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La cinetique de la reaction de cinq hydrocarbures (ethane, ethylene, acetylene, 
propene, boutene) et du dioxyde d'azote avec trois pigments (le blanc de TiOz et les 
jaunes de CdS et PbCr04) a ete etudiee par chromatographie en phase gazeuse a flux 
inverse. Le calcul des parametres cinetiques et des coefficients de transfert de masse a 
ete effectue a partir des isothermes d'adsorption experimentales en faisant l'hypothese 
d'un modele d'adsorption non-lineaire, qui resulte de la non-unifonnite de la surface. 
Cinq parametres physico-chimiques ont ete obtenus pour chacune des vingt reaction 
heterogenes etudiees. A partir de ces resultats obtenus dans des conditions sirnilaires 
aux conditions atmospheriques, l'extrapolation a des atmospheres reelles parait 
possible avec une bonne confiance. Quelques calculs ont ete effectues avec un modele 
lineaire pour comparaison. 

Mots cl&: reactions d'hydrocarbures avec des pigments et du dioxyde d'azote, 
chrornatographie en phase gazeuse a flux inverse, coefficients de transfert de masse, 
parametres cinetiques. 

ABSTRACT 

Reversed-flow gas chromatography was used to study the kinetics of the action of 
five hydrocarbons namely, ethane, ethene, ethqne, propene and butene and of the 
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nitrogen dioxide, on three known and widely used pigments, the white one TiOz, and 
the yellows CdS and PbCr04. The calculation of kinetic parameters and mass transfer 
coefficients is based on an experimental adsorption isotherm. All these calculations 
are based on a non linear adsorption isotherm model as it is well accepted that the 
linear one is inadequate for inorganic substances llke these mentioned in this work. 
The inadequacy is mainly attributed to the non-uniformity of the solid surface. Five 
physicochemical parameters have been obtained for each of the twenty heterogeneous 
reactions studied. With these systematic experiments under conditions which are 
similar to the atmospheric ones, an extrapolation of the results obtained to cereal,) 

atmospheres with a high degree of confidence is possible. Some of the calculations 
were based on the linear model for comparison. 

Key words: Mass transfer phenomena, physicochemical constants, reversed-flow 
gas chromatography, hydrocarbon-pigments reactions, nitrogen dioxide-pigments 
reactions 

INTRODUCTION 

The surface - coating industry is indeed an ancient one. The o r i p  of paints dates 

back to prehstoric times. It has been in more recent years, however, that the surface - 
coating industry has made its greatest strides, whch can be attributed to the results of 

scientific research and the application of modem engineering. Pigments are coloured, 

organic and inorganic insoluble substances, which are used widely in surface coatings. 

White lead, zinc oxide and zinc chromate (lithopone) were once the principal white 

pigments. Today titanium oxide in many varieties is almost the only white pigment 

used. Coloured pigments consisted among others of lead chromate, and cadrmurn 

sulfide. Both of them are yellow [l]. The industrialized society of the 20" century, as 

it is kmown, has caused a ralcal change in the conditions of preservation and 

conservation of monuments, buildings and metallic structures, and the atmospheric 

pollution associated with industrialization is currently threatening extinction for both 

cultural heritage and nature itself. General industrial emissions come m d y  fiom 

evaporation during the storage, transportation and utilization of organic chemicals 
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Whilst emissions occur from a variety of industries, the petroleum industry is the 

main industrial source of troposphere volatile hydrocarbons. 

The more reactive hydrocarbons are expected to perform a key role in the formation 

of secondury pollutants in urban areas close to emissions sources. What is really 

important is the kmetic study of interaction of these hydrocarbons with pigments 

which consist the coloured basis of different paints of works of art. On the other hand, 

it is known [2,3] that any heterogeneous reaction between a solid and a gas consists of 

the following four basic steps: 

1. Mass tranfer of the gas reactant to the gross exterior surface of the solid material; 

2. Diffusional transfer of the gas in and out of the pores of the solid; 

3. Adsorption (rather activated) of the gas at the interface; and 

4. Possible surface chemical reaction of the adsorbed reactant. 

Steps 1-3 can be simplified by considering two overal mass transfer coefficients, 

one in the gas phase and one in the solid phase. It is their ratio that gives the 

equilibrium constant for the distribution of the gas between the solid and gaseous 

phases, according to the linear isotherm model [2,3]. But as mentioned elsewhere [4], 

the linear model is inexact when treating with inorganic oxides and sulfides. For this 

inadequacy the nonuniformity of the surface sites is above all the more responsible. 

For that reason the linear model is abandoned and replaced by the directly measured 

experimental isotherm [5 ] .  

In the present work a physicochemical study of the reactions between each of the 

three pigments and the six gases is carried out, according to the non-linear model, with 

a new chromatographic techmque known as reversed - flow gas chromatography (RF- 

GC). Some of the calculations were based on the linear model (which is described in 

refs 2, 3) for comparison. 
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EXPERIMENTAL 

The RF-GC technique [6] involves a flow-rate pertubation of the carrier gas which is 

achieved experimentally simply by using a four- or six- port gas sampling valve and 

reversing the direction of flow of the carrier gas, usually for a short time interval. If 

pure carrier gas passes through the sampling column, nothing happens on reversing 

the flow. If a solute comes out of the diffusion column at ----0 (cf Fig. 1) as the result 

of its difksion into the carrier gas, filling the column z and also running along the 

sampling column, the flow reversal records the concentration of the solute at the 

junction of the sampling column with that of the diffusion one, at the moment of the 

reversal. This concentration recording has the form of extra chromatographic peaks 

superimposed on the otherwise continuous detector signal. 

The experimental arrangement has been described elsewhere [7,8] and corresponds 

to that of Fig. 1, which is vary different from the one used in the past, [9-101. The 

geometrical characteristics of the cells used in the experiments are given in Table I, 

together with the mass, external porosity and specific surface of the solids. 
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Figure I : Schernatlc representation of the column~ andgas connectionsfor the 
study of mass transfer phenomena. From re$ (81. 
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All gases used were obtained from Air Liquide (Athens, Greece) and had a purity of 

99.000%-99.999%. The solids used were pro-analysi from Merck. 

First, the diffusion coefficient of each gas into the nitrogen carrier gas was 

determined, by using an empty glass vessel. Then, by using the same vessel filled with 

every solid, the various physicochernical parameters pertaining to the heterogeneous 

reactions were determined, following the next stages: 

a) Conditioning of each solid in situ at 323.2 K for 22 h with nitrogen flowing at the 

same flow rate. 

b) Injection of 1 cm3 of each gas at atmospheric pressure. 

c) Measurement of the height of the sample peaks by reversing the direction of the 

canier gas flow for 10 S, which is a shorter time than the gas hold-up time. 

In all cases the reactant is injected into the diffusion column of Fig. 1 through the 

solute injector, while the whole ceU, comprising the sampling column and the 

diffusion column, is kept at a constant temperature of 323.2 K inside the 

chromatographic oven. The carrier gas (pure nitrogen) is running only through the 

sampling column, filling also the difhsion column, and its direction is reversed from 

time to time (about 70 double reversals). Each flow reversal creates extra 

chromatographic peaks, which ctsamplen the concentration of the reactant at the 

junction X= I' of Fig. 1. An example of the sample peaks obtained is shown in Fig. 2. 

The moment of injection is the time 0 and some flow reversals and flow restorations 

are indicated on the chart recorder strip. 

It is the height H of these peaks (say in cm), measured from the continuous baseline, 

together with the time t when the respective flow-reversal was made, that constitute 

the measurable experimental quantities. 
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TABLE I : Lengths and volumes of the cell used to obtain the diffusion bands, 

together with the solid's amount, external porosity and specific surface 

area. 

Solid Lllcm L21cm Vdcm V'G/cm aslg cm-' E S S A / C ~ '  g-' 

TiOz 21.6 9.6 2.08 0.92 0.07 0.5459 31100 

CdS 49.0 5.5 6.15 17.5 4.5 0.7425 25100 

PbCr0449.0 5.5 6.15 17.5 13.63 0.1625 4900 

Fzgure 2 : Sample peak7 of propene in nitrogen. in the presence ofTiOl 

METHOD 

The damage measurements for the action of hydrocarbon pollutants on 

pigments are based on physicochernical quantities. Physicochemical measurements by 

gas chromatography were performed by creating a diffusion current of the gaseous 
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solute into the canier gas, perpendicular to the chromatographic movement, and 

superimposing on it the effect of a rate or equilibrium process taking place at one end 

of the dffusion column. Seeking such parameters one has to go through the detailed 

mechanisms by which the above mentioned pollutants cause the final damage of 

different works of art. Thus, fiom a non-distorted diffusion band, the partition 

coefficient of the gases between a gas phase and a solid phase have been determined, 

whde from a distorted diffusion band. mass transfer and partition coefficients across 

gas-solid boundaries have been computed, and also adsorption - desorption constants 

and reaction rate constants when the gas and the solid can react. 

The theoretical analysis for the measurement of the desired physicochemical 

parameters by W-GC depends on the phenomena being studied and the accuracy 

adopted. [8,10]. 

By plotting InH against t, one obtains the so- called lfussion bands. A typical 

example is given in Fig. 3. Nothing can be gained by visual examination of such plots, 

but all physicochernical quantities listed in Tables 11-V11 are calculated fiom the 

diffusion bands, by deriving an equation which describes them mathematically. This 

was based on the solution of a system of partial differential equations, under gven 

initial and boundary conditions. For this purpose, it is not necessary to determine the 

isotherm equation separately. Only the basic definition of the local adsorption equation 

is adopted, thus incorporating the real experimental isotherm in the mathematical 

calculations. Any possible non-linearity is automatically taken care of. The above 

definition is 

where 
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c', = equilibrium adsorbed concentration of the analyte at time t (m01 g-') 

m, = initially adsorbed amount of analyte (mol) 

a, = amount of solid adsorbent per unit length of column bed (g cm-') 

y = length coordinate along the fdled section L, (cm) 

6(y- h) = D' ~rac's delta function describing the initial condition of the bed, 

when the analyte is introduced as an instantaneous pulse at the point y = 4 (cm-') 

k = equilibrium factor transforming into C, the area under the curve of the gaseous 

concentration c,, (m01 cm") in region LZ vs time at any later time t (cm3 g" S-') 

c,= gaseous concentration of the analyte as a function of time t and coordinate 

y along the column ( m01 cm"). 

r = dummy variable for time. 

The mass balance equation in the filled region L2 of the diffusion column is 

whereD2(cm2 S-') is the diffusion coefficient of the analyte in section L2, 

corresponding to the temperature T2 of the solid bed , c, the concentration of the 

adsorbed analyte at time t , k-, the desorption rate constant , and a, the cross 

sectional area of the void space in region y. 

The rate of change of the adsorbed concentration is 

dcs 
- = k-, (c,: -cs) - k,cs 
dr 

thek2denoting a possible fust-order or pseudofust-order surface reaction of the 

adsorbed analyte. 

m 
The initial conditions C, (0, y )  = -G(y - L, ) and c, (0, y )  = 0 where m is the 

a, 

amount of analyte introduced as a pulse. 

J Chim. Phys 
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An equation analogous to Eq. (2) omitting the last term on the right-hand side, is 

hold true for the gaseous concentration of the analyte in region z. In this region the 

diffusion coefficient is ~ ~ ( c m ~  S-'). The system of partial differential equations formed 

above is solved by using douple Laplace transforms of all terms with respect to time 

and length coordinates, under the gven initial conditions and c,(z,O) = 0, the isotherm 

Eq.(l) and subject to the appropriate boundary conditions at the junctions L2 /L1 and X 

= /.'(cf. Fig. 1). By means of certain approximations [6] this leads to the expression 

H 1 n r =  A I  exp (Bit) + A2 exp(B2t) + A ;  exp(B3t) (41 

where M is the response factor of the detector (1 for a F.I.D.), g is a calibration 

factor, calculated as described in detail elsewhere [5], and c( l f , t )  the concentration of 

the reactant at X = I' and time t. This is the equation describing the difhsion bands 

(cf. Fig. 3): and the physical meaning of the exponential coefficients of time B,, B2 

and B3 are as follows: 

U 
X = _-L+ k - ,  + k ,  = -(B, +B,  +B,)  

1 + L', (5) 

where 

a l =  diffusion parameter of A in the gas phase of region z equal to 2 ~ ~ 1 ~ ~ ~  (S-'), D1 

being the difhsion coefficient of the analyte in the empty region L1. 

2T7A (empty)& a 
v, = +', a dimensionless quantity, L1 and L2 being the lengths of the 

V G  0 2  

section z and : of the difhsion column, respectively, VG and VG their gaseous 
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volumes, E the external porosity of the solid bed and a2=2~2lL2~ ( D2 is the diffusion 

coefficient of the analyte in section L2 as it was described above). 

By entering the values of the pairs H (peak height), t (time of reversal) in the DATA 

lines 2000-2020 of a PC programme listed in Appendix A of ref.5, the exponential 

coefficients B,, B2 and B3 of Eq. (4) are computed by a non-linear least-squares fitting. 

From these, using Eqs (5)-(10), kl , k.1 and k2 are calculated as 

Finally, k of the isotherm is found from kl and k-l through the Eq. (1 1) and then, the 

deposition velocity is calculated by the relation (12): 

where s(cm2 g-1) is the specific surface area of the adsorbent and the reaction 

probability y is found by means of the relation (13): 
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R ,  being the gas constant and M the molar mass of the analyte. 

All these calculations are carried out with the help of a simple PC programme, as 

mentioned above. Thus, only three original parameters kl , k., and k2 are fitted to the 

experimental data H , t simultaneously: and from them k, V ,  and y are calculated as 

derived parameters according to Eqs. (1 1): (12) and (13), respectively. The 

exponential stripping method of the PC programme [5], used to calculate the 

exponential coefficients of time of Eq. (4) is guided by the overall goodness of fit 

expressed by the square of correlation coefficient r2. This coefficient was in the range 

0.991-0.999 showing a remarkable goodness of fit for a non-linear regression analysis. 

The programme [5] also prints, together with the B values, their standard errors. which 

were reasonable enough for physicochemical measurements. 

RESULTS AND DISCUSSION 

The calculation of the physicochemical parameters, shown in Tables 11-VII, by 

means of the appropriate PC programme of ref.[5], is based on the theoretical analysis 

developed in the section METHOD. Under A's and B's of the algebraic sum of the 

three exponential functions of time, all the corresponding calculated kinetic 

parameters are hidden. 

The diffbsion bands obtained, llke that of Fig.3, were analyzed in two ways, 

differing basically in the adsorption isotherm employed. The one uses a linear 

isotherm approximation [3], while the other [l11 takes into account the real 

experimental isotherm. 
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In the non-linear isotherm model the gas exchange rates are globally given either as 

an exchange constant, the deposition velosity V& or its reciprocal, which measures the 

cuesistance)) of the interface to gas tranfer, while the linear one calculates the overall 

mass transfer coefficients KG and Ks. The specific interaction gas-surface can be 

represented by using the concept of reaction probability, y. This coefficient, may take 

values between 0 (no reaction) and 1 (perfect sink surface). To the above one must 

add the local equilibrium parameter k for the adsorption isotherm of the gases studied 

on the solid pigments, which replaces the equilibrium constant K (in linear model) for 

the distribution of the gas between the two phases. Besides, the rate constant of the 

desorption fiom the surface k.' and the rate constant of a possible surface reaction k2 

can be determined as well (the corresponding calculated parameters in the linear 

model are kl, k-l and k2). All parameters, Vd, y, k, k_' and kz, that are listed in Tables 

II-VII can be measured in the same experiment, under non - steady state conditions. 

All these calculations are based on a non linear adsorption isotherm model. 

Some of the calculations were based on the linear model (which is described in refs 

2, 3) and are listed in Tables VIII-IX for comparison. 

Comparison between the values of kl and kSl (the kl multiplied by a, l a, ), also 

between (linear) and k-l (non-linear), as well as between K 'S derived from the 

ratios kll Rland W k-', shows that in most cases there is a big difference between the 

two. For example, in the system CzH6 I Ti02 in Table VIII k = l  .04 x104 X 0.750 

= 7.8 XI@' cm3g-'S-' and k-l = 14.13 X 104 S-', whlle in the same system fiom 

Table I1 we get k = 86 X 1oe5 crn3g"s-' and k.'=3.23 X 10-X S-',i.e., l l times bigger k 

value and 2.3 times bigger kSl value. The K values are found as 0.055 and 0.27 cm3g-l, 

i.e., 4.8 times bigger in the second case of the experimental isotherm. 



2192 S. Birbatakou et a1 

Comparing the defmition of Vd by Eq.(12 ) with that of KG as gven in ref. 2: 

where As is the total surface area of the solid, one sees that Vd is analogous to KG, 
except for the correction factor kl 1 (k.1 + kl) ,  taking care of a possible irreversible 
surface reaction of the solute. Also, kl a,la, is analogous to k. The only 
physicochemical assumptions concerning the gas l solid interactions are that all 
parameters measured directly or calculated indirectly refer to elementary steps at 
equilibrium. Based on that, the ratio kl 1 k.] in the method with the linear isotherm, and 
k / k-] in the method with the real experimental isotherm represent equilibrium 
distribution constants K, according to the principle of microscopic reversibility. 

0 50 100 150 200 250 300 
time I mm 

Figure 3 : Dlfliion bands obtalned wlth I cm3 C& injected into U vessel containing ChS. at 
323.2K. C2H2,h C2Hd, 0 c2H6, c3H6, - I-cdH8 A 
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TABLE I1 : Kinetic parameters and  mass transfer coefficients for  the Ethane action on 
the  three pigments, i.e. deposition velocities V*, reaction probabilities y, 
local adsorption parameters of t h e  experimental adsorption isotherm k, 
desorption rate  constants and surface reaction rate  constants k2 a t  323.2 
K, using the  non-linear adsorption isotherm model [5,11]. 

Solid 101° V,cm S-' 1014 y 1 o5 klcm3 S-' 1 o3 A~/S-' 10' k2/s-' 

TiO2 24.7 20.7 86.0 3.23 3 1.8 

CdS 2.37 1.99 67.6 3.11 2.77 

TABLE III : Kinetic parameters and mass transfer coefficients for the Ethene action 
on the three pigments, i.e. deposition velocities V* reaction probabilities y, 
local adsorption parameter of the  experimental adsorption isotherm k, 
desorption rate  constants and surface reaction rate  constants k2 a t  323.2 
K, using the  non-linear adsorption isotherm model [5,11]. 

Solid 101° V+ S-' 1014 y 1 o5 klcm3 S-' g'' 1 o3 k-,/S-' 105 k2/s-' 

TiO2 54.2 43.9 312 6.02 34.3 

CdS 2.15 1.74 78.3 3.39 2.35 

PbCr04 2.90 2.35 8.75 2.98 4.92 

TABLE IV : Kinetic parameters and mass t ransfer  coefficients for the Ethyne action 
on the three pigments, i.e. deposition velocities V* reaction probabilities y, 
local adsorption parameters of the  experimental adsorption isotherm k, 
desorption rate  constants and surface reaction rate  constants k2 a t  323.2 
K, using the non-linear adsorption isotherm model [5,11]. 

Solid 101° Vd/cm S-' 1014 y 1 o5 k/cm3 S-' 1 o3 k-'IS-' 1 o5 k21s-I 
TO2 49.7 38.7 177 3.90 37.3 

CdS 1.99 1.55 74.5 3.82 2.58 

PbCr04 2.08 1.62 8.13 4.02 5.1 1 
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TABLE V : Kinetic parameters and mass transfer coefficients for the Propene action on the 
three pigments, i.e. deposition velocities Vd, reaction probabilities y, local 
adsorption parameters of the experimental adsorption isotherm k, desorption rate 
constants k., and surface reaction rate constants k2 at  323.2 K, using the non- 
linear adsorption isotherm model [5,11]. 

Solid 10" Vd/cm S-' 1 014 1 o5 k m 3  S-' g-1 10' k-]/S-' 1 o5 k2/s-' 

T,O2 38.2 37.8 154 2.83 23.7 

CdS 2.45 2.43 59.5 2.55 2.67 

PbCr04 2.17 2.16 7.55 2.83 4.05 

TABLE V1 : Kinetic parameters and mass transfer coefficients for the l-butene action on 
the three pigments, i.e. deposition velocities Vd, reaction probabilities y, local 
adsorption parameters of the experimental adsorption isotherm k, desorption 
rate constants k-, and surface reaction rate constants k2 a t  323.2 K, using the 
non-linear adsorption isotherm model [5,11]. 

Solid 10 '~V~/cms"  l0I4y 10~k/crn's- '~- '  l ~ ~ k . ~ l s - '  1 o5 k2/s-' 

TiO2 23.0 26.4 10.3 2.13 16.0 

CdS 1.40 1.60 4.47 2.03 1.61 

PbCr04 1.76 2.02 1 .S8 5.30 2.91 

TABLE W : Kinetic parameters and mass transfer coefficients for the nitrogen dioxide 
action on the three pigments, i.e. deposition velocities Vd, reaction probabilities 
y, local adsorption parameters of the experimental adsorption isotherm k, 
desorption rate constants kel and surface reaction rate constants k2 at  323.2 K, 
using the non-linear adsorption isotherm model [5,11]. 

Solid l 0'' Vd/cm S-' 1 014 y 1 o4 vcm3 S-' l o4 k -,/S-' l o4 k2ls-' 

CdS 6.6 6.8 2.65 96.73 6.40 

J Chim. Phys 
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TABLE VIII : Kinetic parameters and mass transfer coeficients for t h e  hydrocarbons 
action on the T i 0 2  pigment, Le. the mass transfer coefficients in t h e  gas 
KG and in the  solid K% t h e  adsorption equilibrium constants K, the 
adsorption rate  constants kl and the desorption ones k-l, as well a s  the 
surface reaction rate  constants k2, a t  T = 323.2 K, using t h e  linear 
adsorption isotherm model 121. 

TABLE M : Kinetic parameters and mass transfer coeff~cients for t h e  hydrocarbons 
action on the CdS pigment, that  is the mass transfer coefficients in the gas 
KG and in the  solid Ks, the  adsorption equilibrium constants K, the 
adsorption rate  constants k, and the desorption ones k.l, a s  well a s  the 
surface reaction rate  constants k2, a t  T = 323.2 K, using t h e  linear 
adsorption isotherm model 121. 

From all these physicochernical quantities measured under the same experimental 

conditions, it is obvious a much more different behaviour of the three pigments as well 

as of the six gaseous reactants. This is justified by the different chemical compositions 
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of them. Among the solids, TiOz seems to be the most reactive and CdS the less. 

Among the hydrocarbons, the unsaturated ones are more reactive than the saturated 

ethane, and the hydrocarbons with the lower molecular weight exibit the hghest 

reactivity. Nitrogen dioxide on the other hand has a sigmficant attack by itself and it 

is possible by means of RF-GC tequique to measure precisely its recognized attack. 

Thus, by means of the constants kl,k.l the reversible phenomena of adsorption - 

desorption, taking place in the gas -solid boundaries, are studied in a quantitative 

level (order of magnitude 1 o"), while through the kz (order of magnitude 10" ), any 

ineversible phenomenon can be investigated. 

Contrarily to other techniques, either chromatographic or not, which take the 

adsorption phenomena as negligible, all k.l values provided by t h s  one lead to more 

realistic models and mechanisms. Moreover: the mass transfer coefficients related 

directly to the adsorption-desorption phenomena provide a steady scientific basis for 

lunetic data interpretation. 

Finally, the experimental data concerning diffusion coefficients, rate constants etc 

are in good agreement with the results obtained by other groups with the same or 

other techniques (refs. 10. 12- 17 ). 
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