

City Research Online

City, University of London Institutional Repository

Citation: Evans, B. E. W., Rodriguez-Carmona, M. ORCID: 0000-0002-7366-6159 and Barbur, J. L. ORCID: 0000-0002-2187-5004 (2021). Color vision assessment-1: Visual signals that affect the results of the Farnsworth D-15 test. Color Research and Application, 46(1), pp. 7-20. doi: 10.1002/col.22596

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/25467/

Link to published version: http://dx.doi.org/10.1002/col.22596

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: <u>http://openaccess.city.ac.uk/</u> <u>publications@city.ac.uk</u>

1 2 3	Color Vision Assess 15 test	sment – 1. Visual signals that affect the results of the Farnsworth D-
4	Benjamin E W Evan	s
5	Marisa Rodriguez-C	armona
6	John L Barbur	
7		
8	Affiliation:	
9		Centre for Applied Vision Research, School of Health Sciences,
10		City, University of London, UK.
11		
12		
13	Corresponding authors	or:
14		Benjamin Evans,
15		City, University of London,
16		Email: benjamin.evans@city.ac.uk
17		
18		
19		

20 Abstract:

21 The Farnsworth D-15 test (D-15) is commonly used to screen for moderate to severe 22 congenital color vision deficiency. The aim of this study was to establish reliable D-15 23 statistics for normal, deutan and protan subjects, and to investigate the different visual signals 24 one can use to carry out the test, even in dichromats and rod monochromats. Six hundred and 25 seventy-four subjects were examined using the D-15, the Colour Assessment & Diagnosis 26 (CAD) test and the Nagel anomaloscope. A rod monochromat and five dichromats were 27 tested using the standard D-15 protocol before the caps were separated into two groups and 28 subjects were asked to repeat the task. D-15 spectral radiance data, measured under D65 29 illumination, were used to estimate differences in photoreceptor excitations for each of the 30 caps. When no crossings and up to two adjacent transpositions on the D-15 results diagram 31 are accepted as a pass, 100% of normal trichromats, 54% of deutans and 43% of protans pass 32 the D-15. A rod monochromat and two protanopes and deuteranopes were able to complete 33 the D-15 when the caps were separated into two groups, despite severe loss or even complete 34 absence of color vision. When up to two adjacent transpositions are accepted 50% of color 35 deficient subjects, some with severe red/green loss, pass the D-15. Whilst the D-15 is 36 normally used to screen for moderate to severe color deficiency, subjects with severe loss can still use combined, residual red/green, yellow/blue and luminance signals to pass. 37 38

Keywords: Farnsworth D-15, color assessment, color vision deficiency, dichromatism, rod
 monochromatism

41 **1. Introduction**

42 This is the first in a series of three papers which examined common color assessment tests 43 employed in the clinic to detect early changes in chromatic sensitivity and also in occupations 44 to screen for congenital and / or acquired loss of color vision in order to relate test outcomes to class and severity of color vision loss. This paper evaluates the performance of the 45 46 Farnsworth D-15 test (D-15) at screening for and classifying color vision deficiency, in 47 addition to appraising the residual signals that enable subjects with reduced chromatic 48 sensitivity to successfully arrange the caps. The second paper¹ evaluates the statistical 49 outcomes of commonly used color assessment tests and examines the efficiency of frequently used single- and multi-test protocols. The third paper² assesses the fundamental limits of what 50 51 one can achieve in color vision assessment and describes a new test that approaches this limit. 52 Following its introduction over 70 years ago³ the D-15 continues to be used to screen for individuals with reduced chromatic sensitivity in occupational and clinical environments⁴⁻⁸. 53 54 The standard D-15 consists of 16 Munsell hues, mounted in circular casings or 'caps', of 55 approximately 13mm in diameter. Participants are provided with a fixed reference or pilot 56 cap and are asked to select and arrange the remaining caps, one by one, in each instance 57 selecting the cap that appears to be least-different perceptually to the most recently selected cap^9 . 58

Various methods for establishing error scores have been described^{10–13} and in a recent study, the type and number of errors subjects make have even been related with some success to the colorimetric characteristics of the caps¹⁴. In spite of such efforts, the preferred method of interpreting the results of the D-15 in most clinical settings is to plot the subject's arranged sequence on a circular diagram^{15,16}. The circular diagram plays a large role in the ease of administration and interpretation of the results. Errors made on the D-15 are classified, based upon their appearance when plotted on the circular diagram, as either being adjacent

transpositions or major isochromatic crossings. Commonly used 'pass' protocols vary
between accepting 1-2 adjacent transpositions¹⁷ to allowing up to 2 major isochromatic
crossings¹⁸; these types of errors are illustrated in more detail in Figures 1c and d.
Monochromats, dichromats and anomalous trichromats with reduced or absent chromatic
sensitivity are expected to fail, making multiple crossings, whilst those who pass are assumed
to have normal trichromatic color vision or close to normal chromatic sensitivity^{8,9,19}, making
at most one to two adjacent transpositions.

73 The Colour Assessment and Diagnosis (CAD) test is a color detection threshold test based on 74 findings from studies designed to investigate how the spatiotemporal characteristics of the background field can be used to desensitise either luminance or chromatic mechanisms^{20,21}. 75 76 Further studies on camouflage revealed new ways to isolate the use of color signals without affecting significantly the sensitivity of chromatic mechanisms^{22,23}. The standardised version 77 78 of the CAD test displays moving stimuli buried in dynamic luminance contrast noise and the output is measured in terms of red/green (RG) and yellow/blue (YB) color thresholds²⁴ that 79 80 are approximately linearly proportional to the cone contrasts generated by the colored 81 stimulus²⁵. The Nagel anomaloscope, when carried out by a trained examiner in the clinic, is 82 considered to be the most accurate test for determining and classifying deutan and protan deficiency^{9,26}. Although the disagreement between the anomaloscope matching range and the 83 outcome of the D-15 test has been previously documented by Birch²⁷, the study used the size 84 85 of the Rayleigh match as a measure for the severity of loss. Whilst the Nagel anomaloscope is 86 renowned for its accuracy in distinguishing between protanomalous and deuteranomalous observers^{28,29}, the relationship between the parameters of the match and the subject's overall 87 chromatic sensitivity is known to be generally poor³⁰. 88

89 The limitations of the D-15, including the potential effects on the D-15 from variation in

90 illuminants, have recently been highlighted³¹ and the impact that practice can have on the

outcome of the D-15, and the subsequent suitability of the D-15 have been questioned^{32,33}. 91 92 Given the extensive use of the D-15 in the clinic, and particularly in occupational settings, the 93 test still has relevance today. It is important to note, and appreciate, in most clinical and 94 occupational settings, the D-15 is employed as a secondary test, used if applicants fail an initial screening test, such as the Ishihara pseudoisochromatic plate test³⁴. The principal aim 95 96 of this study is to evaluate the performance of the D-15 test at screening for and classifying 97 color vision deficiency and to examine the spread in the severity of color vision loss in those 98 who fail and those who pass the most commonly used D-15 protocols. Since many subjects 99 with severe RG color deficiency pass the D-15 test, a secondary aim of the project is to 100 identify the residual signals that enable these subjects to successfully arrange the caps.

101 **2.** Methods

102 Data for 850 subjects were abstracted from anonymized records collected through the 103 Advanced Vision and Optometric Tests (AVOT) clinic service at City, University of London. 104 All subjects completed the D-15, CAD test and Nagel anomaloscope. Standardised 105 instructions were given prior to all tests. The exclusion criteria were acquired colour vision 106 loss, subjects under 10 years of age, and subjects who returned to the AVOT clinic for multiple assessments. For subjects who returned for repeat visits, only the data from their first 107 108 visit were used. Following application of the exclusion criteria, the results for 395 deutans, 109 205 protans and 74 normal trichromats were evaluated. The age of subjects ranged from 10 to 110 65 years. Diagnosis of the type of color vision deficiency was determined from the results of 111 the CAD test and the Nagel anomaloscope.

112 The D-15 was illuminated with the new Macbeth easel lamp approximating CIE illuminant

- 113 D65. The mean luminance of the caps was 16.6 cd/m^2 (SD = 0.45, range: 15.7 to 17.5 cd/m²).
- 114 A magnesium oxide reference white surface (R = -0.94) had a luminance of 87.8 cd/m² and

CIE 1931 chromaticity of 0.306, 0.324. This corresponds approximately to an illuminance
level of 293 lm/m².

117 Subjects were instructed to initially select the cap that appeared to be most similar to the pilot 118 or reference cap, and then to select the cap that appeared to be most similar to the last cap that 119 they selected. Upon completing the test subjects were asked to review their arrangement and 120 make any changes, if desired. No feedback was provided during the assessment. 121 The CAD test employs a 10 bit Eizo CS2420 monitor calibrated for luminance and the 122 chromaticity of each primary color using a Konica CS-2000A telespectroradiometer 123 (manufactured by Konica Minolta Inc. with a spectral range of 380 to 780nm. The spectrum 124 was sampled every nm with a bandwidth of just under 1nm). The CAD test runs on an HP 125 ProBook 650 G1 laptop. The standard CAD test uses 16 interleaved color directions specified 126 in CIE 1931 color space. Following each presentation, the subject's task was to press one of 127 four buttons, to indicate the direction of motion of the color-defined stimulus²⁴. Before 128 completing the CAD test all subjects were required to complete a short 'learning mode' 129 correctly, to ensure they understood the task. A Type I Nagel anomaloscope was used to 130 measure the Rayleigh color match for all subjects. 131 The outcome of the D-15 was evaluated using two pass criteria, allowing no errors (either major crossings or adjacent transpositions) and accepting up to two adjacent transpositions as 132

133 a pass on the D-15, in order to pass all normal subjects, as diagnosed by the CAD test and the

134 Nagel Anomaloscope, in the sample. The D-15 classification was determined by splitting the

135 cap order into 15 pairs of sequential caps and passing each pair through a classification grid

136 (Figure 1a). RG CAD thresholds were used to evaluate the relationship between the severity

137 of loss in protans and deutans and the outcome of the D-15.

138 The spectral radiance of each cap when illuminated with D65 was measured using the Konica

139 CS-2000A telespectroradiometer. The spectral radiance data were used in combination with

140 the Smith and Pokorny cone fundaments³⁵ to estimate cap-specific cone excitations. The 141 spectral luminous efficiency function, $V'(\lambda)$, was used to calculate the corresponding rod 142 photoreceptor excitations³⁶.

143 To investigate the residual signals that enable subjects with severe RG deficiency to 144 successfully arrange the D-15 caps we established whether in the absence of normal RG 145 chromatic signals, sequential, monotonic step changes in S cone and rod signals between 146 adjacent caps can provide sufficient information to enable dichromats and rod monochromats 147 to order the caps correctly by minimising the perceptual differences between adjacent caps. 148 To do this, two reduced versions of the D-15 task were created. The illumination was kept 149 constant and no new caps were introduced. The 16 caps employed in the D-15 test were split 150 into two cap subgroups. Given the aim of investigating those with severe RG loss the two cap 151 subgroups were selected based on the measured S-cone and rod excitations shown in Figure 152 3d. The first cap subgroup (caps P-8) exhibit monotonic decrements in S-cone and rod 153 signals, whilst the second cap subgroup (caps 9-15) exhibit positive monotonic increments in 154 S-cone and rod excitations. Note that caps 9 and 10 exhibit approximately equal rod 155 excitations.

156 A rod monochromat, with a visual acuity of 20/200, identified as CNGB3 through genetic 157 testing at Moorfields Eye Hospital London, a tritanope, two protanopes and two deuteranopes 158 were assessed using the two D-15 protocols. The protanope and deuteranope were identified 159 using the Nagel anomaloscope. The tritanope was identified using the CAD test, in which the 160 subject displayed normal RG color thresholds, but exhibited specific loss along the tritan 161 confusion axis that was only limited by the maximum chromatic displacements that can be 162 achieved on the visual display, see Figure 6c. These subjects completed the standard D-15 163 protocol before the caps were separated into two cap subgroups, from caps P-8 and caps 9-15, 164 and subjects were asked to arrange the caps in each cap subgroup as to minimise the

perceived differences between each cap, repeating the D-15 protocol with a reduced selection of caps. All subjects arranged the two subgroups within two minutes of being presented with the caps. Informed consent was obtained from all subjects. The study was conducted in compliance with the City, University of London research and ethical guidelines and followed the tenets of the Declaration of Helsinki.

170 **3. Results**

171 When no crossings and no adjacent transpositions are accepted, 99% of normal trichromats,

172 66% of deuteranomalous trichromats, 60% of protanomalous trichromats, 2% of

deuteranopes and 3% of protanopes pass the D-15. When no crossings and up to two adjacent

transpositions are accepted, 100% of normal trichromats pass the D-15. The percentage of

175 subjects with congenital color vision deficiency who pass the D-15 are shown in Table 1a.

176 When up to two adjacent transpositions are accepted, 76% of deuteranomalous trichromats,

177 69% of protanomalous trichromats, 3% of deuteranopes and 9% of protanopes pass the D-15.

178 Approximately 74% of anomalous trichromats in this cohort pass, whereas only ~6% of

dichromats pass (Table 1b), and 54% of deutans pass compared to 43% of protans (Table 1c).

180 There was 100% agreement between the classification made by the CAD test and the Nagel

181 anomaloscope for all subjects in this study. The classification made by the D-15 in all

182 subjects and in those that fail the D-15, when up to two adjacent transpositions are accepted,

183 is shown in Table 2a and Table 2b, respectively. For all subjects the D-15 correctly classifies

184 94.9% of deuteranopes, 80.9% of protanopes, and 19.8% and 21.6% of deuteranomalous and

185 protanomalous trichromats, respectively. The classification made by the D-15 improves if

186 one only considers those who fail the D-15, when up to two adjacent transpositions are

187 accepted, with 98.2%, 88.9%, 80.9%, and 69.5% of deuteranopes, protanopes,

188 deuteranomalous trichromats, and protanomalous trichromats respectively being classified

189 correctly.

190 All subjects within the cohort had YB CAD thresholds within the normal range for their age. 191 The distributions of RG CAD thresholds in deutans and protans who pass and fail the D-15 192 are shown in Figure 2. The median RG CAD thresholds for deutans that pass the D-15 was 193 5.93 RG CAD units and 10.38 RG CAD units for protans. One CAD unit describes the 194 median RG or YB threshold color signal strengths measured in 330 heathy, young, normal trichromats²⁴. Only 50% of normal trichromats have thresholds less than one CAD unit. The 195 196 maximum RG CAD threshold for those who passed the D-15, when up to two adjacent 197 transpositions were accepted, was 25.81 for deutans and 24.69 RG CAD units for protans. 198 The predicted photoreceptor excitations generated by the D-15 caps are shown in Figure 3d. 199 When two protanopes and two deuteranopes completed the D-15 under the standard protocol 200 their results produced typical error patterns, with participants making multiple major iso-201 chromatic crossings (Figure 4b and Figure 5b). When the caps were separated into two 202 subgroups, both protanopes and deuteranopes were able to arrange the caps within each 203 subgroup with no errors. When a tritanope completed the same protocol, they were unable to 204 arrange the caps correctly under standard conditions. This was also the case when presented 205 with each of the two subgroups (Figure 6b). 206 Not unexpectedly, a rod monochromat (CNGB3) made several errors on the D-15 test under

Not unexpectedly, a rod monochromat (CNGB3) made several errors on the D-13 test under
normal conditions (Figure 7b). When presented with each of the two subgroups, the rod
monochromat was able to arrange the caps almost completely correctly, only making one
minor transposition (cap 9 and 10 during the first test and interchanging the order of these
two caps in repeated tests). These caps have approximately the same rod excitation, see
Figure 7d.

212 **4. Discussion**

The D-15 pass rates obtained in this study, when up to two adjacent transpositions are accepted, are slightly higher than previous reports, with a similar sample size (N=710), by

215 Birch¹⁶ using a 'circular results diagram' and accepting a maximum of two adjacent 216 transpositions, and higher than Dain and Adams³⁷, who used a significantly smaller sample 217 size (N=75). Several factors may contribute to this difference, notably the range of severity of 218 loss in the sample and the method of collecting data. As shown in Figure 2 the cohort 219 examined in this study contains a large number of mild protans and deutans, (particularly 220 deutans) with relatively low RG CAD thresholds. Although the cohort contains some younger 221 individuals, previous studies have shown that children aged from 5-12 years are capable of 222 performing color arrangement tests such as the D-15, albeit with a modified protocol³⁸. 223 However, in more complex tests such as the Farnsworth-Munsell 100-Hue, results in children 224 can also be affected by their nonverbal IO^{39} .

225 The two pass criteria investigated highlight the balancing act and limitation present in all tests 226 with variable pass criteria; the maximisation of both sensitivity and specificity. The maximal 227 sensitivity of the D-15 is obtained when one accepts no errors on the D-15 test and, based 228 upon data collected in this study, the specificity is maximised when up to two adjacent 229 transpositions are accepted. Particularly in occupational settings a small number of adjacent 230 transpositions are typically accepted in order to ensure that the small percentage of normal 231 trichromats who make such errors pass the D-15, even if this is at the cost of passing more 232 individuals with color vision deficiency¹. From the data in this study, by accepting adjacent 233 transpositions, and passing the 1% of normals who make such errors, one is also allowing 234 approximately 10% more anomalous trichromats and 3% more dichromats to pass the D-15. 235 It is important to also consider the manner in which the data were collected. Most individuals 236 who attend the AVOT service at City, University of London do so to complete a color vision 237 assessment to determine whether they pass an occupational color vision standard. Many of 238 these individuals will have previously failed some form of screening test (typically the 239 Ishihara pseudoisochromatic plate test), and although not formally quantified, it is highly

240 likely that some of the individuals in this sample will have encountered other conventional 241 color vision tests (such as the City University test or the D-15), prior to coming to the AVOT 242 service. The impact of practicing the D-15 has been recently discussed in two publications by Ng and Liem³² and Ng and Morton³³ who demonstrated that color deficient subjects, 243 244 including dichromats, who initially made errors on the D-15 were able to complete the test correctly after practicing the test. Dain, Atchison and Hovis³¹ build upon these ideas and also 245 highlight the potential impact the choice of illumination may have upon the outcome of the 246 247 D-15. The confounding variable of practice effects and their influence on repeatability and 248 reproducibility is an issue with many conventional methods of color assessment, including 249 the D-15.

250 These limitations are virtually impossible to control if one wishes to consistently use one 251 version of the D-15; one cannot stop members of the public from completing the D-15 at 252 other testing centres or practicing it in their own time. In multiple instances, we have seen 253 applicants who receive an inconclusive color vision diagnosis at an occupational health care 254 assessment and are referred to multiple optometrists for further color vision assessment, 255 before being asked to visit the AVOT clinic at City, University of London. In such cases the 256 applicant, through no fault of their own, has multiple opportunities to practice many 257 conventional color vision tests, including the D-15 and to improve their performance by 258 learning how to make better use of any additional cues.

The collection of CAD and D-15 data allows for the direct comparison between the outcome of the D-15 and the severity of loss, as quantified by RG CAD thresholds. This approach has been employed in a recently published study⁴ designed to assess the spread in the severity of RG loss in deutan and protan subjects who pass and those who fail the D-15 test when using the Canadian Air Force color assessment protocol for the D-15 test. The results are similar in the two studies and reveal the large variability in the severity of RG color vision loss in both

265 those who pass and those who fail the D-15 protocol. The large difference in sample size, 395 266 deutans and 205 protans examined in this study, and 40 deutan and 28 protans examined in 267 the study by Almustanyir, Hovis and Glaholt⁴ as well as the use of different protocols for the 268 D-15, may account for the observed differences, particularly the fewer protans and deutans 269 with less severe loss of RG color vision who fail. The median RG CAD threshold and the 270 interquartile range are lower for subjects that pass the D-15, in both protan and deutan 271 deficiencies (Figure 2a and b). As a consequence, at least 75% of subjects with a congenital 272 color vision deficiency that are dichotomised by the D-15 are being split correctly, and fairly, 273 based upon their RG chromatic sensitivity. This outcome is however of limited value since 274 the D-15 also passes individuals with severe RG chromatic loss (with CAD thresholds up to 275 25.81 RG CAD units) and fails some individuals with RG thresholds below 4.00 CAD units. These observations are of particular significance in occupational environments, where the 276 277 outcome of the D-15 is used to determine occupational suitability in visually demanding jobs^{1,4}. 278

The observed variability in RG chromatic sensitivity in color deficient subjects who pass and also in those who fail the D-15 test suggests that the subjects make use of multiple signals to carry out the task. The extent to which subjects make use of these signals will depend both on the signals available and the attention given to any additional clues, with the latter being minimised through the use of standardised instructions.

Given that all subjects had normal YB chromatic sensitivity (as measured by the CAD test), it is of interest to know the extent to which the subjects make use of YB color signal changes to pass the test. The expected changes in S-cone photoreceptor excitation when viewing the D-15 caps are shown in Figure 3d. The monotonic decrease in S-cone signals from the pilot cap to cap 8, hint at a potential answer. As one moves across the caps employed in the D-15 one observes a large change in the predicted S-cone photoreceptor signal, accompanied by a

slightly smaller change in the predicted rod-photoreceptor excitation. There is relatively low variation in the theoretical M- and L- cone photoreceptor excitation, by contrast, when one moves across the D-15 caps. The predicted photoreceptor excitations do not account for the relative number of photoreceptors in the eye, or post receptoral processing. However, they do provide, at least on a basic level, an indication to the initial signals generated by the D-15 caps at the earliest stages of visual processing.

296 A limitation of this approach is the consideration of only 4 categories of photoreceptor in the 297 eye. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have recently been shown to play a role in form vision in the peripheral retina⁴⁰ and their impact upon non-image forming 298 299 visual functions has also been investigated in primate retina⁴¹. Due to the sparse distribution 300 and large receptive fields involved, ipRGCs are unlikely to notably contribute towards the 301 successful completion of the D-15 task, given the relatively small angular size of each cap 302 and the foveal location of the primary image location^{42–44}. The spectral responsivity of 303 ipRGCs overlaps significantly with that of rods. Rod signals are the greatest signal 304 contributor to ipRGCs. The light levels involved in D15 tests are low photopic and therefore 305 most unlikely to involved melanopsin mediated signals. The results and conclusions drawn 306 from our findings remain unchanged even if rod signals associated with ipRGCs contribute to 307 the perceived brightness difference that help with the D15 task in rod monochromats. Further 308 studies are required to fully establish the role ipRGCs may play in hue arrangement tasks, such as the D-15. 309

The results obtained from dichromats and a rod monochromat who also completed the two protocols demonstrate that protanopes, deuteranopes, and even rod monochromats are able to make use of the relatively large changes in S- cone and rod photoreceptor signals to complete the D-15 test. Protanopes and deuteranopes who make multiple isochromatic crossings under the standard D-15 protocol, made no errors when the caps were split into two groups. This is

315 not unexpected; the diminished or even absent RG color signal differences that prevent 316 typical protan and deutan confusions, particularly major crossings, are no longer possible and 317 caps with equal S-cone excitation are not available within either of the two cap subgroups. 318 The results in the tritanope (Figure 6) suggest strongly that normal RG color signals are not 319 sufficient to pass the D-15 test with no errors, since the tritanope makes multiple errors when 320 presented with the full set of caps and also makes errors when presented separately with each 321 of the two subgroups. The rod monochromat, on the other hand, can only rely on monotonic 322 changes in rod signals which can be used effectively within each subgroup to arrange the 323 caps in the correct sequence. The tritanope makes multiple errors within each subgroup, in 324 spite of normal rod function. An interesting consequence of this finding is that either the 325 presence of normal RG color signals or simply the interaction between M, L and rod signals 326 reduces the effectiveness of monotonic rod signal changes to carry out the test. 327 The results obtained in the rod monochromat merit further discussion. The results shown in 328 Figure 7c reveal the complete absence of both RG and YB color vision with thresholds 329 limited only by the gamut of the visual display employed in the CAD test. Despite making typical confusions expected for a rod monochromat⁹ with the standard D-15 protocol, the rod 330 331 monochromat was able to arrange the caps correctly when they were separated into the two subgroups with only one minor transposition (mixing caps 9 and 10 in the first test). Given 332 333 that these caps generate almost equal rod photoreceptor signals, as shown in Figure 7d, this 334 result is not unexpected. The results show that monotonic changes in rod photoreceptor 335 signals, when the retina contains only functioning rods, can be used to complete the 336 arrangement of D-15 caps without errors, but only when the ambiguity of equal rod signals is 337 removed by separating the caps within the two subgroups. 338 Systematic diseases and diseases of the retina can result in a reduction in luminance contrast

and flicker sensitivity, in addition to loss of RG and / or YB color vision^{45,46}. The D-15's

inability to isolate color signals and to quantify severity of RG and YB loss impact its
usefulness as a test for use in occupational settings. However, in the clinic where one wishes
to distinguish those with acquired visual loss that can affect chromatic sensitivity, but may
not be specific to just color vision from those with normal, healthy vision, a test that requires
the use of multiple visual signals to complete, such as the D-15, may prove to be sensitive
and effective in achieving this aim.

346 5. Conclusion

347 When the D-15 protocol allows for up to two adjacent transpositions, 50% of color deficient 348 subjects (approximately 54% of deutans and 43% of protans), some with severe loss of RG 349 color vision, pass the test. Given these large percentages of deutans and protans who pass the 350 D-15, the ability of the test to classify the type of color vision deficiency in anomalous 351 trichromats is very poor. This test is also unfair to some of the subjects who fail. Many of 352 those who pass the D-15 protocol have marked loss of RG color vision, whilst subjects with 353 significantly less marked loss, fail. 354 In this study we demonstrate that neither RG nor YB color signals in isolation are sufficient 355 to pass the D-15 test with no errors. The results also show that a subject can make use of 356 monotonic changes in rod signals to arrange the caps in the correct sequence, but only in rod

357 monochromats when rod signals do not interact with other cone signals.

358

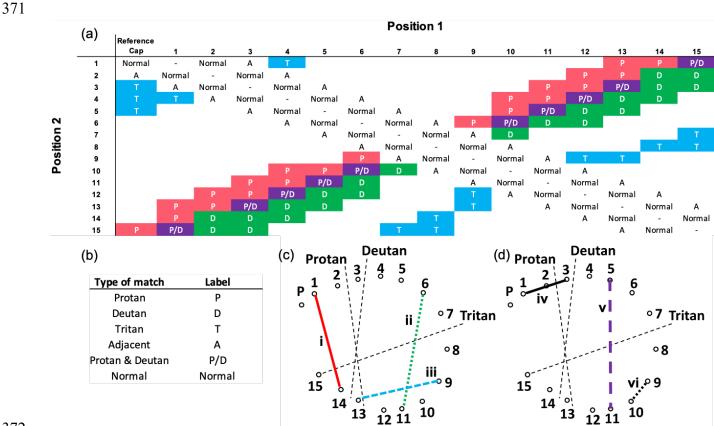
359 Acknowledgements

360 We acknowledge the Colt Foundation, City, University of London, and The Rank Prize

361 (COVID-19 student support fund) for their financial support for this project.

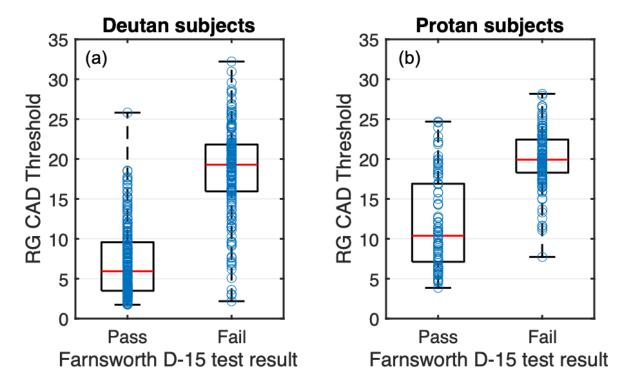
362

363 **ORCID**


364 Benjamin E W Evans

365 <u>https://orcid.org/0000-0001-6611-4500</u>

- **Disclosures:**


Benjamin Evans,	City, University of London, None.
Marisa Rodriguez-Carmona,	City, University of London, None.
John Barbur,	Employee of City, University of London. Company Director for COL Ltd. (A spin-out company set up by City, University of London to develop and market AVOT tests)

370 **Figures & tables**

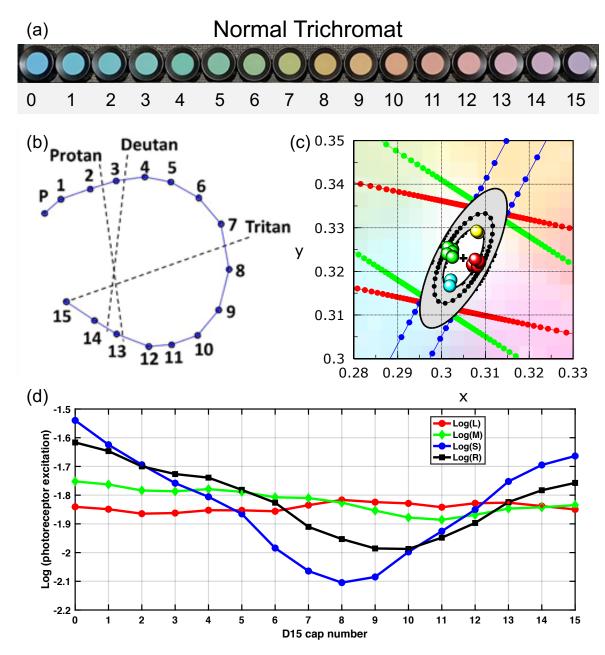
372

Figure 1. Classification grid for the Farnsworth D-15 test employed in this study (a), the key 373 374 for the classification grid (b), and two D-15 results diagrams with example matches (c) and (d). The common practice used in the majority of clinical and occupational environments 375 relies on 'visual inspection' and identification of adjacent transpositions and major crossings 376 377 on a D-15 results diagram. The classification grid shown in (a) is used in the color research 378 laboratory at City, University of London to make the process less subjective and open to 379 interpretation. The subject's D-15 cap order yields 15 sets of sequential pairs and each pair can be then be linked through the classification grid to one of six types of matches (b). The 380 overall D-15 classification is determined by the largest sum of errors (e.g., if an individual 381 382 makes 4 'protan' crossings and 2 'deutan' crossings, the D-15 classification would be 'protan'). In the event when an individual makes the same number of errors for two types of 383 error, the classification is 'indeterminate'. Examples of the six match types are shown in the 384 D-15 results diagrams (c) and (d) for protan (i), deutan (ii), tritan (iii), adjacent transpositions 385 (iv), deutan and protan (v), and normal matches (vi). 'Protan & deutan' errors count as both a 386 387 protan and a deutan error. 388

390 Figure 2. The variability in RG CAD thresholds for subjects with congenital deutan

deficiency (a) and congenital protan deficiency (b) who pass or fail the Farnsworth D-15 test

392 when 0 major crossings and up to 2 adjacent transpositions are accepted as a pass. The results


are from 395 deutan and 205 protan subjects examined with the Farnsworth D-15, CAD and

394 Nagel anomaloscope. The results are shown using box plots where the median RG CAD

395 threshold (red line) and the interquartile range are shown for each plot.

396

389

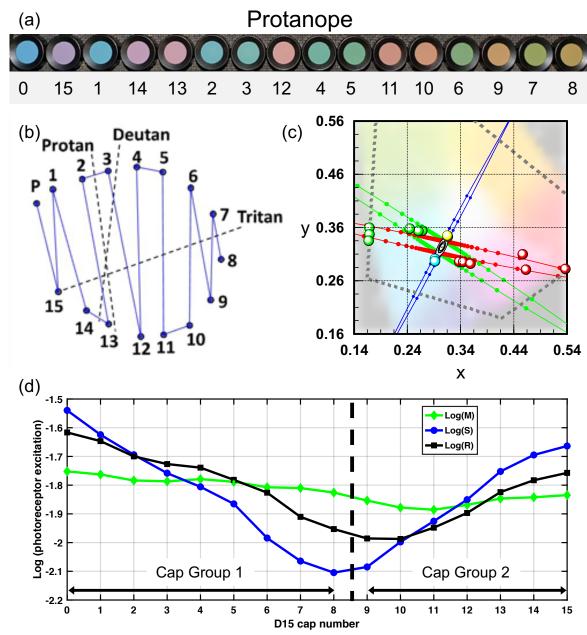
399 Figure 3. Measured data and theoretical photoreceptor excitations for a normal trichromat.

400 Sections (a) and (b) show the recorded Farnsworth D-15 test results for a normal trichromat.

401 This individual's CAD test results are displayed in CIE 1931 color space (c). The normal

402 trichromat's CAD thresholds lie within the grey ellipse that indicates the normal range of

403 CAD thresholds expected for this subject's age. Section (d) shows the predicted


404 photoreceptor excitations for each of the Farnsworth D-15 caps when illuminated with a lamp

405 designed to approximate a D65 illuminant. These predictions were generated by measuring

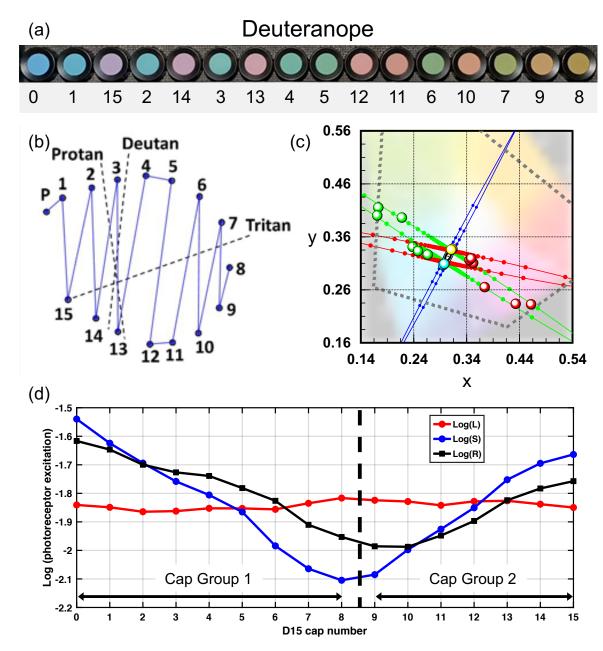
406 the spectral radiance of each of the 16 caps when illuminated with the D65 illuminant.

407

398

409

410 Figure 4. Measured data and computed photoreceptor excitations expected for a protanope.


411 Sections (a) and (b) show the recorded Farnsworth D-15 test results for an individual with

412 protanopia. The patient's CAD test results are shown in section (c). Section (d) shows the

413 predicted photoreceptor excitations for each of the Farnsworth D-15 caps when viewed by an

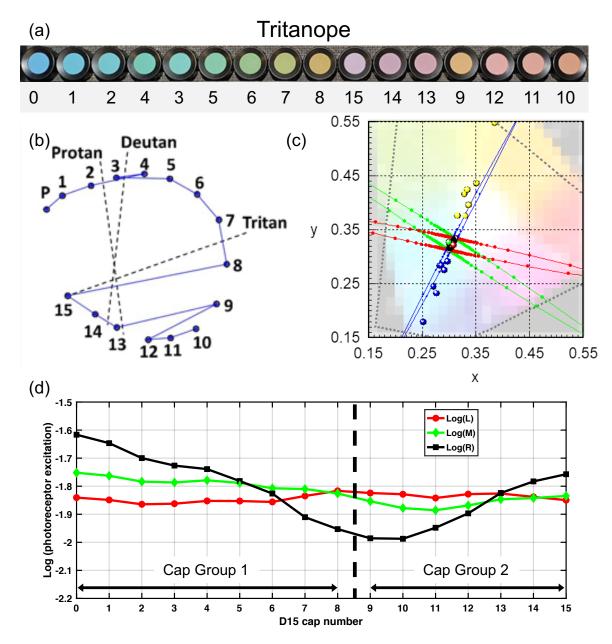
414 individual with protanopia. When separated in to two groups, the protanope arranges all caps

- 415 in the sequence recorded for normal trichromats, with no errors in each group.
- 416

417

418 Figure 5. Measured data and theoretical photoreceptor excitations for a deuteranope. Sections

419 (a) and (b) show the recorded Farnsworth D-15 test results for an individual with


420 deuteranopia. The patient's CAD test results are shown in section (c). Section (d) shows the

421 predicted photoreceptor excitations for each of the Farnsworth D-15 caps when viewed by an

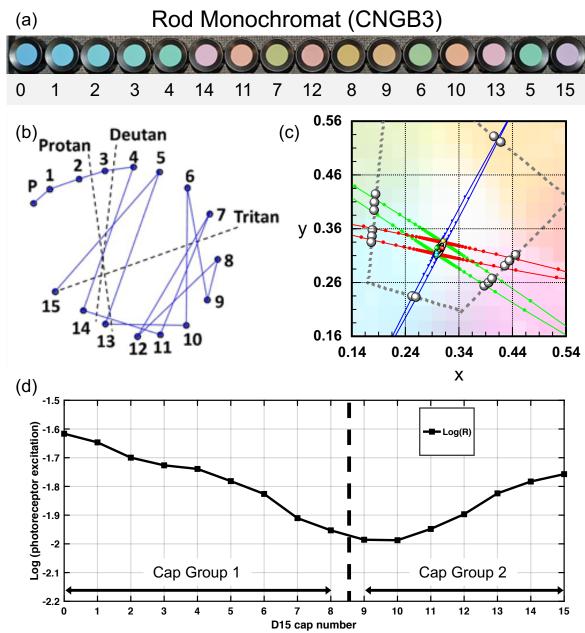
422 individual with deuteranopia. When separated in to two groups, the deuteranope arranges all

423 caps in the sequence recorded for normal trichromats, with no errors in each group.

- 424
- 425

426

Figure 6. Measured data and theoretical photoreceptor excitations for a tritanope. Sections (a)
and (b) show the recorded Farnsworth D-15 test results for an individual with tritanopia. The


429 patient's CAD test results are shown in section (c). Section (d) shows the predicted

430 photoreceptor excitations for each of the Farnsworth D-15 caps when viewed by an

431 individual with tritanopia. When separated in to two groups, the tritanope is unable to arrange

432 all caps in the sequence recorded for normal trichromats, making multiple errors in each

- 433 group.
- 434
- 435

436

437 Figure 7. Measured data and theoretical photoreceptor excitations for a rod monochromat (CNGB3). Sections (a) and (b) show the recorded Farnsworth D-15 test results for an 438 439 individual with rod monochromacy. The patient's CAD test results are shown in section (c). 440 Section (d) shows the predicted photoreceptor excitations for each of the Farnsworth D-15 caps when viewed by an individual with rod monochromacy. When separated in to two 441 442 groups, the rod monochromat arranges the caps almost completely correctly, only making one 443 minor transposition (cap 9 and 10 during the first test and interchanging the order of these two caps in repeated tests). 444 445

446 Outcome of the Farnsworth D-15 test

447

Percentage of subjects who pass using different pass
criteria

Type of colour deficiency	Number of subjects	No adjacent transpositions are accepted	Up to two adjacent transpositions are accepted		
(a)					
Deuteranopia	117	1.7	3.4		
Deuteranomalous trichromatism	278	65.5	75.5		
Protanopia	89	3.4	9.0		
Protanomalous trichromatism	116	59.5	69.0		
(b)					
Anomalous trichromats	394	63.7	73.6		
Dichromats	206	2.4	5.8		
(c)					
Deutan	395	46.6	54.2		
Protan	205	35.1	42.9		

448

Table 1. Farnsworth D-15 pass/fail statistics for a sample of 600 subjects with congenital

450 color vision deficiency, when 0 major crossings and 0 adjacent transpositions, and 0 major

451 crossings and up to 2 adjacent transpositions are accepted as a pass. One normal trichromat

 $(\sim 1\%)$ made adjacent transpositions and a pass protocol that allowed subjects to make 0

453 major crossings and up to 2 adjacent transpositions was the most stringent protocol needed to

454 pass all normal subjects (N=74) investigated.

456 <u>Classification outcome of the Farnsworth D-15 test</u>

	Number of subjects	Classification made by the Farnsworth D-15 (%)					
Type of colour deficiency		Normal	Deutan	Protan	Tritan	Indeterminate	
(a)							
Deuteranopia	117	1.7	94.9	0.0	0.0	3.4	
Deuteranomalous trichromatism	278	65.4	19.8	0.0	0.4	14.4	
Protanopia	89	3.4	4.5	80.9	0.0	11.2	
Protanomalous trichromatism	116	59.5	3.4	21.6	0.0	15.5	
(b)							
Deuteranopia	113	0.0	98.2	0.0	0.0	1.8	
Deuteranomalous trichromatism	68	0.0	80.9	0.0	1.5	17.6	
Protanopia	81	0.0	4.9	88.9	0.0	6.2	
Protanomalous trichromatism	36	0.0	11.1	69.5	0.0	19.4	

457

458 Table 2. The percentage of subjects that fall into each Farnsworth D-15 classification

459 category for all subjects (a) and for subjects that fail the D-15, when up to two adjacent

transpositions are accepted (b). The classification made by the Farnsworth D-15 was

461 determined using the classification grid shown in Figure 1a and the type of color vision

deficiency was determined using the Nagel anomaloscope and the CAD test. There was 100%

463 agreement between the CAD test and Nagel anomaloscope.

465 **References**

Rodríguez-Carmona M, Evans BEW, Barbur JL. Color Vision Assessment: 2. Color 466 1. 467 assessment outcomes using single and multi-test protocols. Color Res Appl. 2020;Submitted. 468 469 Barbur JL, Rodríguez-Carmona M, Evans BEW. Color Vision Assessment: 3. An 2. 470 efficient two-step color assessment protocol. Color Res Appl. 2020;Submitted. 471 3. Farnsworth D. Farnsworth Dichotomous Test for Color Blindness. San Antonio, TX, 472 US: Psychological Corporation; 1947. 473 4. Almustanyir A, Hovis J, Glaholt MG. Predicting the Farnsworth-Munsell D15 and Holmes-Wright-A lantern outcomes with computer-based color vision tests. J Opt Soc 474 Am A. 2020;37(4):A1. doi:10.1364/JOSAA.381305 475 476 Dain SJ. Clinical colour vision tests. Clin Exp Optom. 2004:276-293. 5. 477 6. Margrain TH, Birch J, Owen CG. Colour vision requirements of firefighters. Occup 478 Med (Chic Ill). 1996;46(2):114-124. doi:10.1093/occmed/46.2.114 479 7. Dain SJ, Casolin A, Long J, Hilmi MR. Color vision and the railways: Part 1. The railway LED lantern test. Optom Vis Sci. 2015;92(2):138-146. 480 doi:10.1097/OPX.000000000000460 481 482 8. Dain SJ, Wood JM, Atchison DA. Sunglasses, traffic signals, and color vision deficiencies. Optom Vis Sci. 2009;86(4):e296-e305. 483 doi:10.1097/OPX.0b013e318199d1da 484 485 9. Birch J. Diagnosis of Defective Colour Vision. Oxford: Butterworth-Heinemann; 2001. 486 10. Foutch BK, Stringham JM, Lakshminarayanan V. A new quantitative technique for 487 grading Farnsworth D-15 color panel tests. J Mod Opt. 2011;58(19-20):1755-1763. doi:10.1080/09500340.2011.573881 488 489 11. Bowman KJ. A Method for Quantitative Scoring of the Farnsworth Panel D-15. Acta 490 Ophthalmol. 1982;60(6):907-916. doi:10.1111/j.1755-3768.1982.tb00621.x 491 12. Atchison DA, Bowman KJ, Vingrys AJ. Quantitative scoring of panel tests for 492 assessment of colour vision in age related maculopathy. Clin Exp Optom. 493 1991;74(1):6-10. doi:10.1111/j.1444-0938.1991.tb04600.x 494 13. Vingrys AJ, King-Smith PE. A quantitative scoring technique for panel tests of color 495 vision. Investig Ophthalmol Vis Sci. 1988;29(1):50-63. 496 Almustanyir A, Hovis J. Trichromatic And Dichromatic Colorimetric Analyses Of The 14. 497 Farnsworth-Munsell D-15 Color Vision Test. In: Proceedings of the 29th Quadrennial 498 Session of the CIE. International Commission on Illumination, CIE; 2019:909-916. 499 doi:10.25039/x46.2019.PO012 500 Pacheco-Cutillas M, Edgar DF, Sahraie A. Acquired colour vision defects in 15. 501 glaucoma---their detection and clinical significance. Br J Ophthalmol. 502 1999;83(12):1396-1402. doi:10.1136/bjo.83.12.1396 503 Birch J. Pass rates for the Farnsworth D15 colour vision test. Ophthalmic Physiol Opt. 16. 504 2008;28(3):259-264. doi:10.1111/j.1475-1313.2008.00566.x

505 17. Birch J, Chisholm CM. Occupational colour vision requirements for police officers. Ophthalmic Physiol Opt. 2008;28(6):524-531. doi:10.1111/j.1475-1313.2008.00605.x 506 507 Pokorny J, Collins B, Howett G, et al. Procedures for Testing Color Vision: Report of 18. 508 working group 41. Natl Res Counc. 1981. doi:10.1097/00006324-198211000-00014 509 Atchison DA, Pedersen CA, Dain SJ, Wood JM. Traffic Signal Color Recognition Is a 19. 510 Problem for Both Protan and Deutan Color-Vision Deficients. Hum Factors. 511 2003;45(3):495-503. doi:10.1518/hfes.45.3.495.27247 512 Barbur JL, Holliday IE, Ruddock KH. The spatial and temporal organisation of motion 20. 513 perception units in human vision. Acta Psychol (Amst). 1981;48(1-3):35-47. 514 21. Barbur JL, Ruddock KH. Spatial characteristics of movement detection mechanisms in human vision. II. Chromatic stimuli. Biol Cybern. 1980;37(2):93-98. 515 516 22. Barbur JL, Harlow AJ, Plant GT. Insights into the Different Exploits of Colour in the 517 Visual Cortex. Proc R Soc B Biol Sci. 1994;258(1353):327-334. 518 doi:10.1098/rspb.1994.0181 23. 519 Barbur JL. "Double-blindsight" revealed through the processing of color and 520 luminance contrast defined motion signals. Prog Brain Res. 2004;144:243-259. doi:10.1016/S0079-6123(03)14417-2 521 522 24. Barbur JL, Rodriguez-Carmona M. Colour vision requirements in visually demanding 523 occupations. Br Med Bull. 2017;122(1):51-77. doi:10.1093/bmb/ldx007 524 25. Rodriguez-Carmona M, O'Neill-Biba M, Barbur JL. Assessing the severity of color 525 vision loss with implications for aviation and other occupational environments. Aviat 526 Sp Environ Med. 2012;83(1):19-29. doi:10.3357/ASEM.3111.2012 527 26. Jägle H, Pirzer M, Sharpe LT. The Nagel anomaloscope: its calibration and 528 recommendations for diagnosis and research. Graefe's Arch Clin Exp Ophthalmol. 2005;243(1):26-32. doi:10.1007/s00417-004-0893-z 529 530 27. Birch J. Failure of concordance of the Farnsworth D15 test and the Nagel 531 anomaloscope matching range in anomalous trichromatism. Vis Neurosci. 532 2008;25(3):451-453. doi:10.1017/S0952523808080231 533 28. Barbur JL, Rodriguez-Carmona M, Harlow JA, Mancuso K, Neitz J, Neitz M. A study 534 of unusual Rayleigh matches in deutan deficiency. Vis Neurosci. 2008;25(3):507-516. 535 doi:10.1017/S0952523808080619 536 29. Jägle H, Sharpe LT. The Nagel anomaloscope : its calibration and recommendations for diagnosis and research. 2005:26-32. doi:10.1007/s00417-004-0893-z 537 538 30. Wright WD. Researches on Normal & Defective Colour Vision. Kimpton; 1946. 539 Dain SJ, Atchison DA, Hovis JK. Limitations and Precautions in the Use of the 31. Farnsworth-Munsell Dichotomous D-15 Test. Optom Vis Sci. 2019;96(9):695-705. 540 doi:10.1097/opx.000000000001420 541 542 32. Ng JS, Liem SC. Can the farnsworth D15 color vision test be defeated through 543 practice? Optom Vis Sci. 2018;95(5):452-456. doi:10.1097/OPX.00000000001218 544 Ng JS, Morton WA. Case Report: Invalidation of the Farnsworth D15 Test in 33. 545 Dichromacy Secondary to Practice. Optom Vis Sci. 2018;95(3):272-274.

- 546 doi:10.1097/OPX.00000000001184 34. Cole BL. Assessment of inherited colour vision defects in clinical practice. Clin Exp 547 Optom. 2007;90(3):157-175. doi:10.1111/j.1444-0938.2007.00135.x 548 549 35. DeMarco P, Pokorny J, Smith VC. Full-spectrum cone sensitivity functions for Xchromosome-linked anomalous trichromats. J Opt Soc Am A. 1992;9(9):1465. 550 551 doi:10.1364/JOSAA.9.001465 552 Wyszecki G, Stiles WS. Color Science: Concepts and Methods Quantitative Data and 36. 553 Formulae. Vol 8. 2nd Ed. Wiley New York; 1982. 554 37. Dain SJ, Adams AJ. Comparison of the standard and Adams desaturated D-15 tests 555 with congenital colour vision deficiencies. Ophthalmic Physiol Opt. 1990;10(1):40-45. doi:10.1111/j.1475-1313.1990.tb01105.x 556 557 38. Dain SJ, Ling BY. Cognitive abilities of children on a gray seriation test. Optom Vis Sci. 2009;86(6):E701-E707. doi:10.1097/OPX.0b013e3181a59d46 558 Cranwell MB, Pearce B, Loveridge C, Hurlbert AC. Performance on the Farnsworth-559 39. 560 Munsell 100-hue test is significantly related to nonverbal IQ. Investig Ophthalmol Vis 561 Sci. 2015;56(5):3171-3178. doi:10.1167/iovs.14-16094 562 40. Allen AE, Martial FP, Lucas RJ. Form vision from melanopsin in humans. Nat Commun. 2019;10(1):1-10. doi:10.1038/s41467-019-10113-3 563 564 Patterson SS, Kuchenbecker JA, Anderson JR, Neitz M, Neitz J. A Color Vision 41. 565 Circuit for Non-Image-Forming Vision in the Primate Retina. Curr Biol. 2020;30(7):1269-1274.e2. doi:10.1016/j.cub.2020.01.040 566 567 42. Markwell EL, Feigl B, Zele AJ. Intrinsically photosensitive melanopsin retinal 568 ganglion cell contributions to the pupillary light reflex and circadian rhythm. *Clin Exp* 569 Optom. 2010;93(3):137-149. doi:10.1111/j.1444-0938.2010.00479.x 570 Cao D, Chang A, Gai S. Evidence for an impact of melanopsin activation on unique 43. 571 white perception. J Opt Soc Am A. 2018;35(4):B287. doi:10.1364/JOSAA.35.00B287 572 44. Schmidt TM, Do MTH, Dacey D, Lucas R, Hattar S, Matynia A. Melanopsin-positive 573 intrinsically photosensitive retinal ganglion cells: From form to function. J Neurosci. 574 2011;31(45):16094-16101. doi:10.1523/JNEUROSCI.4132-11.2011 575 45. Bi W, Gillespie-Gallery H, Binns A, Barbur JL. Flicker sensitivity in normal aging-576 monocular tests of retinal function at photopic and mesopic light levels. *Investig* Ophthalmol Vis Sci. 2016;57(2):387-395. doi:10.1167/iovs.15-16481 577 578 Rauscher FG, Chisholm CM, Edgar DF, Barbur JL. Assessment of novel binocular 46. 579 colour, motion and contrast tests in glaucoma. Cell Tissue Res. 2013;353(2):297-310. doi:10.1007/s00441-013-1675-x 580 581 582 **Author Biographies**
- 583 **Benjamin Evans** is a PhD student in the department of optometry and vision science at City, 584 University of London His research interacts include color vision assessment and the
- 584 University of London. His research interests include color vision assessment and the

- 585 development of novel methods for the efficient and effective screening of normal
- 586 trichromatic color vision.
- 587 Marisa Rodriguez-Carmona studied Physics at Imperial College London before receiving
- 588 her doctoral degree for work on 'Variability in chromatic sensitivity' at the Centre for
- 589 Applied Vision Research at City, University of London. She is currently a lecturer in Optics
- and Visual Science at City, University of London and leads the Physics and Optics modules.
- 591 Her research interests include the study of sex related differences in color vision and the
- 592 optimisation of colour assessment protocols in the clinic and in occupations.
- 593 John Barbur combines fundamental vision science with applied and clinical research. His
- 594 main interests include mesopic vision, pupil responses and eye movements, blindsight, spatial
- and chromatic vision, scattered light and the development of novel techniques and
- instrumentation to study vision, both in the lab and in the clinic. Work on camouflage led to
- insights into the processing of luminance and colour signals, the development of the Colour
- 598 Assessment and Diagnosis (CAD) test and more recently, the Colour Vision Screener (CVS)
- 599 test. These and other Advanced Vision and Optometric Tests (AVOT) were developed over
- 600 several years and found important applications in both clinical work and in visually-
- 601 demanding occupations.