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Abstract

Partial differential equations (PDE) are ubiquitous in describing real-world phenomena. In
many statistical models, PDE are used to encode complex relationships between unknown
quantities and the observed data. We investigate statistical and computational questions
arising in such models, adopting an infinite-dimensional ‘nonparametric’ framework and
assuming the observed data are subject to random noise. The main PDE examples are of
elliptic or parabolic type.

In Chapter 2, we investigate the problem of sampling from high-dimensional Bayesian
posterior distributions. The main results consist of non-asymptotic computational guarantees
for Langevin-type Markov chain Monte Carlo (MCMC) algorithms which scale polynomially
in key quantities such as the dimension of the model, the desired precision level, and the
number of available statistical measurements. The bounds hold with high probability under
the distribution of the data, assuming that certain ‘local geometric’ assumptions are fulfilled
and that a good initialiser of the algorithm is available. We study a representative non-linear
PDE example where the unknown is a coefficient function in a steady-state Schrödinger
equation, and the solution to a corresponding boundary value problem is observed.

Chapter 3 investigates statistical convergence rates for nonparametric Tikhonov-type
estimators, which can be interpreted also as Bayesian maximum a posteriori (MAP) estimators
arising from certain Gaussian process priors. The theory is derived in a general setting for
non-linear inverse problems and then applied to two examples, the steady-state Schrödinger
equation studied in Chapter 2 and a model for the steady-state heat equation. It is shown
that the rates obtained are minimax-optimal in prediction loss.

The final Chapter 4 considers a model for scalar diffusion processes (Xt : t ≥ 0) with
an unknown drift function which is modelled nonparametrically. It is shown that in the
low frequency sampling case, when the sample consists of (X0, X∆, ..., Xn∆) for some fixed
sampling distance ∆ > 0, under mild regularity assumptions, the model satisfies the local
asymptotic normality (LAN) property. The key tools used are regularity estimates and
spectral properties for certain parabolic and elliptic PDE related to (Xt : t ≥ 0).
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Sind es nicht die kühnen, phantasievollen
Hypothesen, zu denen nur der phantastische Geist
findet – und die dann vom logischen Denker
bewiesen werden können?

Nikolaus Harnoncourt, Musik als Klangrede



Chapter 1

Introduction

Partial differential equations (PDE) are powerful tools to describe real-world phenomena.
Hence, there is an abundance of applications in the sciences and engineering in which the
collected measurement data follows the pattern of some PDE, and statistical procedures that
draw inferences from these data have to account for this PDE structure. Two prominent types
of such models are inverse regression models, where the relationship between the unknown
parameter of interest and the observed data are described by some PDE-governed ‘forward
map’ [91, 155, 10, 94, 159] and diffusion or data assimilation models in which the data-
generating mechanism is governed by stochastic differential equations (SDE) [103, 147, 119, 16];
these models will be introduced in further detail below.

For the inference tasks arising in these settings, a range of methodologies have emerged
in the last decades, including classical regularisation methods [63, 17], Bayesian methods
[155, 147] and various recent machine-learning based schemes, see, e.g., [8]. Moreover, often
it is desired not just to provide point reconstructions, but to quantify the uncertainty in the
reconstruction. The Bayesian paradigm offers an elegant way of achieving the latter – via
regions of high posterior probability, so-called ‘credible sets’ – and has been adopted widely
in the PDE context at least since influential work by A. Stuart [155, 53].

To understand whether such methodologies can be trusted in their conclusions, it is
key to understand their theoretical convergence properties. In many PDE models, it is
natural to assume that the unknown model parameter is a function and hence infinite-
dimensional. Thus in practice, the above-mentioned statistical procedures typically rely on
algorithms being able to solve challenging computational tasks on high- or infinite-dimensional
spaces, usually optimisation problems [28] or sampling problems [150]. Therefore, in giving
theoretical performance guarantees, one would ideally like to understand both (1) whether a
given procedure is in principle able to guarantee satisfactory recovery, assuming it can be
numerically evaluated, and (2) whether, and by what algorithm, the (approximate) numerical
computation of the procedure can be guaranteed with a feasible computational cost.



2 Introduction

Both of these problem areas have been investigated intensely in the literature for the
past decades. The first of them has been studied in the nonparametric statistics literature,
see [72, 167] for an overview, and has notably led to the minimax theory of estimation
[167, 72, 169] and the frequentist analysis of Bayes procedures [69]. Many results were first
derived for the nonparametric regression model and variants thereof, where the function of
interest is observed directly, corrupted by additive noise. Only recently, significant advances
have also been made in extending such results to PDE models, in particular a number of
non-linear inverse problems [177, 131, 136, 126, 135, 132, 2] and diffusion models [134, 1].

The theoretical study of high-dimensional computation likewise is a vast field – in this
thesis, we shall mainly be concerned with the computation of Bayesian posterior distributions
using Markov chain Monte Carlo (MCMC) [150]. The methodological design of MCMC
schemes in high- and infinite-dimensional spaces has recently attracted a lot of attention,
and it would not be possible to name all relevant articles here; we refer to [44, 18, 47, 43]
where many more references can be found. There has also been a surge in activity in
computational statistics, probability and machine learning to theoretically examine the
convergence behaviour of such MCMC schemes, see for instance [48, 57, 58, 80, 26]. Such
computational guarantees typically aim to quantify the number of required MCMC iterations
(and thus the computational complexity) required in order to numerically evaluate the
quantity of interest up to a desired precision level. However, there are very few results of this
kind which apply to even basic PDE models – the few notable exceptions will be discussed
below. A major hurdle is that many quantitative ‘non-asymptotic’ computational guarantees
in the literature depend on strong geometric assumptions like log-concavity of the target
measure, which can be hard or impossible to verify in non-linear settings. Without such
assumptions, the computational cost may scale exponentially as the model dimension and
sample size increase, see Sections 1.3 and 2.1 for more discussion.

In this thesis, we will study three theoretical problems which directly emanate from the
above discussion. Chapter 2 aims to develop mathematical theory which allows to assert the
‘polynomial-time’ feasibility of Bayesian posterior computation even in certain non-linear
settings, Chapter 3 studies the convergence rates of penalised least squares estimators in
non-linear statistical inverse problems and finally, Chapter 4 investigates the so-called local
asymptotic normality property for a nonparametric diffusion model. In the rest of this
introduction, we review the relevant mathematical context for those topics and thereafter
give a brief summary of the Chapters 2–4 to follow. These chapters may also be read
independently.
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1.1 Inverse regression models with PDE

Suppose that O ⊆ Rd, d ∈ N is some open, bounded subset with smooth boundary ∂O and
that the parameter space F is a collection of functions f : O → R. Then, a prototypical
statistical model1 is the nonparametric regression model, where point evaluations of f are
observed across the domain O, corrupted by Gaussian noise. Concretely, our data consist of
N independent and identically (i.i.d.) distributed pairs (Y1, X1), . . . , (YN , XN ) given by

Yi = f(Xi) + εi, i = 1, ..., N, (1.1)

where the Xi ∈ O are called the design points and are εi ∼i.i.d. N(0, 1) are i.i.d. noise
variables. The unknown is the regression function f ∈ F itself. This model is ubiquitous
in nonparametric statistics, see for instance [167, 72, 69]. For much of this thesis, we shall
assume that the Xi are themselves i.i.d. random variables which are uniformly distributed
across O (independently of the εi’s) – this is known as the random design regression model
and provides a natural randomised way of modelling ‘equally spaced’ measurements on O.

However, often the model parameter f cannot be directly observed and it is customary
to instead consider an inverse regression model. Here we have a collection of functions
{uf : f ∈ F} ⊆ L2(O) indexed by some parameter space F , where L2(O) denotes the
usual Lebesgue space of square integrable functions. The relationship between f and the
corresponding regression function uf may also be expressed by a ‘forward map’

G : F 7→ L2(O), f 7→ uf , (1.2)

and in analogy to (1.1) the data are then given by

Yi = G(f)(Xi) + εi, i = 1, ..., N, (1.3)

where again εi ∼i.i.d. N(0, 1) and Xi ∼i.i.d. Uniform(O), independently of the εi’s. In what
follows, we will also write shorthand Z(N) = ((Yi, Xi) : i = 1, ...N) ∈ (R × O)N for the full
data vector. The law of Z(N) will be denoted by Pf , with associated expectation operator Ef .
Since the measurement noise is assumed to be random, the recovery of f from the indirect
measurements (1.3) of G(f) constitutes a statistical inverse problem.

As elaborated above, in a variety of applications the map G is implicitly given through
the solution of some PDE or a system of PDE [155, 91, 45]. Concrete examples are, for
instance, the famous Calderón problem [31, 157, 128], linear and non-linear X-ray transforms

1When we speak of a statistical model, we generally mean a family {Pf : f ∈ F} of probability distributions
indexed by some set F (called the parameter space), each of which is a candidate for having generated the
observed data. When F is a subset of finite-dimensional Euclidean space Rp for some p ≥ 1, we speak of a
parametric model, and when F is infinite-dimensional, we will use the standard terminology of saying that
{Pf : f ∈ F} is ‘nonparametric’.
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[143, 125, 126], time-evolution PDE from fluid dynamics [45, 155] or coefficient-to-solution
maps for various elliptic PDE [155, 131, 149], just to name a few. In most of the above cases,
the forward map is non-linear.

In Chapters 2 and 3 of this thesis, we will study two representative example problems
arising from elliptic PDE. In both cases f is a non-negative coefficient function of a partial
differential operator and G is a non-linear coefficient-to-solution map for a corresponding
boundary value problem. In the first example, suppose g : ∂O → (0,∞) is some smooth
function representing known ‘boundary temperatures’ on ∂O. Then, for every sufficiently
regular f : O → [0,∞), G(f) is given as the unique solution u = uf of the time-independent
Schrödinger equation ∆u− 2fu = 0 on O,

u = g on ∂O,
(1.4)

where ∆ = ∑d
i=1 ∂

2/∂x2
i denotes the standard Laplace operator. Equations of this kind

appear for instance in photoacoustics [10] and scattering problems [11, 88], where the function
f > 0 may be interpreted as an unknown ‘attenuation potential’ which one would like to
infer from the data, see also [131].

In the second example, for some known ‘source function’ g : O → (0,∞) and any
sufficiently smooth f : O → (0,∞), G(f) is given by the unique solution to the following
divergence form Dirichlet boundary value problem (for ∇ and ∇· respectively denoting
gradient and divergence) ∇ · (f∇u) = g on O,

u = 0 on ∂O,
(1.5)

The equation (1.5) may be viewed as a steady-state heat equation, where f is a spatially
varying heat diffusivity coefficient, and uf describes the temperatures of an equilibrium state.
This equation has applications for instance in groundwater flow [182] and has been studied
frequently in the mathematical literature [155, 149, 53, 102, 24].

In both models, the constraint f > 0 has a clear physical interpretation, and whenever f
lies in some Sobolev space Hα(O) for α large enough, unique solutions G(f) exist by means
of classical elliptic PDE theory (see, e.g., Chapter 6 of [71]), see Chapter 3 for more details.
Therefore, to be concrete, in both problems we may for instance choose

F :=
{
f : O → R

∣∣ inf
x∈O

f(x) ≥ Kmin and ∥f∥Hα(O) ≤ R
}

as the parameter space, for some 0 < Kmin < R and large enough α ∈ N.
Given a forward map G, a natural initial question which one may pose is whether G is

injective – this is a necessary condition to permit the identification of f even if one were to
observe G(f) in a ‘noiseless’ manner. Such injectivity properties for non-linear PDE inverse
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problems can be very challenging to prove and require a case-by-case analysis, see, e.g., the
seminal papers [157, 128] where this is established for the Calderón problem [31]. More
quantitative statements about the injectivity of G are often referred to as ‘stability estimates’,
where one studies, very broadly speaking, the continuity properties of the inverse operator
uf 7→ f , between suitable function spaces. For instance, in the divergence form problem (1.5),
such stability properties were first examined by Richter [149] by considering the hyperbolic
problem

∇f · ∇u+ f∆u = g on O

subject to appropriate boundary conditions (indeed the above equation is just (1.5) re-written
as a PDE for f with known u), where the author also demonstrates that injectivity can be
guaranteed so long as the ‘heat source function’ g is positive, infx∈O g(x) > 0. Later these
results were refined and extended by various authors, see, e.g., [24, 102], and such stability
estimates will play an important role in Chapter 3.

Let us now return to the situation with noisy and discretised measurements Z(N) from (1.3):
Here an exact reconstruction of f is typically infeasible, and instead one seeks reconstruction
rules which can grant an approximate answer f̂N ≈ f . In statistical terminology, we seek
estimators, i.e., measurable functions f̂N = f̂N (Z(N)) of the data Z(N) taking values in the
parameter space F . A principled way to study the quality of estimators are convergence rates
of f̂N towards f in a frequentist statistical sense. Here, for each possible hypothetical ‘ground
truth’ value f0 generating the data, one evaluates the performance of f̂N in recovering f0 in
the large sample limit N → ∞. Specifically, if d : F × F → [0,∞) is some metric (called the
‘loss function’) on F , we wish to derive upper bounds δN N→∞−−−−→ 0 for the expected loss

Ef0

[
d(f̂N , f0)

]
≤ δN , f0 ∈ F . (1.6)

In the minimax paradigm (cf. [72, 167]), one further considers the worst-case risk over f ∈ F ,
given by supf∈F Ef [d(f̂N , f)]. The best such attainable risk for any estimator is called the
minimax risk rN , and we say that f̂N converges at the minimax rate if for some constant
C > 0 and all N ≥ 1,

sup
f∈F

Ef
[
d(f̂N , f)

]
≤ CrN .

For statistical inverse problems with linear forward operator G, the minimax theory of
estimation is fairly well-understood – roughly speaking, the minimax convergence rate depends
on the degree of ill-posedness of the forward map [which can for instance be encapsulated by
the action of G on different (e.g., Sobolev or Besov) regularity scales of functions [56, 77], or
by the rate of decay of the singular values of G [37]]. In the linear case, a variety of methods
have been proven to achieve the minimax rate, notably spectral/SVD-based methods and
wavelet shrinkage procedures, see [92, 56, 118, 37, 36] and references therein.
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In the non-linear setting, however, such methods are unavailable since they rely crucially
on the linearity of G. Hence, in the present thesis we will focus our study on likelihood-based
methods. Recalling (1.3), we see that up to an additive constant the log-likelihood function
of the data Z(N) equals the least squares criterion

ℓN (f) = ℓN (f, Z(N)) = −1
2

N∑
i=1

[Yi −G(f)(Xi)]2. (1.7)

For instance, the Bayesian approach to be discussed in the subsequent section is likelihood-
based. Another classical example is Tikhonov regularisation [164, 63], where one minimises a
penalised least squares functional J : F → R ∪ {+∞} of the form

J(f) = 1
2

N∑
i=1

[
Yi −G(f)(Xi)

]2 + λ2S(f), f̂N ∈ arg min
f∈F

J(f), (1.8)

where λ > 0 is a regularisation parameter and S : F → R ∪ {+∞} is a suitable penalty
functional. Heuristically, the first term in (1.8) quantifies the ‘data misfit’ and the second term
penalises the ‘complexity’ of any candidate solution f . Convergence rates of the form (1.6)
for Tikhonov regularised estimators have been studied extensively both in linear [46, 120, 36]
and non-linear statistical inverse problems [141, 20, 87, 112, 180]. In Chapter 3 we will derive
further convergence rate results for the elliptic PDE examples (1.5) and (1.4) in ∥ · ∥L2(O)-loss,
where the relation to those existing references will also be discussed.

Lastly, we mention that iterative regularisation methods [81, 95, 96, 22, 23, 179] are also
commonly used in non-linear inverse problems.

1.2 The Bayesian approach

The Bayesian approach to inverse problems for PDE was advocated for in a number of
important papers in the last decade [155, 53]. Since then, significant advances were also
made in investigating the performance of Bayes methods in a statistical setting with random
measurement noise, see, e.g., [131, 125, 126, 177] and the references below. In this section we
briefly review basic definitions and some of those results.

Let us consider again the inverse regression setting of the previous section with forward
map G : F → L2(O) and data Z(N) from (1.3), we also recall the log-likelihood function ℓN

from (1.7).2 The principle underlying the Bayesian approach is to model the unknown f

itself as a random variable, distributed according to some prior probability distribution Π
on F – together with the model (1.3) which specifies the law of Z(N) given f , this yields a
joint probability law for the pair (f, Z(N)). In the Bayesian paradigm, rather than ‘explicitly’

2We tacitly assume that F is endowed with a σ-algebra, making it a measurable space, and that G is
measurable.
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devising reconstruction methods f̂ = f̂(Z(N)) ∈ F , statistical inference is based on the
posterior distribution on the parameter space F , which is the conditional distribution of f
given the observed data Z(N).

Under very mild regularity assumptions, the posterior distribution is given by the well-
known Bayes’ formula – see for instance p.7 in [69]. In our case, it suffices to note that the
family of laws Pf of Z(N) has a common dominating measure (e.g., the Lebesgue measure on
(R×O)N ) and to assume that the log-likelihood (f, Z(N)) → ℓN (f, Z(N)) is jointly measurable.
Then, Bayes’ formula states that the posterior distribution Π(·|Z(N)) is given by

Π(B|Z(N)) =
∫
B e

ℓN (f)dΠ(f)∫
F e

ℓN (f)dΠ(f)
, B ⊆ F measurable. (1.9)

Colloquially, one may paraphrase the above equation as

posterior ∝ prior × likelihood.

Of course, an appropriate choice of the prior distribution is key to ensure that the
Bayesian approach can succeed. For instance, if the prior distribution puts no mass on
a neighbourhood of the true parameter, then the posterior will neither, and in this case
posterior-based inference will not be able to recover the true parameter. In the (for this
thesis) prototypical case where F ⊆ L2(O) is some function space on O, e.g. of Sobolev or
Hölder type, one would like to devise infinite-dimensional prior distributions which reflect
the regularity properties of the statistical parameter f appropriately. Various possible ways
of constructing such priors are discussed, e.g., in the monograph [69] and in [105, 155, 49].
Frequently, priors for functions f : O → R arise as the laws of a random sequence or ‘basis
expansion’

f =
∞∑
k=1

gkek, (1.10)

where (ek : k ≥ 1) ⊆ L2(O) are the ‘basis functions’ and gk ∈ R are random coefficients. A
plethora of choices for ek are possible, including polynomials, wavelets, trigonometric series
and more. For gk there are likewise many possibilities, for instance Gaussian random series
(see Chapter 11 of [69]), uniform wavelet priors [131] or Besov-type wavelet priors where the
gk are exponentially distributed [105, 49, 6] – the regularity of typical prior draws is then
reflected by decay properties of the coefficients gk.

In fact, by means of the Karhunen-Loéve expansion, any Gaussian random field taking
values in L2(O) may be written as a sequence (1.10) with normally distributed coefficients gk,
see, e.g., Example 11.16 in [69]. Later in Chapter 2, we will employ such priors of ‘Whittle-
Matérn’ type, where the basis functions (ek : k ≥ 1) are given as the L2(O)-orthonormal
system of eigenfunctions of the Dirichlet-Laplacian ∆ on O, see Chapter 2. In numerical
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practice, priors of the form (1.10) are often discretised by choosing a suitable high-dimensional
truncation of the sequence.

1.2.1 Bayesian posterior contraction rates

When the data stem from a ground truth parameter f0, it is a natural question whether
infinite-dimensional Bayes procedures are capable of recovering f0 as the number of samples
N increases, in analogy to convergence rates for point estimates from (1.6). When this
‘frequentist’ perspective is taken, rather than reflecting any ‘subjective beliefs’ of the scientist,
the Bayes approach is treated as yet another statistical inference procedure whose performance
we can evaluate within a framework which does not depend on the prior at all.

For the posterior distribution Π(·|Z(N)), a central notion of convergence towards f0 are
posterior contraction rates, which quantify the size of neighbourhoods of f0 on which most of
the posterior mass concentrates. As before, let d : F × F → [0,∞) denote some metric on F .

Definition 1.2.1 (Contraction rate). Let Π = ΠN be a sequence of prior distributions on
F and recall the definition of ΠN (·|Z(N)) from (1.9). We say that a sequence (δN : N ∈ N),
δn > 0, is a posterior contraction rate at the parameter f0 with respect to d if for all MN → ∞,

ΠN

(
{f : d(f, f0) ≥ MNδN}

∣∣Z(N)) N→∞−−−−→ 0, (1.11)

in Pf0-probability.

In general nonparametric i.i.d. sampling models, the seminal paper [67] first devised
general conditions under which contraction rates for nonparametric Bayes procedures can be
established. Since then, the theory has been extended and further developed for a variety
of settings, including for Gaussian process priors [173], non-i.i.d. sampling models (such as
the Markov chain models considered in Section 1.4 below) [68] and recently exponential
Besov-type priors [6]. The study of posterior contraction rates in various statistical models is
an active field of research and we refer to Chapters 8-9 of [69] for an excellent overview.

In inverse problems, the investigation of posterior contraction rates began relatively
recently and with the linear case. A conjugate setting with the Gaussian white noise model,
where both prior and posterior are Gaussian, is considered in [99, 7]. These results were then
extended by [144] to the non-conjugate setting and in [100] to obtain adaptive contraction
rates; we further mention the recent references [98, 77]. The above references all require
some ‘compatibility’ assumption between the forward map and prior distribution in one
form or another: The papers [99, 100] achieve this by assuming that one may simultaneously
diagonalise the prior covariance and forward map, while [7, 77] achieve this, very roughly
speaking, by assuming that smoothness properties of the prior and of the forward map can
be measured on the same regularity scale of functions.
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Recently, significant progress was also made in obtaining contraction rates for a number
of non-linear inverse problems of the form (1.3) (or closely related measurement models),
including the Schrödinger model (1.4) [131], statistical Calderón problems [2] and non-Abelian
X-ray transforms [126]. The divergence form PDE problem (1.5) was treated in [177, 132],
where the latter paper achieves minimax optimal convergence rates in prediction loss. On a
high level, a unifying feature in the above references is that the proofs proceed by addressing
the following two main challenges. First, one proves a contraction rate on the ‘forward level’

ΠN

(
f : ∥G(f) −G(f0)∥L2(O) ≥ δ̃N |Z(N)) N→∞−−−−→ 0 in Pf0-probability,

for some sequence δ̃N > 0, and second, one needs to establish a suitable (or use an existing)
stability estimate for the inverse map G(f) 7→ f . [As discussed earlier in Section 1.1, the
latter needs to be studied case-by-case for most non-linear inverse problems.] In our proofs
for the Schrödinger problem (1.4) and the divergence form problem (1.5) in Chapters 2 and 3
to follow, we will employ a similar proof principle.

1.2.2 MAP and mean estimates

Bayes methods can also be used to achieve point reconstruction via estimators f̂ for f0 which
are based on the posterior distribution (1.9). A natural candidate is the posterior mean
f̄ = f̄(Z(N)), which is defined by the Bochner integral

f̄ ≡
∫

F
fdΠ(f |Z(N)), (1.12)

whenever the latter is well-defined. Widely used are also maximum a posteriori (MAP)
estimators f̂MAP , which one may think of as elements f ∈ F that are ‘most likely’ relative
to the posterior distribution (1.9). In infinite-dimensional models, this concept requires a
careful definition since one cannot simply define f̂MAP as a maximiser of a Lebesgue density
on RD (as is possible in finite-dimensional models). Instead, it has been proposed to resort
to a more abstract notion where MAP estimators are defined via a property that small balls
centred around f̂MAP carry maximal probability in an asymptotic sense, see [51, 84, 5].

If F is a separable Hilbert space and Π a Gaussian process prior on F , then under mild
regularity conditions, such ‘generalised’ MAP estimators f̂MAP can in fact be shown to
coincide with minimisers of Tikhonov-type penalised least squares functionals from (1.8) with
appropriate penalty norm. Specifically, if ∥ · ∥H denotes the reproducing kernel Hilbert space
(RKHS) norm of Π (see, e.g., Chapter 11 of [69]), the relevant functional is given by

J : F → R ∪ {+∞}, J(f) =

−ℓN (f) + 1
2∥f∥2

H if f ∈ H, and

+∞, else,
(1.13)
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see Corollary 3.10 in [51] for a precise statement.
This variational characterisation is not just of theoretical appeal; it also asserts that MAP

estimates may be computed by means of optimisation methods. In contrast, the evaluation of
the posterior mean from (1.12) constitutes a completely different computational task – namely
that of high-dimensional numerical integration – and is typically achieved by averaging over
sufficiently many (approximate) draws (ϑk : 1 ≤ k ≤ J) from the posterior distribution,

f̄ ≈ 1
J

J∑
k=1

ϑk.

Both the optimisation problem of minimising J as well as the sampling problem of generating
(approximate) draws from Π(·|Z(N)) can be challenging. The latter will be further discussed
in Section 1.3 and forms the primary subject of study in Chapter 2 below.

For MAP estimators with Gaussian process priors, by virtue of (1.13) the convergence
behaviour can be understood in the same manner as for the Tikhonov-estimators discussed
in Section 1.1, see, e.g., [141, 20, 87, 112, 180], and by using our results derived in Chapter
3 below. Convergence rates for f̄ were only recently asserted in some non-linear inverse
problems [132, 126] by very different proof techniques from Bayesian nonparametrics, namely
by combining posterior contraction rates of the form (1.11) with a uniform control over higher
moments of the posterior distribution, see for instance Section 3.1 in [132].

1.2.3 Credible and confidence sets

In many applications, one of the main attractions of the Bayesian approach is that it not only
yields point reconstructions, but also provides a natural way of quantifying the uncertainty
in the reconstruction. Heuristically, for the Bayesian, the more the posterior distribution
from (1.9) is ‘concentrated’ on some region (for instance centred around the mean or the
MAP), the more precise the estimate is. This is formalized in the following notion: for any
γ ∈ (0, 1), we say that a set A = A(Z(N)) ⊆ F is a level 1 − γ credible set if

ΠN (A|Z(N)) ≥ 1 − γ. (1.14)

Of course, a trivial way to devise a credible set would be to choose A = F , but this choice is
entirely uninformative. Hence, in practice, we should be preferably interested in constructing
credible sets which are ‘small’ by a suitable criterion (such as L2(O)-diameter) and whose
posterior probability is in fact close to 1 − γ.

From the frequentist perspective, one of the central goals of statistical inference is to
devise confidence sets, i.e., sets A = A(Z(N)) ⊆ F which satisfy the asymptotic property

Pf0(f0 ∈ A(Z(N))) N→∞−−−−→ 1 − γ, f0 ∈ F , (1.15)
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again for some prescribed level γ ∈ (0, 1).3 One says that A has asymptotic coverage 1 − γ.
Of course, for the practicioner, it is tempting to utilise a credible set arising from the

posterior distribution as an ‘off-the-shelf’ candidate for a confidence set. However, whether
this approach is theoretically justified is an intricate question, and the previously discussed
results do not yet provide a satisfactory answer. One way to rigorously assert that Bayesian
credible sets indeed constitute confidence sets in the sense of (1.15) is to study the precise
limiting shape of the posterior distribution via so-called Bernstein-von-Mises (or, in short,
BvM) theorems. In the parametric case where f is a finite-dimensional parameter, the BvM
theorem asserts that if the data Z(N) arise from some true parameter f0, then the law of
the rescaled parameter

√
N(f − f̂) under the posterior distribution tends in total variation

distance to the normal distribution N(0, I−1
f0

), where f̂ is suitable centring estimator and If0

denotes the Fisher information matrix, see for instance, Chapter 10 in [172].
While the parametric BvM theorem holds under mild conditions which are satisfied by

most ‘regular’ statistical models and prior distributions, the situation is far more subtle
in infinite dimensions, and a full discussion of this topic goes beyond the scope of this
thesis. Nonparametric BvM theorems which assert the convergence of the rescaled posterior√
N(f − f̂)|Z(N) to a limiting infinite-dimensional Gaussian process have been established

for the standard nonparametric regression model [33, 34, 145] and thereafter also in some
linear [125, 73] and non-linear inverse problems [131, 135], see also Chapter 12 of [69] for an
overview. In numerous PDE problems including (1.5), it remains a challenging open problem
to establish such a BvM theorem.

1.3 Bayesian computation by MCMC

The computational tasks arising from the posterior-based methods discussed in the previous
section can be challenging to solve numerically. One of the key methodologies for Bayesian
computation is Markov chain Monte Carlo (MCMC) [150], and in this section we shall discuss
some basic examples as well as some relevant theoretical convergence guarantees.

While the statistical models introduced in the previous sections were generally indexed by
an infinite-dimensional parameter f ∈ F , in practice it is common to employ a D-dimensional
Euclidean parameter (D ≥ 1) which we shall denote by θ ∈ RD. Usually RD can be viewed
as an ‘approximation subspace’ of the parameter space F via some suitable one-to-one
parametrisation θ → fθ ∈ F . Since D may grow as the sample size N increases, we speak of
θ as a ‘high-dimensional’ parameter. In this section, suppose that Π is some prior probability
distribution on RD with Lebesgue density π and that θ 7→ ℓN (θ) is a likelihood function
arising from some statistical model (not necessarily of inverse regression type). Then, the
posterior probability distribution Π(·|Z(N)) from which we wish to sample also possesses a

3Alternative definitions, for instance where uniformity inff∈F Pf (f ∈ A(Z(N))) is required, are also common.
However, we shall not discuss this further.
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Lebesgue density, of the form

π(θ|Z(N)) ∝ eℓN (θ)π(θ), θ ∈ RD. (1.16)

Sampling from a measure of the form (1.16) is relevant not just in the statistical inverse
problem setting discussed above, but also a variety of other contexts, for instance conditioned
diffusions or data assimilation, as illustrated for instance in [44].

1.3.1 Examples of MCMC algorithms

The literature on MCMC in high-dimensional and function spaces has grown rapidly in
recent years and it would not be possible here to recall all the schemes which have been
proposed; see for instance [44, 18, 43, 47] for a range of methodologies. Let us discuss two
representative examples of MCMC algorithms which are used regularly in the context of
high-dimensional statistical models. The first example is a gradient-based algorithm which
arises as the Euler-Maruyama discretisation of the Langevin SDE

dLt =
[
∇ log π(·|Z(N))

]
(Lt)dt+

√
2dWt, Lt ∈ RD, t ≥ 0, (1.17)

where (Wt : t ≥ 0) is a D-dimensional Brownian motion. It is well-known that under standard
regularity assumptions, (1.17) possesses a unique strong solution and that Π(·|Z(N)) is the
unique invariant measure for (Lt : t ≥ 0), see, e.g., [48]. The MCMC scheme requires choice of
a step size γ > 0 as well as an initialisation point θinit and is stated precisely in Algorithm 1
below. Due to the discretisation step, the invariant distribution of the resulting Markov chain
is biased, which is not being corrected for – hence the algorithm is often called Unadjusted
Langevin algorithm [152].

Algorithm 1 Unadjusted Langevin algorithm

Input: Initialiser θinit ∈ RD, step size γ > 0, i.i.d. sequence ξk ∼ N(0, ID×D).

1: initialise ϑ0 = θinit
2: for k = 0, 1, . . . do
3: ϑk+1 = ϑk + γ∇ log π(ϑk|Z(N)) +

√
2γξk+1

4: return (ϑk : k ≥ 1)

The second example is the preconditioned Crank-Nicolson (pCN) algorithm, which was
first proposed in [44]. The pCN algorithm is an instance of a Metropolis-Hastings Markov
chain [123, 83], where each iteration of the Markov chain consists of two steps: (1) a proposal
step and (2) an accept-reject step. The advantage of such methods is that it allows to choose
from a broad class of proposal distributions. It can be shown under very general conditions
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that the accept-reject mechanism ensures that the resulting Markov chain has the correct
stationary distribution [163]. For a general overview of Metropolis-Hastings methods, see
[150].

The pCN algorithm is designed specifically to take advantage of Gaussian prior distribu-
tions. Suppose Π is an N(0, C) distribution with some D × D positive definite covariance
matrix C, such that the posterior density is given by

π(θ|Z(N)) ∝ exp
(
ℓN (θ) − 1

2θ
TC−1θ

)
, θ ∈ RD.

The pCN proposal distribution is then based on a semi-explicit Euler discretisation of the
Ornstein-Uhlenbeck type SDE

dLt = −Ltdt+
√

2CdWt, Lt ∈ RD, t ≥ 0, (1.18)

where (Wt : t ≥ 0) again is a D-dimensional Brownian motion, see [44] for the construction.
The dynamics (1.18) are chosen to leave the prior distribution N(0, C) invariant; as a result, the
acceptance probabilities for each proposal step only depend on likelihood ratios, see Algorithm
2. One of the premier advantages of the pCN algorithm is that it can be formulated in an
infinite dimensional setting with essentially no modifications, see, e.g., [44, 80]. Therefore,
its ergodicity properties may be analysed in a manner that is dimension-independent – this
done in the paper [80] which will be discussed further below.

Algorithm 2 preconditioned Crank-Nicolson algorithm

Input: Initialiser θinit ∈ RD, step size β ∈ (0, 1), i.i.d. sequence ξk ∼ N(0, C).

1: initialise ϑ0 = θinit
2: for k = 0, 1, . . . do
3: set zk+1 =

√
1 − βϑk +

√
βξk+1.

4: set ϑk+1 =
{
zk+1 with probability min

{
1, eℓN (zk+1)−ℓN (ϑk)}

ϑk else
5: return (ϑk : k ≥ 1)

As mentioned above, the ULA and pCN algorithms are just two representatives of a
larger class of MCMC schemes based on time-discretisations of SDEs. Other commonly used
algorithms of this type include the Metropolis-adjusted Langevin algorithm (MALA) [151, 44]
and Hamiltonian Monte Carlo (HMC) [18].
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1.3.2 Computational cost of MCMC

A main topic of this thesis is to study the computational cost of MCMC in high-dimensional
models. In the context here, we shall use this term synonymously with the number of MCMC
iterations required to perform some given computational task up to a prescribed precision
level.4 Specifically, we will consider the following two central aims of posterior computation:

(1) To synthesize a random variable whose law on RD (approximately) equals Π(·|Z(N)).
(2) To (approximately) compute integrals against the posterior distribution

EΠ[H|Z(N)] :=
∫
RD

H(θ)dΠ(·|Z(N))(θ), (1.19)

for suitable test functions H : RD → R.
For a given MCMC scheme (ϑk : k ≥ 1), studying the computational cost to address
these tasks typically boils down to a detailed understanding of the ergodicity properties of
(ϑk : k ≥ 1). Firstly, given a prescribed precision level ε > 0 and some metric d on the space
of probability distributions on RD, how long does the Markov chain (ϑk : k ≥ 1) take to mix
up to precision ε? In other words, one seeks to bound the mixing time

kmix(ε) := inf
{
k ∈ N : d(L(ϑk), µ) ≤ ε

}
. (1.20)

Computation of the integral (1.19) is most commonly addressed by taking an ergodic average
over J ≥ 1 elements of the Markov chain after some ‘burn-in time’ Jin ≥ 1,

π̂JJin
(H) :=

Jin+J∑
k=Jin+1

H(ϑk). (1.21)

Thus the second relevant question is as follows. Given ε > 0, how large do J, Jin ≥ 1 need to
be chosen in (1.21) to ensure

∣∣π̂JJin
(H) − EΠ[H|Z(N)]

∣∣ ≤ ε, (1.22)

with high probability under the law of (ϑk : k ≥ 1)?
Somewhat ‘non-explicit’ convergence properties for various MCMC schemes including

Langevin-type algorithms were studied in a line of important early work, see, e.g., [151, 152,
124]. However, in our setting, it is particularly important to understand the explicit scaling
of the mixing properties of (ϑk : k ≥ 1) both in dimension D and sample size N , since this
is the asymptotic regime in which consistent statistical recovery can be achieved. Recently,

4We note that in practice, computational challenges of different nature may also arise, for instance when
evaluation of the likelihood function ℓN requires numerical solution of complicated PDE forward maps.
However this will not be discussed further in the present thesis.
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there have been significant research efforts to obtain such explicit, non-asymptotic guarantees
suited for the high-dimensional setting, which we shall discuss in the rest of this section.

Mixing of Langevin-type algorithms under log-concavity assumptions

For ULA from Algorithm 1 targeting strongly log-concave distributions, the first explicit
convergence guarantees suited for the high-dimensional setting were proved by Dalalyan [48]
as well as Durmus and Moulines [57, 58]. The papers [48, 57] considered mixing times in
total variation whereas [58] extends these results to the Wasserstein distance.

To illustrate, and since those results will play an important role in Chapter 2, let us
briefly state a simplified version of Theorem 5 in [58]. For any Borel probability measures
µ1, µ2 on RD with finite second moments we define the Wasserstein distance

W 2
2 (µ1, µ2) = inf

ν∈Γ(µ1,µ2)

∫
RD×RD

∥θ − ϑ∥2
RDdν(θ, ϑ), (1.23)

where Γ(µ1, µ2) is the set of all ‘couplings’ of µ1 and µ2 (see, e.g., [176]).

Proposition 1.3.1 (Wasserstein mixing of ULA). Suppose that π(θ|Z(N)) from (1.16)
is positive throughout RD and write U(θ) := − log π(θ|Z(N)). Assume U : RD → R is
continuously differentiable and that there exist constants 0 < m ≤ Λ < ∞ such that for all
θ, θ̄ ∈ RD,

∥∇U(θ) − ∇U(θ̄)∥RD ≤ Λ∥θ − θ̄∥RD , (Λ-gradient Lipschitz),

U(θ̄) − U(θ) − ⟨∇U(θ), θ̄ − θ⟩RD ≥ m

2 ∥θ − θ̄∥2
RD , (m-strongly convex).

Then, if θU denotes the unique minimiser of U and (ϑk : k ≥ 1) is given by Algorithm 1 for
some γ ≤ 1/Λ and θinit ∈ RD, then the laws L(ϑk) of ϑk on RD satisfy

W 2
2 (L(ϑk),Π(θ|Z(N))) ≤ C

((
1 −mγ/2

)k[∥θinit − θU∥2
RD + D

m

]
+ γDΛ2

m2 + γ2DΛ4

m3

)
,

for some universal constant C > 0 and all k ≥ 0.

The derivation of this result can be found in Section 2.5.1. An important implication
of the preceding proposition is that in the strongly log-concave setting, the mixing times
(1.20) of ULA in Wasserstein distance depends polynomially on the dimension D and the
desired precision level. In fact, the paper [58] also asserts the polynomial-time feasibility of
Monte Carlo integration by ergodic averages π̂JJin

(H) from (1.21) by proving non-asymptotic
concentration inequalities akin to (1.22), see also Section 2.5.1. The proofs in [58] are based on
a rather ‘explicit’ analysis of both the continuous-time and discretised Langevin dynamics. For
both cases one can construct explicit (synchronous) couplings, where Wasserstein contractivity
follows relatively directly from strong log-concavity (see the proofs of Proposition 1 and 3
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in [58]). Similarly, explicit arguments are used to prove concentration bounds for π̂JJin
(H) –

here the authors exploit the fact that the transition kernel for the ULA chain, conditional
on the current state ϑk, is a Gaussian distribution ϑk+1|ϑk ∼ N(ϑk − γ∇U(ϑk), 2γID×D).
The quantitative bounds are then obtained using martingale arguments and concentration
inequalities for Gaussian distributions, see the proof of Theorem 15 in [58]. Such concrete
arguments seem harder to conduct for MCMC schemes like pCN or MALA which involve a
Metropolis-Hastings correction, see, e.g., [80, 59].

In the past years, the results from [48, 57, 58] for the ULA were extended to various
other settings, asserting non-asymptotic mixing bounds under closely related ‘geometric’
conditions such as log-Sobolev inequalities, or log-concavity outside of some Euclidean ball
[40, 175, 117]. We conclude by mentioning some results for related Langevin-type algorithms.
For continuous-time diffusions, mixing times are obtained in [61, 62] by means of so-called
reflection couplings. Again in the strongly log-concave setting, the papers [27, 60, 59] derive
convergence results for MALA; HMC algorithms are considered in [26, 110, 39, 38].

Beyond log-concavity

When the posterior distribution Π(·|Z(N)) from (1.16) is non-log-concave, the situation is far
less clear and and polynomial-time mixing bounds seem more challenging to obtain. The
elliptic PDE inverse problems (1.4) and (1.5) fall into this setting. Here, the nonlinearity of
the forward map G causes the negative log-likelihood from (1.7) to be non-convex in general.
To illustrate the difficulties which can arise, note that non-log-concave target densities may
in principle be multi-modal. That this leads to a deterioration of the mixing time can already
be shown in the one-dimensional D = 1 case – as elaborated in Example 1 in [61], one can see
from a basic double-well example that the exit time of the continuous time Langevin-dynamics
(1.17) from local optima of the log-posterior density log π(·|Z(N)) can scale exponentially in
the height of the local optimum.

However, there do exist a number of papers which analyse the computational complexity of
MCMC in high dimensions under different structural assumptions than the above-mentioned
ones. The first such article is [80] by Hairer, Stuart and Vollmer, where the pCN scheme from
Algorithm 2 is studied in a setting with Gaussian process priors. There, under general local
Lipschitz assumptions on the likelihood function as well as a lower bound assumption on the
acceptance probabilities 1∧exp(ℓN (θ)− ℓN (θ̄)) (for suitable θ, θ̄ ∈ RD) from Algorithm 2, the
authors first obtain a contractivity property in a Wasserstein-type distance (using probabilistic
results from [79]), which is then shown to yield an L2(µ)-spectral gap. An important aspect
is that the spectral gap is shown to be dimension-independent, thus demonstrating that it is
possible in principle to devise MCMC schemes whose mixing properties are invariant with
respect to the dimension D at which an infinite-dimensional model is discretized. However,
the results derived in [80] remain implicit in other important manners, which makes it
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non-obvious how to obtain non-asymptotic mixing guarantees for our setting in Chapter 2
below – see Section 2.1.2 for more discussion.

The paper [14] discusses the computational cost of MCMC in a frequentist setting with
high-dimensional statistical models where the model dimension D and sample size N tend to
infinity simultaneously. The starting point of their analysis is a ‘Bernstein-von-Mises’ type
assumption that the posterior distribution, when suitably rescaled and recentred, converges
to a Gaussian measure in a strong enough sense (cf. Section 1.2.3). Lastly, we mention [181]
where the computational complexity of Bayesian variable selection in a high-dimensional
linear regression model is analysed. Here the non-log-concavity of the sampling task arises
from sparsity assumptions on the parameter.

1.4 Nonparametric models for scalar SDE

We now discuss another class of statistical models in which the data is governed by a
differential equation and which will be studied in Chapter 4 of this thesis, namely models for
stochastic diffusion processes. Specifically, for some drift function b : R → R and diffusion
coefficient σ : R → (0,∞), consider the one-dimensional time-homogeneous Itô stochastic
differential equation (SDE)

dXt = b(Xt)dt+
√

2σ(Xt)dWt, t ≥ 0, (1.24)

where (Wt : t ≥ 0) is a standard Brownian motion. Whenever b and σ are Lipschitz continuous,
there exists a unique pathwise solution to (1.24), see, e.g., Theorem 24.3 in [13].

In the statistical setting, at least one of the two coefficients b and σ are unknown and the
goal is to infer b and/or σ from successive observations from one realisation of the stochastic
process (Xt : t ≥ 0). Hence, in order for consistent statistical recovery to be possible in the
large sample limit, one typically needs additional assumptions ensuring that (Xt : t ≥ 0) has
sufficiently strong ‘recurrence’ properties. For instance, [75, 134] consider a modification of
(1.24) where the diffusion is constrained to [0, 1] ⊆ R and reflected at the boundary points
{0, 1}. Alternatively one may assume a periodic setting [133, 111, 1] or that b satisfies a
drift condition at ±∞ [4]. For the sake of this introduction, we shall ignore this important
technical point and refer to [75, 134, 1] and Chapter 4 below for further discussion.

In contrast to the i.i.d. inverse regression setting from Section 1.1, the randomness in the
observations stems from the inherent stochasticity of the dynamics (1.24). The literature on
statistical inference for diffusions has considered various different observation schemes. For
instance, the references [103, 174, 4, 3, 133] assume the continuous observation scheme in
which the data are given by a continuous path X(T ) = (Xt : 0 ≤ t ≤ T ) with asymptotics
T → ∞. In the high frequency observation scheme, one instead observes discrete states
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X(n) = (X0, X∆n , . . . , Xn∆n) where the time steps ∆n between observations tend to 0 as
n → ∞, see, e.g., [1, 74].

In the present thesis, we will be concerned with the low frequency observation scheme,
where the data are given by

X(n) = (X0, X∆, . . . , Xn∆), (1.25)

for some fixed time difference ∆ > 0 between measurements. In this setting, both upper and
lower bounds for the minimax rate of estimation were first obtained by Gobet, Hoffmann
and Reiss in the seminal paper [75]. More specifically, they considered reflected diffusions
(Xt : t ≥ 0) taking values in [0, 1], and assumed the pair (σ, b) to belong to the Sobolev
regularity class

Θs :=
{

(σ, b) ∈ Hs((0, 1)) ×Hs−1((0, 1)) : ∥σ∥Hs ≤ C, ∥b∥Hs−1 ≤ C, inf
x∈(0,1)

σ(x) ≥ c
}

(1.26)
for some integer s > 1 and constants C ≥ c > 0. In this case the Markov chain (Xi∆ : i ≥ 0)
possesses a unique invariant measure µ. The estimation method proposed in [75] then
proceeds in two steps. First, one estimates µ by a standard wavelet projection estimator µ̂ as
well as the transition operator P∆,σ,b, which is defined via the action

P∆,σ,bh(x) = Eσ,b[h(X∆)|X0 = x]

on appropriate test functions h, by a high-dimensional matrix estimator P̂∆. [Here we have
denoted expectation w.r.t. the law of (1.25) under (σ, b) by Eσ,b.] Second, by exploiting
explicit reconstruction formulas for one-dimensional diffusions (see Section 3 of [75]) one
obtains simple ‘plug-in’ estimates σ̂n, b̂n from P̂∆, µ̂. For any 0 < a0 < a1 < 1, and , the
spectral method is then shown to achieve the convergence rates

Eσ,b
[
∥σ̂2

n − σ2∥L2([a0,a1])
]
≲ n−s/(2s+3),

Eσ,b
[
∥b̂n − b∥L2([a0,a1])

]
≲ n−(s−1)/(2s+3),

(1.27)

which are proved to be minimax-optimal – see Theorem 2.4 in [75] for the precise statement.
Interestingly, these spectral methods circumvent the explicit use of the likelihood structure

of the low frequency diffusion model. Only recently, it was proved by Nickl and Söhl [134]
that (likelihood-based) nonparametric Bayes methods are able to achieve recovery at the
same minimax convergence rate (1.27) over Θs from (1.26), up to log-factors.

1.5 Contributions

In this thesis, we study three problems related to the PDE/SDE models discussed above.
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1.5.1 On polynomial-time posterior computation

In Chapter 2, we consider sampling from high-dimensional posterior distributions Π(·|Z(N))
by means of MCMC algorithms. As in Section 1.3, Π(·|Z(N)) is assumed to have a density of
the form

π(·|Z(N)) = eℓN (θ)π(θ), θ ∈ RD, (1.28)

where ℓN (θ) is some log-likelihood function, N denotes sample size, and π is the density of the
prior distribution. Specifically, we will study (1) the computation of posterior characteristics
(such as its mean) by ergodic averages as well as (2) global mixing times in Wasserstein
distance, as defined by (1.20). As discussed already in Section 1.3.2, without further
geometric assumptions on the target density (such as log-concavity) it can be challenging
to give polynomial-time convergence guarantees, and the aim of Chapter 2 is to develop
mathematical techniques which allow to overcome such hardness barriers in certain non-linear
and high-dimensional settings.

The particular MCMC scheme considered will be a Langevin-type Markov chain (ϑk :
k ≥ 1) which is closely related to the Unadjusted Langevin algorithm from Algorithm 1 and
which is described in detail in Section 2.2. Our theory is developed in general non-linear
inverse regression models (1.3) with random design and a ‘high-dimensional’ parameter space
RD. The main PDE example studied is the inverse problem for the Schrödinger equation
described in (1.4) – in the terminology of Section 1.1, the forward map G : RD → L2(O)
then arises via solutions u ≡ G(θ) of the boundary value problem∆u− 2fθu = 0 on O,

u = g on ∂O,

where θ 7→ fθ > 0 is a suitable parameterisation. We will assume the prior distributions to
be Gaussian – thus the main difficulty arises from the non-log-concavity of the log-likelihood
function ℓN .

Our main results in the Schrödinger model can be summarised as follows. First, in
Proposition 2.2.4 we obtain non-asymptotic concentration inequalities for ergodic averages of
the Langevin-type algorithm. As as consequence, with high probability under the distribution
of the data, the posterior mean vector can be computed up to prescribed precision level ε > 0
using polynomially many (in D,N and ε) MCMC iterations, see Theorem 2.2.5. In Theorem
2.2.7, we obtain similar polynomial-time bounds for the mixing time of (ϑk : k ≥ 1) in the
Wasserstein distance from (1.23) – specifically, we have

W2(L(ϑk),Π(·|Z(N))) ≤ ε for all k ≥ kmix(ε), kmix(ε) = O(Da1Na2ε−a3)
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for some exponents a1, a2, a3 > 0. A further consequence of the proofs is that maxi-
mum a posteriori (MAP) estimators are computable by a gradient descent method within
O(Db1N b2ε−b3), b1, b2, b3 > 0, iterations (cf. Theorem 2.2.8) and that the ‘ground truth’
parameter θ0 can be computed within the statistical estimation error in polynomial time.

Our approach is to study in detail the local geometry of the posterior distribution
Π(·|Z(N)). The first key step lies in showing that even when Π(·|Z(N)) is not globally log-
concave, the posterior density satisfies a local log-concavity property which is satisfied on
some region around the ground truth parameter, with high probability under the law of the
data. This can be proven using concentration of measure arguments and assuming that the
derivative vector field ∇θG(θ) : O → RD satisfies a suitable stability estimate for all θ which
are sufficiently close to θ0 (see Lemma 2.3.4 below). We verify such stability estimates in the
Schrödinger model using techniques from elliptic PDE (see Lemma 2.4.7).

The second main step consists in proving that most of the mass of the posterior distribution
concentrates on the region of log-concavity. To show this, we use techniques in Bayesian
nonparametric inference which were recently developed to tackle non-linear inverse problems
with Gaussian priors [126, 131, 173]; see also the discussion in Section 1.2 above. The
importance of this step is that it allows to deduce that the posterior distribution can be
approximated in Wasserstein distance by a globally log-concave measure (this is stated in
Theorem 2.4.14 for the Schrödinger model). As auxiliary results, convergence rates for MAP
estimators and contraction rate results for the posterior akin to (1.11) are proved.

The previous two steps can then be used to conclude that when sufficiently good initiali-
sation (into the region of log-concavity) is feasible, polynomial-time mixing bounds can be
derived from the recent non-asymptotic convergence results for Langevin algorithms [48, 58]
discussed above in Section 1.3.2.

1.5.2 Convergence rates of Tikhonov regularised estimators

In Chapter 3, we study convergence rates for Tikhonov-regularised estimators introduced
in (1.8) where the penalty norms considered are of squared Sobolev-norm type ∥ · ∥Hα(O),
α ∈ N. As discussed in Section 1.1, these estimators can also be interpreted as Bayesian
maximum a posteriori estimates for Gaussian process priors with reproducing kernel Hilbert
space H = Hα(O).

The two primary examples are the non-linear PDE models (1.5) for the divergence form
equation and (1.4) for the Schrödinger equation. The measurement model considered is the
Gaussian white noise which is intimately related to the random design regression model (1.3).
Here one observes a realisation of the ‘continuum’ stochastic process

Y (ε) = G(f) + εW, (1.29)
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where ε > 0 is the noise level and W = (W(ψ) : ψ ∈ L2(O)) denotes a Gaussian white noise
process in the Hilbert space L2(O) – see Chapter 3 for details. Indeed, under standard
smoothness assumptions on the regression functions G(f) and with scaling ε ≃ N−1/2 of the
noise level it can be shown that (1.29) and (1.3) are asymptotically equivalent in the sense of
Le Cam equivalence [148, 30] and in the literature it is standard to consider the white noise
model in place of (1.3), see, e.g., [72, 167, 99, 144, 131, 125, 136].

The final objective function is a version of (1.8) adapted to the white noise setting and
to incorporate the constraint f > 0 required from the PDE models. Thus, for some smooth
one-to-one link function Φ : R → (0,∞), the criterion takes the form

J(f) = −2⟨Y (ε), G(f)⟩L2(O) + ∥G(f)∥2
L2(O) + λ2∥Φ−1 ◦ f∥2

Hα(O), λ > 0,

for a suitably chosen scalar λ > 0, see Section 3.3.
Our main results can be summarised as follows. First, we prove that minimisers f̂ of

J exist almost surely under the law of Y (ε) from (1.29). We then obtain the following
convergence rates for f̂ towards f and for the ‘plug-in’ estimator G(f̂) towards G(f):

Ef0∥G(f̂) −G(f0)∥L2(O) ≤ Cε
2α+2

2α+2+d , Ef0∥f̂ − f0∥L2(O) ≤ Cε
2α−2

2α+2+d (Div. form), (1.30)

Ef0∥G(f̂) −G(f0)∥L2(O) ≤ Cε
2α+4

2α+4+d , Ef0∥f̂ − f0∥L2(O) ≤ Cε
2α

2α+4+d (Schrödinger).
(1.31)

Here, C > 0 is a constant which can be chosen over suitable positivity-constrained α-regular
Sobolev classes, for the precise statements we refer to the main Theorems 3.3.3-3.3.7. Note
that the respective convergence rates for ∥G(f̂) −G(f0)∥L2 correspond to the minimax rate
(with direct observations) for estimating an (α+ 1)-smooth function in the divergence form
problem and an (α+ 2)-smooth function in the Schrödinger problem. By proving a lower
bound for the convergence rate in divergence form problem which matches the upper bound
(1.30), both convergence rates for ∥G(f̂) −G(f0)∥L2 are shown to be minimax optimal – in
this sense, one may think of the forward maps as 1- and 2- smoothing respectively.

Let us briefly discuss the proof ideas. First, we establish a convergence rate result (
Theorem 3.2.2 below) on the level of the regression functions ∥G(f̂) −G(f0)∥L2 in general
non-linear inverse problems – this result is shown under a local Lipschitz condition on the
forward map (see (3.8) below) between L2(O) and (Hκ)∗, κ ∈ N, where (Hκ)∗ denotes the
topological dual space of Hκ(O). One may think of κ as the ‘level of smoothing’ of G. In the
proofs, we crucially use metric entropy and Gaussian process arguments from M-estimation,
which were previously used to obtain convergence rates for ‘direct’ nonparametric regression
[170, 169]. Thereafter, the convergence rates for ∥f̂ − f0∥L2 are proved by use of suitable
stability estimates of the inverse problem, that is, local Lipschitz estimates for the inverse map
G−1. In the divergence form model, such stability estimates had previously been considered
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in the literature, e.g., [149, 24, 102], and in Lemma 3.5.5 we prove a new quantitative
L2(O)-H2(O) stability estimate building on ideas from [102].

Note that our approach circumvents source conditions which existing results for general
non-linear inverse problems frequently rely on see, e.g., [64, 20, 21] and also the discussion in
Section 3.1. For papers which have employed a similar high-level strategy of first solving the
‘regression problem’ and thereafter employing stability estimates, see, e.g., [177, 131].

We conclude by mentioning an interesting unresolved question, namely to determine
whether the convergence rate Ef0∥f̂ − f0∥L2 ≲ ε

2α−2
2α+2+d in (1.30) is minimax-optimal. In

fact, the latter is the minimax rate for a 2-ill posed problem with (α+ 1)-regular ‘forward’
regression functions. In our case this rate arises due to the use of a ‘1-smoothing’ L2-(H1)∗

Lipschitz estimate for G and a ‘2-degenerate’ L2-H2 stability estimate for G−1. Whether an
improved L2-H1 stability estimate can be obtained is a question for future research.

1.5.3 Local asymptotic normality of low frequency diffusion models

In the fourth and final chapter of this thesis, we consider nonparametric models for diffusion
processes (Xt : t ≥ 0) which were introduced in Section 1.4, where we will make the simplifying
assumption that σ ≡ 1 is constant and known. Hence the goal is to recover the unknown drift
function b from low-frequency samples X(n) = (X0, X∆, . . . , Xn∆) of the diffusion process

dXt = b(Xt)dt+
√

2dWt, t ≥ 0, (1.32)

where (Wt : t ≥ 0) is a standard Brownian motion and ∆ > 0 is the fixed distance between
measurement times. Specifically, we will follow [75, 134] in studying a version of the model
with reflection at the boundary points {0, 1}, see Section 4.2.1 for the precise definition.

The main aim of the chapter is to establish a local asymptotic normality (in short, LAN)
property for the low frequency diffusion model. The primary motivation to study the LAN
property is that it constitutes a first step towards understanding the ‘efficiency’ of inference
procedures in diffusion models, beyond the minimax estimation [75] and Bayesian contraction
rate results [134] discussed in Section 1.4. Specifically, the potential statistical applications
in mind are to study semiparametric efficiency bounds (see, e.g., Chapter 25 in [172] for
a general exposition) as well as infinite-dimensional Bernstein-von Mises theorems akin to
[33, 34, 133], which we briefly discussed in Section 1.2.3. However, in order to prove the
latter, there remain highly non-trivial challenges which have not yet been overcome, see also
Section 4.2.4.

Suppose that dµinit denotes the Lebesgue density of some initial distribution such that
X0 ∼ µinit (independently of (Wt : t ≥ 0)), and let p∆,b(·, ·) denote the transition densities of
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(Xt : t ≥ 0) at time ∆. Then, the log-likelihood function of the sample X(n) is given by

ℓn(b) = log dµinit(X0) +
n∑
i=1

log p∆,b(X(i−1)∆, Xi∆).

The LAN property asserts that the log-likelihood ratios satisfy a quadratic expansion of
a specific form – in our setting this will mean that for all sufficiently regular functions
b, h : [0, 1] → R,

ℓn(b+ h) − ℓn(b) = ∆n,h − 1
2∥h∥2

LAN + oPb
(1), (1.33)

where Pb denotes the law of X(n) under some drift function b, ∆n,h are random vectors
satisfying ∆n,h

n→∞−−−→ N(0, ∥h∥2
LAN ) in distribution (under Pb) and ∥ · ∥LAN is a suitable

norm, see Section 4.2.
In parametric models with i.i.d. data, one can establish a LAN expansion of the form (1.33)

under simple differentiability assumptions, see Chapter 7 of [172]. In the diffusion setting,
the LAN expansion has to be proven by different means, due to the non-i.i.d. nature of the
Markov chain data. In parametric models for diffusion processes observed at high frequency
(cf. Section 1.4) the LAN property was shown by Gobet [74] by use of Malliavin calculus.
For the low-frequency setting here, our two main proof ingredients are as follows. Firstly, we
require differentiability properties of the transition densities b 7→ p∆,b(x, y) allowing to form a
second-order Taylor expansion of ℓn(b) with suitable control over remainder terms. Secondly,
we require limit theorems for Markov chains which ensure that the first and second order
terms in the Taylor expansion respectively converge to the desired expressions in (1.33). Such
limit theorems have been established previously, see, e.g., [29] – the main work of Chapter
4 thus lies in establishing the differentiability properties. Since p∆,b(·, ·) does not admit a
closed-form expression in terms of b, we resort to an implicit characterisation of p∆,b(·, ·)
as fundamental solutions for a natural parabolic PDE corresponding to (Xt : t ≥ 0). The
regularity properties of p∆,b(·, ·) are then obtained by means of perturbation arguments and
using regularity theory for parabolic equations [116].





Chapter 2

On polynomial-time computation
of high-dimensional posterior
measures

This chapter studies the problem of generating random samples from high-dimensional
posterior distributions. The main results consist of non-asymptotic computational guarantees
for Langevin-type MCMC algorithms which scale polynomially in key quantities such as the
dimension of the model, the desired precision level, and the number of available statistical
measurements. As a direct consequence, it is shown that posterior mean vectors as well as
optimisation based maximum a posteriori (MAP) estimates are computable in polynomial
time, with high probability under the distribution of the data. These results are complemented
by statistical guarantees for recovery of the ground truth parameter generating the data.

The theory is first developed in a general high-dimensional non-linear regression setting
(with Gaussian process priors) where posterior measures are not necessarily log-concave,
employing a set of local ‘geometric’ assumptions on the parameter space, and assuming that
a good initialiser of the algorithm is available. Thereafter we derive mixing bounds for the
non-linear PDE model with the steady-state Schrödinger equation which we encountered
already in Section 1.1.

2.1 Introduction

Markov chain Monte Carlo (MCMC) type algorithms are a key methodology in computational
mathematics and statistics. The main idea is to generate a Markov chain (ϑk : k ∈ N) whose
laws L(ϑk) on RD approximate its invariant measure. In Bayesian inference the relevant
invariant measure has a probability density of the form

π(θ|Z(N)) ∝ eℓN (θ)π(θ), θ ∈ RD. (2.1)
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Here π is a prior density function for a parameter θ ∈ RD and the map ℓN : RD → R is
the ‘data-log-likelihood’ based on N observations Z(N) from some statistical model, so that
π(·|Z(N)) is the density of the Bayesian posterior probability distribution on RD arising from
the observations.

It can be challenging to give performance guarantees for MCMC algorithms in the
increasingly complex and high-dimensional statistical models relevant in contemporary data
science. By ‘high-dimensional’ we mean that the model dimension D may be large (e.g.,
proportional to a power of N). Without any further assumptions accurate sampling from
π(·|Z(N)) in high dimensions can then be expected to be intractable (see below for more
discussion). For MCMC methods the computational hardness typically manifests itself in
an exponential dependence in D or N of the ‘mixing time’ of the Markov chain (ϑk : k ∈ N)
towards its equilibrium measure (2.1).

In this work we develop mathematical techniques which allow to overcome such com-
putational hardness barriers. We consider diffusion-based MCMC algorithms targeting the
Gibbs-type measure with density π(·|Z(N)) from (2.1) in a non-linear and high-dimensional
setting. The prior π will be assumed to be Gaussian – the main challenge thus arises from the
non-convexity of −ℓN . We will show how local geometric properties of the statistical model
can be combined with recent developments in Bayesian nonparametric statistics [131, 126]
and the non-asymptotic theory of Langevin algorithms [48, 57, 58] to justify the ‘polynomial
time’ feasibility of such sampling methods.

While the approach is general, it crucially takes advantage of the particular geometric
structure of the statistical model at hand. In a large class of high-dimensional non-linear
inference problems arising throughout applied mathematics, such structure is described by
partial differential equations (PDEs). Examples that come to mind are inverse and data
assimilation problems, and in particular since influential work by A. Stuart [155], MCMC-
based Bayesian methodology is frequently used in such settings, especially for the task of
uncertainty quantification. We refer the reader to [93], [94], [78], [32], [105], [45], [155],
[119], [44], [147], [53], [8] and the references therein. A main contribution of this work is to
demonstrate the feasibility of our proof strategy in a (for such PDE problems) prototypical
non-linear example where the parameter θ models the potential in a steady-state Schrödinger
equation. This PDE arises in various applications such as photo-acoustics, e.g., [10], and
provides a suitable framework to lay out the main mathematical ideas underpinning our
proofs.

2.1.1 Basic setting and contributions

To summarise our key results we now introduce a more concrete setting. For O a bounded
subset of Rd, d ∈ N, and Θ some parameter space, consider a family of ‘regression’ functions
{G(θ) : θ ∈ Θ} ⊂ L2(O), where L2(O) denotes the usual Lebesgue space L2(O) of square-
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integrable functions. This induces a ‘forward map’

G : Θ → L2(O), (2.2)

and we suppose that N observations Z(N) = (Yi, Xi : i = 1, . . . N) arising via

Yi = G(θ)(Xi) + εi, i = 1, ..., N, (2.3)

are given, where εi ∼ N(0, 1) are independent noise variables, and design variables Xi

are drawn uniformly at random from the domain O (independently of εi). While natural
parameter spaces Θ can be infinite-dimensional, in numerical practice a D-dimensional
discretisation of Θ is employed, where D can possibly be large. The log-likelihood function
of the data (Yi, Xi) then equals, up to additive constants, the usual least squares criterion

ℓN (θ) = −1
2

N∑
i=1

[
Yi − G(θ)(Xi)

]2
, θ ∈ RD. (2.4)

The aim is to recover θ from Z(N). A wide-spread practice in statistical science is to employ
Gaussian (process) priors Π with multivariate normal probability densities π on RD; from a
numerical point of view the Bayesian approach to inference in such problems is then precisely
concerned with (approximate) evaluation of the posterior measure (2.1).

As discussed above, in important physical applications the forward map G is described
implicitly by a partial differential equation. For example suppose that G(θ) = ufθ

arises as the
solution u = ufθ

to the following elliptic boundary value problem for a Schrödinger equation


1
2∆u− fθu = 0 on O,

u = g on ∂O,
(2.5)

with a suitable parameterisation θ 7→ fθ > 0, θ ∈ RD (see (2.17) below for details). In such
cases, the map G is non-linear and −ℓN (θ) is not convex. The probability measure with
density π(·|Z(N)) given in (2.1) may then be highly complex to evaluate in a high-dimensional
setting, with computational cost scaling exponentially as D → ∞. For instance, complexity
theory for high-dimensional numerical integration (see [139, 140] for general references)
implies that computing the integral of a D-dimensional real-valued Lipschitz function – such
as the normalising factor implicit in (2.1) – by a deterministic algorithm has worst case
cost scaling as DD/5 [156, 85]. Relaxing a worst case analysis, Monte Carlo methods can in
principle obtain dimension-free guarantees (with high probability under the randomisation
scheme). However, a curse of dimensionality may persist as one typically is only able to
sample approximately from the target measure, and since the approximation error incurred,
e.g., by the mixing time of a Markov chain, could scale exponentially in dimension. The
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references [15, 19], [14], [146], [181, 117] discuss this issue in a variety of contexts. In addition,
since the distribution becomes increasingly ‘spiked’ as the statistical information increases
(i.e., N → ∞), commonly used iterative algorithms can take an exponential in N time to exit
neighbourhoods of local optima of the posterior surface π(·|Z(N)) (e.g., [61], Example 4).

In light of the preceding discussion one may ask whether the approximate calculation of
basic aspects of π(·|Z(N)) – such as its mean vector (expected value), real-valued functionals∫
RD H(θ)π(θ|Z(N))dθ, or mode – is feasible at a computational cost which grows at most

polynomially in D,N and the desired (inverse) precision level. Very few rigorous results
providing even just partial such guarantees appear to be available. The notable exception
Hairer, Stuart and Vollmer [80] along with some other important references will be discussed
below.

Let us describe the scope of the methods to be developed in this article in the problem of
approximate computation of the high-dimensional posterior mean vector in the PDE model
(2.5) with the Schrödinger equation. We will require mild regularity assumptions on D,Π and
on the ground truth θ0 generating the data (2.3) – full details can be found in Section 2.2.
If Π is a D-dimensional Gaussian process prior with covariance equal to a rescaled inverse
Laplacian raised to some large enough power α ∈ N, if the model dimension grows at most as
D ≲ Nd/(2α+d), and if θ0 is sufficiently well-approximated by its ‘discretisation’ in RD (see
(2.28)), we obtain the following main result.

Theorem 2.1.1. Suppose that data Z(N) = (Yi, Xi : i = 1, ..., N) arise through (2.3) in the
Schrödinger model (2.5) and let P > 0. Then, for any precision level ε ≥ N−P there exists a
(randomised) algorithm whose output θ̂ε ∈ RD can be computed with computational cost

O(N b1Db2ε−b3) (b1, b2, b3 > 0), (2.6)

and such that with high probability (under the joint law of Z(N) and the randomisation
mechanism), ∥∥θ̂ε − EΠ[θ|Z(N)]

∥∥
RD ≤ ε,

where EΠ[θ|Z(N)] =
∫
RD θπ(θ|Z(N))dθ denotes the mean vector of the posterior distribution

Π(·|Z(N)) with density (2.1).

We further show in Theorem 2.2.6 that θ̂ε also recovers the ground truth θ0, within
precision ε. The method underlying Theorem 2.1.1 consists of an initialisation step which
requires solving a standard convex optimisation problem, followed by iterations (ϑk) of a
discretised gradient based Langevin-type MCMC algorithm, at each step requiring a single
evaluation of ∇ℓN (which itself amounts to solving a standard linear elliptic boundary value
problem). In particular our results will imply that the posterior mean can be computed
by ergodic averages (1/J)∑k≤J ϑk along the MCMC chain (after some burn-in time), see
Theorem 2.2.5 (which implies Theorem 2.1.1). The laws L(ϑk) of the iterates (ϑk) in fact
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provide a global approximation

W2(L(ϑk),Π(·|Z(N))) ≤ ε, k ≥ kmix,

of the high-dimensional posterior measure on RD, in Wasserstein-distance W2. Our explicit
convergence guarantees will ensure that both the ‘mixing time’ kmix and the number of
required iterations J to reach precision level ε scales polynomially in D,N, ε−1. Similar
statements hold true for the computation of real-valued functionals

∫
RD H(θ)π(θ|ZN )dθ for

Lipschitz maps H : RD → R and of maximum a posteriori (MAP) estimates. See Theorems
2.2.7, 2.2.8 as well as Proposition 2.2.4 for precise statements.

The key idea underlying our proofs is to demonstrate first that, with high probability
under the law generating the data Z(N), the target measure Π(·|Z(N)) from (2.1) is locally
log-concave on a region in RD where most of its mass concentrates. Then we show that a
‘localised’ Langevin-type algorithm, when initialised into the region of log-concavity, possesses
polynomial time convergence guarantees in ‘moderately’ high-dimensional models. That
sufficiently precise initialisation is possible has to be shown in each problem individually (for
the Schrödinger model, see Section 2.5.4). Our proofs provide a template (outlined in Section
2.3) that can be used in principle also in general settings as long as the linearisation ∇θG(θ0)
of G at the ground truth parameter θ0 satisfies a suitable stability estimate (i.e., a quantitative
injectivity property related to the ‘Fisher information’ operator of the statistical model).
We verify this stability property for the Schrödinger equation using elliptic PDE techniques
(see Lemma 2.4.7) but our approach may succeed in a variety of other non-linear forward
models arising in inverse problems [97, 168, 155, 127], integral X-ray geometry [143, 126, 90],
and also in the context of data assimilation and filtering [119, 147]. Further advancing our
understanding of the computational complexity of such PDE-constrained high-dimensional
inference problems poses a formidable challenge for future research.

2.1.2 Discussion of related literature

Both the statistical and computational aspects of high-dimensional Bayes procedures have
been subject of great interest in recent years. Frequentist convergence properties of high-
and infinite-dimensional Bayes procedures were intensely studied in the last two decades. For
‘direct’ statistical models we refer to the recent monograph [69] (and references therein), and
in the non-linear (PDE) setting relevant here to [134, 126, 132, 2, 131, 135, 136].

We now discuss some representative papers studying mixing properties of MCMC algo-
rithms in high-dimensional settings, and refer to the references cited in these articles for
various further important results.
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2.1.2.1 Mixing times for pCN-type algorithms

The important contribution [80] by Hairer, Stuart and Vollmer derives dimension-independent
convergence guarantees for the preconditioned Crank-Nicolson (pCN) algorithm, using ergod-
icity results for infinite-dimensional Markov chains from Hairer, Mattingly and Scheutzow
[79]. The task of sampling from a general measure arising from a Gaussian process prior
and a general likelihood function exp(−Φ(θ)) is considered there. Their results are hence
naturally compatible with the setting considered in this thesis, where Φ is given by (2.4), i.e.
Φ = ΦN = ℓN and it is natural to ask (a) whether the bounds from [80] apply to this class of
problems and (b) if they apply, how they quantitatively depend on N and model dimension.

The key Assumptions 2.10, 2.11, and 2.13 made in [80] can be summarised as (A)
a global lower bound on the acceptance probability of the pCN as well as (B) a (local)
Lipschitz continuity requirement on Φ. In non-linear PDE problems, part (B) can usually
be verified (e.g., [136]), while part (A) is more challenging: due to the global nature of the
assumption, it seems that verification of (A) will typically require bounds for likelihood ratios
exp(Φ(θ) − Φ(θ̄)) with θ, θ̄ arbitrarily far apart. Of course, in some specific problems an
initial bound may be obtained by invoking inequalities like (2.18). However the resulting
lower bounds on the acceptance probabilities in the pCN scheme will decrease exponentially
in N . We also note that though dimension-independent, the main Theorems 2.12 and 2.14
from [80] remain implicit (non-quantitative) in the relevant quantities from Assumptions (A)
and (B); this seems to stem both from the utilised proof techniques, such as considerations
regarding level sets of Lyapunov functions (cf. [80], p.2474), as well as the qualitative nature
of the key underlying probabilistic weak Harris theorem proved by [79]. Summarising, while
it would be very exciting to see the results [80] be extended to yield quantitative bounds
which are polynomial in both N,D, serious technical and conceptual innovations seem to be
required. In the present context, when exploiting local average curvature of the likelihood
surface arising from PDE structure, it appears more promising to investigate gradient based
MCMC schemes.

2.1.2.2 Computational guarantees for Langevin-type algorithms

For the important gradient-based class of Langevin Monte Carlo (LMC) algorithms, the
first nonasymptotic convergence guarantees which are suited for high-dimensional settings
were obtained by Dalalyan [48] for log-concave densities, shortly after to be extended by
Durmus and Moulines [57, 58] to closely related cases. Our proofs rely substantially on these
convergence results for the strongly log-concave case (see Section 2.5.1 for a review).

Very recently further extensions have emerged, notably [117] and [175], which estabish
convergence guarantees assuming that either the density to be sampled from is convex outside
of some region, or that the target measure satisfies functional inequalities of log-Sobolev
and Poincaré type. However, it appears that both of these results, when applied to (2.4)
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without any further substantial work, yield bounds that scale exponentially in N . Indeed,
the bound in Theorem 1 of [117] evidently depends exponentially on the Lipschitz constant
of the gradient ∇ℓN ; and ad hoc verification of assumptions from [175] would utilise the
Holley-Stroock perturbation principle [89] (and (2.18)), exhibiting the same exponential
dependence. Alternative, more elaborate ways of verifying functional inequalities in this
context would be highly interesting, but this is not the approach we take in this thesis.

2.1.2.3 Relationship to Bernstein-von Mises theorems

A key idea in our proofs is to use approximate curvature of ℓN (θ) ‘near’ the ground truth θ0.
On a deeper level this idea is related to the possibility of a Bernstein-von Mises theorem which
would establish precise Gaussian (‘Laplace-type’) approximations to posterior distributions,
see [104, 106, 172] for the classical versions of such results in ‘low-dimensional’ statistical
models, and [66, 33–35] for high- or infinite-dimensional versions thereof.

Such an approach is taken by [14] who attempt to exploit the asymptotic ‘normality’
of the posterior measure to establish bounds on the computation time of MCMC-based
posterior sampling, building on seminal work by Lovasz, Simonovits and Vempala [113, 114]
on the complexity of general Metropolis-Hastings schemes. While [14] allow potentially for
moderately high-dimensional situations (by appealing to high-dimensional Bernstein-von
Mises theorems from [66]), their sampling guarantees hold for rescaled posterior measures
arising as laws of

√
N(θ− θ̃)|Z(N) where θ̃ = θ̃(Z(N)) is an initial ‘semi-parametrically efficient

centring’ of the posterior draws θ|Z(N) (cf. also Remark 2.2.10 below). In our setting such
a centring is not generally available (in fact that one can compute such centrings, such as
the posterior mode or mean, in polynomial time, is a main aim of our analysis). The setting
in [14] thus appears somewhat unnatural for the problems studied here, also because the
conditions there do not appear to permit Gaussian priors.

For the Schrödinger equation example considered in this thesis, Bernstein-von Mises
theorems were obtained in the recent paper [131] (in a slightly different but closely related
measurement setting). While we follow [131] in using elliptic PDE theory to quantify
the amount of curvature expressed in the ‘limiting information operator’ arising from the
Schrödinger model, our proofs are in fact not based on an asymptotic Gaussian approximation
of the posterior distribution. Rather we use tools from high-dimensional probability to deduce
local curvature bounds directly for the likelihood surface, and then show that the posterior
measure is approximated, in Wasserstein distance, by a globally log-concave measure that
concentrates around the posterior mode (see Theorem 2.4.14). While one can think of this as
a ‘non-asymptotic’ version of a Bernstein-von Mises theorem, the underlying techniques do
not require the full inversion of the information operator (as in [131] or also in [125, 135]),
but solely rely on a ‘stability estimate’ for the local linearisation of the forward map, and
hence are likely to apply to a larger class of PDEs. A further key advantage of our approach



32 On polynomial-time computation of high-dimensional posterior measures

is that we do not require the initialiser for the algorithm to be a ‘semi-parametrically efficient’
estimator (as [14] do), instead only a sufficiently fast ‘nonparametric’ convergence rate is
required, which substantially increases the class of admissible initialisation strategies.

2.1.2.4 Regularisation/optimisation literature

Regularisation-driven optimisation methods have been studied for a long time in applied
mathematics, see for instance the monographs [63, 95]. In the setting of non-linear operator
equations in Hilbert spaces and with deterministic noise, ‘local’ convergence guarantees for
iterative (gradient or ‘Landweber’) methods have been obtained in [81, 95], assuming that
optimisation is performed over a (sufficiently small) neighbourhood of a maximum. The proof
techniques underlying our main results allow as well to derive guarantees for gradient descent
algorithms targeting, for instance, maximum a posteriori (MAP) estimates, see Section
2.2.2.5. Specifically, in Theorem 2.2.8, global convergence guarantees for the computation
of MAP estimates over a high-dimensional discretisation space are given, in our genuine
statistical framework, paralleling our main results for Langevin sampling methods, which
can be regarded as randomised versions of classical gradient methods. A main attraction of
studying such randomised algorithms, and more generally of solving the problem of Bayesian
computation, is of course that one can access entire posterior distributions, which is required
for quantifying the statistical uncertainty in the reconstruction provided by point estimates
such as posterior mean or mode.

2.1.3 Notations and conventions

Throughout, N will denote the number of observations in (2.3) and D will denote the
dimension of the model from (2.4). For a real-valued function f : RD → R, its gradient and
Hessian are denoted by ∇f and ∇2f , respectively, while ∆ = ∇T∇ denotes the Laplace
operator. For any matrix A ∈ RD×D, we denote the operator norm by

∥A∥op := sup
ψ:∥ψ∥RD ≤1

∥Aψ∥RD .

If A is positive definite and symmetric, then we denote the minimal and maximal eigenvalues
of A by λmin(A) and λmax(A) respectively, with condition number κ(A) := λmax(A)/λmin(A).
The Euclidean norm on RD will be denoted by ∥ · ∥RD . The space ℓ2(N) denotes the usual
sequence space of square-summable sequence (an : n ∈ N), normed by ∥ · ∥ℓ2 . For any a ∈ R,
we write a+ = min{a, 0}. Throughout, ≲,≳,≃ will denote (in-)equalities up to multiplicative
constants.

For a Borel subset O ⊆ Rd, d ∈ N, let Lp = Lp(O) be the usual spaces of functions
endowed with the norm ∥ · ∥pLp =

∫
O |h(x)|pdx, where dx is Lebesgue measure. The usual

L2(O) inner product is denoted by ⟨·, ·⟩L2(O). If O is a smooth domain in Rd, then C(O)
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denotes the space of bounded continuous functions h : O → R equipped with the supremum
norm ∥ · ∥∞ and Cα(O), α ∈ N, denote the usual spaces of α-times continuously differentiable
functions on O with bounded derivatives. Likewise we denote by Hα(O) the usual order-α
Sobolev spaces of weakly differentiable functions with square integrable partial derivatives
up to order α ∈ N, and this definition extends to positive α /∈ N by interpolation [161]. We
also define (H2

0 (O))∗ as the topological dual space of

(
H2

0 (O) =
{
h ∈ H2(O) : tr(h) = 0

}
, ∥ · ∥H2(O)

)
,

where tr(·) denotes the usual trace operator on O. We will repeatedly use the inequalities

∥gh∥Hα ≤ c(α,O)∥g∥Hα∥h∥Hα , α > d/2, (2.7)

∥h∥Hβ ≤ c(β, α,O)∥h∥(α−β)/α
L2 ∥h∥β/αHα , 0 ≤ β ≤ α (2.8)

for g, h ∈ Hα, see, e.g., [109]. For Borel probability measures µ1, µ2 on RD with finite second
moments we define the Wasserstein distance

W 2
2 (µ1, µ2) = inf

ν∈Γ(µ1,µ2)

∫
RD×RD

∥θ − ϑ∥2
RDdν(θ, ϑ), (2.9)

where Γ(µ1, µ2) is the set of all ‘couplings’ of µ1 and µ2, i.e., probability measures ν on
RD ×RD satisfying ν(A×RD) = µ1(RD) and ν(RD ×A) = µ2(RD) for all Borel sets A ⊆ RD

(cf. [176]). Finally we say that a map H : RD → R is Lipschitz if it has finite Lipschitz norm

∥H∥Lip := sup
x ̸=y,x,y∈RD

|H(x) −H(y)|
∥x− y∥RD

. (2.10)

2.2 Main results for the Schrödinger model

Our object of study in this section is a nonlinear forward model arising with a (steady state)
Schrödinger equation. Throughout, let O ⊂ Rd be a bounded domain with smooth boundary
∂O. For convenience we will restrict to d ≤ 3, dimensions d ≥ 4 could be considered as
well at the expense of further technicalities. Moreover, without loss of generality we assume
vol(O) = 1.

Suppose that g ∈ C∞(∂O) is a given function prescribing boundary values g ≥ gmin > 0
on ∂O. For an ‘attenuation potential’ f ∈ Hα(O), consider solutions u = uf of the PDE


1
2∆u− fu = 0 on O,

u = g on ∂O.
(2.11)
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If α > d/2 and f ≥ 0 then standard theory for elliptic PDEs (see Chapter 6 of [71] or Chapter
4 in [42]) implies that a unique classical solution uf ∈ C2(O) ∩ C(Ō) to the Schrödinger
equation (2.11) exists. The non-linearity of the map f 7→ uf becomes apparent from the
classical Feynman-Kac formula (e.g., Theorem 4.7 in [42])

uf (x) = uf,g(x) = Ex
[
g(XτO )e−

∫ τO
0 f(Xs)ds

]
, x ∈ O, (2.12)

where (Xs : s ≥ 0) is a d-dimensional Brownian motion started at x with exit time τO from
O. This PDE appears in various settings in applied mathematics; for example an application
to photo-acoustics is discussed in Section 3 in [10].

2.2.1 Bayesian inference with Gaussian process priors

2.2.1.1 The Dirichlet-Laplacian and Gaussian random fields

In Bayesian statistics popular choices of prior probability measures arise from Gaussian
random fields whose covariance kernels are related to the Laplace operator ∆, see, e.g.,
Section 2.4 in [155] and also Example 11.8 in [69] (where the closely related ‘Whittle-Matérn’
processes are considered).

Let gO denote the symmetric Green kernel of the Dirichlet Laplacian on O, which for
ψ ∈ L2(O) describes the unique solution v = V[ψ] =

∫
O gO(·, y)ψ(y)dy ∈ H2

0 (O) of the
Poisson equation ∆v/2 = ψ on O. By standard results (Section 5.A in [161]) the compact
⟨·, ·⟩L2(O)-self-adjoint operator V has eigenfunctions (ek : k ∈ N) forming an orthonormal basis
of L2(O) such that V[ψ] = ∑∞

k=1 µk⟨ek, ψ⟩L2(O)ek, with (negative) eigenvalues µk satisfying
the Weyl asymptotics (e.g., Corollary 8.3.5 in [162])

λk = 1
|µk|

≃ k2/d as k → ∞, 0 < λk < λk+1, k ∈ N. (2.13)

The ‘spectrally defined’ Sobolev-type spaces Hα = {F ∈ L2(O) : ∑∞
k=1 λ

α
k ⟨F, ek⟩2

L2(O) < ∞}
are isomorphic to corresponding Hilbert sequence spaces

hα :=
{
θ ∈ ℓ2(N) : ∥θ∥2

hα =
∞∑
k=1

λαkθ
2
k < ∞

}
, h0 =: ℓ2(N).

One shows that Hα is a closed subspace of Hα(O) and that the sequence norm ∥ · ∥hα is
equivalent to ∥ · ∥Hα(O) on Hα. For α even, this follows from the usual isomorphism theorems
for the α/2-fold application of the inverse Dirichlet-Laplacian, and extends to general α
by interpolation, see Section 5.A in [161]. One also shows that any F ∈ Hα(O) supported
strictly inside of O belongs to Hα.
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A centred Gaussian random field Mα on O can be defined by the infinite random series

Mα(x) =
∞∑
k=1

λ
−α/2
k gkek(x), x ∈ O, gk ∼i.i.d. N(0, 1). (2.14)

For α > d/2 one shows that Mα defines a Gaussian Borel random variable in C(O) ∩
{h uniformly continuous : h = 0 on ∂O} with reproducing kernel Hilbert space equal to Hα

(see Example 2.6.15 in [72]), thus providing natural priors for α-regular functions vanishing
at ∂O. Such Dirichlet boundary conditions could be replaced by Neumann conditions at the
expense of minor changes (see p.473 in [161]). We finally note that our techniques in principle
may extend to other classes of priors such as exponential Besov-type priors considered in
[105], but we focus our development here on the most commonly used class of α-regular
Gaussian process priors.

2.2.1.2 Re-parameterisation, regular link functions, and forward map

To use Gaussian random fields such as Mα to model a potential f ≥ 0 featuring in the
Schrödinger equation (2.11), we need to enforce positivity by use of a ‘link function’ Φ. While
Φ = exp would appear natural, it will be convenient (following [136]) to choose a function
that does not grow exponentially towards ∞.

Definition 2.2.1 (Regular link function). Let Kmin ∈ [0,∞). We say that Φ : R →
(Kmin,∞) is a regular link function if it is bijective, smooth, strictly increasing (i.e. Φ′ > 0
on R) and if for any k ≥ 1, the k-th derivative of Φ satisfies supx∈R

∣∣Φ(k)(x)
∣∣ < ∞.

For a simple example of a regular link function Φ, see e.g. Example 3.2 of [136]. To ease
notation, we denote the composition operator associated to Φ by

Φ∗ : L2(O) → L2(O), F 7→ Φ ◦ F = Φ∗(F ). (2.15)

Now to describe a natural parameter space for f , we will first expand functions F ∈ L2(O)
in the orthonormal basis from Section 2.2.1.1,

F = Fθ =
∞∑
k=1

θkek, (θk : k = 1, 2, . . . ) ∈ ℓ2(N), (2.16)

and denote by Ψ(θ) = Fθ the map Ψ : ℓ2(N) → L2(O) that associates to the vector θ the
‘Fourier’ series of Fθ. We then apply a regular link function Φ to Fθ and set fθ := Φ ◦ Fθ.
For α > d/2, one shows (see (2.178) below) that Fθ ∈ Hα(O) implies fθ ∈ Hα(O) and hence
solutions of the Schrödinger equation (2.11) exist for such f . If we denote the solution map
f 7→ uf from (2.11) by G, then the overall forward map describing our parametrisation is
given by

G : hα → L2(O), G(θ) = ufθ
= [G ◦ Φ∗ ◦ Ψ](θ). (2.17)
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We shall frequently regard G as a map on the closed linear subspace RD of hα consisting
of the first D coefficients (θ1, . . . , θD) of θ ∈ hα. Moreover it will be tacitly assumed that a
regular link function Φ : R → (Kmin,∞), Kmin ≥ 0, has been chosen. We also note that the
solutions of (2.11) are uniformly bounded by a constant independent of θ ∈ hα, specifically

∥G(θ)∥∞ = ∥ufθ
∥∞ ≤ ∥g∥∞, (2.18)

as follows from (2.12) and fθ ≥ 0. This ‘bounded range’ property of G is relative to the norm
employed; for instance the ∥ufθ

∥Hα-norms are not uniformly bounded in θ ∈ hα for general
α.

2.2.1.3 Measurement model, prior, likelihood and posterior

For the forward map G from (2.17), we now consider the measurement model

Yi = G(θ)(Xi) + εi, i = 1, . . . , N, εi ∼i.i.d. N(0, 1), Xi ∼i.i.d. Uniform(O). (2.19)

The i.i.d. random vectors
Z(N) = (Zi)Ni=1 = (Yi, Xi)Ni=1 (2.20)

are drawn from a product measure on (R × O)N that we denote by PNθ = ⊗N
i=1Pθ. The

coordinate (Lebesgue) densities pθ of the joint probability density pNθ = ∏N
i=1 pθ of PNθ are of

the form
pθ(y, x) := 1√

2π
exp

{
− 1

2[y − G(θ)(x)]2
}
, y ∈ R, x ∈ O, (2.21)

(recalling vol(O) = 1) and we can define the log-likelihood function as

ℓN (θ) ≡ log pNθ +N log
√

2π = −1
2

N∑
i=1

(
Yi − G(θ)(Xi)

)2
. (2.22)

When using Gaussian process prior models in Bayesian statistics, a common discretisation
approach is to truncate the (‘Karhunen-Loéve’ type) expansion of the prior in a suitable
basis, cf. [105, 155, 80, 52]. In our context this will mean that we truncate the series defining
the random field Mα in (2.14) at some finite dimension D to be specified. For integer α to
be chosen, and recalling the eigenvalues (λk : k ∈ N) of the Dirichlet Laplacian from (2.13),
we thus consider priors

θ ∼ Π = ΠN ∼ N
(
0, N−d/(2α+d)Λ−1

α

)
, Λα = diag(λα1 , . . . , λαD), (2.23)

supported in the subspace RD of hα consisting of its first D coordinates. The Lebesgue
density dΠ of Π on RD will be denoted by π. The posterior measure Π(·|Z(N)) on RD then
arises from data Z(N) in (2.19) via Bayes’ formula. Writing ∥θ∥hα = ∥Fθ∥hα , its probability
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density function of Π(·|Z(N)) is given by

π(θ|Z(N)) ∝ eℓN (θ)π(θ) (2.24)

∝ exp
{

−1
2

N∑
i=1

(
Yi − G(θ)(Xi)

)2 − Nd/(2α+d)

2 ∥θ∥2
hα

}
, θ ∈ RD.

2.2.2 Polynomial time guarantees for Bayesian posterior computation

2.2.2.1 Description of the algorithm

We now describe the Langevin-type algorithm targeting the posterior measure Π(·|Z(N)). It
requires the choice of an initialiser θinit and of constants ϵ,K, γ. Throughout, we use the
initialiser θinit = θinit(Z(N)) ∈ RD constructed in Theorem 2.5.10 in Section 2.5.4 (computable
in O(N b0) polynomially many steps, for some b0 > 0). For ϵ > 0 to be chosen we define the
high-dimensional region

B̂ = {θ ∈ RD : ∥θ − θinit∥RD ≤ ϵD−4/d/2}. (2.25)

We then construct a proxy function ℓ̃N : RD → R which agrees on B̂ with the log-likelihood
function ℓN from (2.22). Specifically, take the cut-off function α = αη from (2.53) and the
convex function g = gη from (2.52) with choice η = ϵD−4/d and | · |1 = ∥ · ∥RD . Note that α
is compactly supported and identically one on B̂ and that g vanishes on B̂. Then for K to be
chosen, ℓ̃N takes the form

ℓ̃N (θ) := α(θ)ℓN (θ) −Kg(θ), θ ∈ RD. (2.26)

This induces a proxy probability measure, correspondingly denoted by Π̃(·|Z(N)), with
log-density

log π̃(θ|Z(N)) = ℓ̃N (θ) −N
d

2α+d ∥θ∥2
hα/2 + const., θ ∈ RD. (2.27)

Note that π̃(·|Z(N)) coincides with the posterior density π(·|Z(N)) on the set B̂ up to a
(random) normalising constant. The MCMC scheme we consider is then given in Algorithm
3 and the law of the resulting Markov chain (ϑk) ∈ RD will be denoted by Pθinit

.
While the algorithm is related to stochastic optimisation methods based on gradient

descent, the diffusivity term is of constant order in k, allowing (ϑk) to explore the entire
support of the target measure. It coincides with the unadjusted Langevin algorithm (see
Section 2.5.1) targeting π(·|Z(N)) as long as the iterates (ϑk) stay within the region B̂ ⊂ RD

we have initialised to. When (ϑk) exits B̂, the Markov chain is forced by the ‘proxy’ function
ℓ̃N to eventually return to B̂. This procedure is justified since most of the posterior mass will
be shown to concentrate on B̂ with high probability under the law of Z(N). [In fact a key
step of our proofs is to control the Wasserstein-distance between the measures induced by the
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Algorithm 3

Input: Initialiser θinit ∈ RD, convexification parameters ϵ,K > 0, step size γ > 0, i.i.d.
sequence ξk ∼ N(0, ID×D).

Output: Markov chain ϑ1, . . . , ϑk, · · · ∈ RD.

1: initialise ϑ0 = θinit
2: for k = 0, 1, . . . do
3: ϑk+1 = ϑk + γ∇ log π̃(ϑk|Z(N)) +

√
2γξk+1

4: return (ϑk : k = 1, . . . )

densities π(·|Z(N)), π̃(·|Z(N)), cf. Theorem 2.4.14.] Note that while the ball in (2.25) shrinks
as dimension D → ∞, relative to the step-sizes γ permitted below, B̂ has asymptotically
growing diameter. The results that follow show that the Markov chain (ϑk) nevertheless
mixes sufficiently fast to reconstruct the posterior surface on B̂ with arbitrary precision after
a polynomial runtime.

To demonstrate the performance of Algorithm 3 in a large N,D scenario, we now make
the following specific choices of the key algorithm parameters ϵ,K, γ.

Condition 2.2.2. Let θinit be the initialiser from Theorem 2.5.10 and suppose that

ϵ := 1
logN , K := ND8/d(logN)3, γ ≤ 1

ND8/d(logN)4 .

2.2.2.2 Conditions involving θ0

The convergence guarantees obtained below hold for moderately high-dimensional models
where D is permitted to grow polynomially in N , and under the frequentist assumption
that the data Z(N) from (2.19) is generated from a fixed ground truth θ0 inducing the law
PNθ0

. Note that we do not assume that θ0 ∈ RD, but rather that θ0 ∈ hα is sufficiently well
approximated by its ℓ2(N)-projection θ0,D onto RD. The precise condition, which is discussed
in more detail in Remark 2.2.9 below, reads as follows.

Condition 2.2.3. For integers d ≤ 3 and α > 6, suppose data Z(N) from (2.20) arise in the
Schrödinger model (2.19) for some fixed θ0 ∈ hα. Moreover, suppose that D ∈ N is such that
for some constants c0 > 0, 0 < c′

0 < 1/2, and θ0,D = ((θ0)1, ..., (θ0)D)

D ≤ c0N
d/(2α+d), ∥G(θ0,D) − G(θ0)∥L2(O) ≤ c′

0N
−α/(2α+d). (2.28)

Though it will be left implicit, the results we obtain in this section depend on θ0 only
through c′

0 and an upper bound S ≥ ∥θ0∥hα .
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2.2.2.3 Computational guarantees for ergodic MCMC averages

We first present a concentration inequality for ergodic averages along the Markov chain
(ϑk). Proposition 2.2.4 is non-asymptotic in nature; hence its statement necessarily involves
various constants whose dependence on D and N is tracked. Theorems 2.2.5 and 2.2.6 then
demonstrate how the desired polynomial time computation guarantees, including Theorem
2.1.1, can be deduced from it.

For ‘burn-in’ time Jin ∈ N and MCMC samples (ϑk : k = Jin + 1, ..., Jin + J) from
Algorithm 3, define

π̂JJin
(H) = 1

J

Jin+J∑
k=Jin+1

H(ϑk), H : RD → R.

We also set, for c1 > 0 to be chosen,

B(γ) := c1
[
γD(d+24)/d(logN)6 + γ2ND(d+44)/d(logN)12

]
+ exp(−N− d

2α+d ). (2.29)

The quantity B(γ) is an upper bound for the error incurred by the Euler discretisation of
the Langevin dynamics (see (2.163) below) and by the ‘proxy’ construction (2.27).

Proposition 2.2.4. Assume Condition 2.2.3 is satisfied and consider iterates ϑk of the
Markov chain from Algorithm 3 with θinit, ϵ,K, γ satisfying Condition 2.2.2. Then there exist
constants c1, c2, ..., c5 > 0 such that for all N ∈ N, any Lipschitz function H : RD → R, any
burn-in period

Jin ≥ logN
γND−4/d × log

(
D +B(γ)−1), (2.30)

any J ∈ N, any t ≥ 2∥H∥Lip
√
B(γ) and on events EN (measurable subsets of (R × O)N ) of

probability PNθ0
(EN ) ≥ 1 − c2 exp(−c3N

d/(2α+d)),

Pθinit

(∣∣π̂JJin
− EΠ(H|Z(N))

∣∣ ≥ t
)

≤ c5 exp
(

− c4
t2N2Jγ

D8/d∥H∥2
Lip(1 +D4/d/(NJγ))

)
.

The next result concerns computation of the posterior mean vector

EΠ[θ|Z(N)] =
∫
RD

θπ(θ|Z(N))dθ

by ergodic averages

θ̄JJin
:= 1

J

Jin+J∑
k=Jin+1

ϑk, Jin, J ∈ N,

within prescribed precision level ε. For convenience we assume ε ≥ N−P , which is natural in
view of the statistical error to be considered in Theorem 2.2.6 below. To this end, we make
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an explicit choice for the step size parameter

γ = γε = min
( ε2

D(d+24)/d ,
ε√

ND(22+d/2)/d
,

1
ND8/d

)
× (logN)−7. (2.31)

Theorem 2.2.5. Assume Condition 2.2.3 is satisfied. Fix P > 0 and let ε ≥ N−P . Consider
iterates ϑk of the Markov chain from Algorithm 3 with θinit, ϵ,K satisfying Condition 2.2.2
and with γ = γε as in (2.31). Then there exist c6, c7, c8 > 0 and at most polynomially growing
constants

gD,N,ε = O(Db̄1N b̄2ε−b̄3), b̄1, b̄2, b̄3 > 0, (2.32)

such that for all N ∈ N, Jin ≥ gD,N,ε, J ∈ N and on events EN of probability PNθ0
(EN ) ≥

1 − c7 exp(−c8N
d/(2α+d)),

Pθinit

(∥∥θ̄JJin
− EΠ[θ|Z(N)]

∥∥
RD ≥ ε

)
≤ c6D exp

(
− J

gD,N,ε

)
. (2.33)

Theorem 2.2.5 implies that for Jin ∧ J ≫ gD,N,ε × logD, one can compute the posterior
mean vector within precision ε > 0 with probability as close to one as desired. Using this
and Theorem 2.5.10 (whose hypotheses are implied by those of Theorem 2.2.5), we have in
particular also proven Theorem 2.1.1. Similar bounds for computation of EΠ(H|Z(N)) can
be obtained as long as ∥H∥Lip grows at most polynomially in D.

We conclude this subsection with a result concerning recovery of the actual target of
statistical inference, that is, the ground truth θ0. It combines Theorem 2.2.5 with a statistical
rate of convergence of EΠ[θ|ZN ] to θ0, obtained by adapting recent results from [126] to the
present situation.

Theorem 2.2.6. Consider the setting of Theorem 2.2.5 with P = α2/((2α+d)(α+2)). There
exist further constants c9, c10, c11, c12 > 0 such that for all N ∈ N, all ε ≥ c11N

− α
2α+d

α
α+2 ,

with gD,N,ε from (2.32) and on events EN of probability PNθ0
(EN ) ≥ 1− c9 exp(−c10N

d/(2α+d)),

Pθinit

(∥∥θ̄JJin
− θ0

∥∥
ℓ2

≥ ε
)

≤ c12 exp
(

− J

4gD,N,ε

)
. (2.34)

While the statistical minimax-optimal rate towards θ0 ∈ hα in this problem can be
expected to be faster than N−P (see [131]), it appears unclear how to obtain this rate
when Fθ is discretised by means of the (for the purposes of the theory developed in this
chapter essential) spectral decomposition of the Dirichlet-Laplacian from Section 2.2.1.1. The
difficulty arises with the approximation theory of the space Hα

c (O) (equal to the completion
of C∞

c (O) in Hα(O)) and is not discussed further here.
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2.2.2.4 Global bounds for posterior approximation in Wasserstein distance

The previous theorems concern the computation of specific posterior characteristics; one may
also be interested in global mixing properties of the laws L(ϑk) induced by the Markov chain
(ϑk : k ∈ N) towards the target Π(·|Z(N)), for instance in the Wasserstein distance from (2.9).

Theorem 2.2.7. Assume Condition 2.2.3 is satisfied, let L(ϑk) denote the law of the k-th
iterate ϑk of the Markov chain from Algorithm 3 with θinit, ϵ,K, γ satisfying Condition 2.2.2,
and let B(γ), c1 be as in (2.29). For any P > 0 there exist constants c1, c13, c14, c15, c16 > 0
such that on events EN of probability PNθ0

(EN ) ≥ 1−c13 exp(−c14N
d/(2α+d)) and for all N ∈ N,

the following holds.

i) For any k ≥ 1,

W 2
2
(
L(ϑk),Π[·|Z(N)]

)
≤ c15D

2α/d(1 − c16ND
−4/dγ)k+ +B(γ). (2.35)

ii) For any ‘precision level’ ε ≥ N−P and for γ = γε from (2.31), there exists

kmix = O(N b̃1Db̃2ε−b̃3), b̃1, b̃2, b̃3 > 0, (2.36)

such that for any k ≥ kmix,

W2
(
L(ϑk),Π[·|Z(N)]

)
≤ ε.

The first term on the right hand side of (2.35) characterises the rate of geometric
convergence towards equilibrium of (ϑk); the factor ND−4/dγ can be thought of as a spectral
gap of the Markov chain (related to the ‘average local curvature’ of ℓN (·) near θ0 in the
Schrödinger model). Choosing γ = γε as in (2.31), part ii) further establishes ‘polynomial-time’
mixing of the MCMC scheme towards the posterior measure.

2.2.2.5 Computation of the MAP estimate

Our techniques also imply the following guarantees for the computation of maximum a
posteriori (MAP) estimates

θ̂MAP ∈ arg max
θ∈RD

π(θ|Z(N))

by a classical gradient descent method applied to the ‘proxy’ posterior surface (2.27).

Theorem 2.2.8. Assume Condition 2.2.3 is satisfied and let θinit denote the initialiser from
Theorem 2.5.10. For k = 0, 1, 2, . . . , consider the gradient descent algorithm

ϑ0 = θinit, ϑk+1 = ϑk + γ∇ log π̃(ϑk|Z(N)), γ = 1
ND8/d(logN)4 .
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There exist constants c17, c18, c19, c20, c21 > 0 such that for all N ∈ N and on events EN of
probability at least PNθ0

(EN ) ≥ 1 − c17 exp(−c18N
d/(2α+d)) we have the following:

i) A unique maximiser θ̂MAP of π(θ|Z(N)) over RD exists.

ii) For all k ≥ 1, we have the geometric convergence

∥ϑk − θ̂MAP ∥2
RD ≤ c19D

4/d
(
1 − c20

D12/d(logN)4

)k
+
.

iii) Finally, we can choose k = O(D12/d(logN)5) such that

∥ϑk − θ0∥ℓ2 ≤ c21N
− α

2α+d
α

α+2 .

2.2.2.6 Remarks

Remark 2.2.9 (About Condition 2.2.3). In principle the upper bound for D required in
Condition 2.2.3 could be replaced by general conditions on D (alike those from Lemma 2.3.4)
which do not become more stringent as α increases. From a statistical point of view, however,
a choice D ≤ c0N

d/(2α+d) is natural as it corresponds to the optimal ‘bias-variance’ tradeoff
underpinning the convergence rate towards θ0 ∈ hα from Theorem 2.2.6. [In fact, the second
requirement in (2.28) can be checked for θ0 ∈ hα and D ≃ Nd/(2α+d), since G is ℓ2(N)−L2(O)
Lipschitz.] Moreover, combined with α > 6, such a choice of D provides a convenient sufficient
condition throughout our proofs: It is used critically when showing (in Theorem 2.4.14) that
the proxy posterior measure Π̃(·|Z(N)) contracts about a ∥·∥RD -neighbourhood of θ0 of radius
D−4/d on which the Fisher information in the Schrödinger model has a stable behaviour (see
(2.116)). It is also required for our initialiser θinit to lie in this neighbourhood (Theorem
2.5.10). While it is conceivable that the condition on α could be weakened (as discussed, e.g.,
in the next remark), it would come at the expense of considerable further technicalities that
we wish to avoid here.

Remark 2.2.10 (Preconditioning and rescaling). Given the ‘local’ nature of Algorithm 3, one
may be interested in sampling from the distribution of θ|Z(N) by first running an appropriate
modification of Algorithm 3 generating samples (ψk : k ≥ 0) of the rescaled and recentred law
νN of A−1

N (θ−θinit) with probability density propotional dνN (ψ) ∝ π(θinit+ANψ|Z(N)), where
AN ∈ RD×D is a sequence of ‘preconditioning’ matrices, and then setting ϑk = θinit +ANψk,
see, e.g., Section 4.2 in [48]. The techniques underlying our proofs also apply to such
preconditioned algorithms by obvious modifications of the surrogate construction (using
also that W2(L(ϑk),Π(·|Z(N))) ≲ W2(L(ψk), νN ), where the constant in ≲ depends only
polynomially on the eigenvalues of AN ). This may speed up the algorithm (e.g., in terms of
explicit constants bi, b̄i, b̃i in Theorems 2.1.1, 2.2.5 and 2.2.7 respectively), for instance, in the
Schrödinger equation it would be natural to choose for AN the action of the Laplace operator



2.3 General theory for random design regression 43

∆ on RD to ‘stablise’ the curvature bounds in Lemma 2.4.7. However, when investigating the
question of existence of polynomial time sampling algorithms, such preconditioning arguments
appear less relevant. For instance, for the pCN algorithm discussed in Section 2.1.2, the
global likelihood ratios determining the mixing time of the Markov chain obtained in [80]
still grow exponentially in N after rescaling. Likewise, for rescaled Langevin algorithms,
the ‘qualitative’ picture of computational hardness (in the context of this thesis) remains
unchanged.

2.3 General theory for random design regression

In proving the results from Section 2.2, we will first develop some theory which applies to
general nonlinear regression models. We thus consider in this section the measurement model
(2.3) for a general forward model G that satisfies a set of analytic conditions to be detailed
below. Let Θ be a (measurable) linear subspace of ℓ2(N) which itself admits a subspace
RD ⊆ Θ for some D ∈ N. Let O be a Borel subset of Rd, d ≥ 1, and consider a model of
regression functions {G(θ) : θ ∈ Θ} via a Borel-measurable forward map G : Θ → C(O).
While we regard each G(θ) as a continuous real-valued function, the results of this section
readily extend to vector or matrix fields over manifolds O, see Remark 2.3.11. Our data is
given by Zi = (Yi, Xi) arising from

Yi = G(θ)(Xi) + εi, i = 1, ..., N, (2.37)

where Xi ∼i.i.d. PX , PX a Borel probability measure on O, and where εi ∼i.i.d. N(0, 1),
independently of the Xi’s. We write Z(N) = (Z1, ..., ZN ) for the full data vector with joint
distribution PNθ = ⊗N

i=1Pθ on (R× O)N , with expectation operator ENθ = ⊗N
i=1Eθ. Then the

log-likelihood functions of the data Z(N) and of a single observation Z = (Y,X) ∼ Pθ are
given by

ℓN (θ) ≡ ℓN (θ, Z(N)) = −1
2

N∑
i=1

[Yi−G(θ)(Xi)]2, ℓ(θ) ≡ ℓ(θ, Z) = −1
2[Y −G(θ)(X)]2, (2.38)

respectively. If we regard these maps as being defined on RD ⊆ Θ, and if Π is a Gaussian
prior Π supported in RD, then we obtain the posterior measure Π(·|Z(N)) with probability
density π(·|Z(N)) on RD as in (2.24).

The main results of this section are Theorems 2.3.7 and 2.3.8, providing convergence
guarantees for a Langevin sampling method for the posterior distribution that depend
polynomially on model dimension D and number N of measurements, and which hold on an
event (i.e., a measurable subset E of the sample space (R × O)N supporting the data Z(N))
of the form

E := Econv ∩ Einit ∩ Ewass.
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On Econv the negative log-likelihood −ℓN (θ) will be strongly convex in some region B ⊆ RD,
while Einit is the event that allows one to initialise the method at some (data-driven)
θinit = θinit(Z(N)) in that set B. Finally, intersection with Ewass further guarantees that the
posterior measure Π(·|Z(N)) is close in Wasserstein distance to a globally log-concave surrogate
probability measure Π̃(·|Z(N)) which locally coincides with Π(·|Z(N)) up to proportionality
factors. In applying the results of this section to a concrete sampling problem, one needs to
show that all the events Econv, Einit, Ewass have sufficiently high frequentist PNθ0

-probability,
where θ0 is the ground truth parameter generating data (2.37). For the event Econv we provide
a generic method in Lemma 2.3.4, based on a stability estimate for the linearisation of the
map G combined with high-dimensional concentration of measure techniques. The events
Einit and Ewass are somewhat more specific to a given problem, see Remark 2.3.10 for more
discussion.

We will assume the set B ⊆ RD of local convexity to be of ellipsoidal form.

Definition 2.3.1. A norm | · | on RD is called ellipsoidal if there exists a positive definite,
symmetric matrix M ∈ RD×D such that |θ|2 = θTMθ for any θ ∈ RD.

Throughout this section, for some centring θ∗ ∈ RD, scalar η > 0 and ellipsoidal norm
| · |1 with associated matrix M , let B denote the open subset of RD given by

B :=
{
θ ∈ RD : |θ − θ∗|1 < η

}
. (2.39)

One may think of θ∗ as the projection of θ0 onto RD, but at this stage this is not necessary.
While for the Schrödinger model with d ≤ 3 we can choose | · |1 = ∥·∥RD , in general (e.g., when
d ≥ 4 or in other non-linear problems) it may be convenient to consider other (ellipsoidal)
localisation regions.

2.3.1 Local curvature bounds for the likelihood function

In what follows, θ0 ∈ Θ is an arbitrary ‘ground truth’ and the gradient operator ∇ = ∇θ will
always act on G viewed as a map on the subspace RD ⊆ Θ. Specifically we shall write ∇G(θ)
and ∇2G(θ) for the following vector and matrix fields

∇G(θ) : O → RD, ∇2G(θ) : O → RD×D,

respectively. The following condition summarises some quantitative regularity conditions on
the map G. These have to hold locally on the set B (and are satisfied, for instance, for any
smooth G). To formulate them we equip RD and RD×D with the Euclidean norm ∥ · ∥RD and
the operator norm ∥ · ∥op = ∥ · ∥RD→RD (for linear maps from RD → RD) respectively, and
the functional norms of RD- or RD×D-valued fields are understood relative to these norms.
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[So for instance, in (2.40), one requires a bound k2 for supx∈O ∥∇2G(θ)(x)∥RD→RD that is
uniform in θ ∈ B.]

Assumption 2.3.2 (Local regularity). Let B be given in (2.39).

i) For any x ∈ O, the map θ 7→ G(θ)(x) is twice continuously differentiable on B.

ii) For some k0, k1, k2 > 0,

sup
θ∈B

∥G(θ) − G(θ0)∥∞ ≤ k0,

sup
θ∈B

∥∇G(θ)∥L∞(O,RD) ≤ k1,

sup
θ∈B

∥∇2G(θ)∥L∞(O,RD×D) ≤ k2.

(2.40)

iii) For some m0,m1,m2 > 0 and any θ, θ̄ ∈ B, we have

∥G(θ) − G(θ̄)∥∞ ≤ m0|θ − θ̄|1,

∥∇G(θ) − ∇G(θ̄)∥L∞(O,RD) ≤ m1|θ − θ̄|1,

∥∇2G(θ) − ∇2G(θ̄)∥L∞(O,RD×D) ≤ m2|θ − θ̄|1.

We now turn to the central condition underlying the results in this section in terms of a
local curvature bound on Eθ0 [−∇2ℓ(θ, Z)], with ℓ(θ) : RD → R from (2.38). To motivate it,
notice that

− ∇2ℓ(θ, Z) = [∇G(θ)(X)][∇G(θ)(X)]T + [G(θ)(X) − Y ]∇2[G(θ)(X)]. (2.41)

If the design distribution PX is uniform on a bounded domain O then at θ = θ0, the
ENθ0

-expectation of the last expression can be represented as

vTEθ0 [−∇2ℓ(θ0, Z)]v = ∥∇G(θ0)T v∥2
L2(O), v ∈ RD. (2.42)

Therefore, if a suitable ‘L2(O)-stability estimate’ for the linearisation ∇G of G at θ0 is
available, the key condition (2.43) below holds at θ0; by regularity of G this should extend to
θ sufficiently close to θ0. In the example with the Schrödinger equation studied in Section
2.2, such a stability estimate indeed follows from elliptic PDE theory, see Lemma 2.4.7.

Note that the Hessian Eθ0 [−∇2ℓ(θ, Z)] is symmetric (by (2.41) and Assumption 2.3.2i)),
and recall that λmin(A) denotes the smallest eigenvalue of a symmetric matrix A.

Assumption 2.3.3 (Local curvature). Let B be given in (2.39) and let ℓ : RD → R be as in
(2.38).
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i) For some cmin > 0, we have

inf
θ∈B

λmin
(
Eθ0 [−∇2ℓ(θ, Z)]

)
≥ cmin. (2.43)

ii) For some cmax ≥ cmin > 0, we have

sup
θ∈B

[
|Eθ0ℓ(θ, Z)| + ∥Eθ0 [∇ℓ(θ, Z)]∥RD + ∥Eθ0 [∇2ℓ(θ, Z)]∥op

]
≤ cmax. (2.44)

The following lemma, which is based on concentration of measure arguments, shows that
the local ‘average’ curvature bound in (2.43) carries over to the ‘observed’ log-likelihood
function, with high frequentist PNθ0

-probability, and whenever D ≤ RN , where the dimension
constraint is explicitly quantified in terms of the constants featuring in the previous hypotheses.
The expression for RN substantially simplifies in concrete settings but, in this general form,
reflects the various non-asymptotic stochastic regimes of the log-likelihood function and its
derivatives.

Lemma 2.3.4. Suppose that data arises from (2.37) with ℓN : RD → R given by (2.38).
Suppose Assumptions 2.3.2, 2.3.3 are satisfied. There exists a universal constant C > 0 such
that if

RN := CN min
{
c2
min

C2
Gη

2 ,
cmin
CGη

,
c2
min

C ′2
G
,
cmin
k2

,
c2
max

C ′′2
G η2 ,

cmax
C ′′

Gη
,
c2
max

C ′′′2
G

,
cmax
k0 + k1

}
, (2.45)

where

CG := k0m2 + k1m1 + k2m0 +m2, C ′
G := k2

1 + k0k2 + k2,

C ′′
G := k0m1 + k1m0 +m1 + k0m0 +m0, C ′′′

G = k0k1 + k1 + k2
0 + k0,

(2.46)

then for any D,N ≥ 1 satisfying D ≤ RN , we have

PNθ0

(
inf
θ∈B

λmin
[

− ∇2ℓN (θ, Z(N))
]
<

1
2Ncmin

)
≤ 8e−RN , (2.47)

as well as

PNθ0

(
sup
θ∈B

[
|ℓN (θ, Z(N))| + ∥∇ℓN (θ, Z(N))∥RD + ∥∇2ℓN (θ, Z(N))∥op

]
> N(5cmax + 1)

)
≤ 24e−RN + e−N/8.

(2.48)

Inspection of the proof shows that for the first inequality (2.47), the terms involving cmax
can be removed from the definition of RN . In the sequel we will restrict considerations to
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the event

Econv :=
{

inf
θ∈B

λmin
[

− ∇2ℓN (θ)
]

≥ Ncmin/2
}

∩
{

sup
θ∈B

[
|ℓN (θ)| + ∥∇ℓN (θ)∥RD + ∥∇2ℓN (θ)∥op

]
≤ N(5cmax + 1)

}
,

(2.49)

whose PNθ0
-probability is controlled by Lemma 2.3.4.

2.3.2 Construction of the likelihood surrogate function

For Bayesian computation via Langevin-type algorithms one needs to ensure recurrence of the
underlying diffusion process, a sufficient condition for which is global log-concavity (on RD)
of the target measure to be sampled from, see Section 2.5.1. To this end we now construct a
‘surrogate log-likelihood function’ ℓ̃N : RD → R for the log-likelihood ℓN such that ℓ̃N = ℓN

identically on the subset {θ ∈ RD : |θ − θ∗|1 ≤ 3η/8} of B from (2.39), and which will be
shown to be globally log-concave on the event E from (2.60) below.

In order to perform the convexification of −ℓN , one needs to identify the region B up to
sufficient precision. In what follows, we denote by θinit = θinit(Z(N)) ∈ RD a (data-driven)
point estimator where the sampling algorithm is initialised; and we define the event Einit
(measurable subset of (R × O)N ) by

Einit :=
{
|θinit − θ∗|1 ≤ η/8

}
, (2.50)

where θinit belongs to the region B. That such initialisation is possible (i.e., that Einit has
sufficiently high PNθ0

-probability for appropriate η > 0) is proved for the Schrödinger model
in Theorem 2.5.10.

We require two auxiliary functions, gη (globally convex) and αη (cut-off function): For
some smooth and symmetric (about 0) function φ : R → [0,∞) satisfying supp(φ) ⊆ [−1, 1]
and

∫
R φ(x)dx = 1, let us define the mollifiers φh(x) := h−1φ(x/h), h > 0. Then, we define

the functions γ̃η, γη : R → R by

γ̃η(t) :=

0 if t < 5η/8,

(t− 5η/8)2 if t ≥ 5η/8,

γη(t) :=
[
φη/8 ∗ γ̃η

]
(t),

(2.51)

where ∗ denotes convolution, and

gη : RD → [0,∞), gη(θ) := γη(|θ − θinit|1). (2.52)
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Finally, for some smooth α : [0,∞) → [0, 1] which satisfies α(t) = 1 for t ∈ [0, 3/4] and
α(t) = 0 for t ∈ [7/8,∞), we define the ‘cut-off’ function

αη : RD → [0, 1], αη(θ) = α
(
|θ − θinit|1/η

)
. (2.53)

Definition 2.3.5. For the auxiliary functions gη, αη from (2.52), (2.53) and K > 0, we
define the surrogate likelihood function ℓ̃N by

ℓ̃N : RD → R, ℓ̃N (θ) := αη(θ)ℓN (θ) −Kgη(θ). (2.54)

When the choice of the constant K > 0 is large enough relative to cmax from Assumption
2.3.2, the following global convexity property can be proved for ℓ̃N (see Section 2.5 for a
proof).

Proposition 2.3.6. On the event Econv ∩ Einit (cf. (2.49), (2.50)), when ℓ̃N from (2.54) is
defined with any constant K satisfying

K ≥ CN(cmax + 1) · 1 + λmax(M)/η2

λmin(M) , (2.55)

(C > 1 depending only on the function α above), we have

ℓN (θ) = ℓ̃N (θ) for all θ ∈ RD s.t. |θ − θ∗|1 ≤ 3η/8,

and

inf
θ∈RD

λmin
(

− ∇2ℓ̃N (θ)
)

≥ Ncmin/2, (2.56)

as well as

∥∇ℓ̃N (θ) − ∇ℓ̃N (θ̄)∥RD ≤ 7Kλmax(M)∥θ − θ̄∥RD , θ, θ̄ ∈ RD. (2.57)

2.3.3 Non-asymptotic bounds for Bayesian posterior computation

We now consider the problem of generating random samples from the posterior measure

Π[B|Z(N)] =
∫
B e

ℓN (θ,Z(N))dΠ(θ)∫
RD eℓN (θ,Z(N))dΠ(θ)

, B ⊆ RD measurable,

arising from data (2.37) with log-likelihood (2.38) and Gaussian N(0,Σ) prior Π of density π
on RD, with positive definite covariance matrix Σ ∈ RD×D.

We use the stochastic gradient method obtained from an Euler discretisation of the
D-dimensional Langevin diffusion (see Section 2.5.1) with drift vector field ∇(ℓ̃N + log π)
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based on the surrogate likelihood function. More precisely, for stepsize γ > 0 and auxiliary
variables ξk ∼i.i.d. N(0, ID×D), define a Markov chain as

ϑ0 = θinit,

ϑk+1 = ϑk + γ
[
∇ℓ̃N (ϑk) − Σ−1ϑk

]
+
√

2γξk+1, k = 0, 1, . . .
(2.58)

Probabilities and expectations with respect to the law of this Markov chain (random only
through the ξk, conditional on the data Z(N)) will be denoted by Pθinit

,Eθinit
respectively.

The invariant measure of the underlying continuous time Langevin diffusion equals the
surrogate posterior distribution given by

Π̃[B|Z(N)] :=
∫
B e

ℓ̃N (θ,Z(N))dΠ(θ)∫
RD eℓ̃N (θ,Z(N))dΠ(θ)

, B ⊆ RD measurable.

In the following results we assume that the Wasserstein distance W2 between Π̃(·|Z(N))
and Π(·|Z(N)) can be controlled, specifically, for any ρ > 0, let us define the event

Ewass(ρ) :=
{
W 2

2
(
Π
[

· |Z(N)], Π̃[ · |Z(N)]) ≤ ρ/2
}
. (2.59)

For the Schrödinger model this is achieved in Theorem 2.4.14, for ρ decaying exponentially
in N , using that most of the posterior mass (and its mode) concentrate on the set B from
(2.39).

Our first result consists of a global Wasserstein-approximation of Π(·|Z(N)) by the law
L(ϑk) on RD of the k-th iterate ϑk arising from (2.58).

Theorem 2.3.7 (Non-asymptotic Wasserstein mixing). Suppose that the model given by
(2.37)-(2.38) fulfills the Assumptions 2.3.2, 2.3.3 for some 0 < η ≤ 1, that D,N ∈ N are such
that D ≤ RN with RN from (2.45) and let K be as in (2.55). Further define the constants

m := Ncmin/2 + λmin(Σ−1), Λ := 7Kλmax(M) + λmax(Σ−1).

Then for any 0 < γ ≤ 1/Λ and any ρ > 0 the algorithm (ϑk : k ≥ 0) from (2.58) satisfies, on
the event (i.e., measurable subset of (R × O)N )

E := Econv ∩ Einit ∩ Ewass(ρ), (2.60)

(with Econv, Einit, Ewass(ρ) defined in (2.49), (2.50), (2.59), respectively), and all k ≥ 0,

W 2
2
(
L(ϑk),Π[·|Z(N)]

)
≤ ρ+ b(γ) + 4

(
τ(Σ,M,R) + D

m

)(
1 − γm

2
)k
, (2.61)
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where, for some universal constants c1, c2 > 0, any R ≥ ∥θ∗∥RD and κ(Σ) = λmax(Σ)/λmin(Σ),

b(γ) = c1
[γDΛ2

m2 + γ2DΛ4

m3

]
, τ(Σ,M,R) = c2κ(Σ)

[
1 + η2

λmin(M) +R2
]
. (2.62)

From the previous theorem we can obtain the following bound on the computation of
posterior functionals by ergodic averages of ϑk collected after some burn-in time Jin ∈ N.
Specifically, if we define, for any H : RD → R integrable with respect to Π(·|Z(N)), the
random variable

π̂JJin
(H) = 1

J

Jin+J∑
k=Jin+1

H(ϑk), (2.63)

we obtain the following non-asymptotic concentration bound.

Theorem 2.3.8 (Lipschitz functionals). In the setting of the previous theorem, there exist
further constants c3, c4 > 0 such that for any ρ > 0, any burn-in period

Jin ≥ c3
mγ

× log
(
1 + 1

ρ+ b(γ) + τ(Σ,M,R) + D

m

)
, (2.64)

any J ∈ N, any Lipschitz function H : RD → R, any

t ≥
√

8∥H∥Lip
√
ρ+ b(γ) (2.65)

and on the event E from (2.60), we have

Pθinit

(∣∣π̂JJin
(H) − EΠ[H|Z(N)]

∣∣ ≥ t
)

≤ 2 exp
(

− c4
t2m2Jγ

∥H∥2
Lip(1 + 1/(mJγ))

)
. (2.66)

From the last theorem one can obtain as a direct consequence the following guarantee
for computation of the posterior mean EΠ[θ|Z(N)] by the ergodic average accrued along the
Markov chain.

Corollary 2.3.9. In the setting of Theorem 2.3.8, if we define

θ̄JJin
= 1
J

Jin+J∑
k=Jin+1

ϑk,

then on the event E and for t ≥
√

8
√
ρ+ b(γ), we have for some constant c5 > 0 that

Pθinit

(∥∥θ̄JJin
− EΠ[θ|Z(N)]

∥∥
RD ≥ t

)
≤ 2D exp

(
− c5

t2m2Jγ

D(1 + 1/(mJγ)
)
. (2.67)
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The two previous results imply that one can compute the posterior mean (or EΠ[H|Z(N)]
with ∥H∥Lip ≤ 1) within precision ε > 0 as long as ϵ ≳ √

ρ: For instance if γ is chosen as

γ ≃ min
{ε2m2

DΛ2 ,
εm3/2

D1/2Λ2

}
,

then the overall number of required MCMC iterations Jin + J depends polynomially on the
quantities N,D,m−1,Λ, ε−1. When the latter three constants exhibit at most polynomial
growth in N,D (as is the case for the Schrödinger equation treated in Section 2.2), we can
deduce that polynomial-time computation of such posterior characteristics is feasible, on
the event E from (2.60) at computational cost Jin + J = O(N b1Db2ε−b3), b1, b2, b3 > 0, with
Pθinit

-probability as close to 1 as desired.

Remark 2.3.10 (About the events Einit, Ewass). Controlling the probability of the events
Einit, Ewass (featuring in the definition of E in (2.60)) on which the preceding bounds hold
may pose a formidable challenge in its own right when considering a concrete ‘forward map’ G.
For our prototypical example of the Schrödinger equation from Section 2.2, this is achieved
in Sections 2.4.2 and 2.5.4. The proofs there give some guidance for how to proceed in other
settings, too. In essence one can expect that in bounding the PNθ0

-probability of the events
Einit, Ewass, global ‘stability’ and ‘range’ properties of the map G will play a role, whereas the
Assumptions 2.3.2, 2.3.3 employed in this section are ‘local’ in the sense that they concern
properties of G on B from (2.39) only. Discerning local from global requirements on G in
this way appears helpful both in the proofs and in the exposition of the main ideas of this
chapter.

Remark 2.3.11 (Extensions to vector-valued data). The key results of this section apply to
other settings where the ‘forward’ map G(θ) defines an element of the space of continuous
maps C(M → V ) from a d-dimensional compact Riemannian manifold M (possibly with
boundary) into a finite-dimensional vector space V of fixed finite dimension dim(V ) < ∞. If
we assume that the statistical errors (εi : i = 1, . . . , N) in equation (2.37) are i.i.d. N(0, IdV )
in V , then the log-likelihood function of the model is not given by (2.38) but instead of the
form

ℓN (θ) = −1
2

N∑
i=1

∥Yi − G(θ)(Xi)∥2
V , ℓ(θ) = −1

2∥Y − G(θ)(X)∥2
V ,

where the Xi, X are drawn i.i.d. from a Borel measure PX on M. Imposing Assumption
2.3.2 with the obvious modification of the norms there for V -valued maps, and if Assumption
2.3.3 holds for the preceding definition of ℓ(θ), then the conclusion of Lemma 2.3.4 remains
valid as stated, after basic notational adjustments in its proof.
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2.3.4 Proof of Lemma 2.3.4

It suffices to prove the assertion for RN ≥ 1. We first need some more notation: For any
x ∈ O, we denote the point evaluation map by

Gx : Θ → R, θ 7→ G(θ)(x).

For Z = (Y,X) ∼ Pθ0 , we will frequently use the following identities in the proofs below
(where we recall that ∇ and ∇2 act on the θ-variable).

−ℓ(θ, Z) = 1
2
[
Y − GX(θ)

]2 = 1
2
[
GX(θ0) + ε− GX(θ)

]2
,

−∇ℓ(θ, Z) =
[
GX(θ) − G(θ0) − ε

]
∇GX(θ),

−∇2ℓ(θ, Z) = ∇GX(θ)∇GX(θ)T +
[
GX(θ) − G(θ0) − ε

]
∇2GX(θ),

−Eθ0

[
ℓ(θ, Z)

]
= 1

2 + 1
2E

X [GX(θ0) − GX(θ)]2,

(2.68)

where we note that by Assumption 2.3.2, the Hessian ∇2ℓ(θ, Z) is a symmetric D×D matrix
field. When no confusion can arise, we will suppress the second argument Z and write ℓ(θ)
for ℓ(θ, Z).

Throughout, PN := N−1∑N
i=1 δZi denotes the empirical measure induced by Z(N), which

acts on measurable functions h : R × O → R via

PN (h) =
∫
R×O

hdPN = 1
N

N∑
i=1

h(Zi).

2.3.4.1 Proof of (2.47)

Let us write ℓ̄N := ℓN/N . Then, by a standard inequality due to Weyl as well as Assumption
2.3.3, we have for any θ ∈ B that

λmin
[

− ∇2ℓ̄N (θ)
]

≥ λmin
(
Eθ0

[
− ∇2ℓ(θ)

])
−
∥∥∇2ℓ̄N (θ) − Eθ0

[
∇2ℓ(θ)

]∥∥
op

≥ cmin −
∥∥∇2ℓ̄N (θ) − Eθ0

[
∇2ℓ(θ)

]∥∥
op
.

(2.69)

Hence we deduce

PNθ0

(
inf
θ∈B

λmin
[
∇2ℓN (θ, Z)

]
< Ncmin/2

)
≤ PNθ0

(∥∥∇2ℓ̄N (θ) − Eθ0

[
∇2ℓ(θ)

]∥∥
op

≥ cmin/2 for some θ ∈ B
)

≤ PNθ0

(
sup
θ∈B

sup
v:∥v∥RD ≤1

∣∣∣vT(∇2ℓ̄N (θ) − Eθ0 [∇2ℓ(θ)]
)
v
∣∣∣ ≥ cmin/2

)
= PNθ0

(
sup
θ∈B

sup
v:∥v∥RD ≤1

∣∣PN (gv,θ)
∣∣ ≥ cmin/2

)
,

(2.70)
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where
gv,θ(·) := vT

(
∇2ℓ(θ, ·) − Eθ0 [∇2ℓ(θ)]

)
v, v ∈ RD.

The next step is to reduce the supremum over {v : ∥v∥RD ≤ 1} to a suitable finite
maximum over grid points vi by a contraction argument (commonly used in high-dimensional
probability). For ρ > 0, let N(ρ) denote the minimal number of balls of ∥ · ∥RD −radius ρ
required to cover {v : ∥v∥RD ≤ 1}, and let vi, ∥vi∥RD ≤ 1, be the centre points of a minimal
covering. Thus for any v ∈ RD there exists an index i such that ∥v − vi∥RD ≤ ρ. Hence,
writing shorthand

Mθ = ∇2ℓ̄N (θ) − Eθ0 [∇2ℓ(θ)], θ ∈ B,

we have by the Cauchy-Schwarz inequality and the symmetry of the matrix Mθ,

vTMθv = vTi Mθvi + (v − vi)TMθv + vTi Mθ(v − vi)
= vTi Mθvi + ∥v − vi∥RD ∥Mθv∥RD + ∥v − vi∥RD ∥Mθvi∥RD

≤ vTi Mθvi + 2ρ sup
v:∥v∥RD ≤1

vTMθv.

Choosing ρ = 1
4 and taking suprema it follows that for any θ ∈ B,

sup
v:∥v∥RD ≤1

vTMθv ≤ 2 max
i=1,...,N(1/4)

vTi Mθvi. (2.71)

Since the covering (vi) is independent of θ, we can further estimate the right hand side of
(2.70) by a union bound to the effect that

PNθ0

(
sup
θ∈B

sup
v:∥v∥RD ≤1

∣∣∣vTMθv
∣∣∣ ≥ cmin/2

)
≤ N(1/4) · sup

v:∥v∥RD ≤1
PNθ0

(
sup
θ∈B

∣∣∣vTMθv
∣∣∣ ≥ cmin/4

)
≤ N(1/4) · sup

v:∥v∥RD ≤1

[
PNθ0

(
sup
θ∈B

∣∣∣PN (gv,θ − gv,θ∗)
∣∣∣ ≥ cmin/8

)
+ PNθ0

(∣∣PN (gv,θ∗)
∣∣ ≥ cmin/8

)]
,

(2.72)

where we recall that θ∗ is the centrepoint of the set B from (2.39). For the rest of the proof,
we fix any v ∈ RD with ∥v∥RD = 1. Next, we use (2.68) to decompose the ‘uncentred’ part of
gv,θ as

−vT∇2ℓ(θ, Z)v = vT
[
GX(θ)∇GX(θ)T +

[
GX(θ) − GX(θ0)

]
∇2GX(θ)

]
v − εvT∇2GX(θ)v

=: g̃Iv,θ(X) + εgIIv,θ(X),

such that
gv,θ(z) = gIv,θ(x) + εgIIv,θ(x),
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where we have defined the centred version of g̃Iv,θ as

gIv,θ(x) = g̃Iv,θ(x) − Eθ0 [g̃Iv,θ(X)], x ∈ O.

We can therefore bound the right hand side of (2.72) by

N
(1

4
)
· sup
v:∥v∥RD ≤1

[
PNθ0

(
sup
θ∈B

∣∣ 1
N

N∑
i=1

(gIv,θ − gIv,θ∗)(Xi)
∣∣ ≥ cmin

16
)

+ PNθ0

(∣∣ 1
N

N∑
i=1

gIv,θ∗(Xi)
∣∣ ≥ cmin

16
)

+PNθ0

(
sup
θ∈B

∣∣ 1
N

N∑
i=1

εi(gIIv,θ − gIIv,θ∗)(Xi)
∣∣ ≥ cmin

16
)

+ PNθ0

(∣∣ 1
N

N∑
i=1

εig
II
v,θ∗(Xi)

∣∣ ≥ cmin
16

)]
=:N(1/4) · (i+ ii+ iii+ iv).

We now use empirical process techniques (Lemma 2.3.12 and also Hoeffding’s inequality) to
bound the preceding probabilities.

Terms i and ii. In order to apply Lemma 2.3.12 to term i, we require some preparations.
By the definition of g̃Iv,θ and of the operator norm ∥ · ∥op, using the elementary identity
vT (aaT − bbT )v = vT (a + b)(a − b)T v for any v, a, b ∈ RD and Assumption 2.3.2, we have
that for any θ, θ̄ ∈ B,

∥g̃Iv,θ − g̃I
v,θ̄

∥∞ ≤
∥∥∥[∇G(θ)∇G(θ)T +

[
G(θ) − G(θ0)

]
∇2G(θ)

]
−
[
∇G(θ̄)∇G(θ̄)T +

[
G(θ̄) − G(θ0)

]
∇2G(θ̄)

]∥∥∥
L∞(O,RD×D)

≤
∥∥∥[∇G(θ) − ∇G(θ̄)

][
∇G(θ) + ∇G(θ̄)

]T ∥∥∥
L∞(O,RD×D)

+
∥∥∥[G(θ) − G(θ̄)

]
∇2G(θ)

∥∥∥
L∞(O,RD×D)

+
∥∥∥[G(θ̄) − G(θ0)

][
∇2G(θ) − ∇2G(θ̄)

]∥∥∥
L∞(O,RD×D)

≤ 2m1k1|θ − θ̄|1 +m0k2|θ − θ̄|1 +m2k0|θ − θ̄|1
≤ 2CG |θ − θ̄|1.

(2.73)

In particular, by (2.39) we obtain the uniform bound

sup
θ∈B

∥gIv,θ − gIv,θ∗∥∞ ≤ 2 sup
θ∈B

∥g̃Iv,θ(X) − g̃Iv,θ∗∥∞ ≤ 4CG |θ − θ∗|1 ≤ 4CGη. (2.74)

We introduce the rescaled function class

hIθ :=
gIv,θ − gIv,θ∗

16CGη
, HI = {hIθ : θ ∈ B},
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which has envelope and variance proxy bounded as

sup
θ∈B

∥hIθ∥∞ ≤ 1/4 ≡ U, sup
θ∈B

(
Eθ0

[
hIθ(X)2]) 1

2 ≤ 1/4 ≡ σ. (2.75)

Next, if

d2
2(θ, θ̄) = Eθ0

[
(hIθ(X) − hI

θ̄
(X))2], d∞(θ, θ̄) = ∥hIθ − hI

θ̄
∥∞, θ, θ̄ ∈ B,

then using (2.73) we have that

d2(θ, θ̄) ≤ d∞(θ, θ̄) ≤ |θ − θ̄|1/η, θ, θ̄ ∈ B.

Thus for any ρ ∈ (0, 1), using Proposition 4.3.34 in [72], we obtain that

N
(
HI , d2, ρ

)
≤ N

(
HI , d∞, ρ

)
≤ N

(
B, | · |1/η, ρ

)
≤ (3/ρ)D. (2.76)

For any A ≥ 2 we have∫ 1

0
log(A/x)dx = log(A) + 1,

∫ 1

0

√
log(A/x)dx ≤ 2 logA

2 logA− 1

√
log(A),

[see p.190 of [72] for the latter inequality], and hence, using this for A = 3, we can respectively
bound the L∞ and L2 metric entropy integrals of HI by

J∞(HI) =
∫ 4U

0
logN(HI , d∞, ρ)dρ ≲ D,

J2(HI) ≤
∫ 4σ

0

√
logN(HI , d2, ρ)dρ ≲

√
D.

Now, an application of Lemma 2.3.12 below implies that for any x ≥ 1 and some universal
constant L′ > 0, we have that

PNθ0

(
sup
θ∈B

1√
N

∣∣∣ N∑
i=1

hIθ(Xi)
∣∣∣ ≥ L′

[√
D +

√
x+ (D + x)/

√
N
])

≤ 2e−x. (2.77)

We also have by the definition of gIv,θ∗ that

∥gIv,θ∗∥∞ ≤ 2∥g̃Iv,θ∗∥∞ ≤ 2(k2
1 + k0k2),

and hence by Hoeffding’s inequality (Theorem 3.1.2 in [72]) that

ii ≤ 2 exp
(

− 2Nc2
min

256 · 4(k2
1 + k0k2)2

)
≤ 2 exp

(
− Nc2

min

512C ′2
G

)
. (2.78)
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Now if we define
R2,I
N := CN min

{
c2
min

C2
Gη

2 ,
cmin
CGη

,
c2
min

C ′2
G

}
, (2.79)

then for any D ≤ R2,I
N and choosing x = 4R2,I

N we have

L
[√
D +

√
x+ (D + x)/

√
N
]

≤ cmin
√
N

256CGη
, 4R2,I

N ≤ Nc2
min

512C ′2
G
,

whenever C > 0 is small enough. Therefore, combining (2.77) and (2.78), and using the
definitions of the term i and of hIθ, we obtain

ii+ i ≤ 2e−4R2,I
N + PNθ0

(
sup
θ∈B

1√
N

∣∣∣ N∑
i=1

hIθ(Xi)
∣∣∣ ≥ cmin

√
N

256CGη

)
≤ 4e−4R2,I

N . (2.80)

Terms iii and iv. Let us now treat the empirical process indexed by the functions
{gIIv,θ : θ ∈ B}. Since ∥v∥RD ≤ 1, we have for any θ, θ̄ ∈ B,

∥gIIv,θ − gII
v,θ̄

∥∞ ≤ ∥∇2G(θ) − ∇2G(θ̄)∥L∞(O,RD×D) ≤ m2|θ − θ̄|1,

which also yields the envelope bound

sup
θ∈B

∥∥gIIv,θ − gIIv,θ∗
∥∥

∞ ≤ m2 sup
θ∈B

|θ − θ∗|1 ≤ m2η.

Now the rescaled function class

hIIθ :=
gIIv,θ − gIIv,θ∗

4m2η
, HII = {hIIθ : θ ∈ B},

admits envelopes

sup
θ∈B

∥hIIv,θ∥∞ ≤ 1/4 ≡ U, sup
θ∈B

(
Eθ0

[
hIIv,θ(X)2]) 1

2 ≤ 1/4 ≡ σ.

Thus defining

d2
2(θ, θ̄) := Eθ0

[
(hIIv,θ(X) − hII

v,θ̄
(X))2], d∞(θ, θ̄) = ∥hIIv,θ − hII

v,θ̄
∥∞, θ, θ̄ ∈ B

we have
d2(θ, θ̄) ≤ d∞(θ, θ̄) ≤ |θ − θ̄|1/η, θ, θ̄ ∈ B.



2.3 General theory for random design regression 57

Therefore, just as with the bounds obtained for term i, we have N
(
HII , d2, ρ

)
≤ (3/ρ)D and

thus, by Lemma 2.3.12 below,

PNθ0

(
sup
θ∈B

1√
N

∣∣∣ N∑
i=1

εih
II
θ (Xi)

∣∣∣ ≥ L′
[√
D +

√
x+ (D + x)/

√
N
])

≤ 2e−x, x ≥ 1. (2.81)

Moreover, by the hypotheses, ∥gIIv,θ∗∥∞ ≤ k2, and hence, invoking the Bernstein inequality
(2.96) with U = σ ≡ k2, we obtain that

PNθ0

(∣∣∣ 1√
N

N∑
i=1

εig
II
v,θ∗(Xi)

∣∣∣ ≥ k2
√

2x+ k2x

3
√
N

)
≤ 2e−x, x > 0. (2.82)

We can now set
R2,II
N := CN min

{
c2
min

m2
2η

2 ,
cmin
m2η

,
c2
min

k2
2
,
cmin
k2

}
,

and choosing x = 4R2,II
N in the preceding displays, we obtain that for C > 0 small enough

and any D ≤ R2,II
N ,

iii+ iv ≤ PNθ0

(
sup
θ∈B

1√
N

∣∣∣ N∑
i=1

εih
II
θ (Xi)

∣∣∣ ≥ cmin
√
N

96m2η

)
+ PNθ0

(∣∣∣ 1√
N

N∑
i=1

εig
II
v,θ∗(Xi)

∣∣∣ ≥ cmin
√
N

16
)

≤ 4e−4R2,II
N .

(2.83)

Combining the terms. By combining the bounds (2.70), (2.72), (2.80), (2.83) and
using that N(1/4) ≤ 9D ≤ e3D (cf. Proposition 4.3.34 in [72]) we obtain that since
D ≤ RN ≤ min(R2,I

N ,R2,II
N ) from (2.45),

PNθ0

(
inf
θ∈B

λmin
(

− ∇2ℓN (θ, Z)
)
< Ncmin/2

)
≤ N(1/4) · (i+ ii+ iii+ iv)

≤ 4e3D−4R2,I
N + 4e3D−4R2,II

N ≤ 8e−RN ,

completing the proof of (2.47). □

2.3.4.2 Proof of (2.48)

We derive probability bounds for each of the three terms in (2.48) separately. The general
scheme of proof for each of the three bounds is similar to the proof of (2.47), and we condense
some of the steps to follow.

Second order term. Using that cmax ≥ cmin, we can replace (2.70) by

PNθ0

(
sup
θ∈B

λmax
[

− ∇2ℓN (θ, Z)
]

≥ 3Ncmax/2
)

≤ PNθ0

(
sup
θ∈B

sup
v:∥v∥RD ≤1

∣∣PN (gv,θ)
∣∣ ≥ cmin/2

)
.
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From here onwards, this term can be treated exactly as in the proof of (2.47) and thus, for
D ≤ Rn from (2.45), we deduce

PNθ0

(
sup
θ∈B

λmax
[

− ∇2ℓN (θ, Z)
]

≥ 3Ncmax/2
)

≤ 8e−RN . (2.84)

First order term. First, let us denote

fv,θ(z) := vT
(
∇ℓ(θ, z) − Eθ0 [∇ℓ(θ, Z)]

)
, ∥v∥RD ≤ 1, θ ∈ B,

and let (vi : i = 1, ..., N(1/2)) be the centre points of a ∥·∥RD -covering with balls of radius 1/2,
of the unit ball {θ : ∥θ∥RD ≤ 1}. Then for any v there exists vi such that ∥v − vi∥RD ≤ 1/2
so that by the Cauchy-Schwarz inequality,

|PN (fv,θ)| ≤ |PN (fv,θ − fvi,θ)| + |PN (fvi,θ)|
≤ ∥v − vi∥RD

∥∥∇ℓ̄N (θ) − Eθ0

[
∇ℓ(θ)

]∥∥
RD + |PN (fvi,θ)|

≤ 1
2
∥∥∇ℓ̄N (θ) − Eθ0

[
∇ℓ(θ)

]∥∥
RD + |PN (fvi,θ)|.

Therefore, since ∥u∥RD = supv:∥v∥RD ≤1 |vTu| for any u ∈ RD, we deduce for any θ ∈ B,

sup
v:∥v∥RD ≤1

|PN (fv,θ)| ≤ 2 max
1≤i≤N(1/2)

|PN (fvi,θ)|. (2.85)

We can hence estimate

PNθ0

(
sup
θ∈B

∥∇ℓ̄N (θ)∥RD ≥ 3cmax/2
)

≤ PNθ0

(
sup
θ∈B

sup
v:∥v∥RD ≤1

∣∣vT [∇ℓ̄N (θ) − Eθ0 [∇ℓ(θ)]
]∣∣ ≥ cmax/2

)
≤ N(1/2) · sup

v:∥v∥RD ≤1
PNθ0

(
sup
θ∈B

∣∣PN(fv,θ)∣∣ ≥ cmax/4
)
.

(2.86)

We fix v ∈ RD with ∥v∥RD ≤ 1. Using (2.68), by decomposing the ‘uncentred’ part of fv,θ
into

vT∇ℓ(θ, Z) = vT∇GX(θ)
[
GX(θ) − G(θ0)

]
− εvT∇GX(θ) =: f̃ Iv,θ(X) − εf IIv,θ(X),

we can then write
fv,θ(z) = f Iv,θ(x) + εf IIv,θ(x),
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where we have further defined f Iv,θ(x) := f̃ Iv,θ(x) − Eθ0 [f̃ Iv,θ(X)]. We then estimate the
probability on the right hand side of (2.86) as follows,

PNθ0

(
sup
θ∈B

∣∣PN(fv,θ)∣∣ ≥ cmax/4
)

≤ PNθ0

(
sup
θ∈B

∣∣PN(f Iv,θ − f Iv,θ∗
)∣∣ ≥ cmax/16

)
+ PNθ0

(∣∣PN(f Iv,θ∗
)∣∣ ≥ cmax/16

)
+ PNθ0

(
sup
θ∈B

∣∣PN(f IIv,θ − f IIv,θ∗
)∣∣ ≥ cmax/16

)
+ PNθ0

(∣∣PN(f IIv,θ∗
)∣∣ ≥ cmax/16

)
=: i+ ii+ iii+ iv.

(2.87)

We first treat the terms i and ii. By the definition of f̃ Iv,θ and Assumption 2.3.2, we have
that for any θ, θ̄ ∈ B,

∥∥f̃ Iv,θ − f̃ I
v,θ̄

∥∥
∞ ≤

∥∥[∇G(θ) − ∇G(θ̄)
][

G(θ) − G(θ0)
]

+ ∇G(θ̄)
[
G(θ) − G(θ̄)

]∥∥
L∞(O,RD)

≤ (k0m1 + k1m0)|θ − θ̄|1.

Again using Assumption 2.3.2, we have likewise

sup
θ∈B

∥∥f̃ Iv,θ − f̃ Iv,θ∗
∥∥

∞ ≤ (k0m1 + k1m0)η.

Moreover, using that ∥f Iv,θ∗∥∞ ≤ 2k0k1, Hoeffding’s inequality yields that

ii ≤ 2 exp
(

− Nc2
max

512k2
0k

2
1

)
.

Therefore, by using Lemma 2.3.12 in the same manner as in (2.77), we obtain that the
rescaled process

hIv,θ :=
f̃ Iv,θ − f̃ Iv,θ∗

8(k0m1 + k1m0)η
satisfies

PNθ0

(
sup
θ∈B

1√
N

∣∣∣ N∑
i=1

hIθ(Xi)
∣∣∣ ≥ L′

[√
D +

√
x+ (D + x)/

√
N
])

≤ 2e−x, x ≥ 1. (2.88)

Thus, setting

R1,I
N =: CN min

{ c2
max

(k0m1 + k1m0)2η2 ,
cmax

(k0m1 + k1m0)η ,
c2
max

k2
0k

2
1

}
,
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and choosing x = 3R1,I
N in (2.88), we obtain that for C > 0 small enough and any D ≤ R1,I

N ,

ii+ i ≤ 2e−3R1,I
N + PNθ0

(∣∣∣ 1√
N

N∑
i=1

hIv,θ(Xi)
∣∣∣ ≥ cmax

√
N

128(k0m1 + k1m0)η
)

≤ 4e−3R1,I
N . (2.89)

We now treat the terms iii and iv. As ∥v∥RD ≤ 1, we have that for any θ, θ̄ ∈ B,

∥f IIv,θ − f II
v,θ̄

∥∞ ≤ m1|θ − θ̄|1, ∥f IIv,θ − f IIv,θ∗∥∞ ≤ m1η, ∥f IIv,θ∗∥∞ ≤ k1.

Therefore, by utilising the Lemma 2.3.12 below as well as Bernstein’s inequality (2.96) in
precisely the same manner as in the derivations of (2.81) and (2.82) respectively, we obtain
the two inequalities

PNθ0

(
sup
θ∈B

1√
N

∣∣∣ N∑
i=1

εi
f IIv,θ(Xi) − f IIv,θ∗(Xi)

4m1η

∣∣∣ ≥ L′
[√
D +

√
x+ (D + x)/

√
N
])

≤ 2e−x, x ≥ 1,

and

PNθ0

(∣∣∣ 1√
N

N∑
i=1

εif
II
v,θ∗(Xi)

∣∣∣ ≥ k1
√

2x+ k1x

3
√
N

)
≤ 2e−x, x > 0.

Thus, if we set

R1,II
N := CN min

{ c2
max

m2
1η

2 ,
cmax
m1η

,
c2
max

k2
1
,
cmax
k1

}
,

then for C > 0 small enough, for any D ≤ 3R1,II
N and choosing x = 3R1,II

N in the preceding
displays, we obtain

iii+ iv ≤ 4e−3R1,II
N . (2.90)

By combining (2.86), (2.87), (2.89), (2.90), using that N(1/2) ≤ e2D (cf. Proposition
4.3.34 in [72]) and since D ≤ RN ≤ min(R1,I

N ,R1,II
N ), we conclude that

PNθ0

(
sup
θ∈B

∥∇ℓ̄N (θ)∥RD ≥ 3cmax/2
)

≤ N(1/2) · (i+ ii+ iii+ iv)

≤ 4e2D−3R1,I
N + 4e2D−3R1,II

N ≤ 8e−RN .

(2.91)

Order zero term. As with the previous terms, we introduce a decomposition

−ℓ(θ, Z) = 1
2
[
GX(θ0) − GX(θ)

]2 − ε
[
GX(θ0) − GX(θ)

]
+ ε2

2

=: l̃Iθ(X) + εlIIθ (X) + ε2

2 ,

and therefore, defining
lIθ(x) =: l̃Iθ(x) − Eθ0 [l̃Iθ(X)], x ∈ O,



2.3 General theory for random design regression 61

we have that
−ℓ(θ, Z) + Eθ0 [ℓ(θ)] = lIθ(X) + εlIIθ (X) + ε2

2 .

Then, using Assumption 2.3.3, we can estimate

PNθ0

(
sup
θ∈B

∣∣ℓ̄N (θ, Z)
∣∣ ≥ 2cmax + 1

)
≤ PNθ0

(
sup
θ∈B

∣∣ℓ̄N (θ, Z) − Eθ0 [ℓ(θ, Z)]
∣∣ ≥ cmax + 1

)
≤ PNθ0

(
sup
θ∈B

∣∣PN (lIθ − lIθ∗)
∣∣ ≥ cmax

4
)

+ PNθ0

(
sup
θ∈B

∣∣PN (lIθ∗)
∣∣ ≥ cmax

4
)

+ PNθ0

(
sup
θ∈B

∣∣PN (lIIθ − lIIθ∗ )
∣∣ ≥ cmax

4
)

+ PNθ0

(
sup
θ∈B

∣∣PN (lIIθ∗ )
∣∣ ≥ cmax

4
)

+ PNθ0

( 1
2N

N∑
i=1

ε2
i ≥ 1

)
=: i+ ii+ iii+ iv + v.

To bound the preceding terms, we use Assumption 2.3.2 to deduce that for all θ, θ̄ ∈ B,

∥lIθ − lI
θ̄
∥∞ ≤ 2∥l̃Iθ − l̃I

θ̄
∥∞ =

∥∥− 2G(θ0)
[
G(θ) − G(θ̄)

]
+ G(θ)2 − G(θ̄)2∥∥

∞

=
∥∥[(G(θ) − G(θ0)) + (G(θ̄) − G(θ0))

][
G(θ) − G(θ̄)

]∥∥
∞

≤ 2k0m0|θ − θ̄|1,

as well as

sup
θ∈B

∥lIθ − lIθ∗∥∞ ≤ 2k0m0η, ∥lIθ∗∥∞ ≤ k2
0.

Moreover, again by Assumption 2.3.2 we have that for all θ, θ̄ ∈ B,

∥lIIθ − lII
θ̄

∥∞ ≤ 2m0|θ − θ̄|1, sup
θ∈B

∥lIIθ − lIIθ∗ ∥∞ ≤ 2m0η, ∥lIIθ∗ ∥∞ ≤ 2k0.

Next, similarly as for the second and first order terms, in order to control the terms i and iii
we now apply Lemma 2.3.12 to the empirical processes indexed by the rescaled empirical
processes

hIθ := lIθ − lIθ∗

8k0m0η
, hIIθ := lIIθ − lIIθ∗

8m0η
,

and in order to control the terms ii and iv, we respectively apply Hoeffding’s inequality and
Bernstein’s inequality (2.96) in the same manner as before. Overall, if we set

R0,I
N := CN min

{ c2
max

k2
0m

2
0η

2 ,
cmax
k0m0η

,
c2
max

k4
0

}
,

R0,II
N := CN min

{ c2
max

m2
0η

2 ,
cmax
m0η

,
c2
max

k2
0
,
cmax
k0

}
,

(2.92)
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then for C > 0 small enough, we obtain that for any D ≤ RN ≤ min(R0,I
N ,R0,II

N ),

i+ ii+ iii+ iv ≤ PNθ0

(
sup
θ∈B

1√
N

∣∣ N∑
i=1

hIθ(Xi)
∣∣ ≥ cmax

√
N

32k0m0η

)
+ 2 exp

(
− Nc2

max

8k4
0

)

+ PNθ0

(
sup
θ∈B

1√
N

∣∣ N∑
i=1

hIIθ (Xi)
∣∣ ≥ cmax

√
N

32m0η

)
+ 2e−R0,II

N

≤ 4e−R0,I
N + 4e−R0,II

N ≤ 8e−RN .

Finally, we estimate the term v by a standard tail inequality (see Theorem 3.1.9 in [72]),

v = PNθ0

( N∑
i=1

(ε2
i − 1) ≥ N

)
≤ e−N/8,

and thus obtain

PNθ0

(
sup
θ∈B

∣∣ℓ̄N (θ, Z)
∣∣ ≥ 2cmax + 1

)
≤ i+ ii+ iii+ iv + v ≤ 8e−RN + e−N/8. (2.93)

Conclusion. By combining (2.84), (2.91) and (2.93), the proof of (2.48) is completed. □

2.3.5 A chaining lemma for empirical processes

The following key technical lemma is based on a chaining argument for stochastic processes
with a mixed tail (cf. Theorem 2.2.28 in Talagrand [158] and Theorem 3.5 in Dirksen [55]).
For us it will be sufficient to control the ‘generic chaining’ functionals employed in these
references by suitable metric entropy integrals. For any (semi-)metric d on a metric space T ,
we denote by N = N(T, d, ρ) the minimal cardinality of a covering of T by balls with centres
(ti : i = 1, . . . , N) ⊂ T such that for all t ∈ T there exists i such that d(t, ti) < ρ. Below we
require the index set Θ to be countable (to avoid measurability issues). Whenever we apply
Lemma 2.3.12 in this article with an uncountable set Θ, one can show that the supremum
can be realised as one over a countable subset of it.

Lemma 2.3.12. Let Θ be a countable set. Suppose a class of real-valued measurable functions

H = {hθ : X → R, θ ∈ Θ}

defined on a probability space (X ,A, PX) is uniformly bounded by U ≥ supθ ∥hθ∥∞ and has
variance envelope σ2 ≥ supθ EXh2

θ(X) where X ∼ PX . Define metric entropy integrals

J2(H) =
∫ 4σ

0

√
logN(H, d2, ρ)dρ, d2(θ, θ′) :=

√
EX [hθ(X) − hθ′(X)]2,
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J∞(H) =
∫ 4U

0
logN(H, d∞, ρ)dρ, d∞(θ, θ′) := ∥hθ − hθ′∥∞.

For X1, . . . , XN drawn i.i.d. from PX and εi ∼iid N(0, 1) independent of all the Xi’s, consider
empirical processes arising either as

ZN (θ) = 1√
N

N∑
i=1

hθ(Xi)εi, θ ∈ Θ,

or as

ZN (θ) = 1√
N

N∑
i=1

(hθ(Xi) − Ehθ(X)), θ ∈ Θ.

We then have for some universal constant L > 0 and all x ≥ 1,

Pr
(

sup
θ∈Θ

|ZN (θ)| ≥ L
[
J2(H) + σ

√
x+ (J∞(H) + Ux)/

√
N
])

≤ 2e−x.

Proof. We only prove the case where ZN (θ) = ∑
i hθ(Xi)εi/

√
N , the simpler case without

Gaussian multipliers is proved in the same way. We will apply Theorem 3.5 in [55], whose
condition (3.8) we need to verify. First notice that for |λ| < 1/∥hθ − hθ′∥∞, and Eε denoting
the expectation with respect to ε,

E exp
{
λε(hθ − hθ′)(X)

}
≤ 1 +

∞∑
k=2

|λ|kEε|ε|kEX |hθ − hθ′ |k(X)
k!

≤ 1 + λ2EX [hθ(X) − hθ′(X)]2
∞∑
k=2

Eε|ε|k

k!
(
|λ|∥hθ − hθ′∥∞

)k−2

≤ exp
{ λ2d2

2(θ, θ′)
1 − |λ|d∞(θ, θ′)

}
(2.94)

where we have used the basic fact Eε|ε|k/k! ≤ 1. By the i.i.d. hypothesis we then also have

E exp
{
λ(ZN (θ) − ZN (θ′))

}
≤ exp

{
λ2d2

2(θ, θ′)
1 − |λ|d∞(θ, θ′)/

√
N

}
.

An application of the exponential Chebyshev inequality (and optimisation in λ, as in the proof
of Proposition 3.1.8 in [72]) then implies that condition (3.8) in [55] holds for the stochastic
process ZN (θ) with metrics d̄2 = 2d2 and d̄1 = d∞/

√
N. In particular, the d̄2-diameter ∆2(H)

of H is at most 4σ and the d̄1-diameter ∆1(H) of H is bounded by 4U/
√
N . [These bounds

are chosen so that they remain valid for the process without Gaussian multipliers as well.]
Theorem 3.5 in [55] now gives, for some universal constant M , and any θ† ∈ Θ that

Pr
(

sup
θ∈Θ

|ZN (θ) − ZN (θ†)| ≥ M
(
γ2(H) + γ1(H) + σ

√
x+ (U/

√
N)x

))
≤ e−x
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where the ‘generic chaining’ functionals γ1, γ2 are upper bounded by the respective metric
entropy integrals of the metric spaces (H, d̄i), i = 1, 2, up to universal constants (see (2.3) in
[55]). For γ1 also notice that a simple substitution ρ′ = ρ

√
N implies that

∫ 4U/
√
N

0
logN(H, d̄1, ρ)dρ = 1√

N

∫ 4U

0
logN(H, d∞, ρ

′)dρ′,

and we hence deduce that

Pr
(

sup
θ∈Θ

|ZN (θ) − ZN (θ†)| ≥ L̄
[
J2(H) + σ

√
x+ (J∞(H) + Ux)/

√
N
])

≤ e−x (2.95)

for some universal constant L̄.
Now what precedes also implies the classical Bernstein-inequality

Pr
(
|ZN (θ)| ≥ σ

√
2x+ Ux

3
√
N

)
≤ 2e−x, x > 0, (2.96)

for any fixed θ ∈ Θ, U ≥ ∥hθ∥∞ and σ2 ≥ EXh2
θ(X), proved as (3.24) in [72], using (2.94).

Applying this with θ† and using (2.95), the final result follows now from

Pr
(

sup
θ∈Θ

|ZN (θ)| > 2τ(x)
)

≤ Pr
(

sup
θ∈Θ

|ZN (θ) − ZN (θ†)| > τ(x)
)

+ Pr
(
|ZN (θ†)| > τ(x))

)
≤ 2e−x,

for any x ≥ 1, where τ(x) = L̄
[
J2(H) + σ

√
x+ (J∞(H) + Ux)/

√
N
]

and L ≥ 2L̄ > 0 is large
enough.

2.3.6 Proofs for Section 2.3.3

We apply the results from Section 2.5.1 to µ = Π̃(·|Z(N)).
Proof of Theorem 2.3.7. For any θ, θ̄ ∈ RD, we have for the log-prior density that

∥∇ log π(θ) − ∇ log π(θ̄)∥RD = ∥Σ−1(θ − θ̄)∥RD ≤ λmax(Σ−1)∥θ − θ̄∥RD ,

λmin(−∇2 log π(θ)) ≥ λmin(Σ−1),

and for the likelihood surrogate ℓ̃N , by Proposition 2.3.6 and on the event E , that

∥∇ℓ̃N (θ) − ∇ℓ̃N (θ̄)∥RD ≤ 7Kλmax(M)∥θ − θ̄∥RD ,

λmin(−∇2ℓ̃N (θ)) ≥ Ncmin/2.

Combining the last two displays, and on the event E , we can verify Assumption 2.5.1 below
for − log dΠ̃(·|Z(N)) with constants

m = Ncmin/2 + λmin(Σ−1), Λ = 7Kλmax(M) + λmax(Σ−1).
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We may thus apply Proposition 2.5.4 to obtain,

W 2
2 (L(ϑk),Π(·|Z(N))) ≤ 2W 2

2 (Π(·|Z(N)), Π̃(·|Z(N))) + 2W 2
2 (L(ϑk), Π̃(·|Z(N)))

≤ ρ+ b(γ) + 4(1 −mγ/2)k
[
∥θinit − θmax∥2

RD + D

m

]
,

where θmax denotes the unique maximiser of log dΠ̃(·|Z(N)) over RD (which exists on the
event Econv, by virtue of strong concavity).

We conclude by an estimate for ∥θinit − θmax∥RD . To start, notice that for any θ ∈ RD

we have

|θ − θinit|21 = (θ − θinit)TM(θ − θinit) ≥ λmin(M)∥θ − θinit∥2
RD . (2.97)

Thus, for any θ ∈ RD with ∥θ− θinit∥2
RD ≥ 4η2/λmin(M), we have that |θ− θinit|1 ≥ 2η, and

therefore also that gη(θ) ≥
(
|θ− θinit|1 − η

)2 ≥ 1
4 |θ− θinit|21. Thus, for C from (2.55) and any

θ ∈ RD satisfying

∥θ − θinit∥2
RD ≥ 20

C
+ 4η2

λmin(M) ,

using (2.97), (2.55) as well as the upper bound for |ℓN (θ)| in the definition of Econv, we obtain

−ℓ̃N (θ) = Kgη(θ) ≥ CN(cmax + 1)1 + λmax(M)/η2

λmin(M) · |θ − θinit|21
4

≥ C

4 N(cmax + 1)∥θ − θinit∥2
RD

≥ 5N(cmax + 1) ≥ −ℓ̃N (θinit).

This implies that necessarily the unique maximiser θℓ̃ of the (on Econv) strongly concave
map ℓ̃N over RD satisfies ∥θℓ̃ − θinit∥2

RD ≤ 20/C + 4η2/λmin(M). Moreover, in view of the
definition of B and the hypotheses on θ∗ we have that

∥θinit∥RD ≤ ∥θinit − θ∗∥RD + ∥θ∗∥RD ≤ |θinit − θ∗|1√
λmin(M)

+R ≤ η√
λmin(M)

+R,

which also allows us to deduce

∥θℓ̃∥RD ≤ ∥θℓ̃ − θinit∥RD + ∥θinit∥RD ≤
√

20/C + 3η√
λmin(M)

+R.

We further have that θTmaxΣ−1θmax ≤ θT
ℓ̃

Σ−1θℓ̃ (otherwise θmax would not be a maximiser of
log dΠ̃(·|Z(N))) and thus, for κ(Σ) the condition number of Σ,

∥θmax∥2
RD ≤ 1

λmin(Σ−1)θ
T
maxΣ−1θmax ≤ 1

λmin(Σ−1)θ
T
ℓ̃

Σ−1θℓ̃ ≤ κ(Σ)∥θℓ̃∥
2
RD .
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Combining the preceding displays, the proof is now completed as follows:

∥θmax − θinit∥2
RD ≲ ∥θmax∥2

RD + ∥θinit∥2
RD

≲ κ(Σ)∥θℓ̃∥
2
RD + η2

λmin(M) +R2

≲ κ(Σ)
[
1 + η2

λmin(M) +R2
]
.

Proof of Theorem 2.3.8. For any t ≥ 0 and any Lipschitz function H : RD → R we
have

Pθinit

(∣∣π̂JJin
(H) − EΠ[H|Z(N)]

∣∣ ≥ t
)

≤ Pθinit

(∣∣π̂JJin
(H) − Eθinit

[π̂JJin
(H)]

∣∣ ≥ t−
∣∣Eθinit

[π̂JJin
(H)] − EΠ[H|Z(N)]

∣∣).
(2.98)

To further estimate the right side, note that for any k ≥ Jin, by (2.64) and Theorem 2.3.7,
we have

W 2
2 (L(ϑk),Π(·|Z(N))) ≤ 2(ρ+ b(γ)).

Noting that (2.167) below in fact holds for any probability measure µ and thus in particular
for µ = Π(·|Z(N)), it follows that for any Lipschitz function H : RD → R,

(
Eθinit

[π̂JJin
(H)] − EΠ[H|Z(N)]

)2 ≤ 2∥H∥2
Lip(ρ+ b(γ)).

Thus if t ≥ 0 satisfies (2.65), then applying Proposition 2.5.3 to both H and −H yields that
the r.h.s. in (2.98) is further bounded by

Pθinit

(∣∣π̂JJin
(H) − Eθinit

[π̂JJin
(H)]

∣∣ ≥ t/2
)

≤ 2 exp
(

− c
t2m2Jγ

∥H∥2
Lip(1 + 1/(mJγ))

)
.

Proof of Corollary 2.3.9. We first estimate the probability to be bounded by

Pθinit

(∥∥θ̄JJin
− Eθinit

[
θ̄JJin

]∥∥
RD ≥ t−

∥∥Eθinit

[
θ̄JJin

]
− EΠ[θ|Z(N)]

∥∥
RD

)
.
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Next, for any k ≥ 1, let νk denote an optimal coupling between L(ϑk) and Π[·|Z(N)]
(cf. Theorem 4.1 in [176]). Then by Jensen’s inequality and the definition of W2 from (2.9),

∥∥Eθinit

[
θ̄JJin

]
− EΠ[θ|Z(N)]

∥∥2
RD =

∥∥∥∥ 1
J

Jin+J∑
k=Jin+1

∫
RD×RD

(θ − θ′)dνk(θ, θ′)
∥∥∥∥2

RD

=
D∑
j=1

( 1
J

Jin+J∑
k=Jin+1

∫
RD×RD

(θj − θ′
j)dνk(θ, θ′)

)2

≤ 1
J

Jin+J∑
k=Jin+1

∫
RD×RD

D∑
j=1

(θj − θ′
j)2dνk(θ, θ′)

= 1
J

Jin+J∑
k=Jin+1

W 2
2 (L(ϑk),Π[·|Z(N)]).

Thus we obtain from (2.61), (2.64) (as after (2.98)) that

∥∥Eθinit

[
θ̄JJin

]
− EΠ[θ|Z(N)]

∥∥
RD ≤

√
2
√
ρ+ b(γ).

Now for any j = 1, ..., d, let us write Hj : RD → R, θ 7→ θj , for the j-the coordinate projection
map, of Lipschitz constant 1. Then in the notation (2.63) we can write

[θ̄JJin
]j = π̂JJin

(Hj), j = 1, ..., D.

For t ≥
√

8(ρ+ b(γ)) and applying Proposition 2.5.3 as in the proof of Theorem 2.3.8 as well
as a union bound gives

Pθinit

(∥∥θ̄JJin
− EΠ[θ|Z(N)]

∥∥
RD ≥ t

)
≤ Pθinit

(∥∥θ̄JJin
− Eθinit

[
θ̄JJin

]∥∥
RD ≥ t/2

)
= Pθinit

( D∑
j=1

[
π̂JJin

(Hj) − Eθinit

[
π̂JJin

(Hj)]
]2

≥ t2

4

)

≤
D∑
j=1

Pθinit

([
π̂JJin

(Hj) − Eθinit

[
π̂JJin

(Hj)]
]2

≥ t2

4D

)

≤ 2D exp
(

− c
t2m2Jγ

D
[
1 + 1/(mJγ)

]),
completing the proof of the corollary.

2.4 Proofs for the Schrödinger model

In this section, we will show how the results from Section 2.3 can be applied to the nonlinear
problem for the Schrödinger equation (2.17). Recalling the notation of Sections 2.2 and 2.3,
we will set θ∗ = θ0,D, the norm | · |1 := ∥ · ∥RD as well as η := ϵD−4/d (for ϵ to be chosen),
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such that the region B from (2.39) equals the Euclidean ball

Bϵ :=
{
θ ∈ RD : ∥θ − θ0,D∥RD < ϵD−4/d

}
. (2.99)

The first key observation is the following result on the local log-concavity of the likelihood
function on Bϵ, which will be proved by a combination of the concentration result Lemma
2.3.4 with the PDE estimates below, notably the ‘average curvature’ bound from Lemma
2.4.7.

Proposition 2.4.1. Let θ0 ∈ h2 satisfy ∥θ0∥h2 ≤ S for some S > 0 and consider ℓN

from (2.22) with forward map G : RD → R from (2.17). Then there exist constants 0 <

ϵS = ϵS(O, g,Φ) ≤ 1 and c1, c2, c3, c4 > 0 such that for any ϵ ≤ ϵS and all D,N satisfying
D ≤ c2N

d
d+12 as well as ∥G(θ0) − G(θ0,D)∥L2(O) ≤ c1D

−4/d, the event

Econv(ϵ) =
{

inf
θ∈Bϵ

λmin
(

− ∇2ℓN (θ)
)
> c3ND

−4/d,

sup
θ∈Bϵ

[
|ℓN (θ)| + ∥∇ℓN (θ)∥RD + ∥∇2ℓN (θ)∥op

]
< c4N

}
satisfies

PNθ0

(
Econv(ϵ)

)
≥ 1 − 33e−c2N

d
d+12

. (2.100)

Proof. For any θ ∈ RD, Fθ as in (2.16), by a Sobolev embedding and (2.13), we have
∥Fθ∥∞ ≲ ∥θ∥h2 ≲ D2/d∥θ∥RD . This and the Lemmas 2.4.4, 2.4.5, 2.4.6 verify Assumption
2.3.2 in the present setting, with constants

k0 ≃ k1 ≃ const., k2 ≃ m0 ≃ m1 ≃ D2/d, m2 ≃ D4/d,

whence the constants from (2.46) satisfy

CG ≃ D4/d, C ′
G ≃ D2/d, C ′′

G ≃ D2/d, C ′′′
G ≃ const..

Moreover, Lemmas 2.4.7 and 2.4.8 verify Assumption 2.3.3 for our choice of η with

cmin ≃ D−4/d, cmax ≃ const. (2.101)

Then the minimum (2.45) is dominated by the third term, yielding that

RN = RN,D ≃ c2
min/C

′2
G ≃ ND−12/d.

Therefore, we can choose c > 0 small enough such that for any D,N ∈ N satisfying
D ≤ cNd/(d+12), we also have D ≤ RN,D. Lemma 2.3.4 then implies that for all such D,N ,
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we have
PNθ0

(
Ecconv

)
≤ 32e−RN + e−N/8 ≤ 33e−cN

d
d+12

. (2.102)

Next, if θinit is the estimator from Theorem 2.5.10, then in the present setting with
ϵ = 1/ logN , the event (2.50) equals

Einit =
{

∥θinit − θ0,D∥RD ≤ 1
8(logN)D4/d

}
.

Proposition 2.4.2. Assuming Condition 2.2.3, there exist constants c5, c6 > 0 such that for
all N ∈ N,

PNθ0

(
Einit

)
≥ 1 − c5e

−c6Nd/(2α+d)
.

Proof. Using Theorem 2.5.10 and α > 6, we obtain that with sufficiently high probability,

∥θinit − θ0,D∥RD ≲ N−(α−2)/(2α+d) = o
(
(logN)−1D−4/d).

Next, denoting by Π̃(·|Z(N)) the ‘surrogate’ posterior measure with density (2.27), and if

Ewass =
{
W 2

2 (Π̃(·|Z(N)),Π(·|Z(N))) ≤ exp(−Nd/(2α+d))/2
}
,

is given by (2.59) with ρ = exp(−Nd/(2α+d)), then Theorem 2.4.14 implies the following
approximation result in Wasserstein distance.

Proposition 2.4.3. Assume Conditions 2.2.2 and 2.2.3. Then there exist constants c7, c8 > 0
such that for all N ∈ N,

PNθ0

(
Ewass

)
≥ 1 − c7e

−c8Nd/(2α+d)
.

The preceding propositions imply that the events

EN := Econv ∩ Einit ∩ Ewass (2.103)

satisfy the probability bound PNθ0
(EN ) ≥ 1 − c′e−c′′Nd/(2α+d) . In what follows, the events

EN will be tacitly further intersected with events which have probability 1 for all N large
enough, ensuring that the non-asymptotic conditions required in the results of Section 2.3
are eventually verified.

Proof of Theorem 2.2.7. We will prove Theorem 2.2.7 by applying Theorem 2.3.7 with
the choices B = Bϵ from (2.99), ϵ = 1/ logN andK from Condition 2.2.2, ρ = exp(−Nd/(2α+d))
and M = ID×D generating the ellipsoidal norm ∥ · ∥RD . Using (2.13), the prior covariance Σ
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from (2.23) satisfies

λmin(Σ−1) ≃ N
d

2α+d , λmax(Σ−1) ≃ N
d

2α+dD2α/d.

Then using Condition 2.2.2, we first have that

K ≳ ND8/d(logN)2 ≃ Ncmax ·
(
1 + η−2),

verifying the lower bound (2.55), and then also that m,Λ > 0 from Theorem 2.3.7 satisfy

m ≃ ND−4/d +N
d

2α+d , Λ ≃ ND8/d(logN)3 +N
d

2α+dD
2α
d .

The dimension condition (2.28) and the condition on α further imply

ND−4/d ≳ N
d

2α+d , N
d

2α+dD
2α
d ≲ N,

whence we further obtain

m ≃ ND−4/d, Λ ≃ ND8/d(logN)3. (2.104)

Noting that also γ = o(Λ−1) with our choices, Theorem 2.3.7 yields that on the event EN
from (2.103), the Markov chain (ϑk) satisfies the Wasserstein bound (2.61) with

b(γ) ≲ γDΛ2

m2 + γ2DΛ4

m3 ≲ γD(d+24)/d(logN)6 + γ2ND(d+44)/d(logN)12, (2.105)

as well as
τ(Σ,M, ∥θ0,D∥RD ) ≲ κ(Σ) ≃ D2α/d.

Using also that D/m ≲ const., the first part of Theorem 2.2.7 follows.
For the choice of γ = γε from (2.31), straightforward calculation yields that (for N large

enough)
B(γε) = o(ε2 +N−2P ), (2.106)

which proves the second part of Theorem 2.2.7.
Proof of Proposition 2.2.4 and of Theorems 2.2.5, 2.2.6. The proof of Proposition

2.2.4 now follows directly from Theorem 2.3.8 and the preceding computations. Noting that
for all N large enough we have B(γ) ≤ N−P , Theorem 2.2.5 follows from Corollary 2.3.9,
(2.106) as well as (2.67), for Jin ≥ (logN)3/(γεND−4/d). Finally, intersecting further with
the event

Emean :=
{
∥EΠ[θ|Z(N)] − θ0∥ℓ2 ≤ LN− α

2α+d
α

α+2
}
, L > 0,

Theorem 2.2.6 now follows from the triangle inequality and (2.153).



2.4 Proofs for the Schrödinger model 71

Proof of Theorem 2.2.8. In the proof we intersect EN from (2.103) further with the
event on which the conclusion of Theorem 3.14 holds. Part iii) then follows from part ii)
and straightforward calculations. Part i) follows from the arguments following (2.159) below,
where it is proved in particular that θ̂MAP is the unique maximiser of the proxy posterior
density π̃(·|Z(N)) over RD. We can now apply Proposition 2.5.2 with m,Λ from (2.104),
using also that

| log π̃(θinit|Z(N)) − log π̃(θ̂MAP |Z(N))|
≲ sup

θ∈B1/8 log N

∣∣ℓN (θ)
∣∣+Nd/(2α+d)∥θ̂MAP ∥2

hα +Nd/(2α+d)∥θinit∥2
hα

≲ N +Nd/(2α+d)(1 +D2α/d) ≲ N,

in view of ℓN = ℓ̃N on B1/8 logN , the definition of Einit, (2.13) and since θ0 ∈ hα.

2.4.1 Analytical properties of the Schrödinger forward map

This section is devoted to proving the four auxiliary Lemmas 2.4.5-2.4.8 used in the proof of
Proposition 2.4.1. Throughout we consider forward map G : RD → L2(O), G = G ◦ Φ∗ ◦ Ψ
given by (2.17) and assume the hypotheses of Proposition 2.4.1, where the set Bϵ was defined
in (2.99).

For any f ∈ C(O) with f ≥ 0, by standard theory for elliptic PDEs (see e.g. Chapter
6.3 of [65]) there exists a linear, continuous operator Vf : L2(O) → H2

0 (O) describing (weak)
solutions Vf [ψ] = w ∈ H2

0 of the (inhomogeneous) Schrödinger equation


∆
2 w − fw = ψ on O,

w = 0 on ∂O.
(2.107)

Lemma 2.4.4. For any x ∈ O, the map θ 7→ G(θ)(x) is twice continuously differentiable on
RD. The vector field ∇Gθ : O → RD is given by

vT∇Gθ(x) = Vfθ

[
ufθ

(Φ′ ◦ Fθ)Ψ(v)
]
(x), x ∈ O, v ∈ RD.

Moreover, for any v1, v2 ∈ RD and x ∈ O, the matrix field ∇2Gθ : O → RD×D is given by

vT1 ∇2Gθ(x)v2 =Vfθ

[
ufθ

Ψ(v1)Ψ(v2)(Φ′′ ◦ Fθ)
]
(x)

+ Vfθ

[
(Φ′ ◦ Fθ)Ψ(v1)Vfθ

[
ufθ

(Φ′ ◦ Fθ)Ψ(v2)
]]

(x)
+ Vfθ

[
(Φ′ ◦ Fθ)Ψ(v2)Vfθ

[
ufθ

(Φ′ ◦ Fθ)Ψ(v1)
]]

(x).

Proof. In the notation from (2.17), the map θ 7→ G(θ)(x) can be represented as the composition
δx ◦G ◦ Φ∗ ◦ Ψ, where δx : w 7→ w(x) denotes point evaluation. We first show that each of
these four operators is twice differentiable. The continuous linear maps Ψ : RD → C(O)



72 On polynomial-time computation of high-dimensional posterior measures

and δx : C(O) → R are infinitely differentiable (in the Frechét sense). Moreover, the maps
G : C(O)∩{f > 0} → C(O) and Φ∗ : C(O) → C(O)∩{f > 0} are twice Frećhet differentiable
with derivatives DG, DG2 and DΦ∗, D2Φ∗ given by Lemma 2.5.6 and (2.177) respectively.
We deduce overall by the chain rule for Fréchet derivates (cf. Lemma 2.5.7), that x 7→ G(θ)(x)
is twice differentiable, with the desired expressions for the vector and matrix fields. The
continuity of the second partial derivatives follows from inspection of the expression for the
matrix field, and by applying the regularity results for Vf , G and Φ∗ from Section 2.5.

Now since ∥θ0∥h2 ≤ S and by the definition (2.99) of the set B1, we have from (2.13) that

sup
θ∈B1

∥θ∥h2 ≤ ∥θ0,D∥h2 + sup
θ∈B1

∥θ − θ0,D∥h2 ≲ S +D
2
d sup
θ∈B1

∥θ − θ0,D∥RD ≲ S + 1.

It follows further from the Sobolev embedding and regularity of the link function Φ (Section
2.5.2.1) that there exists a constant B = B(S,Φ,O) < ∞, such that

sup
θ∈B1

[
∥Fθ∥∞ + ∥Fθ∥H2 + ∥fθ∥H2 + ∥fθ∥∞

]
≤ B. (2.108)

In particular, this estimate implies that the constants appearing in the inequalities from
Lemma 2.5.5 can be chosen independently of θ ∈ B, which we use frequently below.

For notational convenience we also introduce spaces

ED := span(e1, ..., eD) ⊆ L2(O), D ∈ N, (2.109)

spanned by the first D eigenfunctions of ∆ on O (cf. Section 2.2.1.1).
We first verify the boundedness property required in Assumption 2.3.2 ii).

Lemma 2.4.5. There exists a constant C > 0 such that

sup
θ∈B1

∥G(θ)∥L∞ ≤ C, sup
θ∈B1

∥∇G(θ)∥L∞(O,RD) ≤ C, sup
θ∈B1

∥∇2G(θ)∥L∞(O,RD×D) ≤ CD2/d.

Proof. The estimate for ∥G(θ)∥∞ follows immediately from (2.18). To estimate ∥∇G(θ)∥L∞(O,RD),
we first note that by Lemma 2.4.4,

∥∇G(θ)∥L∞(O,RD) = sup
v:∥v∥RD ≤1

∥vT∇G(θ)∥L∞ ≤ sup
H∈ED:∥H∥L2 ≤1

∥∥Vfθ

[
ufθ

(Φ′ ◦ Fθ)H
]∥∥

∞.

Thus by the Sobolev embedding ∥ · ∥∞ ≲ ∥ · ∥H2 , Lemma 2.5.5 and boundedness of Φ′, we
have that for any θ ∈ B1 and any H ∈ ED,

∥∥Vfθ
[ufθ

(Φ′ ◦ Fθ)H]
∥∥

∞ ≲
∥∥Vfθ

[ufθ
(Φ′ ◦ Fθ)H]

∥∥
H2

≲
∥∥ufθ

(Φ′ ◦ Fθ)H
∥∥
L2

≲
∥∥ufθ

∥∞∥Φ′ ◦ Fθ∥∞∥H∥L2 ≲ ∥H∥L2 .
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Again using Lemma 2.4.4, we can similarly estimate ∥∇2G(θ)∥L∞(O,RD) by

∥∇2G(θ)∥L∞(O,RD) ≤ sup
v:∥v∥RD ≤1

∥vT∇2G(θ)v∥L∞

≤ sup
H∈ED:∥H∥L2 ≤1

2
∥∥Vfθ

[
H(Φ′ ◦ Fθ)Vfθ

[
H(Φ′ ◦ Fθ)ufθ

]]∥∥
∞ +

∥∥Vfθ

[
H2(Φ′′ ◦ Fθ)ufθ

]∥∥
∞

=: sup
H∈ED:∥H∥L2 ≤1

I + II.

(2.110)

Arguing as in the estimate for ∥∇G(θ)∥L∞(O,RD), we have that for any θ ∈ B1 and H ∈ ED,

I ≲ ∥H(Φ′ ◦ Fθ)Vfθ

[
H(Φ′ ◦ Fθ)ufθ

]
∥L2

≲ ∥H∥L2∥Φ′ ◦ F∥∞∥Vf [H(Φ′ ◦ F )uf ]∥∞

≲ ∥H∥L2∥H(Φ′ ◦ F )uf∥L2 ≲ ∥H∥2
L2 ,

as well as

II ≲ ∥H2(Φ′′ ◦ Fθ)ufθ
∥L2 ≲ ∥ufθ

∥∞∥Φ′′ ◦ Fθ∥∞∥H∥L2∥H∥∞ ≲ ∥H∥L2∥H∥H2 ≲ D2/d∥H∥2
L2 ,

where we used the basic norm estimate on ED ⊆ L2(O) from Lemma 2.4.9. By combining
the last three displays, the proof is completed.

Next, we verify the increment bound needed in Assumption 2.3.2 iii).

Lemma 2.4.6. There exists a constant C > 0 such that for any D ∈ N and any θ, θ′ ∈ RD,

∥G(θ) − G(θ̄)∥∞ ≤ C∥Fθ − Fθ̄∥∞, ∥G(θ) − G(θ̄)∥L2 ≤ C∥Fθ − Fθ̄∥L2 , (2.111)

as well as, for any θ, θ′ ∈ B1,

∥∇G(θ) − ∇G(θ̄)∥L∞(O,RD) ≤ C∥Fθ − Fθ̄∥∞, (2.112)
∥∇2G(θ) − ∇2G(θ̄)∥L∞(O,RD×D) ≤ CD2/d∥Fθ − Fθ̄∥∞. (2.113)

Proof. The estimate (2.111) follows immediately from (2.173) and (2.179). Now fix any
θ, θ̄ ∈ B1. To ease notation, in what follows we write F = Ψ(θ), F̄ = Ψ(θ̄), f = Φ ◦ F and
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f̄ = Φ ◦ F̄ . For (2.112), arguing as in the proof of Lemma 2.4.5, we first have

∥∥∇G(θ) − ∇G(θ̄)
∥∥
L∞(O,RD)

≤ sup
v:∥v∥RD ≤1

∥∥vT (∇G(θ) − ∇G(θ̄))
∥∥

∞

≤ sup
H∈ED:∥H∥L2 ≤1

∥∥Vf [H(Φ′ ◦ F )uf ] − Vf̄ [H(Φ′ ◦ F̄ )uf̄ ]
∥∥

∞

= sup
H∈ED:∥H∥L2 ≤1

∥∥(Vf − Vf̄ )[H(Φ′ ◦ F )uf ]
∥∥

∞ +
∥∥Vf̄ [H(Φ′ ◦ F − Φ′ ◦ F̄ )uf̄ ]

∥∥
∞

+
∥∥Vf̄ [H(Φ′ ◦ F )(uf − uf̄ )]

∥∥
∞

=: sup
H∈ED:∥H∥L2 ≤1

Ia + Ib + Ic.

Now, we fix H ∈ ED for the rest of the proof. The term Ia can further be estimated by
repeatedly using the Sobolev embedding ∥ · ∥∞ ≲ ∥ · ∥H2 , Lemma 2.5.5 as well as (2.108) and
(2.179):

Ia = ∥Vf [(f − f̄)Vf̄ [uf̄ (Φ′ ◦ F )H]]∥∞

≲ ∥Vf [(f − f̄)Vf̄ [uf̄ (Φ′ ◦ F )H]]∥H2

≲ ∥(f − f̄)Vf̄ [uf̄ (Φ′ ◦ F )H]∥L2

≲ ∥f − f̄∥∞∥uf̄ (Φ′ ◦ F̄ )H∥L2

≲ ∥F − F̄∥∞∥H∥L2 .

(2.114)

Similarly, Ib is estimated as follows:

Ib ≲ ∥H(Φ′ ◦ F − Φ′ ◦ F̄ )uf̄∥L2 ≲ ∥Φ′ ◦ F − Φ′ ◦ F̄∥∞∥uf̄∥∞∥H∥L2 ≲ ∥F − F̄∥∞∥H∥L2 .

Finally, we can similarly estimate

Ic ≲ ∥(uf − uf̄ )(Φ′ ◦ F )H∥L2 ≲ ∥uf − uf̄∥∞∥Φ′ ◦ F∥∞∥H∥L2 ≲ ∥F − F̄∥∞∥H∥L2 ,

where we have also used (2.111). By combining the estimates for Ia, Ib and Ic, we have
completed the proof of (2.112).

It remains to prove (2.113). In analogy to (2.110), we may fix any v ∈ RD, and it suffices to
derive a bound for vT (∇2G(θ)−∇2G(θ̄))v. To ease notation, let us write H = Ψv ∈ ED ∼= RD,
as well as h = H(Φ′ ◦ F ) and h̄ = H(Φ′ ◦ F̄ ). Then by Lemma 2.4.4, we have the following
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decomposition into eight terms:

vT (∇2G(θ) − ∇2G(θ̄))v
= 2Vf̄

[
h̄Vf̄ [h̄uf̄ ]

]
− 2Vf

[
hVf [huf ]

]
+ Vf̄ [uf̄H

2(Φ′′ ◦ F̄ )] − Vf [ufH2(Φ′′ ◦ F )]
= 2(Vf̄ − Vf )

[
h̄Vf̄ [h̄uf̄ ]

]
+ 2Vf

[
(h̄− h)Vf̄ [h̄uf̄ ]

]
+ 2Vf

[
h(Vf̄ − Vf )[h̄uf̄ ]

]
+ 2Vf

[
hVf [(h̄− h)uf̄ ]

]
+ 2Vf

[
hVf [h(uf̄ − uf )]

]
+ (Vf̄ − Vf )[uf̄H

2(Φ′′ ◦ F̄ )] + Vf [(uf̄ − uf )H2(Φ′′ ◦ F̄ )] + Vf [ufH2(Φ′′ ◦ F̄ − Φ′′ ◦ F )]
=: IIa + IIb + IIc + IId + IIe + IIf + IIg + IIh.

(2.115)

To estimate these terms, we will again repeatedly use (2.108), the regularity estimates
from Lemmas 2.5.5- 2.5.6 below, the estimates ∥h∥L2 , ∥h̄∥L2 ≲ ∥H∥L2 as well as ∥f − f̄∥∞ ≲

∥F − F̄∥∞, which all hold uniformly in θ ∈ B1.
Using Lemma 2.5.5, including the estimate (2.171) with ψ = h̄Vf̄ [h̄uf̄ ], we obtain

∥IIa∥∞ ≲ ∥f − f̄∥∞∥h̄Vf̄ [h̄uf̄ ]∥L2 ≲ ∥f − f̄∥∞∥h̄∥L2∥Vf̄ [h̄uf̄ ]∥∞

≲ ∥f − f̄∥∞∥H∥L2∥h̄uf̄∥L2 ≲ ∥f − f̄∥∞∥H∥2
L2∥uf̄∥∞

≲ ∥F − F̄∥∞∥H∥2
L2 .

Similarly, we have

∥IIb∥∞ ≲ ∥(h̄− h)Vf̄ [h̄uf̄ ]∥L2 ≲ ∥H(Φ′ ◦ F̄ − Φ′ ◦ F )∥L2∥Vf̄ [h̄uf̄ ]∥∞

≲ ∥uf∥∞∥H∥L2∥F̄ − F∥∞∥h̄uf̄∥L2

≲ ∥H∥2
L2∥F̄ − F∥∞,

and, again using (2.171),

∥IIc∥∞ ≲ ∥h(Vf̄ − Vf )[h̄uf̄ ]∥L2 ≲ ∥h∥L2∥(Vf̄ − Vf )[h̄uf̄ ]∥∞ ≲ ∥H∥L2∥f̄ − f∥∞∥h̄uf̄∥L2

≲ ∥H∥2
L2∥F̄ − F∥∞.

For IId, by following similar steps as for IIb, we see that

∥IId∥∞ ≲ ∥H∥L2∥Vf [(h̄− h)uf̄ ]∥∞ ≲ ∥H∥2
L2∥F̄ − F∥∞,

and similarly, using also (2.111), we obtain

∥IIe∥∞ ≲ ∥H∥L2∥Vf [h(uf̄ − uf )]∥∞ ≲ ∥H∥2
L2∥uf̄ − uf∥∞ ≲ ∥H∥2

L2∥F̄ − F∥∞.
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For the term IIf , we note that by the Sobolev embedding,

∥w∥(H2
0 )∗ ≤ sup

ψ:∥ψ∥H2 ≤1

∣∣ ∫
O
wψ
∣∣ ≲ ∥w∥L1 sup

ψ:∥ψ∥H2 ≤1
∥ψ∥∞ ≲ ∥w∥L1 , w ∈ L1(O),

and consequently by Lemma 2.5.5,

∥IIf∥∞ = ∥Vf [(f̄ − f)Vf̄ [uf̄H
2(Φ′′ ◦ F )]]∥∞

≲ ∥f̄ − f∥∞∥Vf̄ [uf̄H
2(Φ′′ ◦ F )]∥L2

≲ ∥f̄ − f∥∞∥uf̄H
2(Φ′′ ◦ F )∥(H2

0 )∗

≲ ∥f̄ − f∥∞∥uf̄H
2(Φ′′ ◦ F )∥L1

≲ ∥F̄ − F∥∞∥H∥2
L2 .

For terms IIg and IIh, by similar steps and additionally using that by Lemma 2.4.9, ∥H∥∞ ≲

∥H∥H2 ≲ D2/d∥H∥L2 for any H ∈ ED, we obtain

∥IIg∥∞ ≲ ∥uf̄ − uf∥∞∥H2∥L2∥Φ′′ ◦ F̄∥∞ ≲ ∥f̄ − f∥∞∥H∥L2∥H∥∞ ≲ D2/d∥F̄ − F∥∞∥H∥2
L2 ,

as well as

∥IIh∥∞ ≤ ∥ufH2(Φ′′ ◦ F̄ − Φ′′ ◦ F )∥L2 ≲ ∥H∥L2∥H∥∞∥F̄ − F∥∞ ≲ D2/d∥F̄ − F∥∞∥H∥2
L2 .

By combining (2.115) with the estimates for the terms IIa − IIh, the proof of (2.113) is
complete.

We now turn to the key ‘geometric’ bound from the first part of Assumption 2.3.3, which
quantifies the average curvature of the likelihood function ℓN near θ0,D in a high-dimensional
setting (when PX is uniform on O). The curvature deteriorates with rate D−4/d as D → ∞,
which is in line with the (local) ill-posedness of the Schrödinger model, and the related fact
that the associated ‘Fisher information operator’ is of the form I2, with I being the inverse
of a second order (elliptic Schrödinger-type) operator (cf. also Section 4 in [131]).

Lemma 2.4.7. Let ℓ(θ) be as in (2.38) with G : RD → R from (2.17), and let Bϵ be as
in (2.99). Let θ0 ∈ h2 satisfy ∥θ0∥h2 ≤ S for some S > 0. Then there exist constants
0 < ϵS ≤ 1, c1, c2 > 0 such that if also ∥G(θ0) − G(θ0,D)∥L2(O) ≤ c1D

−4/d, then for all D ∈ N
and all ϵ ≤ ϵS,

inf
θ∈Bϵ

λmin
(
Eθ0

[
− ∇2ℓ(θ)

])
≥ c2D

−4/d. (2.116)

Proof. We begin by noting that for any Z = (Y,X) ∈ R × O, we have

−∇2ℓ(θ, Z) = ∇GX(θ)∇GX(θ)T − (Y − GX(θ))∇2GX(θ).
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Using this and Lemma 2.4.4, we obtain that for any v ∈ RD, with the previous notation
H = Ψ(v) and h = (Φ′ ◦ Fθ)H,

vTEθ0 [−∇2ℓ(θ, Z)]v = ∥Vfθ
[ufθ

(Φ′ ◦ Fθ)H]∥2
L2(O) − ⟨ufθ0

− ufθ
, 2Vfθ

[hVfθ
[hufθ

]]⟩L2(O)

− ⟨ufθ0
− ufθ

, Vfθ
[ufθ

H2(Φ′′ ◦ Fθ)]⟩L2(O)

=: I + II + III.

(2.117)

We next derive a lower bound on the term I and upper bounds for the terms II and III, for
any fixed v ∈ RD.

Lower bound for I. Writing aθ := ufθ
(Φ′ ◦ Fθ), using the elliptic L2-(H2

0 )∗ coercivity
estimate (2.170) from Lemma 2.5.5 below as well as (2.108), we have

√
I = ∥Vfθ

[aθH]∥L2(O) ≳
∥aθH∥(H2

0 )∗

1 + ∥fθ∥∞
≳ ∥aθH∥(H2

0 )∗ , θ ∈ B1. (2.118)

The next step is to lower bound aθ. By Theorem 1.17 in [42], the expected exit time τO

featuring in the Feynman-Kac formula (2.12) satisfies the uniform estimate supx∈O E
xτO ≤

K(vol(O), d) < ∞. Therefore, using also Jensen’s inequality and g ≥ gmin > 0, we have that,
with B from (2.108),

inf
θ∈B1

inf
x∈O

ufθ
(x) ≥ gmine

−BK(vol(O),d) =: umin > 0. (2.119)

Also, since Φ is a regular link function, for some k = k(B) > 0 we have

inf
θ∈B1

inf
x∈O

[Φ′ ◦ Fθ](x) ≥ inf
t∈[−k,k]

Φ′(t) > 0,

and therefore for some amin = amin(Φ, B,O, gmin) > 0,

inf
θ∈B1

inf
x∈O

aθ(x) ≥ amin > 0. (2.120)

We thus obtain, by definition of (H2
0 )∗ and the multiplication inequality (2.7) that for some

c = c(amin) > 0,

∥H∥(H2
0 )∗ = ∥aθa−1

θ H∥(H2
0 )∗ ≤ ∥a−1

θ ∥H2∥aθH∥(H2
0 )∗ ≤ c(1 + ∥aθ∥2

H2)∥aθH∥(H2
0 )∗ , (2.121)

where in the last inequality we used (2.178) for the function x 7→ 1/x. Using again (2.108),
regularity of Φ′, the chain rule as well as the elliptic regularity estimate (2.175), we obtain
that

sup
θ∈B1

∥aθ∥H2 ≤ sup
θ∈B1

∥ufθ
∥H2 sup

θ∈B1

∥Φ′ ◦ Fθ∥H2 ≤ C(g, S,O,Φ) < ∞. (2.122)
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Therefore, combining the displays (2.118), (2.121), (2.122), we have proved that, uniformly
in θ ∈ B1,

I ≳ ∥aθH∥2
(H2

0 )∗ ≳
∥H∥2

(H2
0 )∗

c2 supθ∈B1(1 + ∥aθ∥2
H2)2 ≳ D−4/d∥H∥2

L2 , (2.123)

where we have used Lemma 2.4.9 below in the last inequality.
Upper bound for II and III. Using the self-adjointness of Vfθ

on L2(O), a Sobolev
embedding, Lemma 2.5.5, (2.108), the Lipschitz estimate (2.173) as well as (2.18), we have
uniformly in θ ∈ B1,

|II| ≲
∣∣∣ ∫

O
(ufθ0

− ufθ
)Vfθ

[hVfθ
[hufθ

]]
∣∣∣ =

∣∣∣ ∫
O
Vfθ

[ufθ0
− ufθ

][hVfθ
[hufθ

]]
∣∣∣

≲ ∥Vfθ
[ufθ0

− ufθ
]∥∞∥hVfθ

[hufθ
]∥L1

≲ ∥ufθ0
− ufθ

∥L2∥h∥L2∥Vfθ
[hufθ

]∥L2

≲ ∥ufθ0
− ufθ

∥L2∥H∥2
L2 .

(2.124)

Similarly, for the term III, using also ∥Φ′′∥∞ < ∞, we estimate

|III| =
∣∣⟨ufθ0

− ufθ
, Vfθ

[ufθ
H2(Φ′′ ◦ Fθ)]⟩L2(O)

∣∣
=
∣∣⟨Vfθ

[ufθ0
− ufθ

], ufθ
H2(Φ′′ ◦ Fθ)⟩L2(O)

∣∣
≤ ∥Vfθ

[ufθ0
− ufθ

]∥∞∥ufθ
∥∞∥Φ′′ ◦ Fθ∥∞∥H2∥L1

≲ ∥ufθ0
− ufθ

∥L2∥H∥2
L2

(2.125)

Combining the displays (2.117), (2.123), (2.124) and (2.125), we have proved that for any
θ ∈ B1, any v ∈ RD and some constants c′, c′′ > 0,

vTEθ0 [−∇2ℓ(θ, Z)]v ≥
[
c′D−4/d − c′′∥ufθ0

− ufθ
∥L2

]
∥H∥2

L2 .

Using (2.111) and the hypotheses, we obtain that for some cg > 0,

∥ufθ0
− ufθ

∥L2 ≤ ∥G(θ0) − G(θ0,D)∥L2 + cg∥θ0,D − θ∥RD ≤ (c1 + cgϵS)D−4/d.

Thus for all c1, εS > 0 small enough and taking the infimum over v ∈ RD with ∥v∥RD =
∥Ψ(v)∥L2 = ∥H∥L2 = 1, we obtain that for any θ ∈ BϵS and some c′′′ > 0,

λmin
(
Eθ0 [−∇2ℓ(θ, Z)]

)
≥ c′′′D−4/d,

which completes the proof.

Finally, we prove the upper bound required for Assumption 2.3.3 ii).
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Lemma 2.4.8 (Upper bound). For every S > 0, there exists a constant cmax > 0 such that
for ∥θ0∥h2 ≤ S and all D ∈ N, we have

sup
θ∈B1

[
|Eθ0 [ℓ(θ, Z)]| + ∥Eθ0 [∇ℓ(θ, Z)]∥RD + ∥Eθ0 [∇2ℓ(θ, Z)]∥op

]
≤ cmax.

Proof. For the zeroeth order term, using Lemma 2.4.5, we have that for some K0 > 0 and
any θ ∈ B1,

|Eθ0 [ℓ(θ)]| = 1/2 + 1/2∥G(θ) − G(θ0)∥2
L2 ≲ 1 + ∥G(θ)∥2

∞ + ∥uf0∥2
∞ ≤ K0.

For the first order term, similarly by Lemma 2.4.5 there exists some K1 > 0 such that for
any θ ∈ B1,

∥∥Eθ0

[
− ∇ℓ(θ)

]∥∥
RD ≲

∥∥⟨G(θ0) − G(θ),∇G(θ)⟩L2(O)
∥∥
RD

≲
∥∥G(θ0) − G(θ)

∥∥
∞
∥∥∇G(θ)

∥∥
L∞(O,RD) ≤ K1.

For the second order term, we recall the decomposition

λmax
(
Eθ0

[
− ∇2ℓ(θ)

])
= sup

v:∥v∥RD ≤1
vTEθ0

[
− ∇2ℓ(θ)

]
v = sup

v:∥v∥RD ≤1

[
I + II + III

]
,

where the terms I − III were defined in (2.117). Suitable uniform upper bounds for the
terms II and III have already been shown in (2.124) and (2.125) respectively, whence it
suffices to upper bound the term I. We do this by using (2.108) and Lemma 2.5.5: for any
θ ∈ B1 and any H = Ψ(v), v ∈ RD,

√
I = ∥Vfθ

[ufθ
(Φ′ ◦ Fθ)H]∥L2 ≲ ∥ufθ

(Φ′ ◦ Fθ)H∥L2 ≲ ∥ufθ
∥∞∥Φ′ ◦ Fθ∥∞∥H∥L2 ≲ ∥v∥RD .

We conclude with the following basic comparison lemma for Sobolev norms on the
subspaces ED ⊆ L2(O) from (2.109).

Lemma 2.4.9. There exists C > 0 such that for any D ∈ N and any H ∈ ED,

∥H∥H2 ≤ CD2/d∥H∥L2 , ∥H∥L2 ≤ CD2/d∥H∥(H2
0 )∗ . (2.126)

Proof. Fix D ∈ N. By the isomorphism property of ∆ between the spaces H2
0 and L2 (see

e.g. Theorem II.5.4 in [109]), we first have the norm equivalence

∥∆H∥L2 ≲ ∥H∥H2
0
≲ ∥∆H∥L2 , H ∈ ED.
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It follows by Weyl’s law (2.13) that

∥H∥2
H2

0
≲

D∑
k=1

∣∣⟨H, ek⟩L2
∣∣2λ2

k ≲ D4/d∥H∥2
L2 .

Thus, combining the above display with the following duality argument completes the proof:

∥H∥L2 = sup
ψ∈ED:∥ψ∥L2 ≤1

∣∣⟨H,ψ⟩L2
∣∣ ≲ D2/d sup

ψ∈ED:∥ψ∥
H2

0
≤1

∣∣⟨H,ψ⟩L2
∣∣ ≤ D2/d∥H∥(H2

0 )∗ .

2.4.2 Wasserstein approximation of the posterior measure

The main purpose of this section is to prove Theorem 2.4.14, which provides a bound on the
Wasserstein distance between the posterior measure Π(·|Z(N)) from (2.24) and the surrogate
posterior Π̃(·|Z(N)) from (2.27) in the Schrödinger model. The idea behind the proof of
this theorem is to show that both Π(·|Z(N)) and Π̃(·|Z(N)) concentrate most of their mass
on the region (2.99) where the log-likelihood function ℓN is strongly concave (with high
PNθ0

-probability, cf. Proposition 2.4.1). This involves initially a careful study of the mode
(maximiser) of the posterior density, given in Theorem 3.14.

2.4.2.1 Convergence rate of MAP estimates

For (Yi, Xi)Ni=1 arising from (2.19) with G : RD → R from (2.17), we now study maximisers

θ̂MAP ∈ arg max
θ∈RD

[
− 1

2N

N∑
i=1

(
Yi − G(θ)(Xi)

)2 − δ2
N

2 ∥θ∥2
hα

]
, δN = N− α

2α+d , (2.127)

of the posterior density (2.24). For Λα from (2.23) we will write I(θ) := 1
2∥θ∥2

hα = 1
2θ
TΛαθ

for θ ∈ RD. We denote the empirical measure on R × O induced by the Zi = (Xi, Yi)’s as

PN = 1
N

N∑
i=1

δ(Yi,Xi), so that
∫
hdPN = 1

N

N∑
i=1

h(Yi, Xi) (2.128)

for any measurable map h : R × O → R. Recall also that pθ : R × O → [0,∞) denotes the
marginal probability densities of PNθ defined in (2.21).
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Lemma 2.4.10. Let θ̂MAP be any maximiser in (2.127), and denote by θ0,D the projection
of θ0 onto RD. We have (PNθ0

-a.s.)

1
2∥G(θ̂MAP ) − G(θ0)∥2

L2 + δ2
NI(θ̂MAP )

≤
∫

log
pθ̂MAP

pθ0,D

d(PN − Pθ0) + δ2
NI(θ0,D) + 1

2∥G(θ0,D) − G(θ0)∥2
L2 .

Proof. By the definitions

ℓN (θ̂MAP ) − ℓN (θ0,D) −Nδ2
NI(θ̂MAP ) ≥ −Nδ2

NI(θ0,D)

which is the same as

N

∫
log

pθ̂MAP

pθ0,D

d(PN − Pθ0) +Nδ2
NI(θ0,D) ≥ Nδ2

NI(θ̂MAP ) −N

∫
log

pθ̂MAP

pθ0,D

dPθ0 . (2.129)

The last term can be decomposed as

−
∫

log
pθ̂MAP

pθ0,D

dPθ0 = −
∫

log
pθ̂MAP

pθ0

dPθ0 +
∫

log
pθ0,D

pθ0

dPθ0

= 1
2∥G(θ̂MAP ) − G(θ0)∥2

L2(O) − 1
2∥G(θ0,D) − G(θ0)∥2

L2(O)

where we have used a standard computation of likelihood ratios (see also Lemma 23 in [132]).
The result follows from the last two displays after dividing by N .

The following result can be proved by adapting techniques from M -estimation [170] (see
also [169], [136]) to the present situation. We will make crucial use of the concentration
Lemma 2.3.12.

Proposition 2.4.11. Let α > d. Suppose ∥θ0∥hα ≤ c0 and that D is such that ∥G(θ0) −
G(θ0,D)∥L2 ≤ c1δN for some c0, c1 > 0. Then, for any c ≥ 1 we can choose C = C(c, c0, c1)
large enough so that every θ̂MAP maximising (2.127) satisfies

PNθ0

(1
2∥G(θ̂MAP ) − G(θ0)∥2

L2 + δ2
NI(θ̂MAP ) > Cδ2

N

)
≲ e−c2Nδ2

N . (2.130)

Proof. We define functionals

τ(θ, θ′) = 1
2∥G(θ) − G(θ′)∥2

L2 + δ2
NI(θ), θ ∈ RD, θ′ ∈ hα,

and empirical processes

WN (θ) =
∫

log pθ
pθ0,D

d(PN − Pθ0), WN,0(θ) =
∫

log pθ
pθ0

d(PN − Pθ0), θ ∈ RD,
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so that
WN (θ) = WN,0(θ) −WN,0(θ0,D), θ ∈ RD.

Using the previous lemma it suffices to bound

PNθ0

(
τ(θ̂MAP , θ0) > Cδ2

N ,WN (θ̂MAP ) ≥ τ(θ̂MAP , θ0) − δ2
NI(θ0,D) − ∥G(θ0,D) − G(θ0)∥2

L2/2
)

Since

I(θ0,D) = ∥θ0,D∥2
hα/2 ≤ ∥θ0∥2

hα/2 ≤ c2
0/2 and ∥G(θ0,D) − G(θ0)∥2

L2 ≤ c2
1δ

2
N

by hypothesis, we can choose C large enough so that the last probability is bounded by

PNθ0

(
τ(θ̂MAP , θ0) > Cδ2

N , |WN (θ̂MAP )| ≥ τ(θ̂MAP , θ0)/2
)

≤
∞∑
s=1

PNθ0

 sup
θ∈RD:2s−1Cδ2

N ≤τ(θ,θ0)≤2sCδ2
N

|WN,0(θ)| ≥ 2sCδ2
N/8

+ PNθ0

(
|WN,0(θ0,D)| ≥ Cδ2

N/8
)

≤ 2
∞∑
s=1

PNθ0

(
sup
θ∈Θs

|WN,0(θ)| ≥ 2sCδ2
N/8

)
, (2.131)

where, for s ∈ N,

Θs :=
{
θ ∈ RD : τ(θ, θ0) ≤ 2sCδ2

N

}
=
{
θ ∈ RD : ∥G(θ) − G(θ0)∥2

L2 + δ2
N∥θ∥2

hα ≤ 2s+1Cδ2
N

}
,

(2.132)
and where we have used that θ0,D ∈ Θ1 for C large enough by the hypotheses. To proceed,
notice that

NWN,0(θ) = ℓN (θ) − ℓN (θ0) − Eθ0 [ℓN (θ) − ℓN (θ0)]

and that, for (Yi, Xi) ∼i.i.d. Pθ0 ,

ℓN (θ) − ℓN (θ0) = −1
2

N∑
i=1

[
(G(θ0)(Xi) − G(θ)(Xi) + εi)2 − ε2

i

]
= −

N∑
i=1

(G(θ0)(Xi) − G(θ)(Xi))εi − 1
2

N∑
i=1

(G(θ0)(Xi) − G(θ)(Xi))2, (2.133)

so that we have to deal with two empirical processes separately. We first bound

∞∑
s=1

PNθ0

(
sup
θ∈Θs

|ZN (θ)| ≥
√
N2sCδ2

N/16
)

(2.134)

where

ZN = 1√
N

N∑
i=1

hθ(Xi)εi, hθ = G(θ0) − G(θ), θ ∈ Θ = Θs, s ∈ N,
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is as in Lemma 2.3.12. We will apply that lemma with bounds (recalling vol(O) = 1)

EXh2
θ(X) = ∥G(θ) − G(θ0)∥2

L2 ≤ 2s+1Cδ2
N =: σ2

s , ∥hθ∥∞ ≤ 2 sup
θ

∥G(θ)∥∞ ≤ U < ∞

(2.135)
uniformly in all θ ∈ Θs, for some fixed constant U = U(g,O) (cf. (2.18)). For the entropy
bounds, we use that on each slice supθ∈Θs

∥Fθ∥Hα ≤ C ′2s/2, which for α > d implies (using
(4.184) in [72] and standard extension properties of Sobolev norms)

logN
(
{Fθ : θ ∈ Θs}, ∥ · ∥∞, ρ

)
≤ K

(2s/2

ρ

)d/α
, ρ > 0,

for some constant K = K(α, d, C ′). Since the map Fθ 7→ G(θ) is Lipschitz for the ∥ · ∥∞-norm
(Lemma 2.4.6) we deduce that also

logN
(
{hθ = G(θ) − G(θ0) : θ ∈ Θs}, ∥ · ∥∞, ρ

)
≤ K ′

(2s/2

ρ

)d/α
, ρ > 0, (2.136)

and as a consequence, for α > d and J2(H), J∞(H) defined in Lemma 2.3.12,

J2(H) ≲
∫ 4σs

0

(2s/2

ρ

)d/2α
dρ ≲ 2sd/4ασ

1− d
2α

s , J∞(H) ≲
∫ 4U

0

(2s/2

ρ

)d/α
dρ ≲ 2sd/2αU1− d

α .

(2.137)
The sum in (2.134) can now be bounded by Lemma 2.3.12 with x = c2N2sδ2

N and the choices
of σs, U in (2.135) for C = C(c) > 0 large enough,

∑
s∈N

PNθ0

(
sup
θ∈Θs

|ZN (θ)| ≥
√
Nσ2

s/16
)

≤ 2
∑
s∈N

e−c22sNδ2
N ≲ e−c2Nδ2

N (2.138)

since then, by definition of δN , for α > d and C large enough, the quantities

J2(H) ≲ 2sd/4α(2s/2√
CδN )1− d

2α ≲
1

C(4α+d)/4α

√
Nσ2

s , σs
√
x ≤ c√

C

√
Nσ2

s , (2.139)

and
1√
N

J∞(H) ≲ 2sd/2α
√
N

≲
1
C

√
Nσ2

s ,
x√
N

= c2

C

√
Nσ2

s (2.140)

are all of the correct order of magnitude compared to
√
Nσ2

s .
We now turn to the process corresponding to the second term in (2.133), which is bounded

by ∑
s∈N

PNθ0

(
sup
θ∈Θs

|Z ′
N (θ)| ≥

√
N2sCδ2

N/16
)

(2.141)
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where Z ′
N is now the centred empirical process

Z ′
N (θ) = 1√

N

N∑
i=1

(hθ − EXhθ(X)
)
, with H = {hθ = (G(θ) − G(θ0))2 : θ ∈ Θs}

to which we will again apply Lemma 2.3.12. Just as in (2.135) the envelopes of this process
are uniformly bounded by a fixed constant, again denoted by U , which implies in particular
that the bounds (2.137) also apply to H as then, for some constant cU > 0,

∥hθ − hθ′∥∞ ≤ cU∥G(θ) − G(θ′)∥∞.

Moreover on each slice Θs the weak variances are bounded by

EXh2
θ(X) ≤ c′

U∥hθ∥2
L2 ≤ σ2

s

with σs as in (2.135) and some c′
U > 0. We see that all bounds required to obtain (2.134)

apply to the process Z ′
N as well, and hence the series in (2.131) is indeed bounded as required

in the proposition, completing the proof.

From a stability estimate for θ 7→ G(θ) we now obtain the following convergence rate for
∥θ̂MAP − θ0∥ℓ2 which in turn also bounds ∥θ̂MAP − θ0,D∥RD .

Theorem 2.4.12. Let Z(N) ∼ PNθ0
be as in (2.20) where θ0 ∈ hα, α > d, d ≤ 3. Define

δ̄N := N−r(α) where r(α) = α

2α+ d

α

α+ 2 .

Suppose ∥θ0∥hα ≤ c0 and that D is such that ∥G(θ0) − G(θ0,D)∥L2 ≤ c1δN , for some constants
c0, c1 > 0. Then given c > 0 we can choose C̄, c̄ large enough (depending on c, c0, c1, α,O) so
that for all N and any maximiser θ̂MAP satisfying (2.127), one has

PNθ0

(
∥θ̂MAP − θ0∥ℓ2 ≤ C̄δ̄N , ∥θ̂MAP ∥hα ≤ C̄

)
≥ 1 − c̄e−c2Nδ2

N . (2.142)

Proof. By Proposition 2.4.11 we can restrict to events

TN :=
{
∥G(θ̂MAP ) − G(θ0)∥2

L2 ≤ 2Cδ2
N , ∥Fθ̂MAP

∥Hα = ∥θ̂MAP ∥hα ≤
√

2C
}

(2.143)

of sufficiently high PNθ0
-probability. If we write f̂ = Φ ◦ Fθ̂MAP

for Φ from (2.17) then by
(2.178), on the events TN we also have ∥f̂∥Hα ≤ C ′ and ∥f̂∥∞ ≤ C ′, for some C ′ > 0. We
write uf̂ = G(θ̂MAP ) for the unique solution of the Schrödinger equation (2.11) corresponding
to f̂ . We then necessarily have f = ∆uf/(2uf ) both for f = f̂ and f = f0, where we
also use that denominator uf is bounded away from zero by a constant depending only on
C ′ ≥ ∥f∥∞,O, g, see (2.119). Then using the multiplication and interpolation inequalities
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(2.7), (2.8), the regularity estimate from (2.176) and (2.178), we have for t = α/(α+ 2),

∥f̂ − f0∥L2 ≲ ∥uf̂ − uf0∥H2

≲ ∥G(θ̂MAP ) − G(θ0)∥tL2∥uf̂ − uf0∥1−t
Hα+2

≲ δtN (∥f̂∥Hα + ∥f0∥Hα) ≲ δtN (2.144)

on the event TN . From a Sobolev imbedding (some κ > 0) and applying (2.8) again we
further deduce ∥f̂ − f0∥∞ ≲ δ

(α−d/2−κ)/(α+2)
N → 0 as N → ∞, hence using infx f0(x) > Kmin

we also have infx f̂(x) ≥ Kmin + k for some k > 0 (on TN , for all N large enough). We
deduce

∥θ̂MAP − θ0∥ℓ2 ≤ ∥Fθ̂MAP
− Fθ0∥L2 = ∥Φ−1 ◦ f̂ − Φ−1 ◦ f0∥L2 ≲ ∥f̂ − f0∥L2 ≲ δtN

on the events TN , where in the last inequality we have used regularity of the inverse link
function Φ−1 : [Kmin + k,∞) and (2.179). This completes the proof.

2.4.2.2 Posterior contraction rates

We now study the full posterior distribution (2.24) arising from the Gaussian prior Π for θ
from (2.23). The result we shall prove parallels Theorem 3.14 but holds for most of the ‘mass’
of the posterior measure instead of just for its ‘mode’ θ̂MAP . This requires very different
techniques and we rely on ideas from Bayesian nonparametrics [173, 69], specifically recent
progress [126] that allows one to deal with non-linear settings (see also [132]).

In the proof of Theorem 2.4.14 to follow we will require control of the posterior ‘normalising
factors’, expressed via sets

CN = CN,K =
{∫

RD
eℓN (θ)−ℓN (θ0)dΠ(θ) ≥ Π(B(δN )) exp{−(1 +K)Nδ2

N}
}
, (2.145)

for some K > 0, where δN = N−α/(2α+d) and

B(δN ) =
{
θ ∈ RD : ∥G(θ) − G(θ0)∥L2(O) ≤ δN

}
.

This is achieved in the course of the proof of our next result. We denote by cg the global
Lipschitz constant of the map θ 7→ G(θ) from ℓ2(N) → L2(O), see (2.111).

Theorem 2.4.13. Let Z(N), θ0, α, d, δ̄N be as in Theorem 3.14 and let Π(·|Z(N)) denote the
posterior distribution from (2.24). Suppose ∥θ0∥hα ≤ c0 and that D ≤ c2Nδ

2
N is such that

∥G(θ0) − G(θ0,D)∥L2(O) ≤ c1δN (2.146)
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for some finite constants c0, c2 > 0, 0 < c1 < 1/2. Then for any a > 0 there exist c′, c′′ such
that for K,L = L(a, c0, c2, cg, α,O) large enough,

PNθ0

({
Π(θ : ∥θ − θ0,D∥RD ≤ Lδ̄N , ∥θ∥hα ≤ L|Z(N)) ≥ 1 − e−aNδ2

N
}
, CN,K

)
≥ 1 − c′e−c′′Nδ2

N .

(2.147)

Proof. We initially establish some auxiliary results that will allow us to apply a standard
contraction theorem from Bayesian non-parametrics, specifically in a form given in Theorem
13 in [132]. By Lemma 23 in [132] and (2.18) we can lower bound ΠN (BN ) in (35) in [132]
by our ΠN (B(δN )) (after adjusting the choice of δN in [132] by a multiplicative constant).
Then using (2.146), Corollary 2.6.18 in [72], and ultimately Theorem 1.2 in [107] combined
with (4.184) in [72], we have for θ′ ∼ N(0,Λ−1

α ),

ΠN (∥G(θ) − G(θ0)∥L2(O) < δN ) ≥ ΠN (∥G(θ) − G(θ0,D)∥L2(O) < δN/2)
≥ ΠN (∥θ − θ0,D∥RD < δN/2cg)

≥ e−Nδ2
N ∥θ0,D∥2

hα/2 Pr(∥θ′∥RD <
√
Nδ2

N/2cg) ≥ e−d̄Nδ2
N

(2.148)

for some d̄ > 0. From this we deduce further from Borell’s Gaussian iso-perimetric inequality
[25] (in the form of Theorem 2.6.12 in [72]), arguing just as in Lemma 17 in [132] (and
invoking the remark after that lemma with κ = 0 there), that given B > 0 we can find M

large enough (depending on d̄, B) such that

ΠN

(
θ = θ1 + θ2 ∈ RD : ∥θ1∥RD ≤ MδN , ∥θ2∥hα ≤ M

)
≥ 1 − 2e−BNδ2

N .

Next the eigenvalue growth λαk ≲ k2α/d from (2.13) and the hypothesis on D imply that for
L̄ large enough we have

∥θ1∥hα ≲ Dα/d∥θ1∥RD ≤ (c2Nδ
2
N )α/dMδN ≤ L̄/2 (2.149)

and then also

ΠN (Ac
N ) ≤ 2e−BNδ2

N where AN = {θ ∈ RD : ∥θ∥hα ≤ L̄}. (2.150)

The ∥ · ∥∞-covering numbers of the implied set of regression functions G(θ) satisfy the bounds

logN({G(θ) : θ ∈ AN}, ∥ · ∥∞, δN ) ≲ logN({Fθ : θ ∈ AN}, ∥ · ∥∞, c̃δN )
≲ logN({F : ∥F∥Hα(O) ≤ cL̄}, ∥ · ∥∞, c̃δN ) ≲ Nδ2

N ,

for some c̃, c > 0, using that the map Fθ 7→ G(θ) is globally Lipschitz for the ∥ · ∥∞-norm
(Lemma 2.4.6) and also the bound (4.184) in [72]. By (2.18) and Lemma 22 in [132] the
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previous metric entropy inequality also holds for the Hellinger distance replacing ∥ · ∥∞-
distance on the l.h.s. in the last display. Theorem 13 and again Lemma 22 in [132] now imply
that for any a > 0 and L large enough,

PNθ0

(
Π({θ : ∥G(θ) − G(θ0)∥L2 > LδN} ∪ Ac

N |Z(N)) ≤ e−aNδ2
N

)
→ 0 (2.151)

as N → ∞. The convergence in probability to zero obtained in the proof of Theorem 13 in
[132] is in fact exponentially fast, as required in (2.147): This is true by virtue of the bound
to follow in the next display (which forms part of the proof in [132] as well), and since the
type-one testing errors in (39) in [132] are controlled at the required exponential rate (via
Theorem 7.1.4 in [72]). The inequality

PNθ0

( ∫
B(δN )

eℓN (θ)−ℓN (θ0)dΠ(θ) ≥ Π(B(δN )) exp{−(1 +K)Nδ2
N}
)

≤ c′e−c′′Nδ2
N ,

bounding PNθ0
(CcN,K) as required in the theorem follows from Lemma 2.4.15 below for large

enough K and C̄ = 1/2.

Now to conclude, we can define subsets of RD as

ΘN := {θ : ∥G(θ)−G(θ0)∥L2 ≤ LδN}∩AN = {θ : ∥G(θ)−G(θ0)∥L2 ≤ LδN , ∥Fθ∥Hα = ∥θ∥hα ≤ L̄}

paralleling the events TN from (2.143) above. Then arguing as in and after (2.144), one
shows that

ΘN ⊂ Θ̃N = {θ : ∥θ − θ0∥RD ≤ LN−r(α), ∥θ∥hα ≤ L}, (2.152)

increasing also the constant L if necessary, and hence the posterior probability of this event is
also lower bounded by Π(Θ̃N |Z(N)) ≥ 1 − e−aNδ2

N , with the desired PNθ0
-probability, proving

the theorem.

Moreover, a quantitative uniform integrability argument from Section 5.4.5 in [126] (see
the proof of Theorem 2.4.14, term III, below) then also gives a convergence rate for the
posterior mean EΠ[θ|Z(N)] towards θ0, namely that for L large enough there exist c̄′, c̄′′ > 0
such that

PNθ0

(
∥EΠ[θ|Z(N)] − θ0∥ℓ2 > Lδ̄N

)
≤ c̄′e−c̄′′Nδ2

N . (2.153)

2.4.2.3 Globally log-concave approximation of the posterior in Wasserstein dis-
tance

Recall the surrogate posterior measure Π̃(·|Z(N)) from (2.27) with log-density

log π̃N (θ) = const.+ ℓ̃N (θ) − Nδ2
N

2 ∥θ∥2
hα , θ ∈ RD (2.154)
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with θinit and parameters ϵ,K chosen as in Condition 2.2.2, and with δN = N−α/(2α+d). We
now prove the main result of this section.

Theorem 2.4.14. Assume Condition 2.2.3 and let Π̃(·|Z(N)) be the probability measure of
density given in (2.27) with K, ε > 0 chosen as in Condition 2.2.2. Then for some a1, a2 > 0
and all N ∈ N,

PNθ0

(
W 2

2 (Π̃(·|Z(N)),Π(·|Z(N))) > e−Nδ2
N /2

)
≤ a1e

−a2Nδ2
N .

Proof. In the proof we will require a new sequence

δ̃N = N (−α+2)/(2α+d)√logN (2.155)

describing the ‘rate of contraction’ of the surrogate posterior obtained below. We first
notice that the definitions of δ̄N (from Theorem 3.14) and of δN imply by straightforward
calculations and using D ≲ Nδ2

N , α > 6, the asymptotic relations as N → ∞,

δND
2/d√logN = O(δ̃N ), δN ≪ δ̄N ≪ δ̃N ≪ 1

logND− 4
d , (2.156)

which we shall use in the proof. We will prove the bound for all N large enough, which is
sufficient to prove the desired inequality after adjusting the constant in ≲ (since probabilities
are always bounded by one).

Geometry of the surrogate posterior. To set things up, consider MAP estimates
θ̂MAP from (2.127). In view of (2.18), the function qN to be maximised over RD in (2.127)
satisfies qN (θ) < qN (0) for all θ such that ∥θ∥hα exceeds some positive constant k. Then on
the compact set M = {θ ∈ RD : ∥θ∥hα ≤ k} the function qN is continuous (as G is continuous
from RD → L∞(O), Lemma 2.4.6), and hence attains its maximum at some θ̂M ∈ M , which
must be a global maximiser of qN since qN (θ̂M ) ≥ qN (0) > infθ∈Mc qN (θ). Conclude that a
maximiser θ̂MAP exists (one shows that it can be taken to be measurable, Exercise 7.2.3 in
[72]).

In view of Proposition 2.4.1, Theorem 3.14, Theorem 2.5.10 (and the remark before it),
α > 6 as well as Proposition 2.3.6, we may restrict the rest of the proof to the following event

SN :=
{

∥θinit − θ0,D∥RD ≤ 1
8D4/d logN

, inf
θ∈B1/ log N

λmin(−∇2ℓ̃N (θ)) ≥ cND−4/d
}

∩
{

any θ̂MAP satisfies ∥θ̂MAP − θ0,D∥RD ≤ min
{ 1

8D4/d logN
, C̄δ̄N

}}
,
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where Bϵ was defined in (2.99), where C̄ is from (2.142) and where c = c2 from Proposition
2.4.1. On SN we have the following properties of ℓ̃N . First, from (2.26),

ℓ̃N (θ) = ℓN (θ) for any θ s.t. ∥θ − θ0,D∥RD ≤ 3
8D4/d logN

. (2.157)

Moreover, by Proposition 2.3.6, log π̃(·|Z(N)) is strongly concave in view of

sup
θ,ϑ∈RD,∥ϑ∥RD =1

ϑT [∇2(log π̃N (θ))]ϑ ≤ sup
θ,ϑ∈RD,∥ϑ∥RD =1

ϑT [∇2ℓ̃N (θ)]ϑ ≤ −cND−4/d. (2.158)

Finally, any θ̂MAP necessarily satisfies

0 = ∇ log π(θ̂MAP |Z(N)) = ∇ log π̃(θ̂MAP ), (2.159)

from which we conclude that θ̂MAP necessarily equals the unique global maximiser of the
strongly concave function log π̃(·|Z(N)) over RD.

Decomposition of the Wasserstein distance. Now let us write

B̂(r) = {θ ∈ RD : ∥θ − θ̂MAP ∥RD ≤ r},

for the Euclidean ball of radius r > 0 centred at θ̂MAP . Then using Theorem 6.15 in [176]
with x0 = θ̂MAP , we obtain for any m > 0 that

W 2
2 (Π̃(·|Z(N)),Π(·|Z(N))) ≤ 2

∫
RD

∥θ − θ̂MAP ∥2
RDd|Π̃(·|Z(N)) − Π(·|Z(N))|(θ)

≤ 2
∫

B̂(mδ̃N )
∥θ − θ̂MAP ∥2

RDd|Π̃(·|Z(N)) − Π(·|Z(N))|(θ)

+ 2
∫
RD\B̂(mδ̃N )

∥θ − θ̂MAP ∥2
RDd|Π̃(·|Z(N)) − Π(·|Z(N))|(θ)

≤ 2m2δ̃2
N

∫
B̂(mδ̃N )

d|Π(·|Z(N)) − Π̃(·|Z(N))|dθ

+ 2
∫

∥θ−θ̂MAP ∥RD>mδ̃N

∥θ − θ̂MAP ∥2
RDdΠ̃(·|Z(N))

+ 2
∫

∥θ−θ̂MAP ∥RD>mδ̃N

∥θ − θ̂MAP ∥2
RDdΠ(·|Z(N))

≡ I + II + III,

and we now bound I, II, III in separate steps.
Term II. We can write the surrogate posterior density as

π̃(θ|Z(N)) = eℓ̃N (θ)−ℓ̃N (θ̂MAP )π(θ)∫
RD eℓ̃N (θ)−ℓ̃N (θ̂MAP )π(θ)dθ

, θ ∈ RD,
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and will first lower bound the normalising factor. From (2.156) we have for any c > 0 the set
inclusion

BN ≡ {∥θ − θ0,D∥RD ≤ cδN} ⊂
{

∥θ − θ0,D∥RD ≤ 3
8D4/d logN

}
whenever N is large enough. Since ℓN (θ) = ℓ̃N (θ) on the last set we have on an event of
large enough PNθ0

-probability,∫
RD

eℓ̃N (θ)−ℓ̃N (θ̂MAP )dΠ(θ) ≥
∫
BN

eℓ̃N (θ)−ℓ̃N (θ̂MAP )dΠ(θ)

=
∫
BN

eℓN (θ)−ℓN (θ̂MAP )dν(θ) × Π(BN ) ≥ e−c̄Nδ2
N

for some c̄ = c̄(d̄, c), where we have used Lemma 2.4.15 for our choice of BN (permitted for
appropriate choice of c > 0 by (2.28) and since G : RD → L2 is Lipschitz, see Section 2.5)
with ν = Π(·)/Π(BN ), C̄ = 1/2; as well as the small ball estimate for Π in (2.148).

Now recall the prior (2.23) and define scaling constants

VN = (2π)−D/2
√

det(Nδ2
NΛα) × ec̄Nδ

2
N .

Then on the preceding events the term II can be bounded, using a second order Taylor
expansion of log π̃(·|Z(N)) around its maximum θ̂MAP combined with (2.158), (2.159), as∫

∥θ−θ̂MAP ∥RD>mδ̃N

∥θ − θ̂MAP ∥2
RD π̃(θ|Z(N))dθ

≤ ec̄Nδ
2
N

∫
∥θ−θ̂MAP ∥RD>mδ̃N

∥θ − θ̂MAP ∥2
RDe

ℓ̃N (θ)−ℓ̃N (θ̂MAP )π(θ)dθ

≤ VN ×
∫

∥θ−θ̂MAP ∥RD>mδ̃N

∥θ − θ̂MAP ∥2
RDe

ℓ̃N (θ)−
Nδ2

N
2 ∥θ∥2

hα −ℓ̃N (θ̂MAP )+
Nδ2

N
2 ∥θ̂MAP ∥2

hαdθ

= VN ×
∫

∥θ−θ̂MAP ∥RD>mδ̃N

∥θ − θ̂MAP ∥2
RDe

log π̃N (θ)−log π̃N (θ̂MAP )dθ

≤ VN ×
∫

∥θ−θ̂MAP ∥RD>mδ̃N

∥θ − θ̂MAP ∥2
RDe

−cND−4/d∥θ−θ̂MAP ∥2
RD/2

dθ

≤ 2VN ×
( 4π
cND−4/d

)D/2 Pr
(
∥Z∥RD > mδ̃N

)
where we have used x2e−cx2 ≤ 2e−cx2/2 for all x ∈ R, c ≥ 1 (and N such that cND−4/d ≥ 1)
and where

Z ∼ N
(
0, 2
cD−4/dN

ID×D
)
.

Now by D ≤ c0Nδ
2
N and (2.156),

E∥Z∥RD ≤
√
E∥Z∥2

RD ≤
√

2D/(cD−4/dN) ≤ (2c0/c)1/2δND
2/d ≤ (m/2)δ̃N
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for m large enough, so that

Pr
(
∥Z∥RD > mδ̃N

)
≤ Pr

(
∥Z∥RD − E∥Z∥RD > (m/2)δ̃N

)
≤ e−m2cND−4/dδ̃2

N/16

by a concentration inequality for Lipschitz-functionals of D-dimensional Gaussian random
vectors (e.g., Theorem 2.5.7 in [72] applied to (cND−4/d/2)1/2Z ∼ N(0, ID×D) and F =
∥ · ∥RD ). By (2.13) and since D ≲ Nδ2

N we have for some c′ > 0

VN ≤ ec
′Nδ2

N logN

so that for m large enough and using (2.156), the last term in the displayed array above, and
hence II, is bounded by

2VN ×
( 4π
cND−4/d

)D/2 × e−m2cD−4/dNδ̃2
N/16 ≤ e−m2D−4/dNδ̃2

N/32 ≤ 1
8e

−Nδ2
N .

Term III: We first note that Theorem 2.4.13 and (2.156) imply that for every a > 0 we
can find m large enough such that

Π(∥θ − θ̂MAP ∥RD > mδ̃N |Z(N)) ≤ Π(∥θ − θ0,D∥RD > mδ̄N − ∥θ̂MAP − θ0,D∥RD |Z(N))
≤ Π(∥θ − θ0,D∥RD > mδ̄N/2|Z(N)) ≤ e−aNδ2

N

on events S ′
N ⊂ SN of sufficiently high probability. Moreover, again by Theorem 2.4.13, we

can further restrict the argument that follows to the event CN,K from (2.145) for some K > 0.
Now using the Cauchy-Schwarz and Markov inequalities as well as ENθ0

eℓN (θ)−ℓN (θ0) = 1 and
the small ball estimate for Π in (2.148), we have

PNθ0

(
CN,K ∩ S ′

N ,

∫
∥θ−θ̂MAP ∥RD>mδ̃N

∥θ − θ̂MAP ∥2
RDdΠ(·|Z(N)) > e−Nδ2

N /8
)

≤ PNθ0

(
CN,K ∩ S ′

N ,Π(∥θ − θ̂MAP ∥RD > mδ̃N |Z(N))EΠ[∥θ − θ̂MAP ∥4
RD |Z(N)] > e−2Nδ2

N /8
)

≤ PNθ0

(
S ′
N , e

(1+K+d̄+2−a)Nδ2
N

∫
RD

∥θ − θ̂MAP ∥4
RDe

ℓN (θ)−ℓN (θ0)dΠ(θ) > 1/8
)

≲ e(1+K+d̄+2−a)Nδ2
N

∫
RD

(1 + ∥θ∥4
RD )dΠ(θ) ≤ e−a2Nδ2

N

whenever m and then a are large enough, since Π has uniformly bounded fourth moments
and since ∥θ̂MAP ∥RD is uniformly bounded by a constant depending only on ∥θ0∥ℓ2 on the
events SN .

Term I: On the events SN we have from (2.156) that for fixed m > 0 and all N large
enough

B̂(mδ̃N ) ⊆ {θ : ∥θ − θ0,D∥RD ≤ 3/(8D4/d logN)}.



92 On polynomial-time computation of high-dimensional posterior measures

On the latter set, by (2.157), the probability measures Π̃(·|Z(N)) and Π(·|Z(N)) coincide up
to a normalising factor, and thus we can represent their Lebesgue densities as

π̃(θ|Z(N)) = pNπ(θ|Z(N)), θ ∈ B̂(mδ̃N ),

for some 0 < pN < ∞. Moreover, by the preceding estimates for terms II and III (which hold
just as well without the integrating factors ∥θ − θ̂MAP ∥2

RD ), we have both

pNΠ(B̂(mδ̃N )|Z(N)) = Π̃(B̂(mδ̃N )|Z(N)) ≥ 1 − e−Nδ2
N /8 ⇒ 1 − e−Nδ2

N /8 ≤ pN ,

p−1
N Π̃(B̂(mδ̃N )|Z(N)) = Π(B̂(mδ̃N )|Z(N)) ≥ 1 − e−Nδ2

N /8 ⇒ 1 − e−Nδ2
N /8 ≤ 1

pN

on events of sufficiently high PNθ0
-probability. On these events necessarily

pN ∈
[
1 − e−Nδ2

N

8 ,
1

1 − e
−Nδ2

N

8

]

and so for N large enough∫
B̂(mδ̃N )

d|Π(·|Z(N)) − Π̃(·|Z(N))|(θ) = |1 − pN |
∫

B̂(mδ̃N )
π(θ|Z(N))dθ ≤ |1 − pN | ≤ e−Nδ2

N /4,

which is obvious for pN ≤ 1 and follows from the mean value theorem applied to f(x) =
(1 − x)−1 near x = 0 also for pN > 1. Collecting the bounds for I, II, III completes the
proof.

2.4.2.4 An ‘exponential’ small ball lemma

Lemma 2.4.15. Let G be as in (2.17) and let ν be a probability measure on some (ℓ2(N)-
measurable) set

BN ⊆
{
θ ∈ ℓ2(N) : ∥G(θ) − G(θ0)∥2

L2 ≤ 2C̄δ2
N

}
, for some C̄ > 0. (2.160)

Then for ℓN from (2.22) we have for every K = K(C̄) > 0 large enough and some fixed
constant b > 0 that

PNθ0

(∫
BN

eℓN (θ)−ℓN (θ̂MAP )dν(θ) ≤ e−(1+K)C̄2Nδ2
N

)
≲ e−bNδ2

N . (2.161)

The same conclusion holds true with ℓN (θ̂MAP ) replaced by ℓN (θ0).

Proof. We proceed as in Lemma 7.3.2 in [72] to deduce from Jensen’s inequality (applied to
log and

∫
(·)dν) that, for PN the empirical measure from (2.128), the probability in question
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is bounded by

PNθ0

(∫ ∫
BN

log pθ
pθ̂MAP

dν(θ)d(PN − Pθ0) ≤ −(1 +K)C̄2δ2
N −

∫ ∫
BN

log pθ
pθ̂MAP

dν(θ)dPθ0

)
.

Now just as in the proof of Lemma 2.4.10 and using Theorem 3.14 we see that

−
∫

log pθ
pθ̂MAP

dPθ0 = −
∫

log pθ
pθ0

dPθ0 +
∫

log pθ0

pθ̂MAP

dPθ0

= 1
2∥G(θ) − G(θ0)∥2

L2 − 1
2∥G(θ̂MAP ) − G(θ0)∥2

L2 ≤ C̄2δ2
N

so that using also Fubini’s theorem the last probability can be bounded by

PNθ0

(√
N

∫ ∫
BN

log pθ0

pθ
dν(θ)d(PN − Pθ0) ≥ KC̄2√

Nδ2
N/2

)
+ PNθ0

(√
N

∫
log

pθ̂MAP

pθ0

d(PN − Pθ0) ≥ KC̄2√
Nδ2

N/2
)
.

For the first probability we decompose as in (2.133) and consider ZN as in Lemma 2.3.12 for
fixed hθ equal to either h1 or h2, where

h1(x) =
∫
BN

(G(θ)(x) − G(θ0)(x))dν(θ), and h2(x) =
∫
BN

(G(θ)(x) − G(θ0)(x))2dν(θ).

To each of these we apply Bernstein’s inequality (2.96) with x = Nσ2 and K large enough to
obtain the desired exponential bound, using uniform boundedness ∥G(θ) − G(θ0)∥∞ ≤ 2U
from (2.18) and Jensen’s inequality in the variance estimates EXh2

1(X) ≤ 2C̄2δ2
N ≡ σ2 in the

first case and

EXh2
2(X) ≤ 4U2

∫
BN

∥G(θ) − G(θ0)∥2
L2dν(θ) ≤ 8U2C̄δ2

N ≡ σ2

for the second case. [This already proves the case where θ̂MAP is replaced by θ0.]
For the second probability, restricting to the event in the supremum below, which has

sufficiently high PNθ0
-probability in view of Proposition 2.4.11, it suffices to bound

PNθ0

 sup
∥θ∥hα ≤2C,∥G(θ)−G(θ0)∥2

L2
≤2Cδ2

N

√
N
∣∣∣ ∫ log pθ

pθ0

d(PN − Pθ0)
∣∣∣ ≥ KC̄2√

Nδ2
N/2

 .
This term corresponds to the empirical process bounded in and after (2.131) for s = 1.
Choosing K large enough the proof there now applies directly, giving the desired exponential
bound.
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2.5 Auxiliary results

2.5.1 Review of convergence guarantees for ULA

In this section we collect some key results (that were used in our proofs) about convergence
guarantees for an Unadjusted Langevin Algorithm (ULA) for sampling from strongly log-
concave target measures [48, 57, 58]. Our presentation follows the recent article [58].

Suppose that µ is a Borel probability measure on RD which has a Lebesgue density
proportional to e−U for some potential U : RD → R, specifically

µ(B) =
∫
B e

−U(θ)dθ∫
RD e−U(θ)dθ

, B ⊆ RD measurable. (2.162)

Following [58] (cf. H1 and H2 there) we will assume that the potential U has a Λ-Lipschitz
gradient and is m-strongly convex.

Assumption 2.5.1. 1. The function U : RD → R is continuously differentiable and there
exists a constant Λ ≥ 0 such that for all θ, θ̄ ∈ RD,

∥∇U(θ) − ∇U(θ̄)∥RD ≤ Λ∥θ − θ̄∥RD .

2. There exists a constant 0 < m ≤ Λ such that for all θ, θ̄ ∈ RD, we have

U(θ̄) ≥ U(θ) + ⟨∇U(θ), θ̄ − θ⟩RD + m

2 ∥θ − θ̄∥2
RD .

Under Assumption 2.5.1, the potential U has a unique minimiser over RD, which we shall
denote by θU . For the computation of θU via gradient descent methods, we have the following
standard result from convex optimisation (see Theorem 1 in [48] and (9.18) in [28]).

Proposition 2.5.2. Suppose U : RD → R satisfies Assumption 2.5.1. Then the gradient
descent algorithm given by

ϑk+1 = ϑk − 1
2Λ∇U(ϑk), k = 0, 1, 2, . . . ,

satisfies that

∥ϑk − θU∥2
RD ≤ 2(U(ϑ0) − U(θU ))

m

(
1 − m

2Λ
)k
, k = 0, 1, 2, . . .

The results presented below establish corresponding geometric convergence bounds for
stochastic gradient methods which target the entire probability measure µ (instead of just
its mode θU ). Define the continuous time Langevin diffusion process as the unique strong
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solution (Lt : t ≥ 0) of the stochastic differential equation

dLt = −∇U(Lt)dt+
√

2dWt, t ≥ 0, Lt ∈ RD, (2.163)

where (Wt : t ≥ 0) is a D-dimensional standard Brownian motion. It is well known that the
Markov process (Lt : t ≥ 0) has µ from (2.162) as its invariant measure. The Euler-Maruyama
discretisation of the dynamics (2.163) gives rise to the discrete-time Markov chain (ϑk : k ≥ 0),

ϑk+1 = ϑk − γ∇U(ϑk) +
√

2γξk+1, k ≥ 0, (2.164)

where (ξk : k ≥ 1) form an i.i.d. sequence of D-dimensional standard Gaussian N(0, ID×D)
vectors, and γ > 0 is some fixed step size. We will refer to (ϑk) as the unadjusted Langevin
algorithm (ULA) in what follows. We denote by Pθinit

,Eθinit
the law and expectation

operator, respectively, of the Markov chain (ϑk : k ≥ 1) when started at a deterministic point
ϑ0 = θinit. We also write L(ϑk) for the (marginal) distribution of the k-th iterate ϑk.

For any measurable function H : RD → R and any Jin, J ≥ 0, let us define the average of
H along an ULA trajectory after ‘burn-in’ period Jin by

µ̂JJin
(H) = 1

J

Jin+J∑
k=Jin+1

H(ϑk).

Proposition 2.5.3. Suppose that U satisfies Assumption 2.5.1 and suppose γ ≤ 2/(m+ Λ).
Then for all J, Jin ≥ 1, x > 0 and any Lipschitz function H : RD → R, we have the
concentration inequality

Pθinit

(
µ̂JJin

(H) − Eθinit
[µ̂JJin

(H)] ≥ x
)

≤ exp
(

− Jγx2m2

16∥H∥2
Lip(1 + 2/(mJγ))

)
.

Proof. The statement follows directly from Theorem 17 of [58], noting that κ = 2mΛ/(m+
Λ) ∈ [m, 2m] and that the constant vN,n(γ) from (28) of [58] can be upper bounded by

1 + m−1 + 2/(m+ Λ)
γJ

≤ 1 + 2/(mγJ).

Proposition 2.5.4. Suppose that U satisfies Assumption 2.5.1 and let γ, Jin, J and H be as
in Proposition 2.5.3. Then we have for µ as in (2.162) that

W 2
2 (L(ϑk), µ) ≤ 2

(
1 −mγ/2

)k[∥θinit − θU∥2
RD + D

m

]
+ b(γ)/2, k ≥ 0, (2.165)
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where
b(γ) = 36γDΛ2

m2 + 12γ
2DΛ4

m3 , (2.166)

as well as (
Eθinit

[µ̂JJin
(H)] − EµH

)2
≤ ∥H∥2

Lip

1
J

Jin+J∑
k=Jin+1

W 2
2 (L(ϑk), µ). (2.167)

Proof. The display (2.167) is derived in (27) of [58]. The bound (2.165) follows from an
application of Theorem 5 in [58] with fixed step size γ > 0, where in our case, noting again that
κ ∈ [m, 2m], the expression u(1)

n (γ) there is upper bounded by 2
(
1−mγ/2

)k and the expression
u

(2)
n (γ) there is upper bounded by (using that γ ≤ min{2/Λ, 1/m} ≤ min{2/Λ, 2/κ})

Λ2Dγ2(κ−1 + γ
)(

2 + Λ2γ

m
+ Λ2γ2

6
) k∑
i=1

(1 − κγ/2)k−i

≤ Λ2Dγ2(κ−1 + γ
)(

2 + Λ2γ

m
+ Λ2γ2

6
) 2
κγ

≤ Λ2Dγ
(
κ−2 + γ

κ

)(
6 + 2Λ2γ

m

)
≤ Λ2Dγm−2

(
18 + 6Λ2γ

m

)
,

which equals (2.166).

2.5.2 Analytical properties of Schrödinger operators and link functions

Recall the inverse Schrödinger operators Vf from (2.107).

Lemma 2.5.5. There exists a constant C > 0 such that for any f ∈ C(O) with f ≥ 0, the
following holds.

i) We have the estimates

∥Vf [ψ]∥L2 ≤ C∥ψ∥L2 , ψ ∈ L2(O),
∥Vf [ψ]∥∞ ≤ C∥ψ∥∞, ψ ∈ C(O).

(2.168)

ii) For any ψ ∈ L2(O), we have that

∥Vf [ψ]∥H2 ≤ C(1 + ∥f∥∞)∥ψ∥L2 , (2.169)

as well as

1
C(1 + ∥f∥∞)∥ψ∥(H2

0 )∗ ≤ ∥Vf [ψ]∥L2 ≤ C(1 + ∥f∥∞)∥ψ∥(H2
0 )∗ . (2.170)
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iii) If also d ≤ 3, then for any ψ ∈ L2(O) and any f, f̄ ∈ C(O) with f, f̄ ≥ 0, we have that

∥Vf [ψ] − Vf̄ [ψ]∥∞ ≲ (1 + ∥f∥∞)∥ψ∥L2∥f − f̄∥∞. (2.171)

Proof. Part i) is a direct consequence of the Feynman-Kac formula for Vf [ψ] from [42] (see
also Lemma 25 in [136]). The upper bounds in part ii) likewise are proved by standard
arguments for elliptic PDEs (see, e.g., Lemma 26 in [136]). In order to prove the lower bound
in (2.170), let us denote the Schrödinger operator by Sf [w] = 1

2∆w−fw. Since Sf : H2
0 → L2

satisfies SfVf [ψ] = ψ, it suffices to show that

∥Sfw∥(H2
0 )∗ ≲ (1 + ∥f∥∞)∥w∥L2 , w ∈ H2

0 .

Using the divergence theorem we have that for such w,

∥Sfw∥(H2
0 )∗ = sup

ψ∈H2
0 :∥ψ∥

H2
0

≤1

∣∣∣ ∫
O
ψSfw

∣∣∣
= sup

ψ∈H2
0 :∥ψ∥

H2
0

≤1

∣∣∣ ∫
O
wSfψ

∣∣∣ ≤ ∥w∥L2 sup
ψ∈H2

0 :∥ψ∥
H2

0
≤1

∥Sfψ∥L2 ,

and the term on the right hand side is further estimated by

∥Sfψ∥L2 ≲ ∥∆ψ∥L2 + ∥fψ∥L2 ≲ 1 + ∥f∥∞∥ψ∥L2 ≤ 1 + ∥f∥∞,

which proves (2.170). Finally, (2.171) is proved by using a Sobolev embedding as well as
(2.168), (2.169):

∥Vf [ψ] − Vf̄ [ψ]∥∞ ≲ ∥Vf [(f − f̄)Vf̄ [ψ]]∥H2 ≲ (1 + ∥f∥∞)∥(f − f̄)Vf [ψ]∥L2

≲ (1 + ∥f∥∞)∥f − f̄∥∞∥ψ∥L2 .

For any normed vector spaces (V, ∥ · ∥V ) and (W, ∥ · ∥W ) let L(V,W ), denote the space
of bounded linear operators V → W , equipped with the operator norm. For g ∈ C∞(∂O)
and any f ∈ C(O) with f > 0, there exists a unique (weak) solution G(f) ∈ C(O) of
(2.11), see Theorem 4.7 in [42]. We define the operators DGf ∈ L(C(O), C(O)) and
D2Gf ∈ L(C(O), L(C(O), C(O))) as

DGf [h1] = Vf [h1uf ], (D2Gf [h1])[h2] = Vf [h1DGf [h2]] + Vf [h2DGf [h1]], h1, h2 ∈ C(O).
(2.172)

The next lemma establishes that these operators are suitable Fréchet derivatives of G on the
open subset {f ∈ C(O), f > 0} of C(O).
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Lemma 2.5.6. i) For any f ∈ C(O) with f > 0, we have G(f) ∈ C(O). Moreover there
exists C > 0 such that for any f, f̄ ∈ C(O) with f, f̄ > 0,

∥G(f̄) −G(f)∥∞ ≤ C∥f̄ − f∥∞, (2.173)

as well as

∥G(f̄) −G(f) −DGf [f̄ − f ]∥∞ ≤ C∥f̄ − f∥2
∞,

∥DGf̄ −DGf −D2Gf [f̄ − f ]∥L(C(O),C(O)) ≤ C∥f̄ − f∥2
∞.

(2.174)

ii) For any integer α > d/2 there exists a constant C > 0 such that for all f ∈ Hα with
infx∈O f(x) > 0, we have

∥G(f)∥H2 ≤ C(∥f∥L2 + ∥g∥C2(∂O)), (2.175)

∥G(f)∥Hα+2 ≤ C(1 + ∥f∥α/2+1
Hα )∥g∥Cα+2(∂O). (2.176)

Proof. The estimate (2.173) follows from the identity G(f̄) −G(f) = Vf [(f̄ −f)G(f̄)], (2.168)
and (2.18). Arguing similarly and using (2.173), we further obtain

∥G(f̄) −G(f) −DGf [f̄ − f ]∥∞ = ∥Vf [(f̄ − f)(G(f̄) −G(f))]∥∞

≲ ∥(f̄ − f)(G(f̄) −G(f))∥∞ ≲ ∥f̄ − f∥2
∞,

which proves the first part of (2.174). For the second part of (2.174), we have for any h ∈ C(O)
that

DGf̄ [h] −DGf [h] = Vf̄ [huf̄ ] − Vf [huf ]
= Vf̄ [h(uf̄ − uf )] + (Vf̄ − Vf )[huf ]
= Vf [hDGf [f̄ − f ]] +R1 + Vf [(f̄ − f)Vf [huf ]] +R2

= (D2Gf [f̄ − f ])[h] +R1 +R2,

with remainder terms R1, R2 given by

R1 = [Vf̄ − Vf ][h(uf̄ − uf )] + Vf [h(uf̄ − uf −DG[h])],
R2 = [Vf̄ − Vf ](huf ) − Vf [(f̄ − f)Vf [huf ]].

Using the identity (Vf̄ − Vf )ψ = Vf [(f̄ − f)Vf̄ [ψ]] with ψ = h(uf̄ − uf ), Lemma 2.5.5 as well
as the first part of (2.174), we have

∥R1∥∞ ≲ ∥f̄ − f∥∞∥h(uf̄ − uf )∥∞ + ∥h∥∞∥uf+h − uf −DḠ[h]∥∞ ≲ ∥f̄ − f∥2
∞∥h∥∞,
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and arguing similarly,

∥R2∥∞ = ∥Vf [(f̄ − f)(Vf̄ − Vf )[huf ]]∥∞ ≲ ∥f̄ − f∥∞∥(Vf̄ − Vf )[huf ]∥∞ ≲ ∥f̄ − f∥2
∞∥h∥∞.

This completes the proof of (2.174).
To prove (2.175), we use that (∆, tr) : H2(O) → L2 × H3/2(∂O) [where tr denotes the

boundary trace operator for the domain O] is a topological isomorphism, see Theorem II.5.4
in [109], such that in particular

∥G(f)∥H2 ≲ ∥fuf∥L2 + ∥g∥C2(∂O) ≤ ∥f∥L2 + ∥g∥C2(∂O).

where we also used (2.18). Finally, (2.176) is proved in Lemma 27 in [136].

2.5.2.1 Properties of the map Φ∗

We summarise some properties of ‘regular’ link functions from Definition 2.2.1. We recall the
notation Φ∗ for the associated composition operator from (2.15). For any F ∈ C(O), define
the operators DΦ∗

F ∈ L(C(O), C(O)), D2Φ∗
F ∈ L(C(O), L(C(O), C(O))) by

DΦ∗
F [H] = HΦ′ ◦ F, (D2Φ∗

F [H])[J ] = HJΦ′′ ◦ F, H, J ∈ C(O). (2.177)

Then for any F,H, J ∈ C(O) and x ∈ O, a Taylor expansion immediately implies that, with
ζx, ζ̄x denoting intermediate points between F (x) and (F +H)(x),

|(Φ∗(F +H) − Φ∗(F ) −DΦ∗
F [H])(x)| = |H2(x)Φ′′(ζx)/2| ≤ ∥H∥2

∞ sup
t∈R

|Φ′′(t)|,∣∣(DΦ∗
F+H −DΦ∗

F −D2Φ∗
F [H]

)
[J ](x)

∣∣ =
∣∣J(x)H2(x)Φ′′′(ζ̄x)/2

∣∣ ≤ ∥J∥∞∥H∥2
∞ sup

t∈R
|Φ′′′(t)|,

whence DΦ∗, D2Φ∗ are the Fréchet derivatives of Φ∗ : C(O) → C(O).
We also need the basic fact that for any integer α > d/2 there exists C > 0 such that for

all F ∈ Hα(O),
∥Φ ◦ F∥Hα ≤ C(1 + ∥Φ ◦ F∥αHα), (2.178)

see Lemma 29 in [136]. Finally, note that by the definition of Φ, there exists C ′ > 0 such
that for any F̄ , F ∈ C(O),

∥Φ ◦ F̄ − Φ ◦ F∥∞ ≤ C∥F̄ − F∥∞, ∥Φ ◦ F̄ − Φ ◦ F∥L2 ≤ C∥F̄ − F∥L2 . (2.179)

2.5.2.2 Chain rule for Fréchet derivatives

Let U, V be normed vector spaces and D ⊆ U an open subset. For a map T : D → V

we denote by DTθ ∈ L(U, V ) and D2Tθ ∈ L(U,L(U, V )) the first and second order Fréchet
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derivatives at θ ∈ D, respectively, whenever they exist. The following basic lemma then
follows directly from the chain rule.

Lemma 2.5.7. Suppose U, V,W are (open subsets of) normed vector spaces, and suppose
that A : U → V and B : V → W are both twice differentiable in the Fréchet sense. Then for
any θ ∈ U and H1, H2 ∈ U , we have that D(B ◦A)θ = DBA(θ) ◦DAθ and

(
D2(B ◦A)θ[H1]

)
[H2] =

(
D2BA(θ)[DAθ[H1]]

)
[DAθ[H2]] +DBA(θ)

[
(D2Aθ[H1])[H2]

]
.

(2.180)

2.5.3 Proof of Proposition 2.3.6

We first record the following basic lemma without proof.

Lemma 2.5.8. Let | · | be an ellipsoidal norm on RD with associated matrix M , |θ|2 = θTMθ

and define the function n : θ → |θ|. Then for any θ ̸= 0, we have

∇n(θ) = Mθ

|θ|
, ∇2n(θ) = M

|θ|
− Mθ(Mθ)T

|θ|3
, (2.181)

as well as the norm estimates

∥∇n(θ)∥RD ≤
√
λmax(M), (2.182)

∥∇2n(θ)∥op ≤ 2λmax(M)/|θ|1. (2.183)

Using Lemma 2.5.8, we prove the following bounds on the cut-off function αη.

Lemma 2.5.9. If | · |1 is an ellipsoidal norm with associated matrix M , |θ|21 = θTMθ, then
the function αη from (2.53) satisfies that for all θ ∈ RD,

∥∇αη(θ)∥RD ≤ ∥α∥C1
√
λmax(M)
η

, ∥∇2αη(θ)∥op ≤ 4∥α∥C2λmax(M)
η2 .

Proof. We may assume w.l.o.g. that θinit = 0 and we write n(θ) = |θ|1. The gradient bound
is obtained by the chain rule and (2.182):

∥∇αη(θ)∥RD =
∥∥η−1α′(|θ|1/η)∇n(θ)

∥∥
RD ≤ η−1∥α∥C1

√
λmax(M).
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For the Hessian, we similarly employ the chain rule, (2.182), (2.183) as well as the fact that
α′(t) = 0 when t ∈ (0, 3/4):

∥∇2αη(θ)∥op ≤ η−2∥∥α′′(|θ|1/η)∇n(θ)∇n(θ)T
∥∥
op

+ η−1∥∥α′(|θ|1/η)∇2n(θ)
∥∥
op

≤ η−2∥α∥C2∥∇n(θ)∥2
RD + η−1∥α∥C11{|θ|≥3η/4} · 2λmax(M)

|θ|1
≤ 4η−2∥α∥C2λmax(M).

We now turn to the proof of Proposition 2.3.6. Throughout, we work on the event
Econv ∩ Einit defined by (2.49),(2.50); moreover we assume without loss of generality that
θinit = 0.

Proof of Proposition 2.3.6. We divide the proof into five steps.
1. Local lower bound for αηℓN . For the set

V := {θ : |θ|1 ≤ 3η/4},

by definition of Einit, we have that V ⊆ B. Thus using the definitions of Econv and of αη, we
obtain

inf
θ∈V

λmin
(

− ∇2[αηℓN ](θ)
)

≥ Ncmin/2. (2.184)

2. Upper bound for αηℓN . By the chain rule, Lemma 2.5.9, the definition of Econv
and using that ∥α∥C2 ≥ 1, we obtain that for any θ ∈ RD and some c = c(α),

∥∇2[αηℓN ](θ)∥op ≤ |ℓN (θ)|∥∇2αη(θ)∥op + 2∥∇αη(θ)∥RD ∥∇ℓN (θ)∥RD + |αη(θ)|∥∇2ℓN (θ)∥op

≤ 2 sup
θ∈B

([
|αη(θ)| + ∥∇αη(θ)∥RD + ∥∇2αη(θ)∥op

][
|ℓN (θ)| + ∥∇ℓN (θ)∥RD + ∥∇2ℓN (θ)∥op

])
≤ c

(
1 + λmax(M)/η2) ·N(cmax + 1). (2.185)

3. Global lower bound for ∇2gη. First we note that gη is convex on all of RD: Indeed,
this follows from the the identity γη = γ̃η ∗ φη/8, the convexity of the functions n : θ 7→ |θ|1,
γ̃η and the fact that convolution with the positive function φη/8 preserves convexity. As gη
has C2 regularity, it follows that ∇2gη ⪰ 0 on all of RD.
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We next prove a quantitative lower bound for ∇2gη on the set V c. By the chain rule and
Lemma 2.5.8, we have that for any θ ∈ RD, writing v = ∇n(θ),

∇2gη(θ) = γ′′
η (|θ|1)∇n(θ)∇n(θ)T + γ′

η(|θ|1)∇2n(θ)

= γ′′
η (|θ|1)vvT +

γ′
η(|θ|1)
|θ|1

(
M − vvT

)
=
(
γ′′
η (|θ|1) −

γ′
η(|θ|1)
|θ|1

)
vvT +

γ′
η(|θ|1)
|θ|1

M

=: A(|θ|1)vvT +B(|θ|1)M.

(2.186)

To derive lower bounds for the functions B(·) and A(·), we first observe that by the symmetry
of φη/8 around 0, it holds for any t ≥ 3η/4 that

γ′
η(t) =

∫
[−η/8,η/8]

φη/8(y) · 2(t− y − 5η/8) = 2(t− 5η/8). (2.187)

Thus the function B(t) = γ′
η(t)/t strictly increases on (3η/4,∞), and for any t ≥ 3η/4, we

obtain
B(t) ≥ B(3η/4) =

γ′
η(3η/4)
3η/4 = 23η/4 − 5η/8

3η/4 = 1
3 . (2.188)

For the term A(·), we note that for any t ≥ 3η/4, using that γ′′
η (t) = 2 as well as (2.187), we

have
A(t) = 2 − 2(t− 5η/8)

t
≥ 0. (2.189)

Combining the displays (2.186), (2.188), (2.189), we have proved the lower bound

inf
θ∈V c

λmin
(
∇2gη(θ)

)
≥ λmin(M)/3, . (2.190)

4. Global upper bound for ∇2gη. We note that the functions A(·), B(·) from (2.186)
satisfy

sup
t∈(0,∞)

|A(t)| ≤ sup
t∈(0,∞)

|γ′
η(t)/t| + |γ′′

η (t)| ≤ 4, sup
t∈(0,∞)

|B(t)| ≤ sup
t∈(0,∞)

|γ′
η(t)/t| ≤ 2.

Hence, by (2.186) and Lemma 2.5.8, we obtain that

∥∇2gη(θ)∥op ≤ 4∥vvT ∥op + 2∥M∥op ≤ 6λmax(M), θ ∈ RD. (2.191)
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5. Combining the bounds. Combining the estimates (2.184), (2.185) and (2.190), we
obtain that

inf
θ∈V

λmin
(

− ∇2ℓ̃N (θ)
)

≥ Ncmin
2 ,

inf
θ∈V c

λmin
(

− ∇2ℓ̃N (θ)
)

≥ Kλmin(M)
3 − c

(
1 + λmax(M)/η2)N(cmax + 1).

(2.192)

In particular, there exists C ≥ 3 such that for any K satisfying (2.55), we have

inf
θ∈RD

λmin
(

− ∇2ℓ̃N (θ)
)

≥ min
{Ncmin

2 ,
Kλmin(M)

6
}

= Ncmin/2,

which completes the proof of (2.56). To prove (2.57), we use (2.185), (2.191) and (2.55) to
obtain that for all θ ̸= θ̄ ∈ RD,

∥∇ℓ̃N (θ) − ∇ℓ̃N (θ̄)∥RD

∥θ − θ̄∥RD

≤ sup
θ∈RD

∥∇2ℓ̃N (θ)∥op

≤ c∥α∥C2
(
1 + λmax(M)/η2)N(cmax + 1) + 6Kλmax(M)

≤ 7Kλmax(M).

2.5.4 Initialisation

In this section we prove the existence of polynomial time ‘initialiser’ θinit = θinit(Z(N)) ∈ RD

(that lies in the region B1/ logN from (2.99) of strong log-concavity of the posterior measure
with high PNθ0

-probability, when α > 6), in the Schrödinger model.

Theorem 2.5.10. Suppose θ0 ∈ hα(O) for some α > 2 + d/2, d ≤ 3. Then there exists a
measurable function θinit ∈ RD of the data Z(N) from (2.20) and large enough M ′ > 0 such
that for all N,D ∈ N and some c̄ > 0,

PNθ0

(
∥θinit − θ0,D∥RD > M ′N−(α−2)/(2α+d)) ≲ e−c̄Nd/(2α+d)

.

Moreover θinit is the output of a polynomial time algorithm involving O(N b0), b0 > 0, iterations
of gradient descent (each requiring a multiplication with a fixed D′ × D′ matrix, D′ ≲

Nd/(2α+d)).

Proof. Step I. To start, consider the wavelet frame

{
ϕl,r, 1 ≤ r ≤ Nl, l ∈ N

}
, Nl ≲ 2ld,
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of L2(O) constructed in Theorem 5.51 in [167]. Then for data arising from (2.19), choosing

2J ≃ N1/(2α+d) = (Nδ2
N )1/d, δN = N−α/(2α+d), nJ ≡

∑
l≤J

Nl ≲ 2Jd,

and for multiscale vectors (λl,r) ∈ RnJ , define

λ̂ = arg min
λ∈RnJ

 1
N

N∑
i=1

(
Yi −

∑
l≤J,r

λl,rϕl,r(Xi)
)2 + δ2

N∥λ∥2
hα

 , ∥λ∥2
hα =

∑
l,r

22lαλ2
l,r. (2.193)

Next we set
û = û(Z(N)) =

∑
l≤J,r

λ̂l,rϕl,r, uf0,J =
∑
l≤J,r

λ0,l,rϕl,r,

where the λ0,l,r ∈ hα+2 are frame coefficients of uf0 = G(θ0) ∈ Hα+2 furnished by Theorem
5.51 in [167] and the elliptic regularity estimate (2.176). In particular by the Sobolev
embedding hα+2 ⊂ bα∞∞ (d < 4) and again Theorem 5.51 in [167] we can prove

∥uf0 − uf0,J∥L2 ≲ ∥uf0 − uf0,J∥∞ ≲ 2−Jα ≲ δN . (2.194)

We now apply a standard result from M estimation [170, 169], with empirical norms

∥u∥2
(N) = 1

N

N∑
i=1

u2(Xi),

conditional on the design X1, . . . , Xn, to obtain the following bound.

Proposition 2.5.11. We have for α > d/2, all N and some constant c > 0,

PNθ0

(
∥û− uf0∥2

(N) + δ2
N∥λ̂∥2

hα > ∥uf0 − uf0,J∥2
(N) + δ2

N∥λ0,l,r∥2
hα |(Xi)Ni=1

)
≤ e−cNδ2

N . (2.195)

Proof. We apply Theorem 2.1 in [169]. We can bound the ∥ · ∥∞ and then also ∥ · ∥(N)-metric
entropy of the class of functions{

u : u =
∑
l≤J,r

λl,rϕl,r; ∥λ∥2
hα ≤ m

}
, m > 0,

by the metric entropy of a ball of radius m in a Hα-Sobolev space, which by (4.184) in [72]
is of order H(τ) ≲ (m/τ)d/α for every m > 0. Then arguing as in Section 3.1.1 in [169] (the
only notational difference being that here d > 1), the result follows.
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This implies in particular, using ∥u∥(N) ≤ ∥u∥∞, (2.194), λ0,l,r ∈ hα+2 and Theorem 5.51
in [167], that for some C,C ′ > 0,

PNθ0

(
∥û∥2

Hα > C
)

≤ PNθ0

(
∥λ̂∥2

hα > C ′) ≤ exp{−cNδ2
N}. (2.196)

as well as
PNθ0

(
∥û− uf0,J∥2

(N) > Cδ2
N

)
≤ exp{−cNδ2

N}. (2.197)

In Step IV below we establish the following restricted isometry type bound

PNθ0

(∣∣∣∥û− uf0,J∥2
(N)

∥û− uf0,J∥2
L2

− 1
∣∣∣ ≤ 1

2

)
≥ 1 − c′′e−c′Nδ2

N (2.198)

for some constants c′, c′′ > 0 so that in particular

PNθ0

(
1
2 ≤

∥û− uf0,J∥2
(N)

∥û− uf0,J∥2
L2

≤ 3
2

)
≥ 1 − c′′e−c′Nδ2

N .

On the event AN in the last probability we can write, using again (2.194) and (2.197), for M
large enough,

PNθ0

(
∥û− uf0∥2

L2 > Mδ2
N

)
≤ PNθ0

(
∥û− uf0,J∥2

L2 > (M/2)δ2
N

)
≤ PNθ0

(
∥û− uf0,J∥2

L2

∥û− uf0,J∥2
(N)

∥û− uf0,J∥2
(N) > (M/2)δ2

N ,AN

)
+ c′′e−c′Nδ2

N

≤ PNθ0

(
∥û− uf0,J∥2

(N) > (M/4)δ2
N

)
+ c′′e−c′Nδ2

N ≲ e−cNδ2
N + e−c′Nδ2

N .

Overall what precedes implies that we can find M large enough such that for some constants
c̄, c̄′ > 0,

PNθ0

(
∥û− uf0∥2

L2 ≤ Mδ2
N and ∥û∥2

Hα ≤ M
)

≥ 1 − c̄′e−c̄Nδ2
N . (2.199)

Step II. By definition of the ∥ · ∥hα-norm, the objective function minimised in (2.193)
over RnJ is m-strongly convex with convexity bound m ≥ δ2

N . Moreover, noting that the
sum-of-squares term QN appearing in (2.193) satisfies

∂QN
∂λl′,r′

(λ) = − 2
N

N∑
i=1

[
Yi −

∑
l≤J,r

λl,rϕl,r(Xi)
]
ϕl′,r′(Xi), l′ ≤ J, 1 ≤ r′ ≤ Nl′ ,

we can deduce that the gradient of the objective function is globally Lipschitz with constant
at most of order O(2Jd) = O(Nδ2

N ), using standard properties of the wavelet frame from
Definition 5.25 in [167]. Using (2.18), (2.96) and a standard tail inequality for χ2-random
variables (Theorem 3.1.9 in [72]), one shows further that for some C̄ > 0 and on events of
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sufficiently high PNθ0
-probability,

QN (0) = 1
N

N∑
i=1

(
ε2
i + 2εiuf0(Xi) + u2

f0(Xi)
)

≤ C̄.

By Proposition 2.5.2 and using the standard sequence norm inequality

∥v∥hβ ≤ 2Jβ∥v∥ℓ2 ≲ N
β

2α+d ∥v∥ℓ2 , v ∈ RnJ , β ≥ 0,

we deduce that on preceding events and for any fixed p > 0 there exists b0 > 0 such that the
output λinit ∈ RnJ from O(N b0) iterations of gradient descent satisfies ∥λinit − λ̂∥hα ≤ N−p.

In particular we can choose p such that, denoting

uinit :=
∑
l≤J,r

λinit,l,rϕl,r,

we have that ∥û − uinit∥Hα ≲ ∥λ̂ − λinit∥hα = o(δN ); hence by virtue of (2.199), we may
restrict the rest of the proof to an event of sufficiently large probability where uinit satisfies

∥uinit − uf0∥2
L2 + δ2

N∥uinit∥2
Hα ≤ (2M + 1)δ2

N . (2.200)

Step III. From the interpolation inequality for Sobolev norms from Section 2.1.3 and
(2.200) we now obtain, with sufficiently high PNθ0

-probability,

∥uinit − uf0∥H2 ≤ M̄N−(α−2)/(2α+d) (2.201)

and the Sobolev imbedding (d < 4) further implies ∥uinit − uf0∥∞ → 0 as N → ∞ so that
we deduce from (2.119) û ≥ uf0/2 ≥ c > 0 with sufficiently high PNθ0

-probability. So on these
events we can define a new estimator

finit = ∆uinit
2uinit

, noting that f0 = ∆uf0

2uf0

. (2.202)

For Finit = Φ−1 ◦ finit, using also the regularity of the inverse link function (2.179), we then
see

∥Finit − Fθ0∥L2 ≲ ∥finit − f0∥L2 ≲ ∥uinit − uf0∥H2 ,

and hence for some M ′ > 0,

PNθ0

(
∥Finit − Fθ0∥L2 ≤ M ′N−(α−2)/(2α+d)) ≥ 1 − c̄′e−c̄Nδ2

N .
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We finally define θinit as

θinit = (⟨Finit, ek⟩L2 : k ≤ D) ∈ RD, D ∈ N,

the vector of the first D ‘Fourier coefficients’ of Finit. Then we obtain from Parseval’s identity
that ∥θinit − θ0,D∥RD ≤ ∥Finit − Fθ0∥L2 , which combined with the last probability inequality
establishes convergence rate desired in Theorem 2.5.10.

Step IV. Proof of (2.198). Let us introduce the symmetric nJ ×nJ , nJ ≲ 2Jd, matrices

Γ̂(l,r),(l′,r′) = 1
N

N∑
i=1

ϕl,r(Xi)ϕl′,r′(Xi), Γ(l,r),(l′,r′) =
∫

O
ϕl,r(x)ϕl′,r′(x)dPX(x),

and vectors (λ̂ = λ̂l,r), (λ0 = λ0,l,r) ∈ RnJ . Then we can write

∥û− uf0,J∥2
(N) − ∥û− uf0,J∥2

L2(O) = (λ̂− λ0)T (Γ̂ − Γ)(λ̂− λ0)

and hence (one minus the) probability relevant in (2.198) can be bounded as

Pr
(∣∣∣(λ̂− λ0)T (Γ̂ − Γ)(λ̂− λ0)

(λ̂− λ0)TΓ(λ̂− λ0)

∣∣∣ > 1/2
)

≤ Pr
(

sup
v∈RnJ :vT Γv≤1

∣∣vT (Γ̂ − Γ)v
∣∣ > 1/2

)
.

We also note that by the frame property of the {ϕl,r}, specifically from (5.252) in [167] with
s = 0, p = q = 2, for any uv = ∑

l≤J,r vl,rϕl,r we have the norm equivalence

∥v∥2
RnJ ≃ ∥uv∥2

L2 =
∑

l,l′≤J,r,r′

vl,rvl′,r′Γ(l,r),(l′,r′) = vTΓv =: ∥v∥2
Γ, (2.203)

with the constants implied by ≃ independent of J . Next for any κ > 0 let

{vm,m = 1, . . . ,MJ,κ}, MJ,κ ≲ (3/κ)nJ

denote the centres of balls of ∥ · ∥Γ-radius κ covering the unit ball VΓ of (RnJ , ∥ · ∥Γ) (e.g., as
in Prop. 4.3.34 in [72] and using (2.203)). Then using the Cauchy-Schwarz inequality

|vT (Γ̂ − Γ)v| = |(v − vm + vm)T (Γ̂ − Γ)(v − vm + vm)|
≤ ∥v − vm∥2

Γ sup
v∈VΓ

|vT (Γ̂ − Γ)v
∣∣+ 2∥v − vm∥Γ∥(Γ̂ − Γ)v∥Γ + |vTm(Γ̂ − Γ)vm|

≤ (κ2 + 2κ) sup
v∈VΓ

|vT (Γ̂ − Γ)v
∣∣+ |vTm(Γ̂ − Γ)vm|

so choosing κ small enough so that κ2 + 2κ < 1/4 we obtain

sup
v∈VΓ

|vT (Γ̂ − Γ)v
∣∣ ≤ (4/3) max

m=1,...,MJ

|vTm(Γ̂ − Γ)vm|, MJ ≡ MJ,κ. (2.204)



108 On polynomial-time computation of high-dimensional posterior measures

In particular, using also that MJ ≲ ec02Jd ≤ ec1Nδ2
N , the last probability is thus bounded by

Pr
(

max
m=1,...,MJ

|vTm(Γ̂ − Γ)vm| > 1/4
)

≤ ec1Nδ2
N max

m
Pr
(
|vTm(Γ̂ − Γ)vm| > 1/4

)
. (2.205)

Each of the last probabilities can be bounded by Bernstein’s inequality (Prop. 3.1.7 in [72])
applied to

vTm(Γ̂ − Γ)vm = 1
N

N∑
i=1

Zi − EZi,

with i.i.d. variables Zi = Zi,m given by

Zi =
∑

l,l′≤J,r,r′

vm,l,rvm,l′,r′ϕl,r(Xi)ϕl′,r′(Xi) =
∑
l≤J,r

vm,l,rϕl,r(Xi)
∑
l′≤J,r′

vm,l′,r′ϕl′,r′(Xi),

(2.206)
wit vectors vm all satisfying ∥vm∥Γ ≤ 1. For these variables we have from the Cauchy-Schwarz
inequality

|Zi| ≤
∣∣∣ ∑
l≤J,r

vm,l,rϕl,r(·)
∣∣∣2 ≤ ∥vm∥2

RnJ

∑
l≤J,r

(ϕl,r(·))2 ≤ c2Jd ≡ U

where the constant c depends only on the wavelet frame (cf. (2.203) and also Definition 5.25
in [167]). Similarly, using the previous estimate, we can bound

EZ2
i = E

[ ∑
l≤J,r

vm,l,rϕl,r(Xi)
]4

≤ U

∫
O

[ ∑
l≤J,r

vm,l,rϕl,r(x)
]2
dx = U∥vm∥2

Γ ≤ U.

Now Proposition 3.1.7 in [72] implies for some constant c0 > 0

Pr
(
N |vm(Γ̂ − Γ)vm| > N/4

)
≤ 2 exp

{
− N2/16

2NU + (2/12)NU
}

≤ 2e−c0/δ2
N

since U = c2Jd ≃ Nδ2
N . Now since α > d/2 we have δ2

N = o(1/
√
N) and thus (1/δ2

N ) ≫ Nδ2
N

which means that the r.h.s in (2.205) is bounded by a constant multiple of e−c′Nδ2
N for some

c′ > 0, completing the proof.



Chapter 3

Convergence rates for Penalised
Least Squares estimators

In this chapter we study convergence rates for Tikhonov-type penalised least squares estimators
in inverse regression problems. The main examples are two non-linear models, respectively
arising with an elliptic divergence form PDE and with a steady-state Schrödinger equation,
both of which we previously encountered in Section 1.1. In both cases the parameter f is an
unknown coefficient function of a partial differential operator Lf and the unique solution uf
of an elliptic boundary value problem corresponding to Lf is observed, corrupted by additive
Gaussian white noise.

The penalty terms we consider are of squared Sobolev-norm type, and thus the estimators
f̂ can also be interpreted as Bayesian MAP-estimators corresponding to some Gaussian
process prior. We derive rates of convergence of f̂ and of uf̂ , to f, uf , respectively. We prove
that the rates obtained are minimax-optimal in prediction loss. Our bounds are derived from
a general convergence rate result for non-linear inverse problems whose forward map satisfies
a modulus of continuity condition, a result of independent interest that is applicable also to
linear inverse problems, illustrated in an example with the Radon transform.

3.1 Introduction

Observations obeying certain physical laws can often be described by a partial differential
equation (PDE). Real world measurements carry statistical noise and thus do not generally
exactly exhibit the idealised pattern of the PDE, but it is desirable that recovery of parameters
from data is consistent with the PDE structure. In the mathematical literature on inverse
problems several algorithms that incorporate such constraints have been proposed, notably
optimisation based methods such as Tikhonov regularisation [63, 17] and maximum a posteriori
(MAP) estimates related to Bayesian inversion techniques [155, 53]. In statistical terminology
these methods can be viewed as penalised least squares estimators over parameter spaces
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of regression functions that are restricted to lie in the range of some ‘forward operator’ G

describing the solution map of the PDE. The case where G is linear is reasonably well studied
in the inverse problems literature, but already in basic elliptic PDE examples, the map G is
non-linear and the analysis is more involved. The observation scheme considered here will be
a natural continuous analogue of the standard Gaussian regression model

Yi = uf (xi) + εi, i = 1, . . . , N ; {εi} ∼i.i.d. N(0, 1), (3.1)

where (xi)Ni=1 are ‘equally spaced’ design points on a bounded domain O ⊂ Rd with smooth
boundary ∂O. The function uf : O → R is, in our first example, the solution u = uf of the
elliptic PDE (with ∇ denoting the gradient and ∇· the divergence operator)∇ · (f∇u) = g on O,

u = 0 on ∂O,
(3.2)

where g > 0 is a given source function defined on O and f : O → (0,∞) is an unknown
conductivity (or diffusion) coefficient. The second model example arises with solutions u = uf

of the time-independent Schrödinger equation (with ∆ equal to the standard Laplacian
operator) ∆u− 2fu = 0 on O,

u = g on ∂O,
(3.3)

corresponding to the unknown attenuation potential (or reaction coefficient) f : O → (0,∞),
and given positive ‘boundary temperatures’ g > 0. Both PDEs have a fundamental physical
interpretation and feature in many application areas, see, e.g., [63, 20, 87, 10, 155, 24, 53],
and references therein.

When f > 0 belongs to some Sobolev space Hα(O) for appropriate α > 0, unique solutions
uf of the PDEs (3.2), (3.3) exist, and the ‘forward’ map f 7→ uf is non-linear. [In fact, in
(3.3) only f ≥ 0 is required.] A natural method to estimate f is by a penalised least squares
approach: one minimises over f ∈ Hα(O) with f > 0 the squared Euclidean distance

QN (f) = ∥Y − uf∥2

of the observation vector (Yi : i = 1, . . . , N) to the fitted values (uf (xi) : i = 1, . . . , N),
and penalises too complex solutions f by, for instance, an additive Sobolev norm ∥ · ∥Hα -
type penalty. The (from a PDE perspective) natural constraint f > 0 can be incorporated
by a smooth one-to-one transformation Φ of the penalty function, and a final estimator f̂
minimises a criterion function of the form

QN (f) + λ2∥Φ−1[f ]∥2
Hα ,
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over f ∈ Hα(O) with f > 0, where λ is a scalar regularisation parameter to be chosen. Both
Tikhonov regularisers as well as Bayesian maximum a posteriori (MAP) estimates arising
from suitable Gaussian priors fall into this class of estimators. We show in this chapter
that suitable choices of λ, α,Φ give rise to statistically optimal solutions of the above PDE
constrained regression problems from data (3.1), in prediction loss. The convergence rates
obtained can be combined with ‘stability estimates’ to obtain bounds also for the recovery of
the parameter f itself.

Our main results are based on a general convergence rate theorem for minimisers over
Hα of functionals of the form

F 7→ ∥Y − G (F )∥2 + λ2∥F∥2
Hα

in possibly non-linear inverse problems whose forward map F 7→ G (F ) satisfies a certain
modulus of continuity assumption between Hilbert spaces. This result, which adapts M -
estimation techniques [169, 170] to the inverse problems setting, is of independent interest,
and provides novel results also for linear forward maps, see Remark 3.2.5 for an application
to Radon transforms.

For sake of conciseness, our theory is given in the Gaussian white noise model introduced
in (3.4) below – it serves as an asymptotically equivalent (see [30, 148]) continuous analogue
of the discrete model (3.1), and facilitates the application of PDE techniques in our proofs.
Transferring our results to discrete regression models is possible, but the additional difficulties
are mostly of a technical nature and will note be pursued here.

Recovery for non-linear inverse problems such as those mentioned above has been studied
initially in the deterministic regularisation literature [64, 130, 154, 63, 160], and the conver-
gence rate theory developed there has been adapted to the statistical regression model (3.1)
in [20, 21, 87, 112]. These results all assume that a suitable Fréchet derivative DG of the
non-linear forward map G exists at the ‘true’ parameter F , and moreover require that F lies
in the range of the adjoint operator of DG – the so called ‘source condition’. Particularly for
the PDE (3.2), such conditions are problematic and do not hold in general for rich enough
classes of F ’s (such as Sobolev balls) unless one makes very stringent additional model
assumptions. Our results circumvent such source conditions. Further remarks, including a
discussion of related convergence analysis of estimators obtained from Bayesian inversion
techniques [177, 50, 131] can be found in Section 3.3.4.

The article is organised as follows. The main results are stated in Sections 3.2 and 3.3;
their proofs are contained in Sections 3.4 and 3.7. Some key auxiliary results about the
elliptic PDE (3.2)-(3.3) and the ‘link functions’ Φ used below are proved in Section 3.5 and
3.6 respectively.
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3.1.1 Some preliminaries and basic notation

Throughout, O ⊆ Rd, d ≥ 1, denotes a bounded non-empty C∞-domain (an open bounded
set with smooth boundary) with closure Ō. The usual space L2(O) of square integrable
functions carries a norm ∥ · ∥L2(O) induced by the inner product

⟨h1, h2⟩L2(O) =
∫

O
h1(x)h2(x)dx, h1, h2 ∈ L2(O),

where dx denotes Lebesgue measure. For any multi-index i = (i1, ..., id) of ‘order’ |i|, let Di

denote the i-th (weak) partial derivative operator of order |i|. Then for integer α ≥ 0, the
usual Sobolev spaces are defined as

Hα(O) :=
{
f ∈ L2(O)

∣∣∣ for all |i| ≤ α, Dif exists and Dif ∈ L2(O)
}
,

normed by ∥f∥Hα(O) = ∑
|i|≤α ∥Dif∥L2(O). For non-integer real values α ≥ 0, we define

Hα(O) by interpolation, see, e.g., [108] or [165].
The spaces of bounded and continuous functions on O and Ō are denoted by C(O) and

C(Ō), respectively, equipped with the supremum norm ∥ ·∥∞. For η ∈ N, the space of η-times
differentiable functions on O with (bounded) uniformly continuous derivatives is denoted
by Cη(O). For η > 0, η /∈ N, we say f ∈ Cη(O) if for all multi-indices β with |β| ≤ ⌊η⌋ (the
integer part of η), Dβf exists and is η − ⌊η⌋-Hölder continuous. The norm on Cη(O) is

∥f∥Cη(O) =
∑

β:|β|≤⌊η⌋
∥Dβf∥∞ +

∑
β:|β|=⌊η⌋

sup
x,y∈O, x ̸=y

|Dβf(x) −Dβf(y)|
|x− y|η−⌊η⌋ .

We also define the set of smooth functions as C∞(O) = ∩η>0C
η(O) and its subspace C∞

c (O)
of functions compactly supported in O.

The previous definitions will be used also for O replaced by ∂O or Rd. When there is no
ambiguity, we omit O from the notation.

For any normed linear space (X, ∥ · ∥X) its topological dual space is

X∗ := {L : X → R linear s.t. ∃C > 0 ∀x ∈ X : |L(x)| ≤ C∥x∥X} ,

which is a Banach space for the norm ∥L∥X∗ = supx∈X |L(x)|/∥x∥X .
We need further Sobolev-type spaces to address routine subtleties of the behaviour of

functions near ∂O: denote by Hα
c (O) the completion of C∞

c (O) for the Hα(O)-norm, and let
H̃α(O) denote the closed subspace of Hα(Rd) consisting of functions supported in Ō. We
have Hα

c (O) = H̃α(O) unless α = k + 1/2, k ∈ N (Section 4.3.2 in [165]), and one defines
negative order Sobolev spaces H−κ(O) = (H̃κ(O))∗, κ > 0, cf. also Theorem 3.30 in [121].
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We use the symbols “≲,≳” for inequalities that hold up to multiplicative constants that
are universal, or whose dependence on other constants will be clear from the context. We
also use the standard notation R+ := {x|x ≥ 0} and a ∨ b := max{a, b} for a, b ∈ R.

3.2 A convergence rate result for general inverse problems

3.2.1 Forward map and white noise model

Let H be a separable Hilbert space with inner product ⟨·, ·⟩H. Suppose that Ṽ ⊆ L2(O) and
that

G : Ṽ → H, F 7→ G (F ),

is a given ‘forward’ map. For some F ∈ Ṽ, and for scalar ‘noise level’ ε > 0, we observe a
realisation of the equation

Y (ε) = G (F ) + εW, (3.4)

where (W(ψ) : ψ ∈ H) is a centred Gaussian white noise process indexed by the Hilbert space
H (see p.19-20 in [72]). Let EεF , F ∈ Ṽ, denote the expectation operator under the law PεF
of Y (ε) from (3.4). Observing (3.4) means to observe a realisation of the Gaussian process
(⟨Y (ε), ψ⟩H : ψ ∈ H) with marginal distributions

⟨Y (ε), ψ⟩H ∼ N(⟨G (F ), ψ⟩H, ε2∥ψ∥2
H).

In the case H = L2(O) relevant in Section 3.3 below, (3.4) can be interpreted as a Gaussian
shift experiment in the Sobolev space H−κ(O), κ > d/2 (see, e.g., [33, 131]), and also serves
as a theoretically convenient (and, for ε = 1/

√
N , as N → ∞ asymptotically equivalent)

continuous surrogate model for observing (Yi, xi)Ni=1 in the standard fixed design Gaussian
regression model

Yi = G (F )(xi) + εi, i = 1, . . . , N, {εi} ∼i.i.d. N(0, 1), (3.5)

where the xi are ‘equally spaced’ design points in the domain O (see [30, 148]).
In the discrete model (3.5) the least squares criterion can be decomposed as ∥Y −G (F )∥2

RN

= ∥Y ∥2
RN − 2⟨Y,G (F )⟩RN + ∥G (F )∥2

RN . The first term ∥Y ∥2
RN is independent of F and can

be neglected when optimising in F . In the continuous model (3.4) we have ∥Y ∥H = ∞ a.s.
(unless dim(H) < ∞), which motivates to define a ‘Tikhonov-regularised’ functional

Jλ,ε : Ṽ → R, Jλ,ε(F ) := 2⟨Y (ε),G (F )⟩H − ∥G (F )∥2
H − λ2∥F∥2

Hα , (3.6)

where λ > 0 is a regularisation parameter to be chosen, and where we set Jλ,ε(F ) = −∞ for
F /∈ Hα. Maximising Jλ,ε thus amounts to minimising the natural least squares fit with
a Hα(O)-penalty for F , and we note that it also corresponds to maximising the penalised
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log-likehood function arising from (3.4), see, e.g., [131], Section 7.4. In all that follows ∥ · ∥Hα

could be replaced by any equivalent norm on Hα(O).
We note that when G is non-linear, computation of a global maximiser of the (then non-

convex) functional Jλ,ε may pose an infeasible computational task in practice. Nevertheless,
the convergence rates we obtain below provide a first rigorous understanding of the statistical
complexity of the PDE inference problems at hand. It is an interesting open question whether
algorithms that are computable in ‘polynomial time’ can attain the same performance
guarantees. This is subject of ongoing research (see, e.g., [126]) and beyond the scope of the
present thesis.

3.2.2 Results

For F1 ∈ Ṽ ∩Hα, F2 ∈ Ṽ and λ > 0, define the functional

τ2
λ(F1, F2) := ∥G (F1) − G (F2)∥2

H + λ2∥F1∥2
Hα . (3.7)

The main result of this section, Theorem 3.2.2, proves the existence of maximisers F̂ for
Jλ,ε over suitable subsets V ⊆ Ṽ ∩ Hα and concentration properties for τλ(F̂ , F0), where
F0 is the ‘true’ function generating the law PεF0

from equation (3.4). Note that bounds
for τλ(F̂ , F0) simultaneously control the ‘prediction error’ ∥G (F̂ ) − G (F0)∥H as well as the
regularity ∥F̂∥Hα of the estimated output F̂ .

Theorem 3.2.2 is proved under a general ‘modulus of continuity’ condition on the map G

which reads as follows.

Definition 3.2.1. Let α, γ, κ ∈ R+ be non-negative real numbers and Ṽ ⊆ L2(O). Set
H := Hα(O) if κ < 1/2, and H := Hα

c (O) if κ ≥ 1/2. A map G : Ṽ → H is called
(κ, γ, α)-regular if there exists a constant C > 0 such that for all F,H ∈ Ṽ ∩ H, we have

∥G (F ) − G (H)∥H ≤ C
(
1 + ∥F∥γHα(O) ∨ ∥H∥γHα(O)

)
∥F −H∥(Hκ(O))∗ , (3.8)

This condition is easily checked for ‘κ-smoothing’ linear maps G with γ = 0, see Remark
3.2.5 for an example. But (3.8) also allows for certain non-linearities of G on unbounded
parameter spaces Ṽ that will be seen later on to accommodate the forward maps induced by
the PDEs (3.2), (3.3). See also Remarks 3.2.6, 3.3.10 below.

Theorem 3.2.2. Suppose that G : Ṽ → H is a (κ, γ, α)-regular map for some integer
α > (d/2 − κ) ∨ (γd/2 − κ). Let Y (ε) ∼ PεF0

from (3.4) for some fixed F0 ∈ Ṽ. Then the
following holds.

1. Let V ⊆ Ṽ ∩ H be closed for the weak topology of the Hilbert space H. Then for all
λ, ε > 0, almost surely under PεF0

, there exists a maximiser F̂ = F̂λ,ε ∈ V of Jλ,ε from (3.6)
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over V, satisfying
sup
F∈V

Jλ,ε(F ) = Jλ,ε(F̂ ). (3.9)

2. Let V ⊆ Ṽ ∩H. There exist constants c1, c2, c3 > 0 such that for all ε, λ, δ > 0 satisfying

ε−1δ ≥ c1
(
1 + λ− 1

2s
(
1 + (δ/λ)

γ
2s
))
, s := (α+ κ)/d, (3.10)

all R ≥ δ, any maximiser F̂ = F̂λ,ε ∈ V of Jλ,ε over V and any F∗ ∈ V, we have

PεF0

(
τ2
λ(F̂ , F0) ≥ 2(τ2

λ(F∗, F0) +R2)
)

≤ c2 exp
(

− R2

c2
2ε

2

)
, (3.11)

and also
EεF0

[
τ2
λ(F̂ , F0)

]
≤ c3

(
τ2
λ(F∗, F0) + δ2 + ε2

)
. (3.12)

Various applications of Theorem 3.2.2 for specific choices of κ, γ, V and Ṽ will be
illustrated in the following - besides the main PDE applications from Section 3.3, see Remarks
3.2.4, 3.3.10 and 3.3.11 as well as Example 3.2.5 below.

Theorem 3.2.2 does not necessarily require F0 ∈ V as long as F0 can be suitably approxi-
mated by some F∗ ∈ V, see Remark 3.2.4 for an instance of when this is relevant. If F0 ∈ V
then we can set F∗ = F0 in the above theorem and obtain the following convergence rates,
which are well known to be optimal for κ-smoothing linear forward maps G , and which will
be seen to be optimal also for the non-linear inverse problems arising from the PDE models
(3.2) and (3.3).

Corollary 3.2.3. Under the conditions of Part 2 of Theorem 3.2.2, for all R > 0 there
exists c < ∞ such that for all ε > 0 small enough, λ = ε2(α+κ)/(2(α+κ)+d) and any maximizer
F̂λ,ε of Jλ,ε over V,

sup
F0∈V:∥F0∥Hα ≤R

EεF0

∥∥∥G (F̂λ,ε) − G (F0)
∥∥∥
H

≤ cε
2(α+κ)

2(α+κ)+d . (3.13)

When images of ∥ · ∥Hα-bounded subsets of V under a forward map G : L2(O) → L2(O)
are bounded in Hβ(O) for some β > 0, then the L2-bound (3.13) extends (via interpolation
and bounds for ∥F̂∥Hα implied by Theorem 3.2.2) to Hη-norms, η ∈ [0, β], which in turn can
be used to obtain convergence rates also for F̂ − F0 by using stability estimates. See the
results in Section 3.3 and also Example 3.2.5 below for examples.

Remark 3.2.4 (MAP estimates). Let Π be a Gaussian process prior measure for F with
reproducing kernel Hilbert space (RKHS) H and RKHS-norm λ̄∥ · ∥Hα , λ̄ > 0. Taking note
of the form of the likelihood function in the model (3.4) (see, e.g., Section 7.4 in [131]),
maximisers F̂ of Jλ,ε over V = H with λ = ελ̄ have a formal interpretation as maximum
a posteriori (MAP) estimators for the resulting posterior distributions Π(·|Y (ε)), see also
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[50, 84]. For instance, let α > d/2, κ ≥ 0, and consider a linear inverse problem where
for β = α − d/2 and Ṽ = Hβ(O), G : Hβ(O) → H is a linear map satisfying (3.8) with
γ = 0 for all F,H ∈ Hβ(O). Then, applying Theorem 3.2.2 with λ = ε (so that λ̄ = 1) and
δ ≈ ε(2β+2κ)/(2β+2κ+d) yields

sup
F0∈H̃β(O0):∥F0∥

H̃β ≤R
EεF0

∥∥∥G (F̂ ) − G (F0)
∥∥∥
H
≲ δ, R > 0, (3.14)

for any fixed sub-domain O0 such that Ō0 ⊊ O. Indeed, one easily checks (3.10), and
given F0 ∈ H̃β(O0) set F∗ = ζF −1[(1[|·|≤(δ/λ)2/d]F [F0]] ∈ Hα

c (O), where ζ ∈ C∞
c (O) is

such that ζ = 1 on O0 and F is the Fourier transform. Then ∥F∗∥Hα(O) ≲ δ/λ and
∥F ∗ − F0∥(Hκ(O))∗ ≲ ∥F ∗ − F0∥H−κ(O) ≲ δ in (3.12) yield (3.14). Similar comments apply to
non-linear G , with appropriate choice of λ̄, see Remark 3.3.10.

Example 3.2.5 (Rates for the Radon transform). Let R : Ṽ ≡ L2(O) → H be the Radon
transform, where O = {x ∈ R2 : ∥x∥ < 1} and H = L2(Σ),Σ := (0, 2π] × R, equipped
with Lebesgue measure, see p.9 in [129] for definitions. Then G = R satisfies (3.8) with
κ = 1/2, γ = 0 and any α ∈ N – see p.42 in [129] and note that our ∥ · ∥(H1/2(O))∗-norm is the
∥ · ∥

H
−1/2
0 (O)-norm used in [129] (cf. Theorem 3.30 in [121]). Applying Corollary 3.2.3 with

α ≥ 1, V = Hα
c (O) and λ = ε(2α+1)/(2α+3) implies that for any F0 ∈ Hα

c (O),

EεF0

[
∥R(F̂λ,ε) − R(F0)∥2

L2(Σ) + λ2∥F̂λ,ε∥2
Hα

c (O)
]
≲ ε(4α+2)/(2α+3). (3.15)

Using again the estimates on p.42 in [129] and that Hölder’s inequality implies

∥g∥H1/2(Σ) ≤ ∥g∥2α/(2α+1)
L2(Σ) ∥g∥1/(2α+1)

Hα+1/2(Σ)

for Hα(Σ) defined as in [129], we deduce from (3.15) and Markov’s inequality that as ε → 0,

∥F̂λ,ε − F0∥L2(O) ≲ ∥R(F̂ ) − R(F0)∥H1/2(Σ) = OPε
f0

(
ε

2α
2α+3

)
in probability [recall that random variables (Zn : n ∈ N) are OPr(rn) if ∀δ > 0 ∃M = Mδ

s.t. Pr(|Zn| > Mrn) < δ for all n ∈ N], with constants uniform in ∥F0∥Hα
c (O) ≤ R for any

R > 0. Similarly, if one chooses λ = ε instead, then the MAP estimate from Remark 3.2.4
satisfies ∥∥∥F̂λ,ε − F0

∥∥∥
L2(O)

= OPε
f0

(
ε

2β
2β+3

)
, where β := α− 1 > 0,

uniformly over ∥F0∥
Hβ

c (O0) ≤ R for R > 0.

Remark 3.2.6 (The effect of nonlinearity). In the proof of Theorem 3.2.2 we follow ideas for
M -estimation from [170, 169], and condition (3.8) is needed to bound the entropy numbers
of images {G (F ) | ∥F∥Hα ≤ R}, 0 < R < ∞, of Sobolev balls under G , which in turn control
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the modulus of continuity of the Gaussian process that determines the convergence rate of F̂
to F0. The at most polynomial growth in ∥F∥Hα of the Lipschitz constants

(1 + ∥F∥γHα ∨ ∥H∥γHα) , γ ≥ 0, (3.16)

in (3.8) turns out to be essential in the proof of Theorem 3.2.2. But even when only a
‘polynomial nonlinearity’ is present (γ > 0), the last term in the condition (3.10) can become
dominant if the penalisation parameter λ is too small. The intuition is that, for non-linear
problems, too little penalisation can mean that the maximisers F̂ over unbounded parameter
spaces behave erratically, yielding sub-optimal convergence rates.

3.3 Results for elliptic PDE models

In this section, we apply Theorem 3.2.2 to the inverse problems induced by the PDEs (3.2)
and (3.3). We also discuss the implied convergence rates for the parameter f .

3.3.1 Basic setup and link functions

For any integer α > d/2 and any constant Kmin ∈ [0, 1), and denoting the outward pointing
normal vector at x ∈ ∂O by n = n(x), define the parameter space (boundary derivatives are
understood in the trace sense)

F := Fα,Kmin =
{
f ∈ Hα(O) : f > Kmin on O, f = 1 on ∂O,
∂jf

∂nj
= 0 on ∂O for j = 1, ..., α− 1

}
,

(3.17)

and its subclasses

Fα,r(R) :=
{
f ∈ F : f > r on O, ∥f∥Hα ≤ R

}
, r ≥ Kmin, R > 0.

We note that the restrictions Kmin < 1 and f = 1 on ∂O in (3.17) are made only for
convenience, and could be replaced by any Kmin > 0 and f = g̃ for fixed g̃ ∈ C∞(∂O)
satisfying g̃ > Kmin. Moreover, for estimation over parameter spaces without prescribed
boundary values for f , see Remark 3.3.11.

We will assume that the coefficient f of the second order linear elliptic partial differential
operators featuring in the boundary value problems (3.2) and (3.3), respectively, belong to
Fα,Kmin for large enough α, and denote by

G : F → L2(O), f 7→ G(f) := uf , (3.18)
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the corresponding solution maps. Following (3.4) with H = L2(O), we then observe

Y (ε) = G(f) + εW, ε > 0, (3.19)

whose law will now be denoted by Pεf for f ∈ F .
We will apply Theorem 3.2.2 to a suitable bijective re-parameterisation of F for which

the set V one optimises over is a linear space. This is natural for implementation purposes
but also necessary to retain the Bayesian interpretation of our estimators from Remark 3.2.4.
To this end, we introduce ‘link functions’ Φ – the lowercase and uppercase notation for
corresponding functions f ∈ F and F = Φ−1 ◦ f will be used throughout.

Definition 3.3.1. 1. A function Φ is called a link function if Φ is a smooth, strictly
increasing bijective map Φ : R → (Kmin,∞) satisfying Φ(0) = 1 and Φ′ > 0 on R.

2. A function Φ : (a, b) → R, −∞ ≤ a < b ≤ ∞, is called regular if all derivatives of Φ
of order k ≥ 1 are bounded, i.e.

∀k ≥ 1 : sup
x∈(a,b)

∣∣∣Φ(k)(x)
∣∣∣ < ∞. (3.20)

In the notation of Theorem 3.2.2, throughout this section we set H = L2(O), Ṽ = V :=
{Φ−1 ◦ f : f ∈ F} to be the ‘pulled-back’ parameter space, and

G : V → L2(O), G (F ) := G(Φ ◦ F ), (3.21)

For F as in (3.17), one easily verifies that

V =
{
F ∈ Hα : ∂

jF

∂nj
= 0 on ∂O for j = 0, ..., α− 1

}
= Hα

c (O),

where the second equality follows from the characterization of Hα
c (O) in Theorem 11.5 of

[108]. Given a realisation of (3.19) and a regular link function Φ, we define the generalised
Tikhonov regularised functional Jλ,ε : F → R,

Jλ,ε(f) := 2⟨Y (ε), G(f)⟩L2 − ∥G(f)∥2
L2 − λ2∥Φ−1 ◦ f∥2

Hα , λ > 0. (3.22)

Then for all f ∈ F , we have Jλ,ε(F ) = Jλ,ε(f) in the notation (3.6), and maximising Jλ,ε
over F is equivalent to maximising Jλ,ε over Hα

c = V. Any pair of maximisers will be
denoted by

f̂ ∈ arg max
f∈F

Jλ,ε(f), F̂ = Φ−1 ◦ f̂ ∈ arg max
F∈Hα

c

Jλ,ε(F ), G(f̂) = G (F̂ ).
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The proofs of the theorems which follow are based on an application of Theorem 3.2.2,
after verifying that the map (3.21) satisfies (3.8) with V = Hα

c and suitable values of κ, γ, α.
The verification of (3.8) is based on PDE estimates that control the modulus of continuity
of the solution map (3.18), and on certain analytic properties of the link function Φ. In
practice often the choice Φ = exp is made (cf. [155]), but our results suggest that the use
of a regular link function might be preferable. Indeed, the polynomial growth requirement
(3.16) discussed above is not met if one chooses for Φ the exponential function. Before we
proceed, let us give an example of a regular link function.

Example 3.3.2. Define the function ϕ : R → (0,∞) by ϕ(x) = ex1x<0 + (1 + x)1x≥0,
let ψ : R → [0,∞) be a smooth, compactly supported function with

∫
R ψ = 1, and write

ϕ ∗ ψ =
∫
R ϕ(· − y)ψ(y)dy for their convolution. It follows from elementary calculations that,

for any Kmin ∈ R,

Φ : R → (Kmin,∞), Φ := Kmin + 1 −Kmin

ψ ∗ ϕ(0) ψ ∗ ϕ,

is a regular link function with range (Kmin,∞).

3.3.2 Divergence form equation

For a given source function g ∈ C∞(O), we consider the Dirichlet boundary value problem
∇ · (f∇u) = g on O,

u = 0 on ∂O,
(3.23)

where f ∈ Fα,Kmin (see (3.17)) for some α > d/2 + 1,Kmin > 0. Then (3.59) implies
f ∈ C1+η(O) for some η > 0, and the Schauder theory for elliptic PDEs (Theorem 6.14 in
[71]) then gives that (3.23) has a unique classical solution in C(Ō) ∩C2+η(O) which we shall
denote by G(f) = uf .

Upper bounds For a link function Φ and f1, f2 ∈ F , define (cf. (3.7))

µλ(f1, f2) := ∥G(f1) −G(f2)∥2
L2 + λ2∥Φ−1 ◦ f1∥2

Hα = τλ(F1, F2).

Theorem 3.3.3 (Prediction error). Let F be given by (3.17) for some integer α > (d/2 +
2) ∨ (2d− 1) and Kmin ∈ (0, 1). Let G(f) = uf denote the unique solution of (3.23) and let
Y (ε) ∼ Pεf0

from (3.19) for some f0 ∈ F . Moreover, suppose that Φ : R → (Kmin,∞) is a
regular link function and that Jλε,ε is given by (3.22), where

λε := ε
2(α+1)

2(α+1)+d .
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Then the following holds.

1. For each f0 ∈ F and ε > 0, almost surely under Pεf0
, there exists a maximiser f̂ε ∈ F

of Jλε,ε over F .

2. For each R > 0, r > Kmin, there exist finite constants c1, c2 > 0 such that for any
maximiser f̂ε ∈ F of Jλε,ε, all 0 < ε < 1 and all M ≥ c1,

sup
f0∈Fα,r(R)

Pεf0

(
µ2
λε

(f̂ε, f0) ≥ M2ε
4(α+1)

2(α+1)+d

)
≤ exp

(
− M2λ2

ε

c2ε2

)
. (3.24)

3. For each R > 0, r > Kmin and β ∈ [0, α+ 1], there exists a constant c3 such that for
any maximiser f̂ε ∈ F of Jλε,ε with corresponding uf̂ε

, for all 0 < ε < 1,

sup
f0∈Fα,r(R)

Eεf0

∥∥∥uf̂ε
− uf0

∥∥∥
Hβ

≤ c3ε
2(α+1−β)
2(α+1)+d . (3.25)

Lower bounds We now give a minimax lower bound on the rate of estimation for uf
which matches the bound in (3.25). To facilitate the exposition we only consider the unit
ball O = D :=

{
x ∈ Rd : ∥x∥ < 1

}
, set g = 1 identically on O, and fix Hβ-loss with β = 2.

Theorem 3.3.4. For Kmin ∈ (0, 1), α > d/2 + 1, O = D and g = 1 on O, consider solutions
uf , f ∈ F , to (3.23). Then there exists C < ∞ such that for all ε > 0 small enough,

inf
ûε

sup
f0∈Fα,r(R)

Eεf0∥ûε − uf0∥H2 ≥ Cε
2(α−1)

2(α+1)+d , r > Kmin, R > 0, (3.26)

where the infimum ranges over all measurable functions ûε = û(Y (ε)) of Y (ε) from (3.19) that
take values in H2.

Observe that (3.26) coincides with the lower bound for estimating uf0 as a regression
function without PDE-constraint in Hα+1 under H2-loss. Note however that unconstrained
‘off the shelf’ regression function estimators ũε for uf will not satisfy the non-linear PDE
constraint ũ = G(f̃) for some f̃ ∈ F , thus providing no recovery of the PDE coefficient f0

itself.

Rates for f via stability estimates For estimators uf̂ε
that lie in the range of the forward

map G, we can resort to ‘stability estimates’ which allow to control the convergence rate of f̂ε
to f0 by the rate of G(f̂ε) = uf̂ε

towards G(f0) = uf0 , in appropriate norms. Injectivity and
global stability estimates for this problem have been studied in several papers since Richter
[149], see the recent contribution [24] and the discussion therein. They require additional
assumptions, a very common choice being that g > 0 throughout Ō. The usefulness of these
estimates depends in possibly subtle ways on the class of f ’s one constrains the problem to.
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The original stability estimate given in [149] controls ∥f1 − f2∥∞ in terms of ∥uf1 − uf2∥C2

which does not combine well with the Hβ- convergence rates obtained in Theorem 3.3.3. The
results proved in [24] are designed for ‘low regularity’ cases where α ∈ (0, 1): they give at
best

∥f1 − f2∥L2 ≤ C(f1, f2)∥uf1 − uf2∥1/2
H1 , f1, f2 ∈ F , d ≥ 2, (3.27)

which via Theorem 3.3.3 would imply a convergence rate of ε
α

2(α+1)+d for ∥f̂ε − f0∥L2 . For
higher regularity α ≥ 2 relevant here, this can be improved. We prove in Lemma 3.5.5
below a Lipschitz stability estimate for the map uf 7→ f between the spaces H2 and L2, and
combined with Theorem 3.3.3 this gives the following rate bound for f̂ε − f0.

Theorem 3.3.5. Suppose that α, Kmin, F , G, Φ, λε are as in Theorem 3.3.3 and that in
addition, infx∈O g(x) ≥ gmin for some gmin > 0. Let f̂ε ∈ F be any maximiser of Jλε,ε. Then,
for each r > Kmin and R < ∞, there exists a constant C > 0 such that we have for all
0 < ε < 1,

sup
f0∈Fα,r(R)

Eεf0∥f̂ε − f0∥L2 ≤ Cε
2(α−1)

2(α+1)+d . (3.28)

The rate in Theorem 3.3.5 is strictly better than what can be obtained from (3.27), or by
estimating ∥uf̂ε

−uf0∥C2 by ∥uf̂ε
−uf0∥H2+d/2+η , η > 0, and using Richter’s stability estimate.

A more detailed study of the stability problem, and of the related question of optimal rates
for estimating f , is beyond the scope of the present thesis and will be pursued elsewhere.

3.3.3 Schrödinger equation

We now turn to the Schrödinger equation∆u− 2fu = 0 on O,

u = g on ∂O,
(3.29)

with given g ∈ C∞(∂O). By standard results for elliptic PDEs (Theorem 6.14 in [71]), for
f ∈ Fα,Kmin from (3.17) with Kmin ≥ 0, α > d/2, a unique classical solution uf = G(f) to
(3.3) exists which lies in C2+η(O) ∩ C0(Ō) for some η > 0.

The results for this PDE are similar to the previous section, although the convergence
rates are quantitatively different due to the fact that the forward operator is now 2-smoothing.

Theorem 3.3.6 (Prediction error). Let F be given by (3.17) for some integer α > (d/2 +
2) ∨ (2d− 2) and Kmin ∈ [0, 1). Let G(f) = uf denote the unique solution to (3.29) and let
Y (ε) ∼ Pεf0

from (3.19) for some f0 ∈ F . Moreover, suppose that Φ : R → (Kmin,∞) is a
regular link function and that Jλε,ε is given by (3.22), where

λε = ε
2(α+2)

2(α+2)+d .
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Then the following holds.

1. For each f0 ∈ F and ε > 0, almost surely under Pεf0
, there exists a maximiser f̂ε ∈ F

of Jλε,ε over F .

2. For each R > 0, r > Kmin, there exist finite constants c1, c2 > 0 such that for any
maximiser f̂ε ∈ F of Jλε,ε, all 0 < ε < 1 and all M ≥ c1, we have

sup
f0∈Fα,r(R)

Pεf0

(
µ2
λε

(f̂ε, f0) ≥ M2ε
4(α+2)

2(α+2)+d

)
≤ exp

(
− M2λ2

ε

c2ε2

)
. (3.30)

3. For each R > 0, r > Kmin and β ∈ [0, α+ 2], there exists a constant c3 > 0 such that
for any maximiser f̂ε ∈ F of Jλε,ε and all 0 < ε < 1,

sup
f0∈Fα,r(R)

Eεf0

∥∥∥uf̂ε
− uf0

∥∥∥
Hβ

≤ Cε
2(α+2−β)
2(α+2)+d . (3.31)

For the PDE (3.29) the stability estimate is easier to obtain than the one required in
Theorem 3.3.5, and here is the convergence rate for estimation of f ∈ F . We note that the
rates obtained in Theorems 3.3.6 and 3.3.7 are minimax-optimal in view of Proposition 2 in
[131] (and its proof).

Theorem 3.3.7. Assume that α,Kmin,F , G,Φ, λε are as in Theorem 3.3.6 and that in
addition, infx∈∂O g(x) ≥ gmin for some gmin > 0. Let f̂ε ∈ F be any maximiser of Jλε,ε.
Then for all r > Kmin and R > 0, there exists a constant C > 0 such that for all ε > 0 small
enough,

sup
f0∈Fα,r(R)

Eεf0

∥∥∥f̂ε − f0
∥∥∥
L2

≤ Cε
2α

2(α+2)+d .

3.3.4 Concluding remarks and discussion

Remark 3.3.8. The classical literature on ‘deterministic inverse problems’ deals with
convergence rate questions of Tikhonov and related regularisers, see the monograph [63],
[64, 130, 154, 63, 160, 95] and also [17]. The convergence analysis conducted there is typically
for observations yδ = G (F ) + δ where δ is a fixed perturbation vector in data space, equal
to L2(O) in the present setting. For non-linear problems, rates are obtained as ∥δ∥ → 0
under some invertibility assumptions on a suitable adjoint DG ∗

F of the linearisation DGF [·] of
the forward operator at the ‘true’ parameter F (‘source conditions’), see, e.g., Section 10 in
[63]. These results are not directly comparable since our noise W models genuine statistical
error and hence is random and, in particular, almost surely not an element of data space
L2(O). As shown in [20, 21, 87, 112], the ‘deterministic’ analysis extends to the Gaussian
regression model (3.4) to a certain degree, but the results obtained there still rely, among
other things, on invertibility properties of DG ∗

F . For the PDE (3.2) such ‘source conditions’
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can be problematic as DG ∗
F may not be invertible in general (due to the fact ∇uf can vanish

on O unless some further assumptions are made, see, e.g., [102]). Our techniques circumvent
source conditions by first optimally solving the ‘forward problem’, and then feeding this
solution into a suitable stability estimate for G −1.

Remark 3.3.9 (Bayesian inversion). The Bayesian approach [155, 99, 53] to inverse problems
has been very popular recently, but only few theoretical guarantees for such algorithms are
available in non-linear settings: In [177], convergence rates for the PDE (3.23) are obtained
for certain Bayes procedures that arise from priors for f that concentrate on specific bounded
subsets of Hα. The main idea to combine regression results with stability estimates is related
to our approach, but the rates obtained in [177] are suboptimal, and for the elliptic PDE
models considered here do not apply to Gaussian priors. Bayesian inference for the PDE
(3.29) has been studied in [131], where it is shown that procedures based on a uniform wavelet
prior do attain minimax optimal convergence rates for f and uf (up to log-factors). The paper
[131] also addresses the question of uncertainty quantification via the posterior distribution,
by proving nonparametric Bernstein-von Mises theorems, whereas our results only concern
the convergence rate of the MAP estimate for certain Gaussian priors (see Remarks 3.2.4,
3.3.10). A related recent reference is [125] where the asymptotics for linear functionals of
Gaussian MAP estimates are obtained in linear inverse problems involving Radon and more
general X-ray transforms – see also [99, 144] for earlier results for diagonalisable linear inverse
problems. Finally, convergence rates for posterior distributions of PDE coefficients in certain
non-linear parabolic (diffusion) settings have been studied in [134, 1].

Remark 3.3.10 (MAP estimates, non-linear G ). As explained in Remark 3.2.6, Theorem
3.2.2 does not necessarily produce optimal rates for the choice λ = ε in the non-linear settings
from this section where γ > 0. For MAP estimates as discussed in Remark 3.2.4 our results
then imply optimal convergence rates for G(f) only if the Gaussian prior is re-scaled in an
ε-dependent way, more specifically if its RKHS norm is λ̄∥ · ∥Hα with λ̄ = ε−d/(2α+2κ+d).
Moreover, positivity of f is enforced by a ‘regular link function’ Φ, excluding the exponential
map. Whether these restrictions on admissible priors are artefacts of our proofs remains
a challenging open question, however, to the best of our knowledge, these are the first
convergence rate results for proper MAP-estimators in the non-linear PDE constrained
inverse problems studied here, improving in particular upon the (‘sub-sequential’) consistency
results [50].

Remark 3.3.11. For both PDEs (3.23) and (3.29), one can also consider estimation over
the parameter space

F̃ := {f ∈ Hα(O) : inf
x∈O

f(x) > Kmin on O}, (3.32)
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without the boundary restrictions on f from (3.17). Note that F ⊂ F̃ . Then, with κ =
1/2 − η,η ∈ (0, 1/2), Ṽ = V = Hα(O) in (3.21), α > (d/2 + 2) ∨ 2d− κ and Kmin as before,
Theorem 3.2.2 applies as in Theorems 3.3.3 and 3.3.6, and

sup
f0∈F̃α,r(R)

Eεf0∥uf̂ − uf0∥Hβ(O) ≲ ε
2(α+1/2−η−β)
2(α+1/2−η)+d , r > Kmin, R > 0,

where, respectively, β ∈ [0, α+ 1] (divergence form eq.) and β ∈ [0, α+ 2] (Schrödinger eq.),
and F̃α,r(R) := {f ∈ F̃ : f > r on O, ∥f∥Hα ≤ R}. By the stability Lemmas 3.5.5 and 3.5.9
(which apply to F̃ as well) and arguing as in the proofs of Theorems 3.3.5 and 3.3.7, this
yields the respective convergence rates

ε
2(α−3/2−η)

2(α+1/2−η)+d
· α−1

α+1 (div. form eq.), ε
2(α−3/2−η)

2(α+1/2−η)+d
· α

α+2 (Schrödinger eq.),

for Eεf0
∥f̂ − f0∥L2 , uniform over F̃α,r(R).

3.4 Proofs of the main results

3.4.1 Convergence rates in M-estimation

For the convenience of the reader we recall here some classical techniques for proving
convergence rates for M -estimators (see [169, 170]) – these will form the basis for the proof
of Theorem 3.2.2. In the following Ṽ ⊆ L2(O), G : Ṽ → H is a Borel-measurable map, and
the functionals Jλ,ε, τ

2
λ(·, ·) are given by (3.6), (3.7), respectively. Let V ⊆ Ṽ ∩Hα(O) be a

subset over which we aim to maximise Jλ,ε. For any F∗ ∈ V and λ,R ≥ 0, define sets

V∗(λ,R) := {F ∈ V : τ2
λ(F, F∗) ≤ R2}, (3.33)

their images under G ,

D∗(λ,R) =
{
G (F ) : F ∈ V with τ2

λ(F, F∗) ≤ R2}, (3.34)

and also
J∗(λ,R) := R+

∫ 2R

0
H1/2 (ρ,D∗(λ,R), ∥ · ∥H) dρ, (3.35)

where the usual metric entropy of A ⊂ H is denoted by H(ρ,A, ∥ · ∥H) (ρ > 0). The following
theorem is, up to some modifications which adapt it to the continuum sampling scheme (3.4)
and the inverse problem setting considered here, a version of Theorem 2.1 in [169].

Theorem 3.4.1. Let F∗ ∈ V, λ > 0, and let PεF0
be the law of Y (ε) from (3.4) for some fixed

F0 ∈ Ṽ. Suppose Ψ∗(λ,R) ≥ J∗(λ,R) is some upper bound such that R 7→ Ψ∗(λ,R)/R2 is
non-increasing. Then there exist universal constants c1, c2, c3 such that for all ε, λ, δ > 0
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satisfying
δ2 ≥ c1εΨ∗(λ, δ) (3.36)

and any R ≥ δ, we have that

PεF0

(
Jλ,ε has a maximizer F̂ over V s.t. τ2

λ(F̂ , F0) ≥ 2(τ2
λ(F∗, F0) +R2)

)
≤ c2 exp

(
− R2

c2
1ε

2

)
. (3.37)

Moreover, for any maximiser F̂ of Jλ,ε over V we have for some universal constant c3

EεF0 [τ2
λ(F̂ , F0)] ≤ c3(τ2

λ(F∗, F0) + δ2 + ε2). (3.38)

Proof. 1. Let F̂ denote any maximiser of Jλ,ε. By completing the square, we see that F̂
also maximises

Qλ,ε(F ) := 2⟨εW,G (F )⟩H − ∥G (F ) − G (F0)∥2
H − λ2∥F∥2

Hα .

Rewriting the inequality Qλ,ε(F̂ ) ≥ Qλ,ε(F∗), we obtain

2⟨εW,G (F̂ ) − G (F∗)⟩H ≥ τ2
λ(F̂ , F0) − τ2

λ(F∗, F0).

Elementary calculations as in [169], p.3-4, give that for all R > 0, if

τ2
λ(F̂ , F0) ≥ 2

(
τ2
λ(F∗, F0) +R2

)
holds then we also have the inequalities

τ2
λ(F̂ , F∗) ≥ R2 and

τ2
λ(F̂ , F0) − τ2

λ(F∗, F0) ≥ 1
6τ

2
λ(F̂ , F∗).

It follows that for any R > 0 and for P the law of the centred Gaussian process (W(ψ) =
⟨W, ψ⟩H : ψ ∈ H),

PεF0

(
τ2
λ(F̂ , F∗) ≥ 2

(
τ2
λ(F∗, F0) +R2

))
≤ PεF0

(
τ2
λ(F̂ , F∗) ≥ R2, 2⟨εW,G (F̂ ) − G (F∗)⟩H ≥ 1

6τ
2
λ(F̂ , F∗)

)
≤

∞∑
l=1

P
(

sup
ψ∈D∗(λ,2lR)

⟨εW, ψ − G (F∗)⟩H ≥ 1
4822lR2

)
=:

∞∑
l=1

Pl.
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2. For all λ,R ≥ 0, we have that supψ,φ∈D∗(λ,R) ∥ψ − φ∥H ≤ 2R, so that by Dudley’s
theorem (see [72], p.43),

E
[

sup
ψ∈D∗(λ,R)

|⟨W, ψ − G (F∗)⟩H|
]

≲ inf
ψ∈D∗(λ,R)

E|⟨W, ψ − G (F∗)⟩H| +
∫ 2R

0
H1/2 (ρ,D∗(λ,R), ∥ · ∥H) dρ

≲ R+
∫ 2R

0
H1/2 (ρ,D∗(λ,R), ∥ · ∥H) dρ = J∗(λ,R) ≤ Ψ∗(λ,R).

3. Let us write S∗(λ,R) := supψ∈D∗(λ,R) |⟨W, ψ − G (F∗)⟩|. By choosing c large enough
and δ such that (3.36) holds, we have that for all R ≥ δ, 1

48R
2 − εΨ∗(λ,R) ≥ 1

96R
2. Thus by

the preceding display, the Borell-Sudakov-Tsirelson inequality (see Theorem 2.5.8 in [72]),
and possibly making c > 0 larger, we obtain for all R ≥ δ and l = 1, 2, ...

Pl ≤ P
(
εS∗(λ, 2lR) − εE[S∗(λ, 2lR)] ≥ 1

4822lR2 − εΨ∗(λ, 2lR)
)

≤ P
(
S∗(λ, 2lR) − E[S∗(λ, 2lR)] ≥ 22lR2

96ε

)

≤ exp

−1
2

(
22lR2

96ε

)2

2−2lR−2

 ≤ exp
(

−22lR2

cε2

)
,

(3.39)

where in the penultimate inequality, we have used

sup
ψ∈D∗(λ,2lR)

E[|⟨W, ψ − G (F∗)⟩H|2] ≤ 22lR2.

The inequality (3.37) now follows from summing (3.39), and (3.38) follows from arguing as in
the proof of Lemma 2.2 in [169].

3.4.2 Proof of 3.2.2, Part 2

We will apply Theorem 3.4.1 and need the following lemma. For F∗ ∈ V , define V∗(λ,R),D∗(λ,R)
and J∗(λ,R) by (3.33), (3.34) and (3.35) respectively. We also use the notation Hα(O, r) :=
{F ∈ Hα(O) | ∥F∥Hα ≤ r} and Hα

c (O, r) := {F ∈ Hα
c (O) | ∥F∥Hα ≤ r}, r > 0 and recall

s = (α+ κ)/d.

Lemma 3.4.2. Suppose that V and G are as in Part 2 of Theorem 3.2.2. Then there exists
a positive constant c such that for all λ,R > 0 and F∗ ∈ V,

Ψ∗(λ,R) := R+ c
(
Rλ− 1

2s
(
1 + (R/λ)γ/2s))

is an upper bound for J∗(λ,R).
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Proof. Let us first assume that κ ≥ 1/2. We estimate the metric entropy in J∗(λ,R). Let
ρ, λ,R > 0 and define

m := C
(
1 +Rγλ−γ) ,

where C is the constant from (3.8). By definition of τλ, we have V∗(λ,R) ⊆ Hα
c (O, R/λ). Fix

some larger, bounded C∞-domain Õ ⊃ Ō and some function ζ ∈ C∞
c (Rd) such that 0 ≤ ζ ≤ 1,

ζ = 1 on O and supp(ζ) ⊂ Õ. By the main theorem of Section 4.2.2 in [165], there exists
a bounded, linear extension operator E : Hκ(O) → Hκ(Rd). Define the map e : ϕ 7→ ζE(ϕ)
which maps Hκ(O) continuously into H̃κ(Õ), and for ϕ ∈ L2(O), let ϕ̃ : Rd → R denote its
extension by 0 on Rd \ O. We then have, for some c1 > 0,

∥ϕ∥(Hκ(O))∗ = sup
φ∈Hκ(O,1)

∣∣∣∣∫
O
ϕφ

∣∣∣∣ = sup
φ∈Hκ(O,1)

∣∣∣∣∫
Õ
ϕ̃e(φ)

∣∣∣∣ ≤ c1∥ϕ̃∥H−κ(Õ). (3.40)

By Theorem 11.4 in [108] and its proof, the zero extension ϕ 7→ ϕ̃ is continuous from Hα
c (O)

to Hα(Õ) with norm 1, so that

W :=
{
F̃ : F ∈ V∗(λ,R)

}
⊆ Hα

c (Õ, R/λ).

By Theorem 4.10.3 of [165], we can pick F̃1, ..., F̃N ∈ W with

N ≤ exp
(
c2
(Rmc1
λρ

) 1
s

)
for some universal constant c2, such that the balls

B̃i :=
{
ψ ∈ W : ∥ψ − F̃i∥H−κ(Õ) ≤ ρ

mc1

}
, i = 1, ..., N,

form a covering of W. Then it follows from (3.8) and (3.40) that for all i = 1, ..., N and F

with F̃ ∈ B̃i,

∥G (F ) − G (Fi)∥H ≤ m∥F − Fi∥(Hκ(O))∗ ≤ mc1∥F̃ − F̃i∥H−κ(Õ),

whence the balls

B′
i := {ψ ∈ D∗(λ,R) : ∥ψ − G (Fi)∥H ≤ ρ}, i = 1, ..., N

form a covering of D∗(λ,R). Hence we obtain the bound

H (ρ,D∗(λ,R), ∥ · ∥H) ≲
(Rm
λρ

) 1
s
, (3.41)
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and hence also
∫ 2R

0
H1/2 (ρ,D∗(λ,R), ∥ · ∥H) dρ ≲

∫ 2R

0

(
Rm

λρ

) 1
2s

dρ ≲ Rλ− 1
2s (1 + (R/λ)

γ
2s ),

which proves that Ψ∗ ≥ J∗ for the case κ ≥ 1/2.
For κ < 1/2, by Theorem 11.1 in [108], we have H̃κ(O) = Hκ

c (O) = Hκ(O) and hence
∥ · ∥(Hκ(O))∗ = ∥ · ∥H−κ(O), whence we can use Theorem 4.10.3 of [165] directly to cover
V∗(R, λ) ⊆ Hα(O, R/λ) by H−κ(O)-balls, and using (3.8) as above yields the entropy bound
(3.41).

By assumption on α we have 1 + γ
2s < 2 and hence the map R 7→ Ψ∗(λ,R)/R2, for

Ψ∗(λ,R) as defined in Lemma 3.4.2, is decreasing. The bounds (3.11) and (3.12) then follow
from Theorem 3.4.1. The proof of existence of maximisers is given in Section 3.7. Finally,
we obtain Corollary 3.2.3 by taking F∗ = F0 and δ := cε2(α+κ)/(2α+2κ+d) for which (3.10) is
easily verified for λ chosen as in the corollary, so that Theorem 3.2.2 applies.

3.4.3 Proof of Theorems 3.3.3, 3.3.4 and 3.3.5

Proof of Theorem 3.3.3. We verify that G given by (3.21) with G the solution map of (3.23),
satisfies (3.8) for V = Hα

c ,H = L2(O), γ = 4, κ = 1, in order to apply Theorem 3.2.2. Let
F,H ∈ Hα, and let us write f := Φ ◦ F , h := Φ ◦H. With Lf , Vf introduced in Section 3.5.2
we have by (3.21) and (3.23)

Lf [G (F ) − G (H)] = Lf [uf − uh]
= Lf [uf ] − Lh[uh] + (Lh − Lf )[uh] = ∇ · ((h− f)∇uh),

(3.42)

and then, by Lemma 3.5.2 with H2
0 defined in (3.62), the estimate

∥G (F ) − G (H)∥L2 = ∥Vf [∇ · ((h− f)∇uh)]∥L2

≤ C(1 + ∥f∥C1) ∥∇ · ((h− f)∇uh)∥(H2
0 )∗ .

(3.43)

By applying the divergence theorem to the vector field φ(h− f)∇uh, where φ ∈ C2
0 is any

C2-function that vanishes at the boundary, we have

∥∇ · ((h− f)∇uh)∥(H2
0 )∗ = sup

φ∈C2
0 , ∥φ∥H2≤1

∣∣∣∣∫
O
φ∇ · ((h− f)∇uh)

∣∣∣∣
= sup

φ∈C2
0 , ∥φ∥H2≤1

∣∣∣∣∫
O

(h− f)∇φ · ∇uh
∣∣∣∣

≤ ∥h− f∥(H1)∗ sup
φ∈C2

0 , ∥φ∥H2≤1

∥∇φ · ∇uh∥H1

≲ ∥h− f∥(H1)∗∥uh∥C2 ,
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where we used the multiplicative inequality (3.57) in the last step. Combining this with (3.43)
and Lemma 3.5.3 yields that

∥G (F ) − G (H)∥L2 ≲ (1 + ∥f∥C1)(1 + ∥h∥2
C1)∥h− f∥(H1)∗ .

Hence, by (3.94), (3.96) and the Sobolev embedding (3.59), we obtain

∥G (F ) − G (H)∥L2 ≲ (1 + ∥F∥4
Hα ∨ ∥H∥4

Hα)∥F −H∥(H1)∗ ,

so G indeed fulfills (3.8) for γ = 4 and κ = 1.
The existence of maximisers f̂ε now follows from the first part of Theorem 3.2.2, and we

prove (3.24) by applying Theorem 3.2.2 with F∗ = F0. First, we note that for all f̂ε and f0,

µλ(f̂ε, f0) = τλ(F̂ε, F0). (3.44)

For the choice δε = cε
2(α+1)

2(α+1)+d and c large enough, the triple (ε, λε, δε) satisfies (3.10) and
Theorem 3.2.2 and (3.44) yield that for some c′ > 0 and any m ≥ δε,

Pεf0

(
µ2
λε

(f̂ε, f0) ≥ 2(δ2
ε +m2)

)
≤ exp

(
− m2

c′ε2

)
,

which proves (3.24).
To show (3.25), let now β ∈ [0, α+ 1], R > 0 and r > Kmin. By Lemma 3.5.4, we have

that
M := sup

f∈F :∥f∥Hα ≤R
∥uf∥Hα+1 < ∞.

Now for any f0 ∈ Fα,r(R), we can use (3.64) to estimate

∥uf̂ − uf0∥Hβ ≲ ∥uf̂ − uf0∥
α+1−β

α+1
L2 ∥uf̂ − uf0∥

β
α+1
Hα+1

≲ ∥uf̂ − uf0∥
α+1−β

α+1
L2

(
M

β
α+1 + ∥uf̂∥

β
α+1
Hα+1

)
.

(3.45)

Further, Lemma 3.5.4 and (3.95) yield that

∥uf̂∥
β

α+1
Hα+1 ≲ 1 + ∥f̂∥αβHα ≲ 1 + ∥F̂∥α

2β
Hα ≲ 1 +

(
λ−1
ε µλε(f̂ , f0)

)α2β
. (3.46)

Now set δε := c1ε
2(α+1)

2(α+1)+d for c1 from the second part of the theorem. We define the eventsA0 := {µλε(f̂ε, f0) < δε}

Aj := {µλε(f̂ε, f0) ∈ (2j−1δε, 2jδε]}, j ≥ 1.
(3.47)
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By (3.24) and (3.45)-(3.46), and writing µ̂λε := µλε(f̂ε, f0), we then obtain

EεF0

[
∥uf̂ − uf0∥Hβ

]
≲

∞∑
j=0

EεF0

[
1Aj ∥uf̂ − uf0∥

α+1−β
α+1

L2

(
1 + λ−α2β

ε µ̂α
2β
λε

)]

≲ δ
α+1−β

α+1
ε +

∞∑
j=1

(2jδε)
α+1−β

α+1
(
1 + λ−α2β

ε (2jδε)α
2β
)
Pεf0 (Aj)

≲ δ
α+1−β

α+1
ε

(
1 +

∞∑
j=1

2
j(α+1−β)

α+1
(
1 + (c2j)α2β) exp

(
− 22jδ2

ε

c2
2ε

2
))

≲ δ
α+1−β

α+1
ε (1 + o(ε)),

(3.48)

where c2 is the constant from (3.24). The theorem is proved.

Proof of Theorem 3.3.5. We apply Lemma 3.5.5 with f2 = f̂ and f1 = f0 ∈ Fα,r(R), so that
∥uf1∥C1 ∨ ∥f1∥C1 is bounded by some fixed B = B(R) (cf. (3.59) and Lemma 3.5.3). Thus,
writing F̂ε := Φ−1 ◦ f̂ε and using (3.94),

Eεf0∥f̂ε − f0∥L2 ≲ Eεf0

[
∥uf̂ε

− uf0∥H2∥f̂ε∥C1

]
≲ Eεf0

[
∥uf̂ε

− uf0∥
(α−1)
α+1
L2 ∥uf̂ε

− uf0∥
2

α+1
Hα+1(1 + ∥F̂ε∥C1)

]
.

We now choose δε := c1ε
2(α+1)

2(α+1)+d where c1 is the constant from the second part of Theorem
3.3.3. Bounding ∥uf̂ε

− uf0∥Hα+1 as in (3.45)-(3.46), splitting the expectation into Aj , j ≥ 0
as defined in (3.47) and using the concentration inequality (3.24), we obtain as in (3.48) the
desired inequality

Eεf0∥f̂ε − f0∥L2 ≲ δ
α−1
α+1
ε (1 + o(ε)).

Proof of Theorem 3.3.4. We only prove the more difficult case d ≥ 2.
1. Let f0 = 1. By direct computation, one verifies that the unique classical solution to

(3.23) with g = 1,O = D is

uf0(x) = 1
2d
(
∥x∥2 − 1

)
, ∇uf0(x) = x

d
.

Thus we have that for some 1/2 < a < b < 1,

[a, b]d ⊂ D,
1
2d ≤ ∂xiuf0(x) ≤ 1

d
for all i = 1, ..., d and x ∈ [a, b]d.
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2. Now let Ψ : R → R be a 1-dimensional, compactly supported, at least (α+ 1)-regular
Daubechies wavelet (see [72], Theorem 4.2.10). Then, for all integers j ≥ 1, for suitable
constants nj , c > 1 and shift vectors vj,r = (vj,r1 , ..., vj,rd ) to be chosen later, we define the
tensor wavelets Ψj,r, r = 1, ..., nj by

Ψj,r(x) = 2
jd
2 c− d−1

2 Ψ(2jx1 + vj,r1 )
d∏
i=2

Ψ
(

2j
c
xi + vj,ri

)
.

Note that the Ψj,r are ‘steeper’ by a fixed constant c in x1-direction than in any other
direction. Due to the compact support of Ψ, there exists a constant c0 which depends only
on c and Ψ such that for all j ≥ j0 large enough, we can set nj = c02jd and find suitable
vectors vj,r such that all Ψj,r are supported in the interior [a, b]d with disjoint support. For
some sufficiently small constant κ > 0, we define

fm := f0 + κ2−j(α+d/2)
nj∑
r=1

βr,mΨj,r, m = 1, ...,M, (3.49)

where βr,m, m = 1, ...,M will be chosen later as a suitably separated elements of the
hypercube βr ∈ {−1, 1}nj .

3. We choose κ small enough (independently of c > 1), as follows. By the wavelet
characterisation of Sobolev norms, all fm of the form (3.49) lie in a fixed Hα-ball of radius
Cκ, for some universal constant C > 0, in particular ∥fm − f0∥∞ can be made as small as
desired for κ small enough, so that all the fm > Kmin. Arguing as in (3.42), using Lf0 = ∆
(the standard Laplacian), (3.79), the multiplicative inequality (3.58), Lemma 3.5.3 and the
Sobolev embedding Hα ⊆ C1+η (for some small η > 0), we have (uniformly for all fm)

∥ufm − uf0∥C2 = ∥Vf0 [∇ · ((fm − f0)∇ufm)] ∥C2

≲ ∥∇ · ((fm − f0)∇ufm) ∥C0

≲ ∥(fm − f0)∇ufm∥C1

≲ ∥fm − f0∥C1∥ufm∥C2

≲ ∥fm − f0∥Hα(1 + ∥fm∥2
C1).

Therefore, supm ∥ufm∥C2 < ∞ and we can pick κ so small that for all fm of the form (3.49),

1
4d ≤ ∂xiufm(x) ≤ 2

d
for all i = 1, ..., d and x ∈ [a, b]d. (3.50)

4. Next, we want to apply Theorem 6.3.2 from [72], for which two steps are needed: an
appropriate lower bound on the H2-distance between the ufm ’s and a suitable upper bound
on the KL-divergence of the laws Pεfm

,Pεf0
.
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5. We begin with the lower bound. By the isomorphism (3.75), for all u ∈ H2
0 and f ∈ F ,

we have that

∥u∥H2 ≳ ∥∆u∥L2 = ∥f−1(Lfu− ∇u · ∇f)∥L2 ≥ ∥f∥−1
∞ ∥Lfu− ∇u · ∇f∥L2 .

For all m,m′ = 1, ...,M , using this inequality with f = fm,

u = ufm − ufm′ = Vfm [∇ · (fm′ − fm)∇ufm′ )] (3.51)

in view of (3.42), and supm ∥fm∥C1 < ∞,

∥ufm − ufm′ ∥H2 ≳
∥∥∥∇ ·

(
(fm − fm′) ∇ufm′

)∥∥∥
L2

− ∥∇(ufm − ufm′ ) · ∇fm∥L2

≥ ∥∇(fm − fm′) · ∇ufm′ ∥L2 − ∥(fm − fm′)∆ufm′ ∥L2

− ∥ufm − ufm′ ∥H1∥fm∥C1 =: I − II − III.

(3.52)

We will later show that the second and third terms are of smaller order than the first term.
Using (3.50), we see

I =
∥∥∥∥∥
d∑
i=1

∂xi(fm − fm′)∂xiufm′

∥∥∥∥∥
L2

≥ ∥∂x1(fm − fm′)∂x1ufm′ ∥L2 −
d∑
i=2

∥∂xi(fm − fm′)∂xiufm′ ∥L2

≥ 1
4d∥∂x1(fm − fm′)∥L2 − 2

d

d∑
i=2

∥∂xi(fm − fm′)∥L2 .

(3.53)

To estimate this further, we calculate that for any i = 2, ..., d,

∂xiΨj,r(x) = 2
jd
2 c− d−1

2 Ψ(2jx1 + vj,r1 )

×
( d∏
k=2, k ̸=i

Ψ
(2j
c
xk + vj,rk

))2j
c

Ψ′
(

2j
c
xi + vj,ri

)
.

Similarly calculating ∂x1Ψj,r and summing over r = 1, ..., nj , we obtain

∥∂xi(fm − fm′)∥L2 = 1
c

∥∂x1(fm − fm′)∥L2 , i = 2, ..., d.

Thus, choosing c large enough and combining this with (3.53), we can ensure that

I ≳
1
4d∥∂x1(fm − fm′)∥L2 − 2(d− 1)

cd
∥∂x1(fm − fm′)∥L2

≥ 1
8d∥∂x1(fm − fm′)∥L2 .
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Moreover, as the first partial derivatives of the Ψj,r still have disjoint support, they are
orthonormal in L2 and by Parseval’s identity we have

∥∂x1(fm − fm′)∥2
L2 = κ22−2j(α+d/2)

nj∑
j=1

|βr,m − βr,m′ |2∥∂x1Ψj,r∥2
L2

= ∥∂x1Ψ0,1∥2
L2κ22−2j(α−1+d/2)

nj∑
j=1

|βr,m − βr,m′ |2.
(3.54)

By the Varshamov-Gilbert-bound (Example 3.1.4 in [72]), for constants c1, c2 > 0 independent
of j, we can find a subset Mj ⊂ {−1, 1}c02jd of cardinality Mj = 2c12jd such that

nj∑
j=1

|βr,m − βr,m′ |2 ≥ c22jd

whenever m ̸= m′. For such a subset Mj , by (3.54) we have

I ≳ ∥∂x1(fm − fm′)∥L2 ≳ 2−j(α−1). (3.55)

6. We next show that II and III in (3.52) are of smaller order as j → ∞. With the
above choice of fm’s, we have from Parseval’s identity and (3.57)

II2 ≤ ∥fm − fm′∥2
L2∥ufm∥2

C2 = κ22−2j(α+d/2)
nj∑
r=1

|βr,m − βr,m′ |2∥ufm∥2
C2

≲ 2−2jα = o(2−2j(α−1)),

and for term III we have, by (3.51), (3.64), Lemma 3.5.2 and arguing as in the first display
of Step 7 to follow, that

∥ufm−ufm′ ∥H1 ≲ ∥ufm − uf ′
m

∥1/2
H2 ∥ufm − ufm′ ∥

1/2
L2

≲ ∥∇ · ((fm − fm′)∇ufm′ )]∥
1/2
L2 ∥[∇ · ((fm − fm′)∇ufm′ )]∥

1/2
(H2

0 )∗

≲ ∥fm − fm′∥1/2
H1 ∥fm − fm′∥1/2

H−1 ≲ 2−jα = o(2−j(α−1)),

where the first factor in the last line is bounded by 2−j(α/2−1/2) by similar arguments as in
(3.54). Combining the last two displayed estimates with (3.52) and (3.55) gives the overall
lower bound

∥ufm − ufm′ ∥H2 ≳ 2−j(α−1) ≈ ε
2(α−1)

2(α+1)+d

with choice j = jε such that 2j ≃ ε−2/(2α+2+d).
7. Now we show the upper bound. Arguing as in (3.42), using Lemma 3.5.2, integrating

by parts and using the wavelet characterisation of the H−1(Rd)-norm (e.g., Section 4.3 in
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[72] with Bs
2,2 = Hs, s ∈ R) as well as the interior support of the Ψj,r, we estimate

∥ufm − uf0∥2
L2 ≲ ∥∇ · ((fm − f0)∇uf0)∥2

(H2
0 )∗

=

 sup
∥ψ∥

H2
0

≤1

∣∣∣∣∫
Rd

∇ψ · ∇uf0(fm − f0)
∣∣∣∣


2

≲ ∥fm − f0∥2
H−1(Rd)∥uf0∥C1

≃ κ22−2j(α+d/2+1)
nj∑
r=1

1 ≲ 2−2j(α+1).

By definition of Mj , using the results in Section 7.4 in [131] and arguing as in (6.16) in [72]
we thus bound the information distances as

KL(Pεufm
,Pεuf0

) ≲ ε−2∥ufm − uf0∥2
L2 ≲ ε−22−2j(α+1) = 2jd ≲ logMj ,

so that the overall result now follows from Theorem 6.3.2 in [72].

3.4.4 Proof of Theorems 3.3.6 and 3.3.7

The proof of Theorem 3.3.6 follows the same principle as the proof of Theorem 3.3.3. By
arguing exactly as in the first two steps of the proof of Theorem 3.3.3, in order to be able to
apply Theorem 3.2.2, we now verify that the map

G : Hα
c → L2, G (F ) := G(Φ ◦ F ),

satisfies (3.8) with H = L2, γ = 4, κ = 2. Let F,H ∈ Hα and f = Φ ◦ F , h = Φ ◦H ∈ F . By
(3.29), uf − uh satisfies

(uf − uh)|∂O = 0, Lf [uf − uh] = (Lh − Lf )[uh] = (f − h)uh

where Lf is defined in Section 3.5.3.1 below. Using this, the norm estimate (3.87), Lemma
3.5.8, the embedding Hα ⊆ C2(O) as well as (3.96), we can then estimate

∥G (F )−G (H)∥L2 = ∥uf − uh∥L2

≲ (1 + ∥f∥∞) ∥(f − h)uh∥(H2
0 )∗

≤ (1 + ∥f∥∞) ∥uh∥C2 ∥f − h∥(H2
0 )∗

≲ (1 + ∥f∥∞) (1 + ∥h∥∞) ∥f − h∥(H2)∗

≲
(
1 + ∥F∥2

∞ ∨ ∥H∥2
∞

)
∥F −H∥(H2)∗

(
1 + ∥F∥2

C2 ∨ ∥H∥2
C2

)
≲
(
1 + ∥F∥4

Hα ∨ ∥H∥4
Hα

)
∥F −H∥(H2)∗ .
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Thus (3.8) is fulfilled for γ = 4 and κ = 2. The existence of maximizers now follows from the
first part of Theorem 3.2.2. The proof of the concentration inequality (3.30) is completely
analogous to the proof of (3.24), and the convergence rate (3.31) follows from the same
argument as in the proof of Theorem 3.3.3, utilizing Lemma 3.5.8 in place of Lemma 3.5.4.

Finally, the proof Theorem 3.3.7 is analogous to that of Theorem 3.3.5, but using Lemma
3.5.9 instead of Lemma 3.5.5, and is left to the reader.

3.5 Some PDE facts

In this section, we collect some key PDE facts which are needed to prove the results in
Section 3.3.

3.5.1 Preliminaries

Besides the classical Hölder spaces Cα(O), we will also need the Hölder-Zygmund spaces
Cα(O), see Section 3.4.2 in [166] for definitions. For α ≥ 0, α /∈ N, we have that Cα = Cα with
equivalent norms, and we have the continuous embeddings Cα′ ⊆ Cα ⊆ Cα for all α′ > α ≥ 0.

We will repeatedly use the multiplicative inequalities

∥fg∥Hα ≲ ∥f∥Hα∥g∥Hα , α > d/2, (3.56)
∥fg∥Hα ≲ ∥f∥Cα∥g∥Hα , α ≥ 0, (3.57)
∥fg∥Cα ≲ ∥f∥Cα∥g∥Cα , α ≥ 0 (3.58)

for all f, g in the appropriate function spaces, which follow from Remark 1 on p.143 and
Theorem 2.8.3 in [166]. For any α > d/2 and 0 ≤ η < α− d/2, we also need the continuous
embedding Hα ⊆ Cη, with the norm estimate

∀f ∈ Hα, ∥f∥Cη ≲ ∥f∥Hα . (3.59)

Let tr[·] denote the usual trace operator for functions defined on O (for the definition on
Sobolev spaces, see, e.g., Chapter 5.5 in [65]). In this and the next section, we will repeatedly
use the fact that the standard Laplacian ∆ and tr[·] establish topological isomorphisms
between appropriate Sobolev and Hölder-Zygmund spaces. That is, for each α ≥ 0, we have
the topological isomorphisms

(∆, tr) : Hα+2(O) → Hα(O) ×Hα+3/2(∂O), u 7→ (∆u, tr[u]), (3.60)
(∆, tr) : Cα+2(O) → Cα(O) × Cα+2(∂O), u 7→ (∆u, tr[u]), (3.61)
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which follow from Theorem II.5.4 in [108] and Theorem 4.3.4 in [166] respectively. Moreover,
for any α ≥ 1, we will use the notation

Hα
0 (O) := {f ∈ Hα(O) | tr[f ] = 0} , Cα0 (O) := {f ∈ Cα(O) | tr[f ] = 0} . (3.62)

We also need the following interpolation inequalities. For all β1, β2 ≥ 0 and θ ∈ [0, 1], there
exists a constant C < ∞ such that

∀u ∈ Cβ1 ∩ Cβ2 : ∥u∥Cθβ1+(1−θ)β2 ≤ C∥u∥θCβ1 ∥u∥1−θ
Cβ2 , (3.63)

∀u ∈ Hβ1 ∩Hβ2 : ∥u∥Hθβ1+(1−θ)β2 ≤ C∥u∥θHβ1 ∥u∥1−θ
Hβ2 , (3.64)

see Theorems 1.3.3 and 4.3.1 in [165] (and note Cβ = Bβ
∞,∞, H

β = Bβ
2,2).

3.5.2 Divergence form equation

3.5.2.1 Estimates for Vf

For each f ∈ C1(Ō) with f ≥ Kmin > 0, we define the differential operator

Lf : H2
0 (O) → L2(O), Lf [u] = ∇ · (f∇u).

By standard theory for elliptic PDEs, Lf has a linear, continuous inverse operator, which we
denote by

Vf : L2(O) → H2
0 (O), ψ 7→ Vf [ψ] ,

see [65], Theorem 4 in Chapter 6.3. In other words, for each right hand side ψ ∈ L2, there
exists a unique function wf,ψ := Vf [ψ] ∈ H2

0 solving the Dirichlet problem
Lf [wf,ψ] = ψ on O,

wf,ψ = 0 on ∂O
(3.65)

weakly, i.e. in the sense that the identity

−
∫

O

d∑
i=1

fDiwf,ψDiv =
∫

O
ψv (3.66)

holds for all test functions v ∈ H1
0 (O) (cf. [65], Chapter 6). By the zero boundary conditions

of (3.23) and the divergence theorem, any classical solution (i.e. C2 solution) must be equal
to the unique weak solution when interpreted as an H2

0 function.
Theorem 4 in Chapter 6.3 of [65] implies that there exists a constant C = Cf (allowed to

depend on f) such that for all ψ ∈ L2, we have the norm estimate ∥Vf [ψ] ∥H2 ≤ Cf∥ψ∥L2 ,

and we need a result that tracks the dependence of Cf on f in a quantitative way. We
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first establish that when we only seek an Lp → Lp-estimate, p ∈ {2,∞}, rather than an
L2 → H2-estimate, the constant merely depends on the lower bound Kmin for f .

Lemma 3.5.1. Let Kmin > 0. Then there exists C = C(d,O,Kmin) such that for all
f ∈ C2(O) with f ≥ Kmin > 0 and ψ ∈ L2, we have

∥Vf [ψ] ∥L2 ≤ C∥ψ∥L2 (3.67)

and for all ψ ∈ Cη(O), η > 0,
∥Vf [ψ] ∥∞ ≤ C∥ψ∥∞. (3.68)

Proof. Assume first that ψ ∈ Cη(O) so that Vf [ψ] ∈ C(Ō) ∩ C2(O) (see after (3.23)). Then
we have the Feynman-Kac formula

Vf [ψ](x) = −1
2E

x
[∫ τO

0
ψ(Xf

s )ds
]
, x ∈ O, (3.69)

where (Xf
s : s ≥ 0) is a diffusion Markov process started at x ∈ O with infinitesimal generator

Lf/2 and expectation operator Ex, and where τO is the exit time of Xf
s from O, see, e.g.,

Theorem 1.2 in Section II of [12]. We also record that, by Theorem 4.3 in Section VII of [12]
and inspection of its proof, there exists a constant c1 only depending on the lower bound
Kmin < f and on d, such that the transition densities of (Xf

s : s ≥ 0) exist and satisfy the
estimate

pf (t, x, y) ≤ c1t
−d/2, t > 0, x, y ∈ Rd. (3.70)

Then, arguing as in the proof of Theorem 1.17 in [42], with (3.70) replacing the standard heat
kernel estimate for Brownian motion, we obtain that supx∈O ExτO ≤ c, with c = c(O, d, c1),
and hence (3.68) follows from

∥Vf [1]∥∞ ≤ sup
x∈O

ExτO ≤ c. (3.71)

Using what precedes one further shows that Vf has a representation via a non-negative and
symmetric integral kernel Gf (·, ·), such that

Vf [ψ](x) = −
∫

O
Gf (x, y)ψ(y)dy, x ∈ O, ∀ ψ ∈ Cη(O). (3.72)

Then using (3.71), the Cauchy-Schwarz inequality and the positivity of G we have for all
ψ ∈ Cη(O),

∥Vf [ψ]∥2
L2 ≤

∫
O

∫
O
Gf (x, y)dy

∫
O
Gf (x, y)ψ2(y)dydx ≤ ∥Vf [1]∥2

∞∥ψ∥2
L2 ,

whence (3.67) follows for ψ ∈ Cη(O), and extends to ψ ∈ L2 by approximation since Vf is a
continuous operator on L2(O) (as established above).



138 Convergence rates for Penalised Least Squares estimators

Lemma 3.5.1 will be used in the proof of the following stronger elliptic regularity estimate.

Lemma 3.5.2. Let Kmin > 0. Then there exists a universal constant C > 0 such that for all
f ∈ C2(O) with f ≥ Kmin and ψ ∈ L2(O), the unique weak solution wf,ψ = Vf [ψ] to (3.65)
satisfies

∥Vf [ψ] ∥H2 ≤ C (1 + ∥f∥C1) ∥ψ∥L2 , (3.73)
∥Vf [ψ] ∥L2 ≤ C (1 + ∥f∥C1) ∥ψ∥(H2

0 )∗ , (3.74)

where C only depends on Kmin and O, d.

Proof. Let f ∈ C1 and ψ ∈ L2. By (3.60), there exists a constant C > 0 depending only on
O, d such that for all u ∈ H2

0 ,

C−1∥∆u∥L2 ≤ ∥u∥H2 ≤ C∥∆u∥L2 . (3.75)

Moreover we have by the definition of Lf that

∆u = f−1(Lfu− ∇f · ∇u). (3.76)

Writing w = wf,ψ and utilising (3.75) and (3.76), we can estimate

∥w∥H2 ≤ C∥∆w∥L2 = C
∥∥∥f−1(ψ − ∇w · ∇f)

∥∥∥
L2

≤ CK−1
min (∥ψ∥L2 + ∥f∥C1∥w∥H1 .)

(3.77)

By choosing the test function −w ∈ H1
0 in the weak formulation (3.66), we have that

Kmin

∫
O

|Dw|2 ≤
∫

O

d∑
i=1

f(Diw)2 =
∫

O
−ψw ≤ 1

2

∫
O

(ψ2 + w2) .

Combining this with (3.77) and Lemma 3.5.1, we finally obtain that for constants C ′, C ′′, C ′′′

only depending on Kmin and O, we have

∥w∥H2 ≤ C ′K−1
min

(
∥ψ∥L2 + ∥f∥C1C ′′(∥ψ∥L2 + ∥w∥L2)

)
= C ′′′ (1 + ∥f∥C1) ∥ψ∥L2 ,

which proves (3.73).
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Next, using the divergence theorem and (3.73), we obtain (3.74) from

∥Vf [ψ]∥L2 = sup
φ∈C∞

c , ∥φ∥L2 ≤1

∣∣∣∣∫
O
Vf [ψ]φ

∣∣∣∣
= sup

φ∈C∞
c (O), ∥φ∥L2 ≤1

∣∣∣∣∫
O
Vf [ψ]LfVf [φ]

∣∣∣∣
= sup

φ∈C∞
c (O), ∥φ∥L2 ≤1

∣∣∣∣∫
O
ψVf [φ]

∣∣∣∣
≤ C(1 + ∥f∥C1) sup

φ∈H2
0 , ∥φ∥H2 ≤1

∣∣∣∣∫
O
ψφ

∣∣∣∣ = C(1 + ∥f∥C1)∥ψ∥(H2
0 )∗ .

3.5.2.2 Estimates for G

Now we turn to the forward map G representing the solutions of the PDE (3.23). The
following norm estimate for the C2-Hölder-Zygmund norm of G(f) = uf is needed.

Lemma 3.5.3. Suppose that for some Kmin > 0, α > d/2 + 2 and g ∈ Cη(O), η > 0,
F̃ is as in (3.32) and uf denotes the unique solution of (3.23). Then there exists C =
C(d,O,Kmin, ∥g∥∞) such that for all f ∈ F̃ ,

∥uf∥C2 ≤ C
(
1 + ∥f∥2

C1

)
. (3.78)

Proof. The proof is similar to that of Lemma 3.5.2. By (3.61), there exists a constant C > 0
depending only on O, d such that for all functions u ∈ C2

0(O), we have

C−1∥∆u∥C0 ≤ ∥u∥C2 ≤ C∥∆u∥C0 . (3.79)

Using this, the PDE (3.23), the multiplicative inequality (3.58) and the interpolation inequality
(3.63), we can estimate as in (3.77)

∥uf∥C2 ≲ ∥f−1(g − ∇f · ∇uf )∥C0 ≲ ∥f−1∥C0 (∥g∥C0 + ∥f∥C1∥uf∥C1)

≲ K−1
min

(
∥g∥C0 + ∥f∥C1∥uf∥1/2

C2 ∥uf∥1/2
C0

)
.

Dividing this inequality by ∥uf∥1/2
C2 whenever ∥uf∥1/2

C2 ≥ 1 and otherwise estimating it by 1,
we obtain that

∥uf∥C2 ≲ 1 +K−2
min

(
∥g∥2

C0 + ∥f∥2
C1∥uf∥C0

)
≲ 1 +K−2

min

(
∥g∥2

∞ + ∥f∥2
C1∥g∥∞

)
where in last step we used ∥ · ∥C0 ≲ ∥ · ∥∞ and Lemma 3.5.1.
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We also need that the forward map G maps bounded sets in Hα onto bounded sets in
Hα+1.

Lemma 3.5.4. Suppose that α, F̃ are as in Lemma 3.5.3 and for some g ∈ Hα−1(O), let
uf = wf,g, f ∈ F̃ , be the unique solution of (3.23). Then uf ∈ Hα+1(O) and there exists a
constant C = C(α, d,O,Kmin) > 0 such that

∥uf∥Hα+1 ≤ C
(
1 + ∥f∥α2+α

Hα

)(
∥g∥α+1

Hα−1 ∨ ∥g∥1/(α+1)
Hα−1

)
. (3.80)

Proof. First, suppose f ∈ C∞ ∩ F̃ . By (3.60), the standard Laplacian ∆ establishes an
isomorphism between Hα+1

0 and Hα−1, and by Theorem 8.13 in [71], uf ∈ Hα+1
0 . Then (3.76)

and the multiplicative inequality (4.18) give

∥uf∥Hα+1 ≲ ∥f−1(g − ∇f · ∇uf )∥Hα−1

≲ ∥f−1∥Hα−1(∥g∥Hα−1 + ∥f∥Hα∥uf∥Hα).

Noting that the map Ψ : (Kmin,∞) → R, x 7→ x−1 satisfies (3.20), (3.95) implies that there
exists c > 0 such that for all f ∈ F ,

∥f−1∥Hα−1 ≤ c(1 + ∥f∥α−1
Hα−1).

Using this and (3.64), we obtain

∥uf∥Hα+1 ≲ (1 + ∥f∥α−1
Hα−1)(∥g∥Hα−1 + ∥f∥Hα∥uf∥Hα)

≲ (1 + ∥f∥αHα)
(
∥g∥Hα−1 + ∥uf∥

α
α+1
Hα+1∥uf∥

1
α+1
L2

)
When ∥uf∥Hα+1 ≤ 1 we use (3.67) to deduce

∥uf∥Hα+1 ≲ (1 + ∥f∥αHα)
(
∥g∥Hα−1 + ∥g∥

1
α+1
L2

)
,

and when ∥uf∥Hα+1 ≥ 1, then dividing both sides by ∥uf∥
α

α+1
Hα+1 and using again (3.67) yields

∥uf∥1/(α+1)
Hα+1 ≲ (1 + ∥f∥αHα)

(
∥g∥Hα−1 + ∥g∥

1
α+1
L2

)
.

Combining the preceding bounds and using ∥ · ∥L2 ≲ ∥ · ∥Hα−1 implies (3.80) for smooth
f ∈ F̃ . Now for any f ∈ F̃ , take fn ∈ C∞(O), fn > Kmin/2, such that fn → f in Hα as
n → ∞, and hence by (3.80) the sequence ufn is bounded in Hα+1. Then applying (3.42)
to ufn − ufm ,m, n ∈ N, and applying (3.80) with g = ∇ · ((fm − fn)∇ufm), one shows that
ufn is a Cauchy sequence in Hα+1 converging to uf , and taking limits extends the inequality
(3.80) to the general case f ∈ F .
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3.5.2.3 Stability Estimates for G−1

The following estimate for the inverse map uf 7→ f allows to obtain convergence rates for
∥f̂ − f0∥L2 via rates for ∥uf̂ − uf0∥H2 , with choices f0 = f1 and f̂ = f2. As f̂ is random we
explicitly track the dependence of the constants on f2.

Lemma 3.5.5. Let α > d/2 + 2, gmin,Kmin, B, η be given, positive constants and let F̃ be
given by (3.32). For g ∈ Cη(O) with infx∈O g(x) ≥ gmin, denote by uf the unique solution of
(3.23). Then there exists C = C(gmin,Kmin, B,O, d) < ∞ such that for all f1, f2 ∈ F̃ with
∥f1∥C1 ∨ ∥uf1∥C2 ≤ B, we have

∥f1 − f2∥L2 ≤ C∥f2∥C1∥uf1 − uf2∥H2 .

Proof. For f1, f2 ∈ F̃ write h = f1 − f2. By (3.23), we have

∇ · (h∇uf1) = ∇ · (f1∇uf1) − ∇ · (f2∇uf2) − ∇ · (f2∇(uf1 − uf2))
= ∇ · (f2∇(uf2 − uf1)).

(3.81)

We can upper bound the ∥ · ∥L2-norm of the right hand side by

∥∇ · (f2∇(uf2 − uf1))∥L2 ≤ ∥∇f2∥∞∥uf2 − uf1∥H1 + ∥f2∥∞∥uf2 − uf1∥H2

≤ 2∥f2∥C1∥uf2 − uf1∥H2 . (3.82)

Next, we lower bound the ∥ · ∥L2-norm of the left side of (3.81). For regular enough v we see
from Green’s identity (p.17 in [71]) that

⟨∆uf1 , v
2⟩L2 + 1

2⟨∇uf1 ,∇(v2)⟩L2 = 1
2⟨∆uf1 , v

2⟩L2 + 1
2

∫
∂O

∂uf1

∂n
v2.

Moreover for v = e−λuf1h with λ > 0 to be chosen we have

1
2

∫
O

∇(v2) · ∇uf1 = −
∫

O
λ∥∇uf1∥2v2 +

∫
O
ve−λuf1 ∇h · ∇uf1 ,

so that by the Cauchy-Schwarz inequality∣∣∣∣∫
O

(1
2∆uf1 + λ∥∇uf1∥2

)
v2 +

∫
∂O

1
2
∂uf1

∂n
v2
∣∣∣∣

=
∣∣∣∣⟨(∆uf1 + λ∥∇uf1∥2), v2⟩L2 + 1

2⟨∇uf1 ,∇(v2)⟩L2

∣∣∣∣
=
∣∣∣⟨h∆uf1 + ∇h · ∇uf1 , he

−2λuf1 ⟩L2

∣∣∣ ≤ µ∥∇ · (h∇uf1)∥L2∥h∥L2 (3.83)

for µ = exp(2λ∥uf1∥∞). [The preceding argument is adapted from the proof of Theorem 4.1
in [102].] We next lower bound the multipliers of v2 in the integrands in the first line of the
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last display. First we have

0 < gmin ≤ g = Lf1uf1 = f1(x)∆uf1 + ∇f1 · ∇uf1 , on O,

so that either ∆uf1(x) ≥ gmin/2∥f1∥∞ or ∥∇uf1(x)∥2 ≥ (gmin/2∥f1∥C1)2 on O. Since
∥∆uf1∥∞ ≤ c(B) this implies for λ = λ(gmin, B) large enough that

1
2∆uf1(x) + λ∥∇uf1(x)∥2 ≥ c0 > 0, x ∈ O, (3.84)

for some c0 = c0(gmin, B). Next, for the integral over ∂O, we use again Lf1uf1 = g > 0 and
apply the Hopf boundary point Lemma 6.4.2 in [65]: We have uf1(x0) = 0 for any x0 ∈ ∂O
but uf1(x) < 0 for all x ∈ O: Indeed, by g ≥ gmin > 0 and the Feynman-Kac formula (3.69)
(with g = ψ), it suffices to lower bound ExτO which satisfies, by Markov’s inequality

ExτO ≥ Px(τO > 1) ≥ Px
(

sup
0<s≤1

∥Xs − x∥ < ∥x− ∂O∥
)
> 0

in view Theorem V.2.5 in [12] with ψ(s) = x identically for all s. Lemma 6.4.2 in [65] now
gives ∂uf1/∂n ≥ 0 for all x ∈ ∂O. Combining this with (3.83) and (3.84) we deduce

∥∇ · (h∇uf1)∥L2∥h∥L2 ≥ c′(gmin,Kmin, B,O, d)∥v∥2
L2 ≳ ∥h∥2

L2 ,

which together with (3.82) yields the desired estimate.

3.5.3 Schrödinger equation

3.5.3.1 Estimates for Vf and G

In this section, for each f ∈ C(O) with f ≥ 0, let Lf denote the Schrödinger differential
operator

Lf : H2
0 (O) → L2(O), Lf [u] = ∆u− 2fu,

where H2
0 is given by (3.62). As in the divergence form case, Lf is a bijection with a linear,

continuous inverse operator which we again denote by

Vf : L2(O) → H2
0 (O), ψ 7→ Vf [ψ] .

In other words, for any f ∈ C(O) and ψ ∈ L2 the inhomogeneous equation
∆u− 2fu = ψ on O,

u = 0 on ∂O
(3.85)
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has a unique weak solution which we shall denote by ωf,ψ := Vf [ψ] ∈ H2
0 (O), see Theorem 4

in Chapter 6.3 of [65] for this standard result for elliptic PDEs.
As in the divergence form case, we first observe that for p ∈ {2,∞}, the Lp → Lp operator

norm of Vf can be upper bounded uniformly in f .

Lemma 3.5.6. There exists a constant C > 0 such that for all f ∈ C(O) with f ≥ 0 and
ψ ∈ L2(O), wf,ψ = Vf [ψ] satisfies

∥Vf [ψ] ∥L2 ≤ C∥ψ∥L2

and if ψ ∈ C(O), then also
∥Vf [ψ] ∥∞ ≤ C∥ψ∥∞.

Proof. We have the Feynman-Kac representation

wf,ψ(x) = −1
2E

x
[ ∫ τO

0
ψ(Xs)e−

∫ s

0 f(Xr)drds
]
, x ∈ O, ψ ∈ C(O),

where (Xs : s ≥ 0) is a standard d-dimensional Brownian motion started at x, with exit
time τO from O, see p.84 and Theorem 3.22 of [42] . [These results are applicable as
C(O) ⊆ J with J defined on p.62 of [42], and C(O) ⊆ F(D, q) with F(D, q) defined on
p.80 of [42].] The proof is now similar to that of Lemma 3.5.1, using f ≥ 0 and that
supx∈O Ex[τO] ≤ K(vol(O), d) < ∞ by Theorem 1.17 in [42].

Using the above lemma, we now show the following regularity estimate.

Lemma 3.5.7. There exists a constant C such that for all f ∈ C1(O) with f ≥ 0 and
ψ ∈ L2(O), we have

∥Vf [ψ] ∥H2 ≤ C(1 + ∥f∥∞)∥ψ∥L2 , (3.86)
∥Vf [ψ] ∥L2 ≤ C(1 + ∥f∥∞)∥ψ∥(H2

0 )∗ . (3.87)

Proof. By the norm equivalence (3.75) and (3.85), we have that

∥Vf [ψ] ∥H2 ≲ ∥∆Vf [ψ]∥L2 ≤ ∥LfVf [ψ] ∥L2 + ∥fVf [ψ] ∥L2

≤ ∥ψ∥L2 + ∥f∥∞∥Vf [ψ] ∥L2 ≲ (1 + ∥f∥∞)∥ψ∥L2 ,

which proves (3.73). The second estimate (3.87) now follows from the same duality argument
as in the proof of (3.74).

Next, we prove some basic boundedness properties of the forward map G : f 7→ uf .

Lemma 3.5.8. Suppose that for some g ∈ C∞(∂O), α > d/2 and Kmin ≥ 0, F̃ is as in
(3.32), and let uf be the unique solution of (3.29).
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1. There exists C > 0 (independent of g) such that for all f ∈ F̃ , we have

∥uf∥C2(O) ≤ C(1 + ∥f∥∞)∥g∥C2(O).

2. There exists C > 0 (possibly depending on g) such that for all f ∈ F̃ ,

∥uf∥Hα+2(O) ≤ C(1 + ∥f∥α/2+1
Hα ).

Proof. By (3.61), (∆, tr[·]) is a topological isomorphism between the spaces C2(O) and
C0(O) × C2(∂O), whence we deduce that for all u ∈ C2(O), we have the norm estimate

∥u∥C2(O) ≤ C
(
∥∆u∥C0(O) + ∥tr[u]∥C2(∂O)

)
.

Using this, the PDE (3.29) and the triangle inequality, we have for f ∈ F ,

∥uf∥C2(O) ≲ ∥Lfuf∥C0(O) + ∥fuf∥C0(O) + ∥tr[uf ]∥C2(∂O)

≤ ∥f∥∞∥uf∥∞ + ∥g∥C2(∂O).
(3.88)

Next, we claim that there exists a constant C > 0 such that for all f, g as in the hypotheses,
we have

∥uf∥∞ ≤ C∥g∥∞. (3.89)

Indeed, this can be seen immediately from the fact that f ≥ 0 and the Feynman-Kac
representation (see [42], Theorem 4.7)

uf (x) = 1
2E

x
[
g(XτO )e−

∫ τO
0 f(Xs)ds

]
, x ∈ O, (3.90)

where (Xs : s ≥ 0), τO are as in the proof of Lemma 3.5.6. Hence, combining (3.89) with
(3.88) yields the desired estimate

∥uf∥C2(O) ≲ ∥f∥∞∥g∥L∞(O) + ∥g∥C2(∂O) ≤ (1 + ∥f∥∞)∥g∥C2(∂O).

For the second part, we initially assume f ∈ C∞(O) so that uf ∈ C∞(O) too (see
Corollary 8.11 in [71]), and then use the topological isomorphism (∆, tr) between Hα+2(O)
and Hα(O) ×Hα+3/2(∂O), which yields

∥uf∥Hα+2(O) ≲ ∥∆uf∥Hα(O) + ∥tr[uf ]∥Hα+3/2(∂O) ≲ ∥fuf∥Hα(O) + ∥g∥Cα+2(∂O)

≲ 1 + ∥f∥Hα∥uf∥Hα ≲ 1 + ∥uf∥
α

α+2
Hα+2∥uf∥

2
α+2
L2 ∥f∥Hα .
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Dividing this by ∥uf∥
α

α+2
Hα+2 when ∥uf∥Hα+2 ≥ 1 and otherwise estimating it by 1, and using

(3.89), we have that

∥uf∥Hα+2 ≲ 1 + ∥uf∥L2∥f∥
α+2

2
Hα ≲ 1 + ∥g∥∞∥f∥

α+2
2

Hα ≲ 1 + ∥f∥
α+2

2
Hα .

The case of general f ∈ F̃ now follows from taking smooth fn > Kmin/2, fn → f in Hα,
showing that ufn is Cauchy in Hα+2 (by using (3.75), (3.64), Lemma 3.5.6), and taking limits
in the last inequality. Details are left to the reader.

3.5.3.2 Estimates for G−1

Lemma 3.5.9. Suppose that for some α > d/2,Kmin ≥ 0, gmin > 0 and g ∈ C∞(∂O) with
infx∈∂O g(x) ≥ gmin, F̃ is given by (3.32), and let uf denote the unique solution of (3.29).
Then there exist constants c1, c2 > 0 such that for all f1, f2 ∈ F̃ , we have

∥f1 − f2∥L2 ≤ c1
(
ec2∥f1∥∞ ∥uf1 − uf2∥H2

+ ∥uf2∥C2 ec2∥f1∨f2∥∞∥uf1 − uf2∥L2
)
.

Proof. Applying Jensen’s inequality to the Feynman-Kac representation (3.90), and since
supx ExτO ≤ c < ∞ (see the proof of Lemma 3.5.6) yields

inf
x∈O

uf (x) ≥ gmin inf
x∈O

e−∥f∥∞ExτO ≥ gmine
−c∥f∥∞ > 0. (3.91)

Moreover, (3.29) yields that we have f = ∆uf

2uf
on O, for all f ∈ F̃ . Thus, for any f1, f2 ∈ F̃ ,

we can estimate

∥f1−f2∥L2 = 1
2∥∆uf1

uf1

− ∆uf2

uf2

∥L2

≲
∥∥∥(∆uf1 − ∆uf2)u−1

f1

∥∥∥
L2

+
∥∥∥∆uf2

(
u−1
f1

− u−1
f2

)∥∥∥
L2

≲
(

inf
x∈O

∣∣uf1(x)
∣∣)−1 ∥uf1 − uf2∥H2 +

∥∥∆uf2

∥∥
C2

∥∥u−1
f1

− u−1
f2

∥∥
L2 .

(3.92)

Further, using the mean value theorem and (3.91), we have that∣∣∣u−1
f1

− u−1
f2

∣∣∣ ≤ max{u−2
f1
, u−2

f2
} |uf1 − uf2 | ≤ g−2

mine
2c∥f1∨f2∥∞ |uf1 − uf2 | .

Combining this with (3.92) and using (3.91) once more, we obtain that

∥f1 − f2∥L2 ≲ ec∥f1∥∞ ∥uf1 − uf2∥H2 + e2c∥f1∨f2∥∞ ∥uf1 − uf2∥L2 ,

which concludes the proof.
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3.6 Some properties of regular link functions

We define Lp-norms, 0 < p ≤ ∞, in the usual way. By obvious modifications, the following
lemma holds also for regular functions Φ : (a, b) → R with arbitrary −∞ ≤ a < b ≤ ∞ and
suitable F, J : O → (a, b), we restrict to the case (a, b) = R here.

Lemma 3.6.1. Suppose Φ : R → R is a smooth and regular function in the sense of (3.20).
1. There exists C < ∞ such that for all p ∈ [1,∞],

∀F ∈ Lp(O), ∥Φ ◦ F∥Lp ≤ C(1 + ∥F∥Lp). (3.93)

2. For each integer m ≥ 0, there exists C < ∞ such that

∀F ∈ Cm(O), ∥Φ ◦ F∥Cm ≤ C (1 + ∥F∥mCm) . (3.94)

3. For each integer m ≥ d/2, there exists C < ∞ such that for all F ∈ Hm(O), we have
Φ ◦ F ∈ Hm(O) and

∥Φ ◦ F∥Hm ≤ C(1 + ∥F∥mHm). (3.95)

4. There exists C < ∞ such that for κ ∈ {1, 2} and all F, J ∈ Cκ(O),

∥Φ ◦ F − Φ ◦ J∥(Hκ)∗ ≤ C ∥F − J∥(Hκ)∗ (1 + ∥F∥κCκ ∨ ∥J∥κCκ) . (3.96)

The rest of this section is devoted to proving Lemma 3.6.1. To prove (3.94)-(3.95), we
need Faá di Bruno’s formula (a generalization of the chain rule), which classically holds for
Cm functions, and by the chain rule for Sobolev functions (see e.g. [183], Thm. 2.1.11) also
holds for Hm functions.

Lemma 3.6.2. Let m ∈ N and suppose that F : O → R and Φ : R → R are of class Hm(O)
and Cm(R) respectively. Then for any α ∈ {1, ..., d}m, the m-th order partial derivative of
f := Φ ◦ F in direction xα1 ...xαm is given by

∂mf

∂xα1 ...∂xαm

(x) =
∑
π∈Π

Φ(|π|)(F (x))
∏
B∈π

∂|B|F∏
j∈B ∂xαj

(x), (3.97)

where π runs through the set Π of all partitions of {1, ...,m}, and the B ∈ π runs over all
‘blocks’ B of each partition π.

Proof of (3.93)-(3.94). By (3.20), there exists a constant c > 0 only depending on the values
of Φ(0) and ∥Φ′∥∞ such that for all x ∈ R, |Φ(x)| ≤ c(1 + |x|), which yields (3.93). For
(3.94), let α ∈ {1, ..., d}|α|, 1 ≤ |α| ≤ m and let π be a partition of {1, ..., |α|}. Then the
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corresponding summand on the right side of (3.97) can be estimated by∥∥∥∥∥∏
B∈π

∂|B|F∏
j∈B ∂xαj

∥∥∥∥∥
∞

≤ ∥F∥|π|
Cm ≲ (1 + ∥F∥mCm) .

By summing the above display over all such α, π and using (3.93) with p = ∞, we obtain
(3.94).

To prove (3.95), we also need the Gagliardo-Nirenberg interpolation inequality (see [138],
p.125) in the special case r = q = 2.

Lemma 3.6.3. Suppose that O ⊆ Rd is a bounded C∞ domain and that i = 1, ...,m,
a ∈ [i/m, 1] and p ∈ [1,∞) satisfy

1
p

= 1
2 + i

d
− m

d
a. (3.98)

Then for any s > 0, there exist constants C1, C2 depending only on m, d, i, a,O and s

such that for all F ∈ Hm, we have that DiF ∈ Lp, and

∥DiF∥Lp ≤ C1∥DmF∥aL2∥F∥1−a
L2 + C2∥F∥Ls .

Proof of (3.95). Let us write f = Φ ◦ F . By (3.93), we have that ∥f∥L2 ≤ C(1 + ∥F∥L2)
whence we only need to estimate ∥Dmf∥L2 . For any α ∈ {1, ..., d}m we have by (3.97) that

∣∣∣∣ ∂mf

∂xα1 ...∂xαm

(x)
∣∣∣∣2 ≲

∑
π∈Π

∣∣∣∣∣ ∏
B∈π

∂|B|F∏
j∈B ∂xαj

(x)
∣∣∣∣∣
2

Similarly to the proof of (3.94), it thus suffices to prove that for all α ∈ {1, ..., d}m and
partition π of {1, ...,m}, ∥∥∥∥∥∏

B∈π

∂|B|F∏
j∈B ∂xαj

∥∥∥∥∥
L2

≲ (1 + ∥F∥mHm). (3.99)

Fix some π for the rest of the proof. For i = 1, ...,m, define

πi := {B ∈ π | |B| = i} , pi := 2m
i
.

Then we have ∑m
i=1 i|πi| = m, and hence by Hölder’s inequality∥∥∥∥∥∏
B∈π

∂|B|F∏
j∈B ∂xαj

∥∥∥∥∥
L2

≤
∥∥∥∥∥
m∏
i=1

|DiF ||πi|
∥∥∥∥∥
L2

≤
m∏
i=1

∥∥∥|DiF ||πi|
∥∥∥
Lpi/|πi|

=
m∏
i=1

∥∥∥DiF
∥∥∥|πi|

Lpi
.

(3.100)
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Next, define
ai :=

(
i

d
+ 1

2 − i

2m

)
d

m
for i = 1, ...,m. (3.101)

To apply Lemma 3.6.3, we verify that for each i = 1, ...,m, (i, ai, pi) satisfies the conditions
of Lemma 3.6.3. By definition, (3.98) is satisfied. Moreover, as i ≤ m, it follows that

mai = i+
(
d

2 − di

2m

)
≥ i,

whence we have i
m ≤ ai. Finally, we need to verify ai ≤ 1. For this, we note that for

i = 1, ...,m, choosing m = d/2 in (3.101) yields ai = ai(m) = 1. Moreover, for m ≥ d/2, we
have

∂ai(m)
∂m

= 2di− 2mi− dm

2m3 ≤ di− dm

2m3 ≤ 0, (3.102)

so that αi ≤ 1.
Applying Lemma 3.6.3 with s = 2 to (3.100) and using that ∑m

i=1 |πi| ∈ [1,m] yields that∥∥∥∥∥∏
B∈π

∂|B|F∏
j∈B ∂xαj

∥∥∥∥∥
L2

≲
m∏
i=1

(
∥DmF∥ai

L2∥F∥1−ai

L2 + ∥F∥L2

)|πi|

≲
m∏
i=1

∥F∥|πi|
Hm ≲ 1 + ∥F∥mHm .

Proof of (3.96). 1. Let κ ∈ {1, 2} and fix F, J ∈ Cκ(O). Define the function

ω : O → R, ω(x) :=


Φ(F (x))−Φ(J(x))

F (x)−J(x) if x ∈ {F ̸= J}

Φ′(F (x)) if x ∈ {F = J}.

Then we have, using also (3.57), that

∥Φ ◦ F − Φ ◦ J∥(Hκ)∗ = sup
φ∈C∞(O), ∥φ∥Hκ ≤1

∣∣∣∣∫
O
φ(Φ ◦ F − Φ ◦ J)1{F ̸=J}

∣∣∣∣
= sup

φ∈C∞(O), ∥φ∥Hκ ≤1

∣∣∣∣∫
O

(F − J)φω
∣∣∣∣

≤ ∥F − J∥(Hκ)∗ sup
φ∈C∞(O), ∥φ∥Hκ ≤1

∥φω∥Hk

≲ ∥F − J∥(Hκ)∗ ∥ω∥Cκ .
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2. Thus it suffices to prove that ∥ω∥Cκ ≤ C(1 + ∥F∥κCκ ∨ ∥J∥κCκ) for some C > 0
independent of F and J . Writing ω = ψ ◦ ϕ, where

ϕ : O → R2, ϕ(z) = (F (z), J(z)) ,

ψ : R2 → (0,∞), ψ(x, y) =


Φ(x)−Φ(y)

x−y if x ̸= y

Φ′(x) if x = y,

we see by the multivariate chain rule that it suffices to show that ψ is κ-times continuously
differentiable with bounded derivatives, and we achieve this by showing that the partial
derivatives of ψ of order κ exist and are continuous throughout R2.

3. We will repeatedly use the following basic fact: Let h : R → R be continuous and
continuously differentiable on R \ {0}. If h′ has a continuous extension g to R with some
value g(0) = ξ, then h ∈ C1(R) with h′(0) = ξ.

4. Clearly, ψ is smooth on R2 \ {x = y}. For k ≥ 0 and x, y ∈ R, we denote the remainder
of the k-th order Taylor expansion by

Rk,x(y) := Φ(y) −
k∑
j=0

Φ(j)(x)
j! (y − x)j .

For x ̸= y, we have ψ(x, y) = R0,x(y)
y−x and also, by induction

∂k1ψ(x, y) = k!Rk,x(y)
(y − x)k+1 , k ≥ 0, (3.103)

where ∂1 denotes the partial derivative with respect to x. By the mean value form of the
remainder, we know that Rk,x(y) = Φ(k+1)(ξ)

(k+1)! (y− x)k+1 for some ξ between x and y. Thus we
can continuously extend ∂k1ψ to {x = y} by

∂k1ψ(x, x) = Φ(k+1)(x)
k + 1 .

It follows that the partial derivatives with respect to x of all orders exist and are continuous
on R2. The same holds for the partial derivatives with respect to y, by symmetry, concluding
the proof of the case κ = 1. The case κ = 2 follows by adapting the previous arguments for
mixed partial derivative ∂1∂2 and is left to the reader.

3.7 Proof of Theorem 3.2.2, Part 1

Let λ, ε > 0 be fixed throughout and let us write J = Jλ,ε. We denote by Tw = Tw,α
the weak topology on H (recall H = Hα(O) if κ < 1/2 and H = Hα

c (O) if κ ≥ 1/2), i.e.
the coarsest topology with respect to which all bounded linear functionals L : H → R are
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continuous. We also denote the subspace topology on subsets of H by Tw. On any closed
ball H(R) := {F ∈ H : ∥F∥Hα ≤ R}, this topology is metrisable by some metric d, see e.g.
Theorem 2.6.23 in [122].

Step 1: Localisation In Lemma 3.4.2, by assumption on α, we have that Ψ∗(λ,R)/R2 R→∞−−−−→
0 and so there exists δ > 0 such that for all R ≥ δ, we have that R2 ≥ c1εΨ∗(λ,R), where c1

is the constant from (3.36). Thus, applying Theorem 3.4.1, we have that the events

Aj :=
{
J has a maximizer F̂ /∈ V ∩ H(2j)

}
satisfy P(Aj)

j→∞−−−→ 0, whence choosing j ∈ N large enough ensures that

sup
F∈V∩Hα(2j)

J (F ) = sup
F∈V

J (F )

holds with probability as close to one as desired.

Step 2: Local existence via direct method By the previous step, it suffices to show
that for any j ∈ N, J almost surely has a maximizer over V ∩ H(2j). We fix some j ∈ N.
As V is weakly closed and H(2j) is weakly sequentially compact by the Banach-Alaoglu
Theorem, it follows that any sequence Fn ∈ V ∩ H(2j) has a weakly convergent subsequence
Fn → F with weak limit F ∈ V ∩ H(2j). Moreover, we claim that −J : V ∩ H(2j) → R is
lower semicontinuous with respect to Tw. To see this, we decompose −J as

−J (F ) = −2⟨Y,G (F )⟩H + ∥G (F )∥2
H + λ2∥F∥2

Hα =: I + II + III.

The term I is, almost surely under PεF0
, continuous w.r.t. Tw by Lemma 3.7.3, II is continuous

w.r.t. Tw by Lemma 3.7.2 and III is lower semicontinuous by a standard fact from functional
analysis. Thus the existence of minimisers follows from the direct method of the calculus of
variations.

The next three lemmas are needed to prove lower semicontinuity of −J .

Lemma 3.7.1. Let α > 0 and let (Fn : n ∈ N) ⊆ H, for H = Hα or Hα
c , be a sequence such

that Fn → F for Tw. Then also Fn → F in L2.

Proof. It suffices to show that for any subsequence (Fnj : j ∈ N), there exists a further
subsequence (Fnj′ : j′ ∈ N) such that Fnj′ → F in L2. By the uniform boundedness principle,
there exists R > 0 such that for all n ∈ N, ∥Fn∥Hα ≤ R. By the Rellich-Kondrashov
compactness theorem, the closed ball H(R) is pre-compact with respect to L2 topology, hence
for any subsequence (Fnj ) of (Fn), there exists a further convergent subsequence (Fnj′ ) with
limit F̃ in L2. In particular, we have Fn → F weakly in L2 and Fnj′ → F̃ in L2, so that by
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the uniqueness of weak limits, we have F̃ = F as elements in L2, and therefore F̃ = F a.e. in
O and Fn → F in L2.

Lemma 3.7.2. Let α > 0, κ, γ ∈ R+ and V0 ⊆ V be a bounded subset of H = Hα or Hα
c . If

a map G : V → H is (κ, γ, α)-regular, then it is continuous as a mapping from (V0, d) to H.

Proof. Take any Fn, F ∈ V0 such that Fn → F for Tw and note that ∥Fn∥Hα ≤ R for some
R > 0. By Lemma 3.7.1 we have ∥Fn −F∥L2 → 0 and by (3.8) and the continuous imbedding
L2 ⊆ (Hκ)∗, κ ≥ 0, we obtain

∥G (Fn) − G (F )∥H ≤ C (1 +Rγ) ∥Fn − F∥L2
n→∞−−−→ 0. (3.104)

We finally establish a continuity result for the Gaussian process Y (ε).

Lemma 3.7.3. Suppose that Y (ε) and G are as in Theorem 3.2.2. Then there exists a
version of the Gaussian white noise process W in H such that for all R > 0, the map (between
metric spaces)

Ψ : (V ∩ H(R), d) → R, F 7→ ⟨Y (ε),G (F )⟩H

is almost surely uniformly continuous.

Proof. For any δ > 0, define the modulus of continuity

Mδ := sup
F,H∈V∩H(R), d(F,H)≤δ

∣∣∣⟨Y (ε),G (F ) − G (H)⟩H
∣∣∣ ,

a random variable. Moreover, we define the set

A :=
{
ω ∈ Ω

∣∣∣Mδ
δ→0−−−→ 0

}
,

where Ω is a probability space supporting the law P of W. It is sufficient to show that
P(A) = 1, and noting that Mδ is decreasing in δ, it hence suffices to prove E [Mδ]

δ→0−−−→ 0. To
see this, similarly to the proof of Lemma 3.4.1, we apply Dudley’s theorem (see [72], Theorem
2.3.7) to the Gaussian process

(W(ψ) : ψ ∈ DR) , DR := {G (F ) | F ∈ V ∩ H(R)} .

For any δ > 0, define

Rδ := sup
F,H∈V∩H(R), d(F,H)≤δ

∥G (F ) − G (H)∥H.

By Lemma 3.7.2, we know that G is continuous as a mapping from (V ∩ H(R), d) to H.
As (V ∩ H(R), d) is a compact metric space, G is in fact uniformly continuous, so we have
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that Rδ
δ→0−−−→ 0. By the same argument as in the proof of Lemma 3.4.2 (but choosing here

m := (1 +Rγ)) we can use (3.8) to obtain

H(ρ,DR, ∥ · ∥H) ≲
(
Rm

ρ

) d
(α+κ)

, ρ > 0,

whence by Dudley’s theorem, the modulus of continuity is controlled by

E [Mδ] ≤ E
[

sup
ψ,φ∈DR, ∥ψ−φ∥H≤Rδ

|⟨W, ψ − φ⟩H|
]
≲
∫ Rδ

0

(
Rm

ρ

) d
2(α+κ)

dρ,

which converges to zero as δ → 0 since α > d/2 − κ.



Chapter 4

The nonparametric LAN expansion
for discretely observed diffusions

This chapter considers scalar reflected diffusion processes (Xt : t ≥ 0), where the unknown
drift function b is modelled nonparametrically. We show that in the low frequency sampling
case, when the sample consists of (X0, X∆, ..., Xn∆) for some fixed sampling distance ∆ > 0,
the model satisfies the local asymptotic normality (LAN) property, assuming that b satisfies
some mild regularity assumptions. This is established by using the connections of diffusion
processes to elliptic and parabolic PDEs. The key tools used are regularity estimates for
certain parabolic PDEs as well as a detailed analysis of the spectral properties of the elliptic
differential operator related to (Xt : t ≥ 0).

4.1 Introduction

Consider a scalar diffusion, described by a stochastic differential equation (SDE)

dXt = b(Xt)dt+
√

2dWt, t ≥ 0,

where (Wt : t ≥ 0) is a standard Brownian motion and b is the unknown drift function that
is to be estimated. We investigate the so-called low frequency observation scheme, where the
data consists of states

X(n) = (X0, X∆..., Xn∆) (4.1)

of one sample path of (Xt : t ≥ 0), where ∆ > 0 is the fixed time difference between
measurements. To ensure ergodicity and to limit technical difficulties, we follow [75] and [134]
and consider a version of the model where the diffusion takes values on [0, 1] with reflection
at the boundary points {0, 1}, see Section 4.2.1 for the precise definition.

The nonparametric estimation of the coefficients of a diffusion process has attracted a
great deal of attention in the past. For the low-frequency sampling scheme (4.1), Gobet,
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Hoffmann and Reiss [75] determined the minimax rate of estimation for both the drift and
diffusion coefficient and also devised a spectral estimation method which achieves this rate.
Thereafter, Nickl and Söhl [134] proved that the Bayesian posterior distribution contracts
at the minimax rate, giving a frequentist justification for the use of Bayesian methods. In
other sampling schemes, various methods have been studied, see e.g. [86] for a frequentist
approach, [76, 101, 174, 1, 133] for recent posterior consistency and contraction rate results
for Bayesian methods as well as [142, 171] for MCMC methodology for the computation of
the Bayesian posterior.

However, often one desires a more detailed understanding of the performance of both
frequentist and Bayesian methods, e.g. by establishing semi-parametric efficiency bounds
or by proving a nonparametric Bernstein-von Mises theorem (BvM), which would give a
frequentist justification for the use of Bayesian credible sets as confidence sets (see [72],
Chapter 7.3). Nonparametric BvMs have been explored in the papers [33, 34] and have
recently been proven for a number of statistical inverse problems [131, 135, 125], by Nickl
and co-authors. In a diffusion model with continuous observations (Xt : t ≤ T ), Nickl and
Ray [133] recently proved a nonparametric BvM for estimating the drift b.

To order to achieve such a detailed understanding, a key step lies in studying the local
information geometry of the parameter space, which in terms of semiparametric efficiency
theory (see e.g. [172], Chapter 25) involves finding the LAN expansion and the corresponding
(Fisher) information operator. This in turn determines the Cramér-Rao lower bound for
estimating a certain class of functionals of the parameter of interest. While in the Gaussian
white noise model with direct observations, the LAN expansion of the log-likelihood ratio
is exact and given by the Cameron-Martin theorem, in inverse problems proving the LAN
property is often not straightforward.

In a finite-dimensional (parametric) model for multidimensional diffusions which are
sampled at high frequency, where the sample consists of states

X(n) = (X0, X∆n ..., Xn∆n)

with asymptotics such that ∆n → 0 and n∆n → ∞, the LAN property was shown by Gobet
[74] by use of Malliavin calculus.

The main contribution of this paper is to prove that also with low frequency observations,
the reflected diffusion model satisfies the LAN property, under mild regularity assumptions
on the drift b. If the transition densities of the Markov chain (Xi∆ : i ∈ N) are denoted by
p∆,b, then the log-likelihood of the sample (4.1) is approximately equal to

ℓb(X(n)) ≈
n∑
i=1

log p∆,b(X(i−1)∆, Xi∆),
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from which one can see the necessity of two ingredients to show the LAN expansion (see also
[153]):

• The first is a result on the differentiability of the transition densities b 7→ p∆,b(x, y),
which guarantees that we can form the second-order Taylor expansion of the log-
likelihood in certain ‘directions’ h/

√
n with sufficiently good control over the remainder.

See Theorem 4.2.1 for the precise statement, where we importantly also obtain an
explicit form for the first derivative Ab, the ‘score operator’.

• The second main ingredient consists of two well known limit theorems, the central limit
theorem for martingale difference sequences [29] and the ergodic theorem, which ensure
the right limits for the first and second order terms in the Taylor expansion respectively.

In view of this, the main work done in this chapter lies in establishing the regularity needed
for p∆,b(x, y), see Theorem 4.2.1 below. As there is no explicit formula for p∆,b(x, y) in terms
of b, our approach relies on techniques from the theory of parabolic PDE and spectral theory.
We use a PDE perturbation argument, based on the fact that the transition densities of a
diffusion process can naturally be viewed as the fundamental solution to a related parabolic
PDE.

The main difficulty in the proofs lies in the singular behaviour of pt,b(x, y) as (t, x)
approaches (0, y), which is why standard PDE results cannot be applied directly, but only in
a regularised setting. Thus the arguments will first be carried out for any fixed regularisation
parameter δ > 0, where the analysis needs to be done carefully in order to ensure that the
estimates obtained are uniform in δ > 0 and hence still valid in the limit δ → 0.

In the context of a statistical inverse problem for the (elliptic) Schrödinger equation
[131, 115], where the above singular behaviour is not present, PDE perturbation arguments
have previously been used to linearize the log-likelihood.

We also remark that the use of more probabilistic proof techniques like in [74] would
have been conceivable, too. However, we found the PDE approach employed here to be more
naturally suited to dealing with boundary conditions, and it avoids dealing with pathwise
properties of the diffusions by working with the transitions densities directly, which are
ultimately the objects of interest for analyzing the likelihood.

Potential applications of the LAN expansion presented in Theorem 4.2.2 include the study
of semiparametric efficiency for a certain class of functionals of b which is implicitly defined
by the range of the ‘information operator’ A∗

bAb (where Ab is the score operator (4.9)), as
well as an infinite-dimensional Bernstein-von-Mises theorem similar to [125, 131, 133, 135].
However, studying the properties of A∗

bAb needed for this poses a highly non-trivial challenge
which still has to be overcome, see Section 4.2.4 for a more detailed discussion.

In Section 4.2, we state and prove the LAN expansion. Section 4.3 is devoted to proving
Theorem 4.2.1. Finally, in Section 4.4, we derive the spectral properties of the differential
operator Lb and the transition semigroup (Pt,b : t ≥ 0) needed throughout the proofs.
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4.2 Main results

4.2.1 A reflected diffusion model

We shall work with boundary reflected diffusions on the interval [0, 1], following [75, 134].
Consider the stochastic process (Xt : t ≥ 0), whose evolution is described by the stochastic
differential equation (SDE)

dXt = b(Xt)dt+
√

2dWt + dKt(X), Xt ∈ [0, 1], t ≥ 0. (4.2)

Here (Wt : t ≥ 0) is a standard Brownian motion, (Kt(X) : t ≥ 0) is a non-anticipative finite
variation process that only changes when Xt ∈ {0, 1} and

b : [0, 1] → R

is the unknown drift function. We note that K(X), which accounts for the reflecting boundary
behaviour, is part of a solution to (4.2) and is in fact given by the difference of the local
times of X at 0 and 1.

For any integer s ≥ 0, let Cs = Cs((0, 1)) and Hs = Hs((0, 1)) denote the spaces of
s-times continuously differentiable functions and s-times weakly differentiable functions with
L2-derivatives, respectively, endowed with the usual norms. We also define the subspace

C1
0 := {f ∈ C1 : f(0) = f(1) = 0}.

We assume throughout that for some B < ∞, b lies in the C1
0 -ball

Θ :=
{
f ∈ C1

0 : ∥f∥C1 := ∥f∥∞ + ∥f ′∥∞ ≤ B
}
. (4.3)

This ensures the existence of a pathwise solution (Xt : t ≥ 0) to (4.2) which can be
constructed by a reflection argument, see e.g. Section I.§23 in [70] or [134]. For some ∆ > 0,
which we assume to be fixed throughout the paper, our sample consists of measurements
X(n) = (X0, X∆..., Xn∆) of one sample path, with asymptotics n → ∞.

The process (Xt : t ≥ 0) forms an ergodic Markov process with invariant distribution µb,
whose Lebesgue density (which we also denote by µb) is identified by b via

µb(x) = e
∫ x

0 b(y)dy∫ 1
0 e
∫ u

0 b(y)dydu
, x ∈ [0, 1], (4.4)
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see e.g. Chapter 4 in [12]. Moreover, we denote the Lebesgue transition densities and the
semigroup associated to (Xt : t ≥ 0) by pt,b and Pt,b respectively:

pt,b : [0, 1]2 → R, pt,b(x, y) = Px(Xt ∈ dy), t > 0, (4.5)

Pt,bf(x) = Ex[f(Xt)] =
∫ 1

0
pt,b(x, z)f(z)dz, t > 0, f ∈ L2. (4.6)

Here, by Proposition 9 in [134], the transition densities are well-defined as well as bounded
above and below for each t > 0, so that (4.6) is well-defined, too.

Let Pb denote the law of (Xi∆ : i ≥ 0) on [0, 1]N. For ease of exposition, we assume
throughout that X0 ∼ µb under Pb, a common assumption (cf. [75, 134]) which we make
due to the uniform spectral gap over b ∈ Θ guaranteed by Lemma 4.4.1 below, which yields
exponentially fast convergence of Xt to µb. Then under any Pb, b ∈ Θ, the law of X(n) from
(4.1) on [0, 1]n+1 is absolutely continuous with respect to the n+ 1 -dimensional Lebesgue
measure, and the log-density, which also constitutes the log-likelihood (when viewed as a
function of b), is given by

log dPb(X(n)) = logµb(X0) +
n∑
i=1

log p∆,b(X(i−1)∆, Xi∆). (4.7)

We note that some of the above assumptions can be relaxed at the expense of further
technicalities in the proofs: Firstly, the assumption X0 ∼ µb could be replaced by X0 ∼ πb

(under Pb), for any measures πb with Lebesgue densities such that for all b ∈ Θ, log dπb̃(X0) −
log dπb(X0) = oPb

(1) as ∥b̃− b∥H1 → 0. Secondly, it is conceivable that the main Theorems
4.2.1 and 4.2.2 below can be generalized to all b ∈ H1 and h ∈ {f ∈ H1 : f(0) = f(1) = 0},
which we shall not pursue further here, however.

4.2.2 Differentiability of the transition densities

In order to prove the LAN property, we need to differentiate the log-likelihood (4.7) at any
drift parameter b ∈ Θ, and the following theorem shows that for any x, y ∈ [0, 1], maps
of the form b 7→ p∆,b(x, y) are infinitely differentiable in ‘directions’ h ∈ C1

0 (and in fact,
Fréchet differentiable). For b, h ∈ C1

0 , η ∈ R and x, y ∈ [0, 1], for convenience we introduce
the notation

Φb,h,x,y = Φ : R → R, Φ(η) = p∆,b+ηh(x, y).

Theorem 4.2.1. For all b, h ∈ C1
0 and x, y ∈ [0, 1], Φ = Φb,h,x,y is a smooth (in fact, real

analytic) function on R, and we have

Φ′(0) =
∫ ∆

0
P∆−s,b[h∂1ps,b(·, y)](x)ds. (4.8)
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Moreover, for each integer k ≥ 1, we have the following bound on the k-th derivative of Φ at
0:

sup
b∈Θ

sup
h∈C1

0 ,∥h∥H1 ≤1
sup

x,y∈[0,1]

∣∣∣Φ(k)(0)
∣∣∣ < ∞.

Section 4.3 is devoted to the proof of Theorem 4.2.1.
Heuristically speaking, the right hand side of (4.8) has the form of a solution to an

inhomogeneous parabolic PDE (cf. Proposition 4.3.1), and this PDE perspective will be key
in the proofs. However, one has to be careful with such an interpretation, as the singular
‘source term’ h∂1pb,t(·, y) does not fall within the scope of classical PDE theory. Therefore,
the above intuition needs to be made rigorous via a regularisation argument, see Section 4.3.

4.2.3 LAN expansion

By Lemma 4.4.4, for each b ∈ Θ, p∆,b(·, ·) is bounded above and below. Hence by Theorem
4.2.1 and the chain rule, the score operator is given by

Ab : C1
0 ([0, 1]) → L2([0, 1] × [0, 1]), Abh(x, y) = [Φb,h,x,y]′(0)

p∆,b(x, y) . (4.9)

For any f, g ∈ L2([0, 1] × [0, 1]), we also define the corresponding ‘LAN inner product’ and
‘LAN norm’ as follows:

⟨f, g⟩L2(p∆,bµb) :=
∫ 1

0

∫ 1

0
f(x, y)g(x, y)µb(x)p∆,b(x, y)dxdy,

⟨f, g⟩LAN := ⟨Abf,Abg⟩L2(p∆,bµb), ∥f∥2
LAN := ⟨f, f⟩LAN .

(4.10)

Here is our main result, the proof can be found in Section 4.2.5.

Theorem 4.2.2 (LAN expansion). For any b, h ∈ C1
0 , we have that

log
dPb+h/√

n

dPb
(X(n)) = 1√

n

n∑
i=1

Abh(X(i−1)∆, Xi∆) − 1
2∥h∥2

LAN + oPb
(1) (4.11)

as n → ∞ and
1√
n

n∑
i=1

Abh(X(i−1)∆, Xi∆) n→∞−−−→d
N(0, ∥h∥2

LAN ). (4.12)

Note that due to the nature of the non-i.i.d. Markov chain data at hand, Ab necessarily
needs to map into a function space of two variables, as the overall log-likelihood cannot be
formed as a sum of functions of single states of the chain, but only of increments of the chain.

4.2.4 Potential statistical applications of Theorem 4.2.2

The LAN expansion can be used to obtain semiparametric lower bounds for the estimation
of certain linear functionals L(b) for which there exists a Riesz representer Ψ ∈ C1

0 such
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that L(·) = ⟨Ψ, ·⟩LAN , and can potentially further be used to prove a non-parametric
Bernstein-von-Mises theorem.

To make this more precise, we define the ‘information operator’ (which generalizes the
Fisher information) by Ib := A∗

bAb : C1
0 → L2, where Ab from (4.9) is viewed as a densely

defined operator on L2 with domain C1
0 and A∗

b is the adjoint of Ab with respect to the inner
products ⟨·, ·⟩L2 and ⟨·, ·⟩L2(p∆,bµb). Then, for example, to study semiparametric Cramér-Rao
lower bounds for functionals of the form L(b) = ⟨ψ, b⟩L2 , ψ ∈ L2, one needs that there is
some Ψ ∈ C1

0 such that

∀w ∈ C1
0 : ⟨ψ,w⟩L2 = ⟨Ψ, w⟩LAN = ⟨IbΨ, w⟩L2 .

Hence one needs that ψ lies in the range R(Ib) of Ib (or at least of R(A∗
b)), see p.372-373

in [172] for a detailed discussion. Assuming the injectivity of Ib, the ‘optimal asymptotic
variance’ for estimators of L(b) is then given by

∥Ψ∥2
LAN = ⟨AbΨ, AbΨ⟩L2(p∆,bµb),

which may intuitively be understood as an ‘inverse Fisher information ⟨ψ, I−1
b ψ⟩L2 ’, in analogy

to the parametric setting.
When R(Ib) is known to contain at least a ‘nice’ subspace of functions, e.g. C∞

c , Ib can be
inverted on that subspace, and if key mapping properties of I−1

b are known, then along the lines
of [131, 135, 133, 125], one can further try to prove a nonparametric BvM. This would assert
the convergence of infinite-dimensional posterior distributions to a Gaussian limit measure G
whose covariance is given by the LAN inner product via Cov[G(ψ1), G(ψ2)] = ⟨Ψ1,Ψ2⟩LAN ,
cf. (28) in [131].

The identification of R(Ib) in the present case of diffusions sampled at low frequency, as
well as the study of mapping properties of Ib, remain challenging open problems.

4.2.5 Proof of the LAN expansion

We now give the proof of Theorem 4.2.2, assuming the validity of Theorem 4.2.1 which is
proven in Section 4.3 below. Besides Theorem 4.2.1, the other key ingredient for Theorem
4.2.2 is the following CLT for martingale difference sequences. It is due to Brown (building
on ideas of Billingsley and Lévy) and follows immediately from the special case t = 1 in
Theorem 2 of [29].

Proposition 4.2.3 (cf. [29]). Suppose (Ω,F , (Fn : n ≥ 0),P) is a filtered probability space
and let (Mn : n ∈ N) be a Fn-martingale with M0 = 0. For n ≥ 1, define the increments
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Yn := Mn −Mn−1 and let

σ2
n := E

[
Y 2
n

∣∣∣Fn−1
]
, V 2

n :=
n∑
i=1

σ2
i , s2

n := E[V 2
n ].

Suppose that V 2
n s

−2
n

n→∞−−−→ 1 in probability and that for all ϵ > 0,

1
s2
n

n∑
i=1

E
[
Y 2
i 1{|Yi| ≥ ϵsn}

]
n→∞−−−→ 0 (4.13)

in probability. Then, as n → ∞, we have

Mn/sn
d−→ N (0, 1).

Proof of Theorem 4.2.2. Fix b, h ∈ C1
0 . Due to the spectral gap of the generator Lb (see

Lemma 4.4.1), the Markov chain (Xn∆ : n ∈ N) originating from the diffusion (4.2) with
initial distribution X0 ∼ µb, is stationary and geometrically ergodic – we will use this fact
repeatedly.

For notational convenience, we write

f(η, x, y) = log p∆,b+ηh(x, y), g(η, x, y) = p∆,b+ηh(x, y).

By Theorem 4.2.1, f is smooth in η on a neighbourhood of 0, and for some C < ∞, the
second order Taylor remainder satisfies

Rf (η) := sup
x,y∈[0,1]

|f(η, x, y) − f(0, x, y) − η∂ηf(0, x, y) − η2

2 ∂
2
ηf(0, x, y)| ≤ C|η|3. (4.14)

Thus, Taylor-expanding the log-likelihood (4.7) in direction h/
√
n yields that

log
dPn

b+h/
√
n

dPnb
(X0, ..., Xn∆)

=
(

logµb+h/√
n(X0) − logµb(X0)

)
+ 1√

n

n∑
i=1

∂ηf(0, X(i−1)∆, Xi∆)

+ 1
2n

n∑
i=1

∂2
ηf(0, X(i−1)∆, Xi∆) +Dn

=: An +Bn + Cn +Dn.

(4.15)

For the remainder term Dn, we immediately see from (4.14) that |Dn| ≤ nRf (n−1/2),
whence Dn = oPb

(1) as n → ∞.
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For Cn, observe that the function ∂2
ηf(0, ·, ·) is bounded by Theorem 4.2.1, such that the

almost sure ergodic theorem yields that

Cn
n→∞−−−→ 1

2Eb[∂
2
ηf(0, X0, X∆)] a.s.,

where Eb denotes the expectation with respect to Pb. Moreover, we have

∂2
ηf(0, X0, X∆) =

∂2
ηg(0, X0, X∆)
g(0, X0, X∆) −

(
∂ηf(0, X0, X∆)

)2 =: I + II,

and by interchanging differentiation and integration (which is possible by Theorem 4.2.1), we
see that

E[I] =
∫ 1

0

∫ 1

0
∂2
ηg(0, x, y)µb(x)dxdy = 0,

and hence Eb[∂2
ηf(0, X0, X∆)] = −⟨Abh,Abh⟩L2(p∆,bµb) = −∥h∥2

LAN .

We next treat Bn. Let (Fn : n ≥ 0) denote the natural filtration of (X∆n : n ≥ 0). In
view of Proposition 4.2.3, let us write

Yn = ∂ηf(0, X(n−1)∆, Xn∆), Mn :=
√
nBn =

n∑
i=1

Yn,

σ2
n = E

[
Y 2
n

∣∣∣X(n−1)∆
]
, V 2

n =
n∑
i=1

σ2
i , s2

n = E[V 2
n ].

Then, using dominated convergence and the Markov property, we see that M0 = 0 and that
(Mn : n ≥ 0) is a martingale:

E[Yn|Fn−1] =
∫ 1

0
∂ηf(0, X(n−1)∆, y)p∆,b(X(n−1)∆, y)dy

=
∫ 1

0
∂ηg(0, X(n−1)∆, y)dy

= ∂η

∫ 1

0
p∆,b+ηh(X(n−1)∆, y)dy

∣∣∣
η=0

= 0.

Moreover, we have that σ2
n = σ̃2(X(n−1)∆) for some bounded measurable function σ̃2 : [0, 1] →

[0,∞) and by the stationarity of (Xi∆ : i ≥ 0), we have s2
n = nEb[σ̃2(X0)] = n∥h∥2

LAN , whence
the ergodic theorem yields that Pb– a.s.,

V 2
n s

−2
n = 1

n∥h∥2
LAN

n∑
i=1

σ̃2(X(n−1)∆) n→∞−−−→ ∥h∥−2
LANEb[(∂ηf(0, X0, X1))2] = 1.

Lastly, as the Yi’s are bounded random variables, the condition (4.13) is fulfilled. Hence
Proposition 4.2.3 yields that Bn →d N (0, ∥h∥2

LAN ).
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Finally, we observe that the term An in (4.15) from the invariant measure is of order
oPb

(1), as it can be bounded uniformly over b, h using (4.4):

|logµb+h/√
n(X0) − logµb(X0)| ≲ ∥µb+h/√

n − µb∥∞

≲
∥∥∥ e

∫ ·
0(b+h/√

n)(y)dy∫ 1
0 e
∫ x

0 (b+h/√
n)(y)dydx

− e
∫ ·

0 b(y)dy∫ 1
0 e
∫ x

0 b(y)dydx

∥∥∥
∞

n→∞−−−→ 0.

4.3 Local approximation of transition densities

In this section, we study the differentiability properties of pt,b(x, y) as a function of the
drift b, and the main goal is to prove Theorem 4.2.1. For technical reasons, we first prove
a regularized version of it (Lemma 4.3.5 in Section 4.3.2) and then let the regularization
parameter δ > 0 tend to 0 to obtain Theorem 4.2.1 (Section 4.3.3).

4.3.1 Preliminaries and notation

We begin by introducing some notation and important classical results.

4.3.1.1 Some function spaces

For any integer s ≥ 0, we equip the Sobolev space Hs = Hs((0, 1)) with the inner product

⟨g1, g2⟩Hs = ⟨g1, g2⟩L2 + ⟨g(s)
1 , g

(s)
2 ⟩L2 , (4.16)

where L2 is the usual space of square integrable functions with respect to Lebesgue measure.
Occasionally it will be convenient to replace the L2–inner product above by the L2(µb)–inner
product, where µb is the invariant measure of (Xt : t ≥ 0), which by (4.24) induces a norm
which is equivalent to the norm induced by (4.16).

We will also use the fractional Sobolev spaces Hs for real s ≥ 0, which are obtained
by interpolation, see [108]. For s > 1

2 , the Sobolev embedding (4.19) implies that any
function f ∈ Hs extends uniquely to a continuous function on [0, 1]. The following standard
interpolation equalities and embeddings (see [108], p.44-45) will be used throughout. For all
s1, s2 ≥ 0 and θ ∈ (0, 1), we have

∀f ∈ Hs1 ∩Hs2 : ∥f∥Hθs1+(1−θ)s2 ≤ C(θ, s1, s2)∥f∥θHs1 ∥f∥1−θ
Hs2 , (4.17)

and for each s > 1/2, we have the multiplicative inequality

∀f, g ∈ Hs : ∥fg∥Hs ≲ C(s)∥f∥Hs∥g∥Hs (4.18)
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as well as the continuous embedding

Hs ⊆ C([0, 1]), ∥f∥∞ ≤ C(s)∥f∥Hs , (4.19)

where C([0, 1]) denotes the space of continuous functions on [0, 1]. Moreover, for any s > 0,
we define the negative order Sobolev space H−s as the topological dual space of Hs, where
for any f ∈ L2, the norm can be written as

∥f∥H−s = sup
ψ∈Hs,∥ψ∥Hs ≤1

∣∣ ∫ 1

0
fψ
∣∣.

For any T > 0, any Banach space (X, ∥ · ∥) and any integer k ≥ 0, we denote by
Ck([0, T ], X) the k-times continuously differentiable functions from [0, T ] to X, equipped
with the norm

∥f∥Ck([0,T ],X) =
k∑
i=0

sup
t∈[0,T ]

∥∥ di
dti
f(t)

∥∥.
For α > 0 with α ̸∈ N, we denote the space of α-Hölder continuous functions f : [0, T ] → X

by Cα([0, T ], X) and equip it with the usual norm

∥f∥Cα([0,T ],X) = ∥f∥C⌊α⌋([0,T ],X) + sup
s,t∈[0,T ],s ̸=t

∥∥ d⌊α⌋

dt⌊α⌋ f(t) − d⌊α⌋

dt⌊α⌋ f(s)
∥∥∣∣t− s

∣∣α−⌊α⌋ .

We will frequently, without further comment, interpret functions f : [0, T ] × [0, 1] → R as
L2-valued maps f : [0, T ] → L2, f(t) = f(t, ·), and vice versa.

4.3.1.2 The differential operator Lb

For any drift function b ∈ H1, we define the differential operator

Lbf(x) := f ′′(x) + b(x)f ′(x) for f ∈ D,

D :=
{
f ∈ H2 : f ′(0) = f ′(1) = 0

}
.

It is well-known that Lb is the infinitesimal generator of the semigroup (Pt,b : t ≥ 0) defined
in (4.6), so that we get by the usual functional calculus that Pt,b = etLb for all t ≥ 0 (with the
convention e0 = Id). The fact that the domain D of Lb is equipped with Neumann boundary
conditions corresponds to the diffusion being reflected at the boundary, see [82] for a detailed
discussion. We equip D with the graph norm

∥f∥Lb
:=
(
∥Lbf∥2

L2(µb) + ∥f∥2
L2(µb)

)1/2
,
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which by Lemma 4.4.2 is equivalent to the H2-norm on D. Moreover, for h ∈ H1, we define
the first order differential operator

Lhf(x) = h(x)f ′(x), f ∈ H1. (4.20)

The operator Lb has a purely discrete spectrum Spec(Lb) ⊆ (−∞, 0] (see [54], Theorem
7.2.2). We will denote by (uj,b)j≥0 the L2(µb)-normalized orthogonal basis of L2(µb) consisting
of the eigenfunctions uj,b ∈ D of Lb, ordered such that the corresponding eigenvalues (λj,b)j≥0

are non-increasing. When there is no ambiguity, we will often simply write λj and uj . We
will use throughout the spectral decomposition

pt,b(x, y) =
∑
j≥0

eλjtuj(x)uj(y)µb(y), x, y ∈ [0, 1], t > 0, (4.21)

see e.g. p. 101 in [9], and the spectral representations

Lbf =
∑
j≥0

λj⟨f, uj⟩L2(µb)uj , f ∈ D, (4.22)

Pt,bf =
∑
j≥0

etλj ⟨f, uj⟩L2(µb)uj , f ∈ L2, t > 0. (4.23)

We also note that (4.4) immediately yields that there exist constants 0 < C < C ′ < ∞ such
that for all b ∈ Θ and all x ∈ [0, 1],

C ≤ µb(x) ≤ C ′. (4.24)

4.3.1.3 A key PDE result

For any f ∈ C([0, T ], L2) and u0 ∈ D, consider the inhomogeneous parabolic equation
d
dtu(t) = Lbu(t) + f(t) for all t ∈ [0, T ],

u(0) = u0.
(4.25)

We say that a function u : [0, T ] → L2 is a solution to (4.25) if u ∈ C1([0, T ], L2)∩C([0, T ],D)
and (4.25) holds. The next proposition regarding the existence, uniqueness and regularity
properties of solutions to (4.25) will play a key role for the proofs in the rest of Section 4.3.
To state the result, we need the following interpolation spaces D(α), 0 ≤ α ≤ 1, between L2

and D:

D(α) :=
{
f ∈ L2 : ω(t) := t−α ∥Pt,bf − f∥L2(µb) is bounded on t ∈ [0, 1]

}
,

∥f∥D(α) := ∥f∥L2(µb) + sup
t∈[0,1]

ω(t). (4.26)
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Proposition 4.3.1. Suppose 0 < α < 1, f ∈ Cα([0, T ], L2) and u0 ∈ D. Then there exists a
unique solution u to (4.25), given by the Bochner integral

u(t) = Pt,bu0 +
∫ t

0
Pt−s,bf(s)ds, t ∈ [0, T ]. (4.27)

If also f(0) + Lbu0 ∈ D(α), then we have u ∈ C1+α([0, T ], L2) ∩Cα([0, T ],D) and there exists
C < ∞ so that for all such f and u0,

∥u∥C1+α([0,T ],L2) + ∥u∥Cα([0,T ],D)

≤ C
(
∥f∥Cα([0,T ],L2) + ∥u0∥Lb

+ ∥f(0) + Lbu0∥D(α)
)
.

Proof. This is a special case of Theorem 4.3.1 (iii) in [116] with X = L2(µb) and A = Lb,
where we note that the integral formula (4.27) is given by Proposition 4.1.2 in the same
reference. We also note that D(α) coincides with the space DA(α,∞) from [116] with
equivalent norms, see Proposition 2.2.4 in [116]. It therefore suffices to verify that the general
theory for parabolic PDEs developed in [116] applies to our particular case. For that, we
need to check that (Pt,b : t ≥ 0) is an analytic semigroup of operators on L2 in the sense of
[116], p.34, which requires the following.

1. For some θ ∈ (π/2, π) and ω ∈ R, the resolvent set ρ(Lb) of Lb contains the sector
Sθ,ω ⊆ C, where Sθ,ω is defined by

Sθ,ω := {λ ∈ C : λ ̸= ω, | arg(λ− ω)| < θ}.

2. There exists some M < ∞ such that we have the resolvent estimate

∥R(λ,Lb)∥L2→L2 ≤ M |λ− ω|−1 ∀λ ∈ Sθ,ω.

As Lb has a discrete spectrum contained in the non-positive half line, both of the above
properties are easily checked with ω = 0 and any θ ∈ (π2 , π).

Definition 4.3.2 (Solution operator). In what follows, we denote by S =
(
d
dt − Lb

)−1
the

linear solution operator which maps any f ∈ Cα([0, T ], L2), 0 < α < 1, to the unique solution
u = S(f) of the parabolic problem


(
d
dt − Lb

)
u(t) = f(t), t ∈ [0, T ],

u(0) = 0.
(4.28)
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4.3.2 Approximation of regularized transition densities

The main result of this section is Lemma 4.3.5, which can be viewed as a regularized version
of Theorem 4.2.1. The main tools used to prove it are Proposition 4.3.1 as well as the spectral
analysis of Lb and Pt,b from Section 4.4.

In order to apply Proposition 4.3.1, we view the transition densities pt,b(x, y) as functions
of the two variables (t, x) ∈ [0, T ]× [0, 1] with y ∈ [0, 1] fixed, where T is an arbitrary constant
T > ∆ > 0 (with the convention that p0,b(·, y) is the point mass at y). Due to the singular
behaviour of pt,b(x, y) for (t, x) → (0, y), a regularisation argument is needed. For any δ > 0
and d ∈ C1

0 , define the δ- regularized transition densities by

uδd : [0,∞) × [0, 1] → R, uδd(t, x) := Pδ,0(pt,d(x, ·))(y),

where (Pt,0 : t ≥ 0) denotes the transition semigroup for b = 0, which corresponds to reflected
Brownian motion.

4.3.2.1 Recursive definition of approximations

We now implicitly define the ‘candidate’ local approximations to uδd as solutions to certain
parabolic PDEs. To that end, we note that using (4.6), one easily checks that for all t ≥ 0,

uδd(t) = Pt,dφδ, where φδ(x) := pδ,0(y, x). (4.29)

Hence we can give the following crucial PDE interpretation to uδd.

Lemma 4.3.3. For any d ∈ C1
0 , we have that uδd ∈ C3/2([0, T ], L2) ∩ C1/2([0, T ],D), and uδd

is the unique solution to the initial value problem( ddt − Ld)u(t) = 0 for all t ∈ [0, T ],

u(0) = φδ.
(4.30)

Proof. We check that Proposition 4.3.1 applies with α = 1/2. For this, we need that
φδ ∈ D and that Ldφδ ∈ D(1/2). Using the spectral decomposition (4.21) and the fact that
µb = Leb([0, 1]) for b = 0, we see by differentiating under the sum that φδ ∈ D. This is
possible by Lemma 4.4.1 and the dominated convergence theorem. The same argument yields
that φδ ∈ H3. Thus, we have that Ldφδ ∈ H1, which is a subset of D(1/2) by the second
part of Lemma 4.4.5.

We now recursively define the functions Rδk[h] and vδk[h], k ≥ 0. The norm estimates
in Section 4.3.2.2 justify that they are the correct remainder and approximating terms,
respectively, in the k-th order Taylor expansion of η 7→ uδb+ηh.
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Definition 4.3.4. Let b, h ∈ C1
0 and δ > 0.

1. For k = 0, we define the ‘0-th order local approximation’ of η 7→ uδb+ηh at 0, and the
remainder of this approximation, by

vδ0[h] = vδ0 := uδb , Rδ0[h] = Rδ0 := uδb+h − uδb .

2. For k ≥ 1, we recursively define the functions Rδk[h] = Rδk, v
δ
k[h] = vδk ∈ C3/2([0, T ], L2)∩

C1/2([0, T ],D) by

Rδk[h] := S
(
LhR

δ
k−1[h]

)
, vδk[h] := Rδk−1[h] −Rδk[h], (4.31)

where S is the solution operator defined in (4.28) and Lh was defined in (4.20).

We should justify why the definition (4.31) is admissible, and we do so by induction. By
Lemma 4.3.3, we have Rδ0[h] ∈ C3/2([0, T ], L2) ∩ C1/2([0, T ],D). Hence, using the definition
of Rδk[h] and Proposition 4.3.1 inductively, we obtain that for all k ≥ 1, LhRδk−1[h] ∈
C1/2([0, T ], H1) as well as LhRδk−1[h](0) = 0, so that Rδk, vδk have the stated regularity. Thus,
(4.31) is well-defined.

By definition of Lb and (4.30), we see that Rδ0[h] is the unique solution to

( d
dt

− Lb)Rδ0(t) = Lhu
δ
b+h(t) ∀t ∈ [0, T ] and Rδ0(0) = 0, (4.32)

and (4.31) yields that

uδb+h =
k∑
i=0

vδi [h] +Rδk[h] ∀b, h ∈ C1, k ≥ 0. (4.33)

The regularity estimates for Rδk[h] in the next section will justify that (4.33) is in fact the
Taylor approximation for η 7→ uδb+ηh. Before proceeding to this, we need to check that the
vδk[h] are homogeneous of degree k in h, i.e. that

∀h ∈ C1
0 ∀η ∈ R : vδk[ηh] = ηkvδk[h]. (4.34)

This is again seen by induction. For k = 0, we have that vδ0[ηh] = uδb = vδ0[h], and if (4.34)
holds for some k ≥ 0, then we have that

vδk+1[ηh] = S(Lηhvδk[ηh]) = ηk+1S(Lhvδk[h]),

where we have used that for each k ∈ N ∪ {0},

( d
dt

− Lb
)
vδk+1 = Lh(Rδk−1 −Rδk) = Lhv

δ
k.
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4.3.2.2 Regularity estimates

We now derive norm estimates for the remainders Rδk[h] from (4.31) and (4.33), using
Propsition 4.3.1 and the results from Section 4.4.

The following Lemma is the main result of Section 4.3. It can be viewed as a regularised
version of Theorem 4.2.1. Crucially, the estimate below is uniform in δ > 0 such that it can
be preserved in the limit δ → 0.

Lemma 4.3.5. For each ϵ > 0, there exists C > 0 such that for all b ∈ Θ from (4.3), h ∈ C1
0

with ∥h∥H1 ≤ 1, y ∈ [0, 1], k ∈ N ∪ {0} and δ > 0,

∥Rδk[h](∆)∥∞ ≤ Ck∥h∥k+1/2−ϵ
H1 .

The rest of this section is concerned with proving Lemma 4.3.5. In what follows, when we
write that an inequality is ‘uniform’ without further comment, or when we use the symbols
≲,≳,≃, we mean that the constants involved can be chosen uniformly over b, h, y, k and δ as
in the statement of Lemma 4.3.5.

The proof of Lemma 4.3.5 consists of two separate lemmas, which establish an L2-estimate
(4.38) and an H1-estimate (4.41) for Rδk[h](∆) respectively. Given these two estimates, Lemma
4.3.5 then immediately follows from interpolating, and taking C to be the larger of the two
constants from (4.38) and (4.41):

∥Rk[h](∆)∥∞ ≲ ∥Rk[h](∆)∥
H

1
2 +ε ≲ ∥Rk(∆)∥

1
2 −ε
L2 ∥Rk(∆)∥

1
2 +ε
H1 ≤ Ck∥h∥k+ 1

2 −ϵ
H1 .

The L2-estimate To obtain estimates which are uniform in δ > 0, we ‘regularise’ Rδk
further by integrating in time. For k ≥ 0, define

Qδk[h] : [0, T ] → L2, Qδk[h](t) :=
∫ t

0
Rδk[h](s)ds.

Here is the L2-estimate.

Lemma 4.3.6. 1. Let b, h ∈ C1
0 , δ > 0 and recall the definition (4.28) of S. Then we have

that
Qδ0[h] = S

(
Lh

∫ ·

0
uδb+h(s)ds

)
, (4.35)

and for k ≥ 1, we have that
Qδk[h] = S

(
LhQ

δ
k−1[h]

)
. (4.36)

2. For all α < 1/4, there exists C < ∞ such that for all b, h, y, k, δ as in Lemma 4.3.5,

∥Qδk[h]∥C1+α([0,T ],L2) + ∥Qδk[h]∥Cα([0,T ],D) ≤ Ck∥h∥k+1
∞ . (4.37)
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In particular, we have that

∥Rδk[h]∥Cα([0,T ],L2) ≤ Ck∥h∥k+1
∞ . (4.38)

Proof. We first show (4.35). Using Riemann sums to approximate the integrals below, the
closedness of the operators Lb and Lh as well as (4.32), we obtain that

( d
dt

− Lb
)
Qδ0 = Rδ0(t) −

∫ t

0
LbRδ0(s)ds = Rδ0(t) −Rδ0(0) −

∫ t

0
LbRδ0(s)ds

=
∫ t

0

( d
ds

− Lb
)
Rδ0(s)ds = Lh

∫ t

0
uδb+h(s)ds.

(4.39)

Moreover, we have Qδ0(0) = 0 and Qδ0 ∈ C3/2([0, T ], L2)∩C1/2([0, T ],D), so that (4.35) follows
from Proposition 4.3.1. For k ≥ 1, (4.36) is proved in the same manner.

Next, we prove (4.37) for k = 0. Let α < 1/4, δ > 0, b ∈ Θ, ∥h∥ ∈ C1
0 with ∥h∥H1 ≤ 1,

and let us write
f(t) = ∂x

( ∫ t

0
uδb+h(s)ds

)
.

In view of (4.35) and Proposition 4.3.1, and noting that hf(0) = 0, it suffices to show that
∥f∥Cα([0,T ],L2) ≤ C for some uniform constant C. For all t < t′ ∈ [0, T ], we have by the
definition of uδb+h and Fubini’s theorem that

[
f(t′) − f(t)

]
(x) =∂x

∫ t′

t

∫ 1

0
ps,b+h(x, z)φδ(z)dzds

=∂x
∫ 1

0

( ∫ t′

t
ps,b+h(x, z)ds

)
φδ(z)dz.

For convenience, let us for now write µ for µb+h and (λj , uj)j≥0 for the eigenpairs of Lb+h.
Using the spectral decomposition (4.21) with b + h in place of b and Fubini’s theorem,
integrating each summand separately yields that

[
f(t′) − f(t)

]
(x) = (t′ − t)∂x

∫ 1

0
φδ(z)µ(z)dz

+ ∂x

∫ 1

0

∑
j≥1

1
λj

(et′λj − etλj )uj(x)uj(z)φδ(z)µ(z)dz

= ∂x
∑
j≥1

1
λj

(et′λj − etλj )uj(x)⟨uj , φδ⟩L2(µ),

(4.40)

where Fubini’s theorem is applicable due to Lemma 4.4.1:

∑
j≥1

∣∣∣ 1
λj

(et′λj − etλj )uj(x)⟨uj , φδ⟩L2(µ)

∣∣∣ ≲ ∥µφδ∥L2
∑
j≥1

j−2∥uj∥∞ ≲
∑
j≥1

j−3/2+ε.
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From Lemma 4.4.3 and (4.40), it follows that

f(t′) − f(t) = ∂x
(
L−1
b+h

(
Pt′,b+h − Pt,b+h

)
φδ
)
.

Using this, (4.61), the self-adjointness of Pt,b+h with respect to ⟨·, ·⟩L2(µ) and (4.65), we obtain
that

∥f(t′) − f(t)∥L2 ≤ ∥L−1
b+h

(
Pt′,b+h − Pt,b+h

)
φδ∥H1

≲ ∥Pt,b+h(Pt′−t,b+h − Id)φδ∥H−1

≲ sup
ϕ∈H1,∥ϕ∥H1 ≤1

∣∣∣⟨(Pt′−t,b+h − Id)Pt,b+hφδ, ϕ⟩L2(µ)

∣∣∣
= sup

ϕ∈H1,∥ϕ∥H1 ≤1

∣∣∣⟨Pt,b+hφδ, Pt′−t,b+hϕ− ϕ⟩L2(µ)

∣∣∣
≲ sup

t>0
∥Pt,b+hφδ∥L1 sup

ϕ∈H1,∥ϕ∥H1 ≤1

∥∥Pt′−t,b+hϕ− ϕ
∥∥

∞

≲ sup
ϕ∈H1,∥ϕ∥H1 ≤1

∥Pt′−t,b+hϕ− ϕ∥∞

≲ (t′ − t)α.

Hence, Proposition 4.3.1 and (4.35) imply (4.37) for k = 0. Choosing C large enough and
inductively using Proposition 4.3.1 and (4.36), we also obtain (4.37) for k ≥ 1:

∥Qδk∥Cα([0,T ],D) + ∥Qδk∥C1+α([0,T ],L2) ≤ C∥LhQδk−1∥Cα([0,T ],L2)

≤ ∥h∥∞∥Qδk−1∥Cα([0,T ],D) ≤ Ck∥h∥k+1
∞ .

Finally, (4.38) follows upon differentiating (4.37) in t.

The H1 estimate The H1-estimate reads as follows.

Lemma 4.3.7. Let k ≥ 0 be an integer and ∆ > 0. Then there exists C < ∞ such that for
all b, h, y, k, δ as in Lemma 4.3.5,

∥Rδk(∆)∥H1 ≤ Ck∥h∥kH1 . (4.41)

To prove Lemma 4.3.7, we express Rδk[h] using (4.27) and decompose the integral into
times close to 0 and times bounded away from 0. The following Lemma allows us to control
the respective integrals.

Lemma 4.3.8. Let T > 0 and 0 < η < T . Then there exists C < ∞ such that for all
b, h, y, k, δ as in Lemma 4.3.5, the following estimates hold.



4.3 Local approximation of transition densities 171

1. For all T̃ ∈ [0, T ), we have

∥∥∥ ∫ T̃

0
PT−sLhR

δ
k(s)ds

∥∥∥
H1

≤ C

(T − T̃ )5/4 ∥h∥H1 sup
s∈[0,T̃ ]

∥Rδk(s)∥L2 . (4.42)

2. For all T̃ ∈ (0, T ], we have

∥∥∥ ∫ T

T̃
PT−sLhR

δ
k(s)ds

∥∥∥
H1

≤ C∥h∥∞ sup
s∈[T̃ ,T ]

∥Rδk(s)∥H1 . (4.43)

Proof. We first show (4.43). By Lemma 4.4.2, we can estimate the (−Lb)1/2-graph norm
instead of the H1 norm. Using Lemma 4.4.1, we have

∥∥∥(−Lb)1/2
∫ T

T̃
PT−sLhR

δ
k(s)ds

∥∥∥2

L2(µb)

=
∞∑
j=1

( ∫ T

T̃
|λj |

1
2 eλj(T−s)⟨uj , hRδk(s)′⟩L2(µb)ds

)2

≲
∞∑
j=1

( ∫ T

T̃
je−cj2(T−s)∥hRδk(s)′∥L2ds

)2

≲ ∥h∥2
∞ sup
s∈[T̃ ,T ]

∥Rδk(s)∥2
H1

∞∑
j=1

(
j

∫ T

T̃
e−cj2(T−s)ds

)2

≲ ∥h∥2
∞ sup
s∈[T̃ ,T ]

∥Rδk(s)∥2
H1

∞∑
j=1

1
j2 .

A similar calculation yields that

∥∥∥ ∫ T

T̃
PT−sLhR

δ
k(s)ds

∥∥∥2

L2(µb)
≲ ∥h∥2

∞ sup
s∈[T̃ ,T ]

∥Rδk(s)∥2
H1

(
T 2 +

∞∑
j=1

1
j4

)
.

Combining the last two displays completes the proof of (4.43).
Next, we prove (4.42). Using (4.66) with α = 1, the boundary condition h(0) = h(1) = 0

to integrate by parts and (4.17), we obtain

∥∥∥ ∫ T̃

0
PT−sLhR

δ
k(s)ds

∥∥∥
H1

≲
∫ T̃

0
(T − s)− 5

4

∥∥∥LhRδk(s)∥∥∥
H−1

ds

≤ (T − T̃ )− 5
4

∫ T̃

0
sup

ψ∈C∞,∥ψ∥H1 ≤1

∣∣ ∫ 1

0
(ψh)′Rδk(s)

∣∣ds
≲ (T − T̃ )− 5

4 ∥h∥H1 sup
s∈[0,T̃ ]

∥∥∥Rδk(s)∥∥∥
L2
.
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Proof of Lemma 4.3.7. The case k = 0 follows from Lemma 4.4.4. For k ≥ 1, we iteratively
apply the estimates (4.42) and (4.43). We first define the points ∆j at which we will split
the integrals involved below:

∆j := ∆1 + j/k

2 , j = 0, ..., k, and ηk := ∆
2k = ∆k − ∆k−1.

Then, using (4.31) and (4.27), we can estimate

∥Rδk(∆)∥H1 ≤
∥∥∥ ∫ ∆k−1

0
P∆−sLhR

δ
k−1(s)ds

∥∥∥
H1

+
∥∥∥ ∫ ∆

∆k−1
P∆−sLhR

δ
k−1(s)ds

∥∥∥
H1

=: I + II.

Now let C be the largest of the constants from (4.38), (4.42) and (4.43). From (4.42) with
T̃ = ∆k−1 and (4.38), we obtain

I ≤ Cη
− 5

4
k ∥h∥H1 sup

s∈[0,∆k−1]

∥∥∥Rδk−1(s)
∥∥∥
L2

≤ Ckη
− 5

4
k ∥h∥k+1

H1 .

For the second term, we apply (4.43) to obtain

II ≤ C∥h∥∞ sup
s∈[∆k−1,∆]

∥Rδk−1(s)∥H1 .

To further estimate the right hand side, we can repeat the argument for any s ∈ [∆k−1,∆]:

∥Rδk−1(s)∥H1 ≤
∥∥∥ ∫ ∆k−2

0
P∆−sLhR

δ
k−2(s)ds

∥∥∥
H1

+
∥∥∥ ∫ s

∆k−2
P∆−uLhR

δ
k−2(u)du

∥∥∥
H1

≤ Ckη
− 5

4
k ∥h∥kH1 + C∥h∥∞ sup

s∈[∆k−2,∆]
∥Rδk−2(s)∥H1 .

By iterating this argument k times, we obtain that for some larger constant C̃ independent
of k,

∥Rδk(∆)∥H1 ≤ kCk
(2k

∆
) 5

4 ∥h∥k+1
H1 + Ck∥h∥k∞ sup

s∈[∆/2,∆]
∥Rδ0(s)∥H1 ≤ C̃k∥h∥kH1 ,

where we used (4.64) in the last step. This completes the proof.

4.3.3 Proof of Theorem 4.2.1

We now prove Theorem 4.2.1 by letting δ > 0 in Lemma 4.3.5 tend to 0. Let us fix b ∈ Θ,
h ∈ C1

0 with ∥h∥H1 ≤ 1 and x, y ∈ [0, 1], and recall the notation Φ(η) := p∆,b+ηh(x, y) for
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η ∈ R. For notational convenience, for any δ > 0, η ∈ R and integer k ≥ 0, define

Φδ(η) := uδb+ηh(∆, x), aδk := vδk[h](∆, x), pδk(η) :=
k∑
i=0

aδi η
i.

Then by Lemma 4.3.5 and (4.34), there exists C < ∞ such that for all δ > 0, k ≥ 0 and
η ∈ [−1, 1], ∣∣∣Φδ(η) − pδk(η)

∣∣∣ =
∣∣∣Rδk[ηh](∆, x)

∣∣∣ ≤ ∥Rδk[ηh](∆)∥∞ ≤ Ck|η|k+1/4. (4.44)

Hence for all δ > 0, on the interval η ∈ [− 1
2C ,

1
2C ] ∩ [−1, 1], Φδ is given by the power series

Φδ(η) = ∑∞
i=0 a

δ
i η
i. We divide the rest of the proof into three steps. The first two steps imply

an analogous power series for Φ, and the third proves the integral formula (4.8).
1. Convergence of Φδ(η). Note that by the definition of uδb+ηh, we have that

∀η ∈ R :
∣∣Φδ(η) − Φ(η)

∣∣ =
∣∣Pδ,0(p∆,b+ηh(x, ·)

)
(y) − p∆,b+ηh(x, y)

∣∣.
Moreover, by (4.64) we have for any R > 0 that

sup
x∈[0,1],∥d∥H1 ≤R

∥p∆,d(x, ·)∥H1 < ∞. (4.45)

Thus, using (4.65), it follows that for any α < 1/4, there is c < ∞ such that for all
b ∈ Θ, h ∈ C1

0 with ∥h∥H1 ≤ 1 and |η| ≤ 1,

∣∣Pδ,0(p∆,b+ηh(x, ·)
)
(y) − p∆,b+ηh(x, y)

∣∣
≤ sup

x∈[0,1],∥d∥H1 ≤B+1
∥Pδ,0p∆,d(x, ·) − p∆,d(x, ·)∥∞ ≤ cδα

δ→0−−−→ 0. (4.46)

2. Convergence of aδk. Fix some η ̸= 0 and some sequence δn > 0 tending to 0 as n → ∞.
Using (4.44), it is easily seen inductively that for all k ≥ 0, the sequence (aδn

k : n ∈ N) is
bounded. Hence, by a diagonal argument there exists a subsequence (δnl

: l ∈ N) and some
sequence ak ∈ R such that for all k, aδnl

k
l→∞−−−→ ak. Defining the polynomials

pk(η) :=
k∑
i=0

aiη
i, η ∈ R, k = 0, 1, 2, ..., (4.47)

we see that (4.44) still holds with Φ and pk in place of Φδ and pδk. Hence, Φ is analytic and
Φ(η) = ∑∞

k=0 aiη
i holds for η ∈

[
− 1

2C ,
1

2C

]
∩ [−1, 1].
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3. Proof of (4.8). It remains to show the integral formula (4.8) for Φ′(0). By what
precedes, we know that the constants a0, a1 from (4.47) satisfy

∀η ∈ [−1, 1] : |Φ(η) − a0 − ηa1| ≤ C|η|5/4, Φ(0) = a0, Φ′(0) = a1 = lim
δ→0

aδ1.

Moreover, by definition of vδ1[h], we have for all δ > 0 that

aδ1 = vδ1[h](∆, x) = S(Lhuδb)(∆, x) =
∫ ∆

0

[
P∆−s,bLhu

δ
b(s)

]
(x)ds.

Therefore, (4.8) is proven if we can show that the following expression converges to 0 as
δ → 0 (recall that φδ was defined in (4.29)):

∫ ∆

0

[
P∆−s,bLhPs,bφδ

]
(x)ds−

∫ ∆

0

[
P∆−s,bLhps,b(·, y)

]
(x)ds

=
∫ ∆

0

∫ 1

0
p∆−s,b(x, z)h(z)∂z

( ∫ 1

0
ps,b(z, u)φδ(u)du− ps,b(z, y)

)
dzds

= −
∫ ∆/2

0

∫ 1

0
∂z[p∆−s,b(x, z)h(z)]

( ∫ 1

0
ps,b(z, u)φδ(u)du− ps,b(z, y)

)
dzds

+
∫ ∆

∆/2

∫ 1

0
p∆−s,b(x, z)h(z)∂z

( ∫ 1

0
ps,b(z, u)φδ(u)du− ps,b(z, y)

)
dzds

=: I + II.

Here we have integrated by parts and used that the boundary terms vanish due to h(0) =
h(1) = 0. For the term I, by arguing as in (4.45)-(4.46) (with s and z in place of ∆ and x),
we have that

∀s ∈ (0,∆/2] : sup
z∈[0,1]

∣∣∣ ∫ 1

0
ps,b(z, u)φδ(u)du− ps,b(z, y)

∣∣∣ δ→0−−−→ 0,

showing that the ds-integrand in I tends to 0 pointwise. By the heat kernel estimate (4.63)
and (4.64), we can also bound the ds-integrand uniformly in δ by

2C√
s

∥p∆−s,b(x, ·)h∥H1 ≤ 2C∥h∥H1√
s

sup
x∈[0,1],s∈[∆/2,∆]

∥ps,b(x, ·)∥H1 < ∞,

where C is the constant from (4.63). Hence, we have by the dominated convergence theorem
that |I| δ→0−−−→ 0.

For II, we argue similarly. By Lemma 4.4.4, we have that

sup
s∈[∆/2,∆],z∈[0,1]

∥∂zps,b(z, ·)∥H2 < ∞,
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whence (4.65) yields that

∣∣∣∂z( ∫ 1

0
ps,b(z, u)φδ(u)du− ps,b(z, y)

)∣∣∣
=
∣∣∣ ∫ 1

0
∂zps,b(z, u)φδ(u)du− ∂zps,b(z, y)

∣∣∣
≤
∥∥Pδ,0(∂zps,b(z, ·))− ∂zps,b(z, ·)

∥∥
∞

δ→0−−−→ 0.

Moreover, the ds-integrand is bounded by (cf. Lemma 4.4.4)

2C∥h∥∞√
∆ − s

sup
s∈[∆/2,∆],z∈[0,1]

∥ps,b(z, ·)∥H1 ,

such that by dominated convergence, we have |II| δ→0−−−→ 0.

4.4 Spectral analysis of Lb and (Pt,b : t ≥ 0)

In this section, we collect some properties of the generator Lb, the differential equation related
to Lb and the transition semigroup (Pt,b : t ≥ 0) which are needed for the proofs of Section
4.3. Although some results can be obtained using well-known, more general theory, our proofs
are based on more or less elementary arguments, using the spectral analysis of Lb in Section
4.4.1.

4.4.1 Bounds on eigenvalues and eigenfunctions of Lb

The following lemma summarizes some key properties of the eigenparis (uj , λj) of Lb. Note
that the estimate (4.49) is an improvement on the bound in Lemma 6.6 of [75], and that
(4.49) moreover coincides with the intuition from the eigenvalue equation Lbuj = λjuj that
“two derivatives of uj correspond to one order of growth in λj”.

Lemma 4.4.1. Let s ≥ 1 be an integer and B > 0.

1. Suppose b ∈ Hs ∩ C1
0 . Then for all j ≥ 0, we have uj ∈ Hs+2.

2. There exist 0 < C ′ < C < ∞ such that for all b ∈ C1
0 with ∥b∥∞ ≤ B,

∀j ≥ 0, λj ∈ [−Cj2,−C ′j2]. (4.48)

Moreover, we have u0 = 1, λ0 = 0.

3. There exists C < ∞ such that for all 0 ≤ α ≤ s+ 2,

∀j ≥ 1 : sup
b∈Hs∩C1

0 :∥b∥Hs ≤B
∥uj∥Hα ≤ C|λj |

α
2 . (4.49)
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In particular, we have ∥uj∥∞ ≲ |λj |1/4+ϵ for all ϵ > 0.

Proof. Using that uj ∈ D ⊆ H2 and (4.18), we obtain that for all j ≥ 0, u′′
j = λuj − bu′

j ∈
H1. Differentiating this equation s− 1 times and bootstrapping this argument yields that
u

(s+1)
j ∈ H1.

Next, we prove (4.48) by adapting arguments from Chapter 4 of [54]. The standard
Laplacian L0 = ∆ with domain D is a nonpositive operator, self-adjoint with respect to the
L2-inner product, with spectrum

{
−j2π2 : j = 0, 1, 2, ...

}
and associated quadratic form

Q0(f) = ⟨f ′, f ′⟩L2 for all f ∈ Dom((−L0)1/2) = H1,

where the fact that Dom((−L0)1/2) = H1 is shown in Chapter 7 of [54]. Similarly, using
(4.4) and integrating by parts using f ′(0) = f ′(1) = 0, we have that Lb, with domain D, is
self-adjoint with respect to the L2(µb)-inner product, and that for any f ∈ D, the associated
quadratic form is given by

Qb(f) = ⟨−Lbf, f⟩L2(µb) =
∫ 1

0
f ′2µbdx+

∫ 1

0
f ′fµ′

bdx−
∫ 1

0
f ′fbµbdx

= ⟨f ′, f ′⟩L2(µb).

(4.50)

For any finite-dimensional subspace L ⊆ D, define

λ(0)(L) := inf
f∈L,∥f∥L2 ≤1

−Q0(f), λ(b)(L) := inf
f∈L,∥f∥L2(µb)≤1

−Qb(f). (4.51)

Then by Theorem 4.5.3 of [54], the eigenvalues of L0 and Lb are given by

λ
(0)
j = sup

L⊆D,dimL≤j
λ(0)(L) = −j2π2, λ

(b)
j = sup

L⊆D,dimL≤j
λ(b)(L) (4.52)

respectively. This, combined with (4.50) and (4.24), yields (4.48).
We now prove (4.49). Iterating the equation Lbuj = λjuj , we have

λ2
juj = L2

buj = (u′′
j + bu′

j)′′ + b(u′′
j + bu′

j)′

= u
(4)
j + b′′u′

j + 2b′u′′
j + bu′′′

j + bu′′′
j + bb′u′

j + b2u′′
j .

Note that in each summand above, except for the first one, the sum of the orders of all
derivatives is at most 3. This generalizes to n ≥ 3, in that there exist polynomials Pn,m such
that

λnj uj = Lnb uj = u
(2n)
j +

2n−1∑
m=1

Pn,m(b, b′, ..., b(2n−2))u(m)
j , (4.53)

for which one can check the following properties by induction:

1. For all n ≥ 1 and m ≤ 2n− 1, Pn,m has degree at most n.
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2. The only summand in (4.53) with factor b(2n−2) is u′
jb

(2n−2).

For the odd order derivatives of uj , there similarly exist polynomials P̃n,m of degree at most
n such that

u
(2n+1)
j =

(
Lnb uj −

2n−1∑
m=1

Pn,m(b, b′, ..., b(2n−2))u(m)
j

)′

= λnj u
′
j −

2n∑
m=1

P̃n,m(b, b′, ..., b(2n−1))u(m)
j ,

(4.54)

where the only summand containing the factor b(2n−1) is u′
jb

(2n−1).
We now use these facts to show (4.49) by an induction argument, consisting of the base

case and two induction steps.
Base Case α ≤ 2: To show (4.49) for all α ≤ 2, it suffices to prove the case α = 2, as the

case α ∈ (0, 2) then follows from ∥uj∥L2(µb) = 1 and (4.17). We also note that the estimate
for ∥uj∥∞ then follows by the Sobolev embedding (4.19). The case α = 2 follows immediately
from (4.57) and (4.48):

∥uj∥2
H2 ≃ ∥Lbuj∥2

L2(µb) + ∥uj∥2
L2(µb) = (λ2

j + 1)∥uj∥2
L2(µb) = λ2

j + 1 ≲ λ2
j , j ≥ 1.

Induction step 2n → 2n + 1: Assume that for some integer n, (4.49) holds for all
α ≤ 2n < s + 2. Then, using (4.54), the Sobolev embedding C2n−2 ⊆ Hs (note that
s ≥ 2n− 1) and the induction hypothesis, we obtain

∥u(2n+1)
j ∥L2 ≲ |λj |n∥u′

j∥L2 + ∥b(2n−1)∥L2∥u′
j∥∞ + ∥b∥nC2n−2∥uj∥H2n ≲ |λj |n+ 1

2 .

The non-integer case α ∈ (2n, 2n+ 1) follows by interpolation.
Induction step 2n− 1 → 2n: Similarly, using (4.53), the embedding C2n−3 ⊆ Hs (note

that s ≥ 2n− 2) and the induction hypothesis, we have

∥u(2n)
j ∥L2 ≲ |λj |n + ∥b(2n−2)∥L2∥u′

j∥∞ + ∥b∥nC2n−3∥uj∥H2n−1 ≲ |λj |n,

and the non-integer case α ∈ (2n− 1, 2n) again follows by interpolation.

4.4.2 Characterisation of Sobolev norms in terms of (λj, uj)

Using Lemma 4.4.1, we now prove that the graph norms of the non-negative self-adjoint
operators (−Lb)θ, θ ∈ {0, 1

2 , 1}, on their respective domains, are equivalent to standard
Sobolev norms. Let ℓ2 = ℓ2(N ∪ {0}) denote the usual space of square-summable sequences.
For any Banach space (X, ∥ · ∥X) and linear operator T : D → X with domain D ⊆ X, we
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denote the graph norm of T by

∥x∥T := (∥x∥2
X + ∥Tx∥2

X)1/2, x ∈ D.

Lemma 4.4.2. 1. Let θ ∈ [0, 1]. Then for any f ∈ L2, we have

f ∈ Dom
(
(−Lb)θ

)
⇐⇒

∞∑
j=0

(1 + |λj |2θ)|⟨f, uj⟩L2(µb)|2 < ∞ (4.55)

and for any f ∈ Dom
(
(−Lb)θ

)
, we have

(−Lb)θf =
∞∑
j=1

(−λj)θ⟨f, uj⟩L2(µb)uj . (4.56)

2. There exists 0 < C < ∞ such that for any θ ∈ {0, 1
2 , 1} , we have

C−1∥f∥H2θ ≤ ∥f∥(−Lb)θ ≤ C∥f∥H2θ , f ∈ Dom
(
(−Lb)θ/2). (4.57)

3. There exists 0 < C < ∞ such that for all f ∈ L2,

C−1∥f∥H−1 ≤
∥∥∥(⟨f, uj⟩L2(µb)√

1 + |λj |
: j ≥ 0

)∥∥∥
ℓ2

≤ C∥f∥H−1 (4.58)

Proof. 1. We first prove (4.55) for θ = 1. Define the dense linear subspace

D :=
∞⋃
n=0

span {uj : j = 0, ..., n} ⊆ L2(µb).

Then by Lemma 1.2.2 in [54], we know that the restriction of Lb to D, which we shall denote
by LDb , is an essentially self-adjoint operator on L2(µb). Moreover, under the unitary operator

U : L2(µb) → ℓ2, f 7→
(
⟨f, uj⟩L2(µb) : j ≥ 0

)
,

LDb is unitarily equivalent to the essentially self-adjoint multiplication operator MD : (aj :
j ≥ 0) 7→ (λjaj : j ≥ 0) on ℓ2 with domain

U(D) = {a ∈ ℓ2 : aj = 0 for all j large enough}.

Thus, the unique self-adjoint extentions of both operators (cf. [54], Theorem 1.2.7), which
we denote by Lb and M , are also unitarily equivalent. Hence, for all f ∈ L2(µb),

f ∈ D ⇐⇒
∞∑
j=0

(1 + λ2
j )|⟨f, uj⟩L2(µb)|2 < ∞
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(The above condition defines the domain of the self-adjoint extension of MD, see [54],
Lemma 1.3.1), which proves (4.55) for θ = 1. To see (4.55) for θ ∈ [0, 1), we note that the
fractional power (−Lb)θ is unitarily equivalent to multiplication with

(
|λj |θ : j ≥ 0

)
, and that

f ∈ Dom
(
(−Lb)θ

)
iff

Uf ∈ Dom(M θ) =
{
f ∈ L2 :

∞∑
j=0

(1 + |λj |2θ)|⟨f, uj⟩L2(µb)|2 < ∞
}
.

2. We now show (4.57). For θ = 0, there is nothing to prove. For θ = 1/2, note that by
Theorem 7.2.1 in [54] and (4.50), we have Dom

(
(−Lb)1/2

)
= H1 and

∀f ∈ H1 : ∥f∥2
L1/2

b

= ∥f∥2
L2(µb) + ⟨L1/2

b f,L1/2
b f⟩L2(µb) = ∥f∥2

H1(µb).

The case θ = 1/2 now follows from (4.24). Finally, let θ = 1. It is clear that ∥f∥2
Lb

≲ ∥f∥2
H2 ,

so that it remains to show ∥f∥2
H2 ≲ ∥f∥2

Lb
. For this, we use Cauchy’s inequality with ϵ to

obtain that for some c1,

∥Lbf∥2
L2 = ∥f ′′∥2

L2 + 2⟨f ′′, bf ′⟩L2 + ∥bf ′∥2
L2 ≥ 1

2∥f ′′∥2
L2 − c1∥f ′∥2

L2 .

Hence, integrating by parts and using Cauchy’s inequality with ϵ again yields that for some
c2,

∥f ′′∥2
L2 ≤ 2∥Lbf∥2

L2 + 2c1∥f ′∥2
L2 ≤ 2∥Lbf∥2

L2 + 2c1∥f∥L2∥f ′′∥L2

≤ 2∥Lbf∥2
L2 + c2∥f∥2

L2 + 1
2∥f ′′∥2

L2 ,

proving that ∥f∥2
H2 ≲ ∥f∥2

Lb
.

3. For any f ∈ L2 and any test function ψ ∈ H1, let us write fj = ⟨f, uj⟩L2(µb) and
ψj = ⟨ψ, uj⟩L2(µb), j ≥ 0 respectively. Then by (4.56)-(4.57), we have

∥f∥H−1 ≃ sup
ψ∈H1,∥ψ∥H1 ≤1

∣∣∣⟨f, ψ⟩L2(µb)

∣∣∣ = sup
ψ∈H1,∥ψ∥H1 ≤1

∣∣∣ ∞∑
j=0

fjψj
∣∣∣

≃ sup
ψ∈L2,∥ψ∥L2 ≤1

∣∣∣ ∞∑
j=0

fj (1 + |λj |)−1/2 ψj
∣∣∣

≃
∥∥(fj (1 + |λj |)−1/2 : j ≥ 0

)∥∥
ℓ2
.

(4.59)
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4.4.3 Basic norm estimates for the one-dimensional Neumann problem

From the preceding Lemma, we can immediately derive some basic properties of the (elliptic)
boundary value problem

Lbu = f on (0, 1), u′(0) = u′(1) = 0 (4.60)

needed in the proof of Lemma 4.3.6. Let us denote the orthogonal complement of the first
eigenfunction u0 ≡ 1 of Lb in L2(µb) by

u⊥
0 =

{
f ∈ L2 :

∫
fdµb = 0

}
.

Lemma 4.4.3. For every f ∈ u⊥
0 , there exists a unique function u ∈ D ∩ u⊥

0 such that
Lbu = f , for which we use the notation u = L−1

b f . Moreover, for every B > 0 there exists
C < ∞ such that for all b ∈ C1

0 with ∥b∥∞ ≤ B and f ∈ u⊥
0 ,

∥u∥Hs ≤ C∥f∥Hs−2 for s ∈ {0, 1, 2}. (4.61)

Proof. It follows immediately from the domain characterisation (4.55) and the spectral
representation (4.22) that Lb is a one-to-one map from D ∩ u⊥

0 to L2 ∩ u⊥
0 , and that L−1

b is
unitarily equivalent to multiplication by (λ−1

j 1j≥1 : j ≥ 0) in the spectral domain, so that
the L2 → L2 norm of L−1

b is finite. Hence, for s = 2, the estimate (4.61) follows from (4.57):

∥∥∥L−1
b f

∥∥∥2

H2
≃
∥∥∥LbL−1

b f
∥∥∥2

L2
+ ∥L−1

b f∥2
L2 ≃ ∥f∥2

L2 .

The case s = 0 is obtained by duality. Using that L−1
b is self-adjoint on u⊥

0 and the previous
case s = 2, we have that

∥L−1
b f∥L2(µb) = sup

ϕ∈u⊥
0 ,∥ϕ∥L2 ≤1

∣∣∣ ∫ 1

0
L−1
b fϕdµb

∣∣∣ = sup
ϕ∈u⊥

0 ,∥ϕ∥L2 ≤1

∣∣∣ ∫ 1

0
fL−1

b ϕdµb
∣∣∣

≲ ∥f∥H−2 .

Finally, for s = 1, Lemma 4.4.2 implies that

∥∥∥L−1
b f

∥∥∥2

H1
≃

∞∑
j=1

(1 + |λj |)
∣∣⟨f, uj⟩L2(µb)

λj

∣∣2 ≲
∞∑
j=1

|⟨f, uj⟩L2(µb)|2

1 + |λj |
≲ ∥f∥2

H−1 .
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4.4.4 Estimates on pt,b(·, ·) and Pt,b

Using Lemmata 4.4.1 and 4.4.2, we now collect some basic (partially well-known) results about
the Lebesgue transition densities pt,b(·, ·) (Lemma 4.4.4) and the semigroup Pt,b (Lemma
4.4.5). Recall that they were defined in (4.5) and (4.6).

Lemma 4.4.4. Let s ≥ 1 be an integer, t0 > 0 and B > 0. Then we have the following.

1. There exist constants 0 < C < C ′ < ∞ such that for all t ≥ t0, b ∈ C1
0 with ∥b∥C1 ≤ B

and x, y ∈ [0, 1],
C ≤ pt,b(x, y) ≤ C ′. (4.62)

2. There exists C < ∞ such that for all t ∈ (0, 1] and b ∈ C1
0 with ∥b∥∞ ≤ B,

∥pt,b(x, y)∥∞ ≤ Ct−
1
2 , x, y ∈ [0, 1]. (4.63)

3. For each n ≤ s+ 2, m ≤ s and n′,m′ ≤ s+ 1,

sup
t≥t0

sup
y∈[0,1]

sup
b∈C1

0 ∩Hs:∥b∥Hs ≤B
∥∂nx∂my pt,b(·, y)∥L2 < ∞

sup
t≥t0

sup
x∈[0,1]

sup
b∈C1

0 ∩Hs:∥b∥Hs ≤B
∥∂n′

x ∂
m′
y pt,b(x, ·)∥L2 < ∞.

(4.64)

Proof. For a proof of (4.62), we refer to Proposition 9 in [134] and for a proof of (4.63), we
refer to Theorem 2.12 in [41]. Let us now prove the first part of (4.64); the second is obtained
analogously. Let n ≤ s+ 2, m ≤ s. Then (4.4) yields that

sup
∥b∥Hs ≤B

∥µb∥Hs+1 < ∞.

Using the multiplicative inequality (4.18), the spectral decomposition (4.21) and Lemma
4.4.1, we have

∥∂nx∂my pt,b(·, y)∥L2 ≤
∞∑
j=0

etλj ∥u(n)
j ∥L2 | (ujµb)(m) (y)|

≤
∞∑
j=0

et0λj ∥u(n)
j ∥L2∥(ujµb)(m)∥∞ ≲

∞∑
j=0

et0λj ∥uj∥Hs+2∥uj∥Hs+1∥µb∥Hs+1

≲
∞∑
j=0

e−cj2 |λj |
s+2

2 + s+1
2 ≲

∞∑
j=0

e−cj2
j2s+3 < ∞,

where Lemma 4.4.1 implies that the constants above are uniform in ∥b∥Hs ≤ B.

Finally, we collect some properties of (Pt,b : t ≥ 0).
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Lemma 4.4.5. Let B > 0. The following holds.

1. For all b ∈ C1
0 , p ∈ [1,∞] and f ∈ Lp, we have ∥Pt,bf∥Lp(µb) ≤ ∥f∥Lp(µb).

2. For every ϵ > 0, there exists C < ∞ such that for all b ∈ C1
0 with ∥b∥∞ ≤ B, f ∈ H1

and t > 0,

∥Pt,bf − f∥L2 ≤ Ct1/2∥f∥H1 and ∥Pt,bf − f∥∞ ≤ Ct1/4−ϵ∥f∥H1 . (4.65)

In particular, we have that H1 ⊆ D(1/2), with D(1/2) defined by (4.26).

3. Let s ≥ 1 be an integer. Then for all t > 0, b ∈ Hs ∩ C1
0 with ∥b∥Hs ≤ B and f ∈ L2,

we have Pt,bf ∈ Hs+2. Moreover, there exists C < ∞ such that for all such t, b, f and
all α ≤ s+ 2,

∥Pt,bf∥Hα ≤ C(1 + t−
α
2 − 3

4 )∥f∥H−1 . (4.66)

Proof. 1. For the case p = 1, we have by Fubini’s theorem that∫ 1

0

∣∣∣ ∫ 1

0
pt,b(x, z)f(z)dz

∣∣∣dµ(x) ≤
∫ 1

0

∫ 1

0
pt,b(x, z)dµ(x)|f(z)|dz =

∫ 1

0
|f(z)|dµ(z).

For the case p = ∞, we observe that for all x ∈ [0, 1]

|Pt,bf(x)| ≤ ∥f∥∞

∫
pt,b(x, z)dz = ∥f∥∞.

The case p ∈ (1,∞) follows by the Riesz-Thorin interpolation theorem.
2. To prove the first part of (4.65), let f ∈ H1 = Dom

(
(−Lb)1/2

)
. By the 1/2-Hölder

continuity of x 7→ ex on (−∞, 0] and Lemma 4.4.2, we have that for all t ≥ 0,

∥Pt,bf − f∥2
L2(µb) =

∞∑
j=1

(
eλjt − 1

)2
|⟨f, uj⟩L2(µb)|2

≲ t
∞∑
j=1

|λj ||⟨f, uj⟩L2(µb)|2 ≲ t∥f∥2
H1 .

The second estimate in (4.65) now follows from the H1 → H1 boundedness of Pt,b, the
embedding (4.19), the interpolation inequality (4.17) and the first part of (4.65). Indeed, we
have for any ε > 0 that

∥Pt,bf − f∥∞ ≲ ∥Pt,bf − f∥(1−4ε)/2
L2 ∥Pt,bf − f∥(1+4ε)/2

H1 ≲ t1/4−ε∥f∥H1 .
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3. By Lemma 4.4.1, we have that uj ∈ Hs+2 for all j ≥ 0. Using the spectral representation
(4.23), Lemma 4.4.1, Lemma 4.4.2 and Cauchy-Schwarz, we have

∥Pt,bf∥Hα ≲
∞∑
j=0

eλjt∥uj∥Hα(1 + |λj |)1/2 ⟨f, uj⟩L2(µb)

(1 + |λj |)1/2

≲
( ∞∑
j=0

e2λjt(1 + |λj |)α+1
)1/2

∥f∥H−1

≲
(
1 +

∫ ∞

0
e−2cx2tx2(α+1)dx

)1/2
∥f∥H−1

≲
(
1 + t−α−1− 1

2
)1/2

∥f∥H−1

≲
(
1 + t−

α
2 − 3

4
)
∥f∥H−1 .
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