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Autosomal recessive variants in TUBGCP2
alter the g-tubulin ring complex leading
to neurodevelopmental disease

Serdal Gungor,1,17 Yavuz Oktay,2,3,17 Semra Hiz,2,4,17 Álvaro Aranguren-Ibáñez,5,17 Ipek Kalafatcilar,2,4

Ahmet Yaramis,6 Ezgi Karaca,2,3 Uluc Yis,4 Ece Sonmezler,2 Burcu Ekinci,2 Mahmut Aslan,4 Elmasnur Yilmaz,2

Bilge Özgör,1 Sunitha Balaraju,7,8 Nora Szabo,8,9 Steven Laurie,10 Sergi Beltran,10 Daniel G. MacArthur,11,12

Denisa Hathazi,8 Ana Töpf,7 Andreas Roos,13,17 Hanns Lochmuller,14,17 Isabelle Vernos,5,15,16,17

and Rita Horvath7,17,18,*

Summary

Microtubules help building the cytoskeleton of neurons and other cells. Several
components of the gamma-tubulin (g-tubulin) complex have been previously re-
ported in human neurodevelopmental diseases. We describe two siblings from
a consanguineous Turkish family with dysmorphic features, developmental delay,
brain malformation, and epilepsy carrying a homozygous mutation (p.Glu311Lys)
in TUBGCP2 encoding the g-tubulin complex 2 (GCP2) protein. This variant is pre-
dicted to disrupt the electrostatic interaction of GCP2 with GCP3. In primary fi-
broblasts carrying the variant, we observed a faint delocalization of g-tubulin dur-
ing the cell cycle but normal GCP2 protein levels. Throughmass spectrometry, we
observed dysregulation of multiple proteins involved in the assembly and organi-
zation of the cytoskeleton and the extracellular matrix, controlling cellular adhe-
sion and of proteins crucial for neuronal homeostasis including axon guidance. In
summary, our functional and proteomic studies link TUBGCP2 and the g-tubulin
complex to the development of the central nervous system in humans.

Introduction

Microtubules (MTs) are dynamic, cytoskeletal polymers crucial for cortical development and neuronal

migration. Mutations in several genes encoding alpha-tubulin (TUBA1A), beta-tubulin (TUBB2A, TUBB2B,

TUBB3, TUBB4A, TUBB), and gamma-tubulin (g-tubulin) (TUBG1) isoforms have been associated with a

wide range of brain malformations including lissencephaly, polymicrogyria, microlissencephaly, and

simplified gyration (Romaniello et al., 2018). Mutations in different tubulin genes cause various phenotypes

(Table 1). Alpha-tubulin and g-tubulin gene mutations predominantly result in lissencephaly spectrum dis-

eases (Romaniello et al., 2018). Beta-tubulin gene mutations may show normal cortical pattern; however,

TUBB4A is predominantly associated with hypomyelination and cerebellar and brainstem atrophy (Blumkin

et al., 2014). TUBB2B and TUBB3 mutations seem to be more related to polymicroglial patterns. Micro-

cephaly and ocular malformations are commonly seen in beta-tubulin (TUBB) defects (Francis and Belvin-

drah, 2018; Romaniello et al., 2018).

Mutations in several components of the g-tubulin complex including TUBGCP4, TUBGCP5, and TUBGCP6

have been previously reported in human neurodevelopmental diseases often associated withmicrocephaly

(Maver et al., 2019; Mitani et al., 2019; Scheidecker et al., 2015) (Da Palma et al., 2020; Hull et al., 2019; Maver

et al., 2019; Mitani et al., 2019). Most of these mutations led to a loss of function and reduced levels of

several GCP proteins (Table 1). Autosomal recessive variants in TUBGCP2 encoding the g-tubulin complex

2 (GCP2) protein were first reported in 5 individuals from 4 families with developmental delay, dysmorphic

features, hypotonia, epilepsy, microcephaly, and lissencephaly spectrum changes on brain magnetic reso-

nance imaging (pachygyria, agyria, subcortical band heterotopia), representing defective neuronal migra-

tion (Mitani et al., 2019). Thin corpus callosum, cerebellar and pons atrophy, and whitematter abnormalities

were also reported in some cases (Table 2). The authors speculated that the clinical phenotype was possibly
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due to a disturbed binding of different proteins to g-tubulin or altered interactions between g-tubulin com-

plex proteins. However, no supporting functional data were provided that could shed light on the impact of

these disease-causing variants on the mutant protein.

MTs are one of the main cytoskeleton builders and are involved in many important functions such as intra-

cellular transport, organelle positioning, motility, signaling, and cell division (Brouhard and Rice, 2018;

Vale, 2003). MTs are long fibers of 25 nm in diameter made of 13 polarized protofilaments in mammals,

each protofilament composed of a- and b-tubulin heterodimers (de Pablo et al., 2003). The polarity of

the tube provides specific dynamic characteristics to the ends where different polymerization and depoly-

merization reactions occur (Brouhard and Rice, 2018). MTs are mainly formed at the MT organizing centers

(MTOCs), the centrosome being the most important MTOC in mammals (Wu and Akhmanova, 2017). Cen-

trosomes are organelles composed of two perpendicular barrels of 9 triplets of MTs surrounded by a pro-

teinaceusmatrix called the pericentriolar material (PCM) (Fry et al., 2017). Cryo-electronmicroscopy studies

on structure of the human gTuRC, combined with cross-linking mass spectrometry analysis, reveal an asym-

metric conformation with only part of the complex in a ‘‘closed’’ conformation, while the opposite side of

gTuRC is in an ‘‘open’’ conformation, leading to a structural asymmetry suggesting possible regulatory

mechanisms for MT nucleation by gTuRC closure (Consolati et al., 2020; Rale et al., 2018). This complex

named g-tubulin ring complex or g-TuRC was found to work as an MT nucleation complex (Tovey and

Conduit, 2018). Further biochemical analysis identified at least seven proteins co-purifying with g-tubulin

in mammalian cells, known as g-tubulin complex proteins or GCPs (GCP2-6) (Yu et al., 2016). One molecule

of GCP2 together with one molecule of GCP3 and two molecules of g-tubulin form a g-tubulin small com-

plex or g-TuSC, the basic unit of the g-TuRC (Raynaud-Messina andMerdes, 2007). A full g-TuRC consists of

several g-TuSC associated with a few additional GCPs. In addition to its nucleating activity, the g-TuRC also

acts as a minus-end capping complex, therefore stabilizing MTs.

The g-TuRC is targeted to the centrosome through the neural precursor cell expressed developmentally

down-regulated protein 1 (NEDD1). The N-terminal part of NEDD1 contains a conserved WD40 domain

necessary for centrosome binding, while the C-terminal part is required for g-tubulin interaction (Yonezawa

et al., 2015). Different phosphorylations in NEDD1 control not only the targeting of g-TuRC to the centro-

some but also the spatial and temporal regulation of MT nucleation at different sites in the cell (Gomez-

Ferreria et al., 2012). For instance, a recently described mechanism explains acentrosomal MT assembly

in mitosis by an octameric complex of proteins termed the Augmin complex. This eight-subunit complex

is conserved in animal and plants and is composed of the HAUS proteins (HAUS1-8). HAUS6 binds to g-

TuRC while HAUS8 directly binds to the lattice of a pre-existing MT, creating an MT nucleation point

and, thus, an MT branching point (Lawo et al., 2009).

In this report, we studied the localization of several components of the g-TuRC complex in control and

TUBGCP2 mutated human fibroblasts, as well as the levels of the TUBGCP2 protein along the cell cycle,

and performed proteomics and structural modeling studies to explore the functional effect of the mutant

TUBGCP2 protein in neurodegeneration.

Results

Patients

We studied 2 siblings born to consanguineous Turkish parents. Patients and family members were recruited

at the Department of Paediatric Neurology, Malatya (Turkey) after informed consent. Samples were

pseudo-anonymized, processed, and stored within the MRC Centre for Neuromuscular Diseases Biobank

(National Research Ethics Service, Newcastle and North Tyneside 1 Research Ethics Committee: REC refer-

ence number 08/H0906/28 + 5).

The 10-year-old female patient was the second child born to first cousin parents (Figure 1A). She presented

with severe developmental delay, hypotonia, and intractable epilepsy at age 6 months and lost all motor

and cognitive abilities gradually by 4 years of age. She presented dysmorphic features including narrow

forehead, thick eyebrows, bulbous nose, prominent ear, widely separated teeth, retrognathia, and maxil-

lary hypoplasia (Table 2, Figure 1B). Neurological examination revealed microcephaly, atrophy, and con-

tractures of the extremities with brisk deep tendon reflexes and spasticity. Cranial T2-weighted magnetic

resonance (MR) images showed pachygyria, cerebellar parenchymal atrophy, bilateral volume loss in cere-

bral white matter, cystic foci with increased intensity in the neighboring white matter, and thinning of the
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Table 1. Functional effect and clinical phentotype of pathogenic mutations in tubulin complex protein genes

Function Gene

Variants (nucleotide/

protein/zygosity) Effects Severity Clinical features

Common MRI findings

(# of positive cases/

# of total cases)

ɤ-TuSC and

ɤ-TuRC genes

(except

ɤ-tubulins)

TUBGCP2 c.1015G > A,

p.Glu311Lys, Hom

Changes in TUBGCP2, HAUS6,

NEDD1 protein localizations

in mitosis/no change in GCP2

level

Severe or moderate DD

ID

Facial dysmorphism

Hypotonia

Pachygyria (7/7)

Thin CC (6/7)

Cerebellar atrophy(5/7)

WM volume loss (3/7)

Brainstem atrophy (2/7)

Subcrotical band (2/7)

WM hyperintensity with

subependimal cysts (4/7)

c.997C > T,

p.Arg333Cys, Homa

Alteration in the part of the

conserved Grip1 domain

Severe (2q23.1 dup)

or moderate

c.1843G > C,

p.Ala615Pro, Homa

Changes in the Grip2 domain Severe

c.889C > T, p.Arg297Cys

c.2025-2A > G, Cmp Heta
Changes in the extended

conserved Grip1 domain

Mild

Alternative splice acceptor site;

excision of exon 15 or inclusion

of intron 13 and premature stop

codon

TUBGCP4 c.1746G > T,

p.Leu582 =,Cmp Hetb
Alternative splice acceptor site;

exon 16 skipping

Truncated GCP4 protein

and reduced amounts of

GCP4 and other proteins;

GCP2, GCP5, GCP6,

ɤ-tubulin in interphase

and in mitosis, reduced

levels of ɤ-TuRC

Congenital

microcephaly

Chorioretinopathy

(MCCRP)

ID

Facial dysmorphism

Thin CC (1/5)

Normal (4/5)

No cortical malformationc.1746G > T + c.579dupT,

p.Gly194Trpfs*8b
Frameshift mutation Moderate (thin CC

and ID)

c.1746G > T + c.298delT,

p.Tyr100Ilefs*27b
Frameshift mutation Mild

c.1746G > T + c.1732-?_

*544+?delb
Exon 16-18 del, ~544

nucleotide del of 30 UTR

Mild

c.1746G > T + c.1380G > A,

p.Trp460*c
Nonsense mutation Mild

TUBGCP5 c.2180T > G p.Phe727Cys

with 15q11.2 BP1-BP2

microdeletiond

Missense variant Mild Primary microcephaly

DD

No cortical malformation

Normal

TUBGCP6 c.2066-6A > G,

p.Asp689Valfs*2e

c.4485-21A > C,Cmp Hete

Cyriptic splice site

Out-of-frame transcript

truncated protein

Mild Microcephaly

ID,

Rod-cone dysfunction

Mild
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Table 1. Continued

Function Gene

Variants (nucleotide/

protein/zygosity) Effects Severity Clinical features

Common MRI findings

(# of positive cases/

# of total cases)

CM1 domain

ɤ-TuRC

targeting

genes

CDK5RAP2 c.243T > A, p.Ser81X Homf Nonsense mutation Truncated protein

functional loss

Mild-moderate Primary microcephaly

(MCPH3) (Severe

microcephaly) ID/MR

Simplified gyral pattern

Reduced cerebral cortical

volume Corpus callosum

hypogenesis

c.246T > A, p.Tyr82X Homg Nonsense mutation

c.IVS26-15A > G

p.Glu385fs*4, Homf,g

Alternative splice acceptor

site and premature

termination codon

c.700G > T, p.Glu234X Homh Premature termination

codon

Mild-moderate

(+SNHL, hypotonia)

c.4546G > T, p.Glu1516X

c.4672C > T, p.Arg1558X,

Cmp Heti

Nonsense mutation Severe (+mixed

conductive-SNHL,

simplified gyria, short

stature

c.524_528del,

p.Gln175Argfs*42 c.4005-

1G-A, Cmp Hetj

Frameshift mutation,

splicing defect, premature

termination codon

Mild-moderate

c.4604+1G > C

p.Val1526fs*15 c.3097delG,

p.Val1033fs*41, Cmp Hetk

Alternative splice acceptor

site, premature termination

codon, and frameshift

mutation

Moderate (+cafe au

lait lesions, facial

dysmorphism)

c.4441C > T,

p.Arg1481X Homl

Nonsense mutation Moderate (simplified

gyria, CC agenesis)

ɤ-TuSC, gamma-tubulin small complex; ɤ-TuRC, gamma-tubulin ring complex; TUBGCP-2,4,5,6, tubulin gamma complex associated protein-2,4,5,6; HAUS6, HAUS augmin-like complex subunit-6; NEDD1,

neural precursor cell expressed developmentally down-regulated 1; CDK5RAP2, CDK5 regulatory subunit-associated protein 2; Hom, homozygous; Het, heterozygous; Cmp, compound; dup, duplication; del,

deletion; Ala, alanine; Arg, arginine; Asp, aspartic acid; Cys: cysteine; Glu, glutamic acid; Gln, glutamine; Gly, glycine; Ile, isoleucine; Leu, leucine; Lys, lysine; Phe, phenylalanine; Pro, proline; Ser, serine; Trp,

tryptophan; Tyr, tyrosine; Val, valine; DD, developmental delay; ID, intellectual delay; SNHL, sensory neural hearing loss; CC, corpus callosum; MCCRP, microcephaly and chorioretinopathy; MCPH3, primary

microcephaly 3; MRI, magnetic resonance imaging.
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Table 2. Summary of the clinical presentation of patients with TUBGCP2 mutations.

Case

Gender

Age

Origin/

consanguinity/

gestation

Lissence

phaly Microcephaly

Develop

mental

delay

Seizure-

epilepsy

onset/type Other clinical features

Neurological

examination

Physcomotor

involvement Brain MRI

Variant

nucleotide/

protein

Patient 1

Female

10 yo

This

paper

Turkish

Yes

Term

+ ++ + Intractable

epilepsy

6 mo

Narrow forehead, thick

eyebrows, prominent ear,

bulbous nose, separated

teeth, retrognathia

Hypotonia, muscle

atrophy,

contractures,

spasticity,

brisk DTRs

Loss of all motor

and cognitive

skills

10 y: Pachygyria, cerebral

and cerebellar atrophy,

cystic foci in white matter,

and thinning of the

corpus callosum

c.1015G > A

p.Glu311Lys

Homozygous

Patient 2

Male

6 yo

This

paper

Turkish

Yes

Term

+ ++ + Intractable

epilepsy

3 yo

NA Contractures,

spasticity,

increased DTRs

Prominent at

2 yo/walks with

assistance

6 y: Pachygyria, cerebral

and cerebellar atrophy,

decreased white matter

volumes, cystic foci at the

centrum semiovale and thin

corpus callosum

c.1015G > A

p.Glu311Lys

Homozygous

Family 1

Case 1

Male

6 yo [1]

Turkish

Yes

Term

+ + + Generalized

seizures

6 y 9 mo

Narrow forehead,

upslanting palpebral

fissures, bulbous nose,

prominent ear, widely

spaced teeth, thick

eyebrows, smooth

philtrum, thin upper

lip, pectus excavatum

Truncal hypotonia,

normal DTRs,

myopia

Delayed motor

and language

skills, autistic

features

21 m: Pachygyria, thin corpus

callosum, especially in the

posterior region, mild

cerebellar atrophy

c.997C > T

p.Arg333Cys

Homozygous

de novo

2q23.1 dup

(MBD5)

Family 1

Case 2

Male

7 yo [1]

Turkish

Yes

Term

+ + + No seizure Narrow forehead,

bulbous nose, prominent

ear, smooth philtrum,

retrognathia

Normal tone,

normal DTRs

Normal motor

skills, difficulty

in reading

6 m: Posterior dominant

pachygyria

c.997C > T

p.Arg333Cys

Homozygous

Family 2

Female

1yo

3mo [1]

Indian

No

Preterm

(31 weeks)

+ + + Generalized

seizures

5mo

Short and sloped

forehead, thick eyebrows,

puffy eyelids, full lips,

retromicrognathia

Exitus at y3 yo

Truncal hypotonia,

brisk DTRs,

spasticity,

cortical blindness

Severely delayed

motor and

language skills

5 m: Pachygyria loss of white

matter, thinning of the corpus

callosum, volume loss of pons,

and exuberant subependymal

cyst formation,

subependymal heterotipia,

subcortical band

c.1843G > C

p.Ala615Pro

Homozygous

Family 3

Male

4 yo [1]

Iranian

Yes

Preterm

(27 weeks)

+ + + Generalized

seizures

7 mo

Bitemporal narrowing,

upslanting palpebral

fissure, micrognathia,

midface hypoplasia,

prominent ears and lips

Truncal hypotonia,

no spasticity, optic

atrophy, retinal

changes

Severely delayed

motor and

language skills

1 year: Pachygyria, hyperintense

periventricular white matter,

very thin corpus callosum,

and subependymal cysts,

subcortical band, thin pons

c.1843G > C

p.Ala615Pro

Homozygous

Family 4

Male

8 yo [1]

Polish

No

Term

+ + + Generalized

seizures

Smooth philtrum,

prominent ears

Normal DTRs, no

spasticity, myopia,

astigmatism

Delayed motor

and language

skills

8 y: Pachygyria in the temporal

lobes and partial thinning of

the corpus callosum

c.889C > T

p.Arg297Cys

c.2025-2A > G

Com Het

MRI, magnetic resonance imaging; yo, years old; mo, months; DTR, deep tendon reflexes.
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corpus callosum (Figure 1B). Her 8-year-old brother demonstrated normal developmental milestones until

8 months of age, when developmental delay was noticed and became evident after 2 years of age. Intrac-

table seizures started after 3 years of age. His neurological examination at 8 years of age revealed micro-

cephaly, atrophy and contractures of the extremities, increased deep tendon reflexes, and spasticity. He

was able to walk with assistance. Cranial MR detected cerebral and cerebellar parenchymal atrophy, signif-

icantly decreased white matter volumes, cystic foci with neighboring hyperintensities at the centrum semi-

ovale and thin corpus callosum (Figure 1C and Table 2).

Genetic analysis by whole exome sequencing

We performed whole exome sequencing (WES) in both siblings and their parents as described previously

(Balaraju et al., 2020). We identified a homozygous variant in TUBGCP2 exon 8 (NP_006650.1: c.931G > A,

p.Glu311Lys, hg19 chr10:135106636) within the extendedGrip1 domain in both siblings, while both parents

and a 15-year-old healthy sibling are heterozygous carriers (Figure 1A). This variant has not been reported

previously and not present in gnomAD or in a cohort of 1,182 ethnically matched Turkish control individuals

(TUBITAK MAM-GMBE data set: http://gmbe.mam.tubitak.gov.tr/en). In silico analysis suggested that

c.931G > A, p.Glu311Lys is deleterious, using prediction tools such as Polyphen2 (http://genetics.bwh.

harvard.edu/pph2/), CADD (https://cadd.gs.washington.edu/), and SIFT (http://sift.jcvi.org/) to assess

pathogenicity. Sanger sequencing confirmed that this variant is homozygous in the patients and heterozy-

gous in the healthy parents.

Analysis of components of g-TuRC

As TUBGCP2 is a core component of the g-TuRC nucleation complex, we studied the localization of some

g-TuRC components and associated proteins in control and TUBGCP2mutated human fibroblasts in inter-

phase and in mitosis by immunofluorescence, as well as the levels of the GCP2 protein along the cell cycle

(Figure 2). We observed a faint delocalization of g-tubulin in the mitotic cells of the patient fibroblasts. This

suggested that the mutation in TUBGCP2 could perturb g-TuRC localization pattern. To test this hypoth-

esis, we looked at the localization of other components of the g-TuRC complex such as HAUS augmin-like

complex subunit 6 (HAUS6), protein NEDD1 (NEDD1), and pericentrin (PCNT), an integral component of

the PCM of the centrosome involved in the initial establishment of organized MT arrays in mitosis (Fig-

ure 3A). We did not detect any significant changes in the patient fibroblasts in interphase (Figure 3A upper

panel). However, in mitosis, patient fibroblasts presented a faint delocalization of two components asso-

ciated with the g-TuRC complex, HAUS6 and NEDD1 (Figure 3A, lower panel, and 3C). The localization

of HAUS6 was clearly affected at all stages of mitosis as the protein presents with a diffuse pattern

throughout the cytoplasm (Figure 3A). In contrast, there was no visible effect on the centrisomal localization

of PCNT neither in interphase nor in mitosis.

Next, we wondered whether the levels of TUBGCP2 in the patient fibroblast could be altered and, in turn,

affect the localization of other g-TuRC components or associated proteins. To test this hypothesis, we syn-

chronized control and patient fibroblasts and checked the levels of TUBGCP2 (Figure 3B). As synchroniza-

tion and loading controls, we used acetylated tubulin (increased in G0) and TPX2 (increased in mitosis). We

did not observe any significant change in the levels of TUBGCP2 in control and patient fibroblasts along the

cell cycle. Acetylated tubulin was increased in G0 and TPX2 in mitosis, confirming a correct synchronization

of cells.

Structural modeling of the TUPBGCP2 missense mutation

GCP2:CGP3 inter-molecular interactions make up nearly half of the g-TuRC ring complex (Wieczorek et al.,

2020) (Figure 3C). The E311 of GCP2 is located across the interaction core of each asymmetric GCP2:GCP3

complex with 3,000 A 2 interface between GCP2 and GCP3 within the complex. The acidic nature of E311 is

complemented by the surrounding basic residues of GCP2 (R315) and GCP3 (R365 and R366 of GCP3). The

Figure 1. Clinical presentation and brain MRI of the patients

(A) Pedigree and sequence data including the conservation of the protein.

(B) Cranial T2-weighted MR images of the index patient showed pachygyria, cerebellar parenchymal atrophy, bilateral

volume loss in cerebral white matter, cystic foci with increased intensity in the neighboring white matter, and thinning of

the corpus callosum.

(C) Her affected sibling’s MRI detected cerebral and cerebellar atrophy and cystic foci with decreased white matter

volumes.
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E311K mutation of GCP2 induces a disruption in this complementarity. This is highlighted with the muta-

tion-induced change in the electrostatic surface of GCP2, facing to GCP3 (Figure 4). As a result, the rather

acidic GCP2 patch gets modified into a basic one, which would be repelled by the basic GCP3 surface.

Proteomics studies with label-free liquid chromatography mass-spectrometry

We applied proteomics to study the functional effect of the TUBGCP2 mutation in fibroblasts. Proteomics

allows the unbiased discovery of pathophysiological processes in rare neurodegenerative and neuromus-

cular diseases (Roos et al., 2018), and based on previous studies, fibroblasts were proven to represent a

suitable model to study the molecular etiology of neurological diseases (Mingirulli et al., 2020) (Hentschel

et al., submitted to this issue). Therefore, we analyzed a human skin fibroblast protein library for the expres-

sion of TUBGCP2 and identified 14 unique peptides covering 23% of the entire protein (Figure S2). This

result demonstrates the expression of TUBGCP2 in human fibroblasts and thus indicates the suitability

of these cells to study the effect of TUBGCP2 mutations in vitro. Moreover, expression data of TUBGCP2

(https://gtexportal.org/home/gene/TUBGCP2) show that this protein is highly expressed in fibroblasts and

skin, in similar levels with the brain cerebellum which has one of the highest expression levels of TUBGCP2

(Figure S1) reinforcing the suitability of this cellular model.

Next, we applied a label-free liquid chromatography mass-spectrometry (LC-MS/MS) approach to investi-

gate the proteomic signature of human skin fibroblasts derived from the index patient with the homozy-

gous TUBGCP2 c.931G > A, p.Glu311Lys mutation. This unbiased study revealed a statistically significant

(p-ANOVA % 0.05) dysregulation of 50 proteins: 26 were increased and 24 decreased (Table S1; %0.46 =

Figure 2. g-Tubulin localization is affected in TUBGCP2 p.Glu311Lys (E311K) fibroblasts

Asynchronous cells were stained for g-tubulin (green), b-tubulin (red), and DNA (blue), and different phases of mitosis were captured. Scale bar, 10 mm.
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significantly decreased andR2.24 = significantly increased). Further in silico-based pathway analyses (pro-

teomaps based on the ‘‘Kyoto Encyclopedia of Genes and Genomes’’ [KEGG]; [Liebermeister et al., 2014])

of these proteins suggested that proteins involved in the assembly and organization of the cytoskeleton

and the extracellular matrix are affected along with proteins controlling cellular adhesion. In addition,

our proteomic findings raise the possibility that TUBGCP2 mutations affect other cellular processes such

as different metabolic (glycolysis, lipid and sterol oxidation, and amino acid metabolism) and signaling

(MAPK, PI3K-AKT, and WNT) pathways (Figure 5A). Results of a gene ontology-based analysis of our pro-

teomic data revealed that proteins crucial for neuronal homeostasis including axon guidance are also

affected (Figures 5B and 5C and Table S1). Further analysis of functional protein association networks

via STRING (and Cytoscape [Shannon et al., 2003]) indicated a potential functional interplay of several pro-

teins affected by mutant TUBGCP2 (Figure 5D). In addition, we analyzed the abundance of 8 tubulins iden-

tified in our comparative proteomic profiling approach regardless of the above mentioned cut-off values

for up- or down-regulation. One (tubulin beta-3 chain) shows an increase of more than 25%, whereas three

(tubulin beta chain, tubulin beta-4B chain, and tubulin alpha-1C chain) presented with more than 25%

decrease in abundance (Figure 5D) indicating an effect of TUBGCP2 mutations on other tubulin proteins.

Immunofluorescence studies on human skin fibroblasts confirm proteomic findings

Immunofluorescence studies on TUBGCP2-patient-derived and control fibroblasts were carried out to vali-

date our proteomic findings. In line with our mass spectrometric based protein quantification, immunolog-

ical investigation of aB-crystallin (CRYAB) revealed increased abundance with focal cytoplasmic accumula-

tions (white arrows) in patient-derived cells (Figure 6A). Studies of D-3-phosphoglycerate dehydrogenase

Figure 3. Similar TUBGCP2 levels are present in control and patient fibroblasts along the cell cycle

(A) Asynchronous cells were stained for either PCNT, HAUS6 or NEDD1 (green), ⍺- or b-tubulin (red), and DNA (blue), and interphase cells (upper panel) or

different phases of mitosis (lower panel) were captured. Immunofluorescence images of wild-type and TUBGCP2 mutant (p.Glu311Lys) fibroblasts in

metaphase showing that the localizations of HAUS6 and NEDD1 are altered in the mutant cells. Scale bar, 10 mm.

(B) Similar TUBGCP2 levels are present in control and patient fibroblasts along the cell cycle. Cells were synchronized in G0 (48 hr of serum starvation), S

phase (double thymidine block), and mitosis (double thymidine/nocodazole block), and 50 mg of total cell lysate was loaded onto 10% SDS-PAGE.

Antibodies used in this Western blot were as follows: rabbit a-TPX2 (1 ug/ml), rabbit anti-TUBGCP2 (1:2000), mouse anti-AcTubulin (1:1000), and rabbit anti-

tubulin (1:500). Scale bar, 10 mm.

(C) The signal intensity of HAUS6 and NEDD1 was quantified and normalized to either the a- or b-tubulin signal intensity depending on the combination of

antibodies used. Fifteen metaphases have been analyzed for each condition and represented in scatted plots. Data are represented as mean G SEM. *P <

0,05 and ***P < 0.001, Student’s t-test).
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(PHGDH) and tenascin confirmed the reduced abundances of both proteins as identified by proteomic

profiling (Figure 6A). Prompted by the identified increase of lysosome membrane protein 2 (Figure 5) indic-

ative for increased activation of a lysosomal protein degradation pathway, we investigated levels of CD63,

a member of the tetraspanin superfamily commonly used as a marker of late endosomes and lysosome-

related organelles. Compared to control cells, fibroblasts derived from the TUBGCP2-patient presented

with a profound increase of CD63 immunoreactivity (Figure 6A). In accordance with our proteomic findings,

immunofluorescence studies of desmin (DES) revealed an increased level of this type III intermediate fila-

ment in the TUBGCP2-patient-derived fibroblasts (Figure 6A). Prompted by the general vulnerability of

cytoskeletal and cytoskeleton remodeling proteins in patient-derived cells including increase of adseverin,

a Ca2+-dependent actin filament-severing protein, we investigated F-actin level and distribution by FITC-

phalloidin staining. Results of these studies revealed increase of thicker actin bundles (Figure 6A) most

likely referring to actin stress fibers in patient cells.

L-serine supplementation reduces cytotoxicity in TUBGCP2-patient-derived fibroblasts

Proteomic profiling identified PHGDH as a protein significantly altered in abundance in the in vitro model

of TUBGCP2. Given that recessive PHGDH mutations also result in a neurological phenotype and that

PHGDH-patients respond to L-serine treatment, the effect of L-serine treatment was pre-clinically ad-

dressed in cultured skin fibroblasts derived from the TUBGCP2-patient: although investigation of the pro-

liferation revealed an increase of 8% in fibroblasts of both, TUBGCP2-patient and control upon L-serine

supplementation, in patient-derived cells, a 26% reduction of cytotoxicity was detected compared to

14% in control cells (Figure 6B).

Discussion

MTs are long fibers made of 13 protofilaments of a- and b-tubulin heterodimers (Wu and Akhmanova,

2017). Considered as one of the main cytoskeleton elements, they are involved in intracellular transport,

organelle positioning, motility, signaling, and cell division (Kollman et al., 2010). MTs are nucleated at

theMT organizing centers, most importantly the centrosome, which is an organelle composed of 2 perpen-

dicular barrels of 9 triplets of MTs surrounded by the pericentriolar material (Teixido-Travesa et al., 2012).

The levels of TUBGCP2 were comparable in control and patient fibroblasts suggesting that the stability of

themutated protein along the cell cycle is not affected. In fibroblasts of the patient, the protein steady state

level of TUBGCP2 was not significantly altered. However, in mitosis, patient fibroblasts presented a faint

Figure 4. Computational modeling of the E311K mutation

The g-TuRC ring complex contains five repeating units of GCP2 (gold cartoon) and GCP3 (marine cartoon) complex (pdb

id: 6v6s). The acidic GCP2-E311 is complemented by the basic environment made of three arginine residues (R315 of

GCP2, R365, and R366 of GPC3). The indicated charge complementarity will be lost upon E311K mutation. This is

depicted by themutation-induced change in the electrostatic distribution of GCP2, facing GCP3. The interacting surfaces

of GCP2 and GCP3 are encircled in gold and marine, respectively.
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delocalization of two components associated with the g-TuRC complex (HAUS6 and NEDD1, Figure 3). Ex-

panding on our structural analysis, we propose that this mutation impacts the stability of the g-TuRC ring

potentially caused by the charge swap introduced by the c.931G > A, p.Glu311Lys variant, which is pre-

dicted to change the electrostatic complementarity of the GCP2:GCP3 interface. The c.931G > A,

p.Glu311Lys mutation seen in our patient is situated between the two Grip1 domain variants previously re-

ported, namely c.889C > T (p.Arg297Cys) and c.997C > T (p.Arg333Cys). Our data suggest that in contrast

to as hypothesized by Mitani et al. (Mitani et al., 2019), mutations in the Grip1 domain may affect the local-

ization of g-TuRC and the mutation does not impinge on the steady-state level of the GCP2 protein

(Figure 3).

Results of our proteomic profiling revealed the altered abundance of a total of 50 proteins suggesting a

cellular vulnerability against homozygous TUBGCP2 missense mutations. Interestingly, other tubulin pro-

teins are affected only to a minor degree (Figure 5). The cytoskeleton appears to be affected by the expres-

sion of mutant TUBGCP2, as several proteins crucial for the assembly and maintenance of cellular cytoskel-

eton such as DES, plectin, adseverin, PDZ and LIM domain protein 5, syndecan, nestin, and EH domain-

binding protein 1 are dysregulated. Notably, some of those cytoskeletal proteins are known to be involved

in neuronal functions: Nestin overexpression has been shown to be crucial for brain development by regu-

lating cell proliferation and neuronal progenitor cell division; it is used as a marker of neuronal progenitor

cells (Liu et al., 2015). Syndecan-1 regulates the maintenance and proliferation of neural progenitor cells

during mammalian cortical development, which has potential relevance for the prominent neuronal migra-

tion defects seen in the patients (Wang et al., 2012).

Pathogenic amino acid substitutions in TUBGCP2 may also lead to dysregulation of proteins involved in

cellular adhesion to the extracellular matric (ECM), an important process for cell migration and invasion.

Both processes are tightly associated with the MT network (Seetharaman and Etienne-Manneville, 2019)

(Figure 5). For example, integrin signaling plays a crucial role in cell adhesion by altering MT stabilization,

organization, and dynamics. Of note, our data suggest altered expression of integrin alpha-11, sema-

phorin 7A (Pasterkamp et al., 2003), and matrix-remodeling-associated protein 8 (Jung et al., 2012) (Table

S1) supporting the concept of a possible perturbed integrin signaling in TUBGCP2-patient-derived cells.

Moreover, numerous studies of initial myelination and remyelination stages in the central nervous system

demonstrated the importance of a functional interplay between several key cytoskeletal components and

integrin superfamily proteins, which is in line with the white matter abnormalities detected in our patients

(e.g. [Miyata, 2019]).

Interestingly, TUBGCP2mutations may also affect metabolic processes, some of which are of great impor-

tance in neuronal cells (Figure 5): PHGDH, the first step enzyme in the de novo production of L-serine, an

amino acid crucial for brain development and neuron survival (Hirabayashi and Furuya, 2008) was found to

be decreased in patient-derived TUBGCP2-mutant fibroblasts. Several publications highlighted the impor-

tance of L-serine in central nervous system (CNS) development and maintenance, and supplementation

with L-serine was found to have a beneficial effect in motor neuron disease (Levine et al., 2017) linked to

neuroprotection through the modulation of the endoplasmic reticulum (ER) stress response (Dunlop

et al., 2018) and in hereditary sensory and autonomic neuropathy due to mutations in SPTLC1 (Fridman

et al., 2019).

Of note, PHGDH deficiency was linked to a neurological disease defined by congenital microcephaly, psy-

chomotor retardation, and seizures, as well as neuropathy (Jaeken et al., 1996; Poli et al., 2017). Prompted

by the neurological phenotype observed in our patients and the above mentioned impact of L-serine

Figure 5. Proteomics analysis of TUBGCP2 and control fibroblasts

(A) Proteomap resulting from the comparative proteome profiling of TUBGCP2 fibroblasts versus control cells. Every

polygon or circle represents a protein, the size of which is given by the fold change. The proteins are then grouped in

functional categories based on the KEGG database. The proteomap shows five main hierarchy levels, which are further

divided into sub-pathways.

(B) In silico analysis of dysregulated proteins utilizing GO term (biological pathway) annotation showing that proteins

involved in cell adhesion and cytoskeleton organization are majorly affected by the TUBGCP mutation.

(C) Volcano plot shows proteins which are significantly increased or decreased, compared to control fibroblasts.

(D) String analysis visualized using Cytoscape of microtubule and microtubule-associated proteins identified within our

proteomic analysis.
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produced by PHGDH on neuronal function and survival, we preclinically tested the effect of L-serine sup-

plementation on fitness of patient-derived fibroblasts. Results of these studies demonstrated a beneficial

effect of L-serine treatment in fibroblasts, a valuable model to study the molecular etiology of neurological

diseases (Hentschel et al., preprint available https://doi.org/10.21203/rs.3.rs-48014/v1), thus suggesting

that L-serine treatment might represent a concept to ameliorate the phenotype.

Although MT polymerization has been claimed to have an impact on several metabolic processes, such as

glycolysis (Cassimeris et al., 2012), we could observe indeed a decrease of proteins involved in glycolysis

(triosephosphate isomerase), gluconeogenesis (6-phosphogluconate dehydrogenase), and glucose ho-

meostasis (insulin-like growth factor-binding protein 5) in TUBGCP2-deficient fibroblasts. These processes

are crucial for proper brain functioning, and their dysregulation has already been linked to the manifesta-

tion of neurological diseases (Mergenthaler et al., 2013).

Proteomic profiling also suggested that proteins involved in the activation of MAPKmay be up-regulated in

the patient-derived cells and might be involved in the molecular etiology of the disease: Kinase D-interact-

ing substrate of 220 kDa is a multifunctional scaffold protein involved in neuronal development, neurite

outgrowth, and maturation (Scholz-Starke and Cesca, 2016) and its increase in TUBGCP2-patient-derived

fibroblasts might reflect a possible rescue mechanism. In contrast, an increase in chondroitin sulfate pro-

teoglycan 4, as identified in patient-derived fibroblasts, may be associated with the inhibition of functional

recovery by impeding axonal sprouting and synaptic rearrangements as suggested previously (Loers et al.,

2019).

Several proteins dysregulated upon the homozygous TUBGCP2missense mutation play crucial roles in the

development and maintenance of the nervous system, highlighting that axon and neurite outgrowth/elon-

gation may be affected along with perturbed neuronal differentiation, migration, and synaptic plasticity.

Hence, our proteomic findings obtained in primary patient fibroblasts hint toward possible pathophysio-

logical downstream effects of TUBGCP2mutations on normal development and functioning of the nervous

system and thus provide insight for the clinical manifestation of TUBGCP2-associated neuropediatric dis-

ease. Moreover, human skin fibroblasts show promise to further delineate the pathophysiology and

explore potential treatments for this rare disorder.

In summary, we describe two siblings carrying a homozygous TUBGCP2 variant with a severe pheno-

type, and show, that in addition to a neuronal migration defect, brainstem atrophy and disturbed mye-

lination may also be associated with TUBGCP2 mutations, explaining the variable clinical and imaging

findings.

Limitations of the study

In this study, we used human primary fibroblasts of a patient with pathogenic mutations to reveal molecular

insights into the pathomechanism of a severe childhood-onset neurological disease. Fibroblasts may not

be the best cell type representing neuronal cells. However, the mutant protein is expressed in fibroblasts,

and we believe that our results provide relevant information on the effect of themutant protein also in other

cells types, such as the neurons, neural progenitor cells, etc. Using fibroblasts and not neuronal cells for

functional studies may be a limitation of the model.

Resource availability

Lead contact

Themain point of contact for responding tomaterial and resource requests is Dr. Rita Horvath (Department

of Clinical Neurosciences, University of Cambridge).

Figure 6. Immunohistochemical studies confirmed proteomics findings in patient fibroblasts

(A) Immunofluorescence studies on TUBGCP2-patient-derived fibroblasts detected increased abundance of aB-crystallin

(CRYAB) (white arrows), CD63, desmin, and phalloidin, while reduced levels of D-3-phosphoglycerate dehydrogenase

(PHGDH) and tenascin (TNC), confirming the findings detected by proteomics analysis. Scale bar is shown on each image.

(B) L-serine treatment in cultured skin fibroblasts revealed an 8% increased proliferation in both TUBGCP2-patient and

control, while a 26% reduction of cytotoxicity was detected in patient-derived cells compared to 14% in controls. These

changes did not reach statistical significance. Data are represented as mean G SEM.
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We are happy to reply to requests regarding Materials, Data and Code in this publication.

Material availability

All the materials, data generated or analyzed during this study are included in this article or in the supple-

mental Transparent methods and are available from the corresponding author upon request.

Data and code availability

All genetic data have been deposited in the EGA database and in RD-CONNECT under the following ID

numbers: patient 1: E497133, patient 2: E477343, mother: E615258, father: E739679, unaffected sibling:

E191145. These data can be made available after an authentication process.

Methods

All methods can be found in the accompanying Transparent Methods supplemental file.

Supplemental information

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101948.
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Supplementary information 

Autosomal recessive variants in TUBGCP2 alter the -tubulin ring complex leading to 

neurodevelopmental disease 

Transparent methods 

Whole exome sequencing (WES) and bioinformatics analysis 

Patients and family members were recruited at the Department of Paediatric Neurology, 

Malatya (Turkey) after informed consent. Samples were pseudo-anonymized, processed and 

stored within the MRC Centre for Neuromuscular Diseases Biobank (National Research Ethics 

Service, Newcastle and North Tyneside 1 Research Ethics Committee: REC reference number 

08/H0906/28+5).  

WES of the female patient, parents and the affected brother was performed by the Genomics 

Platform at the Broad Institute of MIT and Harvard, Cambridge, USA (Yaramis et al., 2020). 

Libraries were created with an Illumina exome capture (38 Mb target) and sequenced with a 

mean target coverage of >80x. Genomic and phenotypic data were submitted to the RD-

Connect Genome-Phenome Analysis Platform, GPAP, (https://platform.rd-connect.eu), where 

they can be accessed under a controlled access agreement. Exome sequencing data were 

processed and analysed on the RD-Connect GPAP. Likely pathogenic variants were identified 

applying standard filtering for high to moderate variant effect predictor (i.e. nonsense, splice 

site, frame-shift, in-frame and non-synonymous variants), and for minor allele frequency <1% 

in gnomAD (http://gnomad.broadinstitute.org), and in a cohort of 1,182 ethnically-matched 

Turkish control individuals (TUBITAK MAM-GMBE dataset: 

http://gmbe.mam.tubitak.gov.tr/en). Shortlisted variants were interrogated for their 

predicted in silico deleteriousness, previous known association with human disease and were 

http://gmbe.mam.tubitak.gov.tr/en


classified by the ACMG Guidelines.  Likely pathogenic variants were segregated in unaffected 

siblings by Sanger sequencing. All exome data are available in the RD-CONNECT platform.  

 

Analysis of components of -TuRC 

Immunofluorescence images were taken of human fibroblasts grown on coverslips and 

MetOH fixed. Permeabilization and blocking of fibroblasts was carried out in IF buffer (0,5% 

BSA, 0,1% Triton X-100 in PBS) for 30 min at RT. After blocking and permeabilization, human 

fibroblasts were incubated with primary antibodies diluted in IF buffer for 1 h at RT and then 

3 washes of 5 min in IF buffer were performed. Samples were then incubated with secondary 

antibodies for 45 min at RT and washed once with IF buffer and twice with PBS. Antibodies 

and concentrations were the following: mouse anti--tubulin (1:1000, Sigma, T6199), rabbit 

anti-PCTN (1:500, Abcam, Ab4448), rabbit anti-HAUS6 (1:2000, Homemade), anti-NEDD1 

(1:1500, Abnova, H00121441-M05), mouse anti--tubulin (1:1000, Sigma, T9026), rabbit anti-

-tubulin (1:350, Abcam, Ab6046). 

For western blot analysis, human fibroblasts were synchronized with a double thymidine (2 

mM, overnight) nocodazole (0,33 uM, overnight) block and then lysed in lysis buffer (50 mM 

Tris-HCl pH 7,4, 150 mM NaCl, 1% NP-40, 1 mM EDTA and protease inhibitors). 30 ug of total 

cell lysates were subjected to 8% SDS-PAGE and blotted onto nitrocellulose membranes 

(Millipore). Membranes were blocked with 3% BSA in TBS-Tween 0,1% (TBS-T 0,1%) for 45 

min, rinsed in distilled water and probed with the following primary antibodies diluted in TBS-

T 0,1%, 0,5% BSA for 1 h at RT: rabbit anti-TUBGCP2 (1/2000, Homemade), rabbit anti-TPX2 (1 

ug/ml, Homemade), mouse anti-acetylated tubulin (1:1000, Sigma, T7451), rabbit anti--

tubulin (1:1000, Abcam, Ab6046). After primary antibody incubation and 3 washes of 5 min in 

TBS-T 0,1%, membranes were incubated for 45 min at RT with the following secondary 



antibodies diluted in TBS-T0,1%, 0,5% BSA: goat anti-rabbit irDye 800CW (1:20000, Fisher 

Scientific, 10733944) and goat anti-mouse Alexa Fluor™ 680 (1:20000, Invitrogen, A21058) . 

After secondary antibody incubation, membranes were washed three times with TBS-T 0,1% 

and subjected to developing using the Oddysey infrared imaging system. The signal intensity 

of the -TuRC components in mitosis was measured using Fiji software, normalized to the 

tubulin signal intensity and represented in a scatter plot.  

 

Structural Modelling of the TUPBGCP2 missense mutation 

The structural modeling of GCP2_E311K:GCP3 complex was carried out with the HADDOCK 

web server (https://haddock.science.uu.nl/services/HADDOCK2.2/ (Vangone et al., 2017) by 

using chains C and D of the -TuRC ring complex as a template (pdb id: 6v6s). A similar 

mutation modeling procedure was described in Dafsari et al. (Dafsari et al., 2019). To generate 

the electrostatic surfaces: (i) the relevant .pqr files were calculated with the 

http://server.poissonboltzmann.org/ server (Dolinsky et al., 2004), (ii) the acquired .pqr 

distributions were visualized with the APBS plugin of PyMOL.  

 

Proteomic Profiling 

Sample preparation and trypsin digestion 

In total seven samples (fibroblasts) derived from 4 healthy controls (gender and age-matched) 

and from one TUBGCP patients (processed and measured in triplicates) were processed 

independently. After harvesting cells were lysed in 500 µL of lysis buffer (50 mM Tris-HCl 

(Applichem Biochemica A3452) (pH 7.8) 150 mM NaCl, 1 % SDS (Carl Roth CN30.1), and 

Complete Mini Roche 11873580001) and treated with Benzonaze (Sigma-Aldrich) for 30 

https://haddock.science.uu.nl/services/HADDOCK2.2/
http://server.poissonboltzmann.org/


minutes at 37°C in order to degrade the DNA. Then samples were centrifuged for 5 min at 4°C 

and 5000 g. Protein concentration of the supernatant was determined by BCA assay 

(ThermoFisher 23225) (according to the manufacturer’s protocol) and cysteines were reduced 

with 10 mM of DTT (Roche 10708984001) by incubation at 56°C for 30 min. Next, the free thiol 

groups were alkylated with 30 mM IAA (Sigma-Aldrich I1149-25G) at room temperature (RT) 

in the dark for 30 minutes. Sample cleanup and proteolysis were performed using filter-aided 

sample preparation (FASP) as described previosuly (Mingirulli et al., 2020) . Briefly, 100 μg of 

protein was diluted 10-fold with freshly prepared 8M urea (Sigma-Aldrich)/100mM Tris-HCl 

(Applichem Biochemica) (pH 8.5) buffer and placed on a centrifugal device Nanosep 30 kDa 

Omega (Merck). The device was centrifuged at 13,800 g at RT for 20 min for all centrifugation 

steps. First, to eliminate residual SDS, three washing steps were carried out with 100 μL of 8M 

urea (Sigma-Aldrich) /100mM Tris-HCl (Applichem Biochemica) (pH 8.5). Then, for buffer 

exchange, the device was washed thrice with 100 μL of 50mM NH4HCO3 (Sigma-Aldrich 

S2889-250G) (pH 7.8). Next, 100 μL of proteolysis buffer comprising of trypsin (Promega) (1:25 

w/w, protease to substrate), 0.2M GuHCl (Sigma-Aldrich) and 2mM CaCl2 ((Sigma-Aldrich) ) in 

50mM NH4HCO3 (Sigma-Aldrich)  (pH 7.8), was added to the device and incubated at 37 °C 

for 14 h. Afterwards, the generated tryptic peptides were recovered by centrifugation with 50 

μL of 50mM NH4HCO3 (Sigma-Aldrich)  followed by 50 μL of ultra-pure water. Finally, peptides 

were acidified ((pH<3) by addition of 10% TFA (Biosolve) (v/v) and digests were quality-

controlled in a reversed-phase HPLC as described previously (Mingirulli et al., 2020). 

LC-MS/MS analysis 

Samples (1 µg) were analyzed using an Ultimate 3000 nano RSLC system coupled to an LTQ 

Orbitrap Velos mass spectrometer (both Thermo Scientific). Peptides were preconcentrated 



on a 75 µm x 2 cm C18 trapping column for 16 min using 0.1 % TFA (v/v) with a flow rate of 20 

µl/min followed by separation on a 75 µm x 50 cm C18 main column (both Pepmap, Thermo 

Scientific) with a 130 min LC gradient ranging from 3-38 % ACN in 0.1 % FA (v/v) at a flow rate 

of 250 nl/min. MS survey scans were acquired in the Orbitrap from m/z 300 to 1500 at a 

resolution of 60,000 using the polysiloxane ion at m/z 371.101236 as lock mass. Theten most 

intense signals were subjected to collision induced dissociation (CID) in the ion trap taking into 

account a dynamic exclusion of 25 s. CID spectra were acquired with a normalized collision 

energy of 35 %. AGC target values were set to 106 for Orbitrap MS and 104 for ion trap MSn 

scans. 

Label free data analysis 

Label free quantification of the acquired MS data was performed using the Progenesis LC-MS 

software from Nonlinear Dynamics (Newcastle upon Tyne, U.K.). Raw files were imported and 

the alignment of the MS runs was done automatically by the software by choosing one of the 

runs as reference. After peak picking, only features within retention time and m/z windows 0-

130 min and 300-1500, respectively, and with charge states +2, +3 and +4 were considered for 

peptide statistics, analysis of variance (ANOVA) and principal component analysis (PCA). 

Spectra were exported as peak lists and searched against a concatenated target/decoy version 

of the human Uniprot database, (downloaded on 22.07.2015 containing 20273 target 

sequences) using Mascot 2.4 (Matrix Science), MS-GF+ and X!Tandem (version 2013.02.01.1) 

with the help of searchGUI 3.2.5 (Vaudel et al., 2011). Trypsin with a maximum of two missed 

cleavages was selected as enzyme. Carbamidomethylation of Cys was set as fixed, acetylation 

of protein N-terminus, oxidation of Met and phosphorylation of Ser/Thr/Tyr were selected as 

variable modifications. MS and MS/MS tolerances were set to 10 ppm and 0.5 Da, respectively. 

Search results were combined at a false discovery rate (FDR) of 1 % on the protein level using 



the PeptideShaker software 1.4.0 (http://code.google.com/p/peptide-shaker/)  and 

processed for re-import as peptide spectrum matches into Progenesis. Finally, 1681 proteins 

which were quantified from the non-conflicting features (i.e. only unique peptides) were 

exported. For all proteins, the normalized abundances from Progenesis were used to calculate 

standard deviations (SD) and coefficients of variation (CV) using all three replicates per 

condition.  Only proteins with a p-value <0.05 and showing an average ratio <0.45 or >2.28 

were considered as regulated.  

TUBGCP2 expression in human skin fibroblasts was investigated by screening a protein/ 

spectral library covering 96,512 peptides referring to 8234 proteins expressed in these cells 

(Hentschel et al., preprint available DOI: 10.21203/rs.3.rs-48014/v1) for tryptic peptides 

unique for TUBGCP2. 

 

Immunofluorescence studies on human skin fibroblasts 

Immunofluorescence studies on human skin fibroblasts were carried out as following: cells 

were grown to a confluency of 60% on cover slips in a 24-well plate, washed twice with PBS, 

fixed with 4% formalin in PBS for 15 min and after the fixative was aspirated, cells were washed 

again twice with PBS. To quench the free aldehyde groups of the fixative, 10 mM NH4Cl-PBS 

was added to the cells and incubated for 15 min. After fibroblasts were washed two times 

with PBS, they were permeabilized by adding 0.5 ml 0.1% Triton X-100 (in PBS) to each well 

(incubation for 10 min). Next, blocking was carried out by adding 100 μl 1% BSA made in PBS 

containing 0.1% Triton X-100 (v/v) to each well. Primary antibodies (α-CD63: ab8219, α-aB-

Crystallin: sc-137129, α-Desmin: NCL-L-DES-DERII, α-PHGDH: GTX101948, Phalloidin: 

ab176753, α-Tenascin: AB19011) were diluted in 1% BSA blocking solution made in PBS 

containing 0.1% Triton X-100 (v/v) and incubated for one hour at room temperature. After 

https://doi.org/10.21203/rs.3.rs-48014/v1
https://www.dict.cc/?s=confluency


antibody solutions were aspirated and fibroblasts were washed with PBS containing 0.1% 

Triton X-100 secondary antibodies (Invitrogen Alexa488 & Alexa594) diluted 1:500 in 1% BSA 

blocking solution made in PBS containing 0.1% Triton X-100 (v/v) were added and incubated 

for one hour at room temperature. In the following step, antibody solutions were aspirated, 

and fibroblasts washed twice with PBS containing 0.1% Triton X-100. For mounting, 10 µl 

mounting medium (containing anti-fade reagent) was placed on the slide for each coverslip 

and coverslips were positioned at the centre of the slide. Excess of mountant was drawn with 

filter paper and mounting medium was solidified for two hours before samples were examined 

on microscope (Zeiss Axioplan). 

 

Investigation of cellular fitness 

To measure cellular metabolic activity as an indicator of cell viability, proliferation and 

cytotoxicity, the MTT-assay (Sigma, M5655-100MG) was applied to TUBGCP2-patient derived 

and control fibroblasts treated and non-treated with 80 µm L-serine (Sigma, S4311-25G), 

respectively. Viable cells contain NAD(P)H-dependent oxidoreductase enzymes which reduce 

the MTT to formazan; the insoluble formazan crystals are dissolved using a solubilization 

solution and the resulting coloured solution is quantified by measuring absorbance at 500-600 

nanometers using a multi-well spectrophotometer (Tecan Infinity 200). Here, the darker the 

solution, the greater the number of viable, metabolically active cells. The assay was carried 

out according to manufacturer's specifications.  

 

  



Supplementary Figures and Table 

Supplementary Figure 1 (related to Figure 5) shows Violin plots depicting tissue/cell 

expression of TUBGCP2 from GTEx Portal (https://gtexportal.org/home/gene/TUBGCP2) 

illustrate high expression in neuronal cell types, but also in cultured skin fibroblasts.  

 

Supplementary Figure 2 (related to Figure 5). Protein targets of TUBGCP2 used in our 

proteomics studies (bold highlighted, p.E311K red).   

 

https://gtexportal.org/home/gene/TUBGCP2


Supplementary Table 1 (related to Figure 5) shows the list of differentially regulated 
proteins in TUBGCP2 mutant fibroblasts. 
 

Uniprot 
Accession 
# 

Protein name Gene 
name 

#Pepti
des 

Fold 
change 

Anova 
(p) 

Protein function 

Q9UKX5 Integrin alpha-11  ITA11 4 4.21 <0.0005 Receptor for collagen 

Q08431 Lactadherin  
MFGM 

2 
3.58 

<0.0005 
Essential role in neurons in Aβ-induced 
phagoptosis  

P52943 
Cysteine-rich 
protein 2  

CRIP2 
2 

3.46 
<0.0005 

Invadopodia actin bundling factor  

P02511 
Alpha-crystallin B 
chain  

CRYAB 
8 

3.27 
<0.0005 

Chaperone-like activity, preventing 
aggregation of various proteins 

P17661 Desmin  

DESM 

4 

3.24 

<0.0005 

Act as a (sarcomeric) microtubule-anchoring 
protein: specifically associates with 
detyrosinated tubulin-alpha chains, leading to 
buckled microtubules 

Q6UVK1 

Chondroitin 
sulfate 
proteoglycan 4  

CSPG4 

15 

2.79 

<0.0005 

Inhibits neurite outgrowth and growth cone 
collapse during axon regeneration; cell surface 
receptor for collagen alpha 2(VI) 

Q8TAD7 

Overexpressed in 
colon carcinoma 1 
protein  

OCC1 

3 

2.74 

<0.0005 

 

Q14699 Raftlin  

RFTN1 

2 

2.64 

<0.0005 

Involved in protein trafficking; mediates 
internalization of TLR4 to endosomes in 
dendritic cells 

P55290 Cadherin-13  
CAD13 

6 
1.40 

<0.0005 
Acts as a negative regulator of neural cell 
growth 

O75326 Semaphorin-7A  

SEM7A 

4 

1.35 

<0.0005 

Plays an important role in integrin-mediated 
signaling and functions; promotes axon growth 
in the embryonic olfactory bulb. Promotes 
attachment, spreading and dendrite outgrowth 

Q14108 

Lysosome 
membrane 
protein 2  

SCRB2 

3 

2.38 

<0.0005 

Lysosomal receptor for glucosylceramidase 
(GBA) targeting 

Q15149 Plectin  

PLEC 

219 

2.34 

<0.0005 

Interlinks intermediate filaments with 
microtubules and microfilaments and anchors 
intermediate filaments to desmosomes or 
hemidesmosomes. Could also bind muscle 
proteins such as actin to membrane complexes 
in muscle 

Q8TF66 

Leucine-rich 
repeat-containing 
protein 15  

LRRC15 

1 10.66 

<0.0005 Promotes osteogenic differentiation of 
mesenchymal stem cells  

O94907 
Dickkopf-related 
protein 1  

DKK1 

1 7.74 

<0.0005 Inhibit Wnt regulated processes such as 
antero-posterior axial patterning, 
somitogenesis and eye formation; in adults 
implicated in bone formation cancer and 
Alzheimer disease  

Q9Y6U3 Adseverin  

ADSV 

1 4.10 

<0.0005 Ca2+-dependent actin filament-severing protein 
that has a regulatory function in exocytosis by 
affecting the organization of the microfilament 
network underneath the plasma membrane 

Q96LJ7 

Dehydrogenase/r
eductase SDR 
family member 1  

DHRS1 

1 3.85 

<0.0005 NADPH-dependent reductase that is able to 
catalyse the in vitro reductive conversion of 
some steroids  

O94919 

Endonuclease 
domain-
containing 1 
protein  

ENDOD1 

1 3.20 

<0.0005 Act as a DNase and a RNase 



Q9ULH0 

Kinase D-
interacting 
substrate of 220 
kDa  

KDIS 

1 3.11 

<0.0005 Plays a role in nerve growth factor (NGF)-
induced recruitment of RAPGEF2 to late 
endosomes and neurite outgrowth. May play a 
role in neurotrophin- and ephrin-mediated 
neuronal outgrowth and in axon guidance 
during neural development and in neuronal 
regeneration 

Q5JRX3 

Presequence 
protease 
(mitochondrial) 

PREP 

1 2.78 

<0.0005 Metalloendopeptidase of the mitochondrial 
matrix that functions in peptide cleavage and 
degradation  

 

Q96HC4 
PDZ and LIM 
domain protein 5  

PDLI5 

1 2.76 

0.01 Actin binding protein which plays an important 
role in the heart development by scaffolding 
PKC to the Z-disk region; overexpression 
promotes the development of heart 
hypertrophy 

Q9BRK3 

Matrix-
remodeling-
associated 
protein 8  

MXRA8 

1 2.74 

<0.0005 Modulates activity of various signaling 
pathways, probably via binding to integrin 

P16402 Histone H1.3  

H1-3 

1 2.67 

<0.0005 Binds to linker DNA between nucleosomes and 
acts as a regulator of individual gene 
transcription through chromatin remodeling 

Q14956 
Transmembrane 
glycoprotein NMB  

GPNMB 

1 2.65 

<0.0005 Activator of the ERK1/2 and Akt pathways 
toward the prevention of build-up of TDP-43 
aggregates 

P18827 Syndecan-1  

SDC1 

1 2.50 

0.01 Cell surface proteoglycan that links the 
cytoskeleton to the interstitial matrix and 
regulates exosome biogenesis 

O75521 

Enoyl-CoA delta 
isomerase 2 
(mitochondrial)  

ECI2 

1 2.30 

<0.0005 Isomerizes both, 3-cis and 3-trans double 
bonds into the 2-trans form in a range of 
enoyl-CoA species 

P48061 
Stromal cell-
derived factor 1  

CXCL12 

1 2.29 

0.02 Induces migration of oligodendrocyte 
precursor cells through activated ERK and AKT 
pathways  

P02461 
Collagen alpha-
1(III) chain  

CO3A1 

19 

0.45 

<0.0005 

Involved in regulation of cortical development; 
major ligand of ADGRG1 in the developing 
brain and binding to ADGRG1 inhibits neuronal 
migration and activates the RhoA pathway  

Q15063 Periostin  
POSTN 

3 
0.45 

<0.0005 
Induces cell attachment and spreading and 
plays a role in cell adhesion 

P55957 

BH3-interacting 
domain death 
agonist 

BID 

1 

0.45 

0.01 

Initiates apoptosis 

Q7Z434 

Mitochondrial 
antiviral-signaling 
protein  

MAVS 

1 

0.45 

<0.0005 

MAVS signaling activation causes induction of 
autophagic activation in brain 

P40261 
Nicotinamide N-
methyltransferase  

NNMT 

6 

0.45 

<0.0005 

Protectant against neurotoxin-mediated cell 
death; increased expression promotes neurite 
branching, synaptophysin expression and 
dopamine accumulation and release  

O43175 

D-3-
phosphoglycerate 
dehydrogenase  

PHGDH 

16 

0.42 

<0.0005 

Modulates first step of the phosphorylated L-
serine biosynthesis pathway 

Q9Y613 

FH1/FH2 domain-
containing 
protein 1 

FHOD1 

1 

0.42 

<0.0005 

Contributes to the coordination of 
microtubules with actin fibers and plays a role 
in cell elongation 

O14495 

Lipid phosphate 
phosphohydrolas
e 3  

LPP3 

3 

-1.28 

<0.0005 

Involved in cell adhesion and in cell-cell 
interactions; lack in embryonic stem cells 
compromises neuronal differentiation and 
neurite outgrowth  



Q02952 
A-kinase anchor 
protein 12  

AKA12 

17 

-1.33 

<0.0005 

Anchoring protein that mediates the 
subcellular compartmentation of protein 
kinase A (PKA) and protein kinase C (PKC) 

P22692 

Insulin-like 
growth factor-
binding protein 4  

IGFBP4 

2 

-1.37 

<0.0005 

Inhibits proliferation and promotes 
differentiation of neural progenitor cells  

P60174 
Triosephosphate 
isomerase  

TPIS 
20 

-1.37 
<0.0005 

Reduced function of this protein triggers 
neuronal death  

Q9BRA2 

Thioredoxin 
domain-
containing 
protein 17  

TXNDC17 

3 

-1.38 

<0.0005 

Disulfide reductase; modulates TNF-alpha 
signaling and NF-kappa-B activation 

P10620 

Microsomal 
glutathione S-
transferase 1  

MGST1 

3 

-1.39 

<0.0005 

Conjugation of reduced glutathione to a wide 
number of exogenous and endogenous 
hydrophobic electrophiles 

Q16647 
Prostacyclin 
synthase  

PTGIS 
6 

-1.41 
<0.0005 

Catalyzes the isomerization of prostaglandin 
H2 to prostacyclin 

P24821 Tenascin  

TENA 

24 

-1.52 

0,01 

Extracellular matrix protein implicated in 
guidance of migrating neurons as well as axons 
during development, synaptic plasticity as well 
as neuronal regeneration. Promotes neurite 
outgrowth from cortical neurons 

P52209 

6-
phosphogluconat
e dehydrogenase, 
decarboxylating  

PGD 

8 

-1.70 

<0.0005 

Catalyzes the oxidative decarboxylation of 6-
phosphogluconate to ribulose 5-phosphate 
and CO2 

P48681 Nestin  

NEST 

8 

-1.70 

<0.0005 

Required for brain and eye development. 
Promotes the disassembly of phosphorylated 
vimentin intermediate filaments (IF) during 
mitosis and may play a role in the trafficking 
and distribution of IF proteins and other 
cellular factors to daughter cells during 
progenitor cell division. Required for survival, 
renewal and mitogen-stimulated proliferation 
of neural progenitor cells 

Q15392 
Delta(24)-sterol 
reductase  

DHC24 

2 

0.29 

<0.0005 

Protects cells from oxidative stress; protects 
against amyloid-beta peptide-induced 
apoptosis 

Q93062 

RNA-binding 
protein with 
multiple splicing  

RBPMS 

2 

-2.29 

<0.0005 

Acts as a coactivator of transcriptional activity  

P53634 
Dipeptidyl 
peptidase 1  

CATC 

3 

-2.43 

<0.0005 

Activates serine proteases such as elastase, 
cathepsin G and granzymes A and B; can also 
activate neuraminidase 

P24593 

Insulin-like 
growth factor-
binding protein 5  

IGFBP5 

2 

-4.69 

<0.0005 

Inhibitory binding protein for insulin-like 
growth factor 1; overexpression leads to motor 
axonopathy and sensory deficits in mice 

P54826 
Growth arrest-
specific protein 1  

GAS1 

1 

0.03 

0.04 

Specific growth arrest protein involved in 
growth suppression; blocks entry to S phase; 
promotes neurite outgrowth  

Q8NDI1 
EH domain-
binding protein 1  

EHBP1 

1 

-2.00 

0.01 

Plays a role in actin reorganization; links 
clathrin-mediated endocytosis to the actin 
cytoskeleton; May act as Rab effector protein 
and play a role in vesicle trafficking 

P26022 
Pentraxin-related 
protein PTX3  

PTX3 
1 

-6.20 
<0.0005 

Plays a protective role in seizure-induced 
neurodegeneration  
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