
Refinement and Property Checking in

High-Level Synthesis Using Attribute Grammars

George Economakos and George Papakonstantinou

National Technical University of Athens
Dept. of Electrical and Computer Engineering
Zographou Campus, GR-15773 Athens, Greece

george@cslab.ece.ntua.gr

Abstract. Recent advances in fabrication technology have pushed the
digital designers’ perspective towards higher levels of abstraction. Previ-
ous work has shown that attribute grammars, used in traditional com-
piler construction, can also be effectively adopted to describe in a formal
and uniform way high-level hardware compilation heuristics, their main
advantages being modularity and declarative notation. In this paper, a
more abstract form of attribute grammars, relational attribute gram-
mars, are further applied as a framework over which formal hardware
verification is performed along with synthesis. The overall hardware de-
sign methodology proposed is a novel idea that supports provable correct
designs.

1 Introduction

Over the last twenty years, advances in circuit fabrication technology have in-
creased device densities and as a consequence, they have increased design com-
plexity. To manage continuously emerging tasks, designers have moved towards
higher levels of abstraction, which are closer to the way they conceive their
work. However, each design must be described, eventually, at the lowest level
(e.g. layout masks), in order to be fabricated. The transformation from one level
of abstraction to the next is performed by various synthesis processes. All such
processes need some kind of validation for their results. This validation can be
performed by formal verification [11], mainly to prove that a transformation from
one state to another is correct (refinement checking), that two states, initial and
transformed, are equivalent (equivalence checking) or that the transformed state
satisfies certain conditions (property checking).

High-level synthesis [7,9,10,13], is defined as the transformation of behavioral
circuit descriptions into register-transfer level (RTL) structural descriptions that
implement the given behavior while satisfying user defined constraints. Even
though it has been introduced over twenty years ago, it has recently gained
acceptance because the lower level tools have matured enough to support it.
However, a lot of problems are still open.

Attribute grammars (AGs), were devised by Knuth [8] as a tool for the formal
specification of programming languages. However, in the general case, an AG can

L. Pierre and T. Kropf (Eds.): CHARME’99, LNCS 1703, pp. 330–333, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at NTUA

https://core.ac.uk/display/38439129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Refinement and Property Checking in High-Level Synthesis 331

be seen as a mapping from the language described by a context free grammar
(CFG) into a user defined domain. The main advantage of AGs over other formal
specification methods is that they can also be used as an executable method, for
the automatic construction of programs to implement the specified mapping [12].

Attempting to overcome the inefficiencies of conventional high-level synthesis
and propose a unifying formal framework, an AG formalism describing schedul-
ing heuristics was proposed in [4], which operates by decorating the parse tree
of a behavioral circuit description with appropriate attributes. Recently [3,6,5],
this methodology was realized into the AGENDA integrated design environ-
ment that supports top-down implementation of behavioral descriptions using
the VHDL hardware description language [2]. Overall, the main advantages of
AGs as a formal specification and implementation high-level synthesis formalism
are modularity and the declarative notation used for implementation.

In this paper, an extended grammar based methodology is given, which can
support two kinds of formal verification, refinement and property checking. It
is based on the definition of a more abstract form of AGs, the Relational At-
tribute Grammars (RAGs) [1]. This methodology is a great improvement since
it supports provable correct high-level synthesis transformations using a simple,
formal and uniform specification and implementation formalism.

2 Attribute Grammars in Synthesis

High-level synthesis transformations can be performed during semantic analysis
using AGs. For example, scheduling is performed by decorating the nontermi-
nal symbols of the parse subtree corresponding to primitive operations, with an
attribute that is evaluated as the control step at which each operation will be
performed. By altering the semantics, the evaluation rules are altered and thus,
different heuristics are implemented. For example, consider the ASAP schedul-
ing algorithm. Using AGs, ASAP scheduling is performed by attaching special
attributes to all primitive operator parsing syntactic rules, like the following:

operation → operand1 operator operand2 (1)

ASAP scheduling requires that each output must be scheduled in the next con-
trol step after all its inputs have been scheduled. This can be accomplished by
using an attribute to pass scheduling information (the control step at which the
operator is scheduled) from inputs to outputs, with the following semantic rule
attached to (1):

operation.ASAPcs = MAX(operand1.ASAPcs, operand2.ASAPcs) + 1

The scheduling information, along with all other information about each prim-
itive operation, is inserted at each such rule, into a special, list type attribute,
that passes information from all leaves of the parse tree to the root. So evalua-
tion of the whole AG, results in a root attribute that accumulates the scheduled
CDFG of the behavioral description.



332 George Economakos and George Papakonstantinou

3 Attribute Grammars in Refinement Checking

After evaluating the synthesis AG of the previous section, a special attribute of
the root of the parse tree contains the scheduled CDFG of the given behavioral
description. However, the resulting architectural implementation may or may not
be correct. To prove its correctness, a specification [1] must be constructed, which
can verify certain conditions of the synthesis or refinement process. Generally
speaking, a specification is a set of formulas for each nonterminal symbol of the
underlying grammar, where all free variables are attributes of that symbol. Each
formula may be true or false. A specification is said to be inductive if, for any
production rule p = X0 → X1 . . .Xn, when the specifications of allXi, i = 1 . . . n
are true and all attributes of the rule have been evaluated, the specification ofX0

can be proven to be true. When a specification is inductive, the AG is correct
with respect to it.

For the circuit implementation of a behavioral description to produce correct
outputs, one condition must hold. For each input of operator oi found in the
scheduled CDFG and assigned a value in a previous statement in the behavioral
description, if this assignment has been scheduled at some control step si, oi must
be scheduled later than si. In other words, variable dependencies of the original
description have not been violated. This can be proven to hold by proving that
the synthesis AG is correct with respect to a corresponding specification.

4 Attribute Grammars in Property Checking

After evaluating the synthesis AG of the first section, the scheduled CDFG,
which can be seen as a rough architectural implementation (assuming a greedy
allocation), is contained in the special attribute of the root of the parse tree. Even
though the refinement process may be correct, checked with inductive specifica-
tions as described in the previous section, the implementation may not satisfy
some design constraints, because inappropriate synthesis algorithms have been
used. In that case, design constraints can be tested using semantic conditions.
Semantic conditions are relations that the attributes of some production must
satisfy for attribute evaluation to be valid. Semantic conditions differ from in-
ductive specifications because they check only local (within a single production)
conditions. Since, attributes contain implementation details, attribute relations
directly reflect implementation properties. If a relation is true, the corresponding
property holds and so, semantic conditions can be used for property checking.

5 Experimental Results and Conclusion

Experiments have been conducted, synthesizing provable correct hardware mod-
ules. The traditional way to validate the results are through simulation, behav-
ioral or presynthesis as well as postsynthesis. For each example at least a few
hours were needed to produce output waveforms for different inputs and validate
them. For large circuit implementations, with large number of gates, simulation



Refinement and Property Checking in High-Level Synthesis 333

must be very thorough in order to find errors. On the contrary, using AGENDA
all examples were synthesized with a single iteration through the design pro-
cess, requiring milliseconds on a Sun Ultra SPARC 140Mhz. Moreover, the final
implementations were proven correct following the proof method presented in
this paper. For each different AG, the proof is needed only once, while, when
simulation is used, each example must be validated. The number of AG code
to be proven correct is much smaller than the number of gates in the imple-
menation, so the problems seem to be less complicated, and most of them are
trivial (no need for any proof). All these advantages can dramatically increase
the designer’s productivity.

References

1. P. Deransart and J. Maluszynski. A Grammatical View of Logic Programming.
MIT Press, 1993. 331, 332

2. G. Economakos and G. Papakonstantinou. Exploiting the use of VHDL speci-
fications in the AGENDA high-level synthesis environment. In 24th EUROMI-
CRO Conference, Workshop on Digital System Design, pages 91–98. EUROMI-
CRO, 1998. 331

3. G. Economakos, G. Papakonstantinou, K. Pekmestzi, and P. Tsanakas. Hardware
compilation using attribute grammars. In Advanced Research Working Conference
on Correct Hardware Design and Verification Methods, pages 273–290. IFIP WG
10.5, 1997. 331

4. G. Economakos, G. Papakonstantinou, and P. Tsanakas. An attribute grammar
approach to high-level automated hardware synthesis. Information and Software
Technology, 37(9):493–502, 1995. 331

5. G. Economakos, G. Papakonstantinou, and P. Tsanakas. AGENDA: An attribute
grammar driven environment for the design automation of digital systems. In
Design Automation and Test in Europe Conference and Exhibition, pages 933–934.
ACM/IEEE, 1998. 331

6. G. Economakos, G. Papakonstantinou, and P. Tsanakas. Incorporating multi-pass
attribute grammars for the high-level synthesis of ASICs. In Symposium on Applied
Computing, pages 45–49. ACM, 1998. 331

7. D. Gajski, N. Dutt, A. Wu, and S. Lin. High-Level Synthesis. Kluwer Academic
Publishers, 1992. 330

8. D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145, 1968. 330

9. Y-L. Lin. Recent development in high level synthesis. ACM Transactions on Design
Automation of Electronic Systems, 2(1):2–21, 1997. 330

10. M. C. McFarland, A. C. Parker, and R. Camposano. The high-level synthesis of
digital systems. Proceedings of the IEEE, 78(2):301–318, 1990. 330

11. K. L. McMillan. Fitting formal methods into the design cycle. In 31st Design
Automation Conference, pages 314–319. ACM/IEEE, 1994. 330

12. J. Paaki. Attribute grammar paradigms - a high-level methodology in language
implementation. ACM Computing Surveys, 27(2):196–255, 1995. 331

13. R. A. Walker and S. Chaudhuri. High-level synthesis: Introduction to the schedul-
ing problem. IEEE Design & Test of Computers, 12(2):60–69, 1995. 330


	Introduction
	Attribute Grammars in Synthesis
	Attribute Grammars in Refinement Checking
	Attribute Grammars in Property Checking
	Experimental Results and Conclusion

