model presented in this
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paper essentially because any embedding which produces

integer q’s necessarily contains fields for which |q| ≥ 2.

The only exception is of course the half-supersymmetric

solution in which the monopole is embedded in U(1)R.

This embedding will leave E7 ×G2 unbroken.

VI. CONCLUSIONS

In this paper, we have demonstrated the existence of

a second consistent N = 1 gauged supergravity model in

six dimensions besides the old E7 × E6 × U(1)R model.

The model found here is based on the E7 ×G2 × U(1)R

gauge group, with hypermatter transforming as a half-

hypermultiplet in the pseudoreal representation (56,14).

The theory satisfies a set of very stringent anomaly con-

straints and turns out to be free of local and global

anomalies. Also, as its E7 × E6 × U(1)R sibling or, in

fact, any other model of this type, the theory admits a

monopole compactification on R
4 ×S2. Despite the fact

that embedding monopole type configurations in E7×G2

will produce many chiral fermions in D = 4, it seems

that all such solutions are perturbatively unstable. On

the other hand, if the monopole is identified with the

vector potential of U(1)R only, a stable compactification

will be obtained and, with the choice of n = 1, half of

the D = 6 supersymmetries will be unbroken. The model

will clearly inherit all the brane solutions discovered so

far in the context of N = 1 supergravity models in six

dimensions, to some of which we referred in Section I.

As far as the tachyons are concerned, one may adopt

the point of view that they are welcome in the context

of an effective theory as they are natural candidates for

D = 4 Higgs fields. The quartic term in the potential for

such fields will come from the self-coupling of the D = 6

gauge fields and their vev will break the E6 × SU(2)KK

(or SO(10) × SU(2)KK) at the KK scale. Such an ori-

gin for the Higgs fields has been considered before as a

possible solution to the hierarchy problem. In order for

this interpretation to be complete, one needs to look for

new stable solutions of the six-dimensional field equations

which would correspond to the minimum of the poten-

tial for the tachyons interpreted as Higgs fields. These

solutions will necessarily break the spherical symmetry

and their construction may give a geometrical origin to

the Higgs mechanism. It will be interesting to find such

solutions.

On the other hand, for phenomenological reasons, we

may want to prevent certain modes from becoming tachy-

onic. In this paper we gave a necessary and sufficient

condition for this to happen. Namely, in order for an ex-

citation of an internal component of the gauge field not

to be tachyonic, it is sufficient that |nq| = 1, where nq

is understood as the sum of the individual nq’s over all

the monopole directions with respect to which the corre-

sponding excitation is charged.

A final question, motivated by the uniqueness of the

D = 6 gauged supergravities under consideration and the

fact that they cannot be constructed through straight-

forward string or M-theory compactifications, refers to

their origin in terms of a higher-dimensional fundamen-

tal theory. Although previous experience might suggest

that such models possibly arise due to some new mech-

anism involving non-perturbative physics, such a mecha-

nism has not been identified up to date.

APPENDIX A: ANOMALY POLYNOMIALS

The anomaly structure of D = 6 theories is encoded in

a set of formal eight-forms, called anomaly polynomials.

In our conventions, the gravitational anomaly polynomi-

als [3] are given by

I
1/2
8 (R) =

1

360
trR4 +

1

288
(trR2)2,

I
3/2
8 (R) =

49

72
trR4 − 43

288
(trR2)2,

IA
8 (R) =

7

90
trR4 − 1

36
(trR2)2. (A1)

The gauge anomaly polynomials are given by

I
1/2
8 (F ) =

2

3
trF 4,

I
1/2
8 (FA, FB) = 4 trF 2

A trF 2
B,

I
3/2
8 (F ) =

10

3
trF 4, (A2)

where the second polynomial applies to the case where

product representations are present. Finally, the polyno-

mials corresponding to mixed anomalies are

I
1/2
8 (F,R) = −1

6
trR2 trF 2,

I
3/2
8 (F,R) =

19

6
trR2 trF 2. (A3)

Here, the superscripts 1/2, 3/2 and A refer to a spin 1/2

fermion, a spin 3/2 fermion and a 2–form potential re-

spectively. The above anomaly polynomials correspond

to Weyl spinors of positive chirality and 2–form poten-

tials with self-dual field strengths. For negative-chirality

spinors or anti-self-dual field strengths, the sign of the

anomaly is reversed.
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