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Parkinson’s disease (PD) is a neurodegenerative disorder defined by motor impairments that
include rigidity, systemic slowdown of movement (bradykinesia), postural problems, and
tremor. While the progressive decline in motor output functions is well documented, less
understood are impairments linked to the continuous kinesthetic sensation emerging from
the flow of motions. There is growing evidence in recent years that kinesthetic problems
are also part of the symptoms of PD, but objective methods to readily quantify continuously
unfolding motions across different contexts have been lacking. Here we present evidence
from a deafferented subject (IW) and a new statistical platform that enables new analyses
of motor output variability measured as a continuous flow of kinesthetic reafferent input.
Systematic increasing similarities between the patterns of motor output variability in IW
and the participants with increasing degrees of PD severity suggest potential deficits in
kinesthetic sensing in PD.We propose that these deficits may result from persistent, noisy,
and random motor patterns as the disorder progresses.The stochastic signatures from the
unfolding motions revealed levels of noise in the motor output fluctuations of these patients
bound to decrease the kinesthetic signal’s bandwidth.The results are interpreted in light of
the concept of kinesthetic reafference (Von Holst and Mittelstaedt, 1950). In this context,
noisy motor output variability from voluntary movements in PD leads to a returning stream
of noisy afference caused, in turn, by those faulty movements themselves. Faulty efferent
output re-enters the CNS as corrupted sensory motor input.We find here that severity level
in PD leads to the persistence of such patterns, thus bringing the statistical signatures of
the subjects with PD systematically closer to those of the subject without proprioception.
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INTRODUCTION
There is growing evidence that problems with kinesthetic
sensitivity are common in Parkinson’s disease (PD; Maschke et al.,
2006; Nolano et al., 2008; Carpenter and Bloem, 2011; Tan et al.,
2011). Such problems already manifest at very early stages of the
disorder, when motor problems are still very mild (Konczak et al.,
2007, 2008), suggesting that kinesthetic dysfunction may precede
the observable motor impairments in more severe stages of the dis-
order (Konczak et al., 2009). Subtle sensory issues are detectable
in the lab settings with appropriate instrumentation. Yet, they
are often missed by observational inventories that depend on
human inference and verbal reports. There is, however, evidence
from early reports suggesting that over 40% of PD patients suffer
from such problems which neurological examinations might miss
(Koller, 1984).

Clinical rating methods such as the UPDRS (Goetz et al., 2008;
Berg et al., 2014) could be complemented with detailed kinematic
analyses to detect, within the fluctuations of motor output vari-
ability, statistical signatures of noisy kinesthetic motion input
during early stages of the disorder. Motor output variability, con-
tinuously flowing as we move around, can be thought of as one of
the sources of kinesthetic feedback in light of Von Holst’s concept

of movement reafference (Von Holst and Mittelstaedt, 1950).
Motor output variability is readily measurable, partly because
peripheral nerve signals are naturally amplified by the muscles
(Kuiken et al., 2004, 2007). Such sources of variability are known
to contain a blend of signal and noise informative of control strate-
gies of the nervous systems (Scholz et al., 2000; Latash et al., 2002;
Faisal et al., 2008). They are also informative of anomalies in kine-
matic variability that subjects with PD manifest, such as failure to
balance goal-directed and spontaneous movements as they unfold
(Torres et al., 2011; Yanovich et al., 2013).

In this paper we hypothesize that deficiencies in movement sens-
ing may emerge, even at a mild stage of PD, when statistically noisy
and random motor output variability persists over years. We pro-
pose that a type of subtle “virtual deafferentation” may emerge
from persistent random and noisy movement sensing. Over time,
corrupted motor output variability may lead to a sort of kines-
thetic sensory atrophy, over reliance on external sensory input
and poor integration of somatosensory and motor signals. The
continuous flow of motor output variability is a source of kines-
thetic sensory guidance to the central nervous system, part of a
continuous returning stream caused by our own movements as
the CNS volitionally controls them. This form of input normally
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bears statistical information confirming estimation and prediction
of the sensory consequences of our actions to gain confirmation
in favor or against our estimations (Torres, 2013b). If the band-
width of the peripheral signal-to-noise ratio is persistently narrow
and corrupted, this may impact centrally driven processes and
force the system to compensate by relying on external sensory
input.

This sensory uncertainty may be one reason for the findings,
from several researchers, of over reliance in visual guidance in
PD for reaching (Flash et al., 1992; Klockgether and Dichgans,
1994; Adamovich et al., 2001; Torres et al., 2011) and grasping
(Jackson et al., 1995; Schettino et al., 2006; Muratori et al., 2008;
Lukos et al., 2013) movements. In particular, we had previously
detected over reliance on visual cues for movement guidance in
a subset of patients in this PD cohort (Adamovich et al., 2001;
Torres et al., 2011). Using the variability in the endpoint errors of
reaching movements we had found that in the absence of visual
guidance, when relying on proprioception and a memory of the
target, these subjects had very large end point position and arm
postural errors (Torres et al., 2011). Yet, with visual guidance of
their moving finger they improved performance toward typical
regimes.

Here we assess the micro-structure of movement variability in
parameters of the unfolding hand motions of a heterogeneous
PD cohort, in relation to subject IW, who lacks proprioception
(Cole, 1995). We ask whether from trial to trial, as the movements
continuously unfold, the absence or presence of visual guidance
has similar impact on the stochastic signatures of motor output
variability of the subject without proprioception as it does on the
subjects with PD. We further examine the degree of severity of the
PD subjects with respect to the noise levels in their motor output
variability.

MATERIALS AND METHODS
PARTICIPANTS
We asked 26 patients with a diagnosis of PD to perform the task.
Two main groups were examined: one with mild PD previously
examined but addressing different issues, and another examined
more recently. The arm movement structure in three-dimensional

space was similar for all patients: point forward to the location of
a target without touching it and spontaneously retract the hand to
rest within a continuous loop. In all cases the subject just had to
point to the target without making contact with it, but in group one
the target was presented by a robot whereas in group 2 the target
was presented on a computer screen. In both groups of patients,
subjects either had not taken their anti-parkinsonian medication
for at least 12 h before testing or were tested at the end of dose
when the medications were losing effectiveness (Langston, 1991;
Defer et al., 1999). See also Adamovich et al. (2001) for additional
details on the mild PD patients.

We also tested eight age-matched elderly healthy subjects (three
females and five males) to perform visually and memory-guided
pointing motions in three dimensions. In addition to the eight
age-matched elderly controls, we also examined the forward and
back 3D-pointing motions of 25 right handed young controls
(ages ranging between 23 and 29 years old, 7 females and 18
males).

In all cases the pointing movements were in three dimensions
along a continuous loop to one of five targets (shown in Figure 1)
and back to rest. Their outward reach had various conditions,
see below, but there were no instructions for the return motion.
Additional clinical descriptions and medication of the PD patients
are presented in Tables 1 and 2.

Briefly, the first group of nine PD patients was composed of
all mild to moderate in degree, Hoehn and Yahr stage 2–3. The
other 17 PD patients were in Hoehn and Yahr stage 3–4. These
patients’ main functional impairments likely were due to balance
and gait problems, given that they could not walk independently.
Unlike the first, this group showed prominent action tremor which
was functionally impairing. Such features were not as noticeable
in the traces of the trajectories of the mild group, but were very
pronounced in those of the other group, particularly in the speed
profiles, an issue that we will further explore in the paper. We
will use the nomenclature of mild PD to refer to the first group
and severe PD to refer to the second group. Figure 2 plots hand
traces and corresponding speed profiles forward to a target and
retracting from it using data from a representative patient in each
group.

FIGURE 1 | Basic task. Schematic diagram shows the participant seated and
pointing at the central target. The projection of all 5 targets on the frontal
plane is shown next to the arm in the initial position in relation to the five

targets in a slightly rotated side view. Participants performed visually and
memory-guided reaches toward all targets and backward to rest under these
different conditions.
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Table 1 | Mild PD group.

Subject Sex Age Stage1 UPDRS2 Symptoms (years)3 Medicines

1 M 73 2.0 24.7 25 L,Per, Tri

2 M 75 2.5 a 16 E, LS, Pro

3 M 74 2.5 47.8 10 Be, L, S

4 F 79 3.0 15.8 4 A, L, Pra, S

5 M 75 2.5 27.0 8 Bu, C, Lu, S

6 M 77 3 28.5 9 none

7 M 58 2.0 21.5 8 L, LS, To, Pe

8 M 72 3 43.5 5 Pe, S

9 M 58 2.5 30.1 4 L, S

Summary 1F/8M 71.2 ± 7.8 2.5 ± 0.4 29.8 ± 10.7 9.8 ± 6.7

Demographic and clinical features of nine PD patients tested in the “off” state (UPDRS unified PD rating scale; motor subscale. In some cases patients were studied
on more than one day. UPDRS scores were then averaged. In some cases, the UPDRS examination was not done for all items. In this case, the score was normalized
to a total possible score of 108. Anti-parkinsonian and related medications: A, amantidine; Be, benztropine; Bu, buspar; C, clonazepam; E, vitamine E; L, levodopa
preparation regular release; LS, levodopa preparation, sustained release; Lu, ludiomil; No, notriptyline; Pe, pergolide; Pra, pramipexole; Pro, propanolol; S, selegiline;
Sy, synthroid; T, trihexyphenidyl; To, tolcapone; aUPDRS scores unavailable for this patient.
1Hoehn and Yahr stage.
2Maximum score 108.
3Refers to number of years since first remembered parkinsonian symptoms.

Table 2 | Advanced PD group.

Subject Sex Age Stage1 UPDRS Symptoms (years)2 Medicines

1*(DBS@47) M 52 3 27 14 A; L; Pra

2*(DBS @48) M 59 4 42 19 L

3*(DBS @70) F 81 4 38 20 L; Pra

4 F 64 3 28 4 L

5 M 41 2 15 2 A; L

6 M 57 3 29 4 L; Pra

7 M 49 3 42 6 Ras; Rop; Tri

8 M 70 3 31 3 L

9 M 80 4 42 9 L

10 F 67 3 31 5 L; Ras

11 F 77 4 35 6 L; Pra

12 F 55 3 27 6 L; Ras; Rop

13 M 77 3 31 7 Don; L

14 M 72 2 21 8 L; Pra; Ras

15 M 54 4 42 9 L; Rop; Sel

16 M 60 3 35 10 A

17 F 69 2 18 12 L; Pra; Ras

Summary 6F/11M 63.7 ± 11.7 3.1 ± 0.7 31.4 ± 8.4 8.4 ± 5.2

Demographic and clinical features of 17 PD patients tested in the “off” state (UPDRS unified PD rating scale; motor subscale. Antiparkinsonian medication as in
Table 1; Ras, rasagiline; Rop, ropinirole.
*Deep Brain Stimulation at age.
1Hoehn and Yahr stage.
2Refers to number of years since first remembered parkinsonian symptoms.
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FIGURE 2 | Seed profiles of representative mild and severe

Parkinson’s disease (PD) patients. (A) Representative mild PD
patient’s speed profiles. (B) Severe PD patient’s speed profiles.
Notice the “jitter” in these profiles particularly on the spontaneous

retraction, adding to the overall variability patterns. (C) Sample
trajectories and speed profiles of another severe PD patient with
problems initiating motions and resting tremor as well (both epochs
circled).

The mean (SD) United PD Rating motor scores was 26 (5.3) for
the mild PD group and 31 (8.4) for the severe group. All patients
had clinically typical PD, as reviewed by at least one movement
disorder specialist and their motor disabilities were responsive
to anti-Parkinsonian medications. No patient in the mild group
had any off-state action tremor or dyskinesia of more than min-
imal amplitude. In the severe group most patients had bi-lateral
tremor. All subjects in the mild group were right handed (Oldfield,
1971) and reached with their right arm. In the severe PD group
all but one patient were right handed and reached with their right
arm.

Elderly controls were healthy individuals with no reported
sensory-motor impairments. Young controls were healthy college
students who participated in a similar pointing experiment at a
later time (see more detailed explanation later on.).

DESCRIPTION OF THE DEAFFERENTED SUBJECT
Subject IW was a 43 year-old deafferented man (at the time these
data were collected) with a complete large fiber sensory neu-
ronopathy. He lost proprioception at the age of 19 due to a viral
infection (Cole, 1995, 1998; Cole and Paillard, 1995). He lost the
senses of movement, position, pressure, and light touch from the
neck down (C3 level), but retains pain and temperature sensa-
tion. Motor nerve function was not affected but initially he was
unable to move in any controlled manner due to propriocep-
tive loss. Since then, IW has learned to use visual supervision
and motor imagery to replace the prediction of sensory conse-
quences with virtual, often imagined, feedback of where his limbs
should be. There is also some evidence that he employs feed-
forward control of his motions (Balslev et al., 2007; Miall and

Cole, 2007) in ways that are likely to differ from those used by
people with intact motor reafference. Specifically, subject IW con-
stantly makes deliberate plans for immediate actions. He reports
reliance on visual supervision and motor imagery to plan ahead
every motion. Most crucially, he has to attend to and think about
all actions, whether postural ones such as sitting, or any move-
ment. He reports that any reduction in cognition, for instance a
head cold, forces him to go to bed. If he cannot think, he cannot
move.

IW is left-handed and pointed with his left hand, while the con-
trol subjects are right-handed and pointed with their right hands.
Since the positioning of the targets relative to the pointing arm
was constant across groups, direct comparisons of IW’s patterns
with those of the other groups could be made.

RATIONALE FOR THE KINEMATIC PARAMETERS OF CHOICE
Measures of motor output variability often refer to the end
point spread of the reach at the target. The literature of motor
control is rich in computational modeling and experimental
work (Harris and Wolpert, 1998; van Beers et al., 2002, 2004;
van Beers, 2009) demonstrating that such sources of variabil-
ity are relevant to the planning and execution stages of goal-
directed reaching movements. Less explored however, has been
the variability of such motions as the movements continuously
unfold.

In a series of papers we have recently explored the velocity-
and acceleration-dependent variability of natural, unconstrained,
continuously unfolding movements in 3D. We have discovered
that this type of variability is highly informative of the sever-
ity in neurological disorders. In particular, in PD patients the
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velocity- and acceleration-dependent variability have revealed
noise and randomness in their signatures that can blindly pre-
dict the severity of the disorder (Torres, 2013a; Yanovich et al.,
2013).

Despite their noisy patterns and the lack of balance between
the deliberate forward and the spontaneous retracing segments of
these continuous loops of pointing motions (Torres et al., 2011;
Torres, 2013a; Yanovich et al., 2013), we had also found that
subjects with mild PD had considerable gains in hand endpoint
performance and arm-postural control when guiding their point-
ing movements by vision of their moving finger (Adamovich et al.,
2001; Torres et al., 2011). Here we have the opportunity to com-
pare this PD cohort to subject IW under manipulations of visual
guidance. We seek to obtain new metrics of noise-to-signal ratios
from the motor output variability indicative of the degree of PD
severity. To this end we use a new statistical platform for individu-
alized behavioral analysis (SPIBA; Torres and Jose, 2012) designed
to determine individual signatures of the sensory-motor system
and track their shifts within the timescale of the experimental
session across manipulations in sensory guidance.

DESCRIPTION OF PROCEDURES OR INVESTIGATIONS UNDERTAKEN
The subjects were seated with their dominant arm flexed at the
elbow, forearm being semi-pronated and vertical such that the
hand was on a sagittal plane that was about 10 cm to the right of
the subject’s ear (Figure 1). The subjects faced a programmable
robot arm (Hudson Robotics, CRS 255A) that presented tar-
gets in 3-D space. A small light-emitting diode was attached to
the tip of the robot’s arm and served as the target. Two opto-
electronic cameras (Northern Digital, Inc.,) were used to record
positions of five infrared emitting diodes (IREDs) that were affixed
to the following segments of the subject’s limb: the acromial
process of the scapula (shoulder), the lateral epicondyle of the
humerus (elbow), the ulnar styloid process (wrist), as well as
on the nail of the index fingertip, and on the robot arm tip.
The subjects were asked to fully extend their right forefinger and
not to move it with respect to the wrist. 2-D coordinates of the
IREDs were monitored by each camera. Data from both cam-
eras were sampled at 100 Hz and stored as 2-D binary files. Then
they were low-pass filtered using a Butterworth filter with a cut-
off frequency of 8 Hz, and three-dimensional coordinates were
reconstructed.

The robot randomly presented five targets in two planes
(Figure 1). Four targets formed a diamond in a frontal (coro-
nal) plane. The geometric center of this diamond was on a sagittal
plane that was defined by the subjects’ right shoulder, but was
approximately 43–48 cm in front of the right shoulder. The two
diagonals of the diamond were about 50 cm long. The fifth tar-
get was located on a sagittal plane directly in front of the right
shoulder, but approximately 12 cm further from the shoulder
than the four target diamond. Exact distances from the shoul-
der were individualized for each subject by first positioning the
furthermost (fifth) target at a distance approximately equal to the
length of the subject’s arm with the subject’s fingers being clenched.
This positioning of the subject relative to the target prevented the
subject from having to fully extend the arm to reach any of the
targets.

All subjects reached using their dominant arm. Their initial
limb position, as mentioned above, was with their dominant arm
flexed at the elbow, forearm being semi-pronated and vertical such
that the hand was on a sagittal plane that was about 10 cm to the
right of the subject’s right ear, for right handed subjects, 10 cm
to the left of the left ear for left-handed subjects. The subjects
attempted to “touch” the target with their right forefinger and
returned their arms to their initial positions in one smooth move-
ment without corrections. Short pauses at the target naturally
occur and as such were allowed so as to not constrain the motions.
However, deliberate error corrections at the target were discour-
aged. The reaches were performed under different conditions, with
vision of the target but not the arm, having to memorize the target
and reaching with or without vision of their finger as guidance. In
all experimental conditions the robot arm held the target position
for 1.5 s, during which time the subject was able to view the target.
The experiment was conducted in a darkened room. Vision of the
target was provided by an illuminated LED attached to the tip of
the robot end-effector. Vision of the moving finger was provided
in some sessions with an illuminated LED attached to the nail of
the index finger.

All these conditions add variability to the reach. In previous
publications we had separately examined these conditions in detail
(Adamovich et al., 2001; Torres et al., 2010, 2011). However, for
the purposes of this work, we examine the velocity-dependent
variability of all the movements combined where some form of
visual guidance was provided. We also examined the case where
no visual guidance was provided and subjects had to rely on the
memory of the target. In all cases we had at least (5 targets × 10
repetitions × 2 segments) trials.

PD PATIENTS IN RELATION TO DEAFFERENTED IW
In all patients and deafferented subject we examined the trial-by-
trial variability of velocity dependent parameters. These included
the value of the peak velocity of each segment and the time
when this peak value was attained. We examined their signa-
tures of variability as the forward motion unfolded and also as
the retracting motion back to rest took place under the different
conditions.

In addition to the maximum speed value and timing of each seg-
ment we also quantified the frequency distributions of the values
of additional local peaks (cm/s) present in the segments (forward
and retracting) along with the frequency histograms of their inter
local-peaks time intervals (ms). This quantification was motivated
by the visible disparity between forward and back segments when
comparing the traces from the motions of mild vs. severe PD
patients (Figures 2A vs. 2B).

We used distributional analyses and estimation methods to
examine the stochastic signatures of motor output variability of
the patients with PD and normal controls (elderly and young) in
relation to IW’s signatures.

ADDITIONAL ANALYSES FOR DEAFFERENTED SUBJECT IW
IW’s motions were extensively studied both in the dark and also in
a lit room. He received in some sessions visual guidance from the
target (Target Vis) or from the LED attached to his pointing fin-
ger (Finger Vis). In other sessions he moved in complete darkness

Frontiers in Human Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 823 | 5

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Torres et al. Proprioceptive deficits in Parkinson’s disease

relying on the memory of the target or on his imagination (No
Vis). Elderly controls and patients with PD also underwent these
conditions in the darkened room. For the purposes of the com-
parison, we pooled all trials without visual feedback and all trials
with visual guidance to compare the best and worst case scenar-
ios for IW. He is seemingly “typical” under visual guidance (i.e.,
similar to controls) but the stochastic signatures of his movement
output variability under such conditions had never been assessed
before.

Other sessions manipulated IW’s movement dynamics asking
for fast or slow speeds or by placing loads on his arm. These
sessions enabled us to systematically track the effects of all these
conditions on the signatures of IW. We examined subject IW and
determined the best and the worst statistical regimes as a function
of context and experimental conditions.

CONTROLS
Lastly, the young controls performed the same three dimensional
forward-and-back pointing task to a visual target as the other par-
ticipants. As with the other participants, the young controls did
not have to touch the target, just point to it. The experiments
took place in a lit room and they had continuous visual feedback
of the target. These were all optimal performance conditions in
addition to their being young and healthy, at the peak of their
performance. We used the young controls data as an anchor to
establish the best possible statistical case scenario and to examine

the normally aging group against the young group. We also used
the subject without proprioception at the other end of this per-
formance spectrum under visual guidance and dark conditions.
These extreme cases (deafferented and young) enabled us to set
extreme bounds from best to worst and helped us identify self-
emerging systematic patterns across the heterogeneous PD cohort
indicative of severity levels.

Examples of the speed profiles from representative participants
are shown in Figure 3. The various behavioral landmarks of inter-
est are highlighted as well. These include the value of the peak
velocity and the time to reach that value from the onset of the
motion. We also highlight the initiation of the reach up to the
peak in each case to contrast it with the deceleration phase of the
movement.

ETHICS
All procedures were undertaken with the understanding and writ-
ten consent of each subject. The Rutgers University and the
University of California, San Diego’s Institutional Review Board
approved the study. The study conforms to The Code of Ethics of
the World Medical Association (Declaration of Helsinki).

STATISTICAL AND ANALYTICAL MEASURES
In the context of pointing movements with and without visual
guidance, we explore the trial by trial velocity-dependent param-
eters as the movements continuously unfold. These parameters

FIGURE 3 | Hand speed profiles. Sample hand speed profiles from the
forward and backward segments of the continuous reach. These are from
different representative participants (normal age-matched control, PD patient,

and IW). The peak velocity is marked in each trajectory segment. Also the
distance traveled up to the peak velocity is marked in green for each of the
forward and backward continuous reach segment.
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FIGURE 4 | Analytical methods: steps to convert from raw kinematics to estimated stochastic parameter trajectories so as to track their rates of

change unique to each person. Data is from hand pointing motion trajectories of human subjects using velocity dependent parameters.

include the peak velocity and the time when this value is reached
relative to the onset of movement. We examine these parameters
in normalized form (later explained) to avoid possible con-
founds that could be introduced by anatomical differences across
subjects.

The statistical platform that we use does not take averages of
kinematic parameters to cast the results relative to normative
population data. We do not assume that the continuous ran-
dom process describing repeated pointing motions is Gaussian.
Instead of conjecturing that the mean and variance parame-
ters of the theoretical Gaussian probability distribution are good
descriptors of this random process, we actually (empirically) esti-
mate the family of probability distributions best describing the
experimental data. Such estimation process is centered on the
individual, rather than relative to assumed population statis-
tics. Any statistical pattern or signature-clustering in the cohort
itself emerges from the intrinsic stochastic properties of the data.
Such patterns are based on the moment to moment variability
of the kinematic parameters of interest for each individual in the
cohort.

It is usually difficult to separate in the motor output variabil-
ity the efferent from the afferent contributions to signal-noise
flow. Since subject IW lacks movement proprioception, we use
his results as an anchor to reference the statistical signatures of the
PD subjects. In the absence of proprioception from movements,
subject IW relies on vision to close the feedback loops. In lit con-
ditions, IW relies on vision to control accuracy and when guided
by vision his motions appear normal on average. He uses visual
imagery and memory when no informative vision is available.
How his movement variability unfolds from moment to moment
is an unexplored question.

We compare the noise in the variability of the motor output
from IW and that from the PD subjects under similar contexts.
These patients have different UPDRS and motor scores (Tables 1
and 2). One question is whether the patients’ signatures approach
those of IW in the dark or under visual guidance. To address this
question we compare these PD subjects to IW performing reaches
under similar dark and visually guided contexts. We also compare
them to the healthy young participants as they optimally perform
similar reaches under full visual guidance.

The individualized statistical estimation procedure for each
participant’s patterns of velocity-dependent motor output
variability has three main layers displayed in Figure 4: (1)
Acquiring the raw kinematics from the unconstrained continuous

arm movements of the full forward and backward motion loop;
(2) Estimating the stochastic signatures of the continuous reaching
loops and mapping the participants on the plane of the Gamma
probability distribution family (see below) relative to the stochastic
signatures of IW at his worst and best contexts; (3) Generating var-
ious statistical indexes to further quantify individual features and
to examine these in relation to self-emerging stochastic patterns
in the cohort.

Raw kinematics
We examined the peak velocity (marked in Figure 3 on the speed
profiles of the hand trajectories) properly normalized to avoid
allometric effects contributed by differences in anatomical length
across subjects (Mosimann, 1970; Lleonart et al., 2000). The nor-
malized peak velocity of the hand trajectory is the peak velocity
value (m/s) divided by the sum of the trajectory’s peak velocity
and its average speed (both in m/s) thus yielding a unitless quan-
tity. If the averaged speed is low, the normalized peak velocity will
be higher. In this sense, it is expected that in PD patients the nor-
malized peak velocity may have higher values than that of controls
(who move faster on average.)

Another parameter of interest is the time (ms) to reach the peak
velocity. Here we obtained the percentage of such time out of the
total trajectory duration. Lower values of this parameter indicate
fast movement initiation.

The forward and back hand motion was performed as a contin-
uous movement without corrections at the target. We examined
the trial by trial variability of the parameters from both of these
segments combined. We also examined the spread from each
individual segment.

In addition to the maxima-dependent data (velocity value and
timing) we examined the frequency distributions of local peaks in
each segment along with their inter-time intervals. We aimed at
unveiling random-noisy patterns that could further automatically
distinguish systematic differences within the heterogeneous PD
cohort. Action tremor patterns were visibly different in the retrac-
tion motions of these PD patients (Figures 2A vs. 2B). Could
these differences be automatically quantified in their stochastic
signatures?

Estimated stochastic signatures
To extract the stochastic signatures from the motor output vari-
ability (i.e., from the spread of these kinematics parameters over
repetitions) we performed distributional analyses.
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In Step 1 we gather the kinematic parameter of interest (e.g.,
the normalized peak velocity) for over a 100 repeats of the
motion (see for example Figure 5A showing normalized frequency
histograms from IW in different sensory guidance conditions.
Figure 6 shows normalized frequency histograms for the normal-
ized peak velocity, the time to reach the peak and the averaged
speed of the segment). The histograms and estimation of bin
size for the parameters of interest were obtained using in-house
developed Matlab routines based on well-established algorithms
for optimal bin estimation with W = 3.49σN−1/3 (Izenman,
1991) where W is the width of the bin, σ the SD of the dis-
tribution (we used estimated SD τ̂ ) and N is the number of
samples. We then use maximum likelihood estimation (m.l.e.)
to obtain with 95% confidence the estimates of the parameters
of the probability distribution function best describing this ran-
dom process over time. In a series of papers involving human
subjects along the continuum of typical and atypical cases we
have reported that the continuous Gamma family of probabil-
ity distributions captures well the statistics of human motor
output variability (Torres, 2011, 2013a,b). The Gamma prob-
ability distribution has probability density function given by:

y = f (x | a, b) = 1

b a � (a)
x a−1e− x

b (1)

with shape (a) and scale (b) parameters and the � func-
tion. By varying the shape and scale parameters, one can
move from a Gaussian-like distribution to the exponential
distribution, with skewed distributions in between the two
extremes. Step 1 of Figure 4 shows examples of frequency
histograms of a typical and an atypical subject with the cor-
responding best fitting probability distribution function curves
in red.

In Step 2 of Figure 4 we show different probability density
function curves generated using (a, b) parameters experimentally
estimated from various human movement data and experimental
values for the ranges of the velocity-dependent parameters. This
estimation step gives us a sense of the family of probability density
functions describing the data well.

In Step 3 of Figure 4 we plot the estimated parameters for
each person in Step 1 on the (a, b)-Gamma plane. We use the
Gamma plane here to map the individual points representing each
participant because we have found that this family captures well

FIGURE 5 | Characterization of motor output variability in patient IW

without proprioception for different reaching contexts. (A) Frequency
histograms of the time to reach the peak velocity (ms) and of the peak
velocity value (cm/s) for 3D pointing motions to various target locations
across different speeds and loads (top) and under visual guidance in the dark
(lower). Red curve is the m.l.e. fit from the continuous Gamma family of
probability distributions. (B) Stochastic trajectories of the kinematics
parameters in (A) obtained within the time scale of an experimental session
as the patient performed pointing motions in different contexts (see legend).
Each point contains over 100 measurements from reaches to all targets and
repetitions of the forward and backwards pointing loop. Each point is the
maximum likelihood estimate of the shape and the scale parameters of the

Gamma probability distribution, with 95% confidence intervals. The estimated
values for a representative typical control are shown with a black star. Shifts
to the right of the Gamma plane, toward typical regimes represent gains
in predictability from trial to trial. Shifts down indicate reductions in noise.
(C) Estimated mean and variance were obtained from the estimated shape
and scale parameters of the Gamma probability distribution. The SD for each
condition in the legend is plotted as a function of the mean for the patient in
relation to the representative typical control. For each of the kinematics
parameters of interest we also estimated the Gamma probability density
function using the range of values of the parameters experimentally obtained
for each condition. Left correspond to the time to peak velocity. Right
correspond to the values of the peak velocity.
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FIGURE 6 | Velocity-dependent frequency histograms from reaching

data. Data are from the visually guided motions of three representative
subjects whose speed profiles are shown in Figure 2, (row 1 Control, row
2 PD, and row 3 Deafferented.) The frequency histograms of the normalized
maximum velocity, the time to reach this peak velocity (ms) and the
averaged trial speed (cm/s) are shown in each case.

the statistical features and shifts of human motor output vari-
ability. This step enables localization of each person with 95%
confidence on the Gamma plane. This step also enables clas-
sification of the person relative to a well known atypical case.
We can use this map to establish, whenever possible, relation-
ships between the manifestation of a disorder that is evaluated
or detected by observation, and well understood causes of simi-
lar manifestations. In our specific case, we can then localize on
the Gamma plane the stochastic signatures of the velocity depen-
dent parameters estimated from the motor output variability of
the subject without proprioception. Under similar experimental
conditions, in IW these signatures would indicate the specific sta-
tistical patterns due to lack of proprioception, from not being able
to sense the movements continuously. We can then classify other
participants relative to this extreme signature and infer with some
certainty that their motor output deficiencies may be also partly
due to deficiencies in the sensing of movement (proprioceptive
deficiency). Specifically, we propose that failure in systematically
detecting subtle fluctuations in sensory inputs from continuous
movements would prevent the formation of a reliable and pre-
dictable expected value. Notice here that the detecting capabilities
of our sensory systems are not something that we are fully aware
of. IW has trained to move guided by vision and has developed,
over many years, compensatory strategies that mask his lack of
proprioception quite well. Likewise, these participants with PD
were able to improve their kinematic performance when guided
by vision (Torres et al., 2011). Yet, these improvements were at the
expense of having to monitor their motions very closely, using the

same types of movements that would otherwise be highly habitual
and automated in neurotypical controls.

In both IW and the participants with PD we can cast the
data relative to the patterns obtained from the young controls
performing similar motions. We can then learn about healthy pat-
terns of motor output variability in forward and back reaches and
quantify where they localize on the Gamma plane in reference
to patterns of motion under total lack of proprioception (IW)
or under noisy and random motor output variability systemati-
cally leading to corrupted kinesthetic reafference as PD severity
increases.

The next Step 4 enables tracking, in real time, the shifts in the
stochastic signatures as a function of the type of external sensory
input used to guide the movements. This allows us to extract the
form of external guidance that leads the motor output variability
toward statistical regimes of anticipatory behavior. Points up and
to the left of the Gamma plane, near a = 1 the particular extreme
case of the exponential probability distribution, indicate a ten-
dency toward random and noisy patterns. At the other extreme,
points down and to the right of the Gamma plane indicate ten-
dency toward reliable and predictable patterns. Randomness here
means that along the continuous motions, prior events (e.g., the
peak velocity values and timing of the motion in prior trials) do
not contribute to the accumulation of an expected value indica-
tive of those features in future events. Anticipatory patterns on the
other hand mean that prior events tend to accumulate information
toward a reliable expected value (Ross, 2009). In previous work,
based on these principles we have derived velocity and acceleration
dependent stochastic rules showing the predictability of natural
motions (Torres, 2013b) but such rules fall out of the scope of this
paper.

The statistical parameters of the Gamma probability distri-
bution according to the estimated shape (a) and scale (b) are:
mean = a.b and var = a.b2. These are used in the computation of
the noise-to-signal ratio [the Fano Factor (Fano, 1947)] given by
the variance divided by the mean. This ratio is b in the Gamma
case. Therefore, the b-scale parameter of the Gamma probabil-
ity distribution informs us of noise-to-signal levels. The values
of both the shape and the scale parameters change over time for
continuous behavior (Torres, 2013a; Torres et al., 2013a). They
change as we adapt to new contexts, as we perform new move-
ments and as our sensory-motor systems are impacted by external
input (Torres, 2013b; Torres et al., 2013a,d). In Figure 5B we dis-
cuss this real-time tracking capability of these analytical tools and
use IW as an example (as we did in other PD-related work (Torres,
2013a).

Statistical indexes
Once we localize each participant on the Gamma plane, we can
obtain an index of similarity with respect to IW. To do this we
compute the Euclidean distance from each (a, b) point on the
Gamma plane to the deafferented subject’s location. This quantity
is plotted in Figure 9A relative to young controls and Figures 9A,B
for the mild PD patients relative to IW’s best case scenario (visual
guidance.) We obtain the noise-to-signal levels given by the Fano
Factor as a function of this distance. We can then identify rela-
tions between the subject’s absence of proprioception and the level
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of proprioceptive deficiency that the signatures of motor output
variability reflect for each one of the patients with mild PD, severe
PD and for the elderly controls.

RESULTS
THE SUBJECT WITHOUT PROPRIOCEPTION
The velocity-dependent parameters of the subject IW yielded fre-
quency histograms that were well fit by the continuous Gamma
family of probability distributions. The estimated shape and scale
parameters with 95% confidence according to m.l.e. were non-
stationary. They shifted their values as a function of the type of
sensory guidance. They ranged from values close to the exponen-
tial distribution (shape a close to 1) in the dark or when different
speeds and loads were used, to values in the more symmetric
(Gaussian) range of the Gamma (a, b)-plane, close to the stochas-
tic signatures of the representative normal control. The latter was
the case under some form of visual sensory guidance, e.g., in a lit
room or in a dark room with visualization of the target, or of the
moving finger.

From trial to trial his memory guided reaches in the dark
were noisier and more random than those under visual guidance.
These results are plotted in Figure 5. This figure shows repre-
sentative normalized frequency histograms of the time to reach
the peak velocity and of the values of the peak velocity under
different contexts. In the top plots of the Figure 5A we see the fre-
quency histograms of these parameters under different dynamics
(fast and slow instructed speeds and lifting small loads). In the
bottom plots of the Figure 5A we see the normalized frequency
histograms of these parameters when the reaches are under visual
guidance of the target. These are comparable to those of the rep-
resentative control. This can be appreciated in Figure 5B where
we plot the different estimates for each condition. We also show
it in Figure 6 where we plot IW’s signatures and highlight the
frequency histograms and their changes from the dark condition
(black star) to the condition where he uses visual guidance (green
star).

Notice here that the shifts in stochastic signatures (non-
stationary statistics) were within time scales of minutes of the
experimental session. Each motion segment took on average
between 1 and 2.5 s depending on the subject type. For example,
across 100 cycles of one experimental manipulation (e.g., span-
ning approximately 4–5 min of pointing motions with guidance
of the pointing finger) we obtained the estimated parameters of
the Gamma distribution. In the next 5 min of the experimental
session with the next experimental manipulation (e.g., pointing
at different speeds, or pointing this time with continuous vision
of the target, etc.) the estimated parameters shift on the Gamma
plane. Over the time scales of minutes we can then start build-
ing a stochastic trajectory and estimate the rate of change of the
shifts.

The shifts in stochastic signatures are under the volitional con-
trol of the system performing the task. In line with von Holst’s
principle of reafference (Von Holst and Mittelstaedt, 1950; Von
Holst, 1954), the motor output at time t becomes kinesthetic sen-
sory input at time t+k that the prior motions themselves caused.
The value of k refers to a time elapsed between measurements
that we researchers take according to the sampling resolution of

our sensors. For the nervous system, this time will depend on
transduction and transmission delays of the sensors involved. The
accumulation of this information over time under optimal guiding
conditions (e.g., visual guidance in IW) lead to systematic shifts of
signatures on the Gamma plane corresponding to reliable expecta-
tions toward the Gaussian regimes of behavior in the best cases or
to the exponential (random and memoryless) regime in the worst
cases.

Because these changes in motion signatures are produced by the
system itself, any prediction (and later confirmation) by the sys-
tem is based on its own non-stationary statistics. Any anticipation
of future kinesthetic sensory consequences of the ongoing action
is directly tied to prior motor information that the system itself
caused. In other words, in this continuous kinesthetic reafferent
loop, under good kinesthetic guidance, prior events reliably con-
tribute to the estimation of future events. Under bad kinesthetic
guidance, this is not the case. We show this with the corresponding
probability distributions, empirically estimated from the continuous
data. We continuously sample from this loop and provide analyt-
ics to estimate the shifts of the estimated parameters within time
scales that are relevant to the experimental session.

Notice also how the stochastic trajectory of the subject with-
out proprioception approaches the normal elderly control values
in both velocity-dependent parameters (value and timing) when
he closes the feedback loop using visual guidance. In this case,
the parameters from the elderly control are obtained from similar
visually guided conditions as those of the subject without pro-
prioception. In Figure 5B we take the signatures of IW across
the Gamma plane from highly reliable statistical regime under
visual guidance (magenta) to extremely random and noisy (red),
to less random and less noisier (blue) in the dark, to very
reliable and anticipatory regime again while using visual guid-
ance in full light. We shift his motions toward patterns of the
typical control (black star; or away from these typical regimes
(red dots)] in a systematic way that we can control using these
methods.

Figure 5C shows the estimated mean and variance parame-
ters for each condition obtained with the estimated shape and
scale parameters of the Gamma probability distribution. The pat-
terns of variability of the subject are also affected by the type of
sensory guidance and context. Visual guidance and a lit room
make his motions faster and less variable. His speed is fastest for
the condition when he has visual guidance. Under visual guid-
ance of either the target or the moving finger in the dark, he
moves the arm in feedforward mode, reaches peak velocity at
430 ms on average. He then decelerates to the target with mul-
tiple peaks, faster on average than the control (500 ms on average),
and with speed variability in the normal range. When the room
is lit, he also reaches peak velocity around 450 ms on average,
close to the representative control. Under this condition (which
is how he often moves in natural circumstances), he has com-
parable speed values and variability to those of the controls. For
the conditions where he is in the dark or where the dynamics of
the motion were manipulated, he differs from the controls signif-
icantly (Kruskal–Wallis non parametric ANOVA, p < 0.01). He
reaches peak velocity significantly later than the controls and has
higher variability (Figure 5C). His peak velocity is faster in the
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dark than under different instructed speeds or loads. In the latter
cases, his variability and the noise-to-signal (Fano Factor) are at
the highest for both parameters. These systematic changes can
also be appreciated in relation to the representative age-matched
control in the plotting the Gamma probability density functions
experimentally estimated.

POWER LAW CAPTURES SYSTEMATIC TRENDS BETWEEN PD SEVERITY
AND THE SUBJECT WITHOUT PROPRIOCEPTION
We examined the PD patients with different levels of severity
using these analytics. We also examined the deafferented subject,
the age matched controls and the young controls under different
scenarios. Figure 6 shows representative normalized frequency
histograms of the normalized peak velocity, the time to reach the
peak velocity and the average trial speed. Figure 7 reveals the
location on the Gamma plane of the mild PD patients and of
the patients with advanced PD relative to the deafferented subject
and to the controls. The deafferented subject appears twice on the
Gamma plane. One location corresponds to his signatures under

visual guidance (green star) closer to the mild PD patients. The
other location corresponds to his signatures in the dark (black
star) closer to the severe PD patients, except for one patient in the
severe PD group who falls with the mild PD group closer to IW
under vision. The trends were systematic and captured by a power
law with distinct exponents (slopes) and intercepts for mild and
severe PD in relation to the deafferented subject’s signatures with
vision and in the dark, respectively.

The scatter corresponding to the mild PD patients and the
deafferented subject under visual guidance were well fit by an
exponential fit to this relation with f (x) = αeβ x where f(x) is
the scale parameter (b) and x is the shape parameter (a) on the
Gamma plane. The coefficients with 95% confidence bounds were
α = 0.9066 [0.8423,0.9709] and β = −1.047 [−1.06, −1.034].
The goodness of fit parameters was: Sum Squared Error (SSE),
5.37 × 10−8, R2, 0.99, and Root Mean Squared Error (RMSE),
3.81 × 10−5.

The scatter corresponding to the severe PD patients and the
deafferented subject in the dark shifted on the Gamma plane. They

FIGURE 7 | Estimation and classification process. (A) The log-log plot of
the Gamma plane shows the spread of the cohort including college
students, elderly participants approximately matching the age of the PD
patients, the patients in the mild, and more advance stages of PD and the
deafferented subject. The deafferented subject’s data correspond to
pointing motions in complete darkness (black star) and motions under
visual guidance (green star). Each point is estimated with 95% confidence
and represents the signature of the velocity-dependent motor output
variability, specifically obtained from the normalized peak velocity. Notice
the change in the slope and intercepts for the power laws revealed by the
data (see details in the text.) Frequency histograms of the peak velocities
of the dark and visually guided conditions for the deafferented subject are

shown as insets in (A). (B) The estimated Gamma probability density
function curves are obtained using the estimated Gamma shape and scale
parameters and the experimentally determined range of the normalized
peak velocity. Each curve corresponds to the point in (A). Left shows the
mild PD group in relation to elderly and young controls. Right shows the
group with more advanced PD using as anchors the data from the
deafferented patient while pointing in the dark and with visual guidance.
(C) Estimated mean and variance to obtain the SD and automatically
classify the participants. Notice that higher values of μ correspond to
lower values of averaged hand speed in the denominator term of the
normalized peak velocity index (see text for the definition of normalized
peak velocity.)
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were well fit by an exponential fit as well with α = 3.315 [3.079,
3.551] and β = −1.147 [−1.17, −1.124]. The goodness of fit
parameters was: SSE, 4.11 × 10−5, R2, 0.99, and RMSE, 0.001512.

Under visual guidance mild PD patients tend toward the deaf-
ferented patient’s signatures and away from the young controls.
Most elderly controls separate from the mild PD patients. This
can be appreciated in Figure 7C showing the estimated mean and
variance of the empirically estimated Gamma probability distribu-
tion. Notice here that as PD severity increases the signatures shift
places on the Gamma plane and approach those of the deafferented
subject in the dark. Insets in the Figure 7A contrast the frequency
histograms of the velocity peaks of the deafferented subject (rang-
ing in the dark from 1 to 5.5 cm/s and increasing with vision in
values and range, 5–25 cm/s). Figure 7B shows the probability
density functions estimated from the empirical data. Notice here
that the deafferented subject (green trace) has very high variabil-
ity and very low speed on average. This trend is also systematically
observed in the PD patients. The mild PD are slower than the deaf-
ferented subject during the visual guidance condition, but much
more variable and slower than the young controls. The severe PD
patients in Figure 7A fall between the deafferented subject under
visual guidance (green star) and the deafferented subject in the
dark (black star). In Figure 7B we plot the probability density
functions (pdf ’s) of all subjects under visual guidance in relation
to IW using vision (green pdf curve on the left) and IW in the dark
(black pdf curve on the right). Figure 7C shows this information
as well. Notice the outlier patient in the severe group who is com-
parable to IW under visual guidance (next to the green star) but
worse than the mild PD patients (two subplots are used because
of the increase in noise levels along the vertical axes for severe PD
and IW in the dark.)

In general the PD patients move systematically slower, thus
resulting in higher values of the normalized peak velocity (average
speed in the denominator is lower in value than for normal con-
trols). Likewise the variability systematically increased with the
severity of the PD patients. The mild PD remained systematically
closer to the subject without proprioception in the visually guided
condition. The severe PD were systematically closer to the deaf-
ferented subject in the dark condition. The elderly controls also
separated on the Gamma plane of Figure 7A from the young col-
lege students. This can also be seen in Figure 7C in the slower
(on average) and noisier motions of the elderly controls compared
to those of the young controls. (Here recall that lower values of
the normalized peak velocity to the left of the horizontal μ-axis
are due to the higher average speed trial.) The trial-to-trial motor
variability of the elderly was very high in general, but in particu-
lar this was the case also for those with mild PD. The severe PD
patients were in a different scale altogether and had to be shown
in different plots to the right of Figures 6 and 7B. Notice that their
estimated Gamma statistics fall between those of the deafferented
subject under visual guidance (best case scenario) and in the dark
(worst case scenario.)

FORWARD VS. RETRACTING PATTERNS SEGREGATE SEVERITY OF PD
PATIENTS
The visible differences between the forward and retracting speed
profiles across PD patients observed in Figure 2 were further

studied. The patterns of additional local peaks and their inter-time
intervals are shown in Figures 8A,B for the mild PD patients in
the forward (Figure 8A) and retraction segments (Figure 8B).
Figure 8C shows a distinct separation between the signatures of
the inter-time intervals of the local peaks. The local peaks reflect
action tremor that varies from patient to patient. Here the tempo-
ral dynamics of those local peaks indicates that the retractions
are under a different level of noise and randomness than the
forward motions in the mild PD group. Furthermore, the retrac-
tion signatures are similar to the signatures of IW under visual
guidance, signaled in C by a double arrow. IW signatures for
both forward and retracting motions are in the random, mem-
oryless, and noisy regimes of the Gamma plane. The level of
noise (y-axis values) fall for most of the PD patients below IW’s
levels.

The second group of PD patients (Figure 8, bottom row)
showed several distinct patterns worthwhile discussing. The first
was the presence of multiple modes in their individual fre-
quency histograms. We performed the Hartigan’s dip test of
unimodality (Hartigan and Hartigan, 1985) and found signif-
icant differences in this group of PD patients, 11/17 in the
forward case and 14/17 in the retraction (for p < 0.05). These
differences were not as marked in the mild group of patients
(Figures 8A–C). This was the case both for the values of the
local peaks and for the frequency histograms of their inter-time
intervals.

As an ensemble the differences in multimodality can also be
seen in Figures 8D,E, as compared to Figures 8A,B. Yet, the results
from the individualized analysis were more striking. The results
from the analyses of the Gamma plane in Figure 8F are in refer-
ence to the first mode of the individual distributions, the mode
comprising a range of values comparable to those in the patients
of Figure 8C. Their stochastic signatures from the inter time inter-
vals of the local peaks revealed a far more mixed picture between
the forward and retraction segments. The patterns from the dark
condition for subject IW are marked by a double arrow. His sig-
natures stand at the left end of the Gamma plane (random and
memoryless exponential regime.) They are noisy as well (high val-
ues of the Fano Factor which is the scale value on the y-axis.)
Yet, notice that those signatures of the temporal dynamics of
the local peaks in PD patients are even noisier than IW’s in the
dark.

In summary, the temporal dynamics of the action tremor
of these severe PD patients turned out to differ from those of
the other PD group: (1) Their overall frequency histograms had
several modes; (2) The mode corresponding to the range of
values of the (Figure 8D) could not be separated into forward
and retraction segments in the Gamma plane; (3) These pat-
terns on the Gamma plane were for most of those PD patients
noisier than IW’s [in contrast to those in (Figure 8C)]. Lastly
IW’s inter-time intervals for these local peaks were noisier with
vision than in the dark condition (where he may have used
motor imagery) and just as random, memoryless, and unpre-
dictable in both cases. The noisier patterns in the case of visual
guidance may be partly contributed to by vision itself, but
we have no way at present to know this with any degree of
certainty.
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FIGURE 8 | Differences between mild and severe PD patients in the

inter-time intervals of local velocity peaks. (A–C) Statistical features of
temporal dynamics from mild PD patients’ forward pointing motions and
retractions in relation to IW in the visually guided condition. Scatters of all
local velocity peaks as a function of the inter time intervals between local
peaks with frequency histograms corresponding to the values of these
local peaks (y-axis) and their inter time intervals (x-axis). (C) The Gamma
plane scatter of the mild PD patients’ signatures of the inter time intervals
of the local velocity peaks. Notice that points corresponding to the
retractions are in the noisier and more random region of the Gamma plane
where IW’s (both forward and retracting) motions fall (marked by the

double arrow). The points corresponding to the forward pointing motions
separate from those corresponding to the retractions in all (but one) mild
PD patients. (D–F) Similar plots as (A,B) corresponding to severe PD
patients in relation to IW in the dark condition. Note the difference in
scatter and multimodality of the y-axis frequency histograms (see text for
additional details). (F) The scatter of points of the severe PD patients in the
Gamma plane do not distinguish between forward and retracting motions.
Notice that the majority of the patients have noisier patterns of inter peak
time intervals than IW. Notice as well that IW patterns are at the
exponential end (random and memoryless probability distribution) of the
Gamma plane.

OTHER (PROPOSED) INDEXES OF SEVERITY
The 3D kinematic data from natural unconstrained behaviors
is very rich in information. The layer of estimated stochastic
signatures that we extract from the raw kinematics can be used
to build many indexes that can inform us of the noise-signal flows
in the compromised systems and in the normally aging systems.
One such index is shown in Figure 9A. We obtained for each par-
ticipant the Fano Factor (estimated variance/estimated mean) as
a function of the Euclidean distance in the Gamma plane from
each point to the location of the centroid of the young con-
trols’ scatter. The closer to the young controls the person was,
the lower the noise. In Figure 9B we zoomed in for the mild PD
patients and show their distance from the deafferented subject
under visual guidance. The closer the person is to the deafferented
subject, the higher the noise level in the motor output variabil-
ity. We found an exponential fit to this relation with f (x) = αeβ x

where f(x) is the Fano Factor and x is the Euclidean distance
from the participant IW to a mild PD subject on the Gamma
plane.

The coefficients with 95% confidence bounds were
α = 0.0033 [0.0032, 0.0034] and β = −0.0031 [−0.0033, −0.0029].
The goodness of fit parameters was: SSE 1.86 × 10−7, R2 0.983,
and RMSE 1.04 × 10−4.

The plot comparing the levels of the noise to signal ratio (the
Fano Factor) in the mild vs. severe groups of patients as a function
of age is shown in Figure 9C. The plot revealed a trend that man-
ifested regardless of age. The noise levels were higher in the severe
PD group than in the mild PD group. All participants but one in
the severe PD group had values of the Fano Factor above those in
the mild PD group. The latter had noise levels comparable to those
of IW under visual guidance. In the dark, the noise levels of the
patterns of IW were higher than those of the severe PD patients.

DISCUSSION
This work characterized the stochastic patterns of motor output
variability of a subject without proprioception under different
pointing conditions. His stochastic patterns were compared to
those obtained from patients with various degrees of PD severity
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FIGURE 9 | Other variability dependent indexes to quantify the relations

between motor output variability and proprioceptive deficits.

(A) Systematically measuring the distance in the Gamma plane between each
participant and the centroid location of the young control group reveals an
exponential increase in the noise levels (measured by the Fano Factor, the
ratio of estimated variance over estimated mean) as the participant is farther
apart from the young controls’ centroid. (B) Zooming in the mild PD provides
a putative index of severity even at that mild stage of PD to quantify decrease

in kinesthetic sensing relative to the deafferented subject according to noise
levels in the motor output variability. The exponential relation of this segment
has a shift in slope and intercept with respect to the severe PD group (see
text for details and Figure 6). In both groups the closer the stochastic
signature of the velocity-dependent motor output variability of the person is
to the deafferented subject, the noisier the signal of that person is (higher
Fano Factor value). (C) Noise to signal levels (Fano Factor) as a function of age
in Mild PD vs. severe PD patients.

and to age-matched normal controls. They were also compared to
those of college undergraduate students who performed similar
3D pointing motions in a lit room. We focused on the patterns
of velocity dependent variability as the movements continuously
unfolded in 3D, rather than on discrete trials with the end-
point spread at the target. Our hypothesis was that the patients
with PD would have velocity dependent patterns of variability
closer to those of the subject without proprioception than to
the healthy aging controls. We searched for evidence in sup-
port of the notion that deficiencies in kinesthesia may emerge,
even at a mild stage of PD, when statistically noisy and ran-
dom motor output variability persists over years. We specifically
refer to kinesthesia as the stable and reliable detection (e.g., by
mechanoreceptors) of continuous body motions. This detection
capacity we presume emerges from the sensation of continu-
ous body and limb movements. We examined this hypothesis
using novel statistical techniques that treat minute fluctuations
in the velocity dependent motor output as a continuous random
process.

The new statistical methodology that we used is centered on
individual assessments of the continuous flow of movements
(Torres and Jose, 2012). In this context we are not aiming at corre-
lating movement parameters with treatments of the data. Rather,
we are empirically estimating the underlying probability distri-
butions that most likely characterize the continuously returning
afferent stream that those motions themselves caused. In other
words, we provide a novel statistical characterization of von Holst’s
concept of kinesthetic reafference.

We examined the minute velocity-dependent fluctuations that
are inherently present in the continuous flow of pointing motions.
We estimated the statistical parameters of the continuous Gamma
family of probability distributions and showed how these param-
eters directly estimated from the physical motions of the fin-
ger, shifted systematically with manipulations of the context

and the form of sensory guidance. We showed self emerging
systematic patterns in mild and severe PD patients in relation
to the deafferented subject, under different forms of sensory
guidance.

SYSTEMATIC TRENDS TOWARD THE STOCHASTIC SIGNATURES OF IW
We found consistently corrupted patterns of motor output vari-
ability in subjects with PD that shifted toward the signatures of the
deafferented patient revealing different degrees of PD severity. The
trial by trial motor-fluctuation patterns of these patients increased
the noise levels with a consistent tendency approaching the pat-
terns of IW in the absence of vision. These trends were captured
by a power law that shifted slope and intercept with PD severity
levels.

The rate of change of the progression of this disorder is rather
unique to each person and depends on many factors; including
age, age of onset, genetics, and environmental factors, among oth-
ers. Our new statistical platform permits a type of individualized
analyses where the person is his/her own control. We can mea-
sure the shifts in the stochastic signatures of each person in one
condition relative to another condition, with respect the baseline
signatures of that person within a given context. Any similarity
among subjects under a given condition reveals self emerging clus-
ters that can be indicative of a group behavior. In this study the PD
patients automatically revealed different groupings in the Gamma
plane.

The striking differences in statistical classes between clusters
resulting from the comparison between forward and retracting
segments further supported systematic trends in severity. The sys-
tematicity of this trend was confirmed through the analyses of
both the global peak velocities of the segments and at an even
finer level, by the stochastic signatures of their local peaks and
their inter-time intervals. Mild PD patients had better control of
the forward than of the retracting segments. The latter resembled
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the patterns of IW with visual guidance. In contrast, severe PD
patients showed that the patterns from both segments were indis-
tinguishable and comparable to IW’s patterns without vision.
These trends were also found in the Fano Factor (the noise to
signal ratio) which in all severe PD patients (but one) was higher
than in the mild PD group. This result was independent of the
age of the patient. For example, we found older patients with mild
PD with lower levels of noise than younger patients with severe
PD. This suggests that the levels of noise present in the velocity
dependent spatio-temporal parameters may be a good predictor
of severity level in PD. That result confirms similar findings in
acceleration patterns of general everyday motions in PD (Torres,
2013a).

We propose that, given the systematic trends found here in
the temporal dynamics, and noise levels of the global and local
velocity peaks, there may a disruption in central control inherent
to PD. This, we propose may be partly due to the uncertain-
ties from reduced motor stability which within the closed-loop
formulation of our problem, would also result in uncertainties
in corollary discharge impeding strategies for predictive forward
control.

In subject IW we know the source of the problem. Yet in the
PD patients we do not know where the problem originates. The
persistent corrupted motor output with continuously noisy and
random signatures of narrow bandwidth could impede a number
of processes required for proper sensory motor integration, esti-
mation, and prediction. As in any data-driven study, one could
only speculate on the source of the problem and further test sev-
eral hypotheses in future studies. Here are some of these guesses:
Perhaps the corrupted motor output poses a detections problem
for the kinesthetic mechanoreceptors sensing the continuous flow
of motion. Change detection along this flow would be compro-
mised, as receptors would be continuously sensing random and
noisy events, thus impeding the formation of a systematic and reli-
able expected value that the system could predict. The exponential
distribution characterizing their fluctuations in motor output is
the most random (“memoryless”) distribution. Previous events do
not contribute to future events any more than current events do.
Perhaps this lack of stability would also transfer to the transmis-
sion of the signal throughout the sensory nerves. Even if they were
not physically damaged in PD (as in the case of IW) the corrupted,
feedback with narrow bandwidth would affect the transmission
and transduction process. Perhaps the process of integration of
this form of motor-based sensory feedback with other sensory sig-
nals is impeded and at the central level estimation and prediction
are also impeded. All these factors could contribute to the dis-
ruption in corollary discharge. Systematic testing in our labs is
warranted in future PD studies to address each level of the above
mentioned hypotheses.

IW had velocity-dependent reaching patterns of motor out-
put variability that were well characterized by the continuous
Gamma family of probability distributions. The estimated shape
and scale parameters of this family of distributions shifted sys-
tematically in this subject as a function of the form of sensory
guidance that we provided within the experimental session. The
estimated Gamma distribution parameters spanned values from
the exponential range (the shape parameter near 1) for movements

made in the dark or with manipulations of dynamics, to skewed
ranges closer to those of typical controls, tending toward the
symmetric Gaussian (shape values above 10) for movements
with visual guidance. These shifts in the subject had differ-
ent rates that were systematically driven as a function of the
form of sensory guidance that we provided during the exper-
iments. When we provided visual feedback, we systematically
drove his stochastic signatures down and to the right of the
Gamma plane, i.e., the noise levels of the velocity-dependent
motor output fluctuations dampened along the scale axis and
the reliability and predictability of their expected values increased
along the shape axis. When we turned off the lights and/or
manipulated the dynamics, we systematically drove his stochas-
tic signatures up and to the left of the Gamma plane, i.e.,
toward noisy and random statistical regimes of the motor output
fluctuations.

These non-stationary features of the statistics of continuously
flowing motions were captured even within the time scales of the
experimental session. This result paired with the fact that the prob-
ability distributions of these velocity-dependent parameters were
non Gaussian strongly suggest that we should not take averages of
hand kinematic parameters and/or assume Gaussian priors when
assessing sensory-motor variability in general. They also point to
the potential use of these new methods in the design of individ-
ualized therapies tailored to exploit the predispositions and best
sensory capabilities of the person. Those predispositions can be
extracted from the conditions leading to shifts on the Gamma
plane that bring the patterns down and to the right, toward typical
reliable and anticipatory statistical regimes.

In particular, the new results show that, without vision, the
patterns of motor output variability of the deafferented subject
were random and noisy. They fell toward the exponential range
of the Gamma (shape, scale)-plane with shape values close to
1. Under this “memoryless” distribution every trial is like a new
trial. This feature would require feed-forward strategies predicting
ahead sensory consequences (movements in neurotypical cases) of
impending actions, guided by vision in IW’s case (Balslev et al.,
2007; Miall and Cole, 2007). Without vision, his moment-to-
moment movement output variability fails to provide a stable
enough motor percept (a motor prior) to rely on under new
contexts.

When guided by vision IW’s average speed was comparable to
that of age-matched normal controls. Yet, his signature of variabil-
ity was closer to those of the patients with mild PD than to those of
the age-matched controls. In the dark, his patterns were closer to
the severe PD patients. This suggests that the systematically noisier
and more random motor output variability quantified in these PD
patients as their severity levels increased may relate to impair-
ments in kinesthetic reafferent information during continuous
motions.

The exponential trend in the stochastic signatures of motor
output fluctuations found here in subjects with mild and severe PD
for this pointing task indicates reliance in the “here and now,” with
no cumulative information from past motor events contributing
to the estimation, prediction and confirmation of future motor
events. This type of continuously random feedback may play a role
in the lack of anticipatory control reported in other more complex
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tasks of the reaching family (Santello et al., 2004; Muratori et al.,
2008; Yanovich et al., 2013).

It is important to bear in mind that IW’s loss of propriocep-
tion occurred nearly 25 years prior to our testing him, and that
he underwent extensive rehabilitation, and unlike other deaffer-
ented patients, learned to successfully walk unassisted as long
as he had vision (Cole, 1995). His case shows us the limits of
what is possible to achieve after extensive rehabilitation and reor-
ganization following deafferentation in young adulthood (Cole,
1995). Perhaps if we had tested IW soon after his deafferenta-
tion, his data would have been much farther separated from those
of these PD patients, who also have an over reliance in visual
guidance. We are not implying that PD patients have propriocep-
tive deficits comparable to those seen following actual physical
deafferentation. Rather than having damaged sensory nerves, as
does IW, we here conjecture that the parkinsonian disorder may
also involve impairments in the central processing of proprio-
ception (Boraud et al., 2000; Rodriguez-Oroz et al., 2001; Escola
et al., 2002; Seiss et al., 2003; Pessiglione et al., 2005). This may
contribute to the persistence of corrupted motor output as a
returning stream with narrowed bandwidth. The corrupted signal
may be missed by the kinesthetic sensor’s radar at the periphery.
In turn this would fail to form proper expected values for sta-
tistical estimation by the central controller. These are potential
(presumed) mechanisms that we plan to explore in our future
work.

In the introduction we proposed to term this putative deficiency
“virtual deafferentation” to distinguish it from actual physical
deafferentation of IW. If the sensory input from movement is con-
tinuously random and noisy, it is very unlikely that it can be used
to construct an emergent, stable motor percept. Thus, sustained
corrupted kinesthetic reafferent integration could potentially cre-
ate a vicious cycle of sensory-motor dysfunction. We propose that
the persistence of this cycle over time would systematically increase
noise levels in both the motor output variability and the returning
(reafferent) input stream. In this sense, these data both provide
novel evidence for putative proprioceptive integration deficits in
PD, and also show the extent of recovery humanly possible fol-
lowing deafferentation as an adult. IW’s systematic grouping with
PD patients under his best to worst performance, as severity of the
disorder increased in Figure 7 supports both points.

The critical difference between the patterns of IW and those
from most subjects with PD was the average speed of their reaches
(Figure 7C). Despite the noise and randomness in his patterns,
under visual guidance IW reaches had comparable mean values
of the normalized speed index to those of the controls. This was
in stark contrast to his performance in the dark. Across these
conditions, the severe PD patients were systematically slower than
the mild PD ones.

POSSIBLE FUTURE APPLICATIONS OF THIS PARADIGM AND
ANALYTICAL METHODS
The question of whether the source of noise at the periphery is
due to deficiencies in detection by kinesthetic receptors, or physi-
cal sensory nerve damage, or central-level processing, or whether
it is present at all levels, is an important one. We can further
investigate this question using these new metrics across multiple

populations of patients with known physical sensory nerve damage
vs. patients without physical nerve damage but with corrupted
returning stream of motor output. In this cohort we rather focused
on the subject IW who we know had sensory nerve damage due
to a viral infection (Cole, 1995, 1998; Cole and Paillard, 1995) and
no recovery from it. We used his stochastic patterns in the dark
as an anchor at one end of the Gamma plane (noisy and random
patterns), and the patterns of young healthy participants at the
other end (reliable and predictive patterns) to set bounds of worst
and best case scenarios respectively, for the stochastic signatures
of the PD patients. In future studies these new statistical methods
could provide a starting point to further try and disentangle the
contributions of peripheral sensory and motor signals to central
control.

Lack of proprioception in other patients with neurological
problems may be characterized by applying our methods to the
motor output variability in relation to well known deafferented
subjects like IW. Such severe purely sensory neuropathies can be
seen in some cancer patients who receive chemotherapy, in Sjo-
gren’s Syndrome and in the acute neuronopathy syndrome, as well
as in some genetic disorders. The Gamma plane may serve as a map
to localize the stochastic motor output patterns of PD patients (and
of other patients) in relation to those obtained from the motions of
well known patients whose proprioceptive impairments (as those
of IW) are of known origins. Patients suffering from PD could
also be localized relative to normal controls. This feature enabled
us to assess shifts in patterns induced by specific forms of sensory
guidance that tended to bring the subject’s performance toward
normal ranges. Likewise, using IW and the normal controls as
points of reference in the Gamma plane, it may be possible to
know which forms of sensory guidance are most likely detrimen-
tal to the cohort under study. That would be the form of sensory
guidance that systematically pulls their stochastic signatures away
from normalcy and toward the patterns of the deafferented sub-
ject. Using the young healthy controls as the anchor for perfect
cases also helps us track the form of sensory guidance that pulls
the signatures toward the ideal healthy extreme on the Gamma
plane.

It may be important to note here that the framework that we are
using is different from the notion of internal models discussed in
other work related to predictive vs. reactive central control strate-
gies during grip force behavior (Nowak and Hermsdorfer, 2005).
Under that framework the system has an internal model with
a pre-programmed expected solution that is assumed to guide
the error-correction process. In some contexts this information
has been coined sensory motor priors when casting the prob-
lem using Bayesian statistics. Here the statistical framework that
we use speaks of a continuous random process and its under-
lying emerging probability distributions, which we show have
non-stationary parameters. At the core of our estimation pro-
cess is the accumulation of evidence according to the continuous
returning stream from the unfolding motions – both the motions
that the person is volitionally controlling and those which the
person is largely unaware of. At the core of their framework
are contact forces that require compliance estimation and the
assumption that an internal model must exist about the object
dynamics and the internal dynamics of the system. Our pointing
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experiment does not require contact forces and our statistical
platform do not assume any underlying sensory motor priors.
It rather estimates what those probability distributions most likely
may be under the contexts and situations that the experiment took
place.

In recent years we have successfully used this new statisti-
cal platform to characterize the motor learning and adaptive
behavior in athletes (Torres, 2011, 2013b), to characterize the
autistic phenotype of known (Torres et al., 2013c) and unknown
(Torres et al., 2013a) etiology, to identify gender differences in
autism (Torres et al., 2013b), and to evoke volitional control
in non-verbal so called “low functioning” children with autism
(Torres et al., 2013d). We had also used it to track daily motion
patterns in PD patients (Torres, 2013a). In the clinical cases, how-
ever, atypical the patterns of motor output variability were across
these patient groups, we had no anchor to discern whether their
noisy and random patterns were exclusively due to impairments
in efferent output, or if there were also contributions from affer-
ent deficits, particularly in relation to movement reafference and
sensory-motor integration. The work with the deafferented sub-
ject IW, who lacks prioprioception from the neck down, strongly
suggests that those velocity-dependent motor output fluctuations
patterns with exponential signatures and high noise levels that
we had previously identified are not only due to efferent noise.
They may also relate to impairments in proprioception, specifically
related to kinesthetic feedback integration and central control.
Ongoing work in our laboratory is specifically mapping several
patient types in relation to the deafferented subject IW.

CONCLUSION
We have presented here a new statistical methodology that permits
the characterization of motor output variability from the con-
tinuous flow of naturalistic behaviors. This methodology treats
motor output noise-signal flows as a returning stream of sen-
sory input that those motions themselves caused. The methods
derive specific indexes to objectively and continuously quantify
the evolution of such signatures over relatively short time scales.
These time scales, relevant to a visit in the clinic, could enable
tracking in real-time the shifts in stochastic signatures as a func-
tion of various forms of sensory guidance. Those shifts in the
stochastic trajectories toward predictable and reliable statistical
signatures would then signal which form of sensory guidance
would be most adequate to treat the patient. Likewise, changes
toward the random exponential regimes with higher noise-to-
signal ratio would be identified as detrimental to the patient.
In this sense the plasticity that we quantified here non-invasively
in the motions from the peripheral limbs provide proof of con-
cept that we can systematically induce and track changes under
different forms of guidance. We could use such techniques in
other patient populations besides PD. This work may enable
the design of therapeutic interventions specifically targeting the
patient’s sensory-motor capabilities and predispositions to reshape
such motor output variability patterns toward normal statisti-
cal regimes. Such patterns of motor output variability integrated
with external sensory guidance could provide the means to imple-
ment a new form of sensory-motor substitution or augment the
sensory space of the individual, thus having broad therapeutic

implications to induce and track adaptable changes in levels of
volitional control.
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