
S C H E D U L I N G D A G S T O M I N I M I Z E T I M E A N D C O M M U N I C A T I O N

Fo to Afra t i l~ C h r i s t o s H. P a p a d i m i t r i o u ~, a n d G e o r g e P a p a g e o r g i o u 1

A B S T R A C T : W e study the complexity of a generalization of the unit-execution-time multipro-
cessor scheduling problem under precedence constraints, in which the number of communication
arcs is also minimized. Most versions of the problem are shown NP-complete, and two polynomiM
Mgorithms are presented t'or speciMized cases.

1. I N T R O D U C T I O N

Scheduling partially ordered tasks with equal execution times on identical processors to minimize
the latest finishing time is one of the best-studied problems in Computer Science (see [Co] for an
early re~4ew of related results). When the partial order is a tree, [AH] showed that the highest-
level-first strategy is optimal. For general graphs, the cause in which two processors are available
can be solved in polynomial time [CG]; the case in which the number of processors is part of the
input is NP-complete; and the cases with 3, 4, etc. processors remains open.

This problem has at tracted so much attention mainly because of its obvious relevance to
multiprocessor systems. However, in such systems finishing time is only one of the performance
criteria, the other being the communication required among the processors [PU]. We measure
communication as the number of arcs of the precedence relation, the two end points of which are
executed by different processors. For example, the tree shown in Figure 1 can be executed by two
processors in 3 time units and 2 units of communication (or, of course, in 5 time units and 0 units
of communication by a single processor). Can it be executed in both three time units and a single
unit of communication? The answer is "no."

Figure 1: An example.

I t turns out that the two-parameter version is a very interesting new twist to this classical
problem. In this paper we study the complexity of the following problem: Given a dag (sometimes
a tree), a number m of processors (fixed, part of the input, or infinite), and two positive integers
t and c, can we schedule the dag on m processors within time t and communication c? Notice

i National Technical University of Athens.
2 University of California at San Diego.

135

that the case of infinite processors is trivial when communication is not taken into account, as
the opt imum time is precisely the depth of the dag. It turns out that most of these versions are
NP-complete. In particular, for general dags, when the number of processors is fixed (even 2)
the problem is NP-complete, and likewise for infinite processors. For trees, the case of infinite
processors, or a number of processors that is part of the input, are both NP-complete. Finally,
scheduling a tree on two processors (in fact, on any fixed number of processors) is a very interesting
problem left open here.

We also present algorithms for two somewhat interesting special cases of the problem. The
first is that of layered dags, that is, dags for which the number of nodes in any maximal path is
the same, and equal to t, the time bound. Using matching techniques, we can solve this probtem
in time O(n2"~). Finally, when the amount of communication e is fixed, we show that the problem
for general dags is polynomial. Notice that the original scheduling problem (no communication) is
NP-complete even when t = 3 [PSI, so the two parameters t and c appear to behave very differently
in this respect.

2. N P - C O M P L E T E N E S S R E S U L T S

In the two-parameter sehedullng probJem we are given a dag G = (1/, E) and three integers m, t,
and c. We are asked to find a schedule S, that is, a one-to-one (not necessarily onto) mapping
from the nodes of V to { i , 2 , . . . , t} x { i , 2 , . . . ,-~} such that: (1) if (~,,u') e E and s(u) = 0",#),
s(u') = (~-', #'), then v < r ' (that is, S respects precedences), and (2) the set of ares (u, u') E E
such that s(u) = (T,#), s(u ') = (r ' , # ') , and # # # ' has cardinality at most c. We shall call the
same problem without restriction (2) the origlnal scheduling problem.

The problem for general dags is trivially NP-complete, since the NP-complete original schedul-
ing problem (with the communication bound c sufficiently large, say]Et) is a special case. We now
show that it remains NP-complete even if G is a tree (recall that the original problem is polynomial
for trees [AH]).

T h e o r e m 1. The two-parameter scheduling problem for trees is (strongly) NP-complete.

Ske tch : We reduce the 3-PARTITION problem [GJ] to it. We are given a set of 3m integers
ai , . . . ,a3m, all between ~ and s T, and we are asked whether they can be divided into m triples,
all adding up to B. Now, for each ai construct a tassel of size a i (that is, an in-tree with ai leaves
and depth one, see Figure 2), and then connect the roots of all tassels to a common root. We
argue that the resulting tree can be scheduled on rn processors in time B + 4 and communication
3m - 3 if and only if the 3-PARTITION instance has a solution. []

The problem, for general dags, remains NP-complete even when the number of processors is
two (compare with [CG]):

T h e o r e m 2. The two-parameter scheduling problem with two processors is NP-complete.

Ske tch : The reduction is from ONE-IN-THREE 3-SAT, in which we are given clauses with three
titerals each, and asked whether there is an assignment such that exactly one literal in each cIause
is made true. We employ two "gadgets," shown in Figure 3(a) and 3(b) (M is a sufficiently large
number). There is one copy of the dag in Figure 3(a) for each variable, and one copy of the dag
in Figure 3(b) for each clause. We think that the three middle nodes of the clause dag (Figure
3(b)) correspond to the three literals of that clause. We connect all these dags in series, identifying
the sink of one with the source of the next, with the dags corresponding to varables first. Then
we draw an arc from all M nodes in the left (respectively, right) path of a variable dag (Figure
3(a)) to the middle nodes of clause dags that correspond to the positive (respectively, negative)
occurrences of the variable. It can nov,- be shown that we can schedule the da~ on two processors

136

Figure 2: A tassel.

M (
Figure 3: The two gadgets.

within time n(M + 1) + 3m + 1 and communication 2n + am (where n is the number of variables
and m the number of clauses) if and only if there is a satisfying t ruth assignment. []

Whether the above result holds when G is a tree is a question that we have been unable to
settle (as with any other fixed number of processors). When the number of processors is infinite,
the problem is NP-complete even for trees. The reduction is from EXACT COVER BY 3-SETS,
and is omitted.

T h e o r e m 3. The two-parameter scheduling problem for trees and an infinite number of processors
is NP-eomplete. []

3. T W O A L G O R I T H M S

Let us call a dag layered if all maximal paths have the same length, called the depth of the dag.

T h e o r e m 4. We can solve the two-parameter scheduling problem with infinite processors for
layered dags with depth is equal to t in O([V[2"5) time.

Ske tch : Minimizing the communication can be shown to be equivalent to determining maximum
bioart i te raatchin~s between subsequent layers. []

137

Finally, when the communication bound c is fixed, the problem can also be solved in polynomial
time:

T h e o r e m 5. The two-parameter scheduling problem can be solved in time o(Ivi ~+2 log n).

Sketch: By exhaustively examining alI c-tuples of arcs, all assignments of processors to the weakIy
connected components formed by deleting each c-tuple, and all possible times for executing the
tails of communication arcs, the problem reduces to single-processor scheduling with release times
and deadlines [La], solvable in O(nlogn) time. The total time required is O(tEl'min(m,c +
1)c+ltclV I log IVl), dominated by the stated bound (naturally, we can assume that t <]Vl). []

Note that, in contrast, fixing the other parameter, t, to any constant greater than 2 does not
affect the NP-completeness of the problem (in fact, of the original problem) [PS].

4, R E L A T E D W O R K

Our definition of communication (adapted from [PU]) is slightly inaccurate, in that we may overes-
timate communication by counting twice the communication corresponding to two arcs emanating
from the same node v and leading to two different nodes, if these two nodes are executed by
the same processor (but different from the processor that executed v). This is of no major con-
sequence for dags with bounded outdegree (such as those studied in [PU], or those used in our
NP-completeness constructions). By using variants of our methods as well as more sophisticated
techniques, [Pr] has established that our NP-completeness results can actually be extended to the
more accurate variant of the problem, in which such arcs are counted only once.

There are two even more accurate versions of the problem. First, the one in which we wish to
minimize the weighted sum t + rc, for some constant T denoting the number of processor cycles
it takes to send a message from a processor to another. This problem is also NP-complete [Pe],
essentially under the same assumptions. Even closer to the desired performance measure, consider
the scheduling problem in which (1) tasks may be executed more than once in the processors
(another inaccuracy of the current formulation), and (2) the endpoints of an arc executed in
different processors must be at least T time units apart (if the tail has many instantiations, we take
the least restrictive one, that is, the latest or the one executed on the same processor). We wish
to minimize finish time. This problem is shown NP-complete in [PY]. In that paper we also give
a very simple linear4ime heuristic that approximates the optimum within a ratio of 2. We argue
that this can be a useful tool for analysing parallel algorithms in a manner that is independent of
the underlying architecture.

[AH]

[CG]

[Co}
[C J]

[La]

[PS]

[PU]

R E F E R E N C E S

D. Adolphson and T. C. Hu "Optimal Linear Ordering", SIAM J. AppI. Math., 25, pp.
4.03-423, (1973).

E. G. Coffman, R. L. Graham "Optimal Scheduling for Two Processor Systems", Acta Infor-
matlca, 1, pp. 200-213, (1972).
E. G. Coffman, ed. Computer and Jobshop Scheduling Theory, Wiley, 1978.
M. R. Garey, D. S. Johnson Computers and Intractability: A Guide to the Theory of NP-
completeness, Freeman, 1979.

E. L. LaMer "Optimal Sequencing of a Single Machine Subject to Precedence Constraints",
l~anagement Science, 19, pp. 544-546, (t973).
C. H. Papadimitriou, K. Steiglitz Combinatorial Optimization: AJgorithms and Complexity,
Prentice-Hall, 1983.

C. H. Papadimltriou, J. D. Ullman "A Communication-Time Trade-off", Proc. 1985 STOC
Conference: also, SIAM J. Comb.. 1987.

138

[PY] C. H. Papadimitriou, M. Yannakakis "Towards an Architecture-Independent Analysis of Par-
allel Algorithms", Proceedings 2988 STOC, to appear.

[Pe] E. Petrohilos, Diploma Thesis, National Technical University of Athens, 1986 (in Greek).
[Pr] M. Prastein, manuscript, University of Illinios at Urbana-Champaign, 1987.

