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Abstract 

Cyanobacterial toxins constitute one of the most high risk categories of waterborne 

toxic biological substances. For this reason there is a clear need to know which 

freshwater environments are most susceptible to the development of large populations 

of cyanobacteria.  Phytoplankton data from 134 UK lakes were used to develop a series 

of Generalised Additive Models and Generalised Additive Mixed Models to describe 

which kinds of lakes may be susceptible to cyanobacterial blooms using widely 

available explanatory variables. Models were developed for log cyanobacterial 

biovolume.  Water colour and alkalinity are significant explanatory variables and 

retention time and TP borderline significant (R
2

adj = 21.9 %).  Surprisingly, the models 

developed reveal that nutrient concentrations are not the primary explanatory variable; 

water colour and alkalinity were more important.  However, given suitable 
 

environments (low colour, neutral-alkaline waters), cyanobacteria do increase with both 

increasing retention time and increasing TP concentrations, supporting the observations 

that cyanobacteria are one of the most visible symptoms of eutrophication, particularly 

in warm, dry summers. The models can contribute to the assessment of risks to public 

health, at a regional- to national level, helping target lake monitoring and management 

more cost-effectively at those lakes at highest risk of breaching World Health 

Organisation guideline levels for cyanobacteria in recreational waters.  The models also 

inform restoration options available for reducing cyanobacterial blooms, indicating that, 

in the highest risk lakes (alkaline, low colour lakes), risks can generally be lessened 

through management aimed at reducing nutrient loads and increasing flushing during 

summer. 

 
 

Keywords: Algal bloom, blue-green algae, cyanotoxin, phosphorus, restoration, Water 
 

Framework Directive 
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1. Introduction 

Cyanobacteria are natural inhabitants of freshwaters, where they fulfil important roles in 
primary production, nitrogen fixation and the cycling of matter (Howarth et al., 1988). 

They can, however, present hazards to the health of humans and other animals when 

large populations flourish to produce blooms and particularly when these accumulate on 

lake surfaces or along shorelines as scums.  They constitute a major health hazard as 

they frequently produce numerous potent toxins (cyanotoxins) that can result in a range 

of adverse health effects from mild, e.g. skin irritations and gastrointestinal upsets, to 

fatal (Codd et al., 1999, 2005). Cyanotoxins constitute one of the most high risk 

categories of waterborne toxic biological substances. This is because not only are the 

health hazards which they present significant, but exposure to potentially harmful doses 

of the cyanotoxins can occur, with blooms and scums being a common annual feature in 

many lakes or reservoirs worldwide.  There is, therefore, a great need for understanding 

where and when cyanobacterial blooms are likely to occur and to what extent.  This 

knowledge would help target lake monitoring and management more efficiently at those 

lakes at highest risk of breaching World Health Organisation (WHO) and national 

guidelines (Chorus & Bartram, 1999; WHO, 2003, 2004). 

Research over recent decades has identified a number of physical factors that 

favour cyanobacterial blooms, with the main focus on seasonal drivers, such as warmer 

temperatures, windiness and consequently the intensity of thermal stratification of the 

water column (Foy et al., 1976; Mischke, 2003; Reynolds, 2006).  Bloom-forming 

cyanobacteria have been shown to be favoured by high alkalinities and associated high 

pH (Shapiro, 1984).  It is also a widely held view that the increasing magnitude and 

frequency of cyanobacterial blooms is primarily related to the nutrient enrichment of 

freshwaters. Indeed there have been several studies showing empirically that bloom 

frequency is related to the general nutrient status of a lake (Gorham et al., 1974; Dokulil 

& Teubner 2000; Downing et al., 2001; Reynolds & Petersen, 2000; Schindler et al., 

2008). Supporting evidence of a relationship between nutrient enrichment and 

cyanobacterial abundance is largely derived from long-term studies of enrichment at a 

few selected individual sites, usually lowland, alkaline, eutrophic lakes, and often 

examining individual cyanobacterial species.  There have been a few published studies 

examining the relative % abundance of cyanobacteria across eutrophication gradients in 

large datasets (Downing et al., 2001; Ptacnik et al., 2008), but a more comprehensive 

quantitative analysis of what factors affect actual cyanobacterial abundance across a 

wide range of lake types at a regional or national scale has not been carried out. 

A more ‘global’ approach has been adopted to develop empirical statistical models 

to predict the amount of phytoplankton chlorophyll a for given concentrations of 

phosphorus in lake waters (OECD, 1982; Phillips et al., 2008) and also to predict 

natural background chlorophyll concentrations for individual lakes (Carvalho et al., 

2009).  The present study aims to take a similar statistical modelling approach, but to 

more specifically model the variability in cyanobacteria at a national level. It aims to 

understand the key environmental drivers which are routinely available that favour 

cyanobacterial abundance in lakes across the UK.  We do not aim to understand the 

distribution and abundance of individual cyanobacterial species or functional groups as 

it is the risk from all potentially toxic cyanobacteria that is important. The models can 

be used to help identify which lakes are most susceptible to developing cyanobacterial 

blooms, enabling a more proactive, rather than reactive, strategy for monitoring and 

managing cyanobacterial health risks and other adverse impacts, including guiding 
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restoration measures.  More generally, the analysis examines whether empirical 

evidence from a large selection of lakes spanning a range of environmental conditions, 

supports nutrient concentrations as the key driver of cyanobacterial abundance in 

freshwater lakes. 
 

 
 

2. Material and Methods 

 
2.1 Data 

Phytoplankton data were available for summer months (July, August, September) from 

UK lakes during the period 2003 to 2006.  Samples were either integrated tube samples 

from the middle of the lake, or where boat access was not possible, a sub-surface 

sample taken 0.3 m below the surface, using a weighted bottle and float attached to a 

rope and thrown from the shore near the outflow. The varying sampling method may 

add variability to the results (discussed later), although previous studies have shown that 

open water and outflow samples rarely differ markedly in terms of chlorophyll a (e.g. 

Bailey-Watts, 1978).  Samples were preserved with Lugol’s iodine solution and stored 

for counting for no longer than 1 year. Phytoplankton were counted using 5-10 mL 

Utermöhl sedimentation chambers at a range of magnifications (from x40 to x500) 

depending on cell size. In general, 400 counting units were measured across 

magnifications using low magnification full-chamber counts, intermediate 

magnification transects and high magnification fields of view. Counts and biovolume 

estimates of cells, colonies and filaments were made following the approach outlined by 

CEN (2004) and Brierley et al., (2007). A series of training workshops and ring-counts 

were undertaken to ensure these guidance documents were followed correctly and 

taxonomic identities were standardised.  Sub-samples were also taken for nutrient and 

alkalinity measurements and analyses were carried out by accredited methods at UK 

environment agencies analytical chemistry laboratories.  Colour was measured using 

absorbance at 400 nm, with measurement of a 100 Hazen standard solution at 400nm 

used to convert the colour results to Hazen units. 

 
Usually only one sample was available per month. If more than one sample was 

available, data were averaged by month.  Some lakes were represented in the dataset by 

samples from different months in the same year.  The 262 samples were taken from 134 

lakes, with 63 lakes having more than one monthly sample in a particular year.  Table 1 

highlights that most of the data are for 2004 and 2005, however, there was a similar 

amount of data available for each month overall. 

Table 2 lists the principal cyanobacteria genera considered as potentially toxin- 

forming in UK lakes.  Taxonomy broadly followed John et al. (2002) which uses the 

genus name Oscillatoria for taxa that other floras refer to as Planktothrix. Records for 

Snowella and Gomphosphaeria were grouped as they were sometimes lumped together 

by counters.  The most common genera known to cause toxin problems in UK 

freshwaters include Microcystis, Aphanizomenon, Snowella, Oscillatoria (Planktothrix) 

and Anabaena.  The likelihood of an individual bloom of these genera containing potent 

toxins ranges from about 40% to at least 90% (Codd et al., 1999).  The other genera 

were included in the analysis as they are associated with toxicity, although the toxic 

components are not so well characterised and they also tend to bloom less frequently. 

The natural log cyanobacteria biovolume (µm
3 

ml
-1

) was taken as the response 
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here with a small arbitrary constant of 0.001 added, before transforming, to eliminate 

zeros.  Cyanobacterial biovolume is a direct measure of actual cyanobacteria abundance 

and can be, therefore, related to potential toxin concentrations (Codd et al., 2005).  No 

a-priori subjective decisions were made in selecting explanatory variables.  Data were 

obtained for the following widely-available explanatory variables: lake area (km
2
), 

altitude (m above sea level), mean depth (m), alkalinity (mEq L
-1

), colour (Pt L
-1

), 

retention time (years), total phosphorus (TP) (µg L
-1

), total nitrogen (TN) (mg L
-1

) and 

chlorophylla (µg L
-1

). Retention times were taken from the UK lakes database 

(http://www.uklakes.net/) and were estimates based on lake volume and 30-year average 

annual total rainfall in the catchment.  Table 3 includes summary statistics for all 

explanatory variables and for the response of cyanobacteria biovolume.  It illustrates 

that there is a small amount of missing data for five of the variables. 

 
2.2 Statistical Methods 

Due to the presence of non-linear and non-monotonic relationships between some of the 

explanatory variables and the cyanobacterial response being investigated, generalised 

additive models, GAMs (Hastie & Tibshirani, 1990; Wood, 2006) were adopted 

throughout, assuming normal errors. This approach, with a log cyanobacterial response, 

was taken since the range of values for cyanobacteria is very large going from 0 to 7.5 x 

10
8 

and adding a very small constant before transforming reflects the fact that it is 

unlikely that all of the zeros are truly zero counts.  In these models the relationship 

between the response and the explanatory variables is allowed to be a smooth function 

instead of restricting relationships to be linear. 

Since some of the lakes have measurements recorded for more than one month 

within the same year, generalised additive mixed models, GAMMs (Pinheiro & Bates, 

2000: Wood, 2006) were also fitted.  In these models a random intercept is included for 

lake in order to explore the effect of multiple samples from individual lakes on the 

results. 

Models were developed for the whole lake dataset.  In addition, as bloom-forming 

cyanobacteria are a typical feature of alkaline lakes, models were also developed for a 

sub-set containing all medium alkalinity (MA: 0.2-1.0 mEq L
-1

) and high alkalinity 

(HA: >1.0 mEq L
-1

) lakes (i.e. excluding low alkalinity lakes <0.2 mEq L
-1 

that are 

likely to have little or no cyanobacteria). 

All of the models were fitted using the gam and  gamm functions in the mgcv 

package (1.7-6) (Wood, 2011) of R version 2.13.1 (R Development Core Team 2011), 

which is free software available at  http://www.r-project.org.  Since the aim of the 

modelling was to identify relationships between potential explanatory variables and the 

cyanobacterial response, the following modelling strategy was employed. For each of 

the models fitted, all available data were used and the estimated degrees of freedom 

(edf), used to determine the amount of smoothing for each explanatory variable, has 

been automatically selected by the model fitting procedure, using restricted maximum 

likelihood (REML).  REML and maximum likelihood (ML) are less prone to local 

minima than other criteria and Wood (2011) highlights evidence that smoothness 

selection based on REML/ML may offer an improvement in terms of mean square error 

performance over other automatic selection methods.   However, models were also re- 

fitted using generalised cross validation (GCV) for smoothness selection and the p- 

values were very similar, with results in terms of significance of model terms 

unchanged, see Wood (2004, 2008 and 2011) for a discussion on smoothness selection. 



6  

 

Since the amount of smoothing has been estimated during the model fitting process, the 
p-values (testing the null hypothesis that the smooth term is constant) may be less 
conservative than stated. Therefore, proportion deviance explained by the fitted model 

and R
2 
–adj were also used to identify important explanatory variables, along with the 

individual p-values for each model term. After fitting the model, plots were produced to 

highlight the relationship between each of the explanatory variables and cyanobacterial 

abundance and to indicate the shape of the relationships.  A stepwise model-fitting 

procedure was used, whereby, the first model contains all potential explanatory 

variables, and subsequent models are fit, where the non-significant terms are removed 

sequentially. The full and reduced models are discussed here. 

Natural log transforms of all the explanatory variables were appropriate to reduce 

skewness in the data distributions.  Two distinct outliers were removed from the 

biovolume data as they appeared to be large transcription errors.  There were also 4 high 

outliers in the retention time data.  These were all reservoirs and were, therefore, 

removed from the analyses as the actual retention time was likely to be artificially 

managed and much lower. 
 

 
 

3. Results 

3.1 Correlations between responses and explanatory variables 

A correlation analysis highlighted that log area, log depth and log retention time were 

highly significantly correlated (Table 4). From this analysis it was decided to remove 

the former two from the model fitting and retain their influence through retention time. 

This was to reduce the possibility of concurvity in the model, where concurvity is the 

nonparametric equivalent of multicollinearity. Of the nutrient factors, both log TN and 

log TP were highly significantly correlated.  As log TP had a stronger correlation with 

chlorophylla and cyanobacterial biovolume it was retained for model fitting.  On this 

basis, the variables considered in the final model fitting were log altitude, log retention 

time (chosen over depth and area), log alkalinity, log colour and log TP (chosen over 

TN and chlorophylla). 

 
3.2 Response of Log Cyanobacterial Biovolume 

The results for the smooth terms in the GAMMs and GAMs are presented in Table 5 

and it can be seen that the results are very similar.  This highlights that the clustering 

within lake in the data is having little effect and the GAM results will be discussed in 

detail from this point on. 

The full GAM using all possible explanatory variables explained 26.9 % of the deviance 

in log cyanobacterial biovolume (R
2
-adj = 23.1 %, n=207) (Table 5).  Removing non- 

significant terms from the full model resulted in a model incorporating log colour, log 

alkalinity, and borderline significant log TP and log retention time (deviance explained 

25.0%, R
2
-adj = 21.9%, n=207) (Table 6).  Log retention time and log TP 

concentrations showed positive linear relationships with the response with coefficients 

(standard errors) of 0.613 (0.316) and 0.858 (0.457) respectively. Cyanobacteria were 

not abundant in lakes with a retention time <30 days and TP concentrations <20 µg L
-1 

(Figure 1).  Humped relationships were apparent with log colour and log alkalinity with 

peak biovolumes modelled at 12 Pt L
-1 

and 1.9 mEq L
-1 

(Figure 1). The model for the 

subset of medium and high alkalinity lakes (Table 5) explained slightly more variability 

in the response than the whole dataset model (deviance explained = 29.5%, R
2
-adj = 
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23.9 %, n = 151).  The reduced model incorporating log colour (p < 0.001) and log 
retention time (0.01) explained 19.6 % of the deviance in log cyanobacterial biovolume 

(R
2
-adj = 17.3 %, n=157). The forms of the relationships were the same as with the all- 

lake dataset with the highest cyanobacterial biovolumes found in poorly flushed, low 

humic lakes with a water colour of about 10-20 Pt L
-1

. 
 

 
 

4. Discussion 

An improved understanding of which lakes are susceptible to the development of large 

populations of potentially toxic cyanobacteria can inform regional- and national-scale 

assessments of risks to public health.  In general, colour was the strongest explanatory 

variable in all models, followed by alkalinity, then retention time and finally TP. 

Altitude was not selected in any of the models, although this may be because the range 

of the altitude data was not large, with a high proportion of the lakes of low altitude 

(<200 m a.s.l.) (Table 3) included in the study dataset.  Unsurprisingly, alkalinity was 

not a significant explanatory variable when only medium and high alkalinity lakes were 

considered, with retention time becoming much more important in the model. 

The forms of the modelled relationships were not unexpected, confirming observations 

reported from more selective lake studies in the literature.  For example, the absence or 

low abundance of cyanobacteria in lakes of high colour agrees with phytoplankton 

studies of humic lakes, which describe chrysophyte, cryptophyte and diatom algae as 

the dominant groups in the community, although cyanobacterial genera such as 

Anabaena and Woronichinia can still occur (Arvola et al., 1999).  The preference of 

bloom-forming cyanobacteria for neutral to alkaline waters has also been established in 

elegant in-lake experimental studies (Reynolds & Allen, 1968; Shapiro 1984).  The 

humped relationship observed, indicating a decline in waters of very high alkalinity, is 

not reported in the literature, but it may be that these lakes were in fact affected by sea 

salts, as freshwater cyanobacteria are known to be very sensitive to slight changes in 

salinity (Paerl, 1988).  However, this result should not be over interpreted since the 

decline occurs towards the end of the smooth function, and such functions can suffer 

from boundary effects. 

The analysis of a large lake dataset has importantly revealed that nutrient 

concentrations do not appear to be the primary driver of cyanobacteria abundance at a 

national scale; water colour and alkalinity both appear to be more important.  However, 

given such suitable environments (low colour, neutral-alkaline waters), the analysis did 

show that cyanobacteria increase with both increasing retention time and increasing TP 

concentrations.  This supports the widely observed increases in bloom incidents in 

warm, dry summers in individual eutrophic lakes and reservoirs.  The impact of 

retention time on phytoplankton composition has not been so extensively studied, 

although it has been demonstrated that small phytoplankton with relatively high 

reproductive rates tend to dominate lakes or seasons when retention times are low (high 

wash-out) (Dickman, 1969; Bailey-Watts et al., 1990). Large, bloom-forming 

cyanobacteria are recognised for their slower reproductive rates compared to many 

diatoms and small green or flagellate algae (Reynolds, 2006) and the positive linear 

response to retention time observed in these models fits with this knowledge.  Elliott 

(2010) recently highlighted in model simulations at an individual site, that retention 

time was more important than water temperature in increasing the frequency of algal 

blooms above WHO thresholds, but that nutrients ultimately controlled the capacity at 
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an individual site scale.  Intensive long-term monitoring at Grasmere in the English 

Lake District, supports our more broad-scale finding that cyanobacteria were never 

abundant in lakes with a retention time <30 days.  In Grasmere, the filamentous 

cyanobacterium Anabaena was shown to only occur during long, dry summers when 

retention times are high (Reynolds & Lund, 1988), and Planktothrix spp. are generally 

not recorded from temperate lakes with a retention time less than about 30 days 

(Reynolds, 2006).  Given cyanobacterial replication rates, losses due to wash-out are 

likely to have some effect in lakes with retention times <100 days (Reynolds, 2006).  If 

the growth of cyanobacterial populations is further limited by additional factors (light, 

nutrients), then wash-out loss processes may become even more significant. 

The positive, linear relationship with TP concentrations conforms with widespread 

empirical evidence that shows cyanobacteria to increase with nutrient enrichment 

(Gorham et al., 1974; Reynolds & Petersen, 2000).  This response is almost certainly 

not just a simple population growth response to increased nutrient resources, but may 

also be because cyanobacteria become competitively more dominant than other algal 

groups in enriched waters, due to their tolerance of the associated low CO2 and light 

environments (Dokulil & Teubner 2000; Reynolds 2006) and associated shifts in the 

availability of nitrogen (Hyenstrand et al., 1998). Grazer avoidance or mortality 

associated with large colonies and/or toxic forms have also been reported (Paerl, 1988). 

TP was correlated with alkalinity in the dataset, however, both TP and alkalinity were 

still identified as separate explanatory variables in the final model for log cyanobacteria 

biovolume. 

The models provide quantitative support to the more qualitative literature which 

shows that cyanobacteria tend to be abundant in clear water lakes of neutral to alkaline 

waters and that their abundance generally increases with increasing retention time and 

TP concentrations (Reynolds & Lund, 1988; Reynolds & Petersen, 2000).  Bloom- 

forming cyanobacteria are typically slower-growing than other classes of phytoplankton 

and this analysis supports the fact that they do best where resources (nutrients) are 

plentiful and loss rates to flushing are minimal. 

 
5. Conclusions 

 
This study identifies higher risk lake environments where more targeted monitoring of 

cyanobacteria biovolumes should be focused (e.g. water colour 10-20 Pt L
-1

, alkalinity 

>1 mEq L
-1

, retention time >30 days, TP >20 µg L
-1

). 

 
The R-sq values for the statistical models are low, therefore, their predictive capability 

at an individual site level is very limited.  One reason for the limited explanatory power 

is that we are attempting to explain the environmental conditions suitable for a mixed 

community of up to 17 genera of potentially toxic cyanobacteria, all with different 

environmental preferences, across a large gradient of lake types.  Additional reasons for 

uncertainty may be because of additional explanatory variables not considered in the 

models, such as grazer densities, water temperature or stratification intensity. Finally, 

model uncertainty may also be due in part to measurement errors or natural variability 

in both the response (e.g. estimates of cyanobacteria colony biovolumes) and 

explanatory variables (e.g. TP and alkalinity).  The different type of sampling (e.g. sub- 

surface outflow vs. integrated epilimnion samples) and different counters will have 

added additional variability. 
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The fact that development of blooms and in particular, high-risk surface scums is very 

uncertain and is also dependent on weather conditions, does highlight that there is a 

great need for more cost-effective monitoring of the spatial and temporal extent of 

cyanobacterial blooms. This study identifies higher risk lake environments and looking 

forward, the next generation of earth observation satellite platforms due to be launched 

between 2011 and 2013 are set to provide the spatial and temporal resolution and 

hyperspectral imaging capabilities necessary for effective cyanobacteria monitoring in 

inland regions where risks are greatest (Hunter et al., 2009; 2010). 

 
Despite uncertainties in the models, the research does highlight possible management 

measures open to lake managers for reducing cyanobacterial abundance. Risks are 

greatest in clear water lakes of neutral to alkaline waters. In these lakes, cyanobacterial 

abundance generally increases with increasing retention time and TP concentrations. 

The analysis, therefore, supports management aimed at reducing nutrients loads from 

catchments.  In addition to this, in many lakes with controlled outflows, it may also be 

possible that lake retention times can be manipulated to maximise summer flushing. 
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Table 1. Summary of no. of lake samples available by month and year 

 

Year July August September 

2003 0 2 2 

2004 56 48 72 

2005 15 24 18 

2006 8 16 1 

All 
  years  79  90  93   



 

Table 2. Cyanobacterial taxa considered as potential toxin-producers, the number of 

samples present in the dataset and their total biovolume 

 
 
 

Taxon Samples 

(n) 

Total Biovolume in 

dataset (µm
3 

mL
-1

) 

Microcystis 30 802498550 

Aphanizomenon 38 332888817 

Snowella / Gomphosphaeria 39 61838799 

Chroococcus 68 59611048 

Gloeotrichia 4 57138196 

Planktothrix (Oscillatoria) 116 45769778 

Aphanocapsa 53 33899849 

Anabaena 103 24799040 

Aphanothece 50 23171273 

Woronichinia / 37 13709770 

Coelosphaerium 
Lyngbya 

 
4 

 
2692241 

Merismopedia 34 473408 

Phormidium 2 14967 

Anabaenopsis 1 13485 

Pannus 6 3517 

Spirulina 1 242 

Pseudanabaena 3 67 



 

Table 3. Summary statistics for all explanatory variables and cyanobacteria 

biovolume response. 

 
 
 

 Min. Mean Max. No. 

missing 

Area (km
2
) 0.01 1.84 27.98 0 

Altitude (m a.s.l) 1 120 455 0 

Mean Depth (m) 0.3 8 42 3 

Alkalinity (mEq L
-1

) 0.02 1.11 4.53 11 

Colour (Pt L
-1

) 1 24 196 37 

Retention Time (yr) 0.003 1.4 9.7 3 

TN (µg L
-1

) 25 974 7880 38 

TP (µg L
-1

) 1 80 1197 0 

Chla (µg L
-1

) 1 18 292 0 

Cyanobacteria 

biovolume (µm
3 

mL
-1

) 

0 5.1x10
6
 7.5x10

8
 0 



 

0.933 

 
 

 
-0.440 

<0.001 
 
 

 
-0.305 

<0.001 
 
 

 
-0.475 

 

 
 
 
 

0.011 

   

<0.001 <0.001 <0.001 0.869   

 

0.097 
 

-0.282 
 

-0.377 
 

-0.036 
 

0.083  

0.145 <0.001 <0.001 0.595 0.226  

-0.122 -0.075 -0.102 0.099 0.474 0.090 

0.068 0.265 0.126 0.147 <0.001 0.180    

-0.178 -0.205 -0.312 0.095 0.543 0.199 0.392   

0.004 0.001 <0.001 0.131 <0.001 0.003 <0.001   

-0.239 -0.158 -0.262 0.043 0.565 0.059 0.400 0.476  

<0.001 0.010 <0.001 0.498 <0.001 0.374 <0.001 <0.001  

-0.168 0.023 -0.025 0.174 0.269 -0.039 0.194 0.227 0.369 

0.006 0.711 0.685 0.005 <0.001 0.565 0.004 <0.001 <0.001 

 

Table 4.  Pearson correlation coefficients (and p values). Significant relationships 

 
highlighted in bold. 
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Log 
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Log 
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Table 5. GAMM and GAM results for log cyanobacteria biovolume response and 

log explanatory variables for all lakes and sub-set of medium (MA) and high (HA) 

lakes.  Results are p-values to assess the null hypothesis that each smooth term is 

constant and (edf) = estimated degrees of freedom. 

 

 
 

p-values 

 
(edf) 

Log 

 
Altitude 

Log 

 
Retention Time 

Log 

 
Alkalinity 

Log 

 
Colour 

Log 

 
TP 

All lakes (GAMM) 0.185 0.069 0.009 <0.001 0.095 

 
 

(2.192) 
 

(1) 
 

(2.647) 
 

(3.482) 
 

(1) 

 

All lakes (GAM) 
 

0.264 
 

0.069 
 

0.024 
 

<0.001 
 

0.095 

 
 

(2.192) 
 

(1) 
 

(2.648) 
 

(3.482) 
 

(1) 

 

MA & HA lakes 
 

0.342 
 

0.025 
 

0.128 
 

<0.001 
 

0.385 

 

(GAMM) 
 

(1.892) 
 

(1) 
 

(2.256) 
 

(3.346) 
 

(2.509) 

 

MA & HA lakes 
 

0.360 
 

0.025 
 

0.191 
 

<0.001 
 

0.276 

 

(GAM) 
 

(1.892) 
 

(1) 
 

(2.256) 
 

(3.346) 
 

(2.509) 



 

Table 6. GAM results for log cyanobacteria biovolume response and log explanatory 

variables after removing non-significant* terms sequentially.  Results are p-values to 

assess the null hypothesis that each smooth term is constant and (edf) = estimated 

degrees of freedom. 

 

 
 

All lakes Log Log Log Log Log 

 
 

Altitude 
 

Retention Time 
 

Alkalinity 
 

Colour 
 

TP 

p-values * 0.054 0.007 <0.001 0.062 

edf * 1 2.814 3.363 1 

 


