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Abstract

Using the AdS/CFT correspondence we study the holographic principle and the

CFT/FRW relations in the near-horizon AdS5 × S5 geometry with a probe D3-brane

playing the rôle of the boundary to this space. The motion of the probe D3-brane in the

bulk, induces a cosmological evolution on the brane. As the brane crosses the horizon

of the bulk Schwarzschild-AdS5 black hole, it probes the holography of the dual CFT.

We test the holographic principle and we find corrections to CFT/FRW relations in

various physical cases: for radially moving, spinning and electrically charged D3-brane

and for a NS/NS B-field in the bulk.
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1. Introduction

The D-brane solutions of type II supergravity [1] and their near-horizon geometry [2] are the

central geometrical objects upon which the AdS/CFT correspondence is build [3, 4, 5]. In partic-

ular, according to Maldacena conjecture [3], the (3+1)-dimensional world-volume of N coinciding

extremal D3-branes, which give rise to N = 4 supersymmetric SU(N) Yang-Mills (SYM) theory,

in the large N limit, is dual to type IIB superstrings, propagating on the near-horizon AdS5 × S5

background geometry. In a further proposal [6] the thermodynamics of large N, N = 4 supersym-

metric SU(N) Yang-Mills theory is linked with the thermodynamics of Schwarzschild black holes

embedded in the AdS space [7]. This allows to relate, the Bekenstein-Hawking entropy, in the

Maldacena limit, to the entropy of Yang-Mills gas at N−→ ∞ and large ’t Hooft coupling g2
Y MN.

Many ideas about AdS/CFT correspondence were influenced by the intriguing concept of

”holography”[8, 9]. The underlying principle, which was originated in the Bekenstein bound [10],

is based on the notion that the maximal entropy that can be stored within a given volume will be

determined by the largest black hole fitting inside that volume. Since the entropy of a black hole

is essentially given by its surface area, it follows directly that all the relevant degrees of freedom

of any system must in some sense live on the boundary enclosing that system.

The holographic principle imposes on generic field theories coupled to gravity ”holographic

area bounds” which limit the number of physical degrees of freedom. These ”holographic area

bounds” were elegantly applied to cosmology [11] where it was shown that the entropy which

crosses the lightlike boundary of an observable region of the universe, the particle horizon, should

not exceed the horizon area in Planck units.

Recently, using the holographic principle, the entropy bounds in a radiation dominated closed

Friedmann-Robertson-Walker universe was analyzed [12]. It was found a surprising similarity

between Cardy’s entropy formula for 1+1 dimensional CFT and the Friedmann equation governing

the evolution of the universe. After a suitable identification, it was shown that actually the Cardy’s

formula [13] maps to the Friedmann equation. In a further development [14] this correspondence

between Cardy’s formula and the Friedmann equation was tested in the Randall-Sundrum type
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model [15]. In the case where the bulk is a Schwarschild-AdS background and there is no matter on

the brane, the correspondence between Cardy’s formula and the Friedmann equation is recovered

when the brane crosses the black hole horizon.

Motivated by the work in [12, 14] the cosmological holographic principle was applied to various

black hole backgrounds under additional physical assumptions. Generalizations to include a non-

vanishing cosmological constant on the brane with AdS or dS background were studied in [16,

17, 18, 19, 20, 21, 22, 23]. The case of having stiff matter on the brane was studied in [25,

26]. Extensions to charged black hole background were analyzed in [27, 28, 29, 30], to Kerr-

Newmann rotated black holes in [31, 32, 33]. Extension to Gauss-Bonnet background geometry

was considered in [24, 34, 35, 36], while the holography of AdS-Taub-Bolt spacetimes was studied

in [37].

In this work we come back to the original ideas developed in [14] and we study in a sys-

tematic way the cosmological holographic principle as this is expressed through the AdS/CFT

correspondence and the CFT/FRW-cosmologies relations in a generic static spherically symmetric

background geometry with a boundary simulated by a probe D3-brane moving in this background.

An important issue is that these backgrounds are consistent vacuum solutions of ten-dimensional

string theory, like the AdS5 × S5 background geometry and its near-horizon limit. Our approach

will enable us to test the AdS/CFT correspondence and the CFT/FRW-cosmologies relations

and find corrections to these relations in various physical situations, like a spinning or electri-

cally charged D3-probe brane moving in a near-horizon AdS5 ×S5 background with or without a

NS/NS B-field.

The necessary machinery for such an investigation has already been developed in [38] where

it was shown that the motion of the probe D3-brane in this generic background induces on the

brane a cosmological evolution [39], by generating on the brane an effective energy density and an

effective pressure. However, the induced equation of state on the brane corresponds in most of the

cases, depending on the energy and angular momentum of the probe D3-brane, to ”Mirage” or stiff

matter with |w| > 1/3. Nevertheless, by choosing particular spherically symmetric backgrounds

sensible cosmological evolution can be generated on the brane and also brane inflation [40, 41, 42]
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and exit from it [43].

The paper is organized as follows. After the introduction in section one, we review the main

results of Mirage cosmology needed to our work, in section two. In section three we study

the holography of near-horizon AdS5 × S5 geometry as it is probed by the D3-brane in various

physical cases: the probe D3-brane moving in this particular background radially, spinning or

being electrically charged. In section four we study the more general problem of a probe D3-

brane moving in the field of other D3-black branes. After reviewing the relevant formalism, we

study the holography of this geometry introducing also an NS/NS B-field in the background.

Finally in section five are our conclusions.

2. A Probe D3-Brane Moving in a Static Spherically Symmetric Background

We will consider a probe D3-brane moving in a generic static, spherically symmetric back-

ground. We assume the brane to be light compared to the background so that we will neglect the

back-reaction. The background metric we consider has the general form

ds2
10 = g00(r)dt2 + g(r)(d~x)2 + grr(r)dr2 + gS(r)dΩ5, (2.1)

where g00 is negative, and there is also a dilaton field Φ as well as a RR background C(r) = C0...3(r)

with a self-dual field strength.

The dynamics on the brane will be governed by the Dirac-Born-Infeld action given by

S = T3

∫

d4ξe−Φ
√

−det(Ĝαβ + (2πα′)Fαβ − Bαβ) (2.2)

+ T3

∫

d4ξĈ4 + anomaly terms.

The induced metric on the brane is

Ĝαβ = Gµν
∂xµ∂xν

∂ξα∂ξβ
, (2.3)

with similar expressions for Fαβ and Bαβ . For an observer on the brane the Dirac-Born-Infeld

action is the volume of the brane trajectory modified by the presence of the anti-symmetric two-

form Bαβ , and worldvolume anti-symmetric gauge fields Fαβ . This means that, if there is for
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example radiation on the D3-brane, Fαβ 6= 0, the brane dynamics will be altered relative to the

case of a brane with no radiation. As the brane moves the induced world-volume metric becomes

a function of time, so there is a cosmological evolution from the brane point of view [38].

In the static gauge, xα = ξα, α = 0, 1, 2, 3 using (2.3) we can calculate the bosonic part of the

brane Lagrangian which reads

L =
√

A(r) − B(r)ṙ2 − D(r)hijϕ̇iϕ̇j − C(r), (2.4)

where hijdϕidϕj is the line element of the unit five-sphere, and

A(r) = g3(r)|g00(r)|e
−2Φ, B(r) = g3(r)grr(r)e

−2Φ,D(r) = g3(r)gS(r)e−2Φ, (2.5)

and C(r) is the RR background. The problem is effectively one-dimensional and can be solved

easily. The momenta are given by

pr = −
B(r)ṙ

√

A(r) − B(r)ṙ2
,

pi = −
D(r)hij φ̇

j

√

A(r) − B(r)ṙ2 − D(r)hij φ̇iφ̇j
. (2.6)

Since (2.4) is not explicitly time dependent and the φ-dependence is confined to the kinetic term

for φ̇, for an observer in the bulk, the brane moves in a geodesic parametrised by a conserved

energy E and a conserved angular momentum l2 given by

E =
∂L

∂ṙ
ṙ +

∂L

∂φ̇i
φ̇i − L = pr ṙ + piφ̇

i − L,

l2 = hij ∂L

∂φ̇i

∂L

∂φ̇j
= hijpipj. (2.7)

Solving these expressions for ṙ and φ̇ we find

ṙ2 =
A

B
(1 −

A

(C + E)2
D + ℓ2

D
), hijϕ̇

iϕ̇j =
A2ℓ2

D2(C + E)2
. (2.8)

The allowed values of r impose the constraint that C(r) + E ≥ 0. The induced four-dimensional

metric on the brane, using (2.3) in the static gauge, is

dŝ2 = (g00 + grr ṙ
2 + gShijϕ̇

iϕ̇j)dt2 + g(d~x)2. (2.9)
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In the above relation we substitute ṙ2 and hijϕ̇
iϕ̇j from (2.8), and using (2.5) and we get

dŝ2 = −
g2
00g

3e−2φ

(C + E)2
dt2 + g(d~x)2. (2.10)

We can define the cosmic time η as

dη =
|g00|g

3
2 e−Φ

|C + E|
dt, (2.11)

so the induced metric becomes

dŝ2 = −dη2 + g(r(η))(d~x)2, (2.12)

The induced metric on the brane (2.12) is the standard form of a flat expanding universe. The

relation (2.11) will play a central rôle in the following. It relates the cosmic time η, the time an

observer on the brane uses, with the time t that it is used by an observer in the bulk. We can

derive the analogue of the four-dimensional Friedmann equations by defining g = α2

( α̇

α

)2
=

(C + E)2gSe2Φ − |g00|(gSg3 + ℓ2e2Φ)

4|g00|grrgSg3

(g′

g

)2
, (2.13)

where the dot stands for derivative with respect to cosmic time while the prime stands for deriva-

tives with respect to r. The right hand side of (2.13) can be interpreted in terms of an effective

matter density on the probe brane

8πG

3
ρeff =

(C + E)2gSe2Φ − |g00|(gSg3 + ℓ2e2Φ)

4|g00|grrgSg3

(g′

g

)2
, (2.14)

where G is the four-dimensional Newton’s constant. We can also calculate

α̈

α
=

(

1 +
g

g′
∂

∂r

)(C + E)2gSe2Φ − |g00|(gSg3 + ℓ2e2Φ)

4|g00|grrgSg3

(g′

g

)2
(2.15)

=
[

1 +
1

2
α

∂

∂α

]8πG

3
ρeff .

If we set the above equal to −4πG
3 (ρeff + 3peff ) we can define the effective pressure peff .

Therefore, the motion of a D3-brane on a general spherically symmetric background had

induced on the brane an energy density and a pressure. Then, the first and second Friedmann

equations can be derived giving a cosmological evolution of the brane universe in the sense that
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an observer on the brane measures a scale factor α(η) of the brane-universe evolution. This scale

factor depends on the position of the brane in the bulk. This cosmological evolution is known as

”Mirage Cosmology” [38]: the cosmological evolution is not due to energy density on our universe

but on the energy content of the bulk. In the next section we will also describe the case where the

cosmological evolution can be triggered by the motion of a probe D3-brane moving in the field of

other Dp-branes.

The formalism developed so far allows also for the probe D3-brane to have a non-zero angular

momentum. We can assume also that there is an electric field on the probe D3-brane. In this case

the action for the D3-brane is given by (2.2) and in the background metric (2.1), the Lagrangian

takes the form

L =
√

A − Bṙ2 − E2g2 − C, (2.16)

where E2 = 2πa′EiE
i and Ei = −∂tAi(t) in the A0 = 0 gauge and A and B are given by (2.5).

The equations of motion for the electric field are

∂t

( g2Ei
√

A − Bṙ2 − E2g2

)

= 0 (2.17)

and one can find [38]

Ei =
µi

g

√

A − Bṙ2

µ2 + g2
, E2 =

µ2

g2

A − Bṙ2

g2 + µ2
, (2.18)

where µi are integration constants and µ2 = (2πa′)µiµ
i. In the case ṙ = 0, Ei is constant as it is

required by ordinary Maxwell equations. From (2.17) we can calculate ṙ,

ṙ2 =
A

B

(

1 −
A

(C + E)2(1 + µ2g−2

)

, (2.19)

from which we obtain E2 after substitution in (2.18)

E2 = µ2 A2

(C + E)2(g2 + µ2)2
. (2.20)

The induced metric on the probe D3-brane turns out to be

dŝ2 = −
g2
00g

5e−2φ

(C + E)2(µ2 + g2)
dt2 + g(d~x)2, (2.21)

and by defining the cosmic time as

dη =
|g00|g

5
2 e−Φ

|C + E|(µ2 + g2)
1
2

dt, (2.22)
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the induced metric on the brane becomes

dŝ2 = −dη2 + g(r(η))(d~x)2. (2.23)

Then, the Friedmann equations with an electric field on the probe D3-brane in a radial motion is

( α̇

α

)2
=

(C + E)2(1 + µ2g−2) − |g00|g
3e−2Φ

4|g00|grrg3e−2Φ

(g′

g

)2
. (2.24)

The dominant contribution to the induced energy density from the electric field, as can be seen

from (2.20), is of the order E2.

The induced cosmological evolution of a brane moving in a Schwarzschild-AdS background was

also discussed in [14]. Nevertheless the Mirage Cosmology allows for more general backgrounds

and more general physical requirements on the bulk-brane system, allowing to test the AdS/CFT

correspondence and the CFT/FRW-cosmologies relations in various cases. The formalism which

we reviewed in this section can be generalized to a curved D3-probe brane. This will induce a

spatial curvature on the brane-universe.

3. The Holographic Description of Near-Horizon AdS5 × S5 Geometry

We will apply the above described formalism first to the near-horizon geometry AdS5 × S5.

There are Schwarzschild-AdS5 black hole solutions in this background with metric

ds2 =
r2

L2

(

− f(r)dt2 + (d~x)2
)

+
L2

r2

dr2

f(r)
+ L2dΩ2

5, (3.1)

where f(r) = 1 −
(

r0
r

)4
. The RR field is given by C = C0...3 =

[

r4

L4 −
r4
0

2L4

]

.

Using (2.1) we find in this background

g00(r) = −
r2

L2

(

1 − (
r0

r

)4)

= −
1

grr

g(r) =
r2

L2

gs(r) = L2, (3.2)

and the brane-universe scale factor is α = r/L. Substituting the above functions to equation

(2.14) we find the analogue of Friedmann equation on the brane which is [38]

H2 =
8πG

3
ρeff =

1

L2

[(

1 +
1

α4

(

E − r4
0/2L

4
))2

−
(

1 −
(r0

L

)4 1

α4

)(

1 +
l2

L2

1

α6

)]

, (3.3)
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where E is a constant of integration of the background field equations, expressing the conservation

of energy, and it is related to the black hole mass of the background [45], while r4
0/2L

4 is the

constant part of the RR field, expressing essentially electrostatic energy, and it can be absorbed

into the energy Ẽ = E − r4
0/2L

4. This Friedmann equation describes the cosmological evolution

of a contracting or expanding universe depending on the motion of the probe brane. This motion

in turn depends on two parameters the energy Ẽ and the angular momentum l2. These two

parameters specify various trajectories of the probe brane. The scale factor α comes in various

powers, indicating that (3.3) describes the cosmological evolution of various kind of Mirage or

stiff cosmological matter.

III-A. A Probe D3-brane Moving Radially in a Near-Horizon AdS5 × S5 Black

Hole Background

We will follow first the motion of the probe D3-brane in the case of l2 = 0. Defining the dimen-

sionless parameter a = l2/L2α6, equation (3.3) becomes

H2 =
8πG

3
ρeff =

1

L2

[(

1 +
Ẽ

α4

)2
−

(

1 −
(r0

L

)4 1

α4

)(

1 + a
)]

. (3.4)

Using equations (2.15) and (3.4), the second Friedmann equation in this background reads

Ḣ = −
2

L2

[

2
Ẽ

α4

(

1 +
Ẽ

α4

)

+
(α0

α

)4(

1 + a
)

−
3

2
a
(

1 −
(α0

α

)4)]

, (3.5)

and the effective pressure, using again (2.15), is

peff =
1

8πGL2

[(α0

α

)4
+ 5

Ẽ2

α8
+ 2

Ẽ

α4
+ 7a

(α0

α

)4
− 3a

]

. (3.6)

From (3.4) we also have the effective energy density

ρeff =
3

8πGL2

[(α0

α

)4
+

Ẽ2

α8
+ 2

Ẽ

α4
− a

(

1 −
(α0

α

)4)]

. (3.7)

It is instructive to consider the equation of state peff = wρeff where w is given by

w =
1

3

[

(

α0
α

)4
+ 5 Ẽ2

α8 + 2 Ẽ
α4 + 7a

(

α0
α

)4
− 3a

(

α0
α

)4
+ Ẽ2

α8 + 2 Ẽ
α4 − a

(

1 −
(

α0
α

)4)

]

. (3.8)
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As the brane moves in the Schwarzschild-AdS5 black hole background, the equation of state is

parametrized by the energy of the bulk and the angular momentum of the brane. However, when

Ẽ = 0 and a = 0 the brane-universe is radiation dominated at any position in the bulk, as can be

seen from (3.8). This is expected, because the only scale in the theory is the energy scale and

putting it to zero the theory is scale invariant, while a non-zero angular momentum induces on

the brane all kind of Mirage matter. For Ẽ = 0 and a = 0 the equations (3.4), (3.5), (3.6) and

(3.7) become

H2 =
1

L2

(α0

α

)4
(3.9)

Ḣ = −
2

L2

(α0

α

)4
(3.10)

ρeff =
3

8πGL2

(α0

α

)4
(3.11)

peff =
1

8πGL2

(α0

α

)4
(3.12)

In [12] it was shown that for a radiation dominated universe, the first and second Friedmann

equations can be written in a way similar to Cardy and Smarr formulae respectively. This in turn

means that the Cardy and Smarr formulae can be expressed in terms of cosmological quantities

of a radiation dominated universe. The Hubble entropy is defined by

SH = HV/2G, (3.13)

while the Bekenstein-Hawking energy is EBH = 3V/4πGr2. We can also define the Hubble

temperature THubble
1 from

THubble ≡ −
Ḣ

2πH
. (3.14)

Using the above definitions, we can verify that the first Friedmann equation (3.9) can be written

as the Cardy-Verlinde formula

SH =
2πr

3

√

EBH(2E − kEBH) , (3.15)

1where the minus sign is necessary to get a positive result, since in a radiation dominated universe the expansion

always slows down. Further, to avoid the danger of dividing by zero, we assume that we are in a strongly self-

gravitating phase with Hr ≥ 1.
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where kEBH = 0, because our brane-universe is flat, while the second Friedmann equation (3.10)

can be written as the Smarr formula

kEBH = 3(E + pV − THubbleSH). (3.16)

We can also express the Cardy-Verlinde and Smarr formulae in terms of thermodynamical

quantities of the dual CFT theory. The Bekenstein-Hawking entropy of the AdS black hole is

given by the area of the horizon measured in bulk Planckian units. For spherically symmetric

backgrounds the entropy is defined by

S =
VH

4GBulk
, (3.17)

where GBulk is the bulk Newton’s constant and VH is the area of the horizon VH = rn
HV ol(Sn)

with V ol(Sn) the volume of a unit n-sphere. The total entropy is constant during the evolution,

but the entropy density varies with the time. If we define s = S/V , the entropy density is

s =
(r0

r

)n (n − 1)

4GL
, (3.18)

where we have used the relation GBulk = GL/(n − 1) [46].

An observer in the bulk is using the AdS time t and measures the Hawking temperature from

the equation

TH =
h′(r0)

4π
, (3.19)

where the differentiation is with respect to r, which is the distance variable in the bulk. In our

background h(r) = r2

L2

[

1 −
(

r0
r

)4]

, and the Hawking temperature becomes

TH =
r0

πL2
. (3.20)

An observer on the brane is using the cosmic time η defined by (2.11). Using equations (3.2) and

the fact that the probe brane is moving in a geodesic where Ẽ = 0, equation (2.11) becomes

dη =
r

L

(

1 −
(r0

r

)4)

dt. (3.21)

It was argue in [6] that the energy, entropy and temperature of a CFT at high temperatures

can be identified up to a conformal factor with the mass, entropy and Hawking temperature of
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the AdS black hole. To fix the conformal factor, according to the AdS/CFT correspondence the

CFT lives on a space-time which can be identified with the asymptotic boundary of the AdS black

hole. The asymptotic form of the metric in our case, using (3.1), is

lim
r→∞

[L2

r2
ds2

]

= lim
r→∞

[

− f(r)dt2 + (d~x)2 +
L4

r4

dr2

f(r)
+

L4

r2
dΩ2

5

]

. (3.22)

Taking the limit of f(r), relation (3.22) becomes

lim
r→∞

[L2

r2
ds2

]

= −dt2 + (d~x)2 + L4dΩ2
3. (3.23)

Therefore the CFT time and the AdS time are related through the conformal factor r/L . Note

that the same result can be obtained considering relation (3.21) for large r. Both procedures give

the same result because our probe brane is flat as it is discussed in [49].

Having fixed the conformal factor we can relate CFT and the Hawking temperature

TCFT =
1

α
TH =

L

r
TH , (3.24)

and then the Cardy-Verlinde and Smarr formulae can be derived using the AdS/CFT correspon-

dence. Using (3.18) for n = 3 the CFT entropy density is

sCFT =
1

2GL

(r0

r

)3
, (3.25)

while the Casimir energy is defined by (Smarr formula)

EC = 3
(

E + pV − TCFTSCFT

)

. (3.26)

Equation (3.26) can be written as ρC = 3
(

ρeff +peff −TCFT sCFT

)

from which after substitution

of the relevant quantities we get EC = 0 as expected in a flat radiation dominated brane-universe.

Then, the Cardy-Verlinde formula

SCFT =
2πr

3

√

3

2πr
SC(2E − EC), (3.27)

with SC = V
2Gr

(

r0
r

)2
is trivially satisfied.

At the special moment at which the brane crosses the bulk black hole horizon, the Hubble tem-

perature (3.14) becomes THubble = 1/πL. On the other hand the CFT temperature TCFT using
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(3.19) and (3.24) on the horizon becomes TCFT = 1/πL, therefore on the horizon TCFT = THubble.

It is also easy to check that on the horizon SCFT = SH and EC = kEBH . Therefore as the brane

crosses the black hole horizon equation (3.27) is equivalent to (3.15) and equation (3.26) is equiv-

alent to (3.16). This is known as CFT/FRW-cosmologies correspondence, expressing a special

interrelation between thermodynamical and geometrical quantities in a radiation dominated uni-

verse.

These results are in agreement with various studies of a brane moving in a Schwarzschild-

AdS5 black hole background [14, 17, 47, 48]. In the next sections we will test the AdS/CFT

correspondence and the CFT/FRW-cosmologies relations under various physical conditions on

the brane and the bulk.

III-B. A Spinning Probe D3-Brane Moving in a Near-Horizon AdS5 × S5 Black

Hole Background

In this section we will study the motion of the probe D3-brane carrying a non-trivial angular

momentum in a near-horizon AdS5 × S5 black hole background. If a 6= 0, we can see from (3.8)

that the non-zero angular momentum induces Mirage matter on the brane with w taking any

value. We will set Ẽ = 0 and we will find the corrections of the various quantities involved due to

the angular momentum. Using (3.4) and (3.5) for Ẽ = 0, the Hubble entropy, Bekenstein-Hawking

energy and Hubble temperature become

SH =
V

2GL

[(α0

α

)4
− a

(

1 −
(α0

α

)4)]1/2
(3.28)

EBH =
3V

4πGL2α2
(3.29)

THubble =
1

πL

[

((

α0
α

)4
− a

2

(

3 − 5
(

α0
α

)4))

((

α0
α

)4
− a

(

1 −
(

α0
α

)4))1/2

]

. (3.30)

Using the above relations we can verify that equations (3.15) and (3.16) are satisfied, suggesting

that despite the brane-universe is not radiation dominated, the first and second Friedmann equa-

tions can still be written as the cosmological Cardy-Verlinde and Smarr formulae respectively,

having the additional information of the spinning probe brane.
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The angular momentum does not appear in the definition of the cosmic time (2.11). On the

other hand the asymptotic limit of the metric is the same as in the case of a = 0, because the bulk

metric in independent of the angular momentum of the brane. Therefore, the conformal factor is

the same r/L as before and the CFT and Hawking temperatures are related the same way as in

(3.24). Hence, the presence of a non-trivial angular momentum on the probe D3-brane maintains

the exact AdS/CFT correspondence.

The Casimir energy, using (3.6) and (3.7), becomes

EC =
3V a

4πGL2

[

5
(α0

α

)4
− 3

]

. (3.31)

It is proportional to the angular momentum parameter a, while the CFT entropy is SCFT =

V sCFT where sCFT is given by (3.25). At the moment the probe D3-brane crosses the bulk black

hole horizon, the Hubble temperature from equation (3.30) becomes THubble = 1
πL(1 + a) while

TCFT = 1/πL as before. Therefore at the horizon THubble 6= TCFT . One can easily check, using

(3.28) and (3.31), that at the horizon α = α0, we have

SH = SCFT (3.32)

EC 6= kEBH . (3.33)

Therefore, as the spinning probe brane crosses the black hole horizon the CFT/FRW-cosmologies

relations break down.

III-C. Electric Field on the Probe D3-brane

In this section we will consider an electric field on the probe D3-brane. To simplify the discussion

we will assume l2 = 0. As we can see from (2.24) the electric field introduces a radiation term

on the probe brane. Substituting the functions (3.2) into (2.24) and defining Ẽ = µ2, the first

Friedmann equation becomes

H2 =
8πG

3
ρeff +

8πG

3
ρrad =

1

L2

[(

1 +
Ẽ

α4

)2
−

(

1 −
(α0

α

)4)]

+
1

L2

(

1 +
Ẽ

α4

)2 Ẽ

α4
, (3.34)

while the second Friedmann equation can be easily calculated

Ḣ = −
2

L2

[

2
Ẽ

α4

(

1 +
Ẽ

α4

)

+
(α0

α

)4
+

Ẽ

α4

(

1 +
Ẽ

α4

)(

1 + 3
Ẽ

α4

)]

. (3.35)
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From (3.35) using (2.15) the pressure can be calculated

p = peff + prad =
1

8πGL2

[(α0

α

)4
+

Ẽ

α4

(

5
Ẽ

α4
+ 2

)]

+
1

8πGL2

[ Ẽ

α4

(

1 + 10
Ẽ

α4
+ 9

Ẽ2

α8

)]

. (3.36)

Demanding to have a radiation dominated brane-universe (w = 1/3), we get two solutions for the

parameters Ẽ and Ẽ

Ẽ = 0 (3.37)

Ẽ = −α4 2Ẽ/α4

1 + 2Ẽ/α4
. (3.38)

The parameter Ẽ being proportional to the energy density of the electric field (relation (2.20)),

introduces another energy scale in the theory and we expect to affect the motion of the probe

D3-brane. For Ẽ = 0 we recover the results of a radially moving probe D3-brane. We will study

first the solution Ẽ = 0. The two Friedmann equations and the energy density and pressure on

the brane become

H2 =
1

L2

[(α0

α

)4
+

Ẽ

α4

]

(3.39)

Ḣ = −
2

L2

[(α0

α

)4
+

Ẽ

α4

]

(3.40)

ρ =
3

8πGL2

[(α0

α

)4
+

Ẽ

α4

]

(3.41)

p =
1

8πGL2

[(α0

α

)4
+

Ẽ

α4

]

. (3.42)

The above relations can be represented as corrections to relations (3.9)-(3.12), due to the presence

of an electric field on the probe D3-brane. Using (3.39)-(3.42), the Hubble entropy, Bekenstein-

Hawking energy and Hubble temperature can be calculated to be

SH =
V

2GL

[(α0

α

)4
+

Ẽ

α4

]1/2
(3.43)

EBH =
3V

4πGL2α2
(3.44)

THubble =
1

πL

[(α0

α

)4
+

Ẽ

α4

]1/2
. (3.45)

Observe that the Hubble entropy and the Hubble temperature have been modified by the same

extra radiation term. The two Friedmann equations (3.39) and (3.40) can be written as the
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cosmological Cardy-Verlinde and Smarr formulae respectively, modified by the radiation term

due to the electric field

SH =
2πr

3

√

EBH

(

2(E + Erad) − kEBH

)

, (3.46)

kEBH = 3
(

(E + Erad) + (p + prad)V − THubbleSH

)

. (3.47)

To calculate the thermodynamic quantities of the dual theory we have to find the conformal

factor. The conformal time in presence of the electric field, using (2.22), becomes

dη = α
(

1 −
(r0

r

)4)(

1 +
Ẽ

α4

)−1/2
dt. (3.48)

Then the conformal factor is

lim
r→∞

dt

dη
=

1

α

(

1 +
Ẽ

α4

)1/2
. (3.49)

If we calculate the conformal factor using the asymptotic form of the metric we will find a different

result. The reason is that the bulk metric does not ”see” the electric field on the brane. This case

is similar to the case of a brane having a non-zero tension discussed in the literature [20, 48, 49].

The CFT and Hawking temperature are now related by TCFT =
((

1+ Ẽ

α4

)1/2
/α

)

TH and using

the Hawking temperature (3.20), which does not change because it is a bulk quantity, it becomes

TCFT =
1

πL

(r0

r

)(

1 +
Ẽ

α4

)1/2
. (3.50)

The Casimir energy can be calculated from the first law of thermodynamics Tds = dρ+3(ρ+ p−

Ts)dr/r and we get

EC =
3V

2πGL2

[(α0

α

)4
+

Ẽ

α4
−

(α0

α

)4(

1 +
Ẽ

α4

)1/2]

. (3.51)

Using this expression for the Casimir energy we can check that the Cardy-Verlinde formula (3.27)

is not satisfied.

As the brane crosses the bulk black hole horizon, the AdS/FRW-cosmologies relations break

down because SH 6= SCFT and kEBH 6= EC .

The second solution (3.38) has similar behavior like the first one. The first and second Fried-

mann equations become

H2 =
1

L2

[(α0

α

)4
−

Ẽ

α4

(

3 − 4
(α0

α

)4)

− 4
( Ẽ

α4

)2(

1 −
(α0

α

)4)](

1 + 2
Ẽ

α4

)−2
(3.52)
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Ḣ = −
2

L2

[(α0

α

)4
−

Ẽ

α4

(

3 − 4
(α0

α

)4)

− 4
( Ẽ

α4

)2(

1 −
(α0

α

)4)](

1 + 2
Ẽ

α4

)−2
. (3.53)

The Hubble entropy, Bekenstein-Hawking energy and Hubble temperature for this solution

become

SH =
V

2GL

[(α0

α

)4
−

Ẽ

α4

(

3 − 4
(α0

α

)4)

− 4
( Ẽ

α4

)2(

1 −
(α0

α

)4)]1/2(

1 + 2
Ẽ

α4

)−1
(3.54)

EBH =
3V

4πGL2α2
(3.55)

THubble =
1

πL

[(α0

α

)4
−

Ẽ

α4

(

3 − 4
(α0

α

)4)

− 4
( Ẽ

α4

)2(

1 −
(α0

α

)4)]1/2(

1 + 2
Ẽ

α4

)−1
. (3.56)

Using (3.54)-(3.56) it is easy to verify the cosmological Cardy-Verlinde and Smarr formulae

(3.15) and (3.16).

The conformal factor for this solution is

dη = α
(

1 −
(r0

r

)4)(

1 + 2
Ẽ

α4

)(

1 +
Ẽ

α4

)−1/2
dt. (3.57)

From which we calculate the conformal factor

lim
r→∞

dt

dη
=

1

α

(

1 +
Ẽ

α4

)1/2(

1 + 2
Ẽ

α4

)−1
. (3.58)

Using this conformal factor the CFT temperature becomes

TCFT =
1

πL

(r0

r

)(

1 +
Ẽ

α4

)1/2(

1 + 2
Ẽ

α4

)−1
. (3.59)

while the Casimir energy is

EC =
3V

2πGL2

(

1 + 2
Ẽ

α4

)−2[(α0

α

)4
−

Ẽ

α4

(

3 − 4
(α0

α

)4)

− 4
( Ẽ

α4

)2(

1 −
(α0

α

)4)

−
(α0

α

)4(

1 +
Ẽ

α4

)1/2(

1 + 2
Ẽ

α4

)]

(3.60)

As the brane crosses the bulk black hole horizon, the CFT/FRW-cosmologies relations break

down because SH 6= SCFT and kEBH 6= EC .
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4. A Probe Dp-Brane Moving in the Field of a Dp′-Brane

In this section we will generalize the motion of a probe Dp-brane in the field of a Dp′-brane

with p′ ≥ p [44, 38]. In this case the Dp′-brane metric is of the form

ds2
10 = g00(r)dt2 + g(r)(d~xp′)

2 + grr(r)dr2 + gS(r)dΩ8−p′ . (4.1)

In this background there exist in general a non-trivial dilaton field and a RR p′ + 1 form Cp′+1.

The motion of the Dp-brane in this background will be determined by the Dirac-Born-Infeld

action given by

Sp = Tp

∫

dp+1ξe−Φ
√

−det(Ĝαβ). (4.2)

Following a similar procedure as before the induced metric on the Dp-brane is dŝ2 = −dη2 +

g(r(η))(d~x)2 where the cosmic time is given by

dη =
|g00|g

P
2 e−Φ

|C + E|
dt. (4.3)

The analogue of the p+1-dimensional Friedmann equations are determined by defining the scale

factor as α2 = g. Then the Friedmann equation we get is given by

8πG

3
ρeff =

(C + E)2gSe2Φ − |g00|(gSgp + ℓ2e2Φ)

4|g00|grrgSgp

(g′

g

)2
. (4.4)

In this background there is also the possibility of having a constant NS/NS two-form which

lives in the world-volume of the Dp′-brane and it can be parametrized by B = bdxp−1∧dxp. This

constant B field will not affect the background field equation since it enters via its field strength

H = dB which is zero for a constant B. However, the probe brane will feel not H but directly the

antisymmetric field Bµν through the coupling

Sp = Tp

∫

dp+1ξe−Φ
√

−det(Ĝαβ − B̂αβ) (4.5)

+ Tp

∫

dp+1ξĈp+1 + anomaly terms,

where

B̂αβ = Bµν
∂xµ∂xν

∂ξα∂ξβ
. (4.6)

Then, the induced Friedmann equation on the brane (in case p = p′) can be calculated to be

8πG

3
ρeff =

(C + E)2gSe2Φ − |g00|
(

gSgp−2(g2 + b2) + ℓ2e2Φ
)

4|g00|grrgSgp−2(g2 + b2)

(g′

g

)2
. (4.7)
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IV-A. The Holography Probed by a D3-Brane Moving in the Background

Geometry of a D3-Black Brane

We will consider a probe D3-brane moving in the background geometry of a near-extremal black

hole with a metric [1]

ds2
10 =

1
√

Hp′

(

− f(r)dt2 + (d~x)2
)

+
√

Hp′
dr2

f(r)
+

√

Hp′ r
2dΩ2

8−p′ , (4.8)

where Hp′ = 1 +
(

L
r

)7−p′

, and f(r) = 1 −
(

r0
r

)7−p′

. In this background the RR form is

C012...p′ =

√

1 +
(r0

L

)7−p′ 1 − Hp′(r)

Hp′(r)
, (4.9)

and the dilaton field takes the form eΦ = H
(3−p′)/4
p′ . Taking the near horizon limit of the above

geometry, we recover the Schwarzschild-AdS5 × S5 black hole geometry discussed in the previous

sections. There are also spherically symmetric backgrounds, like the type-0 string background, in

which the AdS5 × S5 geometry is obtained only asymptotically. For this particular background,

depending on the value of the Tachyon field, the conformal symmetry is restored in the infrared

and in the ultraviolet, where the AdS5 × S5 geometry is recovered [50, 51]. The main motivation

of our study in this section, is to follow the motion of a probe D3-brane in these backgrounds

where the conformal invariance is broken and find how the thermodynamic quantities change and

what is their relation to geometrical quantities. This study would be useful to determine the

cosmological evolution of a brane-universe moving between conformal points [52].

Defining the parameter ξ =
(

1 +
(

r0
L

)7−p′)1/2
the first Friedmann equation (4.4) in this

background is

H2 =
(7 − p′)

16L2
α

2(3−p′)

(7−p′) (1 − α4)
2(8−p′)

(7−p′)

[ (E + ξα4 − ξ)2

α8
−

(

ξ2 −
ξ2 − 1

α4

)(

1 +
l2

L2

(1 − α4)
2

(7−p′)

α
4+ 8

(7−p′)

)]

(4.10)

We will consider the case of p′ = 3. In this case the above Friedmann equation becomes

H2 =
1

L2
(1 − α4)5/2

[(

ξ +
Ê

α4

)2
−

(r0

L

)4 1

α4
0

(

1 −
(α0

α

)4)(

1 + a(1 − α4)1/2
)]

, (4.11)

where Ê = E − ξ and α is given by

α =
(

1 +
(L

r

)4)−1/4
. (4.12)
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The second Friedmann equation is

Ḣ = −
2

L2

[5

2
α4(1 − α4)3/2

[(

ξ +
Ê

α4

)2
−

(r0

L

)4 1

α4
0

(

1 −
(α0

α

)4)(

1 + a(1 − α4)1/2
)]

+ (1 − α4)5/2
[

2
(

ξ +
Ê

α4

)2
− 2ξ

(

ξ +
Ê

α4

)

+
(r0

L

)4 1

α4

(

1 + a(1 − α4)1/2
)

−
(r0

L

)4 1

α4
0

(

1 −
(α0

α

)4)(

1 + a(1 − α4)−1/2
)

+
3

2
(1 − α4)1/2

]

. (4.13)

The energy parameter Ê can be written as

Ê = Ẽ +
(r0

L

)4
−

(

1 +
(r0

L

)4)1/2
. (4.14)

In the near horizon limit r0 ≪ L, the two Friedmann equations (4.11) and (4.13) become identical

to (3.4) and (3.5) respectively, with Ê = Ẽ − 1 as can be seen from (4.14). For simplicity we will

consider the case of a = 0. Calculating the effective energy density and pressure from (4.11) and

(4.13) and demanding to have a radiation dominated brane-universe, from the equation of state

w = peff/ρeff = 1/3 we get

Ê

α4
= −

5

2
ξα4(1 +

3

2
α4)−1

[

1 ± [1 −
2

5

(α0

α

)4 1

α4
−

3

5

(α0

α

)4]1/2]

. (4.15)

The only real solution of this equation is Ê/α4 = 0 for r → 0. This is consistent with our previous

discussion, because in this limit we find a radiation dominated brane-universe and then our results

of a radially moving probe D3-brane are recovered. To find corrections to our thermodynamic

quantities we will consider the case of Ê/α4 = 0 but with α0 << 1. In this limit the first and

second Friedmann equations become

H2 =
1

L2
(1 − α4)5/2

[(α0

α

)4
+ α4

0

]

(4.16)

Ḣ = −
2

L2
(1 − α4)5/2

[(α0

α

)4
+

5α4

2(1 − α4)

[(α0

α

)4
+ α4

0

]]

. (4.17)

The equation of state can be calculated from the above expressions

peff =
1

3

(1 + 9α4

1 − α4

)

ρeff . (4.18)

Therefore, as the probe D3-brane moves in the background of D3-black brane, all sorts of Mirage

matter is induced on the brane-universe and when r → 0, the brane should pass from a conformal

point where the Schwarzschild-AdS5 × S5 black hole geometry is restored.
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In this limit one can show that still the first and second Friedmann equations (4.16) and (4.17)

can be written as the cosmological Cardy-Verlinde and Smarr formulae with the Hubble entropy,

Bekenstein-Hawking energy and Hubble entropy given by

SH =
V

2GL
(1 − α4)5/4

(α0

α

)2[

1 + α4
]1/2

(4.19)

EBH =
3V

4πGL2α2
(4.20)

THubble =
1

πL

(α0

α

)2
(1 − α4)5/4

[1 + 5α4

2(1−α4)(1 + α4)
(

1 + α4
)1/2

]

. (4.21)

An observer in the bulk, measuring distances with the variable r and time with the AdS time

t, uses equation (3.19) with h(r) given by

h(r) =
(

1 −
(r0

r

)7−p′)(

1 +
(L

r

)7−p′)−1/2
(4.22)

and finds the Hawking temperature

TH =
(7 − p′)

4π

r
(5−p′)

2
0

√

r
(7−p′)
0 + L(7−p′)

, (4.23)

where for p′ = 3 becomes

TH =
1

π

r0
√

r4
0 + L4

. (4.24)

An observer on the brane, measures the scale factor α of the brane-universe using the cosmic

time η. The cosmic time η is related to the AdS time t through the relation (4.3) which in this

background becomes

dη = α
(

1 +
Ê

α4

)−1(

1 −
(r0

r

)4)

dt. (4.25)

In the limit we considered, the conformal factor is

lim
r→∞

dt

dη
=

1

α
. (4.26)

Then using the AdS/CFT relation TCFT = 1/αTH the CFT temperature is

TCFT =
1

πL

(r0

r

)(

1 +
(L

r

)4)−1/4
. (4.27)

The Casimir energy in this limit can be calculated to be

EC =
3V

8πGL2

(α0

α

)4[(

1 +
( r

L

)4)−3/2(

1 + α4
0

)(4 + 6α4

1 − α4

)

− 4
(

1 +
( r

L

)4)1/2]

. (4.28)
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The CFT/FRW-cosmologies relations are valid only when the probe D3-brane passes from a

conformal point (r → 0) as easily can be checked.

IV-B. A Probe D3-Brane Moving in the Background of Near-Horizon Geom-

etry with a Constant B-field

In this section we will consider the motion of a probe D3-brane in the near-horizon geometry of

a D3-brane with a constant B-field. Because we are mainly interested for the corrections of our

thermodynamics quantities which are due to the presence of the B-field, we will take first the

near-horizon limit of the metric (4.8) and then use (4.7) to find the Friedmann equations.

The near-horizon limit of (4.8) is (3.1) and in this background (4.7) becomes

H2 =
1

L2

[(

1 +
Ê

α4

)2(

1 +
b2

α4

)−1
−

(

1 −
(r0

L

)4 1

α4

)(

1 + a
(

1 +
b2

α4

)−1)]

. (4.29)

We are mainly interested for the effect of the B-field so we take a = 0 and then the above equation

can be rewritten

H2 =
1

L2

[(α0

α

)4
+ 2

Ê

α4
+

Ê2

α8
−

b2

α4

(

1 +
Ê

α4

)2(

1 +
b2

α4

)−1]

. (4.30)

The presence of the B-field in (4.30) acts effectively as a radiation term on the brane-universe

like the electric field we already considered. The second Friedmann equation in this background

becomes

Ḣ = −
1

L2

[(α0

α

)4
+ 2

Ê

α4
+ 2

Ê2

α8
−

b2

α4

(

1 +
b2

α4

)−2[

1 + 4
Ê

α4
+ 3

Ê2

α8
+ 2

b2

α4

Ê

α4
+ 2

b2

α4

Ê2

α8

]]

. (4.31)

From (4.30) and (4.31) the ρeff and peff can be calculated and the equation of state specified.

Demanding to have a radiation dominated universe, the energy parameter is fixed to Ê = b2. Using

this value for Ê, the two Friedmann equations and the effective energy density and pressure on

the probe brane become

H2 =
1

L2

[(α0

α

)4
+

b2

α4

]

(4.32)

Ḣ = −
2

L2

[(α0

α

)4
+

b2

α4

]

(4.33)

ρeff =
3

8πGL2

[(α0

α

)4
+ 2

b2

α4
+

b4

α8
−

b2

α4

(

1 +
b2

α4

)]

(4.34)

peff =
1

8πGL2

[(α0

α

)4
+ 2

b2

α4
+ 5

b4

α8
−

b2

α4

(

1 +
b2

α4

)−2(

1 + 7
b2

α4
+ 11

b4

α8
+ 5

b6

α12

)]

(4.35)
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Observe that the two Friedmann equations (4.32) and (4.33) get a correction in first order in

b2 like the contribution they get from the electric field (in the case Ẽ = 0 ), while the effective

energy density and pressure are receiving high order corrections in b2. The Hubble entropy and

the Hubble temperature, using (4.32)-(4.35), in this background become

SH =
1

2GL

(α0

α

)2(

1 +
(α0

α

)4 b2

α4

)1/2
(4.36)

THubble =
1

πL

(α0

α

)2(

1 +
(α0

α

)4 b2

α4

)1/2
, (4.37)

while the Bekenstein Hawking temperature is unchanged and is given by (3.29). It is straitforward

to show that the two Friedmann equations can be written in terms of (4.36) and (4.37) and EBH ,

as the cosmological Cardy-Verlinde and Smarr formulae.

To calculate the thermodynamic quantities we have to find the conformal factor for this

background. The conformal time is

dη = α
(

1 −
(r0

r

)4)(

1 +
b2

α4

)−1/2
dt, (4.38)

from where the conformal factor is

lim
r→∞

dt

dη
=

1

α

(

1 +
b2

α4

)1/2
. (4.39)

Using the Hawking temperature TH = r0/πL2 the CFT temperature according to AdS/CFT

correspondence is

TCFT =
1

α

(

1 +
b2

α4

)1/2
TH

=
1

πL

(α0

α

)(

1 +
b2

α4

)1/2
. (4.40)

The CFT entropy is unchanged and it is given by (3.25), while the Casimir energy becomes

EC =
3V

2πGL2

[(α0

α

)4
+

b2

α4
−

(α0

α

)4(

1 +
b2

α4

)1/2]

. (4.41)

At the moment the probe brane crosses the bulk black hole horizon, from (4.37) and (4.40)

we get

TCFT = THubble =
1

πL

(

1 +
b2

α4
0

)1/2
. (4.42)
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We also have

SH =
1

2GL

(

1 +
b2

α4
0

)1/2
6= SCFT =

1

2GL
(4.43)

EC =
3V

2πGL2

[

1 +
b2

α4
0

−
(

1 +
b2

α4
0

)1/2]

6= kEBH = 0. (4.44)

Therefore, in the near horizon limit with a constant B-field in the background, there is no

CFT/FRW-cosmologies correspondence.

5. Conclusions

We studied the cosmological holographic principle in a generic static spherically symmetric

background with a probe D3-brane moving in this background playing the rôle of the boundary to

this space. After reviewing the necessary formalism, we followed the motion of the probe D3-brane

in specific background geometries under different initial conditions of the probe D3-brane.

First we followed the motion of the probe D3-brane in the near-horizon AdS5×S5 background

with a Schwarzschild-AdS5 black hole [44]. Demanding to have a radiation dominated universe

on the probe D3-brane, the energy parameter is fixed and for zero angular momentum we showed

that the Cardy-Verlinde and Smarr formulae are equivalent to the first and second Friedmann

equations respectively. Using the AdS/CFT correspondence we related the entropy and the Hawk-

ing temperature of the AdS5 black hole with the entropy and temperature of the CFT on the

probe D3-brane. At the special moment when the probe D3-brane crosses the horizon of the back-

ground black hole, an observer on the brane measures the CFT entropy and temperature using

pure geometrical quantities, the Hubble parameter and its time derivative. Furthermore, at that

particular moment, we showed that the CFT entropy is described by the Cardy-Verlinde formula,

with zero Casimir energy. These results indicate that, as the D3-brane crosses the horizon of

the background black hole, it probes the holography of the dual CFT theory of the AdS5 × S5

geometry and these results are in agreement with [12, 14].

Next we followed the motion of a probe D3-brane having a non-zero angular momentum, in

the same near-horizon AdS5 × S5 background. We showed that the AdS/CFT correspondence is

exact in the sense that the CFT and Hawking temperature are related in the same way as in the
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case of zero angular momentum. The presence of a non-zero angular momentum on the brane,

modifies some of the thermodynamic quantities, and on the horizon the TCFT cannot anymore

be expressed in terms of the Hubble parameter and its time derivative. The modification of the

second Friedmann equation results in a non-zero Casimir energy which has the consequence that

the CFT entropy on the horizon is not described by the Cardy-Verlinde formula as it happens to

the zero angular momentum case.

An electric field was also considered on the probe D3-brane. Its presence introduces another

energy scale which is proportional to its field strength. It was shown that the electric field

acts effectively as a new radiation term on the probe brane. Demanding to have a radiation

dominated universe, the energy parameters were fixed and then we calculated the corrections to

the thermodynamic quantities due to the electric field. We showed that as the brane crosses

the bulk black hole horizon it is no possible any more to relate thermodynamic with geometrical

quantities through the CFT/FRW-cosmologies relations. Finally, we considered a more general

problem of a probe D3-brane moving in the field of other D3-branes. In the general case, the

AdS/CFT correspondence and the CFT/FRW relations break down as expected, but the previous

results can be recovered in the near-horizon limit.

It would be interesting to investigate the AdS/CFT correspondence and the CFT/FRW re-

lations in the case of a non-zero ρ2 term on the brane. This is the term generated in early

cosmological evolution in the Randall-Sundrum model. We know that the trace anomaly of the

energy momentum tensor is proportional to this ρ2 term [53]. Then one expects to have a broken

conformal theory [54], and it would be interesting to see what kind of holographic description it

is possible for such a theory which has a trace anomaly [55, 56, 57].

Another interesting line of investigation is to apply these ideas and formalism to a realistic

inflationary brane model. The AdS/CFT correspondence for example can help us to solve the

problem of exit from inflation, because the moment the moving brane-universe crosses the horizon

of the bulk black hole, it enters a thermal bath and the reheating process of the universe can start.

Actually such a model can be realized for a particular background geometry [52].
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