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Appendix (Supplement on microfiche)

Al Some examples for comparison of the generalized autocovariance

structure to fractional Gaussian noise models

In this Appendix, we demonstrate the generalized autocovariance structure (GAS;

Equation (7)) using synthetic and historical data records, also comparing it with the stochastic

structure implied by the fractional Gaussian noise (FGN) model. We give five examples with

record lengths between 44 and 100. The first two of them are synthetic samples generated by

stochastic models. In this case the theoretical autocovariance function is known and,

consequently, we can test the ability of model to capture this stochastic structure, and the

appropriateness of the fitting method. The other three examples are annual streamflow and

rainfall records of gauges at Greece and USA. In this case our purpose is to compare the

appropriateness of each of the GAS and FGN models for fitting the data and investigate the

model parameters.

For the GAS case, the most parameter parsimonious form was adopted for all examples,

using the parameters yo, / and K only. The fitting of f/ and K was done by the least squares

method on the empirical autocorrelation function (see section 2) for lags 0-20. The same

method was used for the FGN case as well (symbolically, FGN/A). Fitting by means of the

Husrt coefficient was also performed as an alternative for the FGN case (symbolically,

FGN/H). The results are presented in graphical form in terms of autocorrelation functions and

power spectra in Figure Al through Figure A5.

AR(1) example. 100 data values were generated using a Gaussian AR(1) process with unit

variance and lag-one autocorrelation coefficient equal to 0.5. In this case, the theoretical

autocovariance function has the form (8). The fitted parameters for the GAS case are / = 0.01



(very close to the theoretical value 0) and K = 0.66. The resulting autocorrelation function and

power spectrum are almost identical to the theoretical ones. Apparently, the FGN model is not

appropriate for this case since we know that the process is not long memory at all. Had we

only the data record available, without knowing the theoretical autocorrelation, we possibly

attempt to fit the FGN model. Then, applying the least squares method (FGN/A) we would

find , = 1.31 (H = 0.62), which clearly underestimates the autocorrelation for small lags and

overestimates it for large lags. Applying the Hurst coefficient method we would find H = 0.44

which would interpret as H = 0.5 (values smaller than 0.5 are not allowed by FGN) and we

would assume that the process is white noise, which is not correct.
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Figure Al Comparison of theoretical, empirical and fitted model autocorrelation functions (a)

and power spectra (b) for a synthetic data set generated by an AR(1) process with 100 values.

.



FGN example. 100 data values were picked from the synthetic record generated in the

application of section 6 (location 2). In this case, the theoretical autocovariance function has

the form (5) with H = 0.7. The fitted parameters for the GAS case are f = 1.48 (>1, close to

the theoretical value / = 1 / [2(1 - H)] = 1.67) and K = 3.28. The resulting autocorrelation

function and power spectrum are almost identical to the theoretical ones. The fitted parameter

for the FGN/A case is fl = 1.67 (H = 0.70), which is identical to the theoretical ones.

However, applying the Hurst coefficient method we find H = 0.98, which is too high and

results in autocorrelation function and power spectrum extremely departing from both the

theoretical and empirical ones.

1

0.8

0.6

0.4

0.2

0

-0.2

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

-2.5

-3

5 10 15 Tao i

- - (b)-

-3 ~ -2 - In o

Figure A2 Comparison of theoretical, empirical and fitted model autocorrelation functions (a)

and power spectra (b) for a synthetic data set generated by a FGN process with 100 values.
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Kremasta streamflow example. In this example we used a 44-year annual streamflow record

of Acheloos River at Kremasta dam (Western Greece; overyear annual discharge 117.9 m3/s).

The estimated Hurst coefficient of the series is as high as 0.94, indicating a long memory. The

fitted parameters for the GAS case are P/ = 2.43 and K = 12.6, and, indeed, indicate a very long

memory. Note that for empirical lag-one autocorrelation p =- 0.22, the characteristic

parameter f* defined in section 2 is 1.54 and thus P > P*. The fitted parameter for the FGN/A

case is P/ = 1.75 (H = 0.71 < 0.94). Both GAS and FGN/A schemes agree well with the

empirical autocorrelations and power spectra, the former outperforming the latter as better

approaching the lag-one autocorrelation, which is important. The FGN/H scheme again results

in autocorrelation function and power spectrum extremely departing from the empirical ones.
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Figure A3 Comparison of empirical and fitted model autocorrelation functions (a) and power

spectra (b) for the 44-year annual streamflow record of Acheloos River at Kremasta (Western

Greece).
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Coshocton runoff example. In this example we used a 56-year annual runoff record at

Coshocton, Ohio (for a catchment of 303 acres; overyear annual runoff 397.4 mm). The

estimated Hurst coefficient of the series is as high as 0.89, indicating a long memory.

However, the fitted parameters for the GAS case are ,P = 0.16 (< 1) and K = 0.90, which do not

correspond to very long memory). The fitted parameter for the FGN/A case is / = 1.39 (H =

0.64 < 0.89). Here the GAS scheme agrees well with the empirical autocorrelations and power

spectra. The FGN/A scheme underestimates significantly the lag-one autocorrelation

coefficient, whereas the FGN/H scheme again overestimates all autocorrelation coefficients.
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Figure A4 Comparison of empirical and fitted model autocorrelation functions (a) and power

spectra (b) for the 56-year annual streamflow record of Coshocton, Ohio.
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Aliartos rainfall example. In this example we used an 86-year annual rainfall record at

Aliartos, Eastern Greece (overyear annual rainfall 660.2 mm). The estimated Hurst coefficient

of the series is as high as 0.93, indicating a long memory, and corresponding to lag-one

autocorrelation coefficient equal to 0.82, although the empirical value of the latter is only

0.12. The fitted parameters for the GAS case are/# = 3.75 (corresponding to H= 0.87, close to

0.93) and K = 300. As in the Kremasta example, / > /* = 1.27 (for pl = 0.12). Indeed, these

parameters indicate long memory and simultaneously result in low autocorrelation for small

lags (e.g. 0.15 for lag-one, which agrees well with the empirical value). Generally, the GAS

scheme agrees well with the empirical autocorrelations and power spectra. The fitted

parameter for the FGN/A case is fl = 1.53 (H = 0.67 < 0.93). The FGN/A scheme

overestimates the lag-one autocorrelation coefficient (0.27 versus 0.12), whereas the FGN/H

scheme again overestimates all autocorrelation coefficients.
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Figure AS Comparison of empirical and fitted model autocorrelation functions (a) and power

spectra (b) for the 86-year annual rainfall record at Aliartos (Eastern Greece).



Conclusion of Appendix 1. From the examples with synthetic data, where the actual

(theoretical) autocorrelation function and power spectrum are known, we may conclude that

the GAS scheme is appropriate for both short and long memory processes, and the fitting

method of least squares over the autocorrelation function results in reasonable fits, which are

almost identical to the theoretical autocorrelation functions. The FGN scheme performs well

if the underlying process is long memory and the scheme is fitted by the least squares method,

but fails to resemble the actual process either if it is short memory or the fitting is done using

the Hurst coefficient.

In all three examples with historic hydrologic data, a long memory structure emerges, as

indicated by the high Hurst coefficients. However, the FGN scheme fitted in terms of the

Hurst coefficient departs significantly from the empirical autocorrelation functions and power

spectra. Better is its behavior if fitted by the least squares method. The GAS scheme fitted by

the least squares method outperformed the FGN scheme in all cases. Interestingly, these three

examples reveal that the two cases theoretically foreseen by the GAS scheme, but not by the

ARMA of FGN schemes, may exist in reality. Thus, in the examples presented we have the

cases: (a) /8 < 1 (Coshocton example) that indicates not too strong long-term persistence, and

(b) P/ > /3 (Kremasta and Aliartos examples) that indicates strong long-term persistence and

simultaneously not too strong autocorrelation for small lags.

We must emphasize that the examples are presented here just to give some initial

indications of the performance of the proposed generalized autocovariance function, also in

comparison to that of the fractional Gaussian noise model. Before drawing final conclusions,

more statistical research is needed about the model fitting method and more hydrological data

sets must be investigated.
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data of the Public Power Corporation of Greece and the Aliartos rainfall record was compiled by data of the

Hellenic National Meteorological Service raingauge and the earlier Kopais Organization raingauge operated at

the same location. Both the Kremasta and Aliartos records were published in the reports of the project

Evaluation and Management of the Water Resources of Sterea Hellas commissioned by the Greek Ministry of

Environment, Regional Planning and Public Works to the National Technical University of Athens.



A2 Closed solution of the internal parameter series

The complex form of the inverse finite Fourier transform of the series yj is (in accordance

to (13))

oo

sy(co) =2 yj exp (2 i rj co) (Al)

where i := -. Using the BFMA model that incorporates as special cases both the BMA and

the SMA models, and substituting yj from (23) in (Al) we get

sy(co) = 2 aE aja+1 exp (2 iwzj co) (A2)
j= --ooJ = -oo

Interchanging the summations and setting n =j + 1 we have

00 C 00 00 00

sy(w) =2 Zat lZ aj+ Iexp (2 izj co) = 2 a, an exp [2 iz (n-l)co] (A3)
S= -oo j= -oo = -oo n= -oo

or

oo oo

sy(w) = 2 E al exp (-2 i Ico) an exp (2 i n co) (A4)

which results in

sw(co) = 2 s,,*(o) Sa(o) = 2 ISa(o)!2  (A5)

where sa (co) is the complex conjugate of Sa(O).

(A5) shows that (33) holds for any arrangement of the series of aj and consequently it

holds for the BMA model as well. In case of the SMA model, since aj = a-j, the imaginary

(sine) terms in its inverse finite Fourier transform vanish, so that Sa(ow) is a real function of co.

Therefore, (A5) becomes

sy(co) = 2 [sa(co)]2 (A6)

which proves (31).

To show that there does not exist any other real valued transformation, different from DFT,

that could result in an equation similar to (31) to enable a direct calculation of a, for the BMA

model we use a counterexample. Specifically, we consider the simple autocovariance

structure with all terms zero apart from the first two yo and yl. This autocovariance is positive



definite if 2 lyII < yo. From (19) we can verify that a solution for the series of aj is that with all

terms zero apart from the first two ao and a!, which are given by

ao = (1/2)(&yo + 2 yI + yo- 2 y1), al = (1/2) (y0 + 2  -yoI -2 y) (A7)

and satisfy

2 2
ao + a = )yo, ao a, = y, (A8)

Generally, we are seeking for some transformations py(co) and pa(oW) of yj and aj, respectively,

in the general form of (Al) but real valued, i.e.,

py(c) = IZyJ gy(o), Pa(c) = Z ajfj(wo) (A9)
j = -oo j = -oo

where gj(co) and ()() are sequences of orthogonal real functions of the real variable co, so that

a relation similar to (A6) holds, i.e.,

Py(wc) = [pa(co)]2 (A 10)

Note that such a relation is justified by dimensional analysis considerations, as well. The

condition for orthogonality of the sequences gj(co) and fj(c) is needed because otherwise it

will be not possible to invert the transformation, so that to derive yj from gj(co) or aj from

fj(ow). The factors 2 in the right-hand sides of (A9) and (A10) are neglected for simplicity.

In our simple counterexample with two nonzero terms, the combination of (A9), (A10) and

(A8) results in

2 2
(ao + al) go(co) + aoaI gI(o) = [aofo(c) + afJ1(()] 2  (Al l)

or

2 2 2 2 2 2
(ao + al) go(co) + aoai gl(o) = aofo(w) +aif(wo))+ 2 ao a, fo(o)Jf(co) (A12)

From the condition that (A12) must hold for any couple of ao and a, we find that

fo(o) = ±fl(o)=± (), g(wo)= ±2 go(co) (A13)

which violates the orthogonality assumption for both gj(co) and fj(co). Therefore, no real

valued transformation with the desired properties exists.



A3 Proof of the proposition of section 5

Firstly, we will prove that (39) preserves means and autocovariances. Taking average

values in both sides of (39) we find that E[X,] = E[Xi ] (because by definition of Z, E[Z] =

E[Z]), which proves preservation of means. Subtracting means from both sides of (39) we get

(X - E[X1])= (X - E[X,]) + h-' {(Z-E[Z])-(Z-E[Z])}, i = 1,2,... (A14)

Writing (A14) for Xj and then multiplying it with (A14) and taking expected values we get

Cov[Xi, Xj] = Cov[Xi, Xj] - Cov[Xi, 1 /. h- 1 Z] - Cov[Xj, , h- 1 Z]

+ Cov[iT h-' Z, iq h- 1 Z] + Cov[,iT h- 1 Z, iT h- 1 Z] (A15)

where we have omitted covariance terms among Z and Z or Xi, because Z is independent of

Xi and consequently of Z. Observing that h is a symmetric matrix and Cov[Z, Z] = Cov[Z, Z]

by definition, we can write (A 15) as

Cov[X;, Xj] = Cov[X,, Xj] - Cov[Xy , Z] h-'t - Cov[X, Z] h-I',

+ 2 11iT h-1 Cov[Z, Z] Ih-'% (A 16)

and using the definitions ofqi := Cov[X,, Z] and h := Cov[Z, Z],

Cov[Xj,Xj] = Cov[X,, Xj] - qli h~-I i - T h- h 1 +2 i h~' (A17)

We note that 1 T h-~it is scalar, so that i1 T. h-I'ii = (iT h--.1 )T = %T h-'li. Besides, the last

term of (A17) equals 2 qT h-I1 u.. Thus (A17) is reduced to

Cov[X,, Xj.] = Cov[X,, Xj] (Al 8)

which proves our claim about preservation of covariances.

Secondly, we will prove (40). If we get covariances as above but conditionally on Z = z,

the last term Cov[qi T h- ' Z, T h-1 Z[ Z = z] of (A15) will now be zero. The other terms are

not affected by the condition because of independence from Z. Thus, setting i =j and writing

(A15) for Z= z, we get

Var[X, J Z = z] = Var[•i] - 2 Cov[X,, liT h- 1Z] + Cov[i T h- ' Z, q h-' Z] (A19)

which in a similar manner as previously takes the form



Var[Xi I Z - z] = Var[X,] - 2 11iT hW'i,+ IiW h' h hW'T~ (A20)

thus resulting in (40).

Next, we will show that Var[X1 IZ= z] coincides with the least mean square prediction

error of X, from Z. To this aim, we consider the linear prediction model

Xi = KTZ+ U (A2 1)

where K is a vector of parameters and U is a random variable whose deviation from mean

represents the prediction error. We seek for the vector K that minimizes Var[qU. Taking

expected values in both sides of (A2 1) and subtracting from (A2 1) we get

(U - E[U] (XI - E[X]) - KT (Z - E[Z]) (A22)

so that

Var[U] Var[X,] - 2 Cov[Xi, K T Z] + Var[K T Z] (A23)

or equivalently,

Var[U]yo - 2 Cov[Xi,,Z] K + KT Cov[Z, Z] K (A24)

Since by definition Cov[X,, Z] -= 1i T and Cov[Z, Z] = h

Var[L/J=-yo -z2qiT K + K Th K(A25)

To find K that minimizes Var[U] we take the derivative of the right-hand side of (A25) with

respect to K and equate it to 0. This results in

2 1qjT + 2 KTh=O0 (A26)

or

K = h1 1qi(A27)

Substituting this result in (A25) we get

Var[U] =- y i -li (A28)

Thus, Var[U] is identical to Var[X, I Z = z] given by (40).

Finally, we consider the case of application of (39) for one of the known X0, .. , k in its

left-hand side (i.e., for -k < i < 0). Apparently, in this case qi~ will be equal to the ith column

of h. Since h h-1 = 1, i T h-1 will be equal to ith row of the identity matrix, i.e., a row vector

with all elements zero apart from the ith element which will be one. Therefore, (39) becomes

Xi= X, + (Xi - X1) = X1, as it should. This proves that (39) remains consistent even when

applied to the known present and past variables.



A4 Proof of equation (57)

Let d : b b T - h so thatj(b) : Ildi112 . The (k, l)th element of d is

n
dki = I3 bkr bir - CkI

r =I

so that

cSdkl '

abY r1I
bk-r ab +

Yr1

bkrb
ab, bir

Because b, is symmetric, abl, / aby equals 1 if the element bir coincides with by or its

symmetric bji; otherwise equals zero. Symbolically,

abir = 61i 6rj + 61j r61- ai- r ay ait
abu

(A31)

where

Ir1
(A32)

Therefore,

IbrE bkrj ri- Z bkr6ir6ij 61i
ikib r1= Ir=1Ir =

(A33)

(A34)

Likewise,

n birabkr=bija6ki + biiaklj-ikaya ki

Sdk,I.--- = (bk 1a, + bkia, -bkl ya1i)+ (bIy6ki + b1,akj - bika akyb

(A29)

(A30)

so that

(A35)

(A36)



The partial derivative of 1|d112 with respect to by will be

a8 dI2 n n adk-i
ab YbZ2dkiabbk= I 1=lI

17 n

-2 1 jdk- (bk, Y6/ + bki 5j - bkl itj -+- bl 6 ki + b1i, kj - b/k i6, ski) (A37)
k=I 1=1

or

Jd n 1n

aL= 2 Z(dki bkj + dj bki - dki bki 6ic) + 2 (dil b±y + dl b1i - dil b,1 6) (A3 8)
8b& k=I I=1

and, because both d and b are symmetric,

abVI=4 ZIdki bkj+i4 Zdkbki-4 4 dkibki6 y (A39)
k=1 k=Ik=I

We observe that each of the first and the second sums in the right-hand side of (A39) is the

(i,j)th and (f, i)th element of the matrix d b = e, which are equal due to symmetry. The sum in

the third term equals the (i, i)th diagonal element of e if i =j; otherwise it is zero. This proves

(57).


