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Abstract
Attention Deficit Hyperactive Disorder (ADHD) is well-known common causation of childhood

behavioural disorders. It is estimated that around 5-10% of children globally are affected with this

disorder. ADHD is attributed to problematic behaviours that include inattention and impulsivity.

Children find it extremely difficult to focus, be attentive and to organise themselves. It contributes to

a lifetime of impairment, poor quality of life and long-term burden on affected families. Since there

is no single cause found in the prevalence or absence of ADHD. The usual method of diagnosis is

merely dependent on behavioural analysis which are all subjective. Clinicians usually take months to

diagnose the condition. To date, there are no biological markers that exist for ADHD. To measure

neurobiological data objectively, an assessment of the brain behaviour relationship is essential to

transform the method of diagnosis. Automatic diagnosis is a profound way for an effective cure.

In this dissertation, we aim to solve the problem of automatic diagnosis of ADHD using machine

learning methods based on functional MRI (fMRI) data. The proposed methods begin with classical

machine learning and move to deep learning as a way to improve the classification performance.

Interpretability of results is an important aspect, so functional connectivity is a central theme in the

work and the proposed methods utilise functional connectivity in increasingly more complex ways.

In the first method, we have evaluated a clustering based novel method to calculate functional

connectivity. After calculating functional connectivity, we employ Elastic Net feature selection to

select the discriminant features and integrate non-imaging data. Finally, a Support Vector Machine

(SVM) classifier is trained to classify ADHD.

The second method presents a deep learning based novel method, called FCNet, that calculates

functional connectivity from fMRI time-series signals. The FCNet consists of two networks, i) a

convolutional neural network in a Siamese architecture that extracts abstract features from a pair

of time-series signals and, ii) a similarity measure network that computes the strength of similarity

between the extracted features which serves as functional connectivity. Similar to the previous method,

an Elastic Net and SVM is applied to classify ADHD.

In the third method, we have proposed an end-to-end trainable model to classify ADHD from

preprocessed fMRI time-series data. The model takes fMRI time-series signals as input and outputs

the predicted labels, and is trained end-to-end using back-propagation. The proposed model is

comprised of three networks, namely i) a feature extractor, ii) a functional connectivity network, and

iii) a classification network.

Our findings highlight that functional connectivity serves as an important biomarker towards

classification of ADHD and the frontal lobe is altered the most in the case of ADHD. The frontal lobe

is known to be associated with cognitive functions like attention, memory, planning and mood. Our

findings of the frontal lobe anomalies in ADHD support findings of the earlier studies. Our results

reveal that an end-to-end trainable deep network incorporating functional connectivity yields higher

detection rates.
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Chapter 1

Introduction

This dissertation explores a set of computer vision problems related to the classification of

neurological disorders and proposes different frameworks to classify a subject as healthy

control or ADHD based on functional MRI data. In this first chapter, we begin by motivating

the need for studying neurological disorders and the application of machine learning in this

domain. Next, we review the key original contributions. We end this chapter with a list of

articles published during the course of the research and an outline of the remaining chapters.

1.1 Motivation

Brain disorders have emerged as one of the greatest threats to human health. It is estimated

that up to one-third of the population suffers from any mental disorder [9] each year. Mental

illness is considered to have more impact on human health globally than any other group of

chronic diseases [10]. Mental, neurological and substance use disorders constitute 13% of the

global burden of disease exceeding both cancer and cardiovascular diseases [11]. In the UK,

brain disorders affect approximately 45 million people, accounting for a cost of £120 billion

per annum [12]. For many disorders, early and reliable diagnosis is considered critical for

mitigating disease effects. Despite the advances in imaging technologies and data analysis

techniques, proper clinical diagnosis is not well established and in most cases diagnosis of a

neurological disorder is achieved based on physical observations. For example, Attention
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Deficit Hyperactivity Disorder (ADHD) is one of the most common neuro-developmental

and mental disorders affecting 5-10% of school-going children [5] contributing to lifetime

impairment [13], poor quality of life [14] and long-term burden on affected families [13, 14].

Like many other neurological disorders, the underlying mechanism of ADHD is still unknown

[5]. To date, no neural biomarker exists that can be used to diagnose ADHD [15] and

diagnosis is dependent on observations conducted by medical practitioners or parents and

it may take months to make diagnosis based on such observations. The impact of brain

disorders on human well-being is very alarming and unfortunately, most of them remain

undetected at their early stages. Early diagnosis of any brain disorder is very important as

proper medical care can mitigate or possibly eliminate the effects of the disorder. We intend

to improve our understanding of brain related disorders with the help of the state-of-the-art

advances in machine learning algorithms. Our motivation is to explore novel machine

learning algorithms to help medical experts for diagnosis of a brain disorder, ADHD in

particular.

1.2 Aims and Objectives

The overall aim of this dissertation is to contribute and evaluate methods for the diagnosis of

a brain disorder from functional MRI brain scan data. Our aim is to propose machine learning

frameworks that are able to learn the differences between healthy and brain disorder groups

from the data. Based on the learned differences, the proposed methods are able to predict

whether a new scan belongs to healthy or disorder subjects. The survey and limitations of the

existing work motivate us to explore the following aims and objectives:

1. Can functional connectivity (a concept detailed in the next chapter) of brain regions be

presented as an important biomarker for diagnosis of a brain disorder? Can it improve

the performance of the proposed machine learning or deep learning-based method?

This question is explored in Chapter 7.
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2. Can we propose novel machine learning methods for evaluation of functional connectivity

that can yield better performance as compared to the state-of-the-art? This is addressed

in Chapters 5 and 6.

3. Do the non-imaging features (such as age, gender) carry important information for

prediction of a brain disorder? This issue is highlighted in Chapters 5 and 6.

4. How can we build a deep neural network using functional connectivity to classify a

brain disorder? This question is addressed in Chapter 7.

5. Can a convolutional neural network be used to map time-series functional MRI signals

to features that can perform better? This question is addressed in Chapter 6 and 7.

In the next section, we present the contributions of the dissertation that target the aims and

research questions mentioned above.

1.3 Original Contributions

In this dissertation, we have proposed machine learning methods for classification of a brain

disorder based on functional MRI. The following are the main contributions of the work with

respect to the aims and research questions presented in Section 1.2.

1. We have evaluated the importance of the non-imaging features for classification of a

brain disorder. For this, the non-imaging features (such as age, gender) were integrated

with imaging features in a machine learning model.

2. We have proposed affinity propagation clustering based novel method for estimation

of functional connectivity.

3. A novel convolutional neural network architecture has been presented to calculate

functional connectivity of brain regions. The convolutional neural network is being

used to extract features from time-series signals of functional MRI data. These features

are employed to calculate functional connectivity.
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4. We have presented an innovative end-to-end trainable deep network for classification

of a brain disorder. The convolutional neural network model incorporates functional

connectivity. We have also discussed the importance of functional connectivity in this

deep network. Our work is the first to propose an end-to-end network, incorporating

functional connectivity for classification of a brain disorder.

1.4 List of Publications

A number of articles have been published and under-review in several workshops, conferences

and journals during the course of the research work. Parts of this dissertation are based on

some of these:

1.4.1 Journals

• Atif Riaz, Muhammad Asad, Eduardo Alonso, and Greg Slabaugh, “Fusion of fMRI

and Non-Imaging Data for ADHD Classification”, Computerized Medical Imaging

and Graphics Volume 65, April 2018, Pages 115-128. Chapter 5 is related to this

publication.

• Atif Riaz, Muhammad Asad, Eduardo Alonso, Greg Slabaugh, “DeepFMRI: End-to-end

deep learning for functional connectivity and classification of ADHD using fMRI",

Journal of Neuroscience Methods. The publication is related to the chapter 7.

1.4.2 Conferences

• Atif Riaz, Muhammad Asad, S M Masudur Rahman Al Arif, Eduardo Alonso, Danai

Dima, Philip Corr and Greg Slabaugh, “Deep FMRI: An end-to-end deep network for

classification of fMRI data”, IEEE International Symposium on Biomedical Imaging

(ISBI), 2018. The publication is related to the chapter 7.

• Atif Riaz, Muhammad Asad, S M Masudur Rahman Al Arif, Eduardo Alonso, Danai

Dima, Philip Corr and Greg Slabaugh, “FCNet: A Convolutional Neural Network for
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Calculating Functional Connectivity from functional MRI”, 1st International Workshop

on Connectomics in NeuroImaging (CNI), MICCAI 2017, Proceedings (Vol. 10511, p.

70). Springer. Chapter 6 is related to this publication.

• Atif Riaz, Eduardo Alonso, Greg Slabaugh, “Phenotypic Integrated Framework for

Classification of ADHD using fMRI”, International Conference on Image Analysis

and Recognition (ICIAR) 2016, Pages 217-225, Springer. The publication is related to

the chapter 5.

1.5 Dissertation Outline

This dissertation is structured as follows: Chapter 2 provides a comprehensive clinical

background, a brief overview of some of the neuroimaging modalities explored by brain

studies and a brief description of the key concept of functional connectivity. Chapter 3

provides a brief overview of some fundamentals of machine learning and deep learning.

Chapter 4 provides a comprehensive literature review. Chapter 5 highlights the importance of

integration of non-imaging features with imaging features for the classification of ADHD. In

this chapter, a clustering based novel method is presented to calculate functional connectivity.

Chapter 6 presents a convolutional neural network based novel method to calculate functional

connectivity. Chapter 7 provides the details of the innovative end-to-end trainable network for

classification of ADHD. This leads to the conclusion of the dissertation in Chapter 8 where

we discuss the limitations of the current framework, possible improvements and direction

towards future research on the topic.





Chapter 2

Clinical Background

In this chapter, we start by describing the brain structure and some of the commonly used

imaging modalities to study brain function, followed by the description of functional MRI.

In the second section, we describe functional connectivity, which is the key concept in

functional MRI studies.

2.1 Brain Structure

The human brain is considered the most important part of the body controlling all actions,

emotions, feelings and responding to all body events. The brain is composed of glial cells,

specialized cells called neurons and blood vessels. Glial cells provide structural and metabolic

support to neuron cells. Neuron cells are the central processing units of the brain and there

are about 86 billion neurons [16] in a brain. The neurons process and transmit information

through electrical and chemical signals.

A neuron cell (Figure 2.1) is comprised of synapse, axon, cell body and dendrites. The

neuron receives information from other cells through a number of dendrites. The information

is passed and processed in the axon and finally transmitted to other cells through the synapses.

Neurons can have over 1000 dendrite branches, allowing connections with thousands of other

neurons.



8 Clinical Background

Fig. 2.1 Schematic view of a neuron.

The human brain matter can be divided into two parts, i) white matter, that contains the

nerve fibres and ii) the grey matter, that contains neural cells. The brain surface is called

cerebral cortex and is highly folded. This special folded structure allows a large surface

area to fit into a fixed available brain volume. A cortical fold is termed as sulcus and the

area between two sulci is termed as gyrus. The left and right hemispheres of the brain

are similar in structural shape and most cortical areas show similarity in both hemispheres.

However, both hemispheres are not essentially the same with respect to their functionality.

How the different anatomical brain regions and parts are related to a particular cognitive

function is one of the oldest debates in the field of neuroscience and is being explored widely

by the research community. Different imaging modalities are being developed and used

to study the brain in both healthy and disorder conditions. Studies have been using these

imaging modalities to i) study the correlation of anatomical brain regions to some particular

cognitive task and ii) study the effect of a specific brain disorder in brain regions and their

functionalities. A few of the imaging modalities used to study brain functionalities are listed

below.
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2.2 Functional Brain Imaging Modalities

With advances in imaging technologies, different neuroimaging modalities have emerged

like positron emission tomography, electroencephalograms, magnetic resonance imaging

and functional MRI. This chapter provides a brief background about these neuroimaging

modalities with an emphasis on functional MRI (fMRI).

2.2.1 Electroencephalogram (EEG)

Electroencephalogram (EEG) is one of the most common imaging modalities used for

studying brain functional activity. EEG records the electrical activity along the scalp. The

EEG measure represents the synchronous activity of a number of neurons that have a similar

spatial orientation. If the neurons do not have a similar orientation, they do not create a

detectable signal. In an EEG scan, small sensors are attached to the scalp which record the

electrical signals that brain cells send to each other. The temporal resolution of EEG is high

(on the order of milliseconds), however, its spatial resolution is low (typically around 1cm).

One main disadvantage of EEG is that these sensors can only measure signals on the surface

of the head and can not capture signals from all brain.

2.2.2 Positron Emission Tomography (PET)

Positron Emission Tomography (PET) is an imaging technique that uses radioactive material

as a source to map the functional activity of the brain. The subject is first injected with

a radioactive tracer isotope and a scanner is used to record radioactive emission of the

tracer. The scanning technology is based on the assumption that areas of comparatively

high radioactive emission are associated with brain functional activity. PET can detect

glucose intake rates, thereby providing indirect measurement of brain functional activity.

PET data has a high spatial resolution (typically around 4mm), however it has a poor temporal

resolution (around 30-40 seconds). Apart from poor temporal resolution, the invasive nature

of PET is considered another major shortcoming of the method.
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2.2.3 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) scan is well suited for soft tissues, especially the brain.

It uses a strong magnetic field to image the anatomy of the brain. An MRI scanner is

comprised of a cylindrical tube with a very powerful electric magnet which creates high

strength of magnetic field such as 3.0 Tesla. Normally, without any external magnetic field,

the atomic nuclei of body cells are randomly oriented. Due to the effect of this powerful

external magnetic field, these nuclei get aligned with the external field. When the external

magnetic field is removed, nuclei are re-aligned to their original states, causing the release

of radio frequency signals. The tiny signals from multiple nuclei coherently add to form

combined signals which are measured by the detector and form an image. MRI can reveal

the anatomical details of the brain, but it lacks the ability to measure functional activity of

the brain.

2.2.4 functional MRI (fMRI)

Functional MRI (fMRI) is a neuroimaging modality that provides an opportunity to study the

functional activity of the whole brain. fMRI has evolved as a popular neuroimaging modality

with main advantages being: it is non-invasive, it avoids harmful radiation to the subject

being scanned and it can record signals from all brain regions.

Different imaging modalities have different trade-offs in terms of spatial and temporal

resolution. For example, EEG provides a higher temporal resolution, however, its spatial

resolution is very low. While fMRI provides high spatial resolution, its temporal resolution is

low (around one second). Due to its better spatial resolution, fMRI is considered a preferred

approach to study certain neurological disorders.

During the last two decades, fMRI has developed as one of the most common and

prominent methods used for functional brain imaging [17, 18] and it is increasingly employed

to study the functional activity of brain regions and networks. It is accepted that fMRI may

help in developing an objective diagnostic tool for brain disorders, particularly, in identifying

biomarkers that can distinguish between healthy subjects and subjects with brain disorders.
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2.3 Functional MRI and BOLD signal

fMRI is a non-invasive technique that primarily measures the oxygen contrast in the blood

flow. This is known as the blood oxygen level-dependent (BOLD) contrast and is used to

explore brain functional activity. There is a special protein present in blood cells called

hemoglobin. The primary purpose of hemoglobin is to transport oxygen to different body

cells. Hemoglobin can bind with oxygen to carry it to cells and it can also detach the oxygen

wherever it is required. Therefore, hemoglobin can have two forms i) oxyhemoglobin, where

it is attached to oxygen and causes the red colour of the blood, and ii) deoxyhemoglobin,

where oxyhemoglobin releases its oxygen. The basic principles of BOLD contrast are i)

oxygenated and deoxygenated hemoglobin have different magnetic properties (oxygenated

haemoglobin is diamagnetic, while deoxygenated haemoglobin is paramagnetic [19, 20]) ii)

blood oxygenation level of a particular region varies according to the strength of the regional

neural activity. These properties can be used to indirectly assess brain functional activity

[21].

The brain does not store glucose which is considered as a primary source of energy

for body cells. Due to this fact, the brain requires a continuous supply of glucose for the

functionality of different brain regions. When certain neurons become active, they require

more energy which is mainly produced from glucose. More blood flows to transport more

glucose and thereby brings in more oxygen in the form of oxygenated hemoglobin molecules

in the blood cells. This causes an increase of the oxygenated blood inflow. Figure 2.2 shows

an illustration of the process. As more oxygenated blood flows in, it pushes away a portion of

deoxygenated blood in the venous capillaries, causing a higher concentration of oxygenated

hemoglobin as compared to deoxygenated hemoglobin. The contrast in the oxygenated and

deoxygenated hemoglobin is picked up by the BOLD signals due to the difference in their

magnetic properties. Therefore, changes in the BOLD signal can be used to identify areas of

increased or decreased neuronal functional activity [22, 23].

fMRI is an extended form of MRI where MRI volumes are acquired in multiple time

points and these three-dimensional volumes are stacked together to generate fMRI data that
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Fig. 2.2 Illustration of blood flow for brain cells. The left image depicts resting (normal)
state and the right image shows an activated state. Thickness of the vessel represents the
blood volume. A thick volume in the right image indicates high blood volume. The activated
region (right image) is supplied with more oxygenated hemoglobin as compared with the
resting state (image from www.sbirc.ed.ac.uk).

contains the three-dimensional brain volume for each time point as illustrated in Figure 2.3.

The temporal resolution of an fMRI scanner is presented by the repetition time (TR).

fMRI studies can be grouped into two categories: task-based and resting-state. In a

standard task-based fMRI, the subject is presented with a specific task of interest. The task

depends on the nature of the experiment being conducted and may include responding to a

stimulus, solve some arithmetic operation, moving the limb etc. The BOLD signal during the

experimental task is compared to the BOLD signal during the control condition (rest) [17]. In

the early era of fMRI, studies mainly focused on task-based fMRI [17]. In resting-state, the

fMRI scan is recorded while the subject is not performing any specific task. The approach is

task-independent and is known as resting-state fMRI (rs-fMRI).

Data generated by an fMRI scanner is referred to as raw data and is typically corrupted

with noise. For the last two decades, a number of studies have put efforts to characterize

and mitigate the effects of noise in fMRI signals [24, 25]. The improvements in methods to
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Fig. 2.3 MRI and fMRI scan. The left image is an MRI scan and the right is representing an
fMRI scan. In this figure, there are three time points of fMRI data and each fMRI time point
comprises a MRI scan. The scans are stacked together to constitute fMRI data.

distinguish signals from noise have advanced brain activity detection. The noise in an fMRI

scan can be grouped into two broad categories, i) background noise and ii) physiological

processes.

Background noise is characterized by the contributions of the sources that are independent

of the signal of interest [26]. The main source of noise lying in this category is the thermal

noise induced by the MRI apparatus. With an increase in the temperature, heat may attenuate

electron movement which may distort the current in the fMRI detector. Radiofrequency

(RF) noise is another contributor to background noise [27]. The presence of RF noise is

considered undesirable in fMRI analysis and an important engineering effort is being invested

in minimizing this noise. Thermal noise is unavoidable, however, its effects can be reduced

through filtering. To achieve this, low pass filtering is applied to eliminate noise from the

frequencies that lie outside of the signal band of interest.

Physiological processes include subject motion, cardiac pulsation and respiratory activity

[26]. The main source of noise in this category is the subject motion, particularly head

movement. During the scan, it is very difficult to maintain the head in a fixed position

for the whole course of fMRI acquisition. Even with a carefully administered setup, head
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motion is unavoidable. In some cases, noise may be introduced due to physical responses to

the experiments (for example, providing feedback through some buttons). Even with prior

training of the subjects, certain inherent factors like random thoughts, scanner noise, different

physical sensations, etc. may introduce noise in captured data. Such noise can affect the

analysis of fMRI data. For example, head motion during the scan can change the signal to

region mapping. In order to mitigate the effects of noise, preprocessing of the raw data is

essential prior to analysis. The main steps involved in preprocessing are listed below.

Slice Timing Correction

Most fMRI scanners use a two-dimensional pulse sequence that scans one three-dimensional

volume by acquiring multiple two-dimensional images at a time and combining them to form

a three-dimensional volume. Each new volume is acquired after every acquisition time (TR),

typically 2-3 seconds. The individual two-dimensional slices are acquired during this time

sequentially or mostly in an interleaved manner (all odd numbered slices are scanned first,

followed by the even numbered slices). For sequential scanning, the last slice is acquired

almost one TR after the first slice and in the case of interleaved scanning, adjacent slices are

acquired almost TR/2 time apart. This causes inconsistent acquisition time among different

slices within a volume. Slice timing error may introduce severe distortion in the analysis

of fMRI data. Temporal interpolation is a widely used approach to address this source of

error. The slice timing correction technique estimates the signal amplitude of a slice by

interpolating between the same slice and neighbour TRs to estimate the signal that would

have been acquired at the same time.

Realignment

Head motion can introduce strong artefacts in fMRI data and is a prominent concern in most

fMRI studies. Even with a carefully administered experimental setup, subjects may show

displacements of head up to several millimetres which may have detrimental effects on the

results. Head motion errors can be suppressed by during-scan or post-scan techniques. During

scan acquisition, head immobilization techniques may be used. These include fixation pads,
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masks, inflatable airbags, use of a mock scanner, which can minimize head motion during the

scan. Even with these during-scan techniques, head motion is inevitable. Therefore, post-scan

techniques are mandatory to avoid errors due to head motion. The objective of post-scan

realignment techniques is to minimize the artefacts due to head motion and to determine

rigid body transformations that best map functional images to a common space. A rigid body

transformation is applied to each three-dimensional volume and can be parametrized by three

translations and three rotational parameters. Depending on the algorithm implemented, a

particular scan (first, last or middle) is taken as the reference scan and all other images are

aligned to this reference scan. Realignment involves the optimization of the six parameters

that minimize the mean squared difference between the reference scan and all other scans.

Coregistration

The acquired stack of three-dimensional functional images scans and anatomical scans

generally do not match due to the difference in MR contrasts and acquisitions. This may

cause errors in mapping the activity from the functional data to the anatomical images. The

computation techniques that map images of different modalities (structural and functional) of

each subject are called coregistration or functional-structural coregistration. Coregistration

allows functional data to be superimposed on anatomical images for clear visualization. Also,

spatial normalisation (next step) is more precise when warps are calculated from high spatial

resolution structural images as compared to the functional images. These techniques typically

map anatomical data to the spatial resolution of functional data (typically mean functional

image) as a first step and, similarly to realignment, perform a rigid body transformation

parametrized by translation and rotation parameters, where a cost function is minimized [28].

Spatial Normalisation

In most fMRI studies, it is required to aggregate, compare and analyse brain functional

activity across multiple subjects. The shape and size of the brains are not consistent across

multiple subjects. If this issue is not addressed, a voxel belonging to a particular subject may

correspond to a different voxel across subjects. To address this problem, a standard approach
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is to normalize each brain scan to a common template space. This technique enables the

data to be compared across different subjects. The common template may be estimated from

a specific population [29] or a standard defined template. Most commonly used standard

templates include Talairach [30] and Montreal Neurological Institute (MNI) template space.

Spatial Smoothing

fMRI data is inherently spatially correlated, this is due to the fact that adjacent brain voxels

tend to show functional similarity [31]. Therefore, spatial smoothing can suppress noise

sources uncorrelated among adjacent pixels. A typical implementation of spatial smoothing

includes convolving the data with a Gaussian kernel that matches the spatial correlation

of fMRI data. The main advantages of spatial smoothing are i) it increases the functional

signal to noise ratio of data by suppressing the noise [31, 32], and ii) it reduces anatomical or

functional variations among different subjects.

SPM [33], FSL [34] and DPARSFA[35] are popular tools that are usually employed for

preprocessing of fMRI data. DPARSFA is based on SPM and uses its functionality to build a

preprocessing pipeline in a user-friendly manner.

In the next section, we will introduce an important concept called functional connectivity

which is widely used in fMRI data analysis and in this dissertation.

2.4 Functional Connectivity

Functional connectivity (FC) can be defined as the temporal coherence between spatially

remote neurophysiological events [36]. In the context of functional imaging studies, FC

describes the relationship of functional activity patterns of anatomically separated brain

regions, thereby reflecting functional communication between brain regions [37].

Brain regions that show coherent functional activity patterns are assumed to be functionally

connected. Figures 2.4 and 2.5 represent the functional activity of brain regions. In Figure

2.4, two brain regions show coherent functional activity, so these regions can be assumed to
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be functionally connected, while in Figure 2.5 the functional activity of the brain regions is

not coherent, so these regions are not functionally connected.

Fig. 2.4 Functional activity of two brain regions. Similar functional activity represents that
the two regions are functionally connected.

The human brain can be envisioned as a complex, hierarchical network where each brain

region can be represented as a node of the network and an edge represents the connectivity

between brain regions. These networks continuously coordinate with each other forming

a hierarchy of efficient networks. Each brain network may be responsible for a particular

activity and the connections between networks may represent the coordinated activities of

different systems of the body. A typical brain network is illustrated in Figure 2.6, where

sub-networks of the brain and interaction between sub-networks are visualized.

The first resting state fMRI study was conducted by Biswal et al. [38], in which the

authors found coherent functional activity between the left and right hemispheric regions

belonging to the primary motor cortex of the brain during rest. Their findings suggested

possible functional connectivity between the regions of the motor cortex during the rest.

After this pioneering work, many studies explored functional connectivity and found that

different brain regions show functional connectivity during the resting state of the brain.
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Fig. 2.5 Functional activity of two brain regions. The functional activity is different for two
regions so the regions are not functionally connected.

The connectivity of brain regions is considered very important for monitoring and

regulating bodily functions. In the case of a brain disorder, the normal functionality of the

brain is altered resulting in different connectivity patterns or the creation of new abnormal

connectivity patterns. This alteration in connectivity patterns is illustrated in Figure 2.7.

The figure depicts a comparison between a healthy brain and a disorder-affected brain. The

right image in Figure 2.7 illustrates a disorder-affected brain where the connectivity between

regions A, B and C is altered (represented by red colour), and new connections also appear,

so that regions belonging to these abnormally created links are “miswired".

Functional connectivity of all brain regions can be represented as a matrix, where each

column and row score represents brain regions and values score the connectivity strength

between any two regions. Such a matrix is represented in Figure 2.8, for a brain parcellated

into 90 regions.

A number of studies have explored functional connectivity of brain regions in different

neurological disorders such as schizophrenia, epilepsy [1, 39], ADHD [5, 7, 40] and have
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Fig. 2.6 Illustration of the brain network. Multiple sub networks are shown with different
colours. There are three main networks presented with green, red and blue colours and these
networks are also interconnected with each other.

shown that certain disorders affect functional connectivity. Such functional connectivity

alterations are visualized in Figure 2.9.

In this dissertation, we have explored functional connectivity to study the Attention

Deficit Hyperactivity Disorder (ADHD). We were interested in exploring novel methods to

evaluate resting state functional connectivity of brain regions in healthy and ADHD.

In this chapter we have provided some important clinical concepts and background. In

the next chapter we will describe the technical background related to this dissertation.
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Fig. 2.7 The left image illustrates a healthy brain where regions labelled A, B and C are
normally connected. The right image shows a brain with a disorder where the connectivity
between the regions has been altered (connectivity may be increased or decreased) which is
shown in a red colour. There are also some new abnormal connections to regions D, E and F.

Fig. 2.8 Matrix representing functional connectivity of brain regions. Rows and columns
represent the brain regions, in this case there are 90 brain regions so the matrix has dimensions
of 90×90. The values represent strength of the functional connectivity, where a value close
to one represents functionally connected regions.
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Fig. 2.9 Matrix representing functional connectivity alterations in ADHD. The left matrix is
the functional connectivity matrix for a healthy subject and the right matrix is the functional
connectivity matrix for an ADHD subject. Red boxes highlight some of the alterations.





Chapter 3

Background

This chapter is divided into three sections. We start by describing basic machine learning

techniques. The second section highlights some important concepts of deep learning. In the

final section of this chapter, we present a literature review of the state-of-the-art research in

the field of brain disorder classification.

3.1 Machine Learning

Machine learning has evolved as a powerful tool in the domain of computer science. Machine

learning refers to a set of algorithms that enable a machine to learn from the available data

without being explicitly programmed.

Machine learning can be divided in to two broad categories: i) supervised learning and ii)

unsupervised learning. These are described below.

3.1.1 Supervised Learning

Supervised learning can be presented as learning a mapping between input data and its

labels such that the algorithm can predict labels when presented with unseen data [41]. The

inference is based on the assumption that the label is not a random value, rather that there

exists a relationship between the input data and the label. During the training phase, training

data {x,y} is presented to the machine learning algorithm, where x is the data and y is the
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Fig. 3.1 Supervised machine learning.

class label (for instance, healthy or ADHD). The algorithm learns the mapping of x onto y as

a function f : x→ y from the training data. During the testing phase, unseen testing data x is

presented to the learned machine learning algorithm. The algorithm predicts the label y. The

process is presented in Figure 3.1.

Depending on the type of the predicted target label, supervised learning can be sub-divided

into two categories, regression and classification.

Regression

In the case where the output label y is a continuous value, supervised learning is categorised

as regression. For example, if the target is to predict the ADHD rating score from fMRI data.

The ADHD rating score represents the severity of ADHD and is a continuous value. This is

characterised as a regression problem.



3.1 Machine Learning 25

Classification

If the target label to predict is categorical data, supervised learning is classed as a classification

problem. For example, predicting whether fMRI scan data belongs to a healthy individual

or an individual with brain disorder, is categorised as a classification problem. The output

is categorical (healthy or ADHD). Some notable classification algorithms include neural

networks, random forest and support vector machine.

The goal of the classification algorithm is to learn the decision boundary that can

discriminate between the different classes. The classifier learns this decision boundary

during the training phase. The learnt decision boundary is used to make predictions for

unseen data. Classification approaches can be linear or non-linear. In the linear classification

problem, the classifier learns the mapping function as a linear combination of the input

features. A non-linear algorithm learns a complex non-linear mapping of input features.

Figure 3.2 illustrates the concept of linear and non-linear classification problems using

abstract examples of two-dimensional data points. Figure 3.2 (a) shows a linear classification

problem where a classifier is able to learn the linear combination of input features which is

presented as a linear decision boundary in Figure 3.2 (b). Figure 3.2 (c) shows a non-linear

classificaiton problem between two classes where the classifier is able to learn the non-linear

mapping which is presented as a non-linear decision boundary in Figure 3.2 (d).

In this dissertation, we have addressed a supervised machine learning problem where we

have input data (pre-processed fMRI data) and corresponding labels (healthy or ADHD). The

machine learning model learns the mapping between the data and labels during the training

phase. During the testing phase, previously unseen fMRI data is presented to the learned

classifier, and the classifier predicts the label (healthy or ADHD) of the data.

3.1.2 Unsupervised Learning

Unsupervised machine learning deals with data for which output labels are not available.

In these problems, machine learning algorithms learn the underlying characteristics of the
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(a) Two dimensional data points belonging to two
classes (represented with different colours).

(b) A linear decision boundary separating two
classes.

(c) Two dimensional data points belonging to two
classes (represented with different colours).

(d) Non-linear decision boundary separating two
classes.

Fig. 3.2 Decision boundaries for linear and non-linear separable classes.

data by themselves. Clustering is one of the popular examples of unsupervised learning

algorithms.
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Clustering

Clustering is one of the classical problems in computer science. It has been extensively

explored and has been applied to a wide range of application domains. Clustering can be

defined as: given a set of objects with some defined characteristics (features or attributes), the

goal is to group them in a meaningful way. The final emerged groups are called clusters. The

ultimate goal of any clustering algorithm is to group the objects into clusters such that their

inter-cluster differences are maximized while the intra-cluster differences are minimized.

Figure 3.3 illustrates the clustering of abstract two-dimensional data.

(a) Two-dimensional data. (b) Data grouped into three different clusters.

Fig. 3.3 Illustration of clustering of two-dimensional data.

Clustering of fMRI data

In the case of fMRI data, a clustering algorithm will group brain regions into different clusters

such that the regions lying in one cluster will have similar functional activity, which should

be different from regions outside of this cluster. Figure 3.4 and Figure 3.5 present clustering
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results of fMRI data. Figure 3.4 represents two regions that are grouped into one cluster,

similarly Figure 3.5 represents four regions grouped into one cluster.

Fig. 3.4 A cluster of fMRI data with two regions.

Fig. 3.5 A cluster of fMRI data with four brain regions.

3.1.3 Dimensionality Reduction

Handling high-dimensional data is considered a serious challenge in many machine learning

applications [42] due to the so-called curse of dimensionality problem [43]. In most machine
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learning problems, large numbers of features can cause models to overfit [44, 45], thus

degrading the performance of the machine learning model [46]. To overcome problems

associated with high-dimensional data, various dimensonality reduction techniques have

been explored. The motivation of dimensionality reduction techniques lies in the fact that out

of all available features, only a subset of features is important and plays a key discriminant

role towards the prediction problem. Dimensionality reduction techniques can be divided

into two broad categories, i) feature extraction and ii) feature selection.

Feature Extraction

Feature extraction techniques project the original feature space into a new feature space with

a lower dimension. The newly constructed features are usually a combination of the original

features. Popular methods of this type include Principal Component Analysis (PCA), Linear

Discriminant Analysis (LDA) and Canonical Correlation Analysis (CCA).

Feature Selection

Feature selection methods aim to select a subset of features which minimize redundancy and

maximize the relevance to the target class. There is a wide range of algorithms which select a

subset of features. Some examples of feature selection approaches include information gain,

Fisher score, LASSO, and elastic nets.

Both feature extraction and feature selection methods improve the performance of a

classifier in machine learning by reducing the number of available features for training.

Feature extraction maps the original features into a new feature space. Detailed anlaysis of

the mapped feature set is therefore considered challenging as it involves mapping from the

original feature space to the new projected feature space [46]. In contrast, feature selection

selects a subset of features from the original feature set without any transformation. Owing

to this fact, feature selection is considered a better choice for dimensionality reduction in

terms of interpretability [46].

A general classification model employing feature selection is presented in Figure 3.6. In

the training phase, the subset of features is selected through the feature selection algorithm.
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The selected features are presented to the classifier for training. In the testing phase, the same

selected feature set is presented to the classifier for prediction. For example, consider the

case of classification of a brain disorder from fMRI data. The first step in the training phase

is generation of features, which in this case is calculation of functional connectivity. Next

step is feature selection where discriminant features are selected from calculated functional

connectivity. Finally, the selected features are presented to a classifier for training. In the

testing phase, selected features from the test dataset are presented to a trained classifier for

the final prediction. Feature selection can be divided into three main categories [44] which

are presented below.

Training dataset

Feature Generation

Test dataset

Features

Training Testing

Predicted label

Feature selection

Classifier Classifier

Fig. 3.6 A general process of classification with a feature selection algorithm.

Filter-based Methods

Filter-based methods evaluate the importance of features by relying on the characteristics

of data, without utilizing any classification algorithm [42]. A typical filter based method
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is comprised of two steps. In the first step, these methods use simple statistical measures

(e.g. mean, variance, correlation coefficients) to rank features according to their relevance

in identifying class-level differences. Next, a subset of all features is selected based on

a threshold value or the number of features. Filter-based methods are usually efficient to

implement, however, they are independent of any classifier and ignore the effect of selected

features on the performance of the classifier.

Wrapper-based Methods

Wrapper-based methods use an objective function from a classification machine learning

model to rank the features with respect to their relevance to a particular classification problem.

A wrapper-based method typically performs the following steps: i) it searches a subset of

features, ii) evaluates the selected subset of features through the classifier, iii) repeats these

steps until a required criterion is achieved or a maximum number of iterations is performed.

The features with the best performance are selected. Based on the selection of a subset

of features, these methods can be further sub-divided into two categories [47], i) forward

selection and ii) backward elimination. In forward selection, the search of features begins

with an empty feature set and features are added in iterative steps until an optimum set of

features is found. In backward elimination, the search starts with all features and features

are removed in iterative steps until an optimum subset of features is found. Wrapper-based

methods typically yield better accuracy compared to the filter-based methods [47, 48] and

allow feature dependency to be taken into account [49]. However, these methods tend to be

very computationally extensive [46].

Embedded-based Methods

Embedded-based methods select discriminant features as a part of the machine learning

process. These methods enforce certain penalties on a machine learning model and output a

subset of relevant features. Such methods allow interaction with a classifier model but are

less computationally expensive than wrapper-based methods [49]. Embedded-based methods

incorporate statistical criteria, as the filter model does, to select feature subsets and choose
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the optimal subset of features with the highest classification accuracy. In other words, it

achieves model fitting and feature selection simultaneously. Elastic Net [50] is a popular

example of feature selection in this category and has been employed in this dissertation. The

most important property of Elastic Net is that it encourages grouped selection of features,

which makes it suitable for domains where input features might be correlated and all grouped

features are required to be selected. Elastic Net is an embedded-based feature selection

algorithm that takes advantages of both LASSO and ridge regressions. It combines penalties

of both regression algorithms in one single solution. Similar to LASSO regression, it

employs a L1 penalty to enable variable selection and continuous shrinkage, and similar to

ridge regression, a L2 penalty is employed to encourage grouped selection of features.

3.2 Deep Learning

Recently, Deep Learning has emerged as a state-of-the-art tool in the domain of Artificial

Intelligence (AI) and has outperformed other machine learning methods in a number of

domains including computer vision [51, 52], natural language processing [53], semantic

parsing [54] , transfer learning [55, 56] and many more. Deep Learning allows computational

models that are composed of multiple processing layers to learn representations of data

with multiple levels of abstraction. Deep Learning typically uses an algorithm called

back-propagation to learn how a machine should change its internal parameters that are

used to compute the representations in each layer from the representation in the previous

layer.

Deep Learning covers a range of artificial neural network-based algorithms. We will start

by explaining a single perceptron which is essentially the basic unit of a neural network.

Later on, we will introduce multi-layer perceptrons (MLP), convolutional neural networks

(CNN) and fully connected networks.
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3.2.1 Perceptron

A perceptron or artificial neuron is a basic processing unit of a deep learning network. In

the work of Warren McCulloch and Walter Pitts [57], the authors proposed the idea of the

perceptron for the first time. The authors presented an analogy between a biological neuron

and simple logic gate with binary outputs. The perceptron can be viewed as a basic unit of a

neural network in a biological brain. Multiple signals arrive at the dendrites of a neuron. All

these inputs are accumulated in the cell body of the neuron. If the accumulated information

exceeds a certain threshold, an output signal is produced which is transmitted to the next

neuron through the axon.

Based on this basic working idea of the neuron, Frank Rosenblatt proposed the learning

rule for the perceptron in the machine learning domain [58]. Each input is assigned a weight,

and the inputs and their corresponding weights are multiplied together in order to determine

whether a neuron fires or not, thus solving a binary classification problem. For an input

vector xxx, the network output is calculated as:

ŷ = f (wwwTTT xxx+b) (3.1)

where b is the bias, w is the weight and f is the activation function of the neuron. Both b

and www are learned through training. The schematic of a neuron is presented in Figure 3.7.

A number of activation functions have been explored, where the most common is a

sigmoid function which squashes any value in a range of zero to one. The sigmoid function

is calculated as:

σ(x) =
1

1+ e−x (3.2)

The sigmoid function is visualized in Figure 3.8.

If we know the ground truth (actual label) for the input vector xxx, we can calculate the loss

term L as:

L =
1
2
(y− ŷ)2, (3.3)
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Fig. 3.7 Schematic of a neuron.

a

σ(
a)

Fig. 3.8 Sigmoid function. The function squashes any value in a range of zero to one (y-axis).
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where y is the actual label of the data and ŷ is the prediction calculated from Equation 3.1. If

we have a dataset with N training data, the loss function for the data can be defined as:

L =
1

2N

N

∑
i=1

Li, (3.4)

where Li is loss of ith sample which is :

Li = (yi− ŷi)
2. (3.5)

Alternatively, we can write Equation 3.5 as:

Li(www,xxxi) =

(
yi−

1
1+ e−(wwwT xxxiii+b)

)2

. (3.6)

We can compute the derivatives as:

∂Li

∂w j
= 2(yi− ŷi)ŷi(1− ŷi)xi j (3.7)

∂Li

∂b
= 2(yi− ŷi)ŷi(1− ŷi). (3.8)

These derivatives can be used to update the weights using gradient descent:

wt
j = wt−1

j −η
∂L

∂wt−1
j

, (3.9)

bt = bt−1−η
∂L

∂bt−1 , (3.10)

where η is the learning rate of the gradient descent and t represents the iteration number.

The training data is presented to the perceptron multiple times (each iteration is called an

epoch), to allow the learning process to converge to the solution.

The perceptron detailed above can be used for a binary classification problem where we

have only two classes to predict. For multiclass problems, multiple neurons equal to the

number of classes can be used. A softmax layer is used for the final output. The softmax
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Fig. 3.9 Multiclass classification using perceptrons. All the inputs are fed to multiple neurons
and output of every neuron is fed to a softmax layer. The softmax layer normalizes the output
values to form a probability distribution. The output with a highest probability is considered
as the final prediction.

layer normalizes the output values to form a probability distribution for all output classes. An

example of a multiclass classification problem using perceptrons is presented in Figure 3.9.

3.2.2 Multi-layer Perceptron

The network discussed in Figure 3.9 can be used to solve the multiclass classification problem.

The network is able to solve a linearly separable problem (a situation where classes can be

separated by a line). However, the network is not suitable to for non-linear problems such as

logical exclusive-OR (XOR) functions. The XOR function is a non-linear function where

the classes cannot be separated by a line. To model such complex problems, the size of

the network can be increased by cascading more layers between the first (input) layer and

the last (output) layer. These intermediate layers are often termed as ‘hidden layers’ in the

literature. With the increase in the number of layers, more parameters are included in the

network enabling to model more complex problems. The multi-layer perceptron receives its

input data in the vector form through the input layer. The data is multiplied by the assigned

weights and passed through an activation function. The data is passed to every neuron in the

next layer (the hidden layer). The data is propagated in a similar way to the next hidden layer
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and then finally to the last layer (the output layer). Note that there should be a unique weight

between all possible pairs of the neurons of a layer (l) and the neurons of the next layer

(l +1). In this manner, the data is propagated from the input layer to the output layer, which

gives the final prediction of the network. The deviation of the predicted output from the

ground truth is typically called error. With the differentiable layers, gradient descent can be

applied to optimize the weights of the network. The propagation of the derivative of the error

term from the last layer to the first layer is called backpropagation. A multi-layer perceptron

(MLP) is presented in Figure 3.10. MLP does not have to be fully connected. Therefore the

connection between the layers can be skipped (for instance layer 1 can be connected to layer

3).

Fig. 3.10 Multi-layer perceptron or fully connected network.

The MLP is a powerful tool in the Artificial Intelligence that can be applied to a number

of classification or regression problems. It has been shown that any function can be modeled

with a MLP with a large enough number of neurons [59]. However, it has a large number of

parameters and is not considered the most suitable option for image and time series data.

MLPs, like most other machine learning methods, require preprocessed features as input

to solve a particular problem. These features are usually termed "hand-crafted features". The

features are domain dependent and problem-specific expertise is required to design a feature

extractor that transforms input data into the feature vectors. These features are input to the

learning algorithm to solve a particular machine learning problem. The learning algorithm is
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highly dependent on these features, thus its performance is limited to the human knowledge

about the domain.

3.2.3 Convolutional Neural Network

Convolutional neural networks (CNNs) were originally proposed in the computer vision

domain for solving an image classification problem. CNNs aim to learn a non-linear mapping

from the input space to the target space. For example, in the case of classifying an image, the

input space is the image and the target space is its predicted class.

The major strength of the CNN comes from its representation learning capability. CNNs

do not require the hand-crafted features as input. Rather, features are learned directly

from data during training to yield the final prediction. For example, in the case of image

classification, the image is taken as input, the network learns the features by itself during

training and yields the prediction results as the output.

The CNN was first introduced by Yann LeCunn in the domain of image classification.

In this pioneering work, a network was proposed for handwritten digit recognition [60].

The network takes a single channel 32×32 pixel image containing handwritten digit and

classifies the image into ten classes representing the digits from 0 to 9. Despite their merits,

CNNs remained unused for complex computer vision problems due to their huge memory

requirements, large datasets for training and high computing power. Later on, in 2012,

Alex Krizhevsky proposed a CNN model called AlexNet and applied it to the ImageNet

classification challenge. The challenge comprised of 1.5 million images for training with a

thousand image categories. AlexNet outperformed the previous state-of-the-art by a large

margin [52]. Since then, many variants of CNNs like VGGNet [61], ResNet [62], GoogLeNet

[63] have been proposed achieving ever increasing performance.

Unlike MLP, CNNs consists of different unique types of layers. The different layers of

the CNNs are usually convolutional, pooling, and fully connected. A typical CNN model is

presented in Figure 3.11.
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Fig. 3.11 A Convolutional Neural Network for classifying an image into four categories.

Convolutional Layer

The convolutional layer performs convolution on the input feature map x with K number of

filters f and produces output feature map y. The process for two-dimensional convolution is

graphically illustrated in Figure 3.12. Mathematically, the values in the output feature map

can be computed as:

y(i, j,k)=
C

∑
c=1

P

∑
Pi=−P

P

∑
Pj=−P

x(Si−S+1+Pi,S j−S+1+Pj,c) f (Pi+P+1,Pj+P+1,c,k)+bk,

(3.11)

where k = 1,2, ...,K, C is the number of filters in the input feature maps, P is the amount of

zero padding around the input feature map and S is a hyper-parameter called ‘stride’.

In the case of one-dimensional convolution, the filter is one dimensional and the convolution

is applied to the input one-dimensional data. Figure 3.13 shows the graphical illustration of

one-dimensional convolution operation.

Maxpooling Layer

Maxpooling layers reduce the spatial size/extent of the feature map to produce a smaller

output feature map. The maxpooling layers do not have trainable parameters and simply
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x

f
y

(1*1) + (0*0) + (0*1) + 

(1*0) + (1*1) + (0*0) + 

(1*1) + (1*0) + (1*1) = 4

Fig. 3.12 Two-dimensional convolution of input x with filter f . The number of filters is one
with no padding. Calculation of one value of output feature map, which is 4, is illustrated.

0 1 2 -1 1 1 -3 0 1 0 -1

1 0 -1

(0*1) + (1*0) + (2*(-1)) = -2

-2 2 1 2 1

x f

y

Fig. 3.13 One-dimensional convolution of input x with filter f . The calculation of a value
(which is -2) in output feature map y is presented.

choose the maximum value from the input feature map under the receptive field. Mathematically,

maxpooling can be expressed as:

y(i, j) = max{x(Si−S+mi,S j−S+m j) : mi = 1,2, ...M,m j = 1,2, ...M}, (3.12)



3.2 Deep Learning 41

where S is the stride and M is the size of the receptive field. Figure 3.14 shows graphical

illustration of the maxpooling.

Fig. 3.14 Two-dimensional maxpooling of image i with filter size of 2×2 and stride of 2. For
each of the elements represented by the filter, a maximum is selected and a new element is
created in the output matrix. For example, from top-left four elements (1,1,5,6), maximum
value 6 is selected for the output matrix.

In the case of one-dimensional data, the maxpooling layer is expressed in Equation 3.13.

y(i) = max{x(Si−S+mi) : mi = 1,2, ...M}. (3.13)

In the previous section, we have described sigmoid nonlinear function. There are some

other nonlinear functions such as Rectified Linear Unit and Parametric Rectified Linear Unit

used in literature. We will describe these functions in the next section.

3.2.4 Rectified Linear Unit (ReLU)

The rectified linear unit (ReLU) is a commonly used non-linear function and is preferred

over sigmoid non-linear function. It has been shown that ReLU greatly accelerates the



42 Background

convergence rate of optimization as compared to the sigmoid function [52] and is efficient to

implement. For an input x, the ReLU operation y is presented in Equation 3.14.

y(x) =

 x, if x >0,

0, otherwise,
(3.14)

The ReLU function is visualised in Figure 3.15.
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Fig. 3.15 Rectified linear unit (ReLU) for input x and output y.

3.2.5 Parametric Rectified Linear Unit (PReLU)

ReLU is a commonly used activation function. However, it might suffer from the "dying

ReLU" problem. The "dying ReLU" refers to a scenario when neurons become inactive and

only output 0 for any input. A parametric rectified linear unit (PReLU) was introduced to
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improve the performance of a neural network [64]. The PReLU adaptively learns the rectifier

parameters to improve accuracy [64]. For an input x, the PReLU is defined as:

f (x) =

 x, if x >0,

ax, if x <0,
(3.15)

where x is the input to the activation function and a is the coefficient controlling the slope

of the negative part of the input. The coefficient a is learned during training. However, if

a = 0, it yields the ReLU function. PReLU is graphically presented in Figure 3.16.

Fig. 3.16 Parametric Rectified Linear Unit (ReLU).

In the next chapter we will give an overview of the literature related to the applications of

machine learning in ADHD classification.





Chapter 4

Literature Review

A number of exciting studies have explored different machine learning methods for studying

fMRI data that shows the popularity of fMRI as a tool for mapping human brain functions

and especially in the case of studying brain disorders [1, 6, 39, 65, 66]. In this dissertation,

we have focused on functional connectivity for prediction of ADHD. In recent years, a great

deal of research has been conducted on functional connectivity leading to the emergence of

several methods for the analysis of functional connectivity using fMRI. These methods can

be classified into two broad categories, i) model-based methods and, ii) data-driven methods

[67, 68] which are described below and shown in Figure 4.1.
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Functional connectivity 

studies

Model based Data driven

Decomposition Clustering

Fig. 4.1 Methods for studying functional connectivity.

4.1 Model-based Methods

Many studies have explored model-based analysis for exploring functional connectivity.

These studies choose some region of interest (ROI) and determine whether other regions are

functionally connected to these ROIs or not, and generate the connectivity map of the human

brain. These selected ROIs are also called ‘seeds’. The generated connectivity map shows

the brain regions significantly correlated with the ROI or seed [69]. As these studies require

selection of seeds prior to the analysis, the studies are typically based on some strong prior

neuroscience knowledge. Figure 4.2 shows an illustration of seed-based analysis.

The pioneering method used for resting-state fMRI analysis was a seed-based technique,

where Biswal and colleagues [38] studied functional connectivity between regions belonging

to the primary motor cortex of the human brain. After this work, several studies applied

seed-based analysis on fMRI data [71–76]. Correlation analysis is a widely used method

lying under this category.
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Fig. 4.2 Seed based functional connectivity analysis. To estimate the functional connectivity
between a pre-selected ROI (seed) and any other brain voxel j, the time series of the seed
region (or voxel) is correlated with the time series of voxel j. A significantly high level of
correlation between the two regions show that both regions are functionally connected. In
order to calculate the functional connectivity of the seed with all other regions, the time
series of the seed is correlated with all other regions and a functional connectivity map is
generated which reflects the functional connectivity of the seed with other groups of regions.
(Adapted from [70]).



48 Literature Review

Correlation-based Methods

Correlation is a method for calculating functional connectivity where the regions with high

correlation coefficient are considered strongly functionally connected. Dai et al. [65]

segmented the brain into 351 ROIs using a template provided by [77] and calculated

functional connectivity using Pearson’s correlation. Bohland et al. [78] applied the Automated

Anatomical Labeling (AAL) atlas [79] to segment the brain into 116 ROIs and computed

functional connectivity using three correlation variants: Pearson’s correlation, sparse regularized

inverse covariance [80] and Patel’s Kappa [81]. Eloyan et al. [82] extracted five ROIs

belonging to the motor network with 264 voxels as nodes and computed functional connectivity

using Pearson’s correlation coefficient which was later used for classification. Similarly,

Cheng et al. [83] employed Pearson’s correlation and partial correlation to calculate

functional connectivity of 90 brain regions extracted from the AAL template [79]. Multiple

measures including Regional Homogeneity (ReHo), functional connectivity and fractional

amplitude of low-frequency fluctuation (fALFF) have been employed for classification.

Correlation is an efficient and easy method for functional connectivity analysis. However,

a correlation-based approach does not characterize the network structure of different brain

regions, i.e. whether two brain regions belong to the same functional cluster or not [84].

Moreover, the network obtained by correlation is quite dense, which degrades the performance

of a classifier [39, 84].

Model-based methods have been proven to be a powerful and effective tool for identifying

brain areas which are functionally connected to a seed during the resting-state. However, these

methods suffer from some major drawbacks. Firstly, model-based methods are sensitive to the

initial seed and it is common that different seeds yield different functional connectivity maps

[68, 85]. Secondly, functional connectivity calculated through this method is constrained

by the requirement of prior neuroscience knowledge. Even with prior knowledge, one can

only study the functional connectivity of regions related to the specific prior. Moreover,

the seed-based method evaluates one seed at a time. In the case of fMRI, it will be more

informative to simultaneously consider multiple functional connectivity patterns.
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4.2 Data-driven Methods

To overcome the limitations of model-based methods, data-driven methods have been

introduced in the domain of functional connectivity analysis. These methods enable exploration

of functional connectivity without a need to define a priori seed information. Data-driven

methods are designed to explore general connectivity patterns across the whole brain.

Several methods have been proposed and can be categorized into two main categories, i)

decomposition methods and ii) clustering. Decomposition methods include techniques such

as principal component analysis (PCA), independent component analysis (ICA), and singular

value decomposition (SVD). These methods aim to represent the original fMRI data as a

linear combination of basis vectors (PCA and SVD) or statistically independent components

(ICA). Clustering methods apply traditional clustering techniques to the fMRI time-series

data. Both of these techniques are exploratory and estimate functional connectivity of the

whole brain.

4.2.1 Decomposition Methods

Decomposition methods such as ICA are commonly used with fMRI data. The aim of these

methods is to discover the underlying structure of the data rather than requiring a priori

information (seed). ICA was introduced in fMRI analysis to decompose fMRI data into

spatially independent components [86]. Consequently, Garcia et al. [6] proposed an ICA

based functional-anatomical discriminative region model for pattern classification of ADHD.

In this study, the authors applied ICA to extract functional connectivity networks in the

brain. Similarly, Tabas et al. [66] proposed a variant of ICA to characterize the differences

between a healthy control group and an ADHD group. This study used twenty independent

components and combined ICA and a spatial variant of Fisher's linear discriminant towards

exploring the differences between the two groups. ICA-based methods are considered a

natural solution for fMRI studies as these methods do not need any prior information about

the spatial or temporal patterns of source signals.
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ICA-based approaches have shown success in classification tasks, however, there are

limitations to these methods. Firstly, independent components are often perceived as difficult

to manipulate [70]. ICA is based on the assumption that components (signal sources) are

independent, whether spatially or temporally, and violation of the assumption degrades

performance. Moreover, the need to specify the number of independent components and a

threshold value for independent components is considered a drawback [87].

4.2.2 Clustering-based Methods

Clustering is another popular approach for the evaluation of functional connectivity, where

regions belonging to the same cluster are assumed to be functionally connected. Studies

have shown that clustering-based approaches yield better performance than correlation-based

approaches as the network obtained by clustering is sparse [1, 87]. Figure 4.3 shows

functional connectivity matrices obtained from correlation and clustering methods respectively.

The authors [1] demonstrate clearly that the results from the clustering method are more

sparse, and give a better classification accuracy.

Zhang et al. [84] applied k-means clustering to calculate functional connectivity. However,

in k-means, random initialization of clusters and prior information on the number of clusters

emerge as a major drawback, as these are unknown in the case of fMRI. Hierarchical

clustering can also be applied to calculate functional connectivity [2], however, the selection

of the threshold value and the number of clusters are not known in advance in the case of

fMRI. Other studies (e.g. [1]) have applied affinity propagation (AP) [88] clustering for the

classification of brain disorders. AP clustering does not require an initial number of clusters,

which is a good choice for fMRI data.
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(a) Functional connectivity of healthy subject
calculated through correlation.

(b) Functional connectivity of epilepsy subject
calculated through correlation.

(c) Functional connectivity of healthy subject
calculated through clustering.

(d) Functional connectivity of epilepsy subject
calculated through clustering.

Fig. 4.3 Comparison of functional connectivity calculated through correlation and clustering.
The left column presents the functional connectivity matrix of a healthy subject and the right
column presents the functional connectivity of an epilepsy subject. The matrix obtained
via clustering is more sparse than the correlation matrix. The sparse matrix yields better
classification results [1]. (Modified from [1]).
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4.3 Graph-based Methods

Graph based methods provide an alternative to model-based and data-driven methods. These

methods typically work in two steps: In the first step, these methods identify a set of nodes

from fMRI data, and, in the second step, these methods estimate the strength of connections

or "edges" between the nodes.

The modeling of a complex system using a graph-based structure depends to a great extent

on how accurately the nodes and edges represent the true system and their interactions [89].

For some domains, networks are well defined in the system and it is very straightforward to

present them as graph-based models. For example, in the case of social networks, where the

nodes represent a person and the edges represent their social connectivity [90], co-authored

publications [91] or email traffic [92]. In the case of modeling the brain network as a

graph-based structure, proper identification of nodes and edges is complex [89]. One might

argue for the representation of each node as a neuron and each synaptic connection between

the neurons as an edge. However, modeling billions of neurons and trillions of connections

between them as nodes and edges is not feasible [93, 94]. Therefore, nodes are identified by

grouping different brain voxels based on some criteria.

Modeling the brain as a network typically involves three steps: i) defining nodes of

the network, ii) extracting associated time-series, and iii) defining the strength of edges

between nodes. These steps are illustrated in Figure 4.4. The network nodes can be identified

in different ways. Mostly, the nodes are identified as spatial ROIs, typically from a brain

template (e.g. AAL atlas [79]). Alternatively, clustering based parcellation can be used to

define the nodes where the identified clusters can be presented as network nodes. Once the

nodes are identified, their associated time series are used to calculate the strength of the

edges between all nodes [95, 96]. In general, correlation is the simplest and most common

measure to calculate edges between the nodes. A number of graph based approaches have

been applied to model brain networks.

Dey et al. [5] proposed a graph-based solution for the classification of ADHD. The

authors employed the CC200 [77] template to identify the nodes of the network where

voxels belonging to each ROI were grouped together, with each ROI was represented as
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Fig. 4.4 Illustration of modelling the brain as a network. There are three steps: i) defining
network nodes (presented as red colour), ii) extracting associated time-series (yellow colour),
iii) representing strength of edges (green colour).

a node of the network. Next, the network was modelled using the identified nodes and

defining multiple graph basis measures (the authors termed this the "signature of a node").

Correlation was calculated and a threshold applied to construct the functional network. The

threshold value was arbitrarily chosen and different values were employed for different

imaging datasets. Similarly, Siqueira et al. [97] investigated different graph-based measures

for the classification of ADHD. In this study, the brain was segmented into 400 ROIs using a

template provided by Craddock [77]. The edge strength between all the nodes was calculated

through Pearson’s correlation. Multiple graph measures were applied and finally, an SVM

classifier was used to obtain final classification results.

4.4 Deep Learning-based Methods

Recently, end-to-end deep learning-based networks have been shown to outperform existing

classical machine learning models in a number of domains like image classification, image

segmentation and object recognition [98]. Generally speaking, an end-to-end trainable

network refers to a single learning system where the predicted label of a neural network model

is predicted directly from the input, with all weights learned through back-propagation. There
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is very limited work exploring deep learning for fMRI-based classification of neurological

disorders [8, 99, 100].

The use of an artificial neural network for classification of ADHD has been explored in

[99]. In this work, brain was segmented into 190 brain regions. Classical machine learning

methods were applied to extract multiple features such as granger causality, a non linear

extension of Granger causality [101], and PCA. A t-test was applied for feature selection

and the selected features were passed into a fully connected neural network for the final

classification.

Similarly, the study in [100] addressed the problem of classification of mild cognitive

impairment (MCI) using fMRI data. The authors applied a deep autoencoder for dimensionality

reduction of fMRI time-series signals. The representation encoded by the autoencoder was

fed into a hidden Markov model to estimate the likelihood of a subject belonging to the

healthy control group or the MCI group to identify its predicted label. In another study [102],

authors applied a deep neural network for the classification of schizophrenia. The brain was

segmented by using the AAL template [79], and Pearson’s correlation was applied to extract

functional connectivity. The extracted functional connectivity was used as features for a deep

neural network that yielded the final classification result.

In a non-peer reviewed study [103], authors applied a CNN for classification of Alzheimer’s

disease using fMRI data. The study applied a two-dimensional CNN where four-dimensional

fMRI data was converted into a stack of two-dimensional images and classification was

evaluated on the individual two-dimensional images. The study did not incorporate temporal

information, which is the most important aspect of fMRI time-series data. Being a two-dimensional

CNN model, the prediction results were evaluated for individual images instead of per

subject. For the prediction of a subject, the results of individual two-dimensional images

were accumulated. A recent study [104] applied a three-dimensional CNN for classification

of Autism Spectrum Disorder. The fMRI three-dimensional volume was downsampled and a

three-dimensional CNN was applied on the downsampled data. The study did not incorporate

functional connectivity which is an important characteristic in brain studies.
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The Siamese network is used to compare two or more input patterns, typically images.

Siamese networks are usually comprised of two neural networks that extract features from the

input data and a metric measure that is used to calculate the distance or similarity between the

extracted features. It was introduced in [137], where the authors designed a network to verify

and match two hand signatures. In this network a Siamese network consists of two neural

networks that map preprocessed images to feature sets and a cosine-based distance measure

is used to find the similarity between the features. Later on, a number of studies applied

Siamese networks in different domains like image patch matching [3] and face verification

[138]. In [138], authors used two CNNs to map input images to a low-dimensional space and

a distance-based measure to calculate the similarity between them. The two CNNs shared the

same parameter set. In [3], authors used two CNNs to map the images to low-dimensional

space and instead of a distance-based measure, they used a neural network to find the

similarity between the images. Our proposed network in chapter 6 and 7 is inspired from the

[3].

These studies highlight the importance of machine learning towards the diagnosis of

brain disorders. In this dissertation, we were interested in developing novel methods for

calculating functional connectivity and exploiting it for the diagnosis of ADHD. Studies

have highlighted that functional connectivity calculated by clustering is better as compared

to other methods such as correlation. However, clustering based functional connectivity was

not explored for the ADHD-200 dataset (details of the dataset are in next chapters). We

were interested to explore whether a clustering-based model of functional connectivity can

improve the classification results for the ADHD-200 dataset. In the existing literature, deep

learning has not been explored for the calculation of functional connectivity. We wished to

investigate whether deep learning based methods can be designed to calculate functional

connectivity to improve the state-of-the-art performance. In the reviewed literature, we

were not able to find studies applying end-to-end deep network incorporating functional

connectivity for prediction of a brain disorder. We were interested to propose an end-to-end

deep learning model and evaluate whether it can improve the classification results. In the

following chapters of the dissertation, we will discuss the proposed methods and the results.





Chapter 5

Integration of Non-imaging and Imaging

Data for Classification

The literature discussed in the previous chapter shows encouraging results to demonstrate

that machine learning techniques hold promise for the analysis of neuroimaging data. Most

classical machine learning studies rely on correlation-based approaches for the calculation

of functional connectivity. However, correlation-based approaches do not characterize the

network structure of brain regions, i.e., whether two brain regions belong to the same

functional cluster or not [84]. In addition, the network obtained by correlation is quite dense

which may degrade the performance of the classifier [39, 84].

Studies have shown that a clustering-based approach is more sophisticated as compared

to correlation-based approaches as the network obtained by clustering is sparse [1, 87].

Different clustering approaches can be applied to determine functional connectivity. Zhang

et al. [84] applied k-means clustering to calculate functional connectivity. However, in

k-means, random initialization of clusters and a priori information of the number of clusters

may emerge as a major drawback, as in the case of fMRI the number of clusters is not known.

Hierarchical clustering can also be applied to calculate functional connectivity [2], but the

selection of threshold and number of clusters may emerge as a drawback for this method.

To overcome these problems, we propose a hybrid clustering approach that determines the

number of clusters from the data itself.
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In this work, our motivation is to study functional connectivity alterations induced

by ADHD. However, unlike previous work that relies on imaging data alone, we bring

together two types of features, namely non-imaging and imaging features to form a single

feature vector used for classification of individuals as ADHD or control (non-ADHD). Our

framework is comprised of multiple stages. In the first stage, the functional connectivity

between brain regions is determined using the Affinity Propagation (AP) clustering algorithm

[88]. Instead of requiring a number of clusters in advance, AP takes a measure of similarity

between data points and the initial preference for each point for being the cluster centroid.

We propose a novel method to find these cluster centroids through a matrix derived from the

Density Peaks (DP) algorithm by Rodriguez and Laio [105]. Next, we select discriminant

features through an Elastic Net (EN), which combines variable shrinkage with a grouped

selection of variables. Finally, we employ a Support Vector Machine (SVM) classifier to

classify between control and ADHD. We demonstrate that the integration of non-imaging

and imaging data in our framework improves performance.

The main contributions and key findings of this chapter are:

• A novel method to initialize the AP clustering algorithm by employing the Density

Peaks approach.

• Demonstration of the importance of non-imaging data for classification of control vs.

ADHD based on the functional connectivity between various brain regions.

• Anatomical findings of our results reveal that the Frontal and Parietal (premotor) lobes

have the largest number of functional connectivity alterations for all the tested datasets.

• Experimental results outperform the previous state-of-the-art for three test datasets of

the publicly available ADHD 200 data.

The publications related to this chapter are:

• Atif Riaz, Muhammad Asad, Eduardo Alonso, and Greg Slabaugh, “Fusion of fMRI

and Non-Imaging Data for ADHD Classification”, Computerized Medical Imaging

and Graphics Volume 65, April 2018, Pages 115-128.
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• Atif Riaz, Eduardo Alonso, Greg Slabaugh, “Phenotypic Integrated Framework for

Classification of ADHD using fMRI”, International Conference on Image Analysis

and Recognition (ICIAR) 2016, Pages 217-225, Springer.

5.1 Data

The resting-state fMRI data used in this study is from the NeuroBureau ADHD-200 competition

[106]. The data consists of resting-state functional MRI data as well as phenotypic information

(non-imaging data) for each subject. There was a global competition held for classification of

ADHD subjects, and the consortium has provided training and an independent test dataset for

each imaging site. Eight different imaging sites contributed to the dataset. For this study we

used datasets from four sites: Kennedy Krieger Institute (KKI), NeuroImage (NI), New York

University Medical Center (NYU) and Peking University (Peking). The dataset is complex

as well as diverse, with each site having different number of subjects, scan parameters and

equipment. For all of our experiments in this chapter, we used the preprocessed data released

for the competition for the four sites mentioned above. The preprocessing was performed

using AFNI [107] and FSL [108] tools, using the Athena computer clusters at the Virginia

Tech advance research computing center. The preprocessing steps include: removing the first

four time points, slice time correction, motion correction (here the first image is taken as the

reference), registration on 4×4×4 voxel resolution using the Montreal Neurological Institute

(MNI) space, filtration (bandpass filter range 0.009Hz < f < 0.08Hz), and smoothing using

a 6mm FWHM Gaussian filter. Interested readers may refer to the competition website for

further details on data and preprocessing [109].

After preprocessing all the images, the brain is segmented into 90 predefined regions

using the Automated Anatomical Labeling atlas [79], where voxels lying in a particular

region are averaged to generate a representative time-series signal of the region. We have

integrated non-imaging data (age, gender, verbal IQ, performance IQ, and Full4 IQ) for all

the sites except NeuroImage, as the data was missing.
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The dataset is very challenging as the imaging sites have followed different parameters

for scanning. For example, in NI, the subjects were asked to keep their eyes closed. No

visual stimulus was presented during the scan. For NYU, the participants were asked to close

their eyes, think of nothing systematically and not fall asleep. However, a black screen was

presented to them. In Peking, the participants were asked to stay still, and either keep their

eyes open or closed. A black screen with a white fixation cross was displayed during the

scan. Some other parameters were also not consistent across different sites.

5.2 Method

The framework proposed in this chapter consists of the following modules: functional

connectivity calculation, feature selection, fusion of non-imaging data and classification. A

block diagram of the methodological framework is presented in Figure 5.1 and a detailed

description is given below.

5.2.1 Dataset Balancing

In classification problems, a dataset is characterized as imbalanced when the number of

samples belonging to one class is smaller than the ones from other classes. As minority

class is comprised of very less number of samples, classification rules that predict the small

classes tend to be undiscovered or ignored. Consequently, test samples belonging to the

minority class are misclassified more often than those belonging to the prevalent class [110].

In most applications, classes with the lower number of samples are typically those of higher

interest [111, 112]. Therefore, the correct classification of samples in the minority class has

greater importance than the majority class. For example, in an automatic medical diagnostic

problem where the disease samples are typically rare as compared to the healthy subjects,

the classification objective is to detect samples with disease. Hence, a classification model

that provides higher detection rate is considered as the favorable model. The problem of

imbalanced datasets is therefore also referred to as the small or rare class learning problem

[110].
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Fig. 5.1 Flowchart of the methodology. In the first step, functional connectivity is calculated
for both training and testing datasets. For imbalanced datasets, SMOTE is applied to the
training dataset only. The next step is feature selection, where discriminant features from
training dataset are calculated and further used for classification. The selected features are
then fused with non-imaging data. Finally, the fused feature set is presented to a SVM for
classifier training and testing.
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Imbalanced class distribution of a dataset poses serious problems to most of the classification

algorithms which generally assume a relatively balanced distribution [111, 113–115]. Dataset

imbalance has been identified as a critical problem in domains such as anomaly detection [116,

117], fault diagnosis [118, 119], email forwarding [120], face detection [121], manufacturing

plants [115], text classification [122] and especially medical diagnosis [123].

Generally in the machine learning domain, the issue of class imbalance has been addressed

in two ways. One way is to assign different costs to the individual classes during training

[124]. The other way is to re-sample the training dataset. For data re-sampling, one approach

is to randomly down-sample the majority, or over-sample the minority classes to create

a balanced training dataset. However, there is a chance that these strategies may yield

suboptimal performance [125]. Therefore, instead of these strategies, we apply Synthetic

Minority Over-sampling Technique (SMOTE) [126] to create a balanced training dataset. It

has been shown previously that SMOTE has improved performance when compared to other

approaches like re-sampling or modifying the loss ratios [126]. In SMOTE, the minority class

is over-sampled by creating ‘synthetic’ samples instead of over sampling with replacement.

Each minority class is over-sampled by generating synthetic examples along the line segments

joining any of the k minority class nearest neighbors. Consider IA ∈ I, where I is the set

of individual subjects and IA represents the minority subjects. For each individual subject

xxxi ∈ IA, k-nearest neighbors of xxxi are calculated. A random subject x̂xxi is chosen from these

neighbors and an additional minority subject is synthesized as

xxxs = xxxi +(x̂xxi− xxxi)× r, (5.1)

where xxxs is a synthetic subject and r is a random number such that r ∈ [0,1]. In our work,

we applied SMOTE as shown in Figure 5.1. SMOTE is applied only on the training data

and is not required for the testing dataset. By applying SMOTE to the minority class in the

training dataset creates new synthetic samples by interpolating features between two samples

in the minority class. Fundamentally, this assumes the convex hull of the feature space of

the minority class doesn’t contain samples from the majority class. When this assumption
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is incorrect, noisy synthetic samples may be generated. However, the SVM contains slack

variables that tolerate misclassified samples.

5.2.2 Functional Connectivity

Functional connectivity can be defined as the temporal correlation between spatially separate

brain regions and can be estimated by calculating the correlation of temporal signals [5, 97],

as well as clustering [39]. To overcome the limitations of some popular clustering algorithms

such as k-means, as discussed earlier, we propose a hybrid framework which employs Affinity

Propagation (AP) clustering [88] and the Density Peaks (DP) algorithm [105] for functional

connectivity estimation. Specifically, we employ AP clustering for grouping the brain regions

into clusters. AP clustering takes real-valued similarities between brain regions as the input,

where the similarity s(i, j) indicates how well the region j is suited for the centroid of the

region i. Typically, negative Euclidean distance is employed as the similarity measure [88].

One of the most appealing properties of AP clustering is that it does not require a number of

clusters in advance. Rather it takes a real-valued number s(i, i) as input for each region i such

that the regions with larger values of s(i, i) are more likely to be selected as centroids. These

values are referred to as ‘preferences’ [88]. AP clustering is a message passing algorithm

where each data point is simultaneously considered as potential centroid as well as being

part of any cluster. Messages are passed between all data points until robust clusters and

their centroids emerge. Two kind of messages are passed between data points, namely

responsibility and availability messages where each message is associated with a different

kind of competition. The responsibility message r(i, j) is sent from the region i to a potential

centroid candidate j, reflecting the accumulated strength of how well-suited region j is to

serve as a cluster centroid for region i, taking into consideration all other potential centroids

for region i. The availability message a(i, j) is sent from a candidate centroid j to region i,

which reflects the accumulated strength of how well suited it would be for region i to select
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region j as its centroid, considering the support from all other regions that shows that region

j should be a centroid. Availability messages for all regions are initialized as

a(i, j) = 0, (5.2)

and responsibility can be calculated as

r(i, j) = S(i, j)−max
j′ ̸= j
{a(i, j′)+S(i, j′)}. (5.3)

where S in Equation 5.3 is the similarity measure between brain regions as discussed above.

For any two regions i and j with temporal dimensions k = {1,2, ...t}, the similarity measure

S is initialized as

S(i, j) =−

√
t

∑
k=1

(ik− jk)2

σ2
k

, (5.4)

where ik is the kth time point of region i and σk is the standard deviation.

For the initial iteration, with availabilities being zero, responsibility r(i, j) is set to the

input similarity S(i, j) between region i and region j as its centroid minus the largest of the

similarities between region i and other candidate centroids. In later iterations, when some

regions are associated with other centroids, their availabilities will drop to negative values

using Equation 5.5. These negative availabilities will effectively remove the corresponding

candidate centroids from the competition. With the responsibility updates, the candidate

centroid competes for the ownership of a region. The availability update below combines

evidence from data whether each candidate centroid would effectively emerge as a good

centroid

a(i, j) = min{0,r( j, j)+ ∑
i′,i′ ̸={i, j}

max{0,r(i′, j)}}, (5.5)

The “self-availability” a( j, j) is updated differently as

a( j, j) = ∑
i′,i′ ̸={ j}

max{0,r(i′, j)}, (5.6)
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Fig. 5.2 Illustration of AP clustering for two-dimensional data points, where negative
Euclidean distance was used to measure similarity. The colour of each point represents
the (current) evidence that it is a cluster center (centroid). The darkness of the arrow from
point i to point j represents the strength of the message that point i belongs to centroid point
j. Initially, the strength of messages is weak and there are no clusters. After some iterations,
the strength of the messages increases and finally, robust clusters emerge.
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The working of AP clustering for two-dimensional points is illustrated in Figure 5.2.

Initially, the strength of messages is the same between all the points. After some iterations,

the strength of messages for certain points increases and, at the same time it is decreased

for some other points. The points with higher strength of messages are potential points of a

cluster. After some iterations, clusters and their centroids emerge based on the strength of

the messages.

AP clustering does not need a prior guess on the number of clusters, rather it requires a

preference value p assigned to each region as the initial probability of being a cluster centroid.

The number of identified clusters is influenced by the preference value, but also emerges

from the message passing procedure [39, 88]. As a common practice, all data points are

considered equally suitable as centroids, thus the preference value is set to a common value.

The number of clusters produced is affected by this value. The shared value could be the

median of the similarities (moderate number of clusters produced) or their minimum (a small

number of clusters produced) [88]. However, instead of initializing with a common value,

we propose a novel data-driven method to initialize the preference value. We propose to

estimate this initial strength for each region as being a cluster centroid by using the Density

Peaks (DP) algorithm [105]. The DP algorithm states that the cluster center can be identified

as the points that have a higher local density within its neighbour points and are at a larger

distance from other higher density points. The density ρi of a region i is defined as [105]

ρi =
N

∑
j=1

f (di, j−dc), (5.7)

where dc is a cut off distance, di, j =−S(i, j) and f is

f (x) =

 1, if x <0,

0, otherwise,
(5.8)
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δi is defined as the minimum distance between the region i and any other region with

higher density, which is calculated as

δi = min
j:ρ j>ρi

di, j. (5.9)

The measure ρiδi approximates the strength of a region being a centroid [105]. We use

the measure ρiδi for each region to scale for N regions and use it as preference for each

respective region. Consider γi = ρiδi, we initialize the preference value as

p(i) =
γi−min{γ1, ...γN}

max{γ1...γN}−min{γ1...γN}
× (N−1)+ c, (5.10)

where N is the number of brain regions (N = 90), c is empirically chosen so that when γi is

minimal, the preference value for the region is initialized as N/6, which is a small non-zero

number that gives enough local support for initialization of the AP clustering algorithm.

After initializing p, the availability and responsibility messages are updated iteratively.

When updating these messages in each iteration, a damping update is applied to each message

to avoid possible numerical oscillations. For a particular iteration m, the damping update is

applied as

am(i, j) = (1−λ )am(i, j)+(λ )am−1(i, j), (5.11)

rm(i, j) = (1−λ )rm(i, j)+(λ )rm−1(i, j), (5.12)

where we initialize λ = 0.5 as suggested by [88]. Message passing iterations were terminated

based upon either i) the maximum number of iterations (I) reached or ii) the centroids

remained unchanged for C consecutive iterations. In this work, we use I = 1500 and C = 100,

to allow convergence. We then combine the availability and responsibility messages during

iterations to determine the centroids and their points. For any region i, we find the region j
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that maximizes a(i, j)+ r(i, j) and identify the association of region i as

Association(i) =

 centroid , if i = j ,

i is a member of centroid j, otherwise.
(5.13)

From the AP clustering algorithm results, we construct a matrix M as

M(i, j) =

 1, if i and j are in the same cluster,

0, otherwise.
(5.14)

The cutoff distance dc in Equation 5.7 impacts clustering by varying the preference value

computed in Equation 5.10, yielding different clustering results. [105] proposed this cutoff

distance to be around 2%. The optimal number of clusters is data dependent, and critically,

not known in advance. Rather than fixing a set number of clusters (as in popular clustering

algorithms like k-means), we instead select the number of clusters in a data-driven fashion

by adjusting this cutoff distance. For a given cutoff distance, the clustering algorithm will

produce a clustering of the data. We apply the clustering algorithm multiple times to produce

a total of K matrices (each matrix denoted as M), one for each clustering. To achieve this,

the cutoff distance is varied sequentially, between 2% and 8% inclusive, of the neighbours

to produce multiple clusterings. After these multiple runs of clustering, we calculate a

functional connectivity (FC) matrix as

FC(i, j) =
1
K

K

∑
l=1

Ml(i, j), (5.15)

where K = 7. The FC and M matrices are visualized in Figure 5.3. The FC matrix

represents the functional connectivity, such that each entry in FC(i, j) may be considered as

an estimate of the probability that the ith and jth regions belong to the same functional

connectivity. The functional connectivity matrix is employed further in feature selection as

described in the next section.
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Fig. 5.3 Visualization of FC and M matrices. M1 to M7 are binary matrices calculated using
Equation 5.14, and FC is calculated using Equation 5.15. The FC matrix represents the
functional connectivity, where values closer to one represent high functional connectivity
between corresponding regions and values closer to zero represent no or very low functional
connectivity.
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5.2.3 Discriminant Feature Selection

The characteristics of fMRI data make feature selection an important step in classification

problems [67]. The dimensionality of functional connectivity is typically very large even if

functional connectivity is evaluated between the defined region of interests (ROIs) instead of

all voxels. The number of functional connectivity alterations related to a particular disorder is

very small as compared to all brain connections. If all the functional connectivity values are

presented to the classifier as features, it may not yield good classification performance

as i) it may cause overfitting, ii) it may provide substantial irrelevant information for

the classification task. Therefore, it is considered very important to incorporate a good

feature selection strategy to identify possible discriminant functional connectivity features

for classification [67].

The functional connectivity matrix from Equation 5.15 has a dimensionality of 4005

(90×89/2) unique features. The high dimension of the matrix may degrade the performance

of a classifier (the well known “curse of dimensionality” problem [127]). Also, a small

number of functional connectivity features might be altered by ADHD as compared to all

functional connectivity features. We are interested in identifying only those altered features,

therefore, there is a need to select the discriminant features.

The FC matrix constructed in the earlier step represents the functional connectivity of

all brain regions and may contain highly correlated features, as they may belong to the

brain networks. We investigate Elastic Net (EN) feature selection [50] for extraction of the

discriminant features. The most appealing property of EN is that it encourages grouped

selection of features which makes it well suitable for this domain. EN is an embedded-based

feature selection algorithm that takes advantages of both LASSO and ridge regressions

by combining their penalties in one single solution. Similar to LASSO regression, the L1

penalty is employed to enable variable selection and continuous shrinkage, and similar to

the ridge regression, the L2 penalty is employed to encourage grouped selection of features.

If yyy is the label vector for subjects, yi ∈ {l1, l2, ...ln}, lk ∈ {1,2} for k = {1,2, ...n}. This

is a binary classification problem, so there are two labels (ADHD or control). Consider
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XXX = {FC1,FC2, ...FCn}, the cost function to be minimized by the Elastic Net is

L(λ1,λ2,β ) = ||yyy−XXXβββ ||2 +λ1||βββ ||1 +λ2||βββ ||2, (5.16)

where

||βββ ||1 =
n

∑
j=1
|β j|, (5.17)

and

||βββ ||2 =
n

∑
j=1

(β j)
2, (5.18)

where λ1 and λ2 are weights of the terms forming the penalty function, and βββ coefficients

are calculated through model fitting. If we denote α as

α =
λ1

λ1 +λ2
, (5.19)

then Equation 5.16 can be written as

L(α,β ) = ||yyy−XXXβββ ||2 +α||βββ ||1 +(1−α)||βββ ||2, (5.20)

where αε[0,1] and the function α||βββ ||1 + (1−α)||βββ ||2 is called the elastic net penalty

which is a combination of ridge and LASSO regressions. The parameter α controls both

combinations where α = 1 represents LASSO regression and α close to 0 represents ridge

regression. Typically, multiple iterations of EN are run in a cross validation setup and the

mean-squared error is recorded for each iteration. As a result, the fixed number of features

or the features with minimum error are returned. In this work, we use α = 0.1 as we are

interested in selecting grouped features from a sparse FC matrix. Multiple iterations of EN

are run until i) max iterations (iter = 100) is reached or ii) all βββ coefficients converge to zero.

By minimizing the cost function L in Equation 5.20, we extract the features with non-zero βββ

coefficients relating to minimum cross validation error employing the training set. We did

not select a fixed number of features from the EN as i) the optimum number of features is
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not known in the case of fMRI and ii) also as our method was applied on different data sets it

was not possible to fix the number of selected features.

Next, we fused together the EN selected features with non-imaging features (age,gender

and IQ levels of each subject) to construct a combined feature set for training the classifier.

It should be noted that the EN feature selection was applied to the imaging features only

and was not applied to the non-imaging data. The combined feature set is employed for

classification, as described in the next subsection.

5.2.4 Classification

The final step in our study is classification, where we employ a classifier to evaluate the

discriminative ability of the selected features from the previous steps. For this work, we

evaluate performance using a Support Vector Machine (SVM) [128] classifier. SVM is a

popular machine learning classification algorithm which has resulted in good performance in

various neuroimaging studies (e.g., [39, 129–131]). SVM is well suited for tasks where the

number of features is large compared to the number of training samples [132]. Given that

for this problem we have a large number of features compared to the number of available

subjects, SVM is a reasonable choice. During the training phase of the classifier, the labelled

training data is presented. In this phase, SVM seeks an optimum boundary with a maximum

separating margin between the two classes (healthy control and ADHD). The boundary

is defined by a linear combination of the predictor variables. The learned SVM model is

then employed in the testing phase by presenting unseen testing data (without labels of

subjects). The SVM classifier predicts the label (control or ADHD) for each test subject.

Consider yyy as the label vector for subjects, yiε(l1, l2, ...ln), lkε{1,2} for i = {1,2, ...n} and

XXX = {x1,x2, ...xm} as our combined feature vector. The decision function of SVM is given

by [133]

f (x) = sign

(
N

∑
i=1

(yiλ
∗
i Φ(xxx,xxxi))+b∗

)
, (5.21)
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where b∗εR, Φ is a kernel function, and λ ∗i is constrained as follows: 0≤ λ ∗i ≤C1 for yi = 1

and 0≤ λ ∗i ≤C2 for yi = 2 where C1 and C2 are penalties for class 1 and 2 respectively. We

set C1 = 1 and C2 = 1. For all our experiments, we used Matlab (R2016a) implementation of

SVM with a linear kernel.

5.3 Experiments and Results

The proposed framework was evaluated on the dataset provided by the ADHD-200 consortium

[106] which contains four categories of subjects: controls, ADHD-combined, ADHD-hyperactive/

impulsive, and ADHD-inattentive. Here we present the task as a binary classification problem,

control vs. ADHD, by combining all ADHD subtypes in one category. The number of

subjects in the training dataset of each imaging site is presented in Table 5.1. We conducted

experiments on the i) training dataset alone and the ii) training and test datasets. For the

evaluation of the ADHD-200 consortium dataset, we selected the features from the training

data for each individual site using ElasticNet and the selected features were integrated with

the non-imaging data for training the SVM classifier. The non-imaging features explored in

our work are comprised of age, gender, verbal IQ, performance IQ and full4 IQ. Datasets

from two imaging sites (Peking and KKI) were highly imbalanced with the majority class

being the control subjects. To avoid imbalance learning in our model, we applied SMOTE on

the Peking and KKI datasets as described earlier. It should be noted that the data generated

by SMOTE was employed only for training the classifier and not for testing. Also, the

parameters of our framework were held constant for all the imaging sites datasets which

includes parameters for SMOTE and SVM.

5.3.1 Results on the Training Dataset

In order to evaluate the training dataset, we employed leave-one-out (LOO) cross-validation

on the individual imaging sites. Results are presented in Figure 5.5. Let T P,T N,FP and FN

denote true positive, true negative, false positive and false negative respectively, as illustrated

in Figure 5.4. Sensitivity, specificity and accuracy are defined as sensitivity = T P/(T P+FN),
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Train dataset Test dataset

Imaging site
Healthy
controls ADHD

Healthy
controls ADHD

NYU 98 118 12 29
NI 23 25 14 11
Peking 61 24 24 27
KKI 61 22 23 28

Table 5.1 Total Number of control and ADHD subjects for four imaging sites in the training
datasets, namely, Kennedy Krieger Institute (KKI), NeuroImage (NI), New York University
Medical Center (NYU) and Peking University (Peking).

specificity = T N/(T N +FP) and accuracy = (T P+ T N)/(T P+ T N +FP+FN). The

highest accuracy of 86.7% was achieved on the KKI dataset.

True PositivePredicted  ADHD False Positive

False NegativePredicted healthy True Negative

Ground truth  

ADHD label

Ground truth  

healthy label

Ground truth  label
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Fig. 5.4 Illustration of true positive, false positive, false negative and true negative. For
instance, in the case true positive, an ADHD subject is correctly diagnosed and in the case of
false positive, a healthy subject is incorrectly diagnosed as ADHD.

The ADHD-200 consortium did not provide classification results for the training dataset.

In state-of-the-art work [5], the authors applied LOO validation on the training dataset to

evaluate classification performance. For fair comparison, we also applied LOO validation

and the results are presented in 5.2. As shown in the table, our methodology has improved

results as compared to Dey et al. [5] in three imaging sites (We could not compare the results

for NYU as it was not provided by [5]). We also computed our results without non-imaging

data and results are given in Table 5.3. The results show that, except for the KKI dataset, our

method gives best performance when compared to the state-of-the-art model.
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Fig. 5.5 Results on the training dataset. Classification Accuracy, Sensitivity and Specificity
attained for the four imaging sites namely KKI, NI, NYU and Peking. Highest classification
accuracy of 86.75% was achieved on the KKI dataset.

Dey et al.[5] Results Our methodology
Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy

KKI 100% 9.5% 75.6% 90.1% 77.2% 86.7%
NI 68.1% 58.8% 64.1% 73.9% 72.0% 72.9%

NYU – – – 39.8% 63.5% 52.7%
Peking 96.6% 21.1% 61.2% 88.5% 79.1% 85.8%

Table 5.2 Comparison of leave-one-out (LOO) results on the training dataset. Our proposed
method was able to achieve higher classification accuracy in three datasets as compared to
Dey et al.[5].

Results on the Test Dataset

In this experiment, our framework was trained on the training dataset provided for each

imaging site. The trained SVM classifier was tested with the independent test data provided

for each individual site. We evaluate our results by comparing them against the competition

team results reported by NITRC. We compare our results with the highest classification



76 Integration of Non-imaging and Imaging Data for Classification

Name
Accuracy of Dey
et al.[5]

Accuracy of
fused imaging +
non-imaging data

Accuracy without
non-imaging data

KKI 75.6% 86.7% 67.4%
NI 64.1% – 72.9%
NYU – 52.7% 25.4%
Peking 61.2% 85.8% 85.3%

Table 5.3 Comparison of leave-one-out (LOO) results of Dey et al.[5] with our methodology.
We calculated our results with i) fusing imaging + non-imaging data and ii) without
non-imaging data. (Non-imaging data for NI was not available).

accuracy achieved by teams for individual imaging sites (data from [6]). The results are

presented in Table 5.4. It can be seen that our model achieves best accuracy in all the datasets

except NI. Lower accuracy for NI may be due to the fewer number of available subjects in

the dataset.

Name
Average
accuracy

Highest
accuracy

Our
accuracy

Number of
imaging features

Peking 51.0% 58% 64.7% 733
KKI 43.1% 81% 81.8% 820
NYU 32.3% 56% 60.9% 230
NI 56.9% – 44.0% 346

Table 5.4 Comparison of our results with average results of competition teams and highest
accuracy achieved for individual sites. The highest accuracy for NI was not reported by [6].
Our proposed method achieved higher accuracy than the average accuracy of the competition
teams for three imaging sites.

In order to explore the impact of non-imaging data towards classification performance

in our framework, we computed the performance by comparing the results of fusing

non-imaging data with imaging data and without integrating non-imaging data. The results

are presented in Table 5.5. It can be seen from the results that the integration of non-imaging

data provides better classification results for Peking and NYU as compared to results without

non-imaging data.

In order to evaluate the generalization capability of our method we computed the cross-site

validation accuracy results. We trained our model on the combined training data set of three
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Name
Accuracy with fused imaging
+ non-imaging data

Accuracy without
non-imaging data

Peking 64.7% 58.8%
KKI 81.8% 81.8%
NYU 60.9% 24.3%

Table 5.5 Comparison of the accuracy results with fusing imaging and non-imaging data and
without non-imaging data. The results show that fusing non-imaging data with imaging data
provides better accuracy for two imaging sites (Peking and NYU).

imaging sites (KKI, PI and NYU). We did not evaluate NI for this experiment because

some non-imaging data was not available for this imaging site. The trained framework was

evaluated on each individual imaging site and results are presented in Table 5.6. This is

a challenging experiment as the ADHD-200 data set is very heterogeneous. However, the

results show that our method was able to attain a comparable accuracy to that attained by

training on individual imaging site. One interesting observation is that our method was able

to achieve same classification results (81.8%) for all experiments as can be seen in Table 5.5

and Table 5.6. It appears that the SVM was able to find optimum support vectors from the

imbalanced imaging data. Therefore, dataset balancing and fusing non-imaging data have no

effect on accuracy.

Test data
set

Accuracy when
trained on each
individual imaging
site

Accuracy when
trained on a
combined training
data set

Peking 64.7% 60.7%
KKI 81.8% 81.8%
NYU 60.9% 56.1%

Table 5.6 Comparison of accuracies of i) trained and tested on each individual imaging site
ii) trained once by combining the three training datasets and tested individually for three
imaging sites.

Next, we calculated ROC curves for: i) imaging data only and ii) fusing imaging and

non-imaging data for Peking and NYU datasets and the results are presented in Figure 5.6. It

is clear from the Area Under the Curve (AUC) values that our model yields better results
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(a) Peking dataset (b) NYU dataset

Fig. 5.6 ROC curves for Peking and NYU for: i) fusing non-imaging and imaging and ii)
imaging only. For Peking, AUC with imaging data is 0.61 and with non-imaging + imaging
it is 0.69, and for NYU, AUC is increased from 0.60 to 0.74 with the fusion of non-imaging
data which suggests that fusion of non-imaging data yields better performance.

for the fusion of imaging and non-imaging measures (for Peking, AUC for imaging data

only=0.61 and AUC for imaging + non-imaging data=0.69, and for NYU, AUC for imaging

data only=0.60 and for imaging + non-imaging data=0.74). In order to study the impact of

different non-imaging measures towards classification, we calculated ROC curves for Peking

and NYU datasets by categorizing non-imaging data in two groups: i) IQ levels and ii) age

and gender. The results are presented in Figure 5.7. The ROC curves in the figure compare

the results of combining these non-imaging measures with imaging data. The ROC curves for

non-imaging + imaging for both imaging sites show better performance as compared to other

curves for both imaging sites which suggests that fusion of all the non-imaging measures

yield better performance overall.

Finally, in order to evaluate our proposed novel methodology to initialize the AP clustering

algorithm as discussed in the previous section, we computed and compared our results with

standard AP clustering results. The comparison is presented in Table 5.7. It should be noted

that in this comparison all other parameters are held same in both experiments. The accuracy

achieved by our proposed methodology is higher when compared to the accuracy achieved

by AP clustering for all four imaging sites.
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(a) Peking dataset (b) NYU dataset

Fig. 5.7 ROC curves for different non-imaging measures for Peking and NYU. For both
datasets, the ROC curves for i) IQ + Imaging ii) (Age+ Gender) + Imaging iii) All
Non-imaging measures + Imaging and iv) Imaging only, are shown. For both imaging
sites, ROC curves for non-imaging + imaging (shown in red colour) show better performance
as compared to all other three curves, which shows that fusion of all non-imaging measures
yields better performance for both datasets.

Name AP clustering Proposed methodology
Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy

Peking 81.4% 33.3% 58.8% 92.6% 33.3% 64.7%
KKI 87.5% 33.3% 72.7% 75.0% 100.0% 81.8%
NYU 41.6% 62.0% 56.1% 41.6% 68.9% 60.9%

NI 7.1% 63.6% 32.0% 42.8% 45.4 44.0%

Table 5.7 Comparison of our proposed methodology with the AP clustering method for
the four imaging sites. The accuracy achieved by our proposed methodology is higher as
compared to accuracy achieved by AP clustering for all four imaging sites.
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5.4 Anatomical Analysis

Finally, we performed an anatomical analysis of selected features from our framework for

all four imaging sites. Selected features for each individual imaging site in our framework

represent the altered functional connectivity between control and ADHD subjects. We discuss

our findings in terms of i) hemispheric analysis and ii) lobe analysis, which are explained

below.

5.4.1 Hemispheric Analysis

The human brain is segmented into the left hemisphere and the right hemisphere. We analysed

our selected features with respect to both hemispheres and results are presented in Figure

5.8. For the analysis, each region was mapped into a particular hemisphere. Figure 5.8

suggests that for all four imaging sites, the inter hemispheric functional connectivity is altered

the most as compared to individual hemispheres. For Peking and KKI, inter hemispheric

alterations constitute 49.7% and 49.3% respectively. The number of alterations belonging to

left and right hemispheres is quite close to each other. The results suggest that the functional

connectivity between the two hemispheres might be impaired by ADHD.

5.4.2 Lobe Analysis

Next, we discuss our findings in groups of brain lobes as suggested by Salvador et al. [2].

The study identified six brain lobes namely: (i) Medial temporal lobe, (ii) Subcortical lobe,

and the four standard Neocortical lobes which are (iii) Occipital lobe, (iv) Frontal lobe, (v)

Temporal lobe, and (vi) Parietal (pre) motor lobe. We studied intra lobe alterations for each

imaging site by mapping the brain regions to a particular lobe and the results are presented in

Figure 5.9. The results in Figure 5.9 suggest that in all four imaging sites, the Frontal lobe is

affected the most as compared to the other lobes, followed by the Parietal (pre) motor lobe.

Similarly, we studied functional connectivity alterations in terms of inter lobe alterations

for all lobes in individual imaging sites and the results are presented in Figure 5.10. The

results suggest that the functional connectivity of the Frontal lobe and the Parietal (pre)
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Fig. 5.8 Functional connectivity alterations with respect to brain hemispheres. The results
show that for all four imaging sites, the majority of functional connectivity alterations belong
to inter hemispheric brain connections.

motor lobe is the most affected. Results of the inter and intra lobe alterations from Figures

5.9 and 5.10 suggest that in ADHD, Frontal and Parietal (pre) motor lobes are affected the

most, in terms of inter and intra lobe functional connectivity alterations. The Frontal lobe is

associated with a number of critical brain functions such as attention, executive functions

(involved with purposeful, goal-directed behaviour), memory, affect and mood [134]. With

the alterations in the Frontal lobe, these associated brain functions might be impaired in

ADHD subjects. Parietal (pre) motor lobe is known to be associated with movement intention

and motor awareness [135]. With the alterations in Parietal (pre) motor lobe, abnormal body

activities might be observed.
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(a) Peking dataset (b) KKI dataset

(c) NI dataset (d) NYU dataset

Fig. 5.9 Functional connectivity alterations in terms of intra lobe alterations. Brain lobe
groups are segmented by Salvador et al. [2] which are: (Lobe 1) Medial temporal lobe, (Lobe
2) Subcortical lobe, (Lobe 3) Occipital lobe, ( Lobe 4) Frontal lobe, (Lobe 5) Temporal lobe,
and (Lobe 6) Parietal (pre) motor lobe. For all four imaging sites, the Frontal lobe is affected
the most as compared to other lobes.
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(a) Peking dataset (b) KKI dataset

(c) NI dataset (d) NYU dataset

Fig. 5.10 Functional connectivity alterations in terms of inter lobe alterations. Brain lobe
groups are segmented by [2] which are: (Lobe 1) Medial temporal lobe, (Lobe 2) Subcortical
lobe, (Lobe 3) Occipital lobe, (Lobe 4) Frontal lobe, (Lobe 5) Temporal lobe, and (Lobe 6)
Parietal (pre) motor lobe. For all imaging sites, the Frontal and Parietal (pre) motor lobes are
affected the most.
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5.5 Conclusions

In this chapter, we have addressed the problem of identification of discriminant features

between control and ADHD subjects for classification based on fMRI data. Classification

of neuroimaging data is considered a difficult task due to its high dimensionality. We have

proposed a machine learning framework for this problem and evaluated our method on four

training and test datasets provided by the ADHD-200 consortium [106]. Our framework

introduced a novel method for estimation of functional connectivity between brain regions.

Functional connectivity between brain regions was determined using the Affinity Propagation

(AP) clustering algorithm [88], which does not require a number of clusters in advance.

Instead, AP takes a measure of similarity between data points and the initial preference for

each point for being the cluster centroid. We propose a novel method to find these cluster

centroids through a matrix derived from the Density Peaks (DP) algorithm by Rodriguez and

Laio [105]. The number of clusters and the centroids emerge from the data itself. The brain is

a complex network where a number of brain regions may show coherent activity. Therefore,

discriminant features may be highly correlated with each other. Here, we employed Elastic

Net for feature selection that encourages grouped feature selection.

In this work, we also evaluated the importance of non-imaging data by fusing it with

the selected features. Our results show that Elastic Net based feature selection integrated

with non-imaging data provides an important feature selection strategy. Our selected features

and SVM classifier were able to outperform the state-of-the-art in classification accuracy

on data from three institutions. Our results also show that in ADHD, inter hemispheric

functional connectivity is altered the most as compared to alterations belonging to the

individual hemispheres, which further suggests that in ADHD, coordination between the

lobes is affected. Our results indicate that the Frontal and Parietal (pre) motor lobes are

impaired the most by ADHD.

To conclude, the framework described in this chapter outperformed state-of-the-art

methods as described earlier. However, the proposed framework is based on classical

machine learning methods. In recent years, deep learning has been shown to outperform

classical machine learning methods in a number of domains like image classification, medical
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image segmentation [136] and object recognition [98]. Therefore, we were interested in

exploring whether a deep learning method could be used for functional connectivity analysis

and for the classification of a disorder like ADHD. To address this, in the next chapter, we

explore deep learning based method for functional connectivity analysis.





Chapter 6

Convolutional Neural Network-based

Functional Connectivity

In the previous chapter, we have proposed a classical machine learning framework for

classification of ADHD. The method outperforms previous state-of-the-art methods, however,

like many modern machine learning techniques, it relies on conventional distance measures

as a basic step towards the calculation of functional connectivity. Such measures may not be

able to capture the latent characteristics of time-series signals. To overcome this shortcoming,

in this chapter, we present a novel convolutional neural network model, FCNet, that calculates

functional connectivity directly from fMRI time-series signals. The FCNet consists of a

convolutional neural network that computes features from time-series signals and a fully

connected network that computes the similarity between the extracted features in a Siamese

network architecture. The functional connectivity computed using FCNet is combined

with phenotypic information and used to classify individuals as healthy controls or subject

with neurological disorders. Experimental results on the publicly available ADHD-200

dataset demonstrate that this innovative framework can improve classification accuracy. This

indicates that the features learnt from the FCNet have superior discriminative power.

Following publication is related to this chapter:

• Atif Riaz, Muhammad Asad, S M Masudur Rahman Al Arif, Eduardo Alonso, Danai

Dima, Philip Corr and Greg Slabaugh, “FCNet: A Convolutional Neural Network for
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Calculating Functional Connectivity from functional MRI”, 1st International Workshop

on Connectomics in NeuroImaging (CNI), MICCAI 2017, Proceedings (Vol. 10511, p.

70). Springer.

6.1 Overview

Several methods have been developed for extracting functional connectivity (FC) from

temporal resting state fMRI data such as correlation measures [102], clustering [7] and

graph measures [5]. Most existing techniques, including modern machine learning methods

like clustering, rely on conventional distance-based measures for calculating the strength

of similarity between brain region signals. These measures may not be able to capture the

inherent characteristics of time-series signals.

Convolutional neural networks (CNNs) have been shown to outperform existing hand-crafted

features-based methods in a number of domains like image classification, image segmentation

and object recognition [98]. The strength of a CNN comes from its representation learning

capabilities, where the most discriminative features are learned during training. A CNN is

composed of multiple modules, where each module learns the representation from one lower

level to a higher, more abstract level. To our knowledge, CNNs have not been investigated to

determine FC of brain regions. In this work, our motivation is to construct FC patterns from

fMRI data by exploiting the representation learning capability of a CNN. Particularly, we

are interested in determining whether a CNN can capture the latent characteristics of brain

signals. Compared with other methods, our approach calculates FC directly from time-series

signals pairs, naturally preserving the inherent characteristics of time-series signal in the

constructed FC.

For training, FCNet requires pairs of fMRI signals and a real value indicating the degree

of FC. Training data (comprising pair of fMRI signals and their degree of FC) is produced

using a generator that selects pairs of time-series signals that are considered functionally

connected, and those that are not. This data is used to train a Siamese network [137] to

predict FC from an input signal pair. We demonstrate the expressive power of the features
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extracted from the FCNet in a classification framework that classifies individuals as healthy

control or disorder subjects.

The proposed framework has several stages and is illustrated in Figure 6.1. The first stage

is to train the proposed FCNet using the data generated by a data generator (Figure 6.1(a)).

The FCNet learns to infer FC between brain regions. Once the FCNet is trained, the next

step is to use FCs to distinguish healthy control and disorder subjects. This is accomplished

by the classification pathways (Figure 6.1(b) and 6.1(c)). During training, the fMRI signals

from a training subject are fed into the trained FCNet, which generates a FC map of the brain

regions. After the FCNet computes functional connectivity, the remaining processing follows

a similar approach as the last chapter: an Elastic Net [50] for variable shrinkage and feature

selection and SVM for classification.

The contributions of this chapter are:

• A novel CNN model for estimation of functional connectivity from fMRI signals.

• A learnable similarity measure for calculation of functional connectivity.

• Improved classification accuracy over the state-of-the-art on the ADHD-200 dataset.

In the next section, we describe the details of the method.
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Fig. 6.1 Flowchart of the proposed method. In (a), the FCNet is trained from the data
generated by the generator. In the training pipeline (b), functional connectivity (FC) is
generated through the FCNet. Next, discriminant features are selected and fused with the
non-imaging data, then employed to train a SVM classifier. The testing pipeline is shown
in (c). After FC is calculated, features are selected and fused with the non-imaging data. A
trained SVM is employed for classification.
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NYU NI Peking

Slices 33 37 33
TR (ms) 2000 1960 2000
TE (ms) 15 40 30
Thickness (mm) 4.0 3.0 3.5
FoV read (mm) 240 224 200
FoV phase (%) 80 100 100
Flip angle
(degree)

90 80 90

Table 6.1 Scan parameters per imaging sites.

6.2 Method

6.2.1 Data and Preprocessing

The resting state fMRI data used in this study is from the NeuroBureau ADHD-200 competition

[106] as in the previous chapter. For the evaluation of network proposed in this chapter, we

used datasets from three imaging sites: NeuroImage (NI), New York University Medical

Center (NYU), and Peking University (Peking). The deep learning methodology employed

in this work requires a fixed length of input signal and can not accept input with different

number of input lengths. To decide for a fixed number of input length, we selected the

imaging site with highest number of subjects. The site with maximum number of subjects

was NYU with 222 subjects and the length of time-series signals was 172. Therefore, we

designed our network to accept input length of 172. We discarded the imaging sites with

length of time-series smaller than this number. Also, the time-series of length greater than

172 were truncated to make fixed length of input signals. All the imaging sites have a

different number of subjects.

The scan parameters and the equipment used were not necessarily consistent across

different imaging sites. Scan parameters used by different imaging sites are presented in

Table 6.1.

For all our experiments, we used preprocessed data released for the competition [109].
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6.2.2 Functional Connectivity through FCNet

In this work, we propose a Siamese network-based [137] deep CNN for the calculation of

FC. Our proposed method calculates FC directly from the time-series signals instead of

relying on conventional similarity measures like correlation or distance-based measures. In

the 1900s, Siamese networks were first proposed for signature verification [137]. After this

pioneering study, Siamese network have been applied to face verification [138, 139], local

patch descriptor learning [140, 141], ground-to-aerial image matching [142], stereo matching

[143] and target tracking [144]. In this chapter, we propose a Siamese network architecture,

called FCNet, to learn a robust and generic representation of fMRI time-series signals,

and to calculate similarity from these representations. Similarity serves as the functional

connectivity measure in our work. FCNet is a deep network architecture for jointly learning

to extract features from the individual regional time-series signals and a learnable similarity

network that calculates the similarity between the pairs. The architecture of the proposed

Siamese network is presented in Figure 6.2.

In the figure, x1 and x2 is a pair of fMRI time-series signals. Both the time-series signals

are fed into the feature extractor networks. Here, w is the shared parameter that is subject to

learning during the training phase and the feature extractor networks map the original signals

x1 and x2 into fw(x1) and fw(x2), respectively. The similarity measure network calculates

the degree of similarity between the mapped features fw(x1) and fw(x2), which is presented

as functional connectivity between the pair of regions x1 and x2. The FCNet is presented in

Figure 6.3 and individual networks are specified detailed below.

The feature extractor network:

In order to map the fMRI time-series signals to a low dimensional space and hence to

formulate a learned similarity metric, we design two identical convolutional neural networks

with a shared parameter set (Figure 6.2), feature extractor network. The main advantage

of using CNNs is that they can learn local features and can build a robust and abstract

representation of the data [98]. The feature extractor network is a multi-layer, trainable and

non-linear system that can operate at the time-series level and learn abstract representations in
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Fig. 6.2 The architecture of the FCNet. x1 and x2 is a pair of time-series signals and w is the
shared parameters between the two feature extractor networks. The feature extractor networks
map the time-series signal to the abstracted features that are passed into the similarity measure
network. The similarity measure network calculates the similarity between these abstracted
features, which is presented as functional connectivity. u is the set of parameters of the
similarity network. Both u and w are learned during training.

an integrated manner. The feature extractor network is trained end-to-end to map time-series

to outputs. The network architecture is inspired by [3], which was originally designed for

images. We have adopted the network for one-dimensional time series data. We introduced

batch normalization layers. Here, we use a Leaky Rectified Linear Unit (ReLU) as the

non-linearity function, due to its faster convergence over ReLU [145]. The network is
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Layer Name Kernel size Stride Number of filters

Convolutional 1 3 1 32
Convolutional 2 3 1 64
Convolutional 3 3 1 96
Convolutional 4 3 1 64
Convolutional 5 3 1 64

Table 6.2 The details of the convolutional layers of Figure 6.3.

designed to accept a time-series signal of length 172. The details of the network architecture

are given in Figure 6.3(b). All pooling layers pool temporally with pool length of 2 and

stride of 2. The details of the convolutional layers are presented in Table 6.2. The last fully

connected layer in the network has 32 nodes.

The similarity measure network:

The network is designed to calculate similarity between the two time-series signals. The

output of the network represents the functional connectivity between two brain regions, as

the functionally connected brain regions will show a high similarity value and vice versa.

This network employs a neural network to learn the FC between pairs of extracted features

from two brain regions. This is in contrast to conventional methods that use hand-crafted

computations like correlation or distance-based measures. The input to this network is the

abstracted features extracted from two regions. The network computes their FC, which relates

to the similarity between the two regions. The network is comprised of three fully connected

layers where the last layer is connected to a softmax classifier with dense connections. The

number of nodes in the three layers is 32, 32 and 2, respectively. The network is presented in

Figure 6.3(e). Next, we describe architectural considerations and training.

Two-stream architecture with shared parameters:

In our work, the intention is to learn a similar feature extraction rule from both brain regions

of a pair. In other words, in order to calculate the similarity (which can be viewed as

functional connectivity) between different pairs of brain regions, the brain regions must
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undergo the same feature extraction processing. It can be realized by employing the two

feature extractor networks (two-stream architecture) with the constraint that both networks

share the same set of parameters. The set of parameters for both streams is presented as w

in Figure 6.2. The parameter set w is learned during the training phase. During this phase,

updates are applied to the shared parameters. The approach is similar to a Siamese network

[137], which is used to measure the similarity between two images.

Data generator for training FCNet:

For training FCNet, we require similar (functionally connected) and dissimilar (not functionally

connected) regions with corresponding labels (one and zero respectively). We develop a

generator to generate pairs of brain regions using support from Affinity Propagation [88]

clustering for labelling training pairs. The Affinity Propagation algorithm groups regions into

clusters based on their temporal activity. Therefore, regions with similar functional activity

are grouped in one cluster regardless of their spatial distance or locality. We make pairs

for regions that lie in the same cluster and assign them label one (functionally connected).

For unconnected pairs (regions that are not functionally connected), we randomly pick

regions that do not belong to the same cluster and label the pair zero. The data generator

generates balanced numbers of connected and unconnected pairs. The procedure is detailed

in Algorithm 1.

Training of FCNet:

Teh FCNet is trained on pair-wise signals with labels generated from the generator as

described above. The FCNet is trained end-to-end using a two-stream architecture minimizing

the cross-entropy loss

L f c =−
1
n

n

∑
1
[yilog(ŷi)+(1− yi)log(1− ŷi)], (6.1)

where n is the number of training samples, yi is the label of pairs (1 for functionally connected

and 0 for unconnected regions) and ŷi is the prediction by the softmax layer.
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Algorithm 1: Data generation for training of the FCNet.
Input: X
X is the subjects in training data.
nReg is the number of regions = 90.
Output: (Pairs, Labels)
Pairs contains pairs of the time-series signals of brain regions and Labels contains 1
or 0. Pairs and Labels are used for training of FCNet.

1 for each x in X do
2 c← cluster(x) % clustering results in c
3 for i← 1 to nReg do
4 count← 0
5 for each j in (1→ nReg) such that c(xi) = c(x j) and i ̸= j do
6 AddToPairs((xi,x j), Pairs)
7 AddToLabels(1, Labels)
8 count← count + 1
9 end

10

11 for k← 1 to count do
12 r← RandomSelectRegion(x) such that c(xi) ̸= c(r)
13 AddToPairs((xi,r), Pairs)
14 AddToLabels(0, Labels)
15 end
16 end
17 end
18 return (Pairs,Labels)
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To evaluate FC through the FCNet, regions belonging to each subject are grouped into

pairs (for 90 regions belonging to a subject 4005 unique pairs are created). The pairs are

passed to the trained FCNet, which computes FC for each pair.

6.2.3 Feature Selection and Classification

The high dimensionality of fMRI data makes feature selection as important step in classification

problems. Typically, the dimension of the features (functional connectivity) are of the order

of thousands and the number of available subjects is of the order of hundreds. The number of

altered functional connectivity belonging to a particular disorder is very small as compared

to all functional connectivity values. If all the features are presented to a classifier for

prediction, it will introduce the well known “curse of dimensionality" problem, yielding

poor classification performance. Overfitting is another problem that may be introduced if

all features are employed. Therefore, a good feature selection strategy is considered as an

important step in a classification problem [67]. There are a number of different feature

selection strategies lying under filter, wrapper and embedded-based feature selection that can

be applied to select the most discriminant features from functional connectivity.

In this work, we have applied an Elastic Net (EN) [50] based feature selection to select

discriminant features from functional connectivity. The details of the feature selection step

are the same as discussed in the previous chapter. The number of features selected by EN for

the Peking, NYU and NI are 523, 96 and 205 respectively.

Similar to the previous chapter, non-imaging features (age, gender and IQ levels) of the

subjects are concatenated with the EN selected features to construct a combined feature set

for classification. EN feature selection is only applied to the imaging features. The combined

set of imaging and non-imaging features is employed for classification.

The final step in the proposed framework is to classify the features coming from the

previous steps into control and healthy classes. Similar to the previous chapter, we evaluate a

support vector machine (SVM) classifier [133]. The SVM is considered as a popular choice

for classification in a number of neuroimaging studies [131, 146–148]. SVM is considered
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NI Peking NYU

Average accuracy [106] 56.9% 51.0% 35.1%
Highest accuracy [6] – 58% 56%
Clustering method [7] 44% 65% 61%
Correlation 52.0 % 52.9% 56.1%
Proposed method 64.0% 68.6% 63.4%

Table 6.3 Comparison of FCNet with the average results of competition teams, highest
accuracy achieved for individual site, correlation based FC and clustering based results from
the previous chapter [7]. The highest accuracy for NI was not quoted by [6].

to be well suited to deal with problems where the number of features is large as compared to

the number of training samples [132].

During the training phase, the SVM is presented with data along with the labels of the

data (labels for healthy control and ADHD subjects). During training, the SVM seeks an

optimum and maximum separating boundary between the two classes (healthy controls and

ADHD). The learned SVM model is then employed for the testing phase where it is presented

with the testing data (testing data is not used in the training phase). The SVM classifier

predicts the label (healthy control or ADHD) for each subject. Here, we use the Matlab

(R2016) implementation of SVM with a linear kernel to evaluate our results.
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b) Feature extractor network

c) Similarity network

a) FCNet

Fig. 6.3 Detailed architecture of the FCNet. The architecture is inspired by [3]. We have
modified the architecture for one dimensional data. (a) FCNet with a coupled feature extractor
network (one network for each brain region) and the similarity network, which measures the
degree of similarity between two regions. (b) The feature extractor network which includes
multiple layers namely Convolutional, Batch Normalization, Pooling (pool), Fully Connected
and Leaky-ReLU. (c) The similarity measure network.
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6.3 Experiments and Results

The proposed framework is evaluated on a dataset provided by the ADHD-200 consortium and

contains four categories of subjects: controls, ADHD combined, ADHD hyperactive-impulsive

and ADHD inattentive. Here we combine all ADHD subtypes in one category due to two

factors, i) we want to investigate classification between healthy control and ADHD, and ii)

there are very less number of samples in the ADHD sub categories.

In many biomedical domains specifically fMRI, scarcity of data emerges as one of the

most challenging tasks. To address this issue, we combine all subjects from the training

datasets of the different imaging sites and FCNet is trained on this combined training dataset.

However, feature selection and classification is evaluated on individual imaging datasets. The

FCNet is developed in Python with the Tensorflow library. Total pairs of brain regions to

train FCNet are 303596. Number of epochs are 30 with a batch size 100, and Adam optimizer

is used to optimized the weights of the network.

In order to evaluate the ADHD-200 consortium dataset, our model is trained and tested on

each individual imaging sites and the processing pipeline of training and testing is presented

in Figure 6.1. In the training phase (presented in Figure 6.1 (b)), for each subject, pairs

are generated for all time-series of brain regions. There are 4005 unique pairs for 90 brain

regions. The trained FCNet is employed to calculate functional connectivity from these pairs.

Discriminant features are selected by the EN from functional connectivity and non-imaging

features are fused with imaging features to create a final feature set. The non-imaging

features explored in this work are the same as in the previous chapter, and are comprised of

age, gender, verbal IQ, performance IQ, and full4 IQ. In the final step, these fused features

are presented to the SVM classifier for training. Once our model is trained for an individual

imaging site, it is evaluated on the testing dataset of that imaging site. The testing pipeline is

presented in Figure 6.1(c) where unseen test data from individual imaging sites is presented

to the model (without a label). At the end of the testing pipeline, the trained SVM predicts

the label of the data. The pipeline is applied for each individual site (training and testing our

model on each imaging site individually) and the results are presented in Table 6.3.
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Phenotypic
information

Method NI Peking NYU

Not used
Previous chapter 44% 58.8% 24.3%
Proposed method 60.0% 62.7% 58.5%

Used
Previous chapter – 65% 61%
Proposed method 64.0% 68.6% 63.4%

Table 6.4 Comparison of the proposed method with state-of-the-art results (previous chapter):
The results suggest that FCNet outperforms state-of-the-art classification accuracy. The
phenotypic information relates to the non-imaging features (Age, gender and IQ levels).

The results show that our method outperforms the average accuracy results of competition

teams (data from the competition website [106]), highest accuracy for any individual site

(from [6]) and correlation-based FC results. For correlation based results, FC is calculated

through correlation and the rest of the processing pipeline is the same as our method. It

is worth noting that the parameters of our framework are held constant for all the imaging

datasets. Our method also performed well in comparison with the results of the previous

chapter. In order to compare with the results of the previous chapter, we compare and present

the results in Table 6.4, which shows that the FCNet performs well in all of the three imaging

sites as compared to the results of the previous chapter.

In order to study the generalization capability of our model, we performed an experiment

to calculate cross-site validation accuracy results. In this experiment, we trained our model

on the combined training data set of all three imaging sites (NI, Peking and NYU). For this

experiment, we trained the model without using non-imaging features because non-imaging

data of IQ levels was not available for the NI dataset. Once the model was trained on

the combined dataset, it was evaluated on each individual imaging site and the results are

presented in Table 6.5. The results show that our model was able to achieve comparable

performance to that attained by training on the individual site. The model trained on the

combined dataset was able to achieve high accuracy for the NYU dataset. This may be due to

the fact that the NYU dataset has a higher number of subjects as compared to other imaging

sites.
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Test data
set

Accuracy when trained
on each individual
imaging site

Accuracy when trained
on the combined
training data set

NI 60.0% 56.0%
Peking 62.7% 60.7%
NYU 58.5% 70.7%

Table 6.5 Comparison of accuracies of i) trained and tested on each individual imaging site ii)
trained once on the combined training data set of three imaging sites (NI, Peking and NYU)
and tested individually on the three imaging sites.

Next, in order to study the impact of non-imaging features on the results, we calculated

the ROC curves for i) imaging data only and ii) fusing imaging and non-imaging data for all

three imaging sites. Please note that for the NI dataset, non-imaging data of IQ levels was

not available. The results for all three imaging sites are presented in Figure 6.4. For all the

imaging sites, Area Under the Curve (AUC) values with non-imaging + imaging results are

higher than the AUC values with imaging features only. The results show that the fusion of

non-imaging features yields better performance.

In order to explore the impact of different non-imaging features towards classification

results, we calculated the ROC curves for the Peking and NYU datasets by categorizing

the non-imaging features in two categories: i) age and gender, and ii) IQ levels. We could

not perform this analysis for the NI dataset as non-imaging feature of IQ levels was not

available for the NI dataset. The results for both sites are presented in Figure 6.5. The ROC

curves in the figure compare the results of combining these non-imaging features with the

imaging data. The ROC curves for combined non-imaging + imaging features shows better

performance as compared to other curves for both sides which shows that fusion of all the

non-imaging features yields better performance.

Next, we analyzed our selected features with respect to the brain hemispheres. The

human brain is segmented in two hemispheres: the right hemisphere and left hemisphere.

For this analysis, regions belonging to each selected feature (functional connectivity) were

mapped into the particular hemisphere. The result of this analysis is presented in Figure 6.6.

The figure shows that for all imaging sites, functional connectivity belonging to the inter
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(c) ROC curve - NYU

Fig. 6.4 ROC curves for NI, Peking and NYU for i) fusing non-imaging and imaging data,
and ii) imaging data only. It is clear that the area under the curve (AUC) values for all three
imaging sites is higher for non-imging + imaging features. AUC values for the Peking dataset
shows the highest difference i.e. the largest AUC: for imaging only data is 0.66 and for
non-imaging + imaging data is 0.83.

hemispheric regions is altered the most as compared to the individual hemisphere. For all

imaging sites, the inter hemispheric alterations constitute around 50%. The findings suggest
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Fig. 6.5 ROC curves for different non-imaging features for the Peking and NYU imaging sites.
For both datasets, the ROC curves for i) all Non-imaging measures + Imaging, ii) imaging
only, iii) IQ + imaging and iv) (Age + Gender) + Imaging, are shown. For both imaging sites,
ROC curves for non-imaging + imaging (shown by red colour) show better performance as
compared to all other three curves, which shows that fusion of all non-imaging measures
yields better performance for both datasets.
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Fig. 6.6 Functional connectivity alterations with respect to brain hemispheres. The results
show that for all imaging sites, the majority of functional connectivity alterations belong to
inter hemispheric brain connections.

that functional connectivity between the two hemispheres is altered the most in the case of

ADHD.
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Finally, in order to study functional connectivity differences between the healthy control

group and the ADHD group, we visualize their respective functional connectivity patterns

using the Peking dataset and present the results in Fig 6.7.
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6.4 Conclusion

In this chapter, we have proposed a deep learning method to address the problem of

identification of discriminant features between healthy control and ADHD subjects. The high

dimensionality of fMRI data makes this problem a challenging task. Machine learning is

probably the best available tool to address such a hard task. However, most machine learning

techniques rely on conventional distance measures as a basic step towards the calculation of

functional connectivity. Such measures may not be able to capture the latent characteristics

of time-series signals. Recently, the Convolutional Neural Networks have emerged as a

powerful deep learning model which has shown to outperform existing hand-crafted features

extraction methods in a number of domains. In this chapter, we have presented a novel

Convolutional Neural Network model, FCNet, that takes pre-processed fMRI time series

signals as input and calculates functional connectivity.

The FCNet is comprised of a feature extractor network that extracts features from

time-series signals and a learnable similarity measure network that calculates the similarity

between regions. The FCNet is an end-to-end trainable network. Input to the FCNet is

a pair of time-series signals and it yields the functional connectivity of the brain regions

belonging to those time-series signals. The next step is the selection of discriminant features

from the calculated functional connectivity. Similar to the previous chapter, we use an

Elastic Net to select discriminant features. The main advantage of using Elastic Net is that

it encourages grouped selection of features, which is most suitable in the case of fMRI

as functional connectivity may contain correlated features that belong to brain functional

networks. The selected features are combined with non-imaging features to make a final

feature set. Finally, an SVM classifier is used to classify individuals as healthy controls or

neurological disorder subjects. Experimental results on the publicly available ADHD-200

dataset demonstrate that this innovative framework can improve classification accuracy,

which indicates that the features learned from FCNet have superior discriminative power.

Our results also suggest that in ADHD, inter hemispheric functional connectivity is altered

the most as compared to alterations belonging to the individual hemispheres, which indicates
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that in ADHD coordination between the lobes is affected. Our results highlight that the

Frontal lobe is impaired the most in the case of ADHD.

Although this method provides better accuracy than state-of-the-art methods, still it relies

on classical machine learning methods such as Elastic Net and SVM for final prediction.

In recent years, end-to-end trainable methods have been shown to outperform classical

machine learning methods in a number of domains like image classification, optical character

recognition [149], image segmentation and object recognition [98]. We were interested

in exploring whether an end-to-end deep learning model can yield better performance as

compared to the classical machine learning models in the domain of fMRI. Towards this

objective, we explore a deep learning model in the next chapter that takes preprocessed fMRI

time-series signals as input and provides the prediction label as its output.



Chapter 7

End-to-end Deep Learning for

Classification of ADHD using fMRI

In the previous chapter, we proposed a deep learning method to calculate functional connectivity.

The framework was dependent on classical machine learning methods of feature selection

and classification, namely, Elastic Net and Support Vector Machine classifier. In this chapter,

we propose an end-to-end trainable model that utilizes the representation learning capability

of deep learning to classify ADHD from preprocessed fMRI time-series data. Our aim is to

apply deep learning techniques to (1) automatically classify a subject as ADHD or healthy

control directly from fMRI time-series signals, and (2) evaluate the importance of functional

connectivity in an end-to-end deep neural network. The proposed model is comprised of

three networks, namely (1) a feature extractor, (2) a functional connectivity network, and (3)

a classification network. The model takes preprocessed fMRI time-series signals as input and

outputs the predicted labels, and is trained end-to-end using back-propagation. Our results

suggest that functional connectivity serves as an important biomarker towards classification

of ADHD. Experimental results on the publicly available ADHD-200 dataset demonstrate

that this innovative model outperforms previous state-of-the-art. Results suggest that the

frontal lobe contains the most discriminative power towards classification of ADHD.

In this work, we propose a deep learning based model, namely, DeepFMRI for prediction

of ADHD. The DeepFMRI consists of an end-to-end trainable network that takes fMRI
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time-series signals as input and produces predicted label as its output. The proposed

architecture incorporates a functional connectivity network which is designed to capture

pair-wise region connectivity. The second component is a classifier that takes as input all

pairs of functional connectivity, and produces a final prediction. The contributions of this

chapter include:

• a deep learning architecture, trained end-to-end, for the classification of ADHD.

• demonstration of the importance of functional connectivity for improved results.

• improved classification accuracy on the ADHD-200 dataset.

Following publications are related to this chapter:

• Atif Riaz, Muhammad Asad, Eduardo Alonso, Greg Slabaugh, “DeepFMRI: End-to-end

deep learning for functional connectivity and classification of ADHD using fMRI",

Journal of Neuroscience Methods.

• Atif Riaz, Muhammad Asad, S M Masudur Rahman Al Arif, Eduardo Alonso, Danai

Dima, Philip Corr and Greg Slabaugh, “Deep FMRI: An end-to-end deep network for

classification of fMRI data”, IEEE International Symposium on Biomedical Imaging

(ISBI), 2018.

7.1 Data and Preprocessing

The resting state fMRI data used in this study is from the NeuroBureau ADHD-200 competition

[106] as in previous chapters. For the evaluation of network proposed in this chapter, we

used datasets from three imaging sites: NeuroImage (NI), New York University Medical

Center (NYU), and Peking University (Peking). The details of the data are same as in the

Chapter 6.
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7.2 Method

7.2.1 End-to-end Model

In this chapter, we propose an end-to-end deep learning model for the classification of ADHD

that takes fMRI time-series signals as input and predicts a label (1 for ADHD subject and

0 for healthy control) as output. The proposed work is built on the top of the FCNet [8]

as presented in the previous chapter. FCNet is used to extract functional connectivity from

fMRI time-series signals, however it combines deep learning and classical machine learning

and is not trained end-to-end. For ease of understanding, our proposed architecture can be

divided into three modules: 1) feature extractor network, 2) functional connectivity network,

and 3) classification network. The feature extractor network is applied to a pre-processed

time-series signal of an individual brain region and it produces an abstracted feature as its

output. These features are learned during training. The functional connectivity network takes

the abstracted features as input and produces the strength of similarity between any two brain

regions. Finally, the classification network produces the final prediction label based on the

functional connectivity values of all brain regions. We describe the details of each individual

network below.

The feature extractor network

This convolutional neural network (CNN) extracts features from individual brain region’s

preprocessed time-series signals and is comprised of multiple layers, namely, conolutional

layer, pooling layer and batch normalization layer. CNNs are popular for their capability to

learn features and their ability to build robust and abstract representations of data [98].

The network parameters and architecture are inspired by [3], which was originally

designed for images. We have adopted the network and parameters for one-dimensional time

series data for this specific problem. The network is designed to accept signals of length 172

as input and produces an abstract representation (vector of size 32). The network architecture

is presented in Figure 7.1(a) and is comprised of multiple layers (presented in Figure 7.1(d)).
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Fig. 7.1 The architecture of the proposed end-to-end model: a) represents a set of 90 feature
extractor networks, where each network is applied on each individual region R. All networks
share the same parameter set. b) represents a functional connectivity network comprising of
a set of 4005 similarity measure networks. Each network’s input contains abstracted features
of two brain regions. All networks share the same parameter set. c) is the classification
network comprising of fully connected layers and a softmax layer. d) represents the layers in
the feature extractor network. Similarly, e) represents the layer architecture of the similarity
measure network, and f) represents the layers of an individual block in the classification
network (the two blocks in the classification network have the same architecture but they do
not share parameters).
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All convolutional layers are one dimensional with a kernel size of 3 and the numbers of

filters are 32, 64, 96, 64, 64, respectively, as presented in Figure 7.1. The stride is 1 for all

convolutional layers. All max-pooling layers pool temporally with pool length of 2. The last

fully connected layer in the network has 32 nodes. The time-series data of all brain regions

are passed through the feature extractor network and the output of the network is used as

input for the functional connectivity network described in the next section.

The functional connectivity network

The functional connectivity network determines the functional connectivity between brain

regions and is presented in Figure 7.1(b). The network is comprised of multiple similarity

measure networks where the architecture of each network is the same as the similarity measure

network of the FCNet as discussed in the previous chapter. The network is presented in Figure

7.1(e). This Siamese-inspired similarity measure network determines the similarity between

pairs of extracted features from two brain regions. Here, the calculated similarity measure

serves as the degree of functional connectivity between two regions. Each similarity measure

network operates on two brain regions, where the input to each network are the abstracted

features of the two brain regions from the feature extractor network. The neural network

learns to identify functionally connected regions using a non-linear function. This function is

learned from the data and is more specific to this particular problem compared to hand-crafted

features calculated through generic measures like correlation. The similarity measure network

is comprised of three fully connected layers, where the last layer is connected to a softmax

layer with dense connections. These layers are presented in Figure 7.1(e). The output of the

similarity measure network is a length two vector, and can be interpreted as the probability

the two regions are functionally connected, and the complement of the probability.

The outputs of the similarity measure network are fed into a mapping layer using the

following operation:

M(i) = w1vi
1 +w2vi

2, (7.1)

where vi
1 and vi

2 are the scalar outputs of the ith similarity measure network, w1 and w2

are the weights such that w1 +w2 = 1. We use w1 = 1 and w2 = 0 that enforces to pass the
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functional connectivity to the classification network (vi
1 contains functional connectivity).

The output of this network can be assumed to be the functional connectivity mapping of all

the brain regions, and uses deep learning-based features from the feature extractor network.

Instead of initializing the weights of the feature extractor network and of the similarity

measure network randomly, we use the weights of the pre-trained FCNet [8] from previous

chapter. The output of this network is fed into the classification network, which is presented

in the next section.

Classification network

This neural network produces the final classification results. The input to this network is the

output of the mapping layer features (M) representing the functional connectivity of all brain

regions. The network produces prediction labels (healthy control or ADHD) as its output.

The network is comprised of two batch normalization layers and four fully connected

layers where the last layer is connected to a softmax classifier with fully connected layers.

The network parameters are optimized during the training phase of the model. The network

is presented in Figure 7.1(c). The number of nodes in the fully connected layers are 100, 50,

50 and 2 respectively, where the final softmax layer yields the output of the model.

Next, we describe the architectural considerations and the training of our proposed model.

Shared parameters architecture

The architecture of the feature extractor network and the similarity measure network is

inspired by FCNet, as presented in the previous chapter. However, the FCNet architecture

cannot be applied directly to construct an end-to-end network as it is designed to calculate

functional connectivity. In the architecture of the proposed work, the same feature extraction

steps are applied to individual brain regions, and all pairs of brain regions are passed through

the same similarity measure network. This is implemented by employing n f feature extractor

networks and ns similarity measure networks. Each feature extractor network is applied to

an individual brain region (n f = 90), converting individual time-series data into an abstract

representation. All the feature extractor networks share the same parameters and updates
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are applied to these shared parameters during training. The similarity measure network is

applied to all combinations of pairs of brain regions, so ns = 4005 (n f × (n f −1)/2). All the

similarity measure networks are implemented with the constraint that the networks share the

same parameters and updates are applied to these shared parameters. The approach is similar

to a Siamese network [137].

7.3 Experimental Settings and Results

In this section, we evaluate the effectiveness of the DeepFMRI for ADHD classification

employing resting-state fMRI and by comparing our results with those of state-of-the-art

methods in the literature.

7.3.1 Experimental Settings

The proposed model is evaluated on the ADHD-200 dataset. This publicly available dataset

was contributed by different imaging sites. Each imaging site provided separate training and

testing datasets. For the evaluation of our method on individual sites, we train our end-to-end

model on the training dataset of each imaging site and test it on the corresponding test dataset

of that individual site. There are four categories of subjects in the dataset: healthy control,

ADHD combined, ADHD hyperactive-impulsive and ADHD inattentive. Here, we combine

all ADHD types in one category as we are interested to investigate classification between

healthy control and ADHD only.

The proposed model was created in Python using the Tensorflow library. The network

is trained end-to-end. The Adam optimizer [150] is used to optimize the network and the

number of epochs are 50. After 50 epochs, the training loss converges and becomes stable.

For the initialization of the feature extractor and similarity measure networks, we use weights

from the pre-trained FCNet [8], and these weights are updated through fine-tuning. The

training time for Peking, NYU and NI imaging sites was approximately 1 hour, 5 hours and 1

hour, respectively.



116 End-to-end Deep Learning for Classification of ADHD using fMRI

The full deep network is trained the end-to-end model with the following cross-entropy

loss:

L =−1
n

n

∑
1
[yilog(ŷi)+(1− yi)log(1− ŷi)], (7.2)

where n is the number of training samples, yi is the ground truth label of the subject (1

for ADHD subject and 0 for healthy control) and ŷi is the prediction.

As the feature extraction and similarity measure networks are initialized with a pre-trained

FCNet, we employ different learning rates for i) the feature extraction and similarity measure

networks (10−5), and ii) for the classification network (10−4).

7.3.2 Comparison Methods

To validate the effectiveness of the DeepFMRI, we compare it with different network

architectures and state-of-the-art method, an end-to-end network without functional connectivity,

clustering based method and FCNet from the previous chapters and a correlation method.

We describe overview of these methods in next sections.

End-to-end Model without Functional Connectivity

A number of studies have shown that functional connectivity plays a key role in the cognitive

processes of the brain [70]. Recently, studies have shown that altered functional connectivity

can serve as an important biomarker towards the identification and classification of different

brain disorders [1, 5, 39, 40, 151–153]. Inspired by such findings, we have integrated a

functional connectivity network in the proposed architecture. The functional connectivity

network calculates functional connectivity measure in the DeepFMRI model as discussed

earlier.

In order to evaluate the importance of functional connectivity in our work towards the

classification of ADHD, we have evaluated our end-to-end network without the functional

connectivity network. The model without the functional connectivity network is presented in

Figure 7.2.
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Fig. 7.2 The end-to-end model without the functional connectivity network. a) represents a
set of 90 feature extractor networks where each network is applied to each individual region
R. b) is the classification network.

In this model, the abstracted features calculated through the feature extraction network

are merged and passed directly to the classification network and there is no functional

connectivity network. Due to the exclusion of the functional connectivity network, there are

fewer overall parameters than in the proposed model. The weights and parameters of the

feature extraction network are the same as in the proposed network.

FCNet

The FCNet method [8], as detailed in Chapter 6, uses a CNN to extract functional connectivity

from the pre-processed fMRI signals. An Elastic Net [50] is applied to extract the discriminant

features from the calculated functional connectivity and finally an SVM classifier is applied

to evaluate the classification results. This is the first method that applies a CNN on time-series

signals, incorporating functional connectivity for the classification of ADHD.
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Correlation Method

Correlation is a popular method for calculating functional connectivity. In order to compare

the DeepFMRI with correlation, we performed correlation on pre-processed fMRI signals to

calculate functional connectivity between the brain regions. We applied an Elastic Net based

feature selection to extract discriminant features. Finally, an SVM classifier was applied for

classification.

Clustering Method

A clustering-based approach for calculating functional connectivity of brain regions is used

in [7] and discussed earlier in Chapter 5. Clustering is considered a more sophisticated

technique than correlation-based techniques for calculating functional connectivity [40] as

the network obtained by clustering is sparse [1, 87]. In this work, functional connectivity

is calculated through clustering. An Elastic Net [50] is applied to functional connectivity

to extract discriminant features. Finally an SVM classifier is utilized to classify healthy vs

ADHD subjects.

7.3.3 Feature Importance of Functional Connectivity

A common criticism of deep networks is that they are a ‘black box’, mapping inputs to

outputs and lacking interpretability. In a clinical context, it is of keen interest to not just

produce diagnoses, but also draw some insights from the network itself, particularly looking

for differences between healthy control and patient groups to characterise the neurological

condition. A key advantage of the proposed method is that due to the functional connectivity

network, once the model is trained, we can analyse the functional connectivity of brain

regions for patients and control, leading to interpretable results. As a demonstration, we

carried out an experiment to rank the contribution of individual functional connectivity values

towards prediction of a particular class label (in our case, class labels are healthy control and

ADHD). This weighted rank can be viewed as feature importance of individual functional

connectivity towards predicting a class label.
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In our end-to-end network, the final prediction is calculated through the classification

network. The classification network is comprised of multiple layers where it gets the

functional connectivity from the mapping layer as input and produces the final prediction of

the network (i.e. control or ADHD) through a softmax layer. During the training step, the

network optimizes the parameters with respect to the individual class label. The network

back-propagates the error from the last layer to the mapping layer (reminiscent of functional

connectivity in our network) during the training phase. Thus, the learned weights of this

network carry important information towards determining the importance of functional

connectivity for each of the 4005 pairs of brain regions.

Specifically, we are interested in exploring the weights assigned by the classification

network to the mapping layer M in Equation 7.1. Deep neural networks have been applied to

visualize feature importance on images [154] and videos [155]. To explore the importance of

features assigned by the classification network, we carried out work similar to [102]. The

main idea of the approach is: given a learned neural network and a class of interest, we trace

back to the original input by a backward pass with which we can determine how each input

entity affects the final detection score for a specific class. In our model, we have two classes

(healthy control and ADHD) and we trace back to the mapping layer values to find out how

each mapping layer value affects the prediction of a particular class.

Given a particular output value of the mapping layer M0, a class c and the class score

function Sc(M), we would like to rank the elements of M0 based upon their influence on the

score Sc(M0). Consider the linear score model for the class c:

Sc(M) = wcM+bc, (7.3)

where M is the one-dimensional vector, calculated from Equation 7.1 and is reminiscent of

the functional connectivity in our network, wc is the weight and bc is the bias of the model.

Here, it is clear that the magnitude of the elements of the weight vector wc specifies the

importance of the corresponding element of M for the class c.

In the case of a deep neural network, the class score is a non-linear function of input

values, so the above assumption cannot be applied directly. However, given a vector M0, we
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can approximate Sc with a linear function in the neighbourhood of M0 by a first-order Taylor

expansion [154]:

Sc(M)≈ wM+b, (7.4)

where w is the derivative of Sc with respect to the vector M at the point M0:

w =
∂Sc

∂M
|M0. (7.5)

Another justification of the network-learned weight using the class score derivative from

Equation 7.5 is that the magnitude of the derivative indicates which elements need to be

changed the least to affect the class score the most. One can expect such elements to be more

discriminative for a particular class. The derivative w in Equation 7.5 is calculated through

back-propagation during the training of the network. We define the feature importance of a

node i at layer d as:

f d
c (i) =

d

∑
l=L−1

∑
k

w(l,l+1)
c f (l+1)

c (k), (7.6)

where L is the total number of layers in our classification network, k is the number of nodes

and f L
c is the output of the classification network. We define I as the feature importance map

for the class c, where each element is given by:

Ic(x) = f M
c (x). (7.7)

Ic defines the feature importance of a particular class c.

7.3.4 Results

We evaluate the proposed network with data from three imaging sites (NYU, NI and Peking)

from the ADHD-200 dataset [106]. The number of training subjects in each site is 226,48

and 85 respectively. ADHD-200 has provided separate train and test datasets for individual

imaging site. The proposed end-to-end model is trained on the training dataset of each
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imaging site and the corresponding test dataset of the individual site is used for testing.

Please note, the data used to test the method is completely independent from the data used

to train. In order to evaluate the performance of the DeepFMRI, we have evaluated and

compared results with state-of-the-art methods as described in the previous section. The

comparison results are presented in Table 7.1. The results show that the method proposed in

this chapter outperforms the average accuracy results of the competition teams (data from

the competition website [106]), the highest accuracy of competition for any individual site

(from [6]), correlation-based functional connectivity results and clustering based results. The

method also performs well in comparison with the FCNet method [8] explained in Chapter 6.

The highest accuracy achieved with our method is for the NYU dataset with a classification

accuracy of 73.1%. The classification accuracy for the NI and Peking datasets are 67.9% and

62.7%.

Table 5.1 highlights that the distribution of healthy control and ADHD classes in train

and test splits are different. However, in order to achieve better performance by any classifier,

training and testing data should follow a similar class-distribution. The performance of any

classifier depends on the distribution of the training data. If the majority class is changed

for the testing data, the classifier performance would drop significantly. For the calculation

of the baseline classifier accuracy, it can be assumed that a simple classifier would predict

the majority class of the training dataset for all testing subjects. In the case of Peking, the

majority class in the training dataset is healthy control, so the baseline accuracy for Peking

on testing dataset is 47.1% (24/(24+27)). Similarly for NYU, with ADHD as the majority

class in the training data set, baseline accuracy is 70.7% (29/(29+12)), and for NI, with

ADHD as the majority class in the training dataset is 44.0% (11/(11+14)). The baseline

accuracy for three imaging sites is presented in Table 7.1, where DeepFMRI performs much

better than baseline accuracy for Peking and NYU and slightly better for NYU.

The results show that the DeepFMRI shows the improved results for NI and NYU and

the classification accuracy is highest in all three imaging sites. For the Peking, results for

both the FCNet [8] and DeepFMRI are the same.
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NI Peking NYU

Average accuracy [106] 56.9% 51.0% 35.1%

Highest accuracy [6] – 58% 56%

Correlation method 52.0% 52.9% 56.1%

Clustering method [7] (Chapter 5) 44% 58.8% 24.3%

FCNet [8] (Chapter 6) 60.0% 62.7% 58.5%

DeepFMRI 67.9% 62.7% 73.1%

Table 7.1 Comparison of the DeepFMRI with the average results of competition teams,
highest accuracy achieved for individual sites, correlation method, clustering-based results
[7] and the FCNet method [8]. The highest accuracy for NI was not quoted by [6].

One interesting point about the ADHD dataset is that the studies employing the dataset

were not able to achieve high classification accuracy. The average and highest accuracy

achieved by competing studies is presented in Table 7.1 where the accuracy results are

comparable to 50% chance. One possible reason for lower accuracy could be the heterogeneous

nature of the data and the scan parameters as discussed in chapter 4 making the dataset

difficult to train any single machine learning model.

Next, we are interested in studying the performance of the individual networks of the

DeepFMRI.

7.4 Discussion

In this section, we discuss the performance comparison of networks of our proposed method

and analyse the features learned by the method.

7.4.1 Performance Comparison

Based on the results in Table 7.1, the proposed end-to-end method comprising the feature

extractor, functional connectivity and the classification network to classify ADHD presents

better performance than state-of-the-art methods. Although it would be helpful to conduct a

statistical significance test, unfortunately, we could not conduct such a test due to the very
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small number of available subjects in the imaging sites. However, from a methodological

point of view, we are mainly interested in investigating which subnetwork is causing the

performance enhancement. To this end, we additionally performed some experiments by

replacing different combinations of the networks.

Comparison Methods

For comparison, we conducted additional experiments, namely, the effect of functional

connectivity, the end-to-end model without the classification network, clustering + classification

networks and correlation + classification networks, which are detailed below and the results

are presented in Figure 7.4.

Effect of Functional Connectivity

In this experiment, we were interested in exploring whether functional connectivity plays an

important role towards the classification of ADHD or not. Towards this end, we evaluated an

end-to-end model without the functional connectivity network (as discussed in the previous

section and presented in Figure 7.2). Specifically, we were interested in comparing the

performance of the end-to-end model with and without functional connectivity and the results

are presented in Figure 7.3.

It is important to note that for the end-to-end model without functional connectivity, the

number of parameters are less as compared to the end-to-end model with the functional

connectivity network. The number of trainable parameters for the end-to-end model with

functional connectivity is 502,751 vs 386,665 for the end-to-end model without functional

connectivity. However, the end-to-end model with functional connectivity yields better

performance than the model without functional connectivity. These findings show that

functional connectivity serves as an important biomarker towards classification of ADHD.

End-to-end Model without Classification Network

In this experiment, we are interested in determining the importance of the classification

network towards diagnosis. Therefore, we use the pre-trained feature extractor and the
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functional connectivity network to calculate functional connectivity. The proposed classification

network is not used in this experiment. The classification network serves two functions in our

proposed work: i) it assigns feature importance to each feature and ii) based on those feature

importance values, it performs the classification. Therefore, to compensate this network, we

need to incorporate feature selection and classification separately. Towards this, an Elastic

Net was applied to extract discriminant features from functional connectivity and finally, an

SVM classifier was applied to evaluate the classification accuracy as discussed in Chapter 6.

Next, we want to evaluate the importance of the functional connectivity network in our

network. To explore this, we designed the network without the feature extractor and the

functional connectivity network. Towards this, we carried out two experiments where we

replaced the feature extractor and the functional connectivity network with i) clustering and

ii) correlation. Both correlation and clustering are used for functional connectivity calculation

in these methods. The methods are described below.
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(c) NI datatset.

Fig. 7.3 Comparison of the performance of i) DeepFMRI and ii) the model without the
functional connectivity network for three imaging sites. The proposed model shows better
performance as compared to the model without functional connectivity.
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Clustering + Classification Network

In this experiment, we apply clustering to calculate functional connectivity between the

brain regions as proposed by [7, 40] and detailed in Chapter 5. As discussed earlier, the

feature extractor and the functional connectivity networks are not used here. The functional

connectivity through clustering is passed into the proposed classification network to evaluate

the performance of the network.

Correlation + Classification Network

Correlation is a popular method to calculate functional connectivity between brain regions.

We employ correlation to calculate functional connectivity. Similar to the previous experiment,

a classification network was employed on the calculated functional connectivity.

Comparison Results

We performed the comparison of these four methods and the results are presented in

Figure 7.4. From the results, it is apparent that the DeepFMRI outperforms all other

evaluated methods or combinations. Comparison of ‘clustering + classification network’ and

‘correlation + classification network’ supports the findings of [7] that clustering is a better

method to calculate functional connectivity as compared to correlation-based techniques.

However, our proposed end-to-end model yields better performance.
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Fig. 7.4 Comparisons of classification accuracy of different methods. The results suggest
that the DeepFMRI method outperforms all other evaluated methods. The DeepFMRI is able
to achieve the highest accuracy on all three imaging sites where it outperforms in NI and
NYU imaging dataset.

7.4.2 Analysis of Learned Feature Importance of Functional Connectivity

The feature importance map (Ic) from Equation 7.7 is a 4005 dimensional vector where each

value corresponds to the importance of the respective functional connectivity value towards

prediction of a particular class. We were interested in exploring the learnt feature importance

values. Towards this goal, we have selected feature importance values from the NYU dataset

as, i) NYU has the largest number of subjects compared to other imaging sites, and ii) NYU

has highest classification accuracy.

We have plotted the feature importance map for both the healthy and ADHD classes in

Figure 7.5. For the sake of clarity, we have plotted the top 100 feature maps for both classes.

The figure highlights some of the differences in feature importance learned by our method

for both classes. Our method assigns different weights to an individual feature with respect

to its importance towards prediction of a subject. This is in contrast to the most classical
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machine learning methods [7, 40], which typically employ a feature selection algorithm that

assigns a single weight to a functional connectivity regardless of the class.

Next, we have plotted the feature importance values on the brain map. The visualization

of the healthy and the ADHD classes are shown in Figure 7.6 and Figure 7.7, respectively.

The figures show that in most of the cases, the importance value assigned by our network to

a particular functional connectivity is different for both classes.
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Fig. 7.6 Visualization of the learned feature importance map for the healthy class on the
brain volume. For the sake of clarity, only top 50 values are visualized. The size of a node
relates to the number of edges (functional connections) connected to the particular brain
region and the width of an edge highlights the strength of a particular feature’s importance.
(Data visualized through the BrainNet viewer software [4]).
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Fig. 7.7 Visualization of the learned feature importance map for the ADHD class on the
brain volume. For the sake of clarity, only top 50 values are visualized. The size of a node
relates to the number of edges (functional connections) connected to the particular brain
region and the width of an edge highlights the strength of a particular feature’s importance.
Visualization through the BrainNet viewer software [4].
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We performed an experiment for the quantitative analysis of feature maps of both classes.

Our motivation was to compare the top 100 feature maps of both classes. The top 100 feature

maps values were extracted from the healthy class and a lookup was performed in the ADHD

feature maps. The result is presented in Figure 7.8. The figure shows that out of the top

100 feature maps of the healthy class, less than 10% fall in the top 500 feature maps in

the ADHD class. Similarly, we extracted top 100 feature maps from the ADHD class and

computed the lookup in the healthy class and the results are presented in Figure 7.9. As in

the previous inference, out of the top 100 feature maps of the ADHD class, less than 10%

fall in the top 500 feature maps in the healthy class. Our findings suggest that the altered

functional connectivity between healthy control and ADHD may relate to functional brain

network differences. In particular, the DeepFMRI appears to weight different brain network

structures depending on the particular class (control or ADHD).
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Fig. 7.8 Plot of matching the top 100 healthy feature maps in the ADHD feature maps. The
y-axis represents the top 100 feature maps in the healthy group and the x-axis represents the
index of a particular healthy feature map in the ADHD feature map. The figure shows that
out of top 100 feature maps of the healthy class, less than 10% fall in the top 500 feature
maps in the ADHD class.
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Fig. 7.9 Plot of matching the top 100 ADHD feature maps in the healthy feature maps. The
y-axis represents the top 100 feature maps in the ADHD group and the x-axis represents the
index of a particular ADHD feature map in the healthy feature map. The figure shows that
out of the top 100 feature maps of the ADHD class, less than 10% fall in the top 500 feature
maps in the healthy class.

Finally, we are interested in analyzing the learned feature importance map for both classes

with respect to the inter-lobe and intra-lobe distribution. We have categorized the learned

feature importance map with respect to their respective lobes and the results are visualized in

Figure 7.10. The results suggest that for both classes, the frontal lobe carries a higher number

of discriminant features in terms of both inter and intra-lobe features. The figure shows a

different distribution for all the lobes in both classes. The distribution is highlighted by the

different shape of an individual lobe when comparing the two classes. The frontal lobe is

known to be involved in cognitive processes [134], including attention, planning, sequential

organization and self-monitoring of actions, affect and mood, memory, self-awareness and

personality [134]. The alterations in the frontal lobe may cause abnormal behaviours in these

functions. Volumetric alterations in ADHD have been reported [156]. Studies have also

shown connectivity alterations in frontal, temporal, and occipital cortices locally as well as
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with the rest of the brain in individuals with ADHD [157]. Our findings about the frontal

lobe alterations in ADHD support the results found in earlier studies [158–160].

7.5 Conclusions

In this chapter, we have proposed an innovative end-to-end deep neural network for classification

of ADHD from fMRI data. The DeepFMRI takes pre-processed time-series signals of fMRI

as input and learns to predict the classification label. We were interested in studying whether

the classification task in fMRI can be solved by an end-to-end network. As far as we know,

this is the first attempt to apply an end-to-end network incorporating functional connectivity

for classification of a neurological disorder.

We have evaluated the importance of functional connectivity in the proposed end-to-end

network. Findings show that despite the large number of parameters in our end-to-end

network, it performs better as compared to an end-to-end network without functional

connectivity with comparatively less number of trainable parameters. This result strengthens

the argument that functional connectivity is an important biomarker towards the identification

of a neurological disorder. Experimental results on the ADHD-200 dataset demonstrate that

utilizing such model outperforms the current state-of-the-art.

Our proposed model is able to associate different weights to an individual functional

connectivity with respect to its importance in predicting a class label (healthy control and

ADHD), unlike most of the feature selection strategies in classical machine learning. The

proposed method in this chapter appears to assign weight to different brain networks with

respect to a particular class (healthy control or ADHD).

Our results suggest that the frontal lobe carries most discriminant power in classifying

ADHD. The frontal lobe is known to be associated with cognitive functions like attention,

memory, planning and mood. Our findings about the frontal lobe anomalies in ADHD support

earlier studies.

One interesting extension of the this work could be to incorporate non-imaging features

in the DeepFMRI. The model would need to be modified by adding a sub-network that will
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take the non-imaging features as input and incorporate them in the existing network. Such an

extension is also discussed in section 8.3.

In the next chapter, we provide the conclusions, limitations and future dimensions of the

dissertation.
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Fig. 7.10 Distribution of the top 100 features maps in the healthy and the ADHD classes.



Chapter 8

Conclusions

In this dissertation, we addressed the problem of classification of ADHD subjects using their

brain resting state functional MRI (fMRI) data. The problem is particularly of importance

due to the widespread impact of ADHD on the global child population and the lack of

biological measures to diagnose it. Approximately 5-10% of the children all over the world

are diagnosed with ADHD. This motivated us to propose a solution for the automatic ADHD

diagnosis problem. The central idea of our approach is to exploit brain functional connectivity

differences between healthy and ADHD subjects. We explored different methods to calculate

functional connectivity and evaluated the differences between healthy and ADHD functional

connectivity patterns.

Our first approach for solving this problem used the integration of non-imaging features

with imaging features. We proposed an affinity propagation clustering-based method of

calculating functional connectivity of brain regions. We have employed a novel way to

initialise its parameter (preference value). An Elastic Net based feature selection method was

explored to extract discriminant functional connectivity. The imaging features (functional

connectivity) were integrated with non-imaging features (such as age, gender) and the

final feature set was presented to a Support Vector Machine (SVM) classifier for the final

prediction. The method outperformed previous state-of-the-art results. However, this method

was based on classical machine learning methods such as feature selection and classification.
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In the second approach, as discussed in Chapter 6, we explored a Convolutional Neural

Network (CNN) model, namely FCNet, for calculating functional connectivity of brain

regions. In this work, a Siamese inspired network, namely feature extractor network, has

been proposed in which a CNN is used to extract features from time-series signals. The

feature extractor network maps the time-series signlas to abstract features. The second part of

the FCNet is a similarity network. The abstracted features from the feature extractor network

are passed to the similarity measure network which calculates the strength of similarity

between the regions. This similarity measure serves as functional connectivity in this work.

An Elastic Net is applied to extract discriminant features and finally, an SVM classifier is

evaluated for the final prediction. The method was able to yield better classification accuracy

as compared to other methods. However, the method relied on the classical machine learning

methods for feature selection and classification.

Next, we proposed an end-to-end trainable deep network for classification of the ADHD,

which incorporates functional connectivity in the proposed architecture. The proposed model,

namely DeepFMRI, takes preprocessed fMRI time-series signals as input and produces the

prediction label as output. The method is composed of three networks. First one is the feature

extractor network that maps the preprocessed time-series signals to the abstracted features.

The second network is a functional connectivity network which is comprised of multiple

similarity measure networks and claculates functional connectivity of brain regions from

their abstracted features. The last part is a classification network that takes the functional

connectivity as input and yields the classification label as the final output of the network.

The innovative network outperformed previous state-of-the-art methods.

Lastly, we evaluated the importance of functional connectivity in the proposed deep

learning model. We observed that excluding the functional connectivity network from the

deep network reduces the performance of the network. This finding shows that the functional

connectivity plays a key role for classification of the ADHD. Our results suggest that the

frontal lobe carries most discriminant power in classifying ADHD. The frontal lobe is known

to be associated with cognitive functions like attention, memory, planning and mood. Our

findings about the frontal lobe anomalies in ADHD support the earlier studies.
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8.1 Outcomes

Our motivation of this work was to explore novel machine learning models to help medical

experts for diagnosis of a brain disorder. We approached the solution by dividing the goal in

multiple objectives in Section 1.2. Each of it can be addressed below.

• Functional connectivity as an important biomarker for diagnosis of a brain disorder:

This objective has been addressed in Chapter 7. We proposed a deep learning network

incorporating functional connectivity in the model. We have evaluated that functional

connectivity serves as an important biomarker for predicting a brain disorder and

improves the classification performance of the model

• Novel machine learning methods for evaluation of functional connectivity: This

objective has been addressed in Chapters 5 and 6. In Chapter 5, we have proposed

a clustering based novel method to calculate functional connectivity. The method

achieved improved classification accuracy as compared to the existing work. In

Chapter 6, a novel Convolutional Neural Network based model has been presented to

calculate functional connectivity. This method achieved better classification result.

• Importance of non-imaging features for prediction of a brain disorder: Chapters 5 and

6 highlight the objective. The chapters show that the non-imaging features improve

the classification accuracy of the proposed methods.

• Deep neural network for classification of a brain disorder: The objective has been

highlighted in Chapter 7. We have presented an end-to-end deep network that takes

fMRI preprocessed time-series signals as input and produces the prediction of label

(healthy or ADHD) as output.

• Convoluional Neural Networks to map time-series functional MRI signals to features:

Chapters 6 and 7 covers this objective. We have prosed a Convolutional Neural Network

to map time-series signals to abstract features that are used for calculation of functional

connectivity. Functional connectivity is used in next steps for the final prediction. The
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results show that the novel method of calculating functional connectivity improves the

results.

In the next section, we present some limitations of the proposed work.

8.2 Limitations

One of the limitations of the proposed work is the small data size being evaluated. We have

evaluated ADHD-200 dataset and different imaging sites contributed to the dataset. There is

a small number of subjects in individual imaging sites. Also, the data is very heterogeneous

across different sites requiring training the network separately for each institution. One main

reason of data being heterogeneous is different protocols are followed by different imaging

sites. The clinical protocols are constantly changing and there is a lack of agreement for

a common protocol. There is a need to decide on a single protocol and a consistent way

to acquire imaging data that can be followed by all data contributors. The heterogeneous

nature of the data makes it difficult to train a single machine learning model that can yield

better performance. Due to these facts, the classification accuracy achieved by the proposed

work and other studies has room for improvement. One possible way to train a network on

the heterogeneous data could be to explore multi-task learning as proposed by [161] for the

ADHD-200 dataset. In this possible work, feature extractor networks could be trained for

individual imaging site, while the rest of the network can be trained on all imaging sites.

Using this network, the feature extractor network can be specific to individual imaging site

while the functional connectivity and classification network can be learned from all datasets.

We have used CNNs in Chapter 6 and Chapter 7 as the feature extractor network. CNNs

require a fixed length of input data, therefore, our methods are designed to accept a fixed

length of time-series signals. In order to evaluate any other dataset with different time-series

length, the proposed models would need to be redesigned. One possible extension could be to

design a separate feature extractor network for the individual dataset. The rest of the network

would be the same as proposed in Chapter 7. Another option could be to map the original

time-series to a standardised length. An autoencoder could be one of the best approaches to
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map the time-series length to a fixed length. The mapped dimensions could be used as input

to the proposed method.

Another limitation is the lower accuracy of the proposed methods and existing work

achieved on this dataset as compared to the accuracy achieved in other domains such as

image classification. One of the main reason is the dataset itself, which is very challenging,

as discussed earlier. In order to achieve reasonable classification results, a large amount of

data with a common protocol needs to be acquired. Where the proposed methods achieved

better classification results as compared to the state-of-the-art, there is room for improvement

in results with more data.

In our approach, we have calculated functional connectivity of brain regions based

on the assumption that functional connectivity of any two brain regions is consistent

over the entire duration of scan. Such paradigm is called static functional connectivity.

One interesting experiment could be based on dynamic functional connectivity. Dynamic

functional connectivity is based on the assumption that the functional connectivity over the

time of scan is not constant and it might show a different trend. Analysis based on dynamic

functional connectivity might provide some better understanding of brain disorders.

8.3 Future Work

Brain imaging based methods show promise for solving the proposed problem as different

independent studies reported ADHD detection accuracy higher than a chance factor. However,

there are many areas to improve because none of the methods are good enough to replace the

current manual diagnosis process. Further investigation needs to be performed regarding the

data capturing protocols and the community needs to decide a standard method. As different

protocols may lead to the variations of cognitive activities of brain which can reduce the

performance of the diagnosis method. Some possible future extensions of this work are

discussed below.
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ADHD Sub-groups

In future work, we are interested in applying the proposed network to study ADHD sub-groups.

The study may be based on treatment response, clinical scores, disorder outcomes etc.

However, it will not require redesigning the proposed network. If the output variable is

discrete, a classifier can be used as presented in this work. If the output variable is continuous,

instead a regressor can be used. We are also interested in applying the proposed model to

other disorders like epilepsy and Alzheimer’s.

Synthetic Data Generation

Scarcity of data is a critical problem in a number of computer vision domains, particularly in

the domain of medical imaging. Dataset imbalance is another related issue for any Artificial

Intelligence based solution. We have addressed dataset imbalance in this dissertation through

Synthetic Minority Oversampling Technique (SMOTE) which generates minority subjects

from the available data. Recently, Goodfellow et al [162] proposed Generative Adversarial

Networks (GANs) as a state-of-the-art generative network. A GAN is composed of two

neural networks, a generator model and a discriminator model. The generator model maps

random data to a data distribution of interest while the discriminator model estimates the

probability that a sample came from the real training data rather than the generator model.

The ultimate goal of the GAN is to generate data that is close to real data. GANs have been

applied to a number of computer vision applications like natural images synthesis [163],

style generation [164], conditional GANs [165], and many more. It would be interesting to

design a GAN for fMRI data generation. With a reasonable amount of training data, the goal

could be to design a GAN to generate synthetic subjects from the real training data. The

synthesized data can be used to train any machine learning model.

Autoencoder-based Feature Extractor

In this dissertation, we have proposed an end-to-end deep network that includes a CNN

feature extractor network. The feature extractor network used a set of weights pre-trained



8.3 Future Work 143

through FCNet. One possible extension could be to explore autoencoders for feature extractor

network. The aim will be to train an autoencoder that can project the time-series data of

brain regions to a lower dimension. The mapped lower-dimensional data can be used as input

to the similarity network. With comparatively less number of parameters, this model might

be expected to perform better.

Long Short Term Memory (LSTM)

In this dissertation, we have used CNN based feature extractor network. CNNs are well known

for their representation learning capability, they learn the feature during the training. An

interesting experiment could be to explore Long Short Term Memory (LSTM) for the feature

extractor network. LSTMs have been shown to perform well in a number of time-series

applications. An LSTM can be applied to extract features from the time-series fMRI signals.

These extracted features can be used as input to the similarity measure network.

Fusion of Multiple Imaging Modalities

In this dissertation, we have explored fMRI imaging modality for classification of ADHD.

One can speculate that multiple imaging modalities might add more discriminative capabilities

to a machine learning model. For instance, along with functional data, structural data might

also contain important information that can improve the performance of the model. One of

the interesting future directions could be to integrate MRI with fMRI in a deep network and

explore if it could yield better diagnosis results. One possible network design is presented in

Figure 8.1. There are two network modules, one for each fMRI and MRI imaging modality.

The fMRI network module is the same as the proposed in this work. For the MRI network

module, a CNN can be used to extract the features. The extracted features from both the

fMRI and MRI can be combined to yield final prediction results.

Integration of Non-Imaging Features in the End-to-end Network

In our end-to-end network, we have employed only imaging features for the prediction of

ADHD. One interesting avenue could be to integrate non-imaging features to the network
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Fig. 8.1 A possible extension for fusion of multiple imaging modalities. The network (a) is
for fMRI data, which is the same as proposed in this dissertation and the network (b) is for
MRI data.

and explore if it can improve the classification results or not. One possible implementation

could be to add a layer prior to the classification network that will combine the imaging

features and non-imaging features and present the combined features to the classification

network. In this work, non-imaging features of age and IQ levels were not at the same scale

as the imaging features, and this might affect the performance of the classifier. In future work

we intend to rescale the non-imaging features to match the scale of the imaging features and

evaluate performance.

Different Brain Disorders

In this work, we have explored ADHD. We are interested in studying other brain disorders

with our proposed methods. It could be an interesting future direction to extend the proposed
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models to other brain disorders like schizophrenia, epilepsy, dementia etc. Our proposed

model would be easily scalable to other disorders also with very minimum changes.
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