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It is known that the pitchfork bifurcation of Kelvin-Helmholtz instability occurring at10

minimum gradient Richardson number Rim ' 1/4 in viscous stratified shear flows can11

be subcritical or supercritical depending on the value of the Prandtl number, Pr. Here12

we study stratified shear flow restricted to two dimensions at finite Reynolds number,13

continuously forced to have a constant background density gradient and a hyperbolic14

tangent shear profile, corresponding to the ‘Drazin model’ base flow. Bifurcation diagrams15

are produced for fluids with Pr = 0.7 (typical for air), 3 and 7 (typical for water).16

For Pr = 3 and 7, steady billow-like solutions are found to exist for strongly stable17

stratification of Rim beyond 1/2. Interestingly, these solutions are not a direct product18

of a Kelvin-Helmholtz instability, having half the wavelength of the linear instability,19

and arising through a superharmonic bifurcation. These short-wavelength states can be20

tracked down to at least Pr ≈ 2.3 and act as instigators of complex dynamics, even21

in strongly stratified flows. Direct numerical simulations of forced and unforced two-22

dimensional flows are performed, which support the results of the bifurcation analyses.23

Perturbations are observed to grow approximately exponentially from random initial24

conditions where no modal instability is predicted by a linear stability analysis.25

1. Introduction26

Kelvin-Helmholtz instability (KHI) is believed to be important in geophysical flows27

found in both the oceans (Smyth & Moum 2012) and atmosphere (Fukao et al. 2011; Sun28

et al. 2015). Of particular importance is the generation of abyssal oceanic turbulence29

by the break down of shear instabilities, which is an area of significant uncertainty in30

climate modelling (Gregg et al. 2018). Direct observations in the atmosphere, such as31

of sheared clouds, are relatively straightforward to perform, whereas only a few studies32

have observed Kelvin-Helmholtz billows in the abyssal ocean (Van Haren & Gostiaux33

2010). Amongst other parameters, the Prandtl number Pr := ν/κ (the ratio of kinematic34

viscosity ν to thermal diffusivity κ) involved in these two settings is different, making it35

important to understand any resulting differences in the dynamics. In the atmosphere,36

Pr ' 0.7 whereas in the ocean Pr ' 7 and when the diffusion of salt is important37

(described by a diffusivity κs), the equivalent Schmidt number Sc := ν/κs ' 700 (Thorpe38

2005).39
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Several simple models of stratified mixing layers have been proposed which exhibit40

KHI. The two most commonly used, the Drazin (1958) and Holmboe (1960) models,41

are both found to be linearly stable in the inviscid case when the minimum gradient42

Richardson number Rim (as defined below) is greater than one quarter. This observation43

led to the celebrated Miles-Howard theorem (Miles 1961; Howard 1961), which shows44

that inviscid flows are always linearly stable when the gradient Richardson number is45

everywhere greater than one quarter. A longstanding challenge has been to determine46

whether significant nonlinear dynamics are also precluded for Rim > 1/4.47

With viscosity, the Prandtl number enters the problem and there is a body of evidence48

suggesting this parameter has a significant impact on the behaviour of KHI (Klaassen49

& Peltier 1985a; Salehipour et al. 2015; Rahmani et al. 2016) and stratified turbulence50

generally (Brucker & Sarkar 2007). In particular, it has been shown that the bifurcation51

of KHI near (minimum gradient) Richardson number 1/4 is subcritical when Pr > 152

and supercritical when Pr < 1 (Brown et al. 1981; Churilov & Shukhman 1987; Lott53

& Teitelbaum 1992; Mkhinini et al. 2013). (In this paper we use the dynamical systems54

convention that ‘subcritical’ refers to the stable region Rim > Ric and ‘supercritical’ to55

the unstable region Rim < Ric.) Despite this, most simulations studying the nonlinear56

behaviour of KHI have concentrated on the degenerate value Pr = 1 (Klaassen & Peltier57

1985b; Caulfield & Peltier 2000; Mashayek & Peltier 2011; Kaminski et al. 2017), which58

allows a coarser computational grid to be used compared with higher Pr.59

Although the effect of Pr on the sub/supercriticality of the bifurcation is well docu-60

mented, this gives only a weakly nonlinear understanding beyond classical linear stability61

analyses, and cannot predict the full nonlinear effects. It could be the case that full turbu-62

lence is possible through subcritical transition for flows with high minimum Richardson63

numbers, substantially above 1/4, where turbulence is usually assumed to be suppressed64

(Thorpe 2005), or it could be that nontrivial, nonlinear states do not exist in flows with65

Rim significantly larger than 1/4, and that the behaviour is simple and transient, as66

was found for Pr = 1 (Parker et al. 2019). Below, we argue for the former scenario67

by presenting direct evidence that 2-dimensional finite-amplitude billow-like states exist68

for Rim & 0.4 - i.e. substantially above 1/4 - for Pr & 2.3 and indirect evidence that69

this situation continues below this threshold. Importantly, this implies that complicated70

temporal dynamics are possible for flows generally considered inert due to a lack of a71

Kelvin-Helmholtz linear instability.72

To establish this key result, the paper proceeds as follows. In §2, the equations of73

our forced model and numerical methods are briefly presented while in §3, bifurcation74

diagrams of the forced two-dimensional flow are given for Pr ∈ {0.7, 3, 7}, and the75

differences and continuous change between these two values is discussed. Finally, §476

compares the time evolution of the forced and the equivalent unforced systems by77

performing a 2D direct numerical simulation (DNS) of the flow at various Richardson78

numbers, before concluding remarks are made in §5.79

2. Methods80

We study the Boussinesq equations for velocity u and buoyancy b:

∂u

∂t
+ u · ∇u = −∇p+Ribbez +

1

Re
∇2u, (2.1a)

∂b

∂t
+ u · ∇b =

1

RePr
∇2b, (2.1b)

∇ · u = 0. (2.1c)
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The non-dimensional parameters are the Reynolds number Re, quantifying the relative81

importance of inertia to viscosity, the Prandtl number Pr, quantifying the relative82

importance of diffusion of buoyancy to viscosity, and the bulk Richardson number83

Rib, quantifying the relative importance of buoyancy to shear. With a gravitational84

acceleration g, shear layer depth 2d∗, velocity difference 2U∗, reference density ρ∗,85

reference density gradient ∆ρ∗/d∗, and diffusivities ν and κ for momentum and density86

respectively, these are calculated as87

Re := U∗d∗/ν, Pr := ν/κ and Rib :=
g ∆ρ∗d∗

ρ∗U∗2
. (2.2)

In this paper we consider the evolution of perturbations away from the flow u =88

tanh z ex, b = z. This is the so-called ‘Drazin model’ of a mixing layer, for which weakly-89

nonlinear analyses have been performed (Churilov & Shukhman 1987). Unlike the perhaps90

more commonly considered ‘Holmboe model’ with b = tanh z, the Drazin model does not91

exhibit the viscous Holmboe instability discussed in Parker et al. (2020), which would92

complicate our picture. Using the Drazin model, the gradient Richardson number of the93

flow Rig is bounded below by Rib, since94

Rig(z) := Rib
db/dz

(du/dz)
2 > Rim = Rib = Rig(0). (2.3)

Therefore, for this flow, the dynamically significant minimum gradient Richardson num-95

ber Rim corresponds to the bulk Richardson number Rib which appears as a coupling96

parameter in the governing equations. Furthermore, the Miles-Howard theorem thus97

implies linear stability for Rib > 1/4 at infinite Re.98

For finite Re, these choices of velocity and buoyancy profiles are not steady solutions of99

(2.1), but will diffuse away on an O(Re) timescale. Nevertheless, the background profiles100

can be considered steady for perturbation dynamics over a shorter timescale. Therefore,101

when finding bifurcation diagrams (which require a non-decaying base state from which102

finite amplitude states can bifurcate), we study solutions of the related forced equations103

∂u

∂t
+ u · ∇u + tanh z

∂u

∂x
+ wsech2z = −∇p+Ribbez +

1

Re
∇2u, (2.4a)

∂b

∂t
+ u · ∇b+ tanh z

∂b

∂x
+ w =

1

RePr
∇2b, (2.4b)

∇ · u = 0, (2.4c)

where now u, b and p represent the (possibly large) disturbances away from the104

background flow. Throughout, we take Re = 1000 which is relatively low compared with105

most modern direct numerical simulations, (see for example Salehipour et al. (2015)) but106

the high Pr combined with the computational intensity of the state tracking means that107

higher Re are not at present feasible. This limitation is discussed in §5.108

The equations are solved on a two-dimensional domain periodic in the x direction with109

length Lx. Stress-free boundary conditions are imposed at z = ±Lz. Both the solution of110

these equations and the finding and tracking of states and bifurcations largely uses the111

procedures presented in Parker et al. (2019). The key difference is that the non-uniform112

vertical grid has been modified to give a broader region of high resolution in the centre113

of the domain, in that we now use grid points located at114

zn =
Lz
3

[
2

(
2n−Nz − 1

Nz − 1

)7

+

(
2n−Nz − 1

Nz − 1

)]
.
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Figure 1: Linear stability diagrams of the flow at Re = 1000 for (a) Pr = 0.7 (b)
Pr = 7, given as contours of the growth rate σ plotted against the wavenumber k and
Rib, where the fastest growing mode of the form eik(x−ct)+σtû(z) has been found. The
vertical line marks the wavenumber corresponding to a mode-1 disturbance in our domain
of length 2

√
2π. Note that mode-n, n > 2, are all stable for all Rib. The dashed line shows

the stability boundary calculated by Drazin (1958) for Re → ∞. Here, as with all the
nonlinear calculations, the domain half-height is Lz = 10.

States are converged using Newton-GMRES, then followed as parameters vary using115

pseudo-arclength continuation. The bifurcation analysis of §3 uses a grid with Nx =116

64 horizontal grid points and Nz = 512 vertical grid points, which was shown to be117

sufficiently accurate by reconverging some of the points at Nx = 256, Nz = 768. For the118

direct numerical simulations of §4, for which much more complex spatial structures are119

possible, Nx = 256 and Nz = 768 is used.120

For a state X = (u, b), we define the (energy-like) norm121

‖X‖ :=

√
1

Lx

∫ Lz

−Lz

dz

∫ Lx

0

dx (|u|2 +Ribb2). (2.5)

We also define a second function m(X) of a given state, a measure of the component of122

the vertical velocity in the first Fourier mode123

m(X) :=
1

Lx

∫ Lz

−Lz

dz

∫ Lx

0

dx uz sin
2πx

Lx
. (2.6)

3. Bifurcation diagrams124

Figure 1 shows the linear stability, calculated using a code from Smyth & Carpenter125

(2019), of the flows considered. The shape of the stability boundary is very close to the126

inviscid analytical result Rib = k2(1− k2) (Drazin 1958), which is overlaid. One curious127

difference is the presence of bands of instability at low wavenumbers. These have nonzero128

phase speed, and are similar to the ‘Holmboe instability’ mentioned in passing by Smyth129

& Peltier (1989) for a linear stratification and piecewise linear shear. The exact structure130

of these unstable bands is highly sensitive to the domain height, and they are believed to131

be caused by a resonance between discretised internal waves and the shear. This diagram132
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varies little as Pr is changed. However, as we demonstrate below, the nonlinear behaviour133

is strongly affected by Pr.134

Henceforth we concentrate on the case of a domain of fixed streamwise length Lx =135

2
√

2π. This is the wavelength of the marginally unstable mode at Rib = 1/4 in the136

inviscid, unbounded case, which is little modified in our viscous domain of finite height.137

The associated wavenumber k1 := 1/
√

2 is marked on figure 1 as a vertical line. For138

0.7 6 Pr 6 7 the critical Richardson number Ric is close to, but slightly less than 1/4139

due to viscous effects: Ric ≈ 0.246 for Pr = 0.7 and Ric ≈ 0.248 for Pr = 7. Note that for140

this choice of domain size, only mode-1 disturbances (i.e. those which have one wavelength141

in the domain) are linearly unstable, as any mode with k > 2k1 (and therefore any mode142

with two or more wavelengths in the domain) is linearly stable. A domain height of143

Lz = 10 was chosen, as this was assumed to be sufficiently large compared with Lx that144

the behaviour at large Rib is not significantly altered, while still being computationally145

efficient. At low Rib, this choice of Lz becomes significant, as discussed a little later.146

Figure 2 shows the primary branch of steady KH states at Pr = 0.7 which bifurcates147

from the background flow at Rib ≈ 0.246, in agreement with the linear stability analysis of148

figure 1a. The branch was found to be stable at Rib = 0.24, and a state was converged here149

using a simple timestepper. The rest of the branch was traced out using pseudo-arclength150

continuation. The pitchfork bifurcation is clearly supercritical, in agreement with weakly-151

nonlinear theory. Figure 2 also shows the bifurcation curve at Pr = 1 described in Parker152

et al. (2019). This is close to the degenerate case between super- and sub-criticality; it153

can just be made out that this case is very slightly subcritical.154

Figure 3 shows the much more complicated situation at Pr = 7. The pitchfork155

bifurcation P0 at Rib ≈ 0.247 of the background flow is subcritical, in agreement with156

weakly nonlinear theory. The state which arises is therefore unstable, and was converged157

by a conventional edge-tracking procedure (e.g. Schneider et al. 2007). Edge-tracking was158

performed at Rib = 0.26, applying interval bisection with initial conditions of the upper159

branch state with wavenumber k = k1 (see below), scaled to have lower amplitudes. At160

P1, two symmetric branches of wavenumber k1, which differ in phase by π/2, collide to161

give a state with wavenumber k2 := 2k1. The saddle-node bifurcations S1, S2 and S3162

indicate the location of this mode-2 branch.163

Separately to this, a stable upper branch state from Pr = 3 (where the system gives164

a simpler subcritical bifurcation, see below) was continued up in Pr to give rise to the165

mode-1 states of wavenumber k1 which join at the pitchfork P2. At this value of Pr,166

none of this branch is stable. In fact, numerous other pitchfork and Hopf bifurcations,167

the precise locations of which were not determined, were found to exist on all branches,168

so that only a small section of the k2 branch is stable. These secondary bifurcations give169

rise to the complex and apparently chaotic behaviour of the system discussed in §4. A170

systematic stability analysis of all the states in the figures was not performed, but none171

of a sample of states at Pr = 7 was found to be stable using a simple Arnoldi algorithm172

(see Parker et al. 2019).173

As the states in figures 2 and 3 are traced to lower Rib and their amplitude and174

therefore physical extent becomes sufficiently large, the states begin to ‘feel’ the effects175

of the boundaries at z = ±Lz = ±10. At this point, the structure changes dramatically,176

with the branches folding back to higher Rib, and the results are no longer physically177

relevant to unbounded flows. We have therefore chosen to exclude these sections from the178

diagrams. In an unbounded or sufficiently tall domain, the unstable states presumably179

continue past Rib = 0, as the unstratified Kelvin-Helmholtz instability saturates as a180

finite amplitude ‘billow’, although whether this also occurs for the k2 branch is unclear.181

Figure 4 depicts three low amplitude states on the branch between the pitchfork182
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Figure 2: Bifurcation diagram for the Drazin model with a domain width of 2
√

2π, with
Re = 1000 and Pr = 0.7 (blue) and Pr = 1 (pink). The line represents a steady state
solution with magnitude shown on the vertical axis. The crosses mark points reconverged
at a higher resolution.

bifurcations P0 and P1. Figure 4a is relatively close to the primary pitchfork P0, and shows183

a clear mode-1 structure of wavenumber k1, in agreement with the unstable eigenmode of184

the background flow, which the structure closely resembles. Figure 4b is further along the185

branch and there is now a noticeable mode-2 signal, manifesting as a structure emerging186

between the two ‘billows’. The amplitude has also increased. There is a natural transition187

therefore between the eigenmode and the pure mode-2 structure at P1, as shown in figure188

4c. A similar transition, at significantly higher amplitude, with structures much more189

closely resembling classic KH billows, is observed on the upper branch, as Rib increases190

towards P2 (figure 5).191

Figure 6 shows the mode-2 structures, i.e. those with wavenumber k2, at the three192

saddle-node bifurcation points. They are all qualitatively different. S1 and S3, in figures193

6a and 6c respectively, are both highly reminiscent of classical KH billows, with a clear194

elliptical vortex. At S1 the billows are significantly separated spatially, but at S3 they195

are much more closely backed, but still with a distinctive ‘braid’ region connecting them.196

At S2, a low amplitude state intermediate between S1 and S3, the structure is different197

again, and much less familiar.198

The bifurcation points labelled in figure 3 can themselves be converged using a Newton-199

GMRES method, and tracked as Pr is varied, in a way identical to the tracking of200

bifurcation points as Re varies in Parker et al. (2019). The basic (mode-1) saddle-node201

bifurcation found in that paper, which we call S0, was continued to larger values of Pr202

just as those of figure 3 were continued to smaller values of Pr. The primary pitchfork203

P0, which exists for Pr < 1 too, can be found using this method or from linear stability204

analysis of the background flow. The results are shown in figure 7. S1 and S3 were found205

to be difficult to converge and continue, due to the presence of several marginally stable206

eigenvalues nearby, but were located directly at Pr = 7 and Pr = 3. S0 could not be207

continued beyond Pr = 3.8, and there is no obvious bifurcation point which corresponds208

to S0 in figure 3. P1, P2 and S2 all stopped converging below Pr = 2.3 and they appear209

to collide and disappear.210

To clarify the situation, the intermediate value Pr = 3 was studied in detail (figure 8).211

The main (mode-1) branch, with k = k1 and which connects to the fundamental pitchfork212

P0, is a simple subcritical curve, extending up to Rib ≈ 0.3. Completely disconnected213

from this, extending to higher Rib, is a mode-2 loop (with k = k2), which is a continuation214
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Figure 3: Top: As for figure 2, but with Pr = 7. Bottom: the same data, showing the
contribution of the first Fourier mode in the streamwise direction to the states. The blue
lines shows states with wavenumber k1 := 1/

√
2, in agreement with the linear instability

of the background flow. The red lines shows states with wavenumber k2 := 2k1, which
arise at the pitchfork bifurcation P1. The crosses mark points reconverged at a higher
resolution.

(a) (b) (c)

Figure 4: Vorticity fields of the steady perturbation states at Pr = 7 on the mode-1
branch connecting P0 and P1. (a) Rib ≈ 0.3, (b) Rib ≈ 0.4, (c) at P1, Rib ≈ 0.41. Here,
and in all other such figures, two domain widths have been plotted to show the periodic
structure.



8 J. P. Parker, C. P. Caulfield and R. R. Kerswell

(a) (b) (c)

Figure 5: Vorticity fields on the upper mode-1 (k = k1) branch at Pr = 7. (a) Rib ≈ 0.34,
(b) Rib ≈ 0.38, (c) at P2, Rib ≈ 0.39.

(a) (b) (c)

Figure 6: Vorticity fields of the mode-2 (k = k2) steady states at Pr = 7 at the saddle-
node bifurcations (a) S1, (b) S2, (c) S3.

of the similar curve shown in figure 3. There is also a mode-1 branch (k = k1) connected215

to this, which links P1 and P2. Between Pr = 3 and Pr = 7, this mode-1 branch216

collides with the fundamental mode-1 branch to give the situation in figure 3. Below217

Pr = 3, it appears that this disconnected curve closes at Pr ≈ 2.3, though the picture218

is incomplete, since the behaviour of the states at high amplitude is unknown. The most219

natural explanation would be that the k2 branch is a closed loop, but no evidence of220

this has been found up to amplitudes for which the finite vertical domain size becomes221

important and obscures the results.222

4. Direct numerical simulations223

As mentioned in §2, the equations (2.4) are an approximation for large but finite Re,224

which ignores the fact that the background profiles diffuse. This is not a problem for225

rapidly changing perturbations to the background flow, but many of the connections226

between the steady states found in §3 appear to be very slow dynamically. In particular,227

although the KHI grows rapidly from small disturbances to the background, it took228

exceptionally long time integrations, of non-dimensional times an order of magnitude229

larger than Re, before the billow states were steady enough for the Newton iteration to230

converge on the stable states. For this reason, it is unwise to draw conclusions about the231

unforced system directly from the results of §3. The steady states of the forced system232

do not correspond to steady states in the unforced system, and a bifurcation analysis in233

the same way is not possible. Therefore, we explore the behaviour of the unforced system234

(2.1) using (two-dimensional) direct numerical simulation.235

Direct numerical simulations started from randomly perturbed states may follow236

chaotic trajectories and visit states much more spatially complex than the simple steady237

states discussed in §3. Therefore, a much higher resolution is required to avoid ‘ringing’238
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Figure 7: Tracking of the various bifurcation points shown in figures 2 and 3 as Pr varies.
S1 and S3 were not tracked, but their locations at Pr = 3 and Pr = 7 have been marked
and interpolated with dashed lines.

artifacts and be confident that the equations are being solved accurately. It was found to239

be sufficient to use 256 horizontal modes and 768 grid points vertically. All the simulations240

are performed at Re = 1000, with a domain half-height Lz = 10, in agreement with the241

calculations of the previous section.242

4.1. DNS of exact states243

We directly compare DNS of states found in §3, with and without the background244

forcing and an additional perturbation. Our aim is to determine how much the forcing245

affects the dynamics, rather than a complete characterisation of the dynamics without246

forcing. Therefore, we concentrate on one choice of parameters, for which we have a247

number of interesting exact states, Pr = 7 and Rib = 0.3. We initialise the flows with248

the k = k1 and k = k2 states at Rib = 0.3 which both have ‖X‖ ≈ 0.75. To these we add249

a random perturbation of energy 1
2‖X‖2 = 0.001.250

The results are shown in figures 9-12, as well as the supplemental movies. As expected,251

the forced, unperturbed simulations (figures 9c-12c) show perfectly steady states. With-252

out the artificial forcing (figures 9a-12a), the states gradually decay, with only slow253

changes in form. This suggests that the dynamics of the forced system are, in some254
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Figure 8: As for figure 3, but with Pr = 3.

sense, orthogonal to the diffusion of the background flow. When a perturbation is added255

to the k2 state, chaotic behaviour develops in both the unforced (figures 11b and 12b)256

and forced (figures 11d and 12d) cases. This takes the form of a k1 billow, though of a257

significantly higher amplitude that the k1 steady state. This is an example of a ‘billow258

pairing’ subharmonic instability (Winant & Browand 1974; Klaassen & Peltier 1989).259

In the perturbed simulations of the k1 steady state, there is no such energetic activity,260

suggesting that the state is fairly stable. A linear stability analysis shows that it is in fact261

weakly unstable, perhaps explaining why, in the unforced case, a k2 billow is beginning262

to develop at the end of the t = 100 time window. Overall, good agreement between263

the forced and unforced cases is observed, and the differences can be attributed to the264

obvious decay of energy, as well as the random nature of the perturbations.265

4.2. DNS of random initial conditions266

In the previous subsection, the initial conditions in the unforced simulations were billow267

structures, so it is no surprise that billows are observed later in the simulations. However,268

from those results, it is not clear that KH billows can develop ‘naturally’ (i.e. from random269

perturbations of sufficient amplitude) in the subcritical regions of parameter space, in270

what might be called a nonlinear KH instability. Therefore, here we additionally perform271

DNS using completely random, large-amplitude perturbations to the one-dimensional272

background flow.273
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(a) Unforced,
unperturbed.

(b) Unforced,
perturbed.

(c) Forced,
unperturbed.

(d) Forced,
perturbed.

Figure 9: Total vorticity field of simulations at time t = 20 for the k1 exact state at
Pr = 7, Ri = 0.3.

(a) Unforced,
unperturbed.

(b) Unforced,
perturbed.

(c) Forced,
unperturbed.

(d) Forced,
perturbed.

Figure 10: Vorticity at t = 100 for the k1 exact state at Pr = 7, Ri = 0.3.

(a) Unforced,
unperturbed.

(b) Unforced,
perturbed.

(c) Forced,
unperturbed.

(d) Forced,
perturbed.

Figure 11: Vorticity at t = 20 for the k2 exact state at Pr = 7, Ri = 0.3.

(a) Unforced,
unperturbed.

(b) Unforced,
perturbed.

(c) Forced,
unperturbed.

(d) Forced,
perturbed.

Figure 12: Vorticity at t = 100 for the k2 exact state at Pr = 7, Ri = 0.3.

Eight different simulations were performed. We study the cases of Pr = 0.7 and274

Pr = 7, modelling air and water; Rib = 0.1 and Rib = 0.3 for the supercritical275

and subcritical regions; and initial disturbance wavenumbers k1, for which the linear276

instability is approximately maximised, and k2, for which no linear instability is predicted277

but for which we found nonlinear steady states. The simulations of equations (2.1) are278

started from the Drazin model plus a random perturbation,279

u = tanh z ex + u′, b = z + b′, (4.1)

where the perturbation X = (u′, b′) has components only in the first 42 Fourier modes280
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horizontally (with even-numbered modes only for k2) and first four Hermite polynomials281

vertically, as in Parker et al. (2020). This perturbation is entirely random, and does not282

correspond to the modes found by bifurcation analysis, except insofar as the streamwise283

wavelength of the disturbances are the same, as they are required to be by the periodic284

boundary conditions imposed on all domains considered here. The initial perturbations285

are scaled to have amplitude ‖X‖ = 0.3, a relatively large disturbance, which is signifi-286

cantly greater than that of the lowest branch of states in figure 3, and therefore should287

be sufficient to push the dynamical system out of the basin of attraction of the laminar288

background flow. Due to the random nature of the initial conditions, it is possible that289

no instability is detected even when the parameters are favourable. The results presented290

here represent a single realisation of the random initial conditions, and since reasonable291

agreement was found with our bifurcation results, no attempt has been made to more292

systematically sample the possible results.293

The relative phases and amplitudes of the individual Fourier modes within the initial294

conditions are likely to have a significant impact on which structures ultimately develop,295

in a situation such as that at Pr = 7, where several different steady states are known to296

exist in the forced model. One particular consequence of choosing the initial conditions in297

this way is that the random perturbation in general adds a mean streamwise velocity to298

the flow, so that billows appear to propagate through the domain. These do not represent299

intrinsically moving structures, but are merely a symmetry of the system which was300

suppressed in the previous section.301

For perturbations with k = k2 at Pr = 0.7, no significant nonlinear behaviour was302

observed at either value of Rib. Figures 13a and 13c both show S-shaped vorticity streaks303

characteristic of the transient, linear Orr mechanism at t = 20. By t = 100, as shown304

in figures 14a and 14c, these have diffused away to give simple shear layers, which are305

slightly asymmetric due to the random nature of the initial perturbations. These results306

are unsurprising, since no linear instability exists at this wavelength and we did not307

detect any nonlinear modes at this Pr either.308

For perturbations with k = k1 at Pr = 0.7, long-lived, nonlinear billow structures309

are observed at both Rib = 0.1 (figures 13b and 14b) and Rib = 0.3 (figures 13d and310

14d). The former is to be expected since a linear instability exists, but the latter is more311

surprising, as the base flow is linearly stable and the results of §3 show the bifurcation to312

be a simple supercritical one. The existence of a finite amplitude steady state in the forced313

model should be expected to imply nontrivial dynamics in the unforced simulations, but314

the converse is not necessarily true. We speculate further on this case in §5.315

The k = k2 simulation at Pr = 7 and Rib = 0.3 shows what we believe to be the316

most novel result reported here, namely that Kelvin-Helmholtz-like billows can exist in317

domains too narrow to support a linear instability. Figures 15c and 16c show the slow318

development of a higher amplitude state, which is very similar to the exact solution319

shown in figure 6a. Figure 15a with Rib = 0.1 appears to show only the results of the Orr320

mechanism on the initial perturbation, but by t = 100 shown in figure 16a one can just321

discern a long-lived, low-amplitude structure which is reminiscent of the lower branch of322

solutions found in §3, as shown in figure 6b.323

Figures 15b and 16b show the large billow which develops at Pr = 7 and Rib = 0.1.324

This is despite the fact that we also found steady states with double this wavenumber in325

the forced model, but since all the states we found at these parameters were unstable,326

it is difficult to draw conclusions. Similarly at Rib = 0.3 in figures 15d and 16d, a small327

billow of wavenumber k1 is observed. It could be the case that the initial perturbation328

determines whether a mode-1 or mode-2 structure develops in the wider domain, since329
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(a) Rib = 0.1, k = k2. (b) Rib = 0.1, k = k1. (c) Rib = 0.3, k = k2. (d) Rib = 0.3, k = k1.

Figure 13: Total vorticity field of the unforced flow at time t = 20 for the Drazin model
plus a random perturbation. Parameter values: Re = 1000, Pr = 0.7.

(a) Rib = 0.1, k = k2. (b) Rib = 0.1, k = k1. (c) Rib = 0.3, k = k2. (d) Rib = 0.3, k = k1.

Figure 14: Vorticity at Re = 1000 and Pr = 0.7 at t = 100.

(a) Rib = 0.1, k = k2. (b) Rib = 0.1, k = k1. (c) Rib = 0.3, k = k2. (d) Rib = 0.3, k = k1.

Figure 15: Vorticity at Re = 1000 and Pr = 7 at t = 20.

(a) Rib = 0.1, k = k2. (b) Rib = 0.1, k = k1. (c) Rib = 0.3, k = k2. (d) Rib = 0.3, k = k1.

Figure 16: Vorticity at Re = 1000 and Pr = 7 at t = 100.

the initial amplitude is rather large and the results are noisy, or this could be evidence330

that the mode-1 structure is, in some sense, more stable.331

Since in this unforced version the background flow diffuses away, the energy in the332

perturbation to this background, i.e. the energy in the billow states, is also expected to333

diffuse away. Figures 17 and 18 show the evolution of the total energy of the perturbation334

1
2‖X‖2 for these simulations. Though in several cases there is an initial growth of energy335

before it decreases, there is no one clear energy level or steady state to which the state is336

attracted, and so direct comparison with the amplitudes on the bifurcation diagrams in337

section 3 is not fruitful. The k1 simulations show wavy lines at large energy, in agreement338
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Figure 17: Perturbation energy from unforced DNS at Pr = 0.7, as depicted in figures
13 and 14. Blue: Rib = 0.1, pink: Rib = 0.3. Solid: k = k1, dashed: k = k2.
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Figure 18: Perturbation energy from unforced DNS at Pr = 7, as depicted in figures 15
and 16. Blue: Rib = 0.1, pink: Rib = 0.3. Solid: k = k1, dashed: k = k2.

with the simulations in §4.1, for which chaotic k1 billows were found – in that case339

triggered by perturbing k2 exact states. The simulations restricted to k2 instead show340

slow decay, regardless of whether long-lived billow states develop or not, indicating that341

the clear k2 structures visible in the simulations are potentially less physically relevant342

than the k1 structures.343

Movies of all eight of these simulations are available in the supplementary material.344

In the movies, a clear distinction is visible between the strongly unstable cases, with345

k = k1, for which the initial billow growth leads to energetic and chaotic behaviour, and346

the remaining cases, for which the initial structures, if they develop at all, merely diffuse347

away without any strong overturning. We note again that in some situations the billows348

are observed to propagate through the domain; this is not evidence of a Holmboe wave349

type instability with phase speed significantly different from the mean flow speed, but350

rather a consequence of the large amplitude initial perturbation having a net effect on351

the mean flow.352

5. Conclusion353

This paper presents a systematic study of the nonlinear behaviour of the Drazin354

model of a two-dimensional finite Reynolds-number stratified shear layer - a hyperbolic355

tangent shear and constant density gradient - at three different values of Pr, using356

both the tracking of exact coherent structures in the forced system and direct numerical357

simulations of the forced and unforced systems.358

In the Pr = 0.7 case, we found a simple, supercritical pitchfork bifurcation, with the359
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resulting steady-state Kelvin-Helmholtz billows increasing in amplitude as (minimum)360

Richardson number is decreased, so far as we could track them. This agrees with weakly-361

nonlinear results which predict a supercritical bifurcation for Pr < 1. Despite the fact362

that we have found no finite amplitude steady states at Rib > 1/4 when Pr = 0.7, the363

unforced simulations of §4 showed clear nonlinear billow-like structures at Rib = 0.3.364

This could mean that there are additional steady states which are either connected to365

the primary instability by a bifurcation of the upper branch, or disconnected, perhaps366

through a homotopic continuation of the disconnected states found at Pr = 3 (see figure367

8). It could also be the case that these structures appear on trajectories which do not368

have an associated steady state, but rather represent an excitable system, for which the369

base state is stable but fast/slow dynamics nevertheless allow rapid transient growth.370

The observation of this structure means we are unable to state categorically whether371

significant nonlinear behaviour – which could lead to turbulence and mixing in the three-372

dimensional case – is likely to occur for Rib > 1/4 in gases, although these results and373

the work of Kaminski et al. (2017) are highly suggestive that there is more to discover374

at Pr . 1.375

We observed a strongly subcritical pitchfork bifurcation in the flow modelling water376

with Pr = 7, as expected from the weakly-nonlinear predictions. Significantly, states377

were found to exist well above Rib = 0.5. Moreover, the fact that the mode-1 structure378

bifurcates in a superharmonic instability into a hitherto-unknown mode-2 structure379

implies that billow structures exist at wavelengths which are linearly stable. In section380

4, we demonstrated good agreement between the forced model used for the bifurcation381

diagrams, and an unforced model, which may be seen as more realistic for geophysical382

flows (the other approximations notwithstanding). In particular, we observed that ran-383

dom initial conditions can trigger both k1 and k2 billows at both Rib = 0.1 and Rib = 0.3.384

These results clearly indicate that in oceanic flows, the Miles-Howard criterion for linear385

stability does not preclude complicated mixing dynamics on times short compared to386

viscous diffusion.387

The transition between Pr = 0.7 and Pr = 7 was studied in the forced model, to388

understand how the structures relate to one another. Pr = 1 and Pr = 3 both show389

the primary branch of billow states to be a simple subcritical one, but at Pr = 3,390

disconnected mode-1 states were also found, connecting to the mode-2 states at Pr = 7,391

and apparently disappearing below Pr = 2.3. Increasing the Prandtl number above 3,392

the disconnected mode-1 branch collides at some point (< 7) with the primary mode-1393

branch to fundamentally change the mode-1 solution topology. Given this microcosm of394

behaviour, it is entirely plausible that (a) further loops of mode-1 solutions exist off the395

mode-2 branch and survive down below Pr ≈ 2.3 as well as (b) the mode-2 branch itself396

reaches to much lower Pr. In fact, it is not inconceivable that the mode-2 branch exists397

at Pr = 1 but is not at all connected to the primary mode-1 branch of Kelvin-Helmholtz398

instability tracked in Parker et al. (2019).399

The results presented here add to a body of literature considering the dependence on400

Pr of the behaviour of KHI, with possible consequences in oceanographic applications.401

Previous authors have found that mixing efficiency decreases with Pr when Re and Rib402

are kept fixed; Brucker & Sarkar (2007) showed this for a DNS initialised with turbulence403

and Salehipour et al. (2015) for an idealised KH billow. No clear reason for this is known,404

though it has been suggested it could be attributed to higher stratification near the405

centreline, reduced lengthscales, or higher isotropy, as Pr is increased. The existence of406

the k = k2 structures we have found at higher Pr is further evidence of these reduced407

length scales, in addition to shorter wavelength secondary instabilities documented by408

Salehipour et al. (2015).409
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It should be clear that there are numerous natural extensions to the present study. It410

would be of interest to see how the results vary with Re, as Re = 1000 is much lower411

than in geophysically relevant flows. It is assumed that if complex behaviour exists at412

Re = 1000 for given Pr and Rib, it will also do so for higher Re - in Parker et al.413

(2019) it was shown that increasing Re corresponds to an increase in the maximum Rib414

of steady states, at least for Pr = 1. Much higher values of Pr, as would be relevant415

to salt-stratified water, could also be an area for future study. Our results suggest that416

the dynamics only get more complex with increasing Pr, and higher Rib can give rise to417

steady states. Increasing either Re or Pr significantly would require a finer discretisation418

of the domain, necessitating either much more computational resources or a different419

strategy from that pursued here.420

We focussed on the case of a fixed domain size corresponding to one wavelength of the421

most unstable mode at Rib = 1/4 (see figure 1). This leaves the possibility of different422

behaviour at different wavelengths, but also more importantly ignores the interplay of423

different wavelengths of instability with one another. The subharmonic ‘pairing’ insta-424

bility of KH billows is widely documented in laboratory experiments and computational425

simulations, and has not been studied here as the behaviour cannot be captured in our426

short domain. Previous authors (Mashayek & Peltier 2011; Salehipour et al. 2015) have427

demonstrated that such subharmonic merging instabilities are suppressed at sufficiently428

high Re, which may explain why they are not observed in geophysical applications.429

The short domain size also means we capture only one discretised unstable wavelength430

rather than a range, and there could be significant interaction between these, leading431

to important dynamics (see, for example, Scinocca & Ford (2000)). This gap between432

idealised simulations of single KH billows and the messy turbulence seen in GFD settings433

and larger DNS studies remains an important area for future research.434

Even at the parameters we studied, much remains unclear. To what other states435

do the secondary bifurcations give rise? Hopf bifurcations were detected, so periodic436

orbits as well as steady states are expected. What new dynamics does a third, spanwise437

dimension add to the flow? Certainly all two-dimensional states we have found will exist438

in three dimensions, but many more secondary instabilities will exist and we expect439

those states found to be stable in two dimensions to become unstable in three. From440

direct numerical simulations, three-dimensional flows prone to primary Kelvin-Helmholtz441

instability are known to behave very differently, quickly breaking down into turbulence,442

without long-lived coherent billows; most of the mixing associated with KHI is due to443

this billow breakdown in three dimensions. There is no guarantee that the states we have444

found in two dimensions will be sufficiently stable to be realisable in three dimensions.445

Nevertheless, the existence of the structures implies the possibility for complex behaviour446

and mixing in geophysical flows at these parameters even if billows do not directly447

develop.448
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