
General hardware multicasting
for fine-grained message-passing architectures

Matthew Naylor1, Simon W. Moore1, David Thomas2, Jonathan R. Beaumont2,
Shane Fleming3, Mark Vousden4, A. Theodore Markettos1, Thomas Bytheway1, and Andrew Brown4

1University of Cambridge, 2Imperial College London, 3Swansea University, 4University of Southampton

Abstract—Manycore architectures are increasingly favouring
message-passing or partitioned global address spaces (PGAS)
over cache coherency for reasons of power efficiency and scal-
ability. However, in the absence of cache coherency, there can
be a lack of hardware support for one-to-many communication
patterns, which are prevalent in some application domains. To
address this, we present new hardware primitives for multicast
communication in rack-scale manycore systems. These primitives
guarantee delivery to both colocated and distributed destinations,
and can capture large unstructured communication patterns
precisely. As a result, reliable multicast transfers among any
number of software tasks, connected in any topology, can be
fully offloaded to hardware. We implement the new primitives in
a research platform consisting of 50K RISC-V threads distributed
over 48 FPGAs, and demonstrate significant performance benefits
on a range of applications expressed using a high-level vertex-
centric programming model.

I. INTRODUCTION

Today’s general-purpose processors rely on elaborate hard-
ware features such as superscalar execution and cache co-
herency to automatically infer parallelism and communica-
tion from general workloads. However, for inherently parallel
workloads with explicit communication patterns, which are
common in HPC domains, these costly hardware features
become unnecessary. Instead, processors consisting of larger
numbers of far simpler cores, communicating by message-
passing or PGAS, can achieve more performance from a single
chip, and scale more easily to large numbers of chips. This is
the premise behind a number of recently developed manycore
designs [1, 2, 3, 4, 5, 6, 7].

One of the strengths of cache-coherent architectures is
hardware support for one-to-many communication patterns.
Data from a single writer is automatically propagated to
multiple readers through a hierarchy of caches, which avoid
repeated fetching of the same data from a central point. In con-
trast, message-passing/PGAS architectures commonly provide
hardware unicast primitives that are limited to sending/storing
to a single destination core/address at a time. As a result,
multicasting is typically implemented in software by repeated
unicast, which can easily lead to congestion on the manycore
interconnect.

Congestion is the main threat to the scalability of manycore
architectures, and is exacerbated by a lack of communication
locality in some HPC domains, or by the cost of identifying
locality. Long-range interactions typically involve a greater
number of less efficient links, leading to bottlenecks. For
example, in distributed graph processing, small-world graphs
are common and contain inherently distributed fanouts where

neighbouring vertices cannot all be physically colocated. Even
in cases where locality of communication is high, it can be
expensive to identify in very large data sets, to the point where
the cost may outweigh the benefit of manycore execution in
the first place. Either way, efficient support for distributed
communication becomes key.

The most general approach to hardware-accelerated multi-
casting in manycore architectures that we are aware of comes
from the SpiNNaker machine [2] developed at the University
of Manchester. SpiNNaker is a one million ARM core machine
featuring a torus of chip-multiprocessors (CMPs) connected
together via programmable routers. Each router allows an
incoming packet to be delivered simultaneously to any subset
of the 18 cores in the CMP (local multicasting), and it allows
bifurcation of packets in up to six directions as they travel from
chip to chip through the torus (distributed multicasting). This
is a powerful combination of features, but some aspects of the
design are unsatisfying outside SpiNNaker’s target domain of
spiking neural network simulation:

• Each programmable router makes routing decisions using
a 1024-entry content-addressable memory (CAM), which
is too small to capture large unstructured communication
patterns precisely. Instead, packets can be delivered ap-
proximately to a superset of the desired destinations, and
software at the receivers can decide whether or not to
discard them. Naturally, this leads to more traffic on the
network than is necessary. It also means that multicast
communication requires software assistance, and software
disposal of unwanted messages is a significant overhead.

• The hardware does not provide guaranteed delivery. There
is no hardware-enforced flow control and packets are
dropped when the communication fabric is overwhelmed.
Dropped packets are “retained in a buffer for software
examination” [2], but software retransmission schemes
are complex and will only lead to more bookkeeping on
the cores and more traffic on the network.

In this paper, inspired by the SpiNNaker design, we explore
new features for hardware multicasting that are precise, reli-
able, and generally applicable to a range of HPC domains.
Our contributions are as follows.

• We describe the drawbacks of implementing one-to-
many communication patterns in software, i.e. software
multicasting, especially while guaranteeing delivery.

• We present new techniques for local and distributed
hardware multicasting, implemented on top of a many-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/384309767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


core message-passing machine consisting of 50K RISC-V
threads spread over 48 FPGAs. These techniques preserve
an event-driven API with software-exposed flow control,
and are highly general: multicast transfers among any
number of software tasks, connected in any topology, can
be fully offloaded to hardware.

• We extend a high-level vertex-centric software API,
inspired by Google’s Pregel model [8], to utilise the
new multicast features. The API completely abstracts
over architectural details, providing a rapid, portable and
scalable deployment path for application developers.

• We apply the resulting hardware and software to a range
of HPC problems from graph processing, spiking neural
networks, and dissipative particle dynamics. We evaluate
the impact of hardware multicasting on network traffic
and execution time as we vary the amount of locality in
the data sets. We also evaluate the cost of the new hard-
ware features in terms of logic area and clock frequency.

II. BACKGROUND

As part of a larger project, we have constructed a research
platform consisting of a 48-FPGA cluster and a manycore
RISC-V overlay programmed on top [7, 9]. As well as pro-
viding a reconfigurable compute fabric, FPGAs also support a
high degree of scalability due to advanced inter-chip network-
ing capabilities. The research platform therefore serves both
as a rapid prototyping environment for computer architecture
research and, for distributed applications, a genuine hardware
accelerator. Below, we outline the design of the platform, and
its unicast communication primitives, before presenting our
multicast extensions in subsequent sections.

A. Research platform

Our RISC-V overlay (Tinsel) has regular structure, con-
sisting of a scalable grid of tiles connected by a reliable
communication fabric that extends both within each FPGA
and throughout the FPGA cluster. By default, a tile consists
of four RV32IMF cores sharing an FPU, a data cache, and a
mailbox, as shown in Figure 1a.

The core is 16-way multithreaded by default, capable of
tolerating tens of cycles of latency arising, for example, from
deeply-pipelined FPGA floating-point operations, or cache
misses that lead to off-chip memory accesses. Threads are
barrel-scheduled (a context switch is performed on every clock
cycle) so pipeline hazards are easily avoided, leading to a
small, fast, high-throughput design.

The mailbox contains a memory-mapped scratchpad storing
up to 64KB of incoming and outgoing messages, which can
also be used as a small general-purpose local memory. Mes-
sages are variable-length, containing up to four flits, with each
flit holding 128 bits of payload. The mailbox allows threads
to trigger transmission of outgoing messages, to allocate
space for incoming messages, and to consume those messages
when they arrive, all via custom RISC-V CSRs (control/status
registers). The mailbox features are detailed in Section II-B.

debug
bus

core
(16 threads)

core
(16 threads)

core
(16 threads)

core
(16 threads)

FPU partitioned
data cache mailbox NoC

router

off-chip RAM network

(a) Default configuration of a 64-thread tile.

asd

inter-FPGA reliable links

tile
×

tile
×

tile
×

tile
×

tile
×

tile
×

tile
×

tile
×

off-chip RAM

tile
×

tile
×

tile
×

tile
×

tile
×

tile
×

tile
×

tile
×

off-chip RAM

(b) Default configuration of our overlay on a single DE5-Net (Stratix V)
FPGA board. Mailboxes in tiles are connected together using dimension-
ordered routers to form a NoC. Inter-FPGA reliable links are connected to
the NoC rim. A separate network is used to connect caches in tiles to off-chip
memories. Each off-chip RAM component contains a 2GB DDR3 DRAM and
two 8MB QDRII+ SRAMs.

FPGA FPGA FPGA FPGA FPGA FPGA

FPGA FPGA FPGA FPGA FPGA FPGA

x8
6

FP
G

A x86

FPG
A

FPGA FPGA FPGA FPGA FPGA FPGA

FPGA FPGA FPGA FPGA FPGA FPGA

x8
6

FP
G

A x86

FPG
A

FPGA FPGA FPGA FPGA FPGA FPGA

FPGA FPGA FPGA FPGA FPGA FPGA

x8
6

FP
G

A x86

FPG
A

FPGA FPGA FPGA FPGA FPGA FPGA

FPGA FPGA FPGA FPGA FPGA FPGA

x8
6

FP
G

A x86

FPG
A

(c) Our FPGA cluster is composed of eight boxes (shown in light gray). Each
box contains an x86 server and 7× DE5-Net FPGA boards. One FPGA board
in each box serves as a bridge between the x86 server (PCI Express) and the
FPGA network (10G SFP+). The x86 servers provide command-and-control
facilities, such as data injection and extraction. The full cluster contains a
2× 4 mesh of boxes, and a 6× 8 mesh of worker FPGAs.

Fig. 1. Manycore research platform supporting fine-grained message-passing.



The cache is a non-blocking 16-way set-associative write-
back cache that optimises access to the large off-chip memo-
ries available on each FPGA board. It is 128KB in size and
is partitioned by thread id so that cache lines are not shared
between threads. This means there are no hazards in the cache
pipeline, which leads to a small, fast design. Caches are not
coherent: message-passing is expected to be the primary means
of communication.

The FPU supports IEEE single-precision floating-point op-
erations. On the Stratix V FPGAs we are using, these are
expensive in both area and latency, which we mitigate through
sharing and multithreading respectively.

A single-FPGA view of the overlay is depicted in Fig-
ure 1b. On the DE5-Net FPGA board, the overlay contains 64
RV32IMF cores (1,024 hardware threads), clocks at 240MHz,
and utilises 67% of the FPGA. The FPGA cluster comprises
a 6× 8 grid of DE5-Net boards connected using 10G reliable
links, as shown in Figure 1c. The overlay distributes over this
cluster to yield a 3,072 core system (49,152 hardware threads),
where any thread can send messages to any other thread.

B. Hardware unicasting
Threads send and receive messages using custom RISC-V

control/status registers (CSRs). These raw CSR accesses are
abstracted by a very thin software API, outlined below.

To send a message residing in the mailbox scratchpad, a
thread first ensures that the network has capacity by calling
bool tinselCanSend();

and if the result is true, the thread can call
void tinselSend(uint32_t dest, void* msg);

where dest is a global thread identifier, and msg is a message-
aligned address in the scratchpad. The message is not guaran-
teed to have left the mailbox until tinselCanSend() returns
true again, at which point data pointed to by msg can safely
be mutated, e.g. by writing a new message.

To receive, a thread must first allocate space in the scratch-
pad for an incoming message to be stored. Allocating space
can be viewed as transferring ownership of that space from
the software to the hardware. This is done by a call to
void tinselAlloc(void* msg);

where msg is a message-aligned address in the scratchpad.
Space for multiple messages can be allocated in this way,
creating a receive buffer of the desired size. Now, when a
thread wishes to receive a message it can call
bool tinselCanRecv();

to see if a message is available and, if so, receive it by calling
void* tinselRecv();

which returns a pointer to the received message. Receiving
a message can be viewed as transferring ownership of the
space it occupies from the hardware back to the software.
Once the software is finished with the received message, it
can call tinselAlloc again to pass ownership of the memory
back to the hardware, replenishing the receive buffer.

To further support event-driven computing, the hardware
provides thread suspension and resumption on can-receive

and/or can-send events [11]. It also provides a form of barrier
synchronisation based on termination detection, which is well
suited to fine-grained message-passing systems [9].

C. Guaranteed delivery and deadlock avoidance

Message delivery is guaranteed by the hardware provided
that all threads eventually consume the messages available
to them. This is complicated by the fact that, in general, a
thread is free to send a message to any destination thread,
including one which it may receive from, potentially forming
a cyclic dependency with both sides waiting for the other to
receive. To avoid this message-dependent deadlock in general,
a thread must not block indefinitely on a send operation
without considering the possibility of receiving. This is a
common requirement in lossless on-chip networks, sometimes
referred to as the consumption assumption [10].

D. Software multicasting

The aim of multicasting is to send the same message to
multiple destinations while minimising traffic on the network.
It can potentially be achieved in software, on top of hardware
unicast primitives, by sending via a tree of intermediate cores.
Each node in the tree can receive the message and forward
it to its children, with the leaves of the tree being the final
destinations. The closer to the destinations that a message is
forked/copied, the less space it consumes on the network.

Some properties of our mailbox design are potentially
helpful for software multicasting. First, the mailbox scratchpad
stores both incoming and outgoing messages, so a message
can be efficiently forwarded (received and sent) by software
without being copied. Second, once a message is in the
scratchpad, it can be efficiently sent multiple times by calling
a single-cycle instruction for each child.

However, there are major challenges facing software multi-
casting. The consumption assumption requires that software is
always willing to receive. If the rate at which messages arrive
at a thread exceeds the rate at which they can be forwarded
on, the messages must be buffered. Buffering is expensive if it
requires software to copy messages from the on-chip mailbox
to the off-chip memory and back. Worse, in the general case,
there is no useful upper bound on the size of the buffer; the
consumption rates of threads are application-dependent and
hard to predict. Furthermore, there is both a latency penalty
and compute penalty as messages pass through a software
stack at each fork-point in the multicast tree.

Hardware routing primitives in our research platform do not
suffer from the unbounded buffering problem. They follow a
more disciplined form of addressing than software (dimension-
ordered routing), which excludes cyclic dependencies, and
they can safely exert backpressure on the network without the
risk of deadlock. Combining this with performance benefits,
hardware multicasting becomes an attractive possibility.

III. LOCAL HARDWARE MULTICASTING

Each tile in our research platform contains 64 threads
sharing a mailbox, i.e. a memory-mapped scratchpad holding



incoming and outgoing messages. This raises the possibility
of sending a single message to multiple threads on same
tile simultaneously: a message can be transferred over the
network once, stored in the destination mailbox once, and
made available to any specified subset of the 64 threads sharing
the mailbox. We refer to this as local multicasting as the
destinations must be colocated on the same tile.

A. API modifications

We extend the hardware with a primitive for sending to
multiple destination threads on a given tile:
// Send message to multiple threads on given tile
void tinselMulticast(
uint32_t tileDest, // Destination tile id
uint32_t destMaskHigh, // Thread mask (high bits)
uint32_t destMaskLow, // Thread mask (low bits)
void* msg); // Message pointer

Like tinselSend, this primitive should only be called when
tinselCanSend returns true. Unlike tinselSend, it takes a
64-bit mask (provided as two 32-bit parameters) denoting
which of the 64 threads in the destination tile will receive
the message.

On the receiver side, the API works as before: when a thread
is finished with a received message, it informs the hardware via
a call to tinselAlloc, and the hardware can reuse the memory
for a new message. However, since a single message may be
received by multiple threads, the hardware now must wait until
all receivers have called tinselAlloc on the message before
reusing the memory; but this is transparent to software.

B. NoC modifications

One of the main costs introduced by the tinselMulticast

primitive is that the destination address of a message increases
in size by 58 bits. For unicast, only 6 bits are required
to identify the receiving thread on the destination tile; for
multicast, this increases to 64 bits. In our current design, where
every flit contains the destination address in addition to a 128
bit payload, the increased address size leads to larger flits, and
wider buses to carry them through the NoC.

There are alternatives, which would reduce the address size.
One option would be to use a compressed thread mask where,
for example, 30 bits are used to hold 5 × 6-bit thread ids.
Another possibility would be to require that the destination tile
is the same as the tile of the thread that is sending, meaning
that flits on the NoC never carry the mask. But both of these
alternatives limit the range of the multicast, and we wish to
explore the full potential of the approach.

C. Mailbox modifications

The majority of the modifications needed are in the mailbox
design. The hardware needs to ensure that each message is
stored once but made available to multiple receivers, and to
ensure that space occupied by the message can be garbage
collected when all receivers have finished with it. This is
achieved using the following mailbox structures, as shown in
Figure 2.

message arriving at mailbox

mask[63:0] payload

q63

en d

mask[63]
ptr

q0

en d

ptr
mask[0]

pointer queue per thread (virtualised)

... payload[127:0]

scratchpad
ref

count

payloadptr:

popcount(mask)

free slot queue
ptr

Fig. 2. Mailbox features supporting local hardware multicasting. The message
payload is written into the memory-mapped scratchpad at an address indicated
by the free slot queue. This address is simultaneously written into the pointer
queue for each receiver as indicated by the message’s destination mask. The
population count of the mask is used to start a reference count for the message.

• A memory-mapped scratchpad storing incoming and
outgoing messages, accessible to all threads in the tile.
This is much the same as in the unicast design.

• A free slot queue, which contains a set of message-
aligned addresses in the scratchpad that can be used to
store incoming messages.

• A pointer queue for each thread, containing pointers to
messages in the scratchpad that are to be received by that
thread. These queues are partially virtualised to reduce
on-chip memory resources, as discussed below.

• A reference count for each message-aligned address in
the scratchpad, maintained in a separate block RAM. This
count is the number of receiving threads that have yet to
indicate that they are finished with the message.

The operation of the mailbox is as follows.

• When a message containing a payload and a destination
thread mask arrives at the mailbox, the hardware tries to
extract a scratchpad pointer ptr from the free slot queue.
If the free slot queue is empty then the mailbox exerts
backpressure on the NoC.

• The payload is written to the scratchpad at the location
pointed-to by ptr, and the ptr is inserted into each
thread’s pointer queue as indicated by the mask. If any
of the pointer queues are full then the mailbox exerts
backpressure on the NoC.

• The number of high bits in the mask is computed using
a population count and written in to the reference count
RAM for the message at location ptr.

• When a thread calls tinselRecv, its pointer queue is
dequeued. The empty status of the queue can be obtained
by a call to tinselCanRecv.

• When a thread calls tinselAlloc to indicate that it
has finished with the message, the reference count of
that message is decremented. When the reference count
reaches zero, the message address is inserted back into
the free slot queue for future use.



Creating a physically separate pointer queue for each of
the 64 threads in a tile allows all the queues to be accessed
in parallel, but is potentially very expensive in terms of on-
chip memory resources. Furthermore, this parallelism would
be disproportionate in the sense the scratchpad is still shared
by all 64 threads and this is likely to be a more limiting factor
on the rate of message consumption. Therefore we implement
the pointer queues as four physically separate sets of 16 virtual
queues. Each set of virtual queues is implemented using a
single block RAM for queue data and a smaller LUT-based
RAM for queue metadata (front and back pointers).

IV. DISTRIBUTED HARDWARE MULTICASTING

For applications with limited communication locality, or
where the size of data sets makes identifying locality pro-
hibitively expensive, local multicasting alone is not sufficient.
In this section, we present a complementary approach to
multicasting, useful for distributed fan-outs.

A. Overview

To support distributed multicasting, we generalise the des-
tination address of a message so that it can either be a global
thread id (as in the existing unicast design), or a routing key.
Provided tinselCanSend returns true, a thread can send a key-
addressed message using a new primitive:
// Send message using routing key
void tinselKeySend(uint32_t key, void* msg);

The resulting message is routed by the NoC towards a pro-
grammable router on the same FPGA, as shown in Figure 3.
Once the message reaches the programmable router, its key
is used as an index into a routing table stored in off-chip
RAM, yielding a contiguous array of routing records. Each
record contains a new destination for the message and, for
each record, the router emits a copy of the message with a
modified destination. A new destination may be single thread
on the local NoC, multiple threads on the same tile on the
local NoC, or a new routing key to be sent along one of
the inter-FPGA links. In this way, the programmable routers
can propagate messages unassisted throughout the system,
minimising inter-FPGA bandwidth usage. By storing routing
tables in off-chip RAMs, large unstructured communication
graphs can be captured precisely. Contiguous arrays of routing
records can be efficiently fetched using burst transfers, making
effective use of DRAM. Caching is not employed due to lack
of locality, but could be useful when routing tables are small.

B. Routing keys and records

A routing key is a 32-bit value consisting of an address
and a size. The address is always aligned to a 32-byte DRAM
beat, leaving five bits to specify the number of beats pointed
to. Storing the size in the key itself allows the hardware to
issue a burst read of the appropriate size. Each 256-bit beat
contains several routing records, along with the number of
records in the beat. The five-bit size in the key requires that
the routing records fit in less than 32 beats, but a mechanism
(discussed below) exists to workaround this.

tile
×

tile
×

tile
×

tile
×

tile
×

tile
×

tile
×

tile
×

off-chip RAM

tile
×

tile
×

tile
×

tile
×

tile
×

tile
×

tile
×

tile
×

off-chip RAMprog.
router

inter-FPGA reliable links

Fig. 3. New NoC structure to support distributed hardware multicasting.
Comparing to Figure 1b, we introduce a programmable router that routes
messages between and within FPGAs based on routing tables stored in large,
off-chip memories.

north south east west local0 local1 local2 local3

expand expand expand expand expand expand expand expand

fair crossbar

north south east west local0 local1 local2 local3

off-chip RAMs

Fig. 4. Internal structure of the programmable router. Key-addressed messages
from inter-FPGA links and the local NoC are expanded using routing records
fetched from off-chip memory at locations specified by the keys. The resulting
messages are then routed through a crossbar for the next stage of their journey.

Routing records range in size from 48 bits to 96 bits, and
there are four main kinds of record understood by the router:

• A router-to-thread record specifies a thread id on the local
NoC to which the message should be sent.

• A router-to-tile record specifies the coordinates of a tile
on the local NoC, along with a thread mask for that tile,
to which the message should be sent, exploiting local
hardware multicasting.

• A router-to-router record specifies that the message is
to be forwarded to the north, south, east, or west inter-
FPGA links. It also specifies a replacement routing key
for the message. This simplifies the task of mapping, as
discussed in Section V.

• An indirection record specifies that the message is to be
fed back into the current programmable router, with a
new routing key. This eliminates the limitation on the
number of routing records associated with a key.

Variants of the router-to-thread and router-to-tile records are
provided that allow the first word or half-world of the message
payload to be overwritten with data from the record. Again,
this simplifies mapping, as discussed in Section V.

C. Programmable router design

The programmable router routes messages between the four
inter-FPGA links and the four links on the bottom side of the
NoC using an 8x8 crossbar, as shown in Figure 4. Before
messages are fed into the crossbar, they pass through an



expander for each link. If a message is key-addressed then
the expander forks it according to routing records its fetches
from off-chip RAM, otherwise it passes straight through
unmodified. The RAM latency is masked by a 32 element
flit queue inside each expander, allowing RAM requests to
be pipelined. Each expander has its own connection to RAM,
and operates independently of the others to avoid deadlock,
i.e. ensuring that the ability of one expander to make progress
is not affected by that of another. The decision to use only
one programmable router per FPGA, and to connect to only
one side of the NoC, is motivated by the high logic cost of
the expanders and the crossbar, as well as the bandwidth limit
of the off-chip RAM.

V. HIGH-LEVEL API

Developing software applications directly on top of our
RISC-V overlay is time-consuming, requiring manual mapping
of abstract application-level concepts onto the fixed hardware
structures. To address this, we have developed a high-level
API, inspired by Google’s Pregel model [8], in which an
application is expressed as an abstract task graph. The API
completely hides architectural details but, at the same time,
plays to the strengths of the architecture by exposing concepts
such as message-passing and multicasting. In this section,
we briefly introduce task graphs and discuss how they are
mapped onto our research platform, focussing on how the new
hardware multicast features are exploited. Further details on
the API can be found in our research platform’s manual [11].

A. Task graphs

A task graph is a set of interconnected state machines (tasks)
that can send messages to each other via edges. Task behaviour
is defined by set of software event handlers (written in C++)
that update the task state when a particular event occurs,
e.g. when a message arrives on an incoming edge, or the
network is ready for a new message to be sent, or when global
synchronisation occurs. Tasks send messages via pins. A pin
is a set of outgoing edges, and sending a message on a pin
means sending a message along all edges in the set, i.e. a
multicast send. A task can have any number of pins.

Task graphs are prepared offline using a C++ class with
methods for adding tasks, pins, and edges, and for initialising
task and edge states. The number of tasks and the topology
of the graph are unrestricted. Deciding which tasks will run
on which threads is the job of our mapper, which employs
a hierarchical partitioning scheme: first the graph is parti-
tioned between FPGA boards, then each FPGA’s subgraph
is partitioned between tiles, and finally each tile’s subgraph
is partitioned between threads. A variety of partitioning al-
gorithms are available, most of which aim to minimise the
edge-cut between partitions. The default is METIS [12], which
is the slowest but gives the highest quality results. For large
graphs, multiple tasks end up being mapped onto each thread.
To handle this, each thread runs an event-loop called the
softswitch, which context-switches between tasks and invokes
event handlers when appropriate.

In the remainder of this section we discuss how abstract pins
are implemented using unicast, local multicast, and distributed
multicast features respectively.

B. Using unicast primitives

Sending a message on a pin that refers to multiple destina-
tion tasks clearly may require multiple unicast send operations.
However, multiple tasks may map to the same thread, so
only one unicast send is needed per destination thread, not
necessarily one per destination task. To exploit this fact, we
implement a pin as an array of thread/key pairs on the sender
side. To send a message on a pin, we iterate over the array
and, for each thread/key pair, we assign the key to part of the
message payload and perform a unicast send to the thread. On
the receiver side, the key in the payload is used as an offset into
a receiver table, yielding an array of local task-id/edge-state
pairs. The softswitch then invokes the receive handler for each
task in the array, passing it the message and the appropriate
edge state.

C. Using local multicast primitives

With local hardware multicasting, we only need to send
a message once per destination tile, rather than once per
destination thread. On the sender side, we adapt the array of
key/thread pairs representing a pin’s destinations to an array of
key/tile/thread-mask triples. This is a straightforward change
in itself, but introduces a new problem: all receiving threads
on the same tile will receive the same payload and hence
the same key. Therefore, the receiver array for each receiving
thread in the tile needs to stored at the same offset in each
thread’s receiver table. This leads a non-trivial optimisation
problem: we want to pack the receiver arrays into each thread’s
memory, minimising the amount of space used, while ensuring
that some arrays, on different threads, are mapped to the same
offset. We refer to this as the receiver packing problem. We
solve it using a greedy bitmap-based data structure that allows
rapid searching for locations that are free amongst all the
receivers’ tables.

D. Using distributed multicast primitives

With distributed hardware multicasting, we only need to
send a message once per pin, regardless of how many des-
tinations it represents. The entire sender-side pin array can
replaced by an array of routing records at the programmable
router. But now the receiver packing problem is exacerbated
by the fact that multicast destinations can be distributed over
the entire system rather than being limited to a single tile. Part
of the aim of distributed multicasting is to avoid the need for
expensive mapping algorithms, and the system-wide packing
problem risks becoming costly. Therefore, the programmable
router provides two features to avoid it: (1) router-to-thread
and router-to-tile records can specify that the key in the
payload is replaced with a new key before forwarding the
message to the local NoC; and (2) router-to-router records
can specify that the routing key is replaced, in a similar
way. One of the drawbacks of routing every message via



Legend

Unicast
Multicast

PageRank (PR)
Average Shortest Path (ASP)
Izhikevich Spiking Neural Net (SNN)
Dissip. Particle Dynamics (DPD) - Sync
Dissip. Particle Dynamics (DPD) - GALS

0 50k 100k 150k 200k
Volume (tasks)

25

50

75

100

Ru
nt

im
e 

pe
r t

im
es

te
p 

(m
s)

(a) Dissipative Particle Dynamics

10 20 40 80 160
Neighbourhood radius

100

101

102

103

Ru
nt

im
e 

pe
r t

im
es

te
p 

(m
s)

(b) Graph Processing (Fanout 25)

10 20 40 80 160
Neighbourhood radius

100

101

102

103

Ru
nt

im
e 

pe
r t

im
es

te
p 

(m
s)

(c) Graph Processing (Fanout 100)

10 20 40 80 160
Neighbourhood radius

104

106

108

Fl
its

 in
je

ct
ed

 p
er

 ti
m

es
te

p

(d) NoC Traffic (Fanout 25)

10 20 40 80 160
Neighbourhood radius

104

106

108
Fl

its
 in

je
ct

ed
 p

er
 ti

m
es

te
p

(e) NoC Traffic (Fanout 100)

10 20 40 80 160
Neighbourhood radius

104

106

108

Fl
its

 in
je

ct
ed

 p
er

 ti
m

es
te

p

(f) Inter-Chip Traffic (Fanout 100)

10 20 40 80 160
Neighbourhood radius

101

102

Sp
ee

du
p 

ov
er

 1
-th

re
ad

 X
eo

n (g) Research Platform (Fanout 100)

Fig. 5. Performance comparison of unicast and multicast approaches on a variety of applications.

the programmable router is that it becomes a bottleneck as
it connects to only one side of the NoC. For this reason, we
take a hybrid approach: we only use programmable routers
for pins containing at least one destination task that does not
reside on the same FPGA as the sender.

VI. EVALUATION

In this section, we present performance results from a range
of applications, implemented using our high-level API, and
running on our research platform. We compare the use of
unicast primitives and multicast primitives to implement pins,
while varying the amount of locality in the task graphs. We
also evaluate the cost of hardware multicasting in terms of
FPGA area and clock frequency.

A. Experimental setup

We present results for four applications exhibiting a range of
computational characteristics. The first is a Dissipative Particle
Dynamics (DPD) simulator for modelling particle interactions
in computational chemistry [13], requiring only local commu-
nication patterns. Space is divided into a regular 3D grid of
tasks, with each task communicating on every timestep with
its 26 neighbours. The remaining three applications all oper-
ate over unstructured task graphs: an implementation of the
PageRank (PR) algorithm for ranking webpages [14]; a solver
for the average shortest path (ASP) problem, which performs
a multiple-source breadth-first search; and a spiking neural
network (SNN) simulator using the Izhikevich model [15].

To generate unstructured task graphs for benchmarking
purposes, we use a geometric random graph generator. Tasks
are laid out in a 2D space, and each task is connected to
a random set of other tasks within a specified neighbourhood
radius. This gives us control over the amount of locality in the
graphs. Each generated graph contains 1M tasks, with a fanout
varying from 25 to 100. The graphs and applications (except

DPD) are available in an open-access data package [16], along
with the entire source code of our RISC-V overlay and APIs.

B. Performance results

Figure 5a shows that hardware multicasting has a big
impact on two separate implementations of DPD. Unicast
performance is hindered by NoC congestion issues, especially
in the GALS version which involves more communication than
the synchronous version. The Figure also shows that multicast
DPD performance scales very well up to 50K tasks, the point
at which we run out of hardware threads.

Figures 5b–5c show that hardware multicasting introduces
resilience to reduction in communication locality. As locality
decreases, the performance improvement of multicasting ap-
proaches an order-of-magnitude for a fanout of 25, and two
orders for a fanout of 100. Multicasting is more beneficial in
ASP, which uses four-flit messages, compared to PR and SNN,
which use single-flit messages. The benefit of multicasting is
generally much lower for SNN due to relatively infrequent
communication (standard spiking rates), but is still noticeable
for large fanouts. The improvement due to hardware multicas-
ting is largely explained by the reduction in network traffic, as
shown in Figures 5d–5f. In particular, the reduction in inter-
chip traffic, where bottlenecks are most likely, closely mimics
the improvement in runtime performance for larger radii.

Finally, Figure 5g shows that our research platform and
high-level API can achieve a useful level of performance
compared to optimised single-threaded code running on a
conventional Xeon E5-2667 processor.

C. Synthesis results

The performance improvements due to hardware multi-
casting come at a cost. Local multicasting results in an
increased flit size, while distributed multicasting introduces
a programmable router with eight independent flit buffers and



Area (ALMs) Fmax
Unicast baseline 155,935 (66%) 241MHz
+ local multicast 173,718 (74%) 230MHz
+ distributed multicast 197,445 (84%) 215MHz

Fig. 6. Synthesis results for our RISC-V overlay with various extensions on
the Stratix-V-based DE5-Net FPGA board. These are the best results from a
batch of 20 synthesis runs using Quartus Design Space Explorer.

an 8x8 crossbar. Figure 6 shows the impact on FPGA area and
clock frequency. The reduction in clock frequency is expected
as a natural consequence of higher FPGA utilisation, leading
to a more difficult mapping problem for the synthesis tools.

VII. RELATED WORK

Manycore architectures that omit cache-coherency features
fall into two main camps: message-passing [1, 2, 4, 7] and
PGAS [3, 5, 6]. In PGAS, cores communicate by performing
remote loads and stores to local memories of other cores. If
multiple cores share a local memory then local multicasting
is possible on top of PGAS without any further hardware
extensions. However, PGAS architectures do not provide
notification or flow control to software, which leads to a
more challenging programming model. As a result, PGAS
architectures often rely on global barrier synchronisation for
flow control but this has the limitation that all communicated
data for a timestep must fit into local memories.

Multicasting techniques are becoming increasingly popular
in the field of networks-on-chip [17, 18, 19, 20]. These
techniques mainly focus on the concise encoding of multiple
destinations in a message header, and are not suitable for
capturing large unstructured communication patterns. This
body of work also tends to focus on NoCs in isolation, rather
than within the context of a manycore system. For example, the
pragmatics of delivering a message to multiple cores/threads
sharing a mailbox is out of scope, and this is the main issue
addressed by our local multicasting scheme.

The use of programmable routers in manycore architectures,
such as SpiNNaker [2], is a less studied topic. As dis-
cussed in Section I, SpiNNaker’s programmable routers have
some major limitations: message delivery is not guaranteed
by hardware, and routing tables are stored in space-limited
content-addressable memories (CAMs). More generally, the
use of programmable routers has been criticised for increased
latency and power requirements due to storing routing tables
in memory [20, 21]. However, large unstructured topologies
must be stored somewhere with sufficient capacity, and the
cost of accessing memory must be paid whether it is accessed
by software running on the cores or by programmable routers.

VIII. CONCLUSION

Multicasting is a valuable technique to reduce network
congestion in manycore systems, for a range of applications. In
some cases, it can be implemented in software running on the
cores, but this is fraught with difficulty in a message-passing
architecture with guaranteed delivery. The consumption as-
sumption, needed by software to avoid message-dependant
deadlock, leads to a buffering requirement that is effectively

unbounded. In contrast, multicast-enabled hardware routers
are free to exert backpressure on the network without the
risk of deadlock. Hardware multicasting is also more efficient,
offloading work from the cores.

In this work, we have designed, implemented, and evaluated
new techniques for hardware multicasting that support both
colocated and distributed destinations. These techniques pre-
serve an event-driven API with software-exposed flow control
– two main features of the message-passing paradigm. To
our knowledge, they are the first such techniques capable of
capturing large unstructured communication patterns precisely.
All this has been done in a whole-system context, from low-
level microarchitecture to high-level architecture-agnostic ap-
plication development, and has been demonstrated on range of
realistic applications. We hope these experiences will serve the
future development of manycore architectures, in an era where
power efficiency and scalability become evermore important.
Acknowledgments This work was supported by UK EPSRC
grant EP/N031768/1 (POETS project).

REFERENCES

[1] A. Gara, J. Moreira IBM Blue Gene supercomputer, IBM Research
Report, 2011.

[2] C. Patterson, J. Garside, E. Painkras, S. Temple, L. A.Plana, J. Navaridas,
T.Sharp, S. Furber. Scalable communications for a million-core neural
processing architecture, Journal of Parallel and Distributed Computing,
Elsevier, 72:11, 2012.

[3] L. Gwennap. Adapteva: More flops, less watts, Microprocessor Report,
June 2011.

[4] B. Bohnenstiehl et al. KiloCore: A 32-nm 1000-Processor Computa-
tional Array, IEEE Journal of Solid-State Circuits, 52:4, 2017.

[5] S. Davidson et al. The Celerity Open-Source 511-Core RISC-V Tiered
Accelerator Fabric: Fast Architectures and Design Methodologies for
Fast Chips”, IEEE Micro, 38:2, 2018.

[6] J. Gray, A 1680-core, 26 MB Parallel Processor Overlay for Xilinx
UltraScale+ VU9P, Hot Chips 29, 2017.

[7] M. Naylor, S. W. Moore, D. Thomas. Tinsel: a manythread overlay for
FPGA clusters, FPL 2019.

[8] G. Malewicz et al. Pregel: A System for Large-scale Graph Processing,
ACM SIGMOD 2010.

[9] M. Naylor et al. Termination detection for fine-grained message-passing
architectures, ASAP 2020.

[10] A. Hansson, et al. Avoiding Message-Dependent Deadlock in Network-
Based Systems on Chip, Journal of VLSI Design, April 2007.

[11] M. Naylor et al. Tinsel 0.8.3 Manual, Online, accessed: 3 Jan 2020.
Available: https://github.com/POETSII/tinsel.

[12] G. Karypis, et al., METIS - Serial Graph Partitioning and Fill-reducing
Matrix Ordering. Online, accessed: 8 Oct 2020. Available: http://glaros.
dtc.umn.edu/gkhome/metis/metis/overview.

[13] P. J Hoogerbrugge and J. M. V. A Koelman, Simulating Microscopic
Hydrodynamic Phenomena with Dissipative Particle Dynamics, Euro-
physics Letters, 19:3, 1992.

[14] S. Brin and L. Page, The Anatomy of a Large-Scale Hypertextual Web
Search Engine, 7th International Conference on the WWW, 1998.

[15] E. Izhikevich, Simple model of spiking neurons, IEEE Transactions on
Neural Networks, 14(6), 2003.

[16] M. Naylor, Research data supporting this paper. Available: https://doi.
org/10.17863/CAM.62761.

[17] M. Ebrahimi et al. An efficent dynamic multicast routing protocol for
distributing traffic in NOCs, DATE 2009.

[18] L Wang, Y. Jin, H. Kim and E. J. Kim, Recursive partitioning multicast:
A bandwidth-efficient routing for Networks-on-Chip, NOCS 2009.

[19] L. Wang et al. Efficient lookahead routing and header compression for
multicasting in networks-on-chip, ANCS 2010.

[20] X. Wang, et al. Efficient multicast schemes for 3-D Networks-on-Chip.
Journal of Systems Architecture 59:9, 2013.

[21] S. Rodrigo, J. Flich, J. Duato and M. Hummel, Efficient unicast and
multicast support for CMPs, MICRO 2008.


