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TREE MODEL 

The tree carbon model was driven by atmospheric 14C values at west and east ORR.  For the 

period 1900 to 1995, measured values for the northern hemisphere were used (Reimer et al. 

2004; Hua & Barbetti 2004; Levin & Kromer 2004), including dilution due to the Suess effect 

and enrichment due to weapons testing in the mid-20th century.  The west of ORR received a 

number of small 14C pulses during the growing seasons in 1996, 1997 and 1998, and for 

those years the atmospheric 14C content was set to the average tree ring cellulose value in 

each year (118, 125 and 127 % respectively).  For the east, northern hemisphere average 

values were used during these years.  The magnitudes of the 1999 14C pulses are not 

known, and are derived from the model.  The timing and length of the 1999 pulses were 

assumed to be the same at both east and west ORR.  In order to capture this short-term 

input, the model, while operating on an annual timestep for other years, was modified to 

accommodate 7 discrete monthly periods (April to October) in 1999, with the pulse occurring 

over a one-month period in June.   

Net photosynthesis increases during the spring and reaches a maximum at or shortly after 

full leaf expansion (Larson & Gordon 1969; Reich et al. 1991), whilst newly fixed C is used in 

leaf growth until leaf maturity, after which all photosynthate not required for in-situ respiration 

and cellular maintenance is either converted to storage compounds or translocated from the 

leaf to other parts of the tree (Dickson & Larson 1981).  For 1999, the model approximates 

these processes by constraining the production of leaf material to occur between April and 
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June, with C in leaf growth in this period derived equally from new C in photosynthate and 

stored C (Dickson et al. 2000a,b).  After June, a small amount of C (5 g) is input into the 

leaves each month for cellular maintenance, and all other new photosynthate is routed into 

the tree C store and new root growth.  The amount of leaf C derived from leaf growth in June 

1999 is found by model fitting, the remainder of leaf growth assumed to occur equally in April 

and May. 

The 10 adjustable parameters, specific to ORR, are listed in Table 2.  The first seven refer to 

the steady-state conditions in the forest, while the last three describe the circumstances 

during the 14C pulse of 1999.  For each year, the model calculates, by mass balance, the 14C 

content of the litterfall and of the roots < 2 mm diameter in the O-horizon and the 0-15 and 

15-60 cm soil depths.  In order to fit the model, the calculated 14C values were compared, 

through squared residuals using the Solver function of Microsoft Excel, with 28 

measurements made by Joslin et al. (2006).  We combined data for roots of diameter <0.5 

mm and 0.5-2 mm to obtain single values for roots <2 mm.  Because data for roots at 15-30 

cm soil depth were lacking, we used average values for 0-15 and 30-60 cm (which were 

within 2% modern of each other).  The total annual fine root turnover was constrained to be 

105 g C m-2 yr-1, estimated for Walker Branch (Hanson et al 2003), and the average root 

turnover rates were constrained to the measured values of 0.26, 0.13 and 0.11 a-1, 

respectively in O, A and B (Joslin et al. 2006).   

Figure S1 shows that the observed 14C data are reproduced satisfactorily by the optimised 

parameter values of Table S1.  The estimated magnitude of the June 1999 14C pulse at west 

ORR, 1470% modern, is large, but not unreasonable given the enrichments observed in tree 

ring cellulose (up to 270 and 300% modern in 1999 and 2000, respectively), which is built 

from a mix of new photosynthate-C and stored C, the latter of which contained very little 

above-background 14C prior to the 1999 pulse.  It is possible that the pulse actually occurred 

over a shorter period than the assumed one month, in which case the model will 

underestimate the maximum magnitude of the pulse, but the total amount of 14C which was 

assimilated by the trees during the pulse will be the same.  Our estimate of the magnitude of 

the 14C pulse in east ORR (ca. 300% modern) agrees with that of Gaudinski et al (2009), but 

for west ORR we estimate a much greater pulse, 1470% modern compared to the Gaudinski 

et al. (2009) value of 311% modern.  The discrepancy arises from the use of different 

assumptions.  Gaudinski et al. (2009) assumed that the pulse at west ORR was of the same 

magnitude as the 14C content of west ORR litterfall in 2000, which led them to estimate 

similar magnitudes for both east and west ORR, while here we did not set the magnitude of 

the pulse, and let the model find values which best fitted all the data for both west and east 

ORR.  The magnitude of the pulse at west ORR is likely to have been significantly greater 
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than at east ORR since the 14C content of litterfall in 2000 was much greater in west ORR 

(197% modern) than in east ORR (122% modern). 

 
Table S1  Fitted model parameters for vegetation carbon pools. 
 

Parameter Fitted value 

Tree store of C for leaf and root formation (g m-2) 278 

Fraction of roots with fast turnover   O 0.214 
                                                          A 0.076 
                                                          B 0.053 

Root turnover rate (a-1)     fast 5.95 
                                         slow 0.059 

Fraction of root C supplied by C storage pools 0.484 

Photosynthetic C input to leaves, June 1999 (g m-2) 18.2 

Atmospheric 14C June 1999 (% modern)   west 1470.2 
                                                                   east 377.8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S1  Observed and simulated 14C contents of above-ground litter and roots.  The open 

symbols and dotted lines refer to east ORR, the closed symbols and full lines to west ORR. 
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HYDROLOGY 
Interception losses from rainfall were estimated by assuming a maximum loss of 20% during 

leaf cover (days 100 to 300) and 10% during leaf absence, scaling down to fractional losses 

of 15 and 7.5 % respectively with increasing rainfall, based on representative observations 

(Luxmoore and Huff 1989; Ward & Robinson 1990).  The average total annual interception 

loss was forced to 100 mm (Luxmoore and Huff 1989).   

The adjustable parameters (Table S2) were found by comparing the model output with (a) 

the output of the water budget model PROSPER (Huff et al. 1977) parameterised within the 

stand level model INTRASTAND (Hanson et al. 2004, 2005b), and (b) measured soil 

moisture contents.  The parameters were adjusted to force agreement in total water draining 

from the A- and B-horizons over the period 2002-2003, and to match as closely as possible 

the observed soil moisture contents of the A- and B-horizons over the period 2001-2005.  

The fitting was not very sensitive to the drainage rate constants, but soil moisture depended 

strongly on the soil macroporosity.  Outputs from the optimised model are compared with the 

target data in Figure S1. 

A nonreactive Br tracer was also applied as CaBr2 to all soil plots that were used for 

monitoring for vertical DOC mobility.  The application of Br involved a uniform distribution of 

an aqueous solution to the soil surface via a backpack sprayer as described in Jardine et al. 

(1990). The intent of the tracer addition was to track the advection and dispersion of pore 

water movement through the soil profile.  Data from the CaBr2 tracer experiment were used 

to assess the model’s ability to simulate the passage of a conservative solute through the soil 

profile and thus track the movement of pore water as a function of time.  The tracer was 

added to the soil surface of four plots at each of the four different sites in December 2001 

and concentrations at 15 cm and 70 cm depth were monitored over the subsequent 400 

days. The field data from the Haw Ridge and Pine Ridge sites were combined with water 

fluxes to calculate the average amounts of Br leaving the two horizons over time.  We found 

that the recovery of Br was 65% at 15 cm, and 43% at 70 cm, which we attribute to either 

lateral transfers or sampler bypass due to preferential advective flow during storm events.  

These were taken into account by imposing a fractional daily loss (0.04%) of Br.  The Br 

results were used to estimate the solute exchange rate constants (Dexch) for the O-, A- and B-

horizons, the optimal values being 0.05, 1.0 and 1.0 respectively.  Observed and simulated 

transport of Br are shown in Figure S3. 
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Table S2  Fitted hydrological parameters by soil horizon. 
 

parameter horizon value 

evaporation rate constant (h-1 deg-1) O 

A 

B 

3.2 x 10-5 

6.3 x 10-6 

4.0 x 10-6 

drainage rate constant (h-1)            

                                                

A 

B 

0.2 

0.03 

soil macroporosity  (unitless)           

                                            

                                             

O 

A 

B 

0.50 

0.53 

0.44 

 

 

 

 

 

 

 

 

 

 

 

Figure S2  Drainage water and soil moisture.  Left plots are the drainage from A (upper) and 

B (lower) horizons; positive values are from the PROSPER model (Huff et al. 1977) and  

DyDOC results are shown as negative values to facilitate comparisons.  Right, soil moisture 

in A (upper) and B (lower) horizons where dotted lines are field observations and full lines 

are the DyDOC simulations. 
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Figure S3  Bromide transport.  The points are the means of 16 observations (from 8 samples 

at each of two sites), and the relative standard deviation is on average 54 % of the mean 

value.  The lines are DyDOC fits.   
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OTHER SUPPLEMENTARY FIGURES 

 

 

 

 

 

 

 

 

 

Figure S4  Simulated daily release of CO2 from the O, A and B horizons. 

 

0

200

400

600

800

1000

1200

0.1 1 10 100 1000

mean residence time in years

po
ol

 s
iz

e 
gC

 m
-2

O
A
B

 

Figure S5  Calculated soil C pools and mean residence times (MRT). 
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