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Atypical DS-1–like G1P[8] rotaviruses emerged in 2013 in 
Malawi after rotavirus vaccine introduction. Vaccine effec-
tiveness among infants hospitalized with acute DS-1–like 
G1P[8] rotavirus gastroenteritis was 85.6% (95% CI 34.4%–
96.8%). These findings suggest that vaccine provides pro-
tection against these strains despite their emergence coin-
ciding with vaccine introduction.

Rotavirus remains a major cause of severe dehydration, 
diarrhea, and death among children <5 years of age 

in many low-income countries. After the introduction of 
Rotarix (Glaxo SmithKline, https://www.gsksource.com) 
rotavirus vaccine into Malawi’s immunization schedule in 
October 2012, enhanced surveillance combined with case–
control studies have described the substantial population 
impact and effectiveness of Rotarix on hospitalized rotavi-
rus disease and diarrheal deaths (1,2).

Both of the globally available rotavirus vaccines, 
Rotarix and RotaTeq (Merck & Co., https://www.mer-
ckvaccines.com), have been shown to protect against 
rotaviruses with a broad range of G and P types, as de-
fined by the 2 viral outer-capsid proteins (3,4). A whole-

genome classification system describes rotavirus strains 
more completely by assigning genotypes to each of its 11  
double-stranded RNA segments (5). Most rotavirus strains 
contain either a Wa (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-
E1-H1) or DS-1 (G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-
H2) genotype constellation (6). Typically, G1P[8] strains, 
including the Rotarix strain (RIX4414), possess a Wa-like 
genetic backbone, whereas G2P[4] strains generally have 
a DS-1–like genotype constellation (6). A switch in pre-
dominant rotavirus genotype from G1P[8] to G2P[4] after 
Rotarix introduction has been described in various set-
tings (7,8), and higher vaccine effectiveness (VE) against 
G1P[8] strains has been described compared with G2P[4] 
in some settings (2,9). It is not known whether these 
changes in strain distribution and strain-specific differ-
ences in VE are related to differences in cross-protection 
afforded by the outer capsid proteins (G and P type) or 
to the distinct genetic backbones possessed by DS-1–like 
strains and the Wa-like Rotarix strain.

Previously, we demonstrated that all G1P[8] strains de-
tected before Rotarix introduction in Malawi had a Wa-like 
genetic backbone (10). Shortly after Rotarix introduction, 
atypical DS-1–like G1P[8] rotavirus strains were detected, 
which provided an opportunity to examine whether emergence 
of DS-1–like G1P[8] strains could be the result of reduced 
protection afforded by the Wa-like G1P[8] Rotarix vaccine.

The Study
We used enzyme immunoassay (EIA) to detect rotavi-
ruses in stool samples collected from children <5 years of 
age with acute gastroenteritis at Queen Elisabeth Central 
Hospital (QECH; Blantyre, Malawi) (2). We used reverse 
transcription PCR to assign G and P genotypes to rotavirus-
positive samples (10,11). Samples with sufficient volume 
and containing G1 (n = 110), G2 (n = 64), or other (G4, G9, 
or G12, n = 42) rotavirus strains were selected at random 
during January 2013–December 2015.

We generated rotavirus whole-genome sequences 
(WGS) using the HiSeq 2000 platform (Illumina Inc., 
https://www.illumina.com) as described previously (10). 
We derived consensus sequences using Geneious (https://
www.geneious.com) and genotyped them using Ro-
taC (http://rotac.regatools.be). All complete nucleotide  
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sequences generated in this study were deposited into Gen-
Bank (12) (accession nos. MG181227–941).

We calculated rotavirus VE using logistic regression 
to compare 2-dose versus 0-dose vaccination status among 
hospitalized strain-specific rotavirus diarrhea case-patients 
and concurrently hospitalized control patients with non–ro-
tavirus-caused diarrhea, matched by age at admission. We 
defined concurrency of controls for each endpoint (Table) 
as any patient hospitalized for diarrhea who tested nega-
tive for rotavirus occurring in the same date range (between 
the first and last hospitalized strain-specific case) in which 
cases of strain-specific rotavirus were detected. We limited 
VE analysis to infants <12 months of age because previous 
analysis did not demonstrate statistically significant protec-
tion in the second year of life (VE 31.7%, 95% CI –140.6% 
to 80.6%) (2). We obtained ethics approval from the Na-
tional Health Sciences Research Committee, Malawi (867), 
and the Research Ethics Committee of the University of 
Liverpool, Liverpool, UK (000490).

Of 216 rotavirus strains sequenced, 114 (53%) had a 
Wa-like and 88 (44%) a DS-1–like genotype constellation. 
Among Wa-like strains, 72% were G1, <1% were G2, and 
25% were G12. Of the DS-1–like strains, 31% were G1 and 
69% were G2. Of the 110 G1 strains analyzed by WGS, 
75% were Wa-like and 25% were DS-1–like. We detected 
atypical G1 rotaviruses with DS-1–like genotype constel-
lation in Malawi in 2013; their circulation peaked in 2014 
and subsequently decreased in 2015 (<1%, 1/72) (Figure).

In logistic regression analysis adjusted for year of pre-
sentation, Rotarix effectiveness against DS-1–like G1P[8] 
rotavirus was 85.6% (95% CI 34.4%–96.8%; p = 0.01). Ef-
fectiveness estimates against Wa-like G1 (VE 76.7%, 95% 
CI –153.8% to 97.9%) and DS-1–like G2 (VE 48.5%, 95% 
CI –154.3% to 89.6%) rotaviruses included wide bounds 
and the null value (Table).

Conclusions
Atypical DS-1–like G1 rotavirus strains emerged in Ma-
lawi shortly after Rotarix vaccine introduction (10). Al-
though strain oscillation and emergence of novel types 
have been reported globally in the absence of vaccination, 
the mechanisms driving this phenomenon are not well  

understood. It is possible that the emergence of these 
DS-1–like G1P[8] strains was coincidental with vaccine in-
troduction. The high VE strongly suggests that escape from 
vaccine-induced immunity is not the driver for emergence. 
The swift decline in prevalence of these strains is in con-
trast with more sustained changes in strain circulation de-
scribed in other settings in the context of high VE (13). The 
decline could have been precipitated by the observed high 
VE or may represent a natural phenomenon related to viral 
fitness and associated periodic nature of the circulation of 
the DS-1–like strains, which has been observed historically 
and globally in the absence of vaccine. These findings sup-
port continued use of rotavirus vaccine in this population as 
an intervention to reduce severe diarrhea caused by rotavi-
rus strains possessing either Wa-like or DS-1–like genetic 
backbones. The observed decline in rotavirus hospitaliza-
tions in children after vaccine introduction (2), together 
with reduction in infant diarrhea deaths in Malawi (14), 
are public health benefits that could be sustained through 
rotavirus vaccination in this region, which has one of the 
highest burdens of rotavirus disease.

The VE against DS-1–like G1P[8] strains in this study 
resembles our previous findings of VE of 82% (95% CI 
42%–95%) against all G1P[8] strains 3 years after vaccine 
introduction (2013–2015) (2). In contrast, we were unable 
to demonstrate statistically significant VE against DS-1–
like G2 rotaviruses despite a comparable number of such 
strains, consistent with our earlier study (VE 45.9%, 95% 
CI −47.0% to 80.1%; p = 0.228) (2). The apparently lower 
VE against rotavirus disease caused by DS-1–like strains 
associated with G2, but not with G1P[8], lends support to 
the proposed dominant role of the outer capsid proteins VP7 
and VP4 as drivers of homotypic protection. Although in-
creasing evidence suggests that Rotarix vaccine does not 
provide the same degree of protection against G2 strains as 
G1 strains, this difference in protection appears to have little 
effect on total VE among populations in which vaccination 
performs optimally and high VE is maintained. However, 
the difference in protection between the strains may exacer-
bate underperformance of rotavirus vaccines in low-resource 
settings such as Malawi, where overall VE is generally lower 
for reasons that remain poorly understood (2,15).
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Table. Point estimates of vaccine effectiveness by rotavirus genotype constellation based on the complete genetic composition of 
rotavirus strains, Blantyre, Malawi* 

Rotavirus strain type 

Sequenced strains from test-
positive case-patients† 

 

Rotavirus test-negative controls 

 

Adjusted logistic regression for 
year of presentation 

No. 
tested 

positive 

No. known 
vaccine 
status 

No. (%) 2-
dose 

vaccine  
No. 

controls 

No. known 
vaccine 
status 

No. (%) 2-
dose 

vaccine  

Rotarix vaccine 
effectiveness, % 

(95% CI) p value 
DS-1–like G1P[8]  13 13 10 (76.9)  426 410 365 (89)  85.6 (34.4–96.8) 0.01 
DS-1–like G2  30 28 24 (85.7)  481 465 411 (88.4)  48.5 (154.3 to 89.6) 0.42 
Wa-like G1  38 38 34 (89.5)  440 424 376 (88.7)  76.7 (153.8 to 97.9) 0.23 
*Rotavirus strains detected at Queen Elisabeth Central Hospital during January 2013–December 2015. Case-patients were fully vaccinated infants <12 
mo of age. 
†Complete whole-genome sequences were generated. 
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We could not demonstrate statistically significant ef-
fectiveness against Wa-like G1P[8] rotaviruses (p = 0.23). 
Wa-like G1P[8] cases became dominant and replaced 
DS-1–like G1P[8] once vaccine coverage had reached high 
and stable levels (Figure). At high population vaccine cov-
erage, case–control analysis of VE became challenging and 
difficult to power sufficiently.

Our data demonstrate that Rotarix provides a high de-
gree of protection against severe disease caused by homotyp-
ic G1P[8] rotaviruses in Malawi regardless of genomic back-
bone. VE for patients <1 year of age is comparable to that 
seen in middle-income countries. The lower VE against het-
erotypic G2P[4] strains previously described (15) suggests 
that more detailed immune response studies, clarification of 
the correlates of protection for rotavirus disease, and strain 
surveillance are needed to monitor the impact of sustained, 
high vaccine coverage on rotavirus strain distribution.
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