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To investigate the implications of permeability, we consider two models for clinical research.

The first, discussed in Section S1, is one in which independent controlled clinical trials follow

a detailed protocol to disclose periodically data summaries. The second model, in Section S2,

is a platform study with several experimental arms, in which the organization conducting

the study periodically releases information, again following strict protocols. In this second

setting, patients are allowed to choose from a catalog of randomization distributions: patients

could, for example, accept the possibility of being randomized to the control and some of the

experimental arms, while denying consent to receive other experimental treatments based on

interim summaries.

We conduct simulations, using stylized assumptions, to compare permeable and imper-

meable research environments. The simulation study is tailored to a specific setting, phase

II studies in Glioblastoma, with the goal of evaluating the potential consequences of more

permeable designs, under realistic simulation parameters derived from a systematic review [5],

(Table 1).

∗steffen@jimmy.harvard.edu

S1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/384309936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


S1 Independent trials releasing efficacy information

We provide a detailed description of the models for permeable and impermeable research

environments in which independent trials enroll participants from the same pool of patients.

We shall consider fixed a time period of T months and focus on a single disease. Alternatively

the time horizon could terminate with the discovery of the first effective treatment. The trials

are assumed to have identical balanced randomized two-arm designs with overall survival

endpoint and a planned enrollment of n patients. At time t = 0, a total of m ≥ 1 clinical

trials evaluate treatments. These trials may be either enrolling patients or in the follow-up

stage. At random times, 0 < tm+1 < tm+2, . . . , new studies will open. The rate λP models the

average number of enrollment per month to active trials. Efficacy is tested using a log-rank

test [2] with null hypotheses Hj : HRj ≥ 1, where HRj is the hazard ratio between the

experimental arm and the standard of care (SOC) in the j-th trial.

Permeable Environment

In the permeable environment, each open trial releases early data summaries at the end

of every month ` = 1, 2, . . . , T . But the primary hypothesis Hj of each trial j can only be

rejected at completion of the trial. For this reason, testing Hj (one of the primary purposes of

the trial) does not involve adjustments for multiplicity (e.g. α spending-functions) to control

the type I error rate. We may consider communicating various summaries of preliminary

data, for example, point estimates of the hazard ratio ĤRj,`, or the posterior probability of

a positive treatment effect (PTE) πj,` = Pr(HRj < 1| Data at month `). The first statistic

conveys the magnitude of the effect, while the latter quantifies the degree of uncertainty on a

positive effect. In our simulations, we compute the posterior probabilities πj,` for each open

trial with a normal prior on log(HRj) having mean zero and variance 1/2. Complementary

summaries could include the number of previously randomized patients and predictions of

response or survival for each treatment.

It is difficult to evaluate which summaries are most interpretable or to predict how patients

and physicians would respond to this information. We define a stochastic model for the

patients’ enrollment decisions, and evaluate the sensitivity of the simulation results with

respect to the parameters of the decision model. In our simulations, we assume that if πj,` is

below a threshold θL ∈ [0, 1], then patients do not enroll in trial j. Symmetrically, trials with

πj,` above a threshold θU ∈ [θL, 1] are selected with identical probabilities. The probability that
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a patient selects study j, during the period [`, `+1), is pj,` ∝ gθ(πj,`), where gθ(·) is monotone,

gθ(π) =


0 if π < θL,(
π−θL
θU−θL

)θS
if π ∈ [θL, θU ],

1 if π > θU ,

(S1)

and θS ≥ 0. With θS large and θU close to one patients select the trial with the largest PTE.

Impermeable Environment

In the impermeable environment information on efficacy is released only after the end of the

follow-up period of each trial. However, we assume that trials have a degree of adaptivity

to early evidence of futility, as in most two-arm trials. Trials with posterior probability πj,`

below θL are stopped for futility. The probability that patient i enrolls in trial j is constant

across all open impermeable trials.

To simplify comparisons of permeable and impermeable environments we assume that

permeable trials that do not recruit patients for a pre-specified period of time (πj,` < θL) are

closed.

Scenarios

The following simulation study is tailored to Phase II trials in Glioblastoma (GBM) over

a period of 120 months. The parameters used in these simulations (see Table 1 in the

manuscript) were selected from our systematic literature review of clinical trials in GBM

during the last 15 years [5].

Each month, on average 53 GBM patients enroll in one of the open trials. Five studies

are open at the beginning of the simulation period and 25 additional studies are opened at

random time points during a 120 months period. The median survival for the control and

non-effective treatments is 10 months compared to 14.3 months (HR = 0.7) for effective

experimental arms. Each study enrolls up to 224 patients and, following standard protocols

for survival analysis [3], final analyses are conducted after 144 events have been observed,

approximately 12 months after the last enrollment in the study. With 10% type I error rate,

HR = 0.7 and analyses after 144 events, each trial has approximately 80% power to detect

the treatment effects.

In the permeable environment, the parameters for the patient decision model were set to

(θL, θU , θS) = (0.05, 1, 3). To provide some interpretation of this choice, consider Panel (C) in
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Figure 1 in the manuscripts. After 20 months, there are 5 trials open; one of them evaluates

a treatment showing early evidence of efficacy, while the others test treatments similar to the

SOC. The posterior probability of a PTE in the effective trial is (average across simulations)

around 0.7, and for the other trials it is close to the prior probability of 0.5. Under our model

parameters, a patient would be around 3 times more likely to enroll in the effective trial than

in any given ineffective trial.

Figure 2 in the manuscript and Table S1 summarize the results of the simulation study.

Permeable and impermeable environments have similar probabilities of a positive result for the

first effective treatment (approximately 80% power) with identical type I error rates. In the

permeable environment 9% of all simulated trials without effective experimental treatments

are stopped early. Permeable trials with an effective experimental arm are stopped early in

less than 1% of all simulations. Impermeable trials are stopped early for futility with similar

frequencies as in permeable studies.

In our simulation, 3 out of 30 experimental arms are effective, and the first effective

treatment is tested in study jeff, which ranges between the 6-th, up to the 27-th. Figure

2 in the manuscript shows the completion time of trial jeff. Panel (A) shows the average

cumulative number of enrollments during time, starting from the onset of the study, and

Panel (B) shows the distribution of the number of months to complete the enrollment across

simulations. The illustrated enrollment period goes from the first randomization until the

enrollment is stopped because either enrollment in study j is completed or the trial is stopped

for futility.

Table S2 reports selected operating characteristics of permeable trials, with early data

summaries released every 1, 2, 3, 6, 9 or 12 months (columns of Table S2). When we reduce

the frequency of the release of data summaries, the average enrollment period of trials with

effective experimental arms increases, from 15.7 months (monthly release) to 19.6 months

(release every 12 months), compared to 28 months for impermeable trials. Also, as expected,

type I error rates and power are not affected by the frequency of the release of data summaries.

Indeed, the null hypothesis (i.e. absence of positive treatment effects) is tested only at

completion of the study.
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Study Enrollment period Time to final results Sample size Power PStop
Mean (SD) Mean (SD) Mean (SD)

permeable environment
ineffective trial jprev 27.2 (20.8) 34.5 (22.0) 210 (33) 0.09 0.09
effective trial jeff 15.6 (09.5) 28.8 (09.6) 222 (07) 0.80 <0.01
ineffective trial jnext 25.2 (19.7) 33.5 (21.9) 212 (32) 0.10 0.09

impermeable environment
ineffective trial jprev 27.2 (11.3) 31.1 (09.3) 212 (27) 0.09 0.09
effective trial jeff 28.0 (12.1) 35.2 (09.9) 221 (06) 0.80 <0.01
ineffective trial jnext 26.4 (12.1) 31.4 (11.1) 214 (26) 0.11 0.09

Table S1: Selected operating characteristics of permeable and impermeable environments
in GBM. Results are based on 5,000 simulations of a drug-development period of 10 years
during which 30 two-arm trials evaluate new experimental treatments in GBM patients.
We use (θL, θU , θS) = (0.05, 1, 3) to define the enrollment probabilities in (S3). Study
jeff ∈ {6, · · · , 27} corresponds, in each simulation, to the first trial that evaluates an effective
experimental treatment. Study jprev denotes the last trial that opens enrollment before study
jeff is activated. Study jnext corresponds to the first study that evaluates a non effective
experimental treatment and opens enrollment after jeff. Studies jprev, jeff and jnext are random
and vary across simulations. PStop indicates the probability of stopping the trial early.
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Frequency of release of early data summaries (months) in the permeable environment
1 2 3 6 9 12

effective trial jeff

Mean enrollment period 15.7 (9.7) 16.3 (9.5) 16.5 ( 8.5) 18.1 (10.2) 18.6 (9.1) 19.6 (9.6)
Mean time to final results 28.8 (8.6) 29.1 (8.5) 29.3 (7.5) 30.5 (11.4) 30.7 (9.4) 31.2 (9.2)
Power 0.80 0.80 0.81 0.80 0.80 0.79
PStop 0.00 0.00 0.00 0.00 0.00 0.00
Mean accrual Rate 0.36 (0.18) 0.36 (0.18) 0.35 (0.19) 0.34 (0.19) 0.33 (0.18) 0.31 (0.18)

ineffective trial jprev

Mean enrollment period 26.6 (19.7) 27.5 (21.0) 28.2 (21.1) 27.9 (20.6) 28.2 (19.9) 29.0 (20.2)
Mean time to final results 33.5 (19.4) 34.9 (22.4) 35.3 (22.5) 34.8 (21.1) 35.7 (23.2) 35.8 (21.2)
Power 0.10 0.11 0.08 0.11 0.11 0.10
PStop 0.08 0.08 0.07 0.06 0.05 0.03

ineffective trial jnext

Mean enrollment period 25.9 (19.8) 25.4 (19.5) 25.6 (19.4) 26.9 (20.1) 27.3 (19.7) 26.8 (18.4)
Mean time to final results 34.3 (23.7) 33.4 (21.1) 34.1 (22.7) 35.1 (22.8) 36.0 (24.4) 34.7 (21.5)
Power 0.10 0.10 0.11 0.10 0.12 0.09
PStop 0.09 0.07 0.07 0.05 0.04 0.04

Table S2: Selected operating characteristics of permeable environments in GBM when early
data summaries are released every 1, 2, 3, 6, 9 or 12 months. Results are based on 1,000
simulations of a drug-development period of 10 years during which 30 two-arm trials evaluate
new experimental treatments in GBM patients. We use (θL, θU , θS) = (0.05, 1, 3) to define
enrollment probabilities in (S3). PStop indicates the probability of stopping the trial early.
Values on parenthesis indicate standard errors. Study jeff ∈ {6, · · · , 27} corresponds, in
each simulation, to the first trial that evaluates an effective experimental treatment. Study
jprev denotes the last trial that opens enrollment before study jeff is activated. Study jnext

corresponds to the first study that evaluates a non effective experimental treatment and opens
enrollment after jeff. Studies jprev, jeff and jnext are random and vary across simulations.

S6



S1.1 Sensitivity Analyses

The stylized assumptions of the previous section do not represent some aspects of a permeable

environment, and it is important to understand how departures from the model affect the

operating characteristics.

1) Interim results can influence the overall enrollment rate

Many trials test drugs that are already indicated for other diseases and therefore commercially

available. This is common in oncology, where a drug approved for a cancer type may be

later approved for other malignancies [4]. In this situation, it could be possible for a patient

to obtain the drug off-label, instead of enrolling in a randomized study. It would not be

surprising if the proportion of patients opting to receive a treatment off-label increased when

evidence of efficacy from a trial becomes is released in a permeable environment.

In our sensitivity analysis, we assume a set of treatments J can be obtained off-label, and

we incorporate patients’ reactions into our model, with a time-varying overall enrollment rate

λP (`) = λP × (1− pOL × I(θOL < maxj∈J πj,`)). To be precise, λP (`) is the rate describing

the enrollment of patients in all trials in the time period [`, `+ 1). Here, λP is the constant

rate used in our basic model, pOL ∈ [0, 1] represents a proportion of patients that obtain

off-label treatments when experimental treatments under study show promising results, and

θOL ∈ [0, 1] is a threshold for the posterior probability of a positive effect above which these

patients opt for the off-label treatment.

Panel (A) in Figure S1 illustrates the sensitivity of the time to complete enrollment with

respect to this perturbation. It shows the mean time for three studies (jprev, jeff, and jnext)

to complete enrollment (y-axis) when a proportion of patients pOL (x-axis) in [0, 0.6] prefers

to obtain drugs off-label instead of enrolling into active trials if the posterior probability of

a positive effect, for any of the treatments j, becomes large (πj,` > 0.9). The mean time to

complete enrollment for study jeff increases substantially, from 15.6 months, to 22.5, 32.6 and

57.0 months when pOL = 15%, 30% and 50%. For studies testing ineffective treatments the

average length of enrollment increases similarly.

2) Misreported interim results

We consider the impact of misleading information which is inconsistent with the data generated

in ongoing trials. This reflects possible incentives of stakeholders to misreport the probability

of a positive treatment effect in order to secure a higher enrollment rate. We assume that in
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one study (j = 6) which tests an ineffective treatment, the investigators misreport πj,` and

publish the value min(1, πj,` + δ) with constant misreporting δ ≥ 0 during the trial.

Panel (B) in Figure S1 shows the average cumulative number of enrollments in the

study with misreporting over time. We compare the model without misreporting (δ = 0)

to two different levels of misreporting, δ = 0.15 and 0.3. Even with moderate misreporting

(δ = 0.15), the number of patients enrolled in study 6 (testing an ineffective treatment)

increases substantially.

3) Interim results determine population trends

We consider a scenario where latent variables define subpopulations. Patients in different

subpopulations have different prognostic profiles, and they also react differently to interim

results. This could induce distinct population trends in each trial and compromise the validity

or generalizability of the trial results. For instance, patients with higher educational levels

might be more reactive to interim results; which would lead to trials with early promising

data to be enriched with this group of patients. If the educational level is also associated with

prognosis or with treatments’ effects, then the effect sizes across trials may not be comparable.

It is worth noting that the populations enrolling in distinct trials may also be different in an

impermeable setting.

We assume that there are two groups of patients, group 1 and group 2, with good and poor

prognostic profiles respectively. Experimental treatments can have identical or distinct effects

in these two groups. Additionally, patients in group 1 select trials accordingly to expression

(S3), while patients in group 2 select their trial randomly with identical probabilities across

all open studies. Let p1 be the proportion of patients in group 1, and let (µ1, µ2) be the

mean survival time under standard of care in groups 1 and 2. We consider three simulation

scenarios, with p1 = 0.2, 0.4 or 0.6, and µ1 = 40.1, 29.4 or 18.7. In each scenario we set µ2 = 8.

In our simulations, superior treatments have identical effects (within stratum HR = 0.7) in

groups 1 and 2.

Panel (C) in Figure S1 shows the proportion, across simulations, of patients in groups 1

and 2 during the enrollment period of the trial jeff, from the first enrollments until the last

(n = 240) one. The sensitivity analysis shows that patient subpopulations could be significantly

overrepresented or underrepresented in permeable trials. Variations in the composition of the

enrolled patients during time can lead to biased treatment effect estimates when the effects

are different across groups.
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4) Dropouts due to interim results

In the permeable environment participants in study j might leave the trial when πj,` becomes

small. We consider again two groups (group 1 and group 2) with good and poor prognoses

and incorporate distinct drop-out propensities for patients in these two groups. Patients that

enrolled into trial j have positive probability to leave the trial when the posterior probability

πj,` becomes smaller than a fixed threshold. The propensity for drop-out can differ across

groups g = 1, 2.

Panel (D) of Figure S1 shows, for study jprev, bias in the estimated median survival. The

median survival time was estimated using Kaplan-Meier estimates, assuming non informa-

tive censoring and including drop-out decisions as censoring events. We assumed identical

prevalences (p1 = 0.5) of patients with good and poor prognoses (group 1 and 2), and median

survival times of 17 and 3 months in these two groups for the SOC and ineffective treatments.

We consider two cases. In the first one (brown curve), if πj,` become smaller than the threshold,

then each patient in group 1 drops out with probability equal to 0.05, 0.1, · · · , 0.9 (x-axis)

and patients in group 2 drop-out with probability 0.05. Symmetrically, in the second case

(black curve) the drop-out probability equals 0.05 for patients in group 1 and 0.05, 0.1, · · · , 0.9
(x-axis) for patients in group 2. When patients in group 1 have high drop-out propensity

the median survival tends to be underestimated. Similarly, survival estimates tend to be

overestimated when the drop-out probability is larger for patients with poor prognoses than

for patients with good prognosis.

5) Potential misinterpretation of data summaries

Data summaries, such as posterior probabilities, p-values and confidence intervals, can be

misinterpreted by patients and physicians. For example, a reported p-value equal to 0.2

may be interpreted as a 20% probability that the experimental treatment does not improve

primary outcomes. Moreover, patients might not be familiar with uncertainty summaries

(e.g. confidence intervals or probabilities). For some of them the propensity to enroll into a

clinical trial could be highly reduced after the study release data summaries. The patient

could be open to enroll into the trial in absence of early data summaries (impermeable trial),

but could refuse enrollment if early summaries were released, unless these included strong

evidence (say a posterior probability > 90%) of clinically relevant treatment effects.

We consider a scenarios where a group of patients consider the experimental treatment

in study j to be ineffective if πj,` < πIE (in our simulations πIE = 0.7, 0.8 or 0.9). These

patients don’t enroll into study j when πj,` < πIE. Figure S3 shows the average duration of
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the permeable trial jprev when the size p0 of this group of patients varies between 0 and 0.5.

6) Heterogeneous enrollment rates across trials

In the permeable and impermeable model we assumed identical enrollment rates across trials

when efficacy information is absent or when it coincides across trials (S3). In practice, there

are significant differences in enrollment rates across trials for a variety of reasons independent

of interim results. We evaluate departures from this assumption through study-specific

parameters (γj)j≥1 that modify the enrollment rates. The probability that a patient during

the interval [`, `+ 1) enrolls in trial j in the permeable environment becomes proportional to

γj × g(πj,`). Before each simulation of a permeable environment, we generate trial specific

parameters γj. The parameter γj then remains fixed during the trial j, and the overall

enrollment rate λP , considering all open trials, remains constant.

We considered different degrees of variability of these baseline parameters γj across open

trials. In our simulations we did not observe substantial changes in the operating characteristics

of the permeable environment beyond the expected correlation between the parameters γj’s

and the corresponding trial-specific times to complete accrual.

7) Sensitivity to the parameters of the decision model

Simulations of clinical trials in a permeable environment require a model for the effects of early

data summaries on the enrollment decisions. In our case, this model is defined by equation

(S3). It may be possible to justify qualitative characteristics of the model, such as monotonicity

of the probability that a patient selects a specific trial with respect to interpretable summary

statistics. However, there is little knowledge about key parameters, for example θS in model

(S3), which regulate how patients react to small variations of interim summary statistics, and

the degree of homogeneity across patients of preferences and decisions. Additionally, it is

likely that appropriate parameters for a specific disease, say a life threatening condition like

Glioblastoma, might be unrealistic for a different pathology. Figure S2 illustrates variations

in the operating characteristics when we consider different parameterizations θ in model

(S3). Panel (A) illustrates sensitivity to the choice of θL on the power and probability of

early termination of a study. Recall that in the simulation model trials can be stopped for

insufficient accrual. As expected the probability of early termination of trials increases with

θL. The panel illustrates also a monotone relation between θL and power (for jeff) or type

I error probability (for jprev). Panel (B) of Figure S2 shows the average trial duration (for

trials jeff and jprev as defined earlier) for different values of θS. As expected, the higher θS
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Figure S1: Sensitivity analysis in the permeable environment. Panel (A) shows the mean time
to complete enrollment for a range of reduction parameters (x-axis) of the overall enrollment
that are activated when maxactive j π`,j > 0.8. Panel (B) shows the average cumulative number
of enrollments for the study j = 6 (testing an ineffective treatment) during the accrual period
with misreporting of summary statistics, π`,j → min(1, π`,j + δbias), for δbias = 0, 0.15, 0.3.
Panel (C) shows the average proportion of enrolled patients in group 1 (y-axis) on study jeff

from the onset of the trial up to the i-th enrollment (i = 1, . . . , 244) (x-axis). The proportion
of patients in group 1 in the population equals p1 = 0.2, 0.4 or 0.8. Panel (D) illustrates
the average bias, i.e. the mean difference between estimated and true median survival time,
for the experimental arm in trial jprev when the drop-out probability of patients in group 1
(group 2) equals p ∈ [0.05, 0.9] (x-axis).
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the larger the difference becomes between the expected duration of competing trials testing

effective and ineffective treatments. In this panel we assumed that arm 6 tests an ineffective

treatment and compare it with jeff.
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Figure S2: Sensitivity to patients decision-making model parameters. Panel (A) illustrates
the sensitivity of power and the probability of early termination when we vary θL in model
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S2 Permeability in Platform Trials

A platform trial is a multi-arm study that, by design, allows investigators to add and remove

experimental arms as the trial progresses [1, 6, 7]. Arms can be added to the study when new

treatments become available, and the number of arms may change in time. Experimental

arms within platform designs can be compared during the study based on the available data.

Platforms can potentially provide interpretable comparisons to clinicians or patients, which

in turn can guide individual decisions.

We consider the following platform design. Patients are randomized to one of the active

experimental arms or the control arm. In contrast to conventional platform trials each patient

selects, before randomization, a list of arms and is then randomized to one of these arms with

identical probabilities. Treatments on these lists are selected based on available information

and personal preferences. The only requirements are the inclusion of the control arm and

selection of at least one experimental arm.

In the permeable environment the available information influences patient decisions, with

effects on the individual list of arms. In our model, during the period [`, `+ 1) each patient i

selects the experimental treatment j with probability

pj,` =


(

πj,` − θL
max

active s
πs,` − θL

)θS

if πj,` > θL,

0 if πj,` < θL,

(S2)

for each open experimental arm j. Here the arm j∗ with the largest PTE probability is always

included in the list, pj∗,` = 1, whenever the posterior probability of a PTE is larger than θL.

If all posterior probabilities πj,` of active experimental arms are smaller than θL, and therefore

the patient’s list does not include an experimental arm, the patient will not enroll in the

platform study. As before, experimental arms that do not recruit patients for a pre-specified

number of months are closed.

In the impermeable environment the individual list of treatments selected by patients

does not relate to interim information. Patient i includes in the individual list an active

arm j with probability pIP ∈ [0, 1], which is constant across arms. Only patients with lists

that include one or more experimental arms in addition to the control are enrolled into the

study. For the impermeable platform trial we include an early stopping rule for futility: to

simplify comparisons with the permeable setting, if the probability πj,` for arm j falls below

the threshold θL then arm j will be closed early.
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To avoid selection bias, we apply the same strategy used in [6] and compare the outcome

data of the experimental arm j only to those patients on the control arm that included arm j in

their list of experimental treatments. These are the patients that could have been randomized

to arm j with positive probability. We adopt this approach for permeable and in impermeable

platforms. The method (restricted comparisons) combined with balanced randomization (i.e.

identical randomization probabilities for the control arm and the experimental treatments

that the patient selects), is robust with respect to potential variations of the populations [6]

enrolled by the experimental and control arms during the platform study.

We evaluate the operating characteristics of permeable platform trials in a simulation

study using the parameters of Table 1, discussed previously, which are based on a literature

review of Glioblastoma trials. The platform starts with 5 experimental arms and up to 25

arms are added during a period of 10 years. Enrollment to an experimental arm j stopped if

230 patients, that selected arm j on their list, have been enrolled either to the experimental

arm or the control arm.

For the permeable platform, we used (θL, θS) = (0.05, 4) to define treatment selection

probabilities (S2). With these parameter values patients on average include 55% of the

active experimental arms in their randomization lists. For comparison purposes we assumed,

similarly, that patients in the impermeable platform study include each available open arm

within the randomization list with fixed probabilities equal to 0.55.

Table S3 summarizes selected operating characteristics of the platform trial designs.

Permeable and impermeable platform trials have similar type I and II error rates, and

a similar proportion of ineffective experimental treatments are stopped early for futility.

Platform trials use a common control arm to evaluate experimental treatments in a single

study. This, compared to conventional two-arm randomized clinical trial designs, reduces

considerably the average time and the number of patients required for testing treatments

[6]. Consequently, compared to two-arm trial environments, both platform environments —

permeable and impermeable — reduce the average time to complete enrollment.

The simulation study for platform trials confirmed a relevant result which we obtained

for permeable two-arm trials, indeed with permeable platform trials the time to complete

enrollment for the first effective experimental treatment (indicated by jeff) is shorter compared

to ineffective treatments.
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Study Enrollment Time to final Arm specific Power PStop
period results Sample Size

Mean (SD) Mean (SD) Mean (SD)

permeable platform trials
ineffective drug jprev 14.8 (10.8) 23.0 (08.9) 114.8 (16.4) 0.09 0.08
effective drug jeff 09.6 (05.1) 23.4 (04.1) 110.8 (08.0) 0.81 <0.01
ineffective drug jnext 13.4 (09.5) 22.0 (07.7) 110.4 (16.6) 0.10 0.09

impermeable platform trials
ineffective drug jprev 15.2 (04.8) 22.4 (04.3) 115.0 (07.9) 0.11 0.06
effective drug jeff 14.9 (04.7) 25.5 (03.4) 112.6 (13.2) 0.80 <0.01
ineffective drug jnext 14.1 (04.5) 21.9 (04.1) 112.8 (12.7) 0.09 0.06

Table S3: Permeable and impermeable platform trials in Glioblastoma. Results are based on
5,000 simulations of a drug-development period of 10 years during which 30 experimental
treatments are evaluated in a platform trial. We use (θL, θS) = (0.05, 4) to define patients
enrollment decisions (S2). Arm jeff ∈ {6, · · · , 27} corresponds, in each simulation, to the first
effective experimental treatment. Arm jprev denotes the last experimental treatment that was
added before arm jeff was activated. Arm jnext corresponds to the first ineffective experimental
treatment that opens enrollment after arm jeff. Arms jprev, jeff and jnext are random and vary
across simulations.
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Permeable environment

The probability pj,` that a patient selects study j, during month `, is an increasing

function of the the posterior probability of a positive treatment effect πj,` = Pr(HRj <

1| Data at month `) where HRj is the hazard-ratio between the experimental and control

arm in study j. We compute the posterior probabilities πj,` for each open trial with a normal

prior distribution for log(HRj) ∼ N(0, 1/2).

In our simulations, we assume that if πj,` is below a threshold θL ∈ [0, 1], then patients do

not enroll in trial j. Symmetrically, trials with πj,` above a threshold θU ∈ [θL, 1] are selected

with identical probabilities. The probability that a patient selects study j, during the period

[`, `+ 1), is pj,` ∝ gθ(πj,`), where

gθ(π) =


0 if π < θL,(
π−θL
θU−θL

)θS
if π ∈ [θL, θU ],

1 if π > θU ,

(S3)

and θS ≥ 0. With θS large and θU close to one patients select the trial with the largest PTE.
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