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Abstract

Several applications require the matching of user profiles, e.g., job recruitment
or dating systems. In this paper we present a logical framework for specifying
user profiles that allows profile description to be incomplete in the parts that are
unavailable or are considered irrelevant by the user. We present an algorithm
for matching demands and supplies of profiles, taking into account incomplete-
ness of profiles and incompatibility between demand and supply. We specialize
our framework to dating services; however, the same techniques can be directly
applied to several other contexts.

1 Introduction

The problem of matching demands and supplies of personal profiles arises in the
business of recruitment agencies, in firms’ internal job assignments, and in the recently
emerging dating services. In all scenarios, a list of descriptions of persons is to be
matched with a list of descriptions of required persons. In electronic commerce, the
general problem is known as matchmaking, although here we do not consider any
exchange of goods or services.

We stress the fact that in matchmaking, finding an exact match of profiles is not
the objective; in fact, such a match is very unlikely to be found, and in all cases
where an exact match does not exist, a solution to matchmaking must provide one or
more best possible matches to be explored. Non-exact matches should consider both
missing information — details that could be positively assessed in a second phase —
and conflicting information — details that should be negotiated if the proposed match



is worth enough pursuing. Moreover, when several matches are possible, a matchmaker
should list them in a most-promising order, so as to maximize the probability of a
successful match within the first trials. However, such an order should be based on
transparent criteria — possibly, logic — in order for the user to trust the system.

Profiles matchmaking can be addressed by a variety of techniques, ranging from
simple bipartite graph matching (with or without cost minimization) [9], to vector-
based techniques taken from classical Information Retrieval [11, 13, 12], to record
matching in databases, among others. We now discuss some drawbacks of these tech-
niques when transferred to solve matchmaking.

Algorithms for bipartite graph matching find optimal solutions when tying to
maximize the number of matches [8, 10]. However, such algorithms rely on some way
of assigning costs to every match between profiles. When costs are assigned manually,
knowledge about them is completely implicit (and subjective), and difficult to revise.
Moreover, in maximizing the number of matches a system may provide a bad service
to single end users: for example, person P; could have a best match with job profile
J1, but she might be suggested to take job Jy just because J; is the only available job
for person P,. Hence, from end user’s viewpoint, maximizing the number of matches
is not the feature that a matchmaker should have.

Both Database techniques for record matching (even with null values), and in-
formation retrieval techniques using similarity between weighted vectors of stemmed
terms, are not suited for dealing with incomplete information usually present in match-
making scenarios. In fact, information about profiles is almost always incomplete, not
only because some information is unavailable, but also because some details are simply
considered irrelevant by either the supplier or the demander — and should be left as
such. Imposing a system interface for entering profiles with long and tedious forms
to be filled in, is the most often adopted “solution” to this incompleteness problem
— but we consider this more an escape for constraining real data into an available
technique, than a real solution. For example, in a job posting/finding system, the
nationality could be considered irrelevant for some profiles (and relevant for others);
or in a dating service, some people may find disturbing (or simply inappropriate) the
request to specify the kind of preferred music, etc. In such situations, missing infor-
mation can be assumed as an “any-would-fit” assertion, and the system should cope
with this incompleteness as is.

To sum up, we believe that there is a representation problem that undermines
present solutions to matchmaking: considering how profiles information is represented
is a fundamental step to reach an effective solution, and representations that are either
too implicit, or overspecified, lead to unsatisfactory solutions.

Therefore, our research starts with proposing a language, borrowed from Artificial
Intelligence, that allows for incomplete descriptions of profiles, and both positive and
negative information about profiles. In particular, we propose a Description Logic [1]
specifically tailored for describing profiles. Then, we model the matching process as
a special reasoning service about profiles, along the lines of [5, 6]. Specifically, we
consider separately conflicting details and missing details, and evaluate how likely
is the match to succeed, given both missing and conflicting details. Our approach
makes transparent the way matches are evaluated — allowing end users to request



justifications for suggested matches. We devise some special-purpose algorithms to
solve the problem for the language we propose, and evaluate the possible application
scenarios of a dating service.

The paper is organized as follows. In Section 2 we present the Description Logic we
use for describing profiles. In Section 3 we describe how to represent user profiles, and
in Section 4 we present the algorithm for matching user profiles. Section 5 concludes
the paper.

2 A Description Logic for Representing Profiles

We use a restriction of the ALC(D) Description Logic, that, besides concepts and roles
to represent properties of (abstract) objects, also allows one to express quantitative
properties of objects, such as weight, length, etc., by means of concrete domains [2].
Each concrete domain D, e.g., the real numbers R, has a set of associated predicate
names, where each predicate name p denotes a predicate p? over D. For our purpose,
it is sufficient to restrict the attention to unary predicates, and we assume that among
such unary predicates we always have a predicate T denoting the entire domain, and
predicates >(-) and <y(-), for arbitrary values ¢ of D. We also assume that the
concrete domains we deal with are admissible, which is a quite natural assumption,
satisfied e.g., by R (see [2] for the details). Besides roles, the logic makes use of fea-
tures. Each feature has an associated concrete domain D and represents a (functional)
relation between objects and values of D.

Starting from a set of concept names (denoted by the letter A), a set of role names
(denoted by R), a set of unary predicate names (denoted by p), and a set of features
(denoted by f), we inductively define the set of concepts (denoted by C) as follows.
Every concept name A is a concept (atomic concept), and for C; and Cy concepts, R
a role name, f a feature with associated domain D, and p a unary predicate of D, the
following are concepts:

e (1 MNCy (conjunction), Cy U Cy (disjunction), and —C' (negation);
e JR.C (existential restriction) and VR.C (universal restriction);
e p(f) (predicate restriction).

To express intentional knowledge about concepts, we make use of a concept hi-
erarchy, which is a set of assertions of the form A; C A, and A; T —As, with Ay
and Ao concept names. The former assertion expresses an inclusion, while the latter
expresses a disjointness. For example, football C sport and male C —female could be
assertions that are part of a concept hierarchy.

Formally, the semantics of concepts is defined by an interpretation T = (AT,-T),
consisting of an abstract domain AT and an interpretation function L that assigns
to each concept name A a subset AT of AZ; to each role name R a binary relation
RT over AT, and to each feature name f, associated with the concrete domain D,
a partial function fZ : AT — D. The interpretation function can be extended to
arbitrary concepts as follows:

1Nyt = cfnct



(CLuCy)t = cfuct

() = -7
(3R.C)Y = {ce AT | there exists d € AT s.t. (¢,d) € R* and d € CT}
(VR.C)Y = {ce AT | forall d € AT s.t. (c,d) € RT we have d € C7}
() = {ce AT | fo)ep”}

An assertion Ay C A is satisfied by an interpretation Z if A% - A% . An assertion
A C —Aj is satisfied by an interpretation Z if A7 N AZ = (). We call an interpretation
that satisfies all assertions in a hierarchy H a model of H. A concept C is satisfiable
in H if H admits a model Z such that CZ # (. A hierarchy H logically implies an
assertion C7 C C9 between arbitrary concepts C7 and Cs if Clz C CQI , for each model
T of H.

3 Representing User Profiles

We describe how to represent user profiles using the Description Logic presented in
Section 2. The user profiles are tailored for dating services, though the same framework
can be used, with small modifications, for different applications. We do not use the
full expressive power of the Description Logic. In particular, we use a single role
haslnterest, to express interest in topics', and we make a limited use of the constructs.
We assume the set of features to represent physical characteristics such as age, height,
etc. Additionally, we use a special feature level that expresses the level of interest in a
certain field. The concrete domain associated to level is the interval {{ € R | 0 < £ <
1}.

A user profile P consists of the conjunction of the following parts:

e A conjunction of atomic concepts, to represent atomic properties associated to
the user. We denote the set of such concepts as Names(P).

e A conjunction of concepts of the form p(f), to represent physical characteristics.
The (unary) predicate p can be one of the predicates >(+), <¢(:), =¢(+), where
¢ is a value of the concrete domain associated to f, or any logical conjunction
of them. We denote the set of such concepts as Features(P). Since (p1 A p2)(f)
is equivalent to pi(f) M p2(f), in the following, we can assume w.l.o.g. that
Features(P) contains at most one concept of the form p(f) for each feature f.

e A conjunction of concepts of the form JhasInterest.(C >, (level)), where C' is a
conjunction of concept names, and 0 < x < 1. Each such concept represents an
interest in a concept C with level at least . We denote the set of such concepts
as Interests(P).

e A conjunction of concepts of the form Vhaslnterest.(—-C'LI<;(level)), where C'is a
conjunction of concept names, and 0 < z < 1. Each such concept represents the

1For modeling profiles in different contexts, additional roles could be added to this language. For
example, hasSkill for expressing skills in certain fields.



fact that the interest in a concept C has level at most x. Note that, to represent
the complete lack of interest in C, it is sufficient to put z = 0. We denote the
set of such concepts as Nolnterests(P).

Example 1 A supplied profile describing, say, a 35-years-old male, 1.82 cm tall, with
strong interests in fantasy novels and japanese comics, fair interest in politics and no
interest in football, could be expressed as follows:

male M =s5(age) M =i.g2(height) M
Jhaslnterest. (fantasyNovels M > g(level)) M
Jhaslnterest. (japaneseComics M >¢ g (level)) M
Jhaslnterest. (politics M >0 4(level)) M
VhaslInterest.(—football LI <¢(level))

where we suppose that interests are organized in a hierarchy including fantasyNovels C
novels, japaneseComics C comics, and male C —female

Observe that, when a profile is demanded, usually features like age and height will
be used with range predicates (e.g., (=30 A <70)(age)), instead of equality predicates
as in the above example.

The following property follows immediately from the semantics of existential re-
striction. For every pair of concepts C7 and Cs, role R, feature f with associated
concrete domain D, and p a predicate of D:

if H ): CiC(Cy then H ): HR(Cl M Eg(f)) C ElR(CQ M 2g(f))

For example, if football E sport, then someone with a level of interest ¢ in football has
at least the same level of interest in sport. This property is exploited in the matching
algorithm provided in Section 4.

4 The Matching Algorithm

We present the algorithm for matching user profiles. The matching is performed over
two profiles: the demand profile P; and the supply profile Ps. The algorithm is not
symmetric, i.e., it evaluates how P; is suited for Py, which is different from how Py
is suited for Ps [7]; of course, in order to determine how P, is suited for Ps, we can
simply exchange the arguments of the algorithm.

From a logical point of view, we extend the non-standard inferences contraction
and abduction defined in [4]. In particular, our contraction either removes or weakens
conjuncts from P; so as to make P, M P, satisfiable in H; abduction, instead, either
adds or strengthens conjuncts in Ps so as to make H | P; T P;. The algorithm
is based on structural algorithms for satisfiability and subsumption [3]. Since it is
reasonable to assume that users do not enter contradicting information, we assume
that the profiles P; and P; are consistent.

The result of the match is a penalty in R: the larger the penalty, the less P; is
suited for P;. In particular, partial penalties are added to the overall penalty by
matching corresponding conjuncts of the two profiles; this is done in two ways.



Contraction. When a conjunct Cy in P, is in contrast with some conjunct Cs in P,
then Cy is removed and a penalty is added. Intuitively, since the supplier has some-
thing the demander does not like, in order to make the profiles match the demander
gives up one of her requests. For example, let Cy = VhasInterest.(—sport LI <g.2(level))
and Cs = JhaslInterest.(football 1 > 4(level)), where we have football C sport in H.
In this case the demander looks for someone who does not like sports very much,
while the supplier likes football and therefore he likes sports. In this case, pursuing
the match would require the demander to give up his/her request about sports, so
the algorithm adds a penalty I1.4(0.4,0.2) that depends on the gap between the lower
bound (0.4) of the supply and the upper bound (0.2) of the demand. Similarly, for a
feature f with contrasting predicates pq and p,, a penalty I r(pa(f),ps(f)) is added
to take into account the removal of py(f) from P;. In case a concept Ay representing
an atomic property has to be removed, the algorithm makes use of another penalty
function II.(-), whose argument is the concept Ag.

Abduction. When a conjunct ¢4 in Py has no corresponding conjunct in Ps, we add
a suitable conjunct ¢ in P, that makes the profiles match, and add a correspond-
ing penalty. Intuitively, the demander wants something which the supplier does not
provide explicitly; in this case we assume that the supplier may or may not satisfy
the demander’s request, and as a consequence of this possibility of conflict we add
a penalty. This is done by means of a penalty function II,(-), whose argument is a
concept C, that takes into account the addition of C' to Ps. When the level of inter-
est must be strengthened, we use a function II,(-), that takes into account the gap
between bounds. Similarly, a penalty function II,¢(-) takes into account the addition
of features.

Algorithm CalculatePenalty
Input demand profile Py, supply profile P;, concept hierarchy H
Output real value penalty > 0
penalty := 0;
// Contraction

foreach A; € Names(Py) do
if there exists A; € Names(Py)
such that H = Ay C —Aq
then remove A, from Py
penalty := penalty + II.(Ag)
foreach py(f) € Features(P;) do
if there exists ps(f) € Features(Ps)
such that 3z.pq(z) A ps(z) is unsatisfiable in the domain associated to f
then remove py(f) from Py
penalty := penalty + Ilcr(pa(f),ps(f))
foreach Shasinterest.(Cy M >, (level)) € Interests(Pq) do
foreach VhasInterest.(—C; U <, (level)) € Nolnterests(Ps) do
ifHECyCCs and zg > x4



then replace Jhaslnterest.(Cy M >,,(level)) in Py
with JhasInterest.(Cy M >, (level))
penalty := penalty + Il (24, zs)
foreach Vhasinterest.(—=Cyq U <, (level)) € Nolnterests(P;) do
foreach Jhasinterest.(Cs M >, (level)) € Interests(Ps) do
if Hl=Cs C Cy and x4 < x4
then replace Vhaslnterest.(—=Cy U <5, (level)) in P,
with VhaslInterest.(—Cy U <, (level))
penalty := penalty + (25, x4)
// Abduction

foreach A; € Names(Py) do
if there does not exist A; € Names(Ps) such that H | As T Ay
then add A, to P
penalty := penalty + II,(Ay)

foreach py(f) € Features(Py) do
if there exist ps(f) € Features(Ps)
then if Vz.ps(x) = pg(x) is false in the domain associated to f
then add py(f) to Ps
penalty := penalty + IL,¢(pa(f),ps(f))
else add p,(f) to Ps
penalty := penalty + o (pa(f), T(f))
foreach Shasinterest.(Cy M >4, (level)) € Interests(Py) do
if there does not exist Jhasinterest.(Cs M >, (level)) € Interests(Ps)
such that H = Cs C Cy and x4 > x4
then if there exists JhasInterest.(Cs M >, (level)) € Interests(Ps)
such that H = Cs C Cy
then let JhasInterest.(Cs M >, (level)) be the concept in Interests(P)
with maximum zs among those for which H = Cs C Cy holds
penalty := penalty + (xq, zs)
else penalty := penalty + II,(Shaslnterest.(Cy M >, (level)))
add Jhaslnterest.(Cy M >, (level)) to Ps

foreach Vhaslnterest.(—Cy L <5, (level)) € Nolnterests(Py)
if there does not exist Vhaslnterest.(—Cy Ll <, (level)) € Nolnterests(Ps)
such that H = Cyq C Cs and x4 > x5
then if there exists VhasInterest.(—Cs L <5, (level)) € Nolnterests(Ps)
such that H = Cy C Cs
then let Vhaslnterest.(—C; Ll <, (level)) be the concept in Interests(Ps)
with minimum z, among those for which H = Cy C C5 holds
penalty := penalty + I ¢(xs, zq)

else penalty := penalty + II,(Vhasinterest.(—=Cy U <, (level)))
add Vhaslnterest.(—Cy L <, (level)) to Py

return penalty



The penalty functions used in the algorithm are defined as follows.

e For an atomic concept Ay, I1.(Ay) and I1,(A4) depend solely from domain knowl-
edge; for example, if the demander searches for a female while the supplier is
a male, we are expected to associate a very high penalty to II.(female) while
removing female from P, in the contraction phase.

e Given a feature f and the predicates py(f), and ps(f), let I; and Is be the
intervals associated to pg and ps respectively, and G the gap between them; we

define
G|

- |IdUISUG|

In other words, the penalty is calculated by dividing the gap between I; and I
by the sum of the sizes of I, I, and G.

Hcf(pd(f)7ps(f))

For abduction we define (notice that, since PJM P; is consistent, there is no gap
G, and since Vx.ps(x) = pg(z) is false in the domain associated to f, we have

that |I5| > 0):
I\ I
g (pa(f).pul ) = o014
1]
e Given zg,xs € [0,1], (24, zs) = x4 — x5 and Hyp(zgq, z5) = 21‘1—;?

e For Cy =117 A;, we define

I1,(3hasInterest.(Cy M >, (level))) = x4 - Z I, (A;)
i=1

1—
I1,(VhasInterest.(—Cy U <, (level))) = Td

n 1
i1 A

Note that only the penalty functions II,(-) and II.(-), when calculated on atomic
concepts, rely on domain knowledge; all other penalty functions are defined based on
the previous ones, and independently of other domain knowledge.

It is easy to check that all subsumption tests H = C; C Cs in the algorithm
can be done in polynomial time in the size of H, Cy, and Cy. Hence, it can be
straightforwardly proved that the complexity of the algorithm is polynomial w.r.t. the
size of the input.

P; =male M >3p(age) M >1g0(height) Ps = male M =s5(age) M =1.70(height)

M Jhaslnterest. (literature M > 5 (level)) M Jhaslnterest. (fantasyNovels M > g(level))

M Jhaslnterest. (politics M >¢.4(level)) M 3haslnterest. (japaneseComics 1 >¢ g (level))
M VhaslInterest.(—=football L <¢(level))

Figure 1: Formalization of profiles of Example 2



Example 2 Let P; be the demand for a ”"man over thirty, taller than 180 cm, with
fair interest in literature and politics” and Ps the supplied profile describing a ” 35
year-old male, 1.70 cm tall, with strong interest in fantasy novels and japanese comics
and no interest in football”. Such profiles are formalized in Figure 1 w.r.t. a hierarchy
‘H including fantasyNovels T novels, japaneseComics T comics, comics C literature
and novels C literature. The evaluation of the matching algorithm on Ps; and Py
w.r.t. H returns a penalty value equal to II.¢(1.80,1.70) + II,(S3haslnterest.(politics I
>0.4(level))). The first term represents the need of giving up the height requirement in
P, during the contraction phase, while the second one takes into account the addition
of politics among Interests(P) during the abduction phase.

The following theorem establishes the correctness of the above algorithm w.r.t. the
computation of contraction and abduction. We denote with P§ the profile Py after
contraction, and with P¢ the profile P; after abduction.

Theorem 3 Given a concept hierarchy H, a demand profile Py, and a supply profile
Py, the following properties hold: (i) P§ M Py is satisfiable in H; (ii) P is satisfiable

S

inH; (itt) H = P{ T P?. (i) there does not exist a profile P, more general than P¢

S

(i.e., H |= P¢ C P} and H {= P, C Ps) such that H |= P, C Ps and H |= P, C Pj.

Proof (sketch). (i) The proof is by construction of a model Z of H such that (Pg I
Po)T # (0. (ii) Follows directly from (i), since in the abduction step we add to P
conjuncts that are already in PJ. (44) and (iv) Follow by construction of P¢, since
exactly those conjuncts of PJ that are not subsumed by Ps in H have been included in
P¢. By the fact that H consists only of inclusions and disjointness assertions between
pairs of atomic concepts, it is indeed sufficient to consider pairs of concepts to check
subsumption. O

5 Conclusions

In this paper we have addressed the problem of matching user profiles, when the
demander’s and supplier’s profiles can have missing or conflicting information. In such
a case, we have to take into account that the demander may need to give up some of
her requests, and/or she may need to make assumptions on unspecified properties of
the supplier’s profile. We have proposed a DL-based framework for expressing user
profiles in this setting, and a language suited for dating services. We have proposed
an ad-hoc structural algorithm for matching profiles that, given a demander’s and a
supplier’s profile, returns a penalty: the higher the penalty, the less the two profiles
are compatible. As a future work, we want to test the algorithm in real cases with a
prototype that is currently under development: we believe that promising applications
of our techniques can be dating, recruitment, and service discovery systems.
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