
BIROn - Birkbeck Institutional Research Online

Calì, Andrea and Calvanese, D. and Colucci, S. and Di Noia, T. and Donini,
F.M. (2004) A description logic based approach for matching user profiles.
In: Haarslev, V. and Moller, R. (eds.) Proceedings of the 2004 International
Workshop on Description Logics. CEUR Workshop Proceedings.

Downloaded from: http://eprints.bbk.ac.uk/id/eprint/42853/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/384310481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.bbk.ac.uk/id/eprint/42853/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

A Description Logic Based Approach for

Matching User Profiles

Andrea Cal̀ı1,2, Diego Calvanese2, Simona Colucci3,

Tommaso Di Noia3 Francesco M. Donini4

1Dip. di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113
I-00198 Roma, Italy
ac@andreacali.com

2Faculty of Computer Science
Free University of Bolzano/Bozen

Piazza Domenicani, 3
I-39100 Bolzano, Italy

calvanese@inf.unibz.it

3Dip. di Elettrotecnica ed Elettronica
Politecnico di Bari
Via Re David 200
I-70125 Bari, Italy

{s.colucci, t.dinoia}@poliba.it

4Università della Tuscia
Facoltà di Scienze Politiche

Via San Carlo 32,
I-01100 Viterbo, Italy
donini@unitus.it

Abstract

Several applications require the matching of user profiles, e.g., job recruitment
or dating systems. In this paper we present a logical framework for specifying
user profiles that allows profile description to be incomplete in the parts that are
unavailable or are considered irrelevant by the user. We present an algorithm
for matching demands and supplies of profiles, taking into account incomplete-
ness of profiles and incompatibility between demand and supply. We specialize
our framework to dating services; however, the same techniques can be directly
applied to several other contexts.

1 Introduction

The problem of matching demands and supplies of personal profiles arises in the
business of recruitment agencies, in firms’ internal job assignments, and in the recently
emerging dating services. In all scenarios, a list of descriptions of persons is to be
matched with a list of descriptions of required persons. In electronic commerce, the
general problem is known as matchmaking, although here we do not consider any
exchange of goods or services.

We stress the fact that in matchmaking, finding an exact match of profiles is not
the objective; in fact, such a match is very unlikely to be found, and in all cases
where an exact match does not exist, a solution to matchmaking must provide one or
more best possible matches to be explored. Non-exact matches should consider both
missing information — details that could be positively assessed in a second phase —
and conflicting information — details that should be negotiated if the proposed match

is worth enough pursuing. Moreover, when several matches are possible, a matchmaker
should list them in a most-promising order, so as to maximize the probability of a
successful match within the first trials. However, such an order should be based on
transparent criteria — possibly, logic — in order for the user to trust the system.

Profiles matchmaking can be addressed by a variety of techniques, ranging from
simple bipartite graph matching (with or without cost minimization) [9], to vector-
based techniques taken from classical Information Retrieval [11, 13, 12], to record
matching in databases, among others. We now discuss some drawbacks of these tech-
niques when transferred to solve matchmaking.

Algorithms for bipartite graph matching find optimal solutions when tying to
maximize the number of matches [8, 10]. However, such algorithms rely on some way
of assigning costs to every match between profiles. When costs are assigned manually,
knowledge about them is completely implicit (and subjective), and difficult to revise.
Moreover, in maximizing the number of matches a system may provide a bad service
to single end users: for example, person P1 could have a best match with job profile
J1, but she might be suggested to take job J2 just because J1 is the only available job
for person P2. Hence, from end user’s viewpoint, maximizing the number of matches
is not the feature that a matchmaker should have.

Both Database techniques for record matching (even with null values), and in-
formation retrieval techniques using similarity between weighted vectors of stemmed
terms, are not suited for dealing with incomplete information usually present in match-
making scenarios. In fact, information about profiles is almost always incomplete, not
only because some information is unavailable, but also because some details are simply
considered irrelevant by either the supplier or the demander — and should be left as
such. Imposing a system interface for entering profiles with long and tedious forms
to be filled in, is the most often adopted “solution” to this incompleteness problem
— but we consider this more an escape for constraining real data into an available
technique, than a real solution. For example, in a job posting/finding system, the
nationality could be considered irrelevant for some profiles (and relevant for others);
or in a dating service, some people may find disturbing (or simply inappropriate) the
request to specify the kind of preferred music, etc. In such situations, missing infor-
mation can be assumed as an “any-would-fit” assertion, and the system should cope
with this incompleteness as is.

To sum up, we believe that there is a representation problem that undermines
present solutions to matchmaking: considering how profiles information is represented
is a fundamental step to reach an effective solution, and representations that are either
too implicit, or overspecified, lead to unsatisfactory solutions.

Therefore, our research starts with proposing a language, borrowed from Artificial
Intelligence, that allows for incomplete descriptions of profiles, and both positive and
negative information about profiles. In particular, we propose a Description Logic [1]
specifically tailored for describing profiles. Then, we model the matching process as
a special reasoning service about profiles, along the lines of [5, 6]. Specifically, we
consider separately conflicting details and missing details, and evaluate how likely
is the match to succeed, given both missing and conflicting details. Our approach
makes transparent the way matches are evaluated — allowing end users to request

justifications for suggested matches. We devise some special-purpose algorithms to
solve the problem for the language we propose, and evaluate the possible application
scenarios of a dating service.

The paper is organized as follows. In Section 2 we present the Description Logic we
use for describing profiles. In Section 3 we describe how to represent user profiles, and
in Section 4 we present the algorithm for matching user profiles. Section 5 concludes
the paper.

2 A Description Logic for Representing Profiles

We use a restriction of the ALC(D) Description Logic, that, besides concepts and roles
to represent properties of (abstract) objects, also allows one to express quantitative
properties of objects, such as weight, length, etc., by means of concrete domains [2].
Each concrete domain D, e.g., the real numbers R, has a set of associated predicate
names, where each predicate name p denotes a predicate pD over D. For our purpose,
it is sufficient to restrict the attention to unary predicates, and we assume that among
such unary predicates we always have a predicate > denoting the entire domain, and
predicates >`(·) and 6`(·), for arbitrary values ` of D. We also assume that the
concrete domains we deal with are admissible, which is a quite natural assumption,
satisfied e.g., by R (see [2] for the details). Besides roles, the logic makes use of fea-
tures. Each feature has an associated concrete domain D and represents a (functional)
relation between objects and values of D.

Starting from a set of concept names (denoted by the letter A), a set of role names
(denoted by R), a set of unary predicate names (denoted by p), and a set of features
(denoted by f), we inductively define the set of concepts (denoted by C) as follows.
Every concept name A is a concept (atomic concept), and for C1 and C2 concepts, R

a role name, f a feature with associated domain D, and p a unary predicate of D, the
following are concepts:

• C1 u C2 (conjunction), C1 t C2 (disjunction), and ¬C (negation);
• ∃R.C (existential restriction) and ∀R.C (universal restriction);
• p(f) (predicate restriction).

To express intentional knowledge about concepts, we make use of a concept hi-
erarchy, which is a set of assertions of the form A1 v A2 and A1 v ¬A2, with A1

and A2 concept names. The former assertion expresses an inclusion, while the latter
expresses a disjointness. For example, football v sport and male v ¬female could be
assertions that are part of a concept hierarchy.

Formally, the semantics of concepts is defined by an interpretation I = (∆I , ·I),
consisting of an abstract domain ∆I and an interpretation function ·I that assigns
to each concept name A a subset AI of ∆I ; to each role name R a binary relation
RI over ∆I , and to each feature name f , associated with the concrete domain D,
a partial function fI : ∆I → D. The interpretation function can be extended to
arbitrary concepts as follows:

(C1 u C2)
I = CI

1 ∩ CI

2

(C1 t C2)
I = CI

1 ∪ CI

2

(¬C)I = ¬CI

(∃R.C)I = {c ∈ ∆I | there exists d ∈ ∆I s.t. (c, d) ∈ RI and d ∈ CI}

(∀R.C)I = {c ∈ ∆I | for all d ∈ ∆I s.t. (c, d) ∈ RI we have d ∈ CI}

(p(f))I = {c ∈ ∆I | fI(c) ∈ pD}

An assertion A1 v A2 is satisfied by an interpretation I if AI

1 ⊆ AI

2 . An assertion
A1 v ¬A2 is satisfied by an interpretation I if AI

1 ∩AI

2 = ∅. We call an interpretation
that satisfies all assertions in a hierarchy H a model of H. A concept C is satisfiable
in H if H admits a model I such that CI 6= ∅. A hierarchy H logically implies an
assertion C1 v C2 between arbitrary concepts C1 and C2 if CI

1 ⊆ CI

2 , for each model
I of H.

3 Representing User Profiles

We describe how to represent user profiles using the Description Logic presented in
Section 2. The user profiles are tailored for dating services, though the same framework
can be used, with small modifications, for different applications. We do not use the
full expressive power of the Description Logic. In particular, we use a single role
hasInterest, to express interest in topics1, and we make a limited use of the constructs.
We assume the set of features to represent physical characteristics such as age, height,
etc. Additionally, we use a special feature level that expresses the level of interest in a
certain field. The concrete domain associated to level is the interval {` ∈ R | 0 < ` 6

1}.
A user profile P consists of the conjunction of the following parts:

• A conjunction of atomic concepts, to represent atomic properties associated to
the user. We denote the set of such concepts as Names(P).

• A conjunction of concepts of the form p(f), to represent physical characteristics.
The (unary) predicate p can be one of the predicates >`(·), 6`(·), =`(·), where
` is a value of the concrete domain associated to f , or any logical conjunction
of them. We denote the set of such concepts as Features(P). Since (p1 ∧ p2)(f)
is equivalent to p1(f) u p2(f), in the following, we can assume w.l.o.g. that
Features(P) contains at most one concept of the form p(f) for each feature f .

• A conjunction of concepts of the form ∃hasInterest.(C u>x(level)), where C is a
conjunction of concept names, and 0 6 x 6 1. Each such concept represents an
interest in a concept C with level at least x. We denote the set of such concepts
as Interests(P).

• A conjunction of concepts of the form ∀hasInterest.(¬Ct6x(level)), where C is a
conjunction of concept names, and 0 6 x 6 1. Each such concept represents the

1For modeling profiles in different contexts, additional roles could be added to this language. For

example, hasSkill for expressing skills in certain fields.

fact that the interest in a concept C has level at most x. Note that, to represent
the complete lack of interest in C, it is sufficient to put x = 0. We denote the
set of such concepts as NoInterests(P).

Example 1 A supplied profile describing, say, a 35-years-old male, 1.82 cm tall, with
strong interests in fantasy novels and japanese comics, fair interest in politics and no
interest in football, could be expressed as follows:

male u =35(age) u =1.82(height) u
∃hasInterest.(fantasyNovels u >0.8(level)) u
∃hasInterest.(japaneseComics u >0.8(level)) u
∃hasInterest.(politics u >0.4(level)) u
∀hasInterest.(¬football t 60(level))

where we suppose that interests are organized in a hierarchy including fantasyNovels v
novels, japaneseComics v comics, and male v ¬female

Observe that, when a profile is demanded, usually features like age and height will
be used with range predicates (e.g., (>30∧670)(age)), instead of equality predicates
as in the above example.

The following property follows immediately from the semantics of existential re-
striction. For every pair of concepts C1 and C2, role R, feature f with associated
concrete domain D, and p a predicate of D:

if H |= C1 v C2 then H |= ∃R.(C1 u >`(f)) v ∃R.(C2 u >`(f))

For example, if football v sport, then someone with a level of interest ` in football has
at least the same level of interest in sport. This property is exploited in the matching
algorithm provided in Section 4.

4 The Matching Algorithm

We present the algorithm for matching user profiles. The matching is performed over
two profiles: the demand profile Pd and the supply profile Ps. The algorithm is not
symmetric, i.e., it evaluates how Ps is suited for Pd, which is different from how Pd

is suited for Ps [7]; of course, in order to determine how Pd is suited for Ps, we can
simply exchange the arguments of the algorithm.

From a logical point of view, we extend the non-standard inferences contraction
and abduction defined in [4]. In particular, our contraction either removes or weakens
conjuncts from Pd so as to make Pd u Ps satisfiable in H; abduction, instead, either
adds or strengthens conjuncts in Ps so as to make H |= Ps v Pd. The algorithm
is based on structural algorithms for satisfiability and subsumption [3]. Since it is
reasonable to assume that users do not enter contradicting information, we assume
that the profiles Pd and Ps are consistent.

The result of the match is a penalty in R: the larger the penalty, the less Ps is
suited for Pd. In particular, partial penalties are added to the overall penalty by
matching corresponding conjuncts of the two profiles; this is done in two ways.

Contraction. When a conjunct Cd in Pd is in contrast with some conjunct Cs in Ps,
then Cd is removed and a penalty is added. Intuitively, since the supplier has some-
thing the demander does not like, in order to make the profiles match the demander
gives up one of her requests. For example, let Cd = ∀hasInterest.(¬sport t60.2(level))
and Cs = ∃hasInterest.(football u >0.4(level)), where we have football v sport in H.
In this case the demander looks for someone who does not like sports very much,
while the supplier likes football and therefore he likes sports. In this case, pursuing
the match would require the demander to give up his/her request about sports, so
the algorithm adds a penalty Πc`(0.4, 0.2) that depends on the gap between the lower
bound (0.4) of the supply and the upper bound (0.2) of the demand. Similarly, for a
feature f with contrasting predicates pd and ps, a penalty Πcf (pd(f), ps(f)) is added
to take into account the removal of pd(f) from Pd. In case a concept Ad representing
an atomic property has to be removed, the algorithm makes use of another penalty
function Πc(·), whose argument is the concept Ad.

Abduction. When a conjunct cd in Pd has no corresponding conjunct in Ps, we add
a suitable conjunct cs in Ps that makes the profiles match, and add a correspond-
ing penalty. Intuitively, the demander wants something which the supplier does not
provide explicitly; in this case we assume that the supplier may or may not satisfy
the demander’s request, and as a consequence of this possibility of conflict we add
a penalty. This is done by means of a penalty function Πa(·), whose argument is a
concept C, that takes into account the addition of C to Ps. When the level of inter-
est must be strengthened, we use a function Πa`(·), that takes into account the gap
between bounds. Similarly, a penalty function Πaf (·) takes into account the addition
of features.

Algorithm CalculatePenalty
Input demand profile Pd, supply profile Ps, concept hierarchy H
Output real value penalty > 0
penalty := 0;

// Contraction

foreach Ad ∈ Names(Pd) do

if there exists As ∈ Names(Ps)
such that H |= Ad v ¬As

then remove Ad from Pd

penalty := penalty + Πc(Ad)

foreach pd(f) ∈ Features(Pd) do

if there exists ps(f) ∈ Features(Ps)
such that ∃x.pd(x) ∧ ps(x) is unsatisfiable in the domain associated to f

then remove pd(f) from Pd

penalty := penalty + Πcf (pd(f), ps(f))

foreach ∃hasInterest.(Cd u >xd
(level)) ∈ Interests(Pd) do

foreach ∀hasInterest.(¬Cs t 6xs
(level)) ∈ NoInterests(Ps) do

if H |= Cd v Cs and xd > xs

then replace ∃hasInterest.(Cd u >xd
(level)) in Pd

with ∃hasInterest.(Cd u >xs
(level))

penalty := penalty + Πc`(xd, xs)

foreach ∀hasInterest.(¬Cd t 6xd
(level)) ∈ NoInterests(Pd) do

foreach ∃hasInterest.(Cs u >xs
(level)) ∈ Interests(Ps) do

if H |= Cs v Cd and xd 6 xs

then replace ∀hasInterest.(¬Cd t 6xd
(level)) in Pd

with ∀hasInterest.(¬Cd t 6xs
(level))

penalty := penalty + Πc`(xs, xd)

// Abduction

foreach Ad ∈ Names(Pd) do

if there does not exist As ∈ Names(Ps) such that H |= As v Ad

then add Ad to Ps

penalty := penalty + Πa(Ad)

foreach pd(f) ∈ Features(Pd) do

if there exist ps(f) ∈ Features(Ps)
then if ∀x.ps(x) ⇒ pd(x) is false in the domain associated to f

then add pd(f) to Ps

penalty := penalty + Πaf (pd(f), ps(f))
else add pd(f) to Ps

penalty := penalty + Πaf (pd(f),>(f))

foreach ∃hasInterest.(Cd u >xd
(level)) ∈ Interests(Pd) do

if there does not exist ∃hasInterest.(Cs u >xs
(level)) ∈ Interests(Ps)

such that H |= Cs v Cd and xs > xd

then if there exists ∃hasInterest.(Cs u >xs
(level)) ∈ Interests(Ps)

such that H |= Cs v Cd

then let ∃hasInterest.(Cs u >xs
(level)) be the concept in Interests(Ps)

with maximum xs among those for which H |= Cs v Cd holds
penalty := penalty + Πa`(xd, xs)

else penalty := penalty + Πa(∃hasInterest.(Cd u >xd
(level)))

add ∃hasInterest.(Cd u >xd
(level)) to Ps

foreach ∀hasInterest.(¬Cd t 6xd
(level)) ∈ NoInterests(Pd)

if there does not exist ∀hasInterest.(¬Cs t 6xs
(level)) ∈ NoInterests(Ps)

such that H |= Cd v Cs and xd > xs

then if there exists ∀hasInterest.(¬Cs t 6xs
(level)) ∈ NoInterests(Ps)

such that H |= Cd v Cs

then let ∀hasInterest.(¬Cs t 6xs
(level)) be the concept in Interests(Ps)

with minimum xs among those for which H |= Cd v Cs holds
penalty := penalty + Πa`(xs, xd)

else penalty := penalty + Πa(∀hasInterest.(¬Cd t 6xd
(level)))

add ∀hasInterest.(¬Cd t 6xd
(level)) to Ps

return penalty

The penalty functions used in the algorithm are defined as follows.

• For an atomic concept Ad, Πc(Ad) and Πa(Ad) depend solely from domain knowl-
edge; for example, if the demander searches for a female while the supplier is
a male, we are expected to associate a very high penalty to Πc(female) while
removing female from Pd in the contraction phase.

• Given a feature f and the predicates pd(f), and ps(f), let Id and Is be the
intervals associated to pd and ps respectively, and G the gap between them; we
define

Πcf (pd(f), ps(f)) =
|G|

|Id ∪ Is ∪ G|

In other words, the penalty is calculated by dividing the gap between Id and Is

by the sum of the sizes of Id, Is, and G.

For abduction we define (notice that, since P c
d uPs is consistent, there is no gap

G, and since ∀x.ps(x) ⇒ pd(x) is false in the domain associated to f , we have
that |Is| > 0):

Πaf (pd(f), ps(f)) =
|Is \ Id|

|Is|

• Given xd, xs ∈ [0, 1], Πcl(xd, xs) = xd − xs and Πa`(xd, xs) = xd−xs

1−xs
.

• For Cd = un
i=1Ai, we define

Πa(∃hasInterest.(Cd u >xd
(level))) = xd ·

n∑

i=1

Πa(Ai)

Πa(∀hasInterest.(¬Cd t 6xd
(level))) =

1 − xd∑n
i=1

1
Πa(Ai)

Note that only the penalty functions Πa(·) and Πc(·), when calculated on atomic
concepts, rely on domain knowledge; all other penalty functions are defined based on
the previous ones, and independently of other domain knowledge.

It is easy to check that all subsumption tests H |= C1 v C2 in the algorithm
can be done in polynomial time in the size of H, C1, and C2. Hence, it can be
straightforwardly proved that the complexity of the algorithm is polynomial w.r.t. the
size of the input.

Pd = male u >30(age) u >1.80(height)
u ∃hasInterest.(literature u >0.5(level))
u ∃hasInterest.(politics u >0.4(level))

Ps = male u =35(age) u =1.70(height)
u ∃hasInterest.(fantasyNovels u >0.8(level))
u ∃hasInterest.(japaneseComics u >0.8(level))
u ∀hasInterest.(¬football t ≤0(level))

Figure 1: Formalization of profiles of Example 2

Example 2 Let Pd be the demand for a ”man over thirty, taller than 180 cm, with
fair interest in literature and politics” and Ps the supplied profile describing a ”35
year-old male, 1.70 cm tall, with strong interest in fantasy novels and japanese comics
and no interest in football”. Such profiles are formalized in Figure 1 w.r.t. a hierarchy
H including fantasyNovels v novels, japaneseComics v comics, comics v literature

and novels v literature. The evaluation of the matching algorithm on Ps and Pd

w.r.t. H returns a penalty value equal to Πcf (1.80, 1.70) + Πa(∃hasInterest.(politics u
>0.4(level))). The first term represents the need of giving up the height requirement in
Pd during the contraction phase, while the second one takes into account the addition
of politics among Interests(Ps) during the abduction phase.

The following theorem establishes the correctness of the above algorithm w.r.t. the
computation of contraction and abduction. We denote with P c

d the profile Pd after
contraction, and with P a

s the profile Ps after abduction.

Theorem 3 Given a concept hierarchy H, a demand profile Pd, and a supply profile
Ps, the following properties hold: (i) P c

d u Ps is satisfiable in H; (ii) P a
s is satisfiable

in H; (iii) H |= P c
d v P a

s . (iv) there does not exist a profile P ′
s more general than P a

s

(i.e., H |= P a
s v P ′

s and H 6|= P ′
s v Ps) such that H |= P ′

s v Ps and H |= P ′
s v P c

d .

Proof (sketch). (i) The proof is by construction of a model I of H such that (P c
d u

Ps)
I 6= ∅. (ii) Follows directly from (i), since in the abduction step we add to Ps

conjuncts that are already in P c
d . (iii) and (iv) Follow by construction of P a

s , since
exactly those conjuncts of P c

d that are not subsumed by Ps in H have been included in
P a

s . By the fact that H consists only of inclusions and disjointness assertions between
pairs of atomic concepts, it is indeed sufficient to consider pairs of concepts to check
subsumption.

5 Conclusions

In this paper we have addressed the problem of matching user profiles, when the
demander’s and supplier’s profiles can have missing or conflicting information. In such
a case, we have to take into account that the demander may need to give up some of
her requests, and/or she may need to make assumptions on unspecified properties of
the supplier’s profile. We have proposed a DL-based framework for expressing user
profiles in this setting, and a language suited for dating services. We have proposed
an ad-hoc structural algorithm for matching profiles that, given a demander’s and a
supplier’s profile, returns a penalty: the higher the penalty, the less the two profiles
are compatible. As a future work, we want to test the algorithm in real cases with a
prototype that is currently under development: we believe that promising applications
of our techniques can be dating, recruitment, and service discovery systems.

Acknowledgments The first two authors were partly supported by MIUR under
FIRB (Fondo per gli Investimenti della Ricerca di Base) project “MAIS: Multichannel
Adaptive Information Systems” in the context of the Workpackage 2 activities.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, 2003.

[2] F. Baader and P. Hanschke. A schema for integrating concrete domains into
concept languages. In Proc. of IJCAI’91, pages 452–457, 1991.

[3] A. Borgida and P. F. Patel-Schneider. A semantics and complete algorithm for
subsumption in the CLASSIC description logic. J. of Artificial Intelligence Re-
search, 1:277–308, 1994.

[4] S. Colucci, T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello. Concept
abduction and contraction in description logics. In Proc. of DL 2003. CEUR
Electronic Workshop Proceedings, http://ceur-ws.org/Vol-81/, 2003.

[5] S. Colucci, T. Di Noia, E. Di Sciascio, F. M. Donini, M. Mongiello, and M. Mot-
tola. A formal approach to ontology-based semantic match of skills descriptions.
J. of Universal Computer Science, Special issue on Skills Management, 2003.

[6] T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello. Abductive match-
making using description logics. In Proc. of IJCAI 2003, pages 337–342, 2003.

[7] T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello. A system for
principled matchmaking in an electronic marketplace. In Proc. of WWW 2003,
pages 321–330, May 20–24 2003.

[8] Z. Galil. Efficient algorithms for finding maximum matching in graphs. ACM
Computing Surveys, 18(1):23–38, 1986.

[9] F. S. Hillier and G. J. Lieberman. Introduction to Operations Research. McGraw-
Hill, 1995.

[10] J. Kennington and Z. Wang. An empirical analysis of the dense assignment
problem: Sequential and parallel implementations. ORSA Journal on Computing,
3(4):299–306, 1991.

[11] D. Kuokka and L. Harada. Integrating information via matchmaking. J. of
Intelligent Information Systems, 6:261–279, 1996.

[12] K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic matchmaking
among heterogeneus ssoftware agents in cyberspace. Autonomous agents and
multi-agent systems, 5:173–203, 2002.

[13] D. Veit, J. P. Müller, M. Schneider, and B. Fiehn. Matchmaking for autonomous
agents in electronic marketplaces. In Proc. of AGENTS ’01, pages 65–66. ACM,
2001.

