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Abstract

Monte Carlo simulation of DNA origami self-assembly

Alexander Michael Cumberworth

The optimal design of DNA origami systems that assemble rapidly and robustly
is hampered by the lack of a model capable of simulating the self-assembly pro-
cess that is sufficiently detailed yet computationally tractable. In this thesis, we
propose a model for DNA origami that strikes a balance between these two criteria
by representing DNA origami systems on a lattice at the level of binding domains.
Particular attention is paid to the constraints imposed by the double-helical twist, as
they determine where strand crossovers between adjacent helices can occur.

Because of the highly specific types of interaction and the length of the scaffold,
standard Monte Carlo simulation methods for polymeric systems are found to be
ineffective at sampling the dense, near-assembled states considered here. In order
to address the issue of sampling such states, we develop Monte Carlo methods that
extend the configurational bias and recoil growth methods, and consider the sam-
pling of scaffold conformations independently from the sampling of staple binding
states. We demonstrate the validity of our model and the feasibility of our sampling
methods with simulations of a small origami design previously studied with the
oxDNAmodel, as well as with designs that include staples that span longer scaffold
segments.

In other self-assembling systems, it is often the case that nucleation barriers con-
trol the self-assembly behaviour. We investigate whether there is a nucleation barrier
along the self-assembly pathway of DNA origami. Our simulations reveal that for
simple systems, stacking interactions govern a nucleation barrier, albeit one that is
never prohibitively large relative to thermal fluctuations. These findings may prove
useful in the design of DNAorigami structures capable of controllable reversible fold-
ing for functional purposes and in assisting the optimization of assembly pathways
at the design stage.

iii





Contents

Declaration i

Abstract iii

Acknowledgements vii

Glossary ix

1 Introduction 1
1.1 Structural DNA nanotechnology 1
1.2 DNA origami 3
1.3 Self-assembly of DNA origami 6
1.4 Modelling DNA origami 9
1.5 Issues and approach 14

2 Lattice models of DNA origami 15
2.1 State space 15
2.2 Potential energy 21

2.2.1 Bonding term 21
2.2.2 Stacking term 28
2.2.3 Steric term 32

2.3 Explicit helical axis model 37

3 Simulation methods 39
3.1 MCMC simulations for molecular systems 39
3.2 MC methods for lattice polymers 41
3.3 Move types for DNA origami lattice models 43

3.3.1 General considerations 43
3.3.2 Biased chain regrowth methods 45

3.4 Orientation vector rotation moves 47
3.5 Staple regrowth moves 48
3.6 Staple exchange moves 49

v



Contents

3.7 Scaffold regrowth moves 51
3.7.1 Growth bias 51
3.7.2 Segment selection 53

3.8 Replica exchange 58
3.9 Free-energy calculations 61
3.10 Numerical validation of MCMC move types 64
3.11 Optimization of MCMC parameters 64

4 Feasibility and validity of approach 67
4.1 Motivation 67
4.2 Simulation and analysis methods 67
4.3 Initial parameter selection 68
4.4 Results 69
4.5 Conclusions 83

5 DNA origami and nucleation 87
5.1 Motivation 87
5.2 Simulation and analysis methods 88
5.3 Results 89
5.4 Conclusions 109

6 Conclusions 115

References 121

vi



Acknowledgements

I would like to thank my supervisor, Prof. Daan Frenkel, for providing me with
the autonomy to approach scientific problems as I saw fit, and deftly steering me
away from unproductive avenues when I went too far off course. I would further
like to thank Dr Aleks Reinhardt, who provided invaluable guidance throughout
my PhD. Thanks to all the members over the years of office 360, the Downing lunch
group, the Frenkel group, and other members of the Chemistry department for the
friendly, supportive environment and engaging conversations they provided, espe-
cially (listed in alphabetical order) Dr Tine Curk, Dr Gül Güryel, Dr Jerelle Joseph,
Wei Kang, Haydn Lloyd, Dr Stefano Martiniani, Lisa Masters, Dr Matthias May, Dr
Carl Poelking, Dr Guillem Portella, Dr Bianca Provost, Simon Ramirez Hinestrosa,
Xiaoliang Tang, Dr Nick Tito, Dr Charlie Wand, Dr Michael Willatt, Dr Peter Wirns-
berger, Rhiannon Zarotiadis, Dr Chao Zhang, and Dr Mengjie Zu. I would also like
to thank the Marie Skłodowska-Curie training network, COLLDENSE, for funding
my PhD, as well as all the other early-stage researchers for their highly enjoyable
company at our many meetings.

Thanks to the friends I made at Darwin College who supported me through this
time, especially Charlotte Tumescheit, Melanie Whitfield, James Luis, and Helen
Street. A special thanks to Grace Bentham for her support in the final months of my
PhD. Thanks are due to my long-suffering housemate, Nadeem Gabbani, for putting
up with me. Finally I would like to thank my family, especially my parents, sister,
and brother-in-law, whose support has always been unwavering.

vii





Glossary

AFM atomic force microscopy

bp base pair

CAD computer-aided design

CB configurational bias

CT conserved topology

CTMC continuous-time Markov
chain

dsDNA double-stranded

fcc face-centred cubic

FRET Förster resonance energy
transfer

HP hydrophobic-polar

LFE Landau free energy

MBAR multi-Bennett acceptance ratio

MC Monte Carlo

MCMC Markov chain Monte Carlo

MD molecular dynamics

NN nearest-neighbour

nt nucleotide

PCA principal component analysis

PERM pruned and enriched
Rosenbluth sampling

REMC replica exchange Monte Carlo

RMSD root mean square deviation

RG recoil growth

SAW self-avoiding walk

ssDNA single-stranded DNA

US umbrella sampling

WHAM weighted histogram analysis
method

ix





1
Introduction

1.1 Structural DNA nanotechnology

Precise control at small length scales, and especially the manufacturing and assem-
bly of structures at these scales, has led to some of the most important technological
advances of the last century. This control usually comes from assemblymethods that
are “top-down”: an assembling machine contains the information necessary for the
final structure, and adds and subtracts components or material to reach it. Biological
systems are also fundamentally based around assembly at small scales, but besides
top-down approaches (an example being ribosomal polypeptide synthesis), they
also make use of “bottom-up” approaches. In bottom-up assembly, the components
contain the information of the final structure, and will self-assemble given sufficient
time and appropriate conditions; one example is the folding of a polypeptide chain.
Hijacking and mimicking these biological systems provides another route for as-
sembling designed structures at small scales. In contrast to proteins, nucleic acids
have highly specific interactions between a small number of monomer types, which
makes them particularly amenable for repurposing as a self-assembling material.

The monomers of nucleic acids, nucleotides, are composed of a phosphate group,
a 5-carbon sugar, and a nitrogen-containing aromatic group, referred to as a nucle-
obase, or simply a base. The phosphate group and the sugar are covalently bonded
between monomers to form the backbone of the polymer, while the base is attached
to the sugar. DNA, best known for its role as the primary carrier of genetic informa-
tion in cells, is a nucleic acid with four monomers, which vary only by their bases.
The four monomers fall into two groups: the purines, adenine (A) and guanine (G),
and the pyrimadines thymine (T) and cytosine (C) (Figure 1.1(a)).

The key property of DNA that makes it so useful to cells as an information
storage material is that it self assembles into a double helix in which each base
pairs to only one other base; specifically A pairs with T and C pairs with G. This
process is commonly referred to as hybridization. The base pairing is facilitated by
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Figure 1.1: Overview of DNA structure. (a) Chemical structure of the nucleotides.
Hydrogen bonding is shown in red. (b) Structure of the B-form DNA double helix.

hydrogen bonding and complementary shapes of the bases. However, stacking of
the bases between pairs contributes roughly half of the stability of the helix [2], an
interaction that involves both an electrostatic and a hydrophobic component. Wile
other pairings between free nucleotides may have the same number of hydrogen
bonds and a similar strength of base stacking, they are disfavoured because they are
not compatible with the geometry of the double helix that is favourable under typical
physiological conditions. While more than one form of double helix is possible,
under physiological conditions, B-form DNA, shown in Figure 1.1(b), is prevalent.

Structural DNA nanotechnology is the knowledge relating to the creation and
use of materials composed of DNA, and the materials themselves, which contrasts
with technologies relating to DNA’s information-storage capabilities. Because these
systems are based on biologicalmolecules, they have the advantage of being naturally
compatible with biological systems, although their applications extend far beyond.
The idea of using DNA to construct functional structures was initially conceived
by Seeman in the early 1980s [3–5], who demonstrated that DNA could be used
as a versatile design material to build novel nano-structures. Since then, there has
been great interest in pushing the limits of the size and intricacy of the structures
that can be designed and assembled with DNA. However, for the following two
decades, studies mostly focused on individual structural motifs or periodic 2D or
3D arrays comprising one or several of these motifs (sometimes referred to as the
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tile approach) [6]. These methods are limited in the scope of structures that can be
realized and, in the case of periodic designs, the necessity of extensive purification
and precise stoichiometry to achieve appreciable size and yield. In the last decade,
two new approaches have emerged that circumvent these issues: DNA origami and
DNA bricks. With the more recent of these, DNA bricks, multiple copies of a single
small structural motif, or brick, with distinct sequences assemble into structures
in which each brick has a unique, addressable location [7]. While the approach is
promising and has been extended to the construction of 3D structures [8], it is still
at an early stage in its development.

1.2 DNA origami

It was not until the seminal paper of Rothemund [9], which introduced the DNA
origami method, that the potential complexity and applications of structural DNA
nanotechnology systems really became apparent and began to be realized. The key
idea behind DNA origami is to employ a long single-stranded DNA (ssDNA) ‘scaf-
fold’ strand that is subsequently folded into its target structurewith the hybridisation
of a number of designed, shorter ‘staple’ strands that link selected binding domains
on the scaffold strand (Figure 1.2). As the staples and scaffold bind to each other,
double helices are formed, which aremuchmore rigid, and so provide the final struc-
ture with mechanical stability. The helices are connected to each other by crossovers
between individual strands on adjacent helices, typically forming four way junctions,
which are known as Holliday junctions [3]. While the two helices that comprise
the junctions in isolation are capable of being parallel, and when unconstrained are
relatively flexible, the presence of many junctions between helices in the structures,
the sequence design of the staples, and the high ionic strength leads to the junctions
taking on antiparallel configurations [3]. Because of the double helical twist, junc-
tions between two antiparallel helices will only be possible at certain intervals. While
early designs were mostly simple planar structures, it is now possible to design and
assemble virtually any connected 3D shape, including dynamic, stimuli-responsive
structures with flexible joints [10–16]. The advantages provided by DNA origami
have stimulated numerous investigations exploring design and assembly methods,
structural and functional classes, and applications in both medical and non-medical
fields, of which there have been many reviews [6, 14, 16–49].

DNA origami can act as an addressable platform for precise positioning of
molecules, as each staple type can be individually functionalized and has a unique
known position in the final structure [19, 20, 50, 51]. Such positioning has a broad
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Figure 1.2: A diagram of a DNA origami system in unbound and a bound states.
Staples are in orange while the scaffold is in green.2

range of applications: chemical sensors (e.g. by positioning RNA probes [52]),
nanoreactors (e.g. by positioning enzymes [53, 54]), electronics (e.g. by position-
ing carbon nanotubes [55] or DNA origami itself on a surface [56]), and photonics
(e.g. by positioning gold nanoparticles [57–59]). DNA origami is also of particu-
lar interest for drug delivery applications [17, 27]. Staples may be functionalized
with compounds that allow for increased cell uptake and targeted delivery, or with
the drugs themselves [30, 32]. Similar medicinal effects can also be achieved by
using different shapes or including aptamers or immunostimulating sequences in
the origami design [22, 30, 32]. Hollow 3D shapes which may function as containers,
some even with lock and key lids [60, 61], have also been explored, and again have a
clear application in drug delivery. Cancer has proven to be one especially attractive
target for DNA origami based-drug delivery and detection systems [27, 62, 63]

While static DNA origami designs already have a broad range of uses, the intro-
duction of dynamic, ormechanical, motifs further increases their possible utility [14].
Such motifs may interface with origami systems, as in the case of a DNA walker
moving on a DNA origami substrate [64], or be directly incorporated as part of the
origami structure [65]. In some cases they may be designed to be responsive to
external electric fields, allowing them to be directly user-controlled [66, 67]. These
motifs provide the possibility of creating nanomachines and nanorobots [24, 33];
one study has already demonstrated DNA origami acting as thought-controlled
nanorobots in living systems [68]. Finally, systems composed of a variety of origami
and non-origami motifs have been proposed that can carry out logical computations
on given inputs and carry out an action based on the results [69]; this might be
used for the intelligent release of drugs [70] or the creation of a molecular assembly
line [71].

2The diagram of the assembled state is adapted by permission from Springer Nature Customer
Service Centre GmbH: Nature Research, Nature, Guiding the Folding Pathway of DNA Origami, K. E.
Dunn, F. Dannenberg, T. E. Ouldridge, M. Kwiatkowska, A. J. Turberfield, and J. Bath, 2015.
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The methods for designing and assembling DNA origami themselves have seen
significant advancement in the decade since the origami approach was introduced.
While the first DNA origami structures were designed by hand, a likely very time-
consuming process, Douglas et al. [72] released a computer-aided design (CAD)
program for designing both 2D and 3D origami structures. The designs rely on
placing the helices in parallel in a regular way to deal with the constraints imposed
by the double helical twist on the location of junctions between helices. In the case
of 3D structures, honeycomb or square lattices are used, although curves are able to
be incorporated by shortening or lengthening some of the helices in the structure to
manipulate the internal forces [10, 11, 73]. One important application to come from
the development of 3D structures was the creation of nanopores from DNA origami,
some of which are able to be inserted into lipid membranes [34, 35, 74, 75]. However,
more advanced design methods and algorithms have recently been developed that
allow almost arbitrary wireframe structures to be constructed [12, 13, 15, 76, 77], and
efforts have been made towards hierarchical self-assembly in which DNA origami
structures themselves become the components in larger structures [78–81].

Another design constraint is the scaffold strand itself. While the staples can be
synthetically produced, the desired length of the scaffold strand has often precluded
its production by the same route. Thus, biotechnological approaches for the synthe-
sis of the scaffold are used: typically, the scaffold is the genome of the M13mp18
bacteriophage, which is a circular 7429 nucleotide strand [82]. Of course, using a
single scaffold for all designs is not optimal; alternative scaffolds are being explored
by modifying the commonly used viral genome or using other viral genomes as the
scaffold, and now even through fully synthetic production of the scaffold [82–91].
With a fully customizable scaffold and careful sequence design considerations, it is
now also possible to produce ssDNA origami, in which the scaffold folds without
the aid of staples [92].

More practical restrictions on the use of DNA origami relate to its cost, stability,
and quality. One approach to decrease the cost has been to avoid the expensive and
poorly scaling synthesis of the staple strands by inserting them into the phagemid
that the scaffold is produced within and producing them with biotechnological
methods [83, 93]. An alternative approach is to use multiple copies of each staple
type [94]. The stability of DNA origami under various conditions, especially cation
concentration and the presence of nucleases, has been examined and stabilization
methods proposed [18, 21]. For sensitive applications, it is important to be able to
quantify the quality of the assembled structures and the actual level of addressability
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provided; methods have been developed for this purpose [95, 96].

1.3 Self-assembly of DNA origami

One of the advantages of the DNA origami method is that the intensive purification
and precise stoichiometry required when attempting to assemble periodic, tile-based
structures is no longer necessary [3]. Assembly is often performed by thermally an-
nealing amixturewith an excess of staple strands over several hours or evendays [97].
However, Sobczak et al. [98] found that, following a high-temperature denaturing
step, it is also possible to assemble structures isothermally. While isothermal assem-
bly had been demonstrated previously, it had replaced the thermal annealing with
an inconvienient chemical denaturant annealing step [99]. Isothermal assembly has
been shown to be more efficient for a range of designs, with the optimal temperature
for this process depending on both the design of the target structure [100] and the
conditions [99, 101, 102]. With the addition of a chemical denaturant [101, 102]
or the use of mechanical pulling [103], it is even possible to carry out assembly at
or near room temperature. While the most common assembly conditions involve
the use of a buffer solution that includes magnesium chloride, assembly has been
demonstrated with only monovalent ions [104]. Besides potential increases in speed
and yield, having multiple conditions available is useful when the staple strands
are functionalized to groups sensitive to some of the typical assembly conditions.
Other more involved assembly methods have been explored that allow for one-pot
assembly of multiple different structures [105] and the ability to trigger assembly
with a lock-and-key approach for in vivo situations [106].

The factors that determine the kinetics of origami formation are different from
those that determine the formation of an ordered crystal. Cademartiri and Bishop
[107] differentiate between two fundamentally different types of self-assembly: the
puzzle and the folding approach. Crystals and many periodic structures typically
form via the puzzle mechanism. The information of how and where a given com-
ponent must bind under the puzzle mechanism is entirely stored in the interactions
between components; they move freely through the solution until the correct part-
ners in the correct orientation are encountered. To achieve complex and addressable
structures [50], the interactions between components must be highly specific (e.g. in
DNA bricks [8]). By contrast, the folding mechanism relies on the fact that some
of the components are already covalently bonded to each other, where the covalent
bonds are formed by some non-self-assembling process. As an example, protein
folding starts from a structure inwhich the individual amino acids have been bonded
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together by a ribosome in a particular sequence that is encoded in the genome. This
pre-forming of more permanent bonds by some other process allows complex struc-
tures to be encoded with less specific types of interaction between the individual
components (e.g. non-covalent interactions between amino acids) because of the
additional constraints on the system. With the binding of the staples to specific
segments of a scaffold strand and the subsequent folding up of the scaffold strand,
DNA origami combines both of these approaches.

The assembly process of DNA origami has been characterized experimentally
and through simulation. Experimental characterization can be done for bulk prop-
erties, usually with spectroscopic techniques for measuring melting and annealing
curves, or for individual structures, with atomic force microscopy (AFM) images
of origami structures [108]. Measuring overall assembly can be done by record-
ing UV absorbance, which decreases upon transitioning from ssDNA to double-
stranded (dsDNA), or recording the fluorescence of intercalating dyes, which fluo-
rescemore efficiently in dsDNA. Information on the assembly of localized parts of an
origami structure can be obtained by using Förster resonance energy transfer (FRET)
probes hybridized to staples close to each other in the final structure. The models
that have been used to study the assembly process are described in Section 1.4.

An important question about the assembly process is whether it is under kinetic
or thermodynamic control, and to what extent this depends on the conditions, as-
sembly protocol and origami design. Hysteresis between the melting and annealing
curves is commonly observed [109–114], with annealing occurring at lower temper-
atures than melting; the effect seems to be stronger in 3D origami structures [111].
Increasing the heating/cooling rate has been found to have a more pronounced effect
on annealing than onmelting [98, 110], which suggests that for some conditions and
designs assembly is slow relative to melting and may involve high free-energy barri-
ers, corresponding to a process under kinetic control. Conversely, Wah et al. [115]
examined intermediates of the assembly process with AFM of origamis of a similar
design and found that the annealing and melting pathways were largely the reverse
of each other, and that the calculated melting and annealing temperatures were in
agreement within experimental error, suggesting a thermodynamically controlled
process.

Using both AFMmeasurements and simulations, Dunn et al. [109] examined an
origami design forwhichmultiple fully assembled configurationswere equally stable
and showed that both thermodynamic and kinetic factors could be manipulated to
control the outcome of the assembly reaction. They were able to shift the assembly
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yield towards specific assembled configurations by modifying the staple designs to
increase the stability of those states. A similar shift in assembly yield was also able
to be achieved with staple modifications that instead changed the stabilities of some
of the intermediate states in the assembly pathways, leaving the stabilities of the
assembled configurations unchanged.

The assembly of DNA origami is a cooperative process [98]. This follows from
the fact that the melting and annealing curves, as measured with spectroscopic tech-
niques, are narrower than those of the corresponding isolated binding domains. The
most obvious form of cooperativity is the increase in local concentration of binding
domains when they are brought together by a staple that binds nearby domains to
form a loop [109, 116]. However, Dannenberg et al. [110] found that coaxial stacking
between staples adjacent to each other on the scaffoldmay also increase cooperativity
of the assembly process. Another form of cooperativity was uncovered by Shapiro et
al. [117]. They found that for heterotypic junctions, where the melting temperature
of each arm is different, the annealing temperatures of domains in the junction were
shifted relative to the free state ones, and that the order of the arms can further shift
the annealing temperatures. Both forms of cooperativity would be expected to have
primarily a local effect and indeed FRET experiments [111] and simulations [110]
have found that excluding a staple from the reaction mixture only affects the binding
of nearby staples in the assembled structure. By contrast, AFM studies of assembly
pathways found that assembly started at the edges of the structure and proceeded
inwards [115, 118]. However, a study using a similar method found the staples were
binding to the partially formed structure in an independent manner [119].

Perhaps the most thorough study of the assembly pathway of an origami de-
sign, which was a 3D structure based on a honeycomb lattice, is that of Schneider
et al. [116]. For each staple type, they ran isothermal assembly reactions where that
staple type had FRET probes to measure the kinetics of its binding to the scaffold;
additionally, they placed the FRET probes on pairs of staples expected to be in close
proximity in the assembled structure to measure the correlation between these sta-
ples. By comparing results between two different staple sets with the same topology
but different sequences, they found that sequence was not a strong factor in the order
of staple binding. The largest factor in correlations between assembly times was the
topology, with staples that closed similar loops being well correlated, and longer
loops being correlated with later incorporation times. They also found that the ge-
ometric position in the final structure was not well correlated with staple binding
times; i.e. ‘internal’ staples did not incorporate more slowly, which they speculate is

8



Introduction

because the division between internal and external is not well defined until very late
in the assembly process. The staples had on average 5.3 domains, and they found the
binding of the termini of individual staples to not be strongly correlated, implying
that the pathway is better described by the binding of individual domains, rather
than by whole staples.

The highest resolution look at an assembly mechanism is that of Snodin et al.
[120]. They ran simulations (see Section 1.4 for a description of their approach)
of a small origami system with several temperatures and two staple concentration
regimes. They found one of the greatest kinetic hindrances to full assembly was
the blocking of staple binding by the binding of another staple of the same type at
the other scaffold domain. Misbinding, especially of a bound domain to adjacent
domains, also had a substantial effect. However, the results are difficult to interpret,
as they simulated assembly fully only a single time, used a model with base-pair
averaged binding energies, employed much higher staple strand concentrations
than is typical in experiments, and studied a design that lacks long-ranged staple
crossovers. It may be that the timescale of blocking resolution is fast enough not to
be a limiting factor in experimental assembly conditions.

1.4 Modelling DNA origami

Molecular simulations can be used to gain a better understanding of the factors
that influence the thermodynamics and kinetics of assembly and melting of DNA
origami structures. A great variety of models of DNA have been developed [121–
125]. These span the gamut of particle resolution, ranging from atomistic [124],
sub-nucleotide coarse-grained models [124, 126–151], nucleotide coarse-grained
models [152–159], single and multiple base-pair coarse-grained models [160–163],
to continuum models [164]. Some are intended as general DNA models, while
others are designed with specific applications in mind; for example, models of DNA
that are more statistical in nature have been designed to gain a better understanding
of the fundamentals of hybridization and denaturation of strands [165–172].

Some approaches to modelling DNA origami are intended or only feasible for
studying the assembled state. Because most experimental characterization of folded
states is in the form of AFM, which requires the origami structure to be adsorbed on
a surface, these studies of assembled states provide a much needed glimpse at the
structure when free in solution, as well a way to study their mechanical properties.
The brute-force approach is to use fully atomistic simulations, which in addition
to mechanical properties can also be used to study the dynamics of the assembled
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structures [173, 174]. Still, these simulations are time consuming and include much
more detail than is necessary if one is interested only in mechanical properties of
assembled states. A more popular and successful approach with such a focus has
been developed [11, 175, 176], in which DNA double helices are modelled as finite-
element elastic rods rigidly connected to other double helices, and single-stranded
DNA as a finite element approximation of a freely jointed chain; the system is relaxed
from a given initial state to find a force-balanced equilibrium state. A more recent
model that takes a more discrete approach to studying mechanical properties has
also been developed [177].

Unfortunately, as in protein-folding simulations, direct atomistic simulations of
the assembly process are not feasible for all but the shortest sequences. It is therefore
necessary to use simplified yet realistic models. In fact, several such models that
vary in their level of detail have been introduced. These models can be split into
two classes: lower-resolution models that take a statistical approach, and higher-
resolution models that are based on physical coarse-grained models of DNA.

In the lower-resolution models, the standard approach is to model DNA origami
self-assembly by extending a thermodynamic model of DNA hybridization to ac-
count for the entropic effects of folding the scaffold. A naive approach to calcu-
lating the free-energy change upon hybridization of two strands would be to sum
the free-energy contribution of each base pair, with contributions from A/T base
pairs and C/G base pairs, plus some additional free-energy cost of bonding two
strands together. However, in addition to the difference in hydrogen bonding be-
tween base pairs, there are differences in the interactions (e.g. the base stacking)
between different combinations of base pairs. In what is commonly referred to as
the nearest-neighbour (NN) approach [167], the two directly adjacent nucleotides
are considered to provide sufficient context for calculating an accurate free energy
of hybridization contribution, such that

Δ𝐺−∘
NN =

𝑖=𝑛−1
∑

𝑖
Δ𝐺−∘

NN, 𝑖 (1.1)

where Δ𝐺−∘
NN is the standard state NN Gibbs free energy of hybridization, 𝑛 is the

number of base pairs, and Δ𝐺−∘
NN, 𝑖 is the standard state NN Gibbs free-energy contri-

bution of the pair of base pairs at position 𝑖 and 𝑖 + 1. This results in ten parameters
rather than two, corresponding to ten distinct pairings of base pairs. The number of
parameters doubles if the temperature dependence of the free energy is desired, as
now the enthalpy and entropy are required separately, with Δ𝐺−∘

NN = Δ𝐻−∘
NN−𝑇Δ𝑆−∘

NN,
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where 𝐻−∘
NN is the standard state NN entropy and Δ𝑆−∘

NN is the standard state NN
entropy. One could consider going even further and including the next nearest
neighbours, but this was found to lead to little increase in accuracy [167].

To determine the parameters for a NN model, one can measure the melting
temperatures for a set of sequences across a range of concentrations, providing the
enthalpies and entropies for each sequence, which can then be used in a linear
regression. The enthalpies and entropies are usually assumed to be independent
of temperature, so the validity of the parameters decreases when the temperature
deviates too far from the melting temperatures of the sequences used in the pa-
rameterization, although this dependence can be accounted for [178, 179]. These
models have also been modified to account for varying salt concentrations [167, 180].
Besides fully hybridized states, NN models can also account for single internal and
terminal mismatches, dangling ends, various loops and bulges, and coaxial stacking
between separate strands [167]. A number of groups have derived NN parameter
sets, but the most successful is set was derived by the Santalucia group [167, 181,
182], which is based on a set of 108 sequences.

With the NN approach as a foundation, Arbona, Aimé and Elezgaray [112–114]
modelled the assembly process as a series of equilibrium reactions to calculate the
likelihood that a particular staple or individual staple binding domain is bound to
its complementary binding domain(s) on the scaffold at a given temperature. To
calculate the equilibrium constants of each reaction, they introduce a model of the
free-energy change upon binding of each staple, Δ𝐺 = Δ𝐺NN + Δ𝐺top, where Δ𝐺NN

is from the NNmodel and Δ𝐺top is the contribution of the topology of the system in
its current bound state. To solve their equations they make a number of assumptions.
The first is to assume that staples bind fully and only to the correct domains. The
second is to assume that if the probability of one staple forming is greater than
another, then that staple will always bind first. Perhaps most fundamental, however,
are the assumptions involved in calculating Δ𝐺top, which involves considering the
free-energy cost of forming loops when new staples form. They calculate the loop
contribution by empirically modulating another term from the NNmodel that gives
the free-energy cost of hybridizing two strands when a segment of one of the strands
has extra, non-complementary bases that stick out and form a bulge.

Dannenberg et al. [110] and Dunn et al. [109] instead formulated their model as
a continuous-time Markov chain, where the state space is described by the binding
states of each staple type in the system, which allows a clearer link to the kinetics of
the assembly process. The state space is described by the states of each staple type
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in the system, where a two-domain staple can either be unbound, bound to one, the
other, or both scaffold domains, or have two copies, one at each domain. The absolute
values of the rate constants aremade calculable by assuming the reverse rate to be the
unbinding rate of an isolated duplex. The continuous-time Markov chain (CTMC)
is simulated by selecting a timestep interval and a temperature change rate, and
cycling between an initial and final temperature.

As with the previous model, the NN model is used for the basic hybridization
free energy, supplemented with a term to include the effects of topology, but here an
additional term is added to describe stacking interactions between staple domains on
separate staples bound to contiguous segments of the scaffold, Δ𝐺stack. The stacking
term is also based on the NN model, but they take the sequence averaged value and
multiply it by a parameter they tune during the parameterization of the model. The
topology term is taken to be the free-energy change upon breaking and forming
loops in the system; the total contribution relative to the fully unbound state is

𝐺top
𝑠 − 𝐺top

null = ∑
𝐿(𝑠)

Δ𝐺loop
𝑗 ,

where 𝐺top
𝑠 is the absolute free energy in state 𝑠, 𝐺top

null is the absolute free energy in
the unbound state, 𝐿(𝑠) is the set of loops in state 𝑠, and Δ𝐺loop

𝑗 is the free energy of
forming loop 𝑗.

At least for 2D origami designs, the loops can be unambiguously identified; more
complex designs require a simplified approach, which they term the local model
(in contrast to the full, “global” model), where they assume that only free-energy
changes resulting from the formation or dissolution of the smallest loop are relevant.
The loop free energies are calculated from the probability that the ends of the loop
come together within an arbitrarily small distance 𝑟𝐶 when not constrained, 𝑃𝑟𝐶

loop,

Δ𝐺loop = −𝑅𝑇 ln⎛⎜⎜
⎝

𝑃𝑟𝐶
loop

𝑃𝑟𝐶
𝑣0

⎞⎟⎟
⎠

,

where 𝑃𝑟𝐶
𝑣0 is the probability that the ends come together in two unbound strands in

an ideal system with volume 𝑣0. By assuming the probability distribution can be
described by that of a freely jointed chain and integrating, they obtain

Δ𝐺loop = 𝑅𝑇𝛾 ln
𝐶

𝐸[𝑟2]loop
,
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where 𝛾 and 𝐶 are parameterized constants, and 𝐸[𝑟2]loop is the mean squared
distance between the two ends.

These approaches allow the assembly process to be simulated in under an hour
on current computers, and have led to some important insights into the self-assembly
process (see Section 1.3). Nevertheless, the efficiency advantage that these statistical
models provide comes at the price of having no explicit geometric representation
of the system, and making fairly strong assumptions about the entropic changes
that occur during assembly. Furthermore, in Dunn et al. [109], an ad hoc exclusion
algorithm is used to reject configurations that are not on a pre-defined folding path
as a proxy for steric constraints. Finally, these models ignore the possibility that
staples may bind (albeit less strongly) to incorrect binding domains.

The higher resolution approach involved the use of amore general coarse-grained
model of DNA known as oxDNA that can be simulated with Monte Carlo (MC) or
molecular dynamics (MD) methods [183–186]. This model is coarse-grained to the
level of nucleotides, which are rigid and resolve the backbone from the base in the po-
tential. The potential includes a spring potential for the backbone, excluded volume
interactions for the backbone and base, as well as hydrogen bonding base-stacking
interactions that have an angular component. They parameterized it by matching
to structural, thermodynamic, and mechanical properties, with a trial-and-error
approach. The model has been successfully used to study mechanical properties
of DNA origami structures [187], as well as their stability upon force-induced un-
ravelling [188]. Perhaps most ambitiously Snodin et al. [120] ran simulations of
the self-assembly of a small DNA origami, the results of which we discussed in
Section 1.3. They were able to capture a full assembly event in unbiased simula-
tions of the system with their model, which allowed them to study the process in
unprecedented detail. However, because of the level of detail that oxDNA provides,
these simulations of a small origami design with only short loops present in the
final structure took several months on a cluster with GPU acceleration. Moreover,
they found it necessary to use staple concentrations in excess of those typically used
in experimental assembly conditions. This is not just a matter of speeding up the
kinetics: such high concentrations shift the equilibrium between free and bound
staple strands towards the bound states.
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1.5 Issues and approach

Although the rules for designing a DNA origami system with a particular final
structure are well understood, our understanding of the precise assembly thermody-
namics and kinetics (i.e. the order and cooperativity of staple binding) is muchmore
limited. Yet such understanding is potentially very useful for designing origami
structures that foldmost efficiently into their target structure. Given the range of pos-
sible applications of DNA origamis, improving the speed and yield of their assembly
may have significant practical use.

While there has certainly been progress in understanding fundamental aspects of
DNA origami self-assembly, there are contradictions in the findings, and limitations
in the approaches taken. Experimental studies of assembly with AFM can examine
individual intermediate and final origami structures [115, 119, 189], but they are
fundamentally limited to simple, planar designs. OxDNA is useful for studying the
dynamics of DNA nanostructures, but it is too detailed for studying the assembly
process: even with the previously mentioned unrealistic conditions chosen to speed
up the process, the simulations took months running on GPUs to simulate a single
assembly event [120]. The statistical models are certainly computationally feasible,
but they lack an explicit model of the geometry of the system, instead making very
strong assumptions about the nature of cooperativity in the assembly process.

In Chapter 2, a model is proposed that is intended to bridge the gap between the
detail of the oxDNAmodel and the efficiency of the statistical models for the study of
DNA origami self-assembly. In Chapter 3, methods for sampling the configuration
space defined by our proposed model are developed, which specifically address
the challenges of sampling near-assembled and assembled states of DNA origami
systems. In Chapter 4, we test the feasibility of our approach by simulating three
different small test systems, and compare our results to what we expect as a test of
the validity of the model. Finally, in Chapter 5, we examine the role of nucleation in
the self-assembly of DNA origami.
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2
Lattice models of DNA origami

2.1 State space

To realize our goal of developing a computationally feasible model of DNA origami
self-assembly, we chose to use a lattice representation in order to increase computa-
tional efficiency by reducing configuration space. The use of a lattice representation
for structural-DNA-nanotechnology systems has good precedent: a lattice model
of DNA bricks was remarkably effective [190–192], and unexpectedly yielded near
quantitative agreement with experimental measurements of the nucleation kinet-
ics [193]. Apart from this model, a number of other lattice models of nucleic acids
have been developed previously, although of those that allow for changes in the hy-
bridization state, the particle resolution is typically at the level of nucleotides or finer,
and they are mainly aimed at understanding ssDNA dynamics and hybridization
thermodynamics and kinetics [155, 159, 165, 166, 194], or in one case predicting RNA
folded states with a scoring function [195]. The goals of lattice models of protein
folding [196, 197] overlap more with the goals of the model developed here, but the
structural details are sufficiently different that again there is not a model that can be
easily modified to suit our needs.

One of the most fundamental choices to be made in the design of the model is
the level of resolution of the molecules. In the context of DNA origami, a ‘binding
domain’ is defined as a segment of an individual DNA chain that, in the final as-
sembled state, is fully bound to another, complementary segment of DNA. In our
model, we choose binding domains as the basic unit and represent such binding
domains as particles on a lattice. The definition of a binding domain in the model
may differ from the definition of a binding domain for a given design, as here the
binding domains must be all approximately the same length, or number of residues.
If a design has binding domains whose lengths are integer multiples of each other,
the binding domain as defined in our model will be the smallest binding domain in
the design, with larger binding domains in the design being represented by multiple
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binding domains in the model. Designs commonly vary the length of the binding
domains by one or two residues to reduce internal stresses in the final structure,
and these may be represented in our model as a single binding domain as the total
change in length is relatively small. However, if the binding domains substantially in
length and are not integer multiples of each other, it may not be feasible to represent
the design with our model. Finally, contiguous binding domains on a given chain
are constrained to occupy adjacent lattice sites.

Initially, four lattices were considered as possibilities for the model: simple cubic
(coordination number of 6), face-centred cubic (fcc) (coordination number of 12),
high coordination cubic [155] (coordination number of 26), and the bond fluctuation
model [198, 199] (coordination number of 108). The latter two provide a way of
extending the coordination number of a lattice by representing the occupancies
with multiple lattice sites, and allowing a small amount of variation in the bond
length. These approaches allow for a finer description of space, but at the cost of
extra complexity of the model. The fcc lattice has the issue of having variable angles
between neighbouring lattice sites. Because many origami designs have angles
between helical axes that involve only angles that are multiples of 90° in the final
structure, the simple cubic lattice, while having a relatively low coordination number,
gives a reasonable approximation of space for our purposes.

The most common way of describing an association between two units in nucleic
acid lattice models is to have them interact when on adjacent lattice sites [155, 159,
165, 190, 195], possibly with a particular orientation of some conformational degrees
of freedom [159]. However, this description makes inclusion of the double-helical
twist difficult, which, as will be discussed later, is critical to modelling DNA origami.
Therefore, in our model two domains can hybridize only when sharing the same
lattice site, a choice also made by Everaers et al. [166] and Causo et al. [194] in
their models of DNA hybridization (both of which also happened to use a simple
cubic lattice). The lattice sites can have an occupancy of zero (unoccupied), one
(unbound), or two (bound or misbound), where the number indicates how many
domains are present at that site (Figure 2.1). Bound states are defined to be only
those in which the two binding domains occupying the same lattice site have fully
complementary sequences; if the sequences are not fully complementary, it is defined
as a misbound state.

The primary challenge in designing a model at this level of resolution for the
simulation of DNA origami self-assembly is to account for the constraints imposed
by the double-helical twist on the structure of the system. There are two aspects
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Figure 2.1: Schematic illustrations of the basic elements of the model. A cartoon
helix representation is given on the top, and on the bottom is a representation of the
same configuration in our model. There is one scaffold with three binding domains,
one staple with two binding domains, and one staple with a single binding domain.

to this challenge. First, we need constraints to restrict where a strand crossover
can occur between parallel helices. This is necessary because the strands of two
adjacent parallel helices are only in a position compatible with a strand crossover at
certain intervals of base pairs along the helices. Second, some way of transmitting
information on the current phase of the helical twist along adjacent binding domains
in the same helix is needed.

By associating an orientation unit vector with each binding domain, it is possible
to create a set of rules that meets both requirements. In arguing for the form of the
model, we will refer to diagrams of an idealized double-helical structure of DNA,
rather than a fully atomistic model, which is sufficient for the level of detail we are
targeting in the design of our model. In a bound or misbound state, we define the
orientation vector as the vector which points out orthogonally from the helical axis
to the position of the strand at the end of the helix in the current binding domain.
In the case of a scaffold chain, the positive direction is defined as 5’ to 3’, while in
the case of a staple chain, it is defined as 3’ to 5’.

Suppose two particles in our model occupy a given lattice site. According to the
above definition of an orientation vector, if the lattice site is in a bound or misbound
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state, the orientation vectors of the two binding domains must add up to zero. As an
example, consider a systemwith two fully complementary pairs of 16-nucleotide (nt)
binding domains, as in Figure 2.2(a)(i). For visualization purposes, it is convenient
to represent a point on the lattice as corresponding to the centre of double helix. At
the end of the first binding domain, the scaffold strand (teal) is at the bottom of the
helix, and so the orientation vector for the binding domain of the scaffold strand
(pink arrow) points downwards from the centre line. By contrast, the staple strand
(orange) is at the top of the helix at the same point, and so the orientation vector
for the binding domain of the staple strand (green arrow) points upwards from the
centre line. In an unbound state, the direction of the orientation vector is uniformly
distributed.

The orientation vector thus clearly contains information about the current phase
of the twist at the end of the helix in the binding domain. In order for the model
to be consistent with helical geometry, which here is assumed to correspond to B-
DNA, when two adjacent binding domains are in the same helix, the dihedral angle
between the planes defined by the orientation vectors and the vector connecting the
two domains must be determined by the number of turns of the helix between them
(Figure 2.2(b)). We shall refer to the unit vector that connects two binding domains
as the ‘next-binding-domain vector’, since for a given binding domain, it points to
the next binding domain along the chain. It is important to differentiate the next-
binding-domain vector from a vector that is parallel to the helical axis. The version
of the model that is used in the simulations presented in Chapter 4 and Chapter 5
does not define an explicit helical axis, a decision made to reduce simulation time
by reducing configurational space.

Because there is no explicit helical-axis vector in the model, a single pair of
bound domains will only implicitly define the helical axis to lie within a plane
(Figure 2.2(d)). The helical axis is not resolved until an adjacent binding domain
enters a bound state in the same helix. If a binding domain contiguous to one of two
bound domains enters a bound state that is not in the same helix, then the helical
axes of the first bound pair and the new bound pair will become more restricted in a
configuration dependent way, but will not be fully resolved. This will be discussed
further in Section 2.2.2 and Section 2.2.3. We briefly consider an alternative model
in which an explicit helical axis is defined in Section 2.3.

The dihedral angle that we expect depends on the length of the binding domains.
For example, in the case we considered above (Figure 2.2(a)), each binding domain
corresponds to 1.5 turns of the helix. If two adjacent bound domains are in the
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Figure 2.2: Representation of helices in the model. (a) Two 16-nt long binding
domains, which in B-form DNA corresponds to about 1.5 turns of the helix. In
(i), both binding domains are part of the same helix, while in (ii), they are part
of separate helices with a kink between them. (b) Orientation vectors and helical
phase. The boxes are projections of the scaffold orientation vectors of the two binding
domains onto a plane normal to the next-binding-domain vector, with the dihedral
angle indicated. Left: the orientation vectors are consistent with two stacked 16-nt
(1.5 turn) binding domains. Right: the orientation vectors are consistent with two
stacked 8-nt (0.75 turn) binding domains. (c) Physical interpretation of the next-
binding-domain vector when considering two orthogonal helices. The helix of the
first binding domain is drawn on the bottom right lattice site, while the helix of the
second binding domain is drawn after rotation, as well as centered on the remaining
three lattice sites (at 50% opacity). Black points are place at the centre of each lattice
site. The black vector points from the centre of the first binding domain to the centre
of the top left lattice site, which happens to pass through the centre of the second
binding domain (marked by a teal point). The blue vector points from the end of
the first binding domain to the end of the second binding domain. The yellow vector
is the result of coarse-graining the blue vector to the next-binding-domain vector of
our model. (d) A single pair of bound domains only constrains the helical axis to a
plane.

same helix, we therefore expect a dihedral angle of 180°; the orientation vectors of
the scaffold (pink) and staple (green) strands in Figure 2.2(a)(i) must therefore
alternate in signwhen they are part of the same helix. More generally, becausewe are
restricted to a simple cubic lattice, all binding domains that may bemodelled fall into
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four classes, based on the dihedral angle prescribed by the number of turns. These
classes differ by the fraction of a turn that remains after the 𝑛 whole turns that make
up the double helix for a binding domain in a hybridized state. We refer to these as
whole-turn binding domains (remainder of zero), quarter-turn binding domains,
half-turn binding domains, and three-quarter-turn binding domains. However,
whole-turn binding domains are not useful in origami design, at least using our
definition of binding domains, as they do not allow for crossovers between parallel
helices, so we do not consider them further.

The mapping between the model geometry and more detailed representations
is not intended to be exact. There are two related issues that should be mentioned
here. First, parallel helices with crossovers between them are represented as being on
adjacent domains, yet the distance between the centres of helices along the same helix
and across parallel heliceswill in general not be the same. For small binding domains,
these distances are approximately the same, but for longer binding domains, the
approximation will become progressively worse. We consider 8-base pair (bp) and
16-bp long binding domains in this work; an 8-bp binding domain is about 2.7 nm
long, while a 16-bp is about 5.5 nm long. Using B-formDNAgeometry and assuming
approximately 1 nm spacing between parallel helices in an origami structure [9],
this gives a distance of 3 nm between the centres of parallel helices. For the level of
detail of this model, these ratios are deemed acceptable.

The second involves the physical meaning of the next-binding-domain vector.
A simple way to visualize this vector is to have it point from the centre of the first
binding domain to the centre of the second binding domain. While this is sufficient
for unbound domains and binding domains that form a single helix, the mapping
does not always work for bound domains that are not in the same helix. For two
orthogonal helices, the vector would point approximately towards a lattice site di-
agonal to the current site, yet we only allow contiguous binding domains to be on
adjacent lattice sites. To resolve this, we first note that we simply need a reasonable
way to bin configurations represented at a higher level of detail to our lattice model
in a consistent way. Thus, when binning configurations with orthogonal helices, the
next-binding-domain vector is defined to point from the end of the first helix to the
end of the second helix (Figure 2.2(c)). Because the assembled structures do not
involve these configurations, we deem this approximation acceptable as the exact
geometry of the partially assembled states is unlikely to be critical for purposes of
our modeling. Finally, for two bound domains that are in parallel helices, as in Fig-
ure 2.2(a)(ii), it is sufficient to consider the next-binding-domain vector as pointing

20



Lattice models of DNA origami

from the centre of the first to the centre of the second.

2.2 Potential energy

The next step in developing the model is to define a potential energy function that
captures the relevant details of these systems. The potential energy is composed of
three primary terms,

𝑈 = 𝑈bond + 𝑈stack + 𝑈steric, (2.1)

where 𝑈bond is the contribution from bonding between binding domains, 𝑈stack is
the contribution from base stacking between binding domains, and 𝑈steric is the
contribution from steric interactions. Both 𝑈stack and 𝑈steric are composed of further
subterms that depend on two, three, or four pairs of bound domains.

2.2.1 Bonding term

To account for the fact that DNA strands bond with one another, we compute an
energy of interaction for all bound or misbound lattice sites. This energy of inter-
action in our model is taken to be the hybridization free energy of the two strands
that occupy the same lattice site, accounting not only for the energy of bonding, but
also, in a coarse-grained way, for the entropy of hybridizing two molecules. Conse-
quently, the interaction energies in our model are strongly temperature dependent.
We compute the hybridization free energies associated with bound and misbound
states using the unified-NN model [167, 181, 182], which are a function of both
temperature and salt concentration. Here, we consider calculations only for fully
hybridized segments, the relevant terms for which are

Δ𝐺−∘
NN = Δ𝐺−∘

initiation + Δ𝐺−∘
symmetry + ∑ Δ𝐺−∘

stack + Δ𝐺−∘
AT terminal. (2.2)

Δ𝐺−∘
initiation is a sequence-independent initiation free energy, while Δ𝐺−∘

AT terminal is a
term to account for having a terminal AT pair, if applicable. Δ𝐺−∘

symmetry accounts for
palindromic sequences, but since staples are designed never to be palindromic to
prevent self binding, this term can be ignored. Finally Δ𝐺−∘

stack is the stacking-free-
energy term, which is calculated for all (overlapping) pairs along the sequence.
The parameters of the unified-NN model as given in [167] assume a standard
state amount concentration of 1M. Parameters are provided for both the enthalpic
and entropic contribution, allowing for inclusion of the temperature dependence
(Δ𝐺−∘

NN = Δ𝐻−∘
NN − 𝑇Δ𝑆−∘

NN), where 𝑇 is the temperature. Sodium ion dependence
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can also be taken into account through an empirical relation,

Δ𝑆−∘
NN([Na+]) = Δ𝑆−∘

NN +
0.368𝑁

2 ln⎛⎜
⎝

[Na+]
[−∘]

⎞⎟
⎠

, (2.3)

where Δ𝑆−∘
NN is the standard-state entropy at 1MNaCl, 𝑁 is the number of phosphate

groups in the DNA strand, [Na+] is the sodium ion amount concentration, and [−∘] is
the standard state amount concentration. In the case of partially complementary se-
quences, the hybridization free energy is approximated by the predicted free energy
for the longest contiguous complementary sequence of the pair; this approximation
has been shown to work well when simulating DNA bricks [190, 191, 200].

To formally map the hybridization free energies from the unified-NN model to
the interaction energy of two binding domains in our model, we follow the approach
of Reinhardt and Frenkel [192]. Here, we must consider two different types of
reactions: intermolecular, in which a binding domain on a free staple hybridizes to
a binding domain in a scaffold system, where a scaffold system refers to a single
scaffold strand and any staples bound directly or indirectly to it, and intramolecular,
in which two binding domains in a scaffold system hybridize. In the first case, we
have a bimolecular reaction with an equilibrium constant 𝐾b of the hybridization
reaction between a staple binding domain A and a scaffold binding domain B,

A + B −−−⇀↽−−− AB, (2.4)

𝐾b =
[AB][−∘]
[A][B] =

𝐶AB𝐶−∘

𝐶A𝐶B
= e−𝛽Δ𝐺−∘

NN, (2.5)

where 𝐶𝑥 is the number density (i.e. number concentration) of 𝑥, 𝐶−∘ = NA[−∘] is the
standard state number density, NA is Avogadro’s constant, and 𝛽 = 1/𝑘B𝑇, with 𝑇
being the temperature, and 𝑘B being the Boltzmann constant. In equilibrium,

𝜇A + 𝜇B = 𝜇AB, (2.6)

where 𝜇𝑥 is the chemical potential of 𝑥.

To a first approximation, we can assume that the binding domains behave ideally
with respect to each other, allowing the partition functions of the binding domains in
our model, 𝑄𝑥(𝑁𝑥, 𝑉, 𝑇), to be expressed in terms of the internal partition functions
of the binding domains, 𝑞𝑥(𝑉, 𝑇),

𝑄𝑥 =
𝑉𝑁𝑥
L

𝑁𝑥! 𝑞𝑁𝑥
𝑥 , (2.7)
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where 𝑉L, the system lattice volume, is a dimensionless quantity as it represents
a sum over all the lattice sites in the system, 𝑁𝑥 is the number of 𝑥 present in 𝑉L,
and the function notation on the partition functions has been dropped for notational
simplicity. Then using the relation

𝜇𝑥 = −𝑘B𝑇(
𝜕 ln𝑄𝑥

𝜕𝑁𝑥
)

𝑉,𝑇
(2.8)

and Stirling’s approximation, the chemical potential can be written in terms of the
internal partition function,

𝜇𝑥 = 𝑘B𝑇 ln(
𝜌𝑥
𝑞𝑥

), (2.9)

where 𝜌𝑥 is the lattice number density of 𝑥. The lattice number density can be related
to the number density with

𝜌𝑥 = 𝑎3𝐶𝑥, (2.10)

where 𝑎 is the lattice constant, which has units of length.
Plugging in Equation (2.9) and Equation (2.10) to Equation (2.6) and rearrang-

ing, we get
𝐶AB

𝐶A𝐶B
= 𝑎3 𝑞AB

𝑞A𝑞B
. (2.11)

Comparing to Equation (2.5), we can multiply through by 𝐶−∘ to obtain

𝑞AB
𝑞A𝑞B

=
e−𝛽Δ𝐺−∘

NN

𝑎3𝐶−∘ . (2.12)

Given that each binding domain has an orientation vector with six possible configu-
rations, the internal partition functions become

𝑞A = 𝑞B = 6, 𝑞AB = 6e−𝛽𝜖b, (2.13)

where 𝜖b is the bimolecular binding domain interaction energy of our model. Plug-
ging in Equation (2.13) to Equation (2.11), we can solve for 𝜖b,

e−𝛽𝜖b

6 =
e−𝛽Δ𝐺−∘

NN

𝑎3𝐶−∘ (2.14)

→ 𝜖b = Δ𝐺−∘
NN + 𝑘B𝑇 ln(𝑎3𝐶−∘ ) − 𝑘B𝑇 ln 6. (2.15)

For the second case, where we are considering two binding domains already in
the scaffold system, we have a unimolecular reaction with an equilibrium constant
𝐾u of the hybridization reaction between a system with two unbound domains C
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and a system with the two binding domains hybridized D,

C −−−⇀↽−−− D, (2.16)

𝐾b =
[C]
[D] =

𝐶C
𝐶D

=
𝜌C
𝜌D

= e−𝛽Δ𝐺−∘
NN, u, (2.17)

where Δ𝐺−∘
NN, u is the unimolecular unified-NN standard Gibbs free energy of hy-

bridization. Because the Δ𝐺−∘
initiation term captures the translational entropy cost of

combining two free strands into one [167], we will assume that

Δ𝐺−∘
NN, u = Δ𝐺−∘

NN − Δ𝐺−∘
initiation. (2.18)

We also assume that the scaffold systems act ideally with respect to each other, but
now the treatment of the internal partition function is more complicated. To make
the problem tractable, we treat the binding domains within the scaffold system as
being independent if they are not hybridized to each other. Then, as before, we only
need to consider the internal partition functions of the two unbound domains and
the hybridized binding domains, allowing us to solve for the unimolecular binding
domain interaction energy 𝜖u,

𝜌D
𝜌C

=
𝑞D
𝑞C

=
𝑞AB
𝑞A𝑞B

=
e−𝛽𝜖u

6 = e−𝛽Δ𝐺−∘
NN, u (2.19)

→ 𝜖u = Δ𝐺−∘
NN, u − 𝑘B𝑇 ln 6. (2.20)

Because this is a unimolecular reaction, Δ𝐺−∘
NN, u is not dependent on the standard

state concentration, and so themodel interaction energy does not need to have a term
with the standard state concentration to be independent of changes to the standard
state.

In order to calculate a chemical potential of a staple from a given concentration,
we assume staples act ideally when in solution. The canonical partition function for
the staples of type 𝑖 is

𝑄𝑖 =
(𝑞𝑖𝑉L)𝑁𝑖

𝑁! =
(62𝑛𝑖−1𝑉L)𝑁𝑖

𝑁𝑖!
, (2.21)

where𝑁𝑖 is the number of staples of strand 𝑖, and 𝑛𝑖 is the number of binding domains
that the staple strand comprises. The chemical potential of staple strand 𝑖 is then

𝜇𝑖 = 𝑘B𝑇[ln(𝑎3𝐶𝑖) − (2𝑛𝑖 − 1) ln 6], (2.22)
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where 𝑘B is Boltzmann’s constant.

If we derive the melting temperature of the model for a single-binding-domain
scaffold strand, we can compare it to the melting temperature of the unified-NN
model assuming a two state reaction to verify the derivation of our potential. The
average occupancy can be calculated exactly for this system, and it does not require
the more complicated terms of the model detailed in the next sections. We will
calculate this value using the grand ensemble, where the system volume is the
number of scaffold binding domains. The grand partition function is

Ξ(𝜇, 𝑉, 𝑇) =
1

∑
𝑁=0

e𝛽𝜇𝑁 ∑
𝑖
e−𝛽𝑈𝑖 (2.23)

= ∑
𝑖
e−𝛽𝑈𝑖 + e𝛽𝜇 ∑

𝑖
e−𝛽𝑈𝑖 (2.24)

= 6 +
62e𝛽𝜇e−𝛽Δ𝐺−∘

NN

𝑎3𝐶−∘ , (2.25)

where the inner sum in the first line and the sums in the second line are over states
with 𝑁 bound staples with potential energy 𝑈𝑖, and in the third line we have plugged
in Equation (2.15) and simplified. The average occupancy is

⟨𝑠⟩ =
1
Ξ ∑

𝑁
e𝛽𝜇𝑁 ∑

𝑖
𝑠e−𝛽𝑈𝑖 (2.26)

=
6e𝛽𝜇e−𝛽Δ𝐺−∘

NN

𝑎3𝐶−∘ + 6e𝛽𝜇e−𝛽Δ𝐺−∘
NN

, (2.27)

where 𝑠 is 0 when the single scaffold binding is unbound and 1 when it is bound. At
the melting temperature, 𝑇m, the average occupancy of the scaffold lattice site by a
staple binding domain is 1/2, thus

1 =
e𝛽𝜇6e−𝛽Δ𝐺−∘

NN

𝑎3𝐶−∘ (2.28)

1 =
𝐶

𝐶−∘ e
−𝛽(Δ𝐻−∘

NN−𝑇Δ𝑆−∘
NN) (2.29)

→ 𝑇m =
Δ𝐻−∘

NN

𝑘B ln( 𝐶
𝐶−∘ ) + Δ𝑆−∘

NN
, (2.30)

where in the second line we have used Equation (2.22) with 𝑛 = 1 and simplified.

Themelting temperature for the unified-NNmodel assuming a two state reaction
can be derived directly. If when considering Equation (2.4) we let A be the staple
and B be the scaffold, and let [A]T >= [B]T, where the subscript denotes the total
concentration (i.e. including the staple and scaffold binding domains when they are
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in the bound AB state), and if we consider an initial state with all B being bound in
the AB form, then in equilibrium we have

[𝐴] = [𝐴]T − [𝐵]T + 𝑥, [𝐵] = 𝑥, [𝐴𝐵] = [𝐵]T − 𝑥, (2.31)

where 𝑥 is the change in concentration. At the melting temperature, [B] = [AB];
plugging in this and Equation (2.31) to Equation (2.5) and rearranging gives

𝐾 =
[𝐴]T
[−∘] −

[𝐵]t
2[−∘] = e−𝛽Δ𝐺−∘

NN (2.32)

→ 𝑇m =
Δ𝐻−∘

NN

𝑘B ln( [A]T
[−∘] − [B]T

2[−∘]) + Δ𝑆−∘
NN

, (2.33)

≃
Δ𝐻−∘

NN

𝑘B ln( [A]
[−∘]) + Δ𝑆−∘

NN

, (2.34)

=
Δ𝐻−∘

NN

𝑘B ln(𝐶A
𝐶−∘ ) + Δ𝑆−∘

NN

, (2.35)

where the asymptotic equality follows when [A]T >> [B]T, which we will assume
in our model (see Section 3.3 for further discussion of this assumption). Comparing
this with Equation (2.30), we see that the melting temperatures agree.

While the model melting temperature agrees with the unified-NN two-state
melting temperature for a single bindingdomain scaffold, itwill not hold for anything
longer because of the oversimplified assumption of the internal partition function of
the system binding domains being independent. The internal partition function of
the system is highly non-trivial, so the best we can do is use an mean field approach
to give an average difference of the logarithm of the partition function with a change
in the binding state of the system. It is important to keep in mind, however, that even
if we could calculate the ratio of the partition functions exactly in order to correct
the unified-NN hybridization free energy for every possible hybridization reaction,
we would be creating a model in which the individual binding domains hybridize
with the same statistics as the unified-NNmodel. This is not the expected behaviour
for DNA origami binding domains. It is precisely the deviation from the NN model
in these internal hybridization reactions that we are interested in studying. It is here
that the advantage of using a model with a physical basis over the more statistical
models discussed in Section 1.4 becomes apparent, as these deviations, which are
entropic in nature, are naturally present up to some constant, and so the entropy
differences will be roughly captured.

To understand why some correction is still needed, consider that while the coop-
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erativity involved in DNA origami self-assembly is expected to change the overall
slope of a curve of an order parameter against temperature, the curve should not be
shifted to overall higher or lower melting temperatures relative to a pure unified-NN.
If a fully assembled state has only one allowed configuration, then without further
modification, the model as defined will have a melting temperature that is depen-
dent on the choice of binding domain size. Consider a particular design represented
in two different ways, where the second has binding domains defined as being twice
as small as the first. Because in both cases the assembled state has just one configu-
ration, the loss in entropy will be twice as large for the second system, which will
shift the assembly to lower temperatures.

The above mentioned mean field correction can allow for such an overall correc-
tion. However, fully assembled states will not in general have only one configuration
in ourmodel. The number of states available will depend on how the fully assembled
state is defined, how the remaining terms of the potential are defined, and on the
specific design being considered. We can begin by considering the most extreme
case, where there is only one configuration available in the bound state to give an
upper bound on the absolute value of the correction. If each binding domain has
six relative positions and six orientation vectors, then upon hybridization of two
binding domains,

𝑞A = 𝑞B = 62, 𝑞AB = e−𝛽𝜖u (2.36)

𝜌D
𝜌C

=
𝑞D
𝑞C

=
𝑞AB
𝑞A𝑞B

=
e−𝛽𝜖u

64 = e−𝛽Δ𝐺−∘
NN, u (2.37)

→ 𝜖u = Δ𝐺−∘
NN, u − 4𝑘B𝑇 ln 6. (2.38)

For binding of a staple to a partially assembled scaffold, we will have a different
expression, as the first binding event is a change in absolute position rather than
relative position,

𝑞A = 6, 𝑞B = 62, 𝑞AB = e−𝛽𝜖b (2.39)

𝑞AB
𝑞A𝑞B

=
e−𝛽𝜖b

63 =
e−𝛽Δ𝐺−∘

NN

𝑎3𝐶−∘ (2.40)

→ 𝜖b = Δ𝐺−∘
NN + 𝑘B𝑇 ln(𝑎3𝐶−∘ ) − 3𝑘B𝑇 ln 6. (2.41)

Finally, special consideration must be made for the overall system’s rotational en-
tropy, which is not lost in the final assembled state. If one considers the first three
binding domains of the scaffold, the second will always have six relative positions
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to the first by rotation the entire system, and the third will always have 4 positions
relative to the second by rotation the entire system around the bond axis between
the first and the second binding domains. There is also no relative positional entropy
to lose when binding the first scaffold domain. Thus, for the first staple to bind to
the scaffold, we add 2𝑘B𝑇 ln 6 to 𝜖b, while for the second scaffold domain to bind,
whether to another binding domain on the first staple or to a new staple, we add
𝑘B𝑇 ln 6 − 𝑘B𝑇 ln 2 = 𝑘B𝑇 ln 3 to either 𝜖u or 𝜖b, respectively.

2.2.2 Stacking term

If two contiguous domains are in bound states and part of the same helix, then there
is an additional stacking term that we have not yet accounted for when calculating
the unified-NN model hybridization free energy for the two domains separately.
There are two cases to consider at the level of resolution of our model. The first case
is that there are only two strands involved with each having two contiguous binding
domains, in which case, as discussed in Section 2.1, there is only one allowed config-
uration for the orientation vectors involved (Figure 2.3(a)(i)). Here, it is reasonable
to add the Δ𝐺−∘

stack corresponding to the nucleotides involved to Equation (2.20), and
the mean field entropy correction discussed in Section 2.2.1 would now be a local
description for the binding of the second pair of domains.

The second case is that only one pair of binding domains is contiguous (Fig-
ure 2.3(a)(ii)–(iv)). This could involve one strand ending and another beginning
(this is sometimes referred to as a nick in the backbone of one of the strands forming
the helix), or one or both may continue and possibly even be a part of another helix
via a crossover junction. We will refer to the point at which any of these situations
occur as breakpoints. Breakpoints are able to become unstacked to form kinks. In
the model, if the orientation vectors of a pair of contiguous bound domains do not
have a configuration prescribed by the helical geometry, they are considered to have
a kink and are treated as two separate helices (for an example see Figure 2.2(a)(ii)).
In other words, the pair of bound domains can either be in a stacked configuration or
a kinked configuration, and the rules that were laid out for a pair of bound domains
being part of the same helix can also be referred to as the rules for being stacked. In
contrast to the first case in which there is no breakpoint, the stacking and domain
binding events are independent, and a separate stacking energy term is required,
𝜖s (Figure 2.3(a)(iii) and (iv)). As this is actually a free energy describing the dif-
ference between being stacked and kinked, it will in principle be different from the
Δ𝐺−∘

stack term. We discuss the parameterization of this term in Section 4.3.
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(a)(i) (ii)

(iv)(iii)

(b)(i) (ii)

(c)

1
2

4
3

Figure 2.3: Helical stacking in the model. (a) Helical stacking with two bound
domain pairs. In (i), there are two pairs of contiguous binding domains bound to
each other, such that a single helix is formed. In (ii)–(iv), only one pair of binding
domains is contiguous, allowing for unstacked, or kinked, configurations to form.
While not drawn, we assume here that the staple domain is part of a staple that is
bound by another one of its domains to the scaffold system. While stacking and
bonding can occur in one step as in (ii), it is also possible for bonding to occur first,
as in (iii), followed by stacking (iv). (b) Helical stacking with three bound-domain
pairs. In (i), twomodel configurations are shown that are both pairwise stacked, but
the configuration on the right has one less stacking interaction. In (ii), two model
configurations are shown with just one pairwise stack, but the configuration on the
right has one less stacking interaction. (c) Helical stacking with four bound-domain
pairs. All three configurations have pairwise stacks, but the configuration in the
middle has only one stacking interaction, and the one on the right has none.

Whether or not two pairs of bound domains are stacked or kinked cannot always
be determined by considering pairwise interactions in ourmodel. This is because the
helical axis is defined implicitly, as discussed in Section 2.1. Consider three pairs of
bound domains that occupy adjacent lattice sites, in which at least one of the strands
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is contiguous between adjacent lattice sites. There are multiple configurations for
which the pairwise stacking rule is obeyed for both pairs of bound domains, two of
which are shown in (Figure 2.3(b)(i)). However, all but one of these configurations
involve a right angle bend in the helix. The length of the binding domains is typically
well below the persistence length of double-stranded DNA, so configurations with
such sharp turns are extremely unlikely with no external force. Therefore, these
configurations must have a kink at one of the breakpoints, and are in fact composed
of two separate helices. Such configurations will then only have one of the two
stacking interaction energies. If there are two breakpoints, there is ambiguity in
which breakpoint is actually kinked, and so the stacking interaction in our model is
not entirely local (Figure 2.3(b)(i)).

If we consider the definition of the next-binding-domain vector as given in Sec-
tion 2.1, we note that there are configurations for two bound-domain pairs with
orthogonal helices that also map to model configurations that are defined as being
stacked. Configurations only map to one model configuration, so in effect these con-
figurations are not included in themodel. We havemade this choice to allow stacking
to be defined between pairs of bound domains without adding additional degrees
of freedom to the model. Once there are more than two bound domains involved
these configurations are included by applying the stacking term described above
and shown in Figure 2.3(b)(i). However, the model has no way to represent both
of these kinds occurring at the same time. Considering that there are many ways
for the model to represent kinked configurations, this exclusion seems reasonable to
allow for a simpler model.

For configurations in which the second binding-domain’s helix is orthogonal to
the first binding-domain’s helix, it is not possible for a third binding domain to form
a stacked configuration with the second binding domain and for that resulting helix
to be in the same plane as the first. However, without any further terms, it is possible
to construct model configurations in which the this is the case; an example is given
in Figure 2.3(b)(ii). In order to make the model consistent, an additional term could
be applied such that these configurations, while containing a pairwise stacked con-
figuration, would be defined to have no stacking interaction. However, for quarter-
and three-quarter-turn binding domains, one of the model configurations between
two bound-domain pairs can be mapped to from either a helix that is orthogonal or
parallel to the first binding-domain’s helix (see Section 2.2.3 for further discussion
of all sterically allowed configurations and their mappings). Because the config-
urations involving stacked parallel helices with crossovers are critical to origami
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designs, it is important not apply a term that prevents stacking of additional binding
domains. A simple solution is to not remove the pairwise stacking interaction in
configurations in which this ambiguity exists; these are configurations in which
the first binding-domain’s helical axis is equal to its orientation vector (again see
Section 2.2.3 for further discussion).1

For configurations in which the second binding-domain’s helix is parallel to the
first (i.e. those which are involved in crossovers, which are important to represent
correctly to model assembled configurations), there is additional complexity in
determining whether configurations are stacked or kinked. These configurations
map to model configurations in which the first binding domain’s next-binding-
domain vector is equal to its orientation vector. When both bound-domain pairs on
either side of the breakpoint have another bound-domain pair that is contiguous to
at least one of the involved strands, it is possible to construct model configurations
which have two pairwise stacks that map to configurations that have only one or no
stacked bound domain pairs. Using the indices in Figure 2.3(c), if the first binding-
domain’s next-binding-domain vector is antiparallel to the third binding-domain’s
next-binding-domain vector, then there are two stacking interactions. If they are
orthogonal, then there is one stacking interaction. If the first binding-domain’s
next-binding-domain vector is parallel to the third binding-domain’s next-binding-
domain vector, then there are no stacking interactions.2

1In simulations presented in Chapter 4 and Chapter 5, we use a version of the model where we
use a less restrictive rule that applies to four pairs of bound domains: if both of the bound domains
with a breakpoint between them have a defined helical axis (which requires one additional pair
of bound domains for each), the orientation vector of the first binding domain forming the kink
is not equal to its next-binding-domain vector, and the two helical axes are parallel to each other
and orthogonal to the next-binding-domain vector between the binding domains forming the kink,
then there must be an additional kink present that these four bound domains are involved in and
thus one less stacking interaction. This turns out to be the least restrictive rule to prevent unwanted
unphysical fully assembled configurations, but it can only be justified by the fact that it prevents such
configurations.

2In simulations presented in Chapter 4 and Chapter 5, we use a version of themodel where we apply
a less restrictive version of this term only to configurations that involve a double crossover between a
pair of bound domains. In this version of the term, if the first binding-domain’s next-binding-domain
vector is antiparallel to the third binding-domain’s next-binding-domain vector, then there are two
stacking interactions; otherwise, there is one. Further, configurations where the first binding-domain’s
next-binding-domain vector is parallel to the third binding-domain’s next-binding-domain vector are
sterically prohibited (see Section 2.2.3 for discussion of sterically prohibited configurations).
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2.2.3 Steric term

In describing the steric terms, we refer to ‘constraints’ and ‘rules’, but it should be
understood that formally we are defining configurations that obey these constraints
or rules as having a potential energy of zero for the term in question, and all others
as having a potential energy of infinity. In principle these could also form a part
of the definition of state space, as was done for the rule that orientation vectors on
bound domains must be opposing, but we have found it more convenient to define
these as part of the potential.

Because it is directly related to the discussion of stacked configurations above,
we again consider three bound domain pairs on adjacent lattice sites. In particular,
we consider the case in which there are no breakpoints, which occurs when there
are two triplets of binding domains that are contiguous on the same strand. Again,
there are multiple configurations for which the pairwise stacking rule is obeyed for
both pairs of bound domains. Unlike the case when there is at least one breakpoint,
it is not possible for there to be a kink to allow for the configurations that have a
right angle bend. Therefore, all but the configuration in which there is no bend in
the helix are disallowed.

Consider a pair of contiguous bound domains with a breakpoint. In reality, the
breakpoint will not allow for all possible relative orientations of the two binding
domains. By considering transformations to the two helical domains and making
simple steric arguments, we can introduce further rules to account for this. Because
themodel is already so coarse, the particular choices made are unlikely to havemuch
effect beyond changing the entropic balance between bound and unbound states,
unless they affect whether crossovers are only able to occur where they are allowed.
Thus it is sufficient to base our steric arguments on considerations of idealized
cartoon helices. The correct entropic balance could be restored by considering a
correction factor to the free energies of hybridization that could be determined by
comparison to experiment, although we do not do so in this work.

Another consideration in constructing these terms is that by using more con-
strained potentials, sampling can become more difficult because the free-energy
landscape becomes more rough. For example, in the extreme case of not allowing
kinked configurations, which was the form the model originally took, sampling was
very difficult as typically to rearrange the structure, the domains had to unbind and
rebind. Therefore, the guiding principle in constructing the potential for kinked
configurations was to ensure that crossovers between parallel helices only occur at
the correct intervals, to make the partially assembled structures as unconstrained as
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possible, and to achieve what physical realism we can with the steric arguments.

For all unique configurations involving two bound-domain pairs that have a
breakpoint between them, all sterically allowed model configurations are illustrated
in Figure 2.4(a) and (c) and all pairwise sterically prohibited configurations are
illustrated in Figure 2.4(e). For helix cartoon configurations drawn in Figure 2.4,
a 16-nt half-turn binding domain is used, but the general arguments here hold for
all three binding-domain classes. To understand which configurations are possible,
we must consider a number of rotations of the second binding-domain’s helix rel-
ative to the first binding-domain’s helix. Beginning from a stacked configuration,
consider rotating the second binding-domain’s helix around an axis parallel to the
helical axis but displaced to the outside of the helix to produce the configurations in
Figure 2.4(a)(ii)–(iv). We will refer to this as the first rotation axis. This allows for
configurations in which the next-binding-domain vector of the first binding domain
is perpendicular to the orientation vector of both the first and the second binding
domains.

Following this first rotationwith further rotations of the second binding-domain’s
helix around an axis parallel to the orientation vector of the first will not lead to
any new relative orientations of the second binding-domain’s orientation vector
because of our definition of mapping binding domains that form orthogonal helices
to lattice sites (see Section 2.1). We will refer to this as the second rotation axis. An
example of the resulting cartoon helix configuration after rotating in one direction
is shown below the first cartoon helix configuration in Figure 2.4(a)(ii)–(iv). There
are no cartoon helix configurations that map to model configurations in which the
second binding-domain’s orientation vector is parallel or antiparallel to the next-
binding-domain vector of the first. Thus, in our model, if the first binding-domain’s
next-binding-domain vector is perpendicular to its orientation vector, the second
binding domain’s orientation vector must also be perpendicular to next-binding-
domain vector of the first.

Rotations around an axis perpendicular to the two previouslymentioned rotation
axes can lead to configurations in which the first binding domain’s next-binding-
domain vector is parallel or antiparallel to its orientation vector. We will refer to
this as the third rotation axis. If a quarter turn is made such that first domain’s
next-binding-domain vector is parallel with its orientation vector, it leads to configu-
rations with steric clashes, which is illustrated in Figure 2.4(b). A further quarter
turn will only lead to worsening the steric clashes. Thus, configurations in which the
first binding domain’s next-binding-domain vector is antiparallel with its orientation
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(a)(i) (ii) (iii) (iv)

(v) (b)

(d)(c)(i) (ii) (e)

Figure 2.4: All twelve unique configurations of two bound-domain pairs with a
breakpoint. (a) Five configurations that are sterically allowed for all binding-domain
classes. Cartoon helix representations are shown for a 16-nt half-turn binding do-
main. (b) An example of a transformation that results in a sterically prohibited
configuration. (c) A half-turn around the third rotation axis produces an additional
allowed model configuration for half-turn binding domains (i), but not for quarter-
or three-quarter-turn binding domains (ii). In (ii) a cartoon helix representation
for an 8-nt three-quarter-turn binding domain is shown. (d) Sterically allowed con-
figuration for an 8-nt three-quarter-turn binding domain with two pairs of stacked
bound domain pairs connected via a crossover. (e) All six sterically prohibited
configurations.

vector are entirely disallowed. Returning to the original stacked configuration and
making a quarter turn around the third rotation axis in the opposite direction will
lead to a configuration in which the second binding-domain’s helical axis is orthogo-
nal to the first Figure 2.4(a)(v). Unlike the previous orthogonal helix configurations,
this configuration maps to a new allowed model configuration. Rotations of this
configuration around the second rotation axis will configurations that map to the
same model configuration.3

3In simulations presented in Chapter 4 and Chapter 5, we use a version of the model where for the
half-turn binding domain systems, the second binding-domain’s orientation was constrained to be
parallel to the first binding-domain’s orientation vector in these particular kinked configurations.

34



Lattice models of DNA origami

A further quarter turn around the third rotation axis leads to configurations
in which the second binding-domain’s helical axis is parallel to the first binding-
domain’s helical axis Figure 2.4(c). Such configurations are those that allow for
crossovers between parallel helices, which are prevalent in the assembled state. The
second binding-domain’s orientation vector will depend on the length of the binding
domain in these configurations. In general, relative to the first binding-domain’s
orientation vector, it will have the dihedral angle prescribed by its length along the
next-domain vector parallel to the helical axis, followed by a flip in the plane normal
to the first binding-domain’s orientation vector. In the case of the half-turn binding
domains, the second binding-domain’s orientation vector will be parallel to the first
binding-domain’s orientation vector, producing a unique model configuration.

For quarter- and three-quarter-turn binding domains this will result in configura-
tions that map to themodel configuration in Figure 2.4(a)(v), respectively, so no new
model configurations are produced, and neither configurations where the second
binding domain’s orientation vector is parallel or antiparallel to the first binding-
domain’s next-binding-domain vector are sterically allowed. That the crossover
model configuration has more than one cartoon helix configuration that maps to it
means there is a loss of information about the helical phase. Both the second cartoon
helix of Figure 2.4(a)(v) and a cartoon helix configuration in which the second bind-
ing domain is rotated a half turn around the second rotation axis map to his model
configuration, but only one correctly describes the crossover configuration. To deal
with this will introduce an additional term that applies to configurations in which
both bound-domain pairs are stackedwith an adjacent bound-domain pair. Then, all
four orientation vectors must be in the same configuration as theywould be if all four
bound domain pairs were stacked in a single helix (Figure 2.4(d)). This term is only
critical if crossovers occur such that the final structure is not planar, as otherwise
the information loss on the phase has no effect on the assembled structures.4

When there is more than one crossover between two helices, the helices become
much more restricted in the configurations they are able to take relative to each
other (compare Figure 2.5(a)(i) to (ii)). In particular, they will be forced to be
roughly parallel. This is naturally captured by the model when there are crossovers
between more than one set of binding domain pairs on two separate helices, as seen
in Figure 2.5(b)(ii). However, when a single binding domain pair has a double
crossover, something which can occur with half-turn binding domains, this will not
be captured by the model as currently defined.

4In the simulations presented in Chapter 5, we use a version of the model where the three-quarter-
turn binding domains do not have this term. All designs simulated have planar assembled states.
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(b)

(ii) (iii)(a)(i)

Figure 2.5: Strand crossovers between helices involving 16-nt long binding domains.
(a) Crossovers between two adjacent parallel helices with a four-binding-domain
scaffold. (i) Helices with a single crossover. (ii) Helices with two crossovers on
separate binding domains. (iii) Helices with crossovers on the same binding domain.
(b) Doubly contiguous binding domains in bound states.

Consider two adjacent lattice sites in bound states, where at least one pair of
binding domains are contiguous. If the other pair of binding domains are not con-
tiguous and in the same helix, their orientation vectors will still satisfy the prescribed
helical angle because of the requirement of their orientation vectors to be opposing
those of the strand that has two contiguous binding domains in that helix. However,
the case in which both pairs of binding domains are contiguous requires further
consideration. In reality, if the combined sequence of the two binding domains on
one chain is together the reverse complement of the combined sequence of the two
binding domains on the other chain, then the only way for all binding domains to
be bound to each other is if there is only one helix. If instead the binding domains
on one chain must be swapped to make the whole two-binding-domain sequence
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the reverse complement of the other whole two-binding-domain sequence, then
the only way for all binding domains to be bound to each other is if there are two
parallel helices with both strands crossing over. As a concrete illustration, one of the
chains would have to be cut and glued to its other end to transition between these
two configurations (Figure 2.5(b)). Thus, the model constrains pairs of contiguous
complementary binding domains bound to each other to be in the same helix if they
are the full reverse complements of each, and to be crossing over if not.

2.3 Explicit helical axis model

One of the issues with an implicitly defined helical axis is that the potential en-
ergy function becomes somewhat convoluted, making it difficult to visualize and
think about intuitively. Further, the terms that involve three and four binding do-
mains require lengthy checks to determine whether the configuration is sterically
prohibited and to calculate the total stacking energy, offsetting the gain in sampling
efficiency that comes from a reduced number of degrees of freedom. The divorce of
the number of stacked binding domains at breakpoints and thus the total stacking
energy from pairwise stacked binding domains is particularly non-intuitive, and
with the model as defined above, it is possible to construct configurations which
have negative numbers of stacked pairs.

Because of the above considerations, here we speculatively outline a possible
alternative model with an explicit helical axis for demonstrative purposes. The state
space is expanded by introducing an additional vector to each binding domain,
referred to as helical-axis vector. In the bound state, as the name suggests, it corre-
sponds to the helical axis, and points in the positive direction of the chain. In the
unbound state, in analogy with the orientation vector, it is uniformly distributed.
Because the positive direction along a chain is defined in opposition between the
scaffold and staple strands, when two binding domains are hybridized to each other,
their helical-axis vectors must be equal. For simplicity, we apply the same rule to
misbinding, as while in principle the helical axis vectors should be antiparallel if
same-chain misbinding occurs, in practice it would not affect the results.

The mappings between physical configurations and model configurations for
both the orientation vector and the next-binding-domain vector can be made more
explicit. To be consistent with the interpretation of the orientation vector as pointing
to the position of the strand at the end of binding domain orthogonally out from the
helical axis, the helical-axis vector and the orientation vector are constrained to be
perpendicular when the domains are in bound states. It is no longer necessary to
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map configurations of two bound-domain pairs with either parallel or orthogonal
helical axes to the same model configuration, as with an explicit helical axis they
can be differentiated. If we follow the same guideline of defining the next-binding-
domain vector to point from the end of first binding-domain’s helical axis to the end
of the second binding-domain’s helical axis, then configurations in which the second
binding-domain’s helical axis-vector is orthogonal to the first will map to model
configurations in which the first binding-domain’s next-binding-domain vector is
parallel to the second binding-domain’s helical-axis vector.

The bonding term would mostly remain the same, with just the terms relating
to the additional loss of degrees of freedom by restricting the helical axis vector
in addition to the orientation vector in bound states. The stacking term would be
substantially simplified, as the more complicated terms involving three and four
bound domain pairs would be unnecessary. A stacked interaction between two
bound domain pairs would be defined as one in which the orientation vectors have
the dihedral angle prescribed by the binding domain length, as before, but now
additionally one in which the helical-axis vectors are parallel. The same arguments
can bemade for determining sterically allowed and prohibited configurations for two
bound domain pairs with a breakpoint. Like with the stacking term, the steric term
can be made fully pairwise. In particular, the ambiguity that existed for crossover
configurations involving quarter- and three-quarter-turn binding domains no longer
exists, as crossover configurations would now map to a unique model configuration,
making the term that required four bound-domain pairs unnecessary. The same
constraints apply to two pairs of bound domains which involve two strands with
contiguous binding domains.
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3.1 MCMC simulations for molecular systems

To explore the configuration space defined by the model described in Chapter 2,
MC simulations can be used. The fundamental idea behind MC simulations is to
use a random sampling from a given space with a known probability distribution
function in order to estimate quantities of interest, typically expectation values of
functions of that space. In the context of statistical mechanics, these expectation
values are often thermodynamic or kinetic quantities that can be defined as averages
over the configuration space of a given system as a function of the control variables
of the selected statistical ensemble. In the simplest approach to MC simulation,
values of the observable of interest 𝑔( ⃗𝑥) are calculated with points drawn uniformly
from configuration space and multiplied by the values of the relevant distribution
function 𝑝( ⃗𝑥) to estimate the expectation value of the observable,

⟨𝑔( ⃗𝑥)⟩ = ∫d ⃗𝑥 𝑔( ⃗𝑥)𝑝( ⃗𝑥) ≈
1
𝑁

𝑁
∑

𝑖
𝑔( ⃗𝑥𝑖)𝑝( ⃗𝑥𝑖), (3.1)

where 𝑁 is the number of samples. In practice, however, this sampling is often highly
inefficient as formost realistic systems themajority of the selected configurationswill
have very low associated probabilities [201]. Further, for any system in which MC
simulations are needed to estimate observables, the distribution function will only
be known up to a multiplicative constant. The calculation of the constant, known in
the context of statistical mechanical distribution functions as the partition function,
would itself require an integration over the entirety of configuration space.

Fortunately, there are a vast number of approaches to achieve better sampling in
many different contexts [202]. For the purposes of molecular simulation, Markov
chain Monte Carlo (MCMC) [203, 204] provides a route to focus sampling on more
significant regions of configuration space; it has also been referred to as importance
sampling [201, 205] (although this differs from the approach referred to as impor-
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tance sampling in the statistics literature [202]). The main idea is to use a Markov
chain that is more likely to stay in and move towards subsets of configuration space
that have relatively higher weights. It can be shown that if the condition of detailed
balance is obeyed,

𝑝( ⃗𝑥 ∣ ⃗𝑦)𝑝( ⃗𝑦) = 𝑝( ⃗𝑦 ∣ ⃗𝑥)𝑝( ⃗𝑥), (3.2)

where 𝑝( ⃗𝑥 ∣ ⃗𝑦) is the conditional probability of selecting configuration ⃗𝑥 given the
current configuration ⃗𝑦, then the sampled states will still be distributed according to
𝑝( ⃗𝑥).

The conditional probabilities can be decomposed into two separate probabilities:
𝑝trial( ⃗𝑥 ∣ ⃗𝑦), the probability of generating ⃗𝑥 given ⃗𝑦, and 𝑝acc( ⃗𝑥 ∣ ⃗𝑦), the probability of
accepting a generated ⃗𝑥 given ⃗𝑦, such that 𝑝( ⃗𝑥 ∣ ⃗𝑦) = 𝑝trial( ⃗𝑥 ∣ ⃗𝑦)𝑝acc( ⃗𝑥 ∣ ⃗𝑦). In the clas-
sic Metropolis algorithm [203], 𝑝trial( ⃗𝑥 ∣ ⃗𝑦) is set to be symmetric (i.e. 𝑝trial( ⃗𝑥 ∣ ⃗𝑦) =
𝑝trial( ⃗𝑦 ∣ ⃗𝑥)), and the acceptance probability written as

𝑝acc( ⃗𝑥 ∣ ⃗𝑦) = min[1,
𝑝( ⃗𝑥)
𝑝( ⃗𝑦)

]. (3.3)

The more general case in which 𝑝trial( ⃗𝑥 ∣ ⃗𝑦) is not symmetric is referred to as the
Metropolis–Hastings algorithm [204]. The second issue, of not a priori knowing the
partition function, is also solved, as the acceptance probability is now dealing with
relative rather than absolute probabilities. In the canonical ensemble, where 𝑝( ⃗𝑥) ∝
e−𝛽𝑈( ⃗𝑥), with 𝑈( ⃗𝑥) being the potential energy of configuration ⃗𝑥, the acceptance
probability becomes

𝑝acc( ⃗𝑥 ∣ ⃗𝑦) = min[1, e−𝛽Δ𝑈( ⃗𝑥, ⃗𝑦)]. (3.4)

To run a MCMC simulation, definitions of 𝑝trial( ⃗𝑥 ∣ ⃗𝑦), usually referred to as
move types, are needed. An example of a simple move type on a lattice would
be to select a particle in the system and propose a new configuration in which it
occupies a neighbouring lattice site, with each selection carried out according to a
uniform probability distribution. Clearly the reverse move is equally probable, and
so 𝑝trial( ⃗𝑥 ∣ ⃗𝑦) is symmetric, and thus detailed balance is obeyed. Of course, with
molecular systems that have internal degrees of freedom, more complex move types
are needed, and in a given simulation, several different move types may be used to
increase sampling efficiency.
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3.2 MC methods for lattice polymers

Polymers provide unique challenges to achieving efficient sampling. Many lattice
polymer models can be seen as extensions of a simple self-avoiding walk (SAW), for
which many MC sampling methods have been developed [206–208].

Sampling methods developed for lattice polymers can be broadly classified as
being static or dynamic [201]. Static methods generate new polymer configurations
from scratch at each step, thus producing a series of uncorrelated samples. Dynamic
methods are those in which the current configuration is used to generate the next
configuration, thus producing configurations that are correlated but not necessarily
in a way that mimics the real dynamics of the system. Typically these dynamic
sampling methods are in fact MCMC methods with varying 𝑝trial( ⃗𝑥 ∣ ⃗𝑦) definitions,
or move types.

The static method of simple regrowth of the entire chain is one of simplest meth-
ods of sampling polymer configurations, and is easily applied to the DNA origami
model developed here. Clearly, however, a large number of the regrowths proposed
will include overlaps with other units of the chain. In the case of our origami lat-
tice model, these overlaps will typically result in unfavourable misbinding or steric
clashes when a binding domain overlaps with two binding domains bound to each
other.

To deal with the attrition problem of sampling longer polymers, methods were
developed that allowed the growth of the chain to be biased such that it avoids
overlaps and tends towards more energetically favourable configurations in models
that include additional interactions. The first of these was the Rosenbluth sam-
pling method [209], which biases the growth of each polymer unit towards more
favourable configurations, and records the biases, referred to as Rosenbluth weights,
for later reweighting of the resulting configurations. This method was improved
upon in the pruned and enriched Rosenbluth sampling (PERM) method [210] and
its extensions [211], which not only reduces the attrition problem, but addition-
ally focuses sampling on those configurations that have higher Rosenbluth weights
(i.e. those that will contribute significantly to the estimation of expected values of
observables). This is achieved by considering multiple configurations simultane-
ously, and enriching those with high Rosenbluth weights while pruning those with
low Rosenbluth weights.

It is often advantageous to take advantage of the benefits of MCMC when sam-
pling polymer configurations. Broadly, MCMC methods for polymers can be split
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into those that employ local move types, which can approximate the system dy-
namics, and those that employ non-local moves. The classic local move types are
often referred to as the generalized Verdier–Stockmayer move set [212, 213], which
allows the rearrangement of kinks by flipping one unit of the polymer (the end flip
and corner flip move types) or two at once (the crankshaft flip move type). An
alternative approach that can still approximate polymer dynamics is the use of rep-
tation move types [214], which in the simplest “slithering snake” form involves the
removal and addition of a unit from one end to the other. However, these methods
are generally non-ergodic [215], and are typically not as efficient as approaches that
are not constrained to approximate polymer dynamics.

Perhaps the simplest type of non-local move is the pivot [216], in which a unit is
selected to act as a rotation point for the rest of the system. While this can significantly
speed up sampling relative to local moves, in denser systems or those with strong
interactions, the method becomes ineffective as it will tend to propose configurations
with large unfavourable changes in energy. The pull move type, a non-local move
type that is conceptually similar to reptation, can still provide some approximation
of the kinetics while also being effective in contexts where the pivot move type is
not [217, 218]. For dense systems, whether in a polymer melt or within a single
compact polymer, a more efficient route can be to break and reform bonds [219]. A
combination of the pull move type and this bond-rebridgingmove type was found to
be highly effective for the hydrophobic-polar (HP) protein folding latticemodel [220,
221]. Some rather inventive methods have been developed specifically for polymer
melts, such as the wormhole move type [222] and the use of an additional spatial
dimension [223].

For sampling individual polymers in compact configurations, however, those
methods that extend the above discussed Rosenbluth sampling to an MCMC frame-
work are arguably the most effective. One such approach is configurational bias
(CB) [201, 224]. Like Rosenbluth sampling, the selection of the growth of each
polymeric unit is biased, but rather than reweighting the samples at the end of the
simulation upon calculating ensemble averages, the Metropolis–Hastings algorithm
(see Section 3.3) is used to allow direct sampling of the desired probability distribu-
tion. Because it is not necessary to update the whole system in MCMC moves, this
method can be used to partially regrow a chain, and the bias applied during growth
may be modified to suit a given sampling problem.

Still, in very compact configurations, this method can fail by reaching dead-ends,
where there are no acceptable configurations available for the next unit. A variation
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was developed to combat this problem, referred to as recoil growth (RG) [225, 226],
in which the growth of the chain can “recoil” to the previous unit if it hits a dead-end.
Similarly to CB, the biasing function used is able to be modified to suit the challenges
of a given system. A variant of PERM that allows it to be used as a move type in
MCMC simulations was developed [227], but it was found to be no better CB.

3.3 Move types for DNA origami lattice models

3.3.1 General considerations

The details of the behaviour of staple strands in the assembly process are of interest
solely when they are (mis)bound to a scaffold strand. Only the availability of the
staples for binding to scaffold strands is relevant; this availability is determined by
the initial staple concentrations, the binding of staples to scaffolds, and the binding of
staples to other staples. Because in a typical assembly protocol, the staples are present
in excess of the required stoichiometry, it can be assumed to a first approximation that
the free staple concentrations are constant over the course of the assembly process.
Further, at the temperatures relevant to assembly, staple–staple binding should not
be a significant factor because the staples are not designed to bind to each other.
The sampling of states with free staples can be avoided by running the simulations
in the grand ensemble, in which we fix the chemical potential of the staples rather
than their number. While staple–staple binding is not favourable overall, because
of the local increase in concentration of staples at the scaffold, we do allow staple–
staple binding to occur. Thus in states with no free staples, the staples can either be
(mis)bound directly to the scaffold or (mis)bound indirectly via binding to a staple
already (mis)bound to the system.

The strong and specific interactions of the model and the need to sample states
with different numbers of (mis)bound staples makes efficient sampling challenging.
Because the model presented in Chapter 2 can share a lattice site with one other bind-
ing domain of the same chain, it cannot be classed as an interacting SAW, although
it does become self avoiding in partially assembled states. It can also be useful to
consider the nature of the system for a given set of (mis)bound domain pairs, at
which point it becomes an interacting walk with branches and loops.

While it would be desirable to reproduce dynamics, our top priority is efficiency,
which has guided our choice of sampling algorithms. Thus we immediately dis-
missed the classic general Verdier–Stockmayer and reptation move types. Addition-
ally, static move types in general seem unlikely to be successful. Consider a scaffold
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binding domain grown early in the algorithm that needs to be linked by a staple to a
scaffold binding domain grown much later; such a configuration becomes extremely
unlikely to be proposed, even in the often highly effective PERM method. For such
situations, the ability to do partial chain updates with an MCMC approach would
be necessary.

In the bond-rebridging move type with a heteropolymer model, it is necessary to
relabel the polymer units in order to achieve the same sequence after breaking and
reforming bonds. While the move type was found to be effective in protein folding
simulations of the HP lattice model, the HP model has only two polymer unit types,
and interactions are between adjacent lattice sites [228]. The highly specific interac-
tions present in our model make it highly likely that large unfavourable changes in
the energy will occur upon relabeling the binding domains. Pull moves, which were
also found to be effective with the HP model would likely also fail to sample effec-
tively in near assembled states, as they would tend to break many bound pairs, again
leading to large unfavourable energy changes. The system is composed of multiple
polymers that are quite dense in near-assembled states, but because they bind by
sharing a lattice site, and because the staple strands are short, it is not comparable to
polymer melts. Thus we did not consider specialized move types for polymer melts.

Based on the above considerations, we decided to focus on methods that involve
sequential growth of a set of binding domains in an MCMC framework that allow
us to apply custom biases to the trial generation probability of each binding domain.
The general outline of a chain regrowth move is as follows.

1. Select an available move type according to a predetermined distribution.
2. Select a set of binding domains and the order in which to regrow them.
3. Unassign the selected set of binding domains.
4. For the binding domain to be regrown, select a new position and orientation.
5. Repeat the previous step until all binding domains selected have been regrown.
6. Calculate the acceptance probability according to the selected biasing scheme.
7. Accept or reject the move with the probability calculated in the previous step.
8. If accepted, return to the step 1.
9. If rejected, revert to the previous configuration, then return to step 1.

For step 2, the order of regrowth will always be selected such that either an adjacent
binding domain on that chain is set, restricting the positions to be chosen from in
step 4 to the six neighbour sites, or the binding domain is bound to a domain that is
set, determining its position. Unassigning a binding domain is essentially setting the
position and orientation vectors to be undefined, and setting the state of the lattice
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site to unoccupied. The selected position on a neighbour site can be decomposed
into the sum of the position vector of the lattice site being grown from and a unit
vector, which we refer to as the position difference vector. The way in which binding
domain are selected for regrowth in step 2, and the bias used for selecting position
difference vectors and orientation vectors is what differentiates move types. In the
simplest case, the set of binding domains to be grown forms a contiguous segment
of a single strand, and the binding domains are grown according to their order in
the strand. More complex move types may involve multiple segments from the same
strand, or segments from multiple strands, where growth of binding domains from
a given segment in the stack may be interrupted by growth of binding domains from
other segments.

3.3.2 Biased chain regrowth methods

We develop move types in which chain regrowth is primarily done with either CB
or RG. We contrast these biased variants with an unbiased variant, which we refer
to as symmetric regrowth, which for convenience we use in Section 3.6. While they
are described as applied to the current DNA origami model, these move types are
applicable in general to polymer latticemodels. For symmetric regrowth, the position
difference vectors and orientation vectors are chosen with uniform probability from
the set of all unit vectors. As generation of configurations is symmetric, the trial
generation probabilities of binding-domain growth for the forward and reverse
moves will cancel. Thus the move is accepted according to the classic canonical
Metropolis acceptance criterion (Equation (3.4)).

In the CB variants [224], the selection of a new configuration for each binding
domain is biased by the associated energy change, such that the trial generation
probability of each binding domain is

𝑝trial𝑖 =
e−𝛽𝜖𝑖,𝑗

∑𝑘
𝑗′ e

−𝛽𝜖𝑖,𝑗′
, (3.5)

where the sum is over the number of possible configurations 𝑘, which here is the
number of neighbouring lattice sites times the number of possible orientation vectors
(thus 𝑘 = 36), and 𝜖𝑖,𝑗 is the energy of setting binding domain 𝑖 to have configuration
𝑗 after having grown out all previous binding domains. As the trial generation
probability is no longer symmetric, the acceptance probability will have additional
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terms that account for this. Rearranging and grouping these terms gives

𝑝acc( ⃗𝑥 ∣ ⃗𝑦) = min[1,
𝑊new
𝑊old

], (3.6)

where the Rosenbluth weight 𝑊 is defined in terms of the Rosenbluth weights of
each of the 𝑛 binding domains grown, 𝑤𝑖, as

𝑊 =
𝑛

∏
𝑖

𝑤𝑖 =
𝑛

∏
𝑖

⎛⎜⎜
⎝

𝑘
∑
𝑗=1

e−𝛽𝜖𝑖,𝑗⎞⎟⎟
⎠

. (3.7)

𝑊old is calculated by growing the old configuration and calculating 𝑤𝑖 at each step.

In the RG variants [225, 226], if growth becomes stuck, the binding domains that
were previously set can be unassigned, allowing them to be regrown in a different
configuration. The growth of each binding domain involves selecting a configuration
with uniform probability and choosing whether to consider the configuration ‘open’
or not according to some probability distribution. If it is chosen to be open, the con-
figuration is selected for use and growth of the next binding domain proceeds. The
probability of a configuration being open can be defined as needed; one possibility
is

𝑝open𝑖,𝑗 = min[1, e−𝛽𝜖𝑖,𝑗]. (3.8)

If the configuration is chosen to be closed, another is proposed, up to a total of 𝑘max

configurations. This number of configurations to test, 𝑘max, is a parameter that may
be freely adjusted to improve efficiency. If no open configurations result, growth
recoils to the previously set binding domain and testing continues for choosing open
configurations where it left off. Recoiling can occur 𝑙max times, or until all binding
domains being grown have been unassigned, which if reached will result in the
move being rejected.

To calculate the acceptance probability, the number of available configurations
𝑚𝑖,𝑗 at each binding-domain 𝑖 in the selected configuration 𝑗 in both the new and old
configuration must be determined. A binding-domain configuration is considered
available if there is at least one open configuration for the next 𝑙max binding domains
to be grown, or for all the remaining binding domains to be grown if this is less than
𝑙max. For each binding domain in the grown segment, one available configuration is
already known; checking for available configurations continues until a total of 𝑘max
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configurations have been tested. The RG weights are defined as

𝑊 =
𝑛

∏
𝑖

𝑤𝑖 =
𝑛

∏
𝑖

⎛⎜⎜
⎝

𝑚𝑖,𝑗

𝑝open𝑖,𝑗

⎞⎟⎟
⎠

. (3.9)

Then, the move is accepted with

𝑝acc( ⃗𝑥 ∣ ⃗𝑦) = min[1, e−𝛽Δ𝑈( ⃗𝑥, ⃗𝑦) 𝑊new
𝑊old

]. (3.10)

A super-detailed balance argument is used byConsta et al. [225] to show that detailed
balance is obeyed with this acceptance probability.

Below, we describe the four classes of move types we developed for sampling our
lattice model of DNA origami, which we also outline in Figure 3.1. In Section 3.10,
we provide the details of our numerical validation, and in Section 3.11, we discuss
the optimization of the move sets.

3.4 Orientation vector rotation moves

The first step in an orientation vector move consists of selecting a binding domain in
the system and generating a new orientation vector, both with uniform probability.
If the binding domain is in an unbound state, the change in energy upon a change
in the orientation vector is zero, so the acceptance probability will be unity. If the
binding domain is in a (mis)bound state, the orientation vector of the partner binding
domain will also be modified in the trial configuration to be the additive inverse
of the proposed orientation vector of the selected binding domain. This is then
accepted according to Equation (3.4).

An example orientation rotation move is shown in Figure 3.1. In this move,
scaffold-binding-domain 2 is selected. A new orientation vector direction is pro-
posed, in which it now points up. Because it is in a bound state, the change in energy
is zero, so the proposed configuration is accepted.
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Figure 3.1: Outline of the four classes of move types developed in this thesis.
An example move type of each class is applied to the configuration in the center
to produce the configurations on the periphery. Scaffold indices are placed on the
upper right of the binding domain while staple indices are placed on the bottom
right of the binding domain, with an index for the staple itself on the left of the colon,
and an index for the binding domain on the right. For simplicity all configurations
only use two dimensions. A full legend for all diagram elements is provided in
Figure 2.1.

3.5 Staple regrowth moves

Staple regrowth consists of first either selecting a staple in the system with uniform
probability or rejecting themove if no staples are present. If this staple is a connecting
staple, that is, a staple that if removed would leave a network of staples that has no
connection to the scaffold, the move is rejected immediately. Otherwise, one of the
binding domains on the selected staple that is in a (mis)bound state is selected to
act as a point from which the remainder of the staple will be grown out from. Then
the staple is grown out in both directions with the CB method, although in principle
any of the growth schemes discussed in Section 3.3 may be used.

This scheme introduces an asymmetry into the generation of trial configurations.
The probability of generating a trial configuration involves a factor of 1/𝑏, where
𝑏 is the number of binding domains on the regrown staple (mis)bound to other
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chains. This comes from the selection of a binding domain to grow out from. As 𝑏
can change between the current and trial configuration, there is an additional factor
of 𝑏old/𝑏new in the acceptance probability. In the case of CB, this gives

𝑝acc( ⃗𝑥 ∣ ⃗𝑦) = min[1,
𝑊new
𝑊old

×
𝑏old
𝑏new

]. (3.11)

An example staple regrowth move is shown in Figure 3.1. As there is only one
staple present, staple 1 is selected for regrowth. Removing this staple would clearly
not leave any staples unbound to the system, so the move goes ahead. As both staple
binding domains are in bound states, a random selection must be made to determine
which will be used as the starting point for regrowth. Binding-domain 1:1 is selected,
and so binding-domain 2:1 is grown out with CB. The new position is unbound, so
for calculating the acceptance probability we would use 𝑏old = 2 and 𝑏new = 1.

3.6 Staple exchange moves

Staple exchange starts with a uniform random selection of either a staple insertion
or staple deletion move. Then, in either case, a staple type is selected with uniform
probability. While CB and RG variants could be used, we only use the symmetric
scheme for binding-domain growth in the insertion move type. Clearly though, the
trial configuration generation probabilities of the forward and reverse moves will
not cancel, as there are many ways to insert and grow a given staple, but just one
way to remove it.

In the case of an insertion move, a lattice site in the system volume, 𝑉sys, which is
defined as all the lattice sites occupied by at least one binding domain in the system,
is selected with uniform probability to insert the first binding domain of the staple
into, leading to a factor of 1/𝑉sys in the trial configuration generation probability. A
binding domain on the staple being inserted is then selectedwith uniformprobability
to grow from, leading to an additional factor of 1/𝑛𝑖 in the trial probability, where 𝑛𝑖

is the length of staple type 𝑖. The staple is then grown out from this binding domain,
which gives a further factor of 6−2(𝑛𝑖−1) to the trial probability. However, states that
involve binding of multiple binding domains to other chains will be over-counted
with the current scheme, as there are 𝑏 ways to grow these configurations. This can
be corrected by multiplying the trial probability by a factor of 𝑏. Altogether, the trial
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probability of insertion for staple type 𝑖 is

𝑝trial( ⃗𝑥, 𝑁𝑖 + 1 ∣ ⃗𝑦, 𝑁𝑖) =
𝑏

62(𝑛𝑖−1)𝑛𝑖𝑉sys
, (3.12)

where 𝑁𝑖 is the number of staples of type 𝑖.

For a deletion move, a staple of the selected type in the system is selected with
uniform probability and removed if it is not a connector (see Section 3.5), which
gives a trial probability of

𝑝trial( ⃗𝑥, 𝑁𝑖 − 1 ∣ ⃗𝑦, 𝑁𝑖) =
1
𝑁𝑖

. (3.13)

Because the number of staples is changing, the probability of being in a particular
state is given by the grand ensemble probability distribution. Using the above trial
probabilities, the acceptance probability for insertion of staple type 𝑖 is

𝑝acc( ⃗𝑥, 𝑁𝑖 + 1 ∣ ⃗𝑦, 𝑁𝑖) = min⎡⎢
⎣
1,

62(𝑛𝑖−1)𝑛𝑖𝑉sys

𝑏(𝑁𝑖 + 1) e𝛽𝜇𝑖e−𝛽Δ𝑈( ⃗𝑥, ⃗𝑦)⎤⎥
⎦
, (3.14)

while for deletion it is

𝑝acc( ⃗𝑥, 𝑁𝑖 − 1 ∣ ⃗𝑦, 𝑁𝑖) = min⎡⎢
⎣
1,

𝑏𝑁𝑖

62(𝑛𝑖−1)𝑛𝑖𝑉sys
e−𝛽𝜇𝑖e−𝛽Δ𝑈( ⃗𝑥, ⃗𝑦)⎤⎥

⎦
, (3.15)

where 𝜇𝑖 is the chemical potential of staple type 𝑖. If we substitute in Equation (2.22)
for the chemical potential, then for insertion,

𝑝acc( ⃗𝑥, 𝑁𝑖 + 1 ∣ ⃗𝑦, 𝑁𝑖) = min[1,
𝑛𝑖𝑉sys

6𝑎3𝐶𝑖𝑏(𝑁𝑖 + 1)
e−𝛽Δ𝑈( ⃗𝑥, ⃗𝑦)], (3.16)

while for deletion,

𝑝acc( ⃗𝑥, 𝑁𝑖 − 1 ∣ ⃗𝑦, 𝑁𝑖) = min⎡⎢
⎣
1,

6𝑎3𝐶𝑖𝑏𝑁𝑖
𝑛𝑖𝑉sys

e−𝛽Δ𝑈( ⃗𝑥, ⃗𝑦)⎤⎥
⎦
. (3.17)

It seems that the lattice constant must be determined. However, if we note that
Δ𝑈( ⃗𝑥, ⃗𝑦) will have exactly one 𝜖b, and so by substituting in Equation (2.15), the
lattice constant will cancel in both acceptance probabilities.

An example staple regrowth move is shown in Figure 3.1. Here, a staple in-
sertion move is selected. We have not defined the staple types for this system, so
here we will simply say that a staple type is selected that binds to scaffold-binding-
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domain 5 with staple-binding-domain 1 and to scaffold-binding-domain 6 with
staple-binding-domain 2. An insertion site must be randomly selected; here scaffold-
binding-domain 5 is selected. The binding domain to insert of the selected staple
type must be chosen; here staple-binding-domain 1:1 is chosen. This happens to lead
to a configuration in which staple and scaffold binding domains are complementary,
but because the insertion site and insertion staple binding domain are chosen with
uniform probability, it is much more common to propose a move in which they
are not complementary. The staple has just one binding domain to be grown out,
which is done with symmetric growth. Symmetric growth means that even though
staple-binding-domain 1:2 is complementary to scaffold-binding-domain 4, and thus
energetically favourable, trial moves are not biased towards this configuration; here
an unbound configuration is proposed for the staple-binding-domain 2. To calculate
the acceptance probability, we would use that for this move we have 𝑛𝑖 = 2, 𝑏 = 1,
and 𝑉sys = 8.

3.7 Scaffold regrowth moves

3.7.1 Growth bias

A seemingly straightforward way to sample scaffold conformational states would
be to select a segment of the scaffold and regrow these binding domains and any
(mis)bound staples. However, even with advanced polymer growth schemes like
CB and RG, if the scaffold segment to be regrown is in a near assembled state, the
proposed configurations will rarely have as many bound domains, and will thus be
of a substantially less favourable energy. Hence such moves will thus almost always
be rejected. To address this, we have chosen to keep the sampling of binding states
and scaffold conformational states separate by developing variants of CB and RG
that allow the binding state of the system to be left unchanged when regrowing
parts of the system, leaving sampling of binding states to the staple exchange and
regrowth moves. Such a separation also simplifies the calculation of the trial gener-
ation probabilities by removing the asymmetries involved with changing binding
states. If the system is considered as a network where (mis)bound domain pairs act
as nodes, these moves can be thought of as holding the network topology constant,
and are thus referred to as conserved topology (CT) moves.

Fixed-end CB is a scheme that allows polymers to be grown to a predetermined
endpoint [229]. This works by introducing a further bias into the selection of con-
figurations for the growth of each polymer unit. The bias is the number of ideal
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random walks from the trial polymer unit’s position to the endpoint position, given
the number of polymer units remaining to be grown. Importantly, if a configuration
for the polymer unit currently being grown has no ideal random walks available to
reach the endpoint, the configuration will have zero probability of being proposed.

Here, we use a similar idea but extend it to allowmultiple endpoints per segment,
and growth ofmultiple segments on possiblymultiple chains. When amove involves
growingmultiple segments, each can have its own set of endpoint constraints. Once a
particular endpoint is reached, the associated endpoint constraint has been satisfied,
and so becomes inactive. If a binding domain that is to serve as an endpointmust also
be grown, the endpoint constraint is inactive until the associated binding-domain’s
configuration has been set.

Because of these cases of endpoint positions being set during growth, the number
of ideal random walks can no longer be directly used in the bias. This is because
the initial number of ideal random walks for such endpoints could differ between
the old and new configurations, and would thus not cancel when taking the ratio of
the Rosenbluth weights for the old and new configuration, as it does in the original
method. Instead, we use an indicator function, 𝜒I(Δ ⃗𝑟𝑙,𝑗, 𝑛𝑙,𝑖), that is unity if walks
remain and zero otherwise, where Δ ⃗𝑟𝑙,𝑗 is the difference vector between the trial
position of configuration 𝑗 and the position of endpoint 𝑙, and 𝑛𝑙,𝑖 is the number of
binding domains remaining to be grown between binding domain 𝑖 and the binding
domain of endpoint 𝑙. Whether walks remain or not can be determined by checking
if the sum of the absolute values of the components of the position difference vector
is greater than or equal to the number of binding domains remaining to be grown.

While the endpoint constraints ensure that the system will still have the (mis)-
bound pairs it began with (with the exception of same-chain misbinding; see fol-
lowing discussion), they do not prevent new pairings from forming. To prevent
new pairings, another indicator function, 𝜒B(𝑠), of lattice site 𝑠 can be used. This
function is unity if the lattice site is unoccupied, the position of an endpoint of an
active endpoint constraint on the segment being grown, or occupied by another
binding domain of the chain currently being grown, and zero otherwise. We allow
misbinding between binding domains on the same chain because the staple exchange
and regrowth moves will not allow sampling of states involving scaffold binding
domains misbinding with themselves. Because we allow these misbound pairings to
form, we must also allow them to unform, and so they are not used by endpoint con-
straints. Because misbinding interactions are relatively weak, decreasing the number
of misbound pairs will not typically lead to large unfavourable energy changes. Fur-
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ther, because they are by definition not as specific as fully bound pairs, there are
many ways to propose moves that have the same number of misbound pairs. Finally,
we note that changing the number of intra-chain misbound pairs will not introduce
asymmetry into the trial probability, as there is no selection of a domain to grow out
from involved.

The trial probability of selecting a configuration for binding domain 𝑖 is now

𝑝trial𝑖 =
e−𝛽𝜖𝑖,𝑗𝜒B(𝑠𝑗) ∏𝑙 𝜒I(Δ ⃗𝑟𝑙,𝑗, 𝑛𝑙,𝑖)

∑𝑘
𝑗′ e

−𝛽𝜖𝑖,𝑗′𝜒B(𝑠𝑗′) ∏𝑙′ 𝜒I(Δ ⃗𝑟𝑙′,𝑗′, 𝑛𝑙′,𝑖′)
, (3.18)

and the Rosenbluth weight is

𝑤𝑖 =
𝑘

∑
𝑗=1

e−𝛽𝜖𝑖,𝑗𝜒B(𝑠𝑗) ∏
𝑙

𝜒I(Δ ⃗𝑟𝑙,𝑗, 𝑛𝑙,𝑖). (3.19)

A similar modification can be made to the RG scheme for growing binding domains
to construct a CT variant. The modification is made to the probability of a configu-
ration being open,

𝑝open𝑖,𝑗 = min⎡⎢
⎣
1, e−𝛽𝜖𝑖,𝑗𝜒B(𝑠𝑗) ∏

𝑙
𝜒I(Δ ⃗𝑟𝑙,𝑗, 𝑛𝑙,𝑖)⎤⎥

⎦
. (3.20)

3.7.2 Segment selection

The CT move types, whether CTCB or CTRG, begin with the selection of a segment
or segments of the scaffold to regrow. Then, of the set of staples that are involved in
the network of staples (mis)bound to the selected scaffold segment(s), it must be
determined which will be regrown and which will act as endpoints. Here, if a set
of staples is involved in a network that includes scaffold binding domains external
to the selected segment(s), the staples will remain in their current configuration,
with those that are (mis)bound to the selected scaffold segment acting as endpoints
for its regrowth. These are referred to as external staples. If a staple is not involved
in such a network, it is regrown with the scaffold, with endpoints for the required
endpoint constraints being determined during regrowth. These are referred to as
internal staples.

If the scaffold segment was regrown fully before regrowing any of the internal
staples, it would result in binding domains on the scaffold being used in endpoint
constraints for the internal staples. However, this would be less effective than re-
growing the staples first such that the endpoints were instead on the staples and
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used by endpoint constraints applied to regrowth of the scaffold, as typically the
staples are only two or three binding domains and so often have no way of reaching
an endpoint on a scaffold binding domain. Thus, as the scaffold is regrown, if there
is a fully unset staple to be (mis)bound to the binding domain that has just been set,
regrowth of the current chain will be put on hold to regrow this staple. This may
also happen while regrowing a staple, in a recursive manner. If a binding domain
on the chain being regrown is to be (mis)bound to an unassigned binding domain
on a chain already in the process of being regrown, an endpoint constraint is set up
for this other chain (typically the scaffold).

There are many ways to select the set of scaffold segments for regrowth. We use
two variants: single- and multiple-segment selection. In the single segment, or con-
tiguous scaffold regrowth, variant, the segment is selected such that the distribution
of lengths is uniform, where the range of possible lengths is a parameter of the move
type. To create a segment, a uniformly random scaffold binding domain is selected
from the set of all scaffold binding domains to act as the seed binding domain from
which to create the segment. While the seed itself is not regrown, for a staple to
be bound to it will count towards it being an internal staple, and such an internal
staple would be the first thing to regrow. A direction with which to add binding
domains to the segment is then selected with uniform probability. Binding domains
are added until either the selected segment length or the end of the chain is reached.
If the end of the chain is reached, segments will begin to be added from the other
side of the seed binding domain.

An example scaffold regrowth move is shown in Figure 3.1, but as scaffold re-
growthmoves involvemany steps, it has been expanded upon in Figure 3.2 to demon-
strate a contiguous scaffold regrowth move. First, scaffold-binding-domain 1 is se-
lected as the seed binding domain. The forward direction is selected for regrowth,
although as it is the first binding domain of the chain, this is inconsequential for the
above outlined regrowth algorithm. Then, the number of scaffold binding domains
to be regrown is selected to be eight, which here is the entire chain. This means there
will be no endpoint constraint on scaffold regrowth to ensure an unbroken chain. To
determine which staples will be regrown is straightforward, as there is only staple
in the system, which must be internal.

To begin regrowth, the binding domains to regrow are first unassigned, shown
in Figure 3.2(b). Regrowth biasing can be done with either CB or RG. As it is bound
to the seed binding domain, staple-binding-domain 1:1 becomes the first to be set
in (c). In (d), staple-binding-domain 1:2 is then grown out, and will now act as
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Figure 3.2: Example of a contiguous scaffold regrowth move. The same index
labeling scheme is used as in Figure 3.1. A full legend for all diagram elements is
provided in Figure 2.1.

an endpoint constraint for the scaffold chain, as this binding domain is bound to
scaffold-binding-domain 8. The selection of the position of scaffold-binding-domain
2 and 3 in (e) and (f), respectively, is unaffected by this endpoint constraint, but
for regrowing scaffold-binding-domain 4 in (g), some positions, for example the
position above scaffold-binding-domain 3, are prohibited by the endpoint constraint.
For scaffold-binding-domain 5, there are only two possibilities that can allow the
endpoint constraint to be achieved: misbinding with scaffold-binding-domain 4, or
as chosen in (h), directly below scaffold-binding-domain 4. There are also only two
possibilities for scaffold-binding-domain 6, one ofwhich is selected in (i). Finally, the
positions for scaffold-binding-domains 7 and 8 are fully determined by the endpoint
constraint, shown in (j) and (k), respectively.

In the multiple segment, or non-contiguous scaffold regrowth, variant, the in-
tention is to allow the selection of binding domains for regrowth to be able to jump
at points where two scaffold binding domains are adjacent due to a linking staple.
For each move, a maximum total number of binding domains to regrow across all
segments is chosen with uniform probability, where the range from which the selec-
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tion is made is a parameter of the move type. For each individual segment that is
created, a maximum segment length is selected with uniform probability, where the
range from which the length is selected is another parameter of the move type. The
addition of binding domains to a given segment proceeds until either the maximum
segment length is reached, the maximum regrowth length is reached, the end of
the chain is reached, or the binding domain following the binding domain being
considered for addition to the segment is already part of another segment to regrow.
This last condition is to simplify the construction of endpoint constraints.

Segment creation begins with the selection of a seed binding domain and di-
rection from which to add binding domains to the segment in the same manner
as with the contiguous scaffold regrowth variant. As with contiguous regrowth,
a staple bound to a seed domain would be the first thing to be regrown. As bind-
ing domains are added to the segment (and all subsequent segments created), if a
binding domain is bound to a staple that is bound to another binding domain of the
scaffold that is neither already in a segment to regrow nor contiguous with a scaffold
binding domain that is in a segment to regrow, it is added to a queue of potential
segment seed binding domains. Once addition of binding domains to the segment
has been terminated, if the maximum total number of binding domains to regrow
has not been reached, a new segment is created with a binding domain from the
front of the aforementioned queue. The direction from which to proceed is selected
as with the first segment. Once addition of binding domains to this segment has
been terminated, and if the maximum total number of binding domains to regrow
has not been reached, a segment beginning from the binding domain in the opposite
direction of the previous segment seed will be used as the seed for a new segment, if
it exists and if the following binding domain is not already part of another segment
to regrow. Once addition of binding domains to this segment has been terminated,
the steps after initial segment creation are repeated until either the queue is empty or
the maximum total number of binding domains to regrow is reached. The segments
are regrown in the order in which they were created. Because the probability of
selecting a particular set of segments of scaffold binding domains does not depend
on the conformation or on whether or not binding domains are misbound to other
binding domains on the same chain, the move type obeys detailed balance.

An example of a non-contiguous scaffold regrowth move is given in Figure 3.3.
First, themaximum total number of bindingdomains to regrow is selected to be seven.
The seed binding domain is selected to be scaffold-binding-domain 5, and for the
first segment, the direction is chosen to be forward and the maximum length three.
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Figure 3.3: Example of a non-contiguous scaffold regrowth move. The same index
labeling scheme is used as in Figure 3.1. A full legend for all diagram elements is
provided in Figure 2.1.

While adding scaffold-binding-domains 6, 7, and 8 to the first segment, scaffold-
binding-domain 2 is added to the queue of potential segment seed binding domains.
With the maximum length of the first segment having been reached, the segment
seed in the queue is used to begin a new segment. The negative direction, and a
maximum segment length of two, is selected. Because the seed binding domain
must be regrown, it is included in the count of the segment length, so only scaffold-
binding-domain 1 is additionally added to this segment. The total number of binding
domains to be regrown is still less than six, so another segment is added, and binding
domains added by moving in the opposite direction as the previous segment out
from that seed binding domain. A maximum segment size of three is selected, but
since only scaffold-binding-domain 3 can be added, the segment length is only one.
Finally, while the total number of binding domains to be regrown is only six, the
queue of potential seed binding domains is empty, so selection of scaffold segments
ends.

With all the segments selected, regrowth can begin. Again, either CB or RG can
be used for regrowth. From Figure 3.3(b) to (d), the first two binding domains of
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the first segment are grown. Then, the staple bound to scaffold binding domain 7
is grown out in (e) and (f), before returning to the first segment to grow the final
binding domain in (g). In (h) and (i) the second segment is grown out from staple-
binding-domain 1:2. So far, there have been no endpoint constraints, but for the
growth of the single binding domain in the third segment, there is an endpoint con-
straint enforcing that it be adjacent to scaffold-binding-domain 4, which determines
its position.

3.8 Replica exchange

In order to increase sampling efficiency, we use a method that has come to be known
as parallel tempering, or replica exchange Monte Carlo (REMC) [230–234]. This
advanced samplingmethod involves runningmultiple replicas of the simulation that
differ with respect to a simulation control parameter, most commonly temperature,
which we refer to as exchange variables. An additional move type is constructed in
these simulations, which in the simplest form of REMC involves an exchange attempt
at a random step interval of the configurations of a random pair of replicas, provided
that the replicas are adjacent with respect to the exchange variables. REMC alone
would not be ergodic, as the initial set of configurations would simply be swapped
between the replicas, so it must be used in conjunction with an ergodic move set. The
idea is that by selecting exchange variables that control the heights of barriers along
the free-energy landscape, fluctuations that occur when the barriers are smaller
can be passed to the replicas with larger barriers. In a more general form known
as Hamiltonian REMC, the Hamiltonian itself can be exchanged [235–237]. It is
also possible to carry out multi-dimensional REMC, in which multiple exchange
variables are used [235, 236].

While we are primarily interested in running the simulations across a range
of temperatures, here we must also use a range of Hamiltonians because of the
temperature dependence of the NN model hybridization free energies. Further,
because we are in the grand ensemble but would like to keep the staple concentration
constant across the replicas, we must also exchange the staple chemical potential.
Because they are both functions of the temperature, this is still one-dimensional
REMC.

Considering each replica as its own simulation, a REMC swap move can be
considered as two separate moves for the selected replica pair, 𝑖 and 𝑗. For replica 𝑖
the detailed balance condition is
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𝑝( ⃗𝑦; 𝜇𝑖, 𝑇𝑖,H𝑖 ∣ ⃗𝑥; 𝜇𝑖, 𝑇𝑖,H𝑖)𝑝( ⃗𝑥; 𝜇𝑖, 𝑇𝑖,H𝑖)

= 𝑝( ⃗𝑥; 𝜇𝑖, 𝑇𝑖,H𝑖 ∣ ⃗𝑦; 𝜇𝑖, 𝑇𝑖,H𝑖)𝑝( ⃗𝑦; 𝜇𝑖, 𝑇𝑖,H𝑖), (3.21)

while for replica 𝑗 it is

𝑝( ⃗𝑥; 𝜇𝑗, 𝑇𝑗,H𝑗 ∣ ⃗𝑦; 𝜇𝑗, 𝑇𝑗,H𝑗)𝑝( ⃗𝑦; 𝜇𝑗, 𝑇𝑗,H𝑗)

= 𝑝( ⃗𝑦; 𝜇𝑗, 𝑇𝑗,H𝑗 ∣ ⃗𝑥; 𝜇𝑗, 𝑇𝑗,H𝑗)𝑝( ⃗𝑥; 𝜇𝑗, 𝑇𝑗,H𝑗). (3.22)

For the swap to be accepted, both of these individual moves must occur, so the total
transition probability is the product of the two individual transition probabilities,

𝑝( ⃗𝑦; 𝜇𝑖, 𝑇𝑖,H𝑖 ∧ ⃗𝑥; 𝜇𝑗, 𝑇𝑗,H𝑗 ∣ ⃗𝑥; 𝜇𝑖, 𝑇𝑖,H𝑖 ∧ ⃗𝑦; 𝜇𝑗, 𝑇𝑗,H𝑗)

= 𝑝( ⃗𝑦; 𝜇𝑖, 𝑇𝑖,H𝑖 ∣ ⃗𝑥; 𝜇𝑖, 𝑇𝑖,H𝑖)𝑝( ⃗𝑥; 𝜇𝑗, 𝑇𝑗,H𝑗 ∣ ⃗𝑦; 𝜇𝑗, 𝑇𝑗,H𝑗) (3.23)

We can then rewrite the transition probability in terms of the acceptance and trial
probabilities. The generation of a trial configuration for a replica is essentially taking
a configuration from the equilibrium ensemble for its selected pair for that move, so

𝑝trial( ⃗𝑦; 𝜇𝑖, 𝑇𝑖,H𝑖 ∣ ⃗𝑥; 𝜇𝑖, 𝑇𝑖,H𝑖) = 𝑝( ⃗𝑦; 𝜇𝑗, 𝑇𝑗,H𝑗). (3.24)

If we combine Equations (3.21) to (3.24), and rearrange to solve for the acceptance
probability, then

𝑝acc( ⃗𝑦; 𝜇𝑖, 𝑇𝑖,H𝑖 ∧ ⃗𝑥; 𝜇𝑗, 𝑇𝑗,H𝑗 ∣ ⃗𝑥; 𝜇𝑖, 𝑇𝑖,H𝑖 ∧ ⃗𝑦; 𝜇𝑗, 𝑇𝑗,H𝑗)

= min⎡⎢
⎣
1,

𝑝( ⃗𝑦; 𝜇𝑖, 𝑇𝑖,H𝑖)𝑝( ⃗𝑥; 𝜇𝑗, 𝑇𝑗,H𝑗)

𝑝( ⃗𝑦; 𝜇𝑗, 𝑇𝑗,H𝑗)𝑝( ⃗𝑥; 𝜇𝑖, 𝑇𝑖,H𝑖)
⎤⎥
⎦

= min
⎡⎢⎢
⎣
1,

(e𝛽𝑖𝜇𝑖𝑁𝑦⃗e−𝛽𝑖H𝑖( ⃗𝑦)) (e𝛽𝑗𝜇𝑗𝑁𝑥⃗e−𝛽𝑗H𝑗( ⃗𝑥))

(e𝛽𝑗𝜇𝑗𝑁𝑦⃗e−𝛽𝑗H𝑗( ⃗𝑦)) (e𝛽𝑖𝜇𝑖𝑁𝑥⃗e−𝛽𝑖H𝑖( ⃗𝑥))

⎤⎥⎥
⎦

= min[1, eΔr(𝛽ΔcH)−Δr(𝛽𝜇)Δc𝑁] (3.25)

where Δr is a difference operator between replicas 𝑖 and 𝑗 (e.g. Δr(𝑎𝑏) = 𝑎𝑗𝑏𝑗 − 𝑎𝑖𝑏𝑖)
and Δc is a difference operator between configurations ⃗𝑥 and ⃗𝑦 (e.g. Δc𝑎 = 𝑎 ⃗𝑦 − 𝑎 ⃗𝑥).

From Equation (3.25), it can be seen that to calculate the acceptance probability
for a given swap, it is necessary to calculate the energy of both configurations with
both Hamiltonians. If we expand the Hamiltonian in the first term of the exponential
in Equation (3.25) in terms of the enthalpy and entropy of themodel, we can simplify
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this calculation such that

Δr(𝛽ΔcH) =
1
𝑇𝑗

(Δ𝐻total( ⃗𝑦) − 𝑇𝑗Δ𝑆hyb( ⃗𝑦) − Δ𝐻total( ⃗𝑥) + 𝑇𝑗Δ𝑆hyb( ⃗𝑥))

−
1
𝑇𝑖

(Δ𝐻total( ⃗𝑦) − 𝑇𝑖Δ𝑆hyb( ⃗𝑦) − Δ𝐻total( ⃗𝑥) + 𝑇𝑖Δ𝑆hyb( ⃗𝑥))

=
Δ𝐻total( ⃗𝑦) − Δ𝐻total( ⃗𝑥)

𝑇𝑗
−

Δ𝐻total( ⃗𝑦) − Δ𝐻total( ⃗𝑥)
𝑇𝑖

= Δc(Δ𝐻total)Δr𝛽, (3.26)

where Δ𝐻total( ⃗𝑥) = Δ𝐻hyb( ⃗𝑥) + Δ𝐻stack( ⃗𝑥), with Δ𝐻hyb( ⃗𝑥), Δ𝐻stack( ⃗𝑥), and Δ𝑆hyb( ⃗𝑥)
being the hybridization enthalpy, stacking energy, and hybridization entropy, respec-
tively, for the selected model and system in configuration ⃗𝑥. This allows us to use
the values for these enthalpies and entropies that we update at each step without a
full recalculation for different temperatures.

In addition to what is essentially REMC with temperature as the independent
exchange variable, we also consider a true Hamiltonian REMC with a multiplier on
the stacking energy acting as an exchange variable. This may allow the system to
cross barriers between states with different stacked pairs by providing a route that
avoids the binding and unbinding of domains and staples that using temperature as
the exchange variable may lead to. In this case, the first term of the exponential in
Equation (3.25) instead becomes

Δr(𝛽ΔcH) = Δc(Δ𝐻hyb)Δr𝛽 + Δc𝐸stackΔr(𝑚𝛽), (3.27)

where 𝑚 is the stacking energy multiplier. However if we are only exchanging the
stacking multiplier, the right-hand-side of Equation (3.25) simplifies further to

min[1, eΔr(𝛽ΔcH)−Δr(𝛽𝜇)Δc𝑁] = min[1, e𝛽(Δc(Δ𝐻hyb)+Δc𝐸stackΔr𝑚)]. (3.28)

To improve parallelization, the variant of REMC used here attempts an exchange
at a set step interval, and alternates between attempting an exchange between all
even pairs and all odd pairs of replicas, where pairs are numbered with the index of
the first replica in the pair along the exchange variable. While this variant of REMC
no longer obeys detailed balance, it can be shown to obey total balance [238], and
has been found to be relatively efficient compared to other exchange schemes [239].
We also consider a 2D REMC scheme, in which case we alternate between both the
exchange variables and the even/odd pairings within each exchange variable.
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3.9 Free-energy calculations

Calculating free energies presents additional challenges to those of calculating ex-
pectations of system properties that can take on instantaneous values for a given
configuration (i.e. mechanical properties). This is because they depend on the loga-
rithm of the partition function, and so require a more thorough sampling of phase
space, as to estimate the partition function the integrated total weighted volume
of phase space must be estimated. Fortunately as only free-energy differences are
meaningful, we are typically only calculating ratios of partition functions, which
alleviates the issue somewhat.

Apart from free-energy differences of a given system in different thermodynamic
states, we may also be interested in comparing free energies between two different
systems, or partitioning configuration space for a given system in a given thermody-
namic state and considering free energy differences between these partitions, which
typically correspond to distinct phases or macrostates. To partition configuration
space, it is often useful to define some coarse-grained variable(s), which we will
refer to as order parameters, although in other contexts they are referred to as col-
lective variables or reaction coordinates [240]. The free-energy differences along
these order parameters can then be calculated, which we will refer to as Landau free
energys (LFEs), but they have also been described as potentials of mean force.

If one considers an extended ensemble that includes all macrostates of interest
(whether thermodynamic, chemical, or configurational), the extended partition
function is simply the product of the individual partition functions, and the prob-
ability of being in a particular macrostate is the ratio of that macrostate’s partition
function to the extended partition function. Clearly, then, the free-energy difference
between any twomacrostates can be estimated by the relative probabilities of the two
states, which may be done by keeping track of the number of times a simulation is in
a given macrostate. Thus any simulation that provides samples from the extended
ensemble that can be used to compare weights of various macrostates can be used
to calculate free-energy differences.

However, typically specialized methods are required to achieve better conver-
gence. A huge variety of methods have been developed for many different contexts,
but in this thesis we are interested in those methods applicable to calculating LFEs of
polymers in a dilute solution phase. The REMC method described above is one ap-
proach that helps sample configuration space more broadly if the exchange variables
provide a good proxy for sampling across the relevant range of the order parameters
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of interest. Combined with a method to reweight the replicas to the thermodynamic
state of interest to harvest all available information (discussed below), this can be
an effective method for calculating LFEs.

However, if for some values of the order parameters the relevant associated subset
of configuration space has very lowweights, and changing the control variables does
not allow this subset to be sampled well, as for example is the case when studying
nucleation barriers, it may be necessary to consider methods that sample from a
distribution other than that of the ensemble of interest. Typically, such methods
attempt to flatten the free energy surface by using a biasing weight or potential such
that all relevant states can be sampled with equal weight. If the biasing potential
is an additional term in the Hamiltonian, then the biasing potential for an order
parameter 𝑞 that will give a uniform distribution is

Φ(𝑞) = 𝑘B𝑇 ln 𝑝(𝑞), (3.29)

where 𝑝(𝑞) is the probability distribution of the order parameter in the given en-
semble. A disadvantage of such biasing methods is that 𝑝(𝑞) is not known, and
must be estimated in an iterative manner. One approach to estimating and applying
this biasing weight in the calculation of free energies is known as umbrella sam-
pling (US) [241, 242]. We use a simplified version of a multi-windowed adaptive
US scheme [243] (see below for definition of a window).

In this scheme, one ormore order parameters are selected, and the relevant ranges
are partitioned into bins, although here all order parameters are integer valued and
encompass a relatively small range, making binning unnecessary; however, we will
still refer to each combination of order parameter values as a bin. As the simulation
proceeds, a histogram is built by counting the number of configurations that fall
into each bin. After a set number of steps, the histogram is reweighted with the
current bias weights to estimate Φ(𝑞), which is then used as the bias weight in the
next round. To improve convergence during the early stages in which some bins
may have very few samples and thus lead to poor estimates of Φ(𝑞), a maximum
change in the bias weight is enforced.

To improve parallelization, rather than running a single simulation with the goal
of achieving uniform sampling across the whole range of order parameters, multiple
windows can be defined that cover only a subset of the range. These windows have
a further unvarying bias that prevents the simulation from sampling states outside
the window; here a simple step function is used where the bias is zero inside the
window range, and is determined by a linear (i.e. affine) function outside window
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that slopes towards the region of zero bias. In order to reconstruct a single LFE at
the end of the simulation, the windows must overlap so that a single histogram may
be constructed for the set of windows.

Ferrenberg and Swendsen [244] developed a method that allows the data from
simulations from multiple states to be reweighted to the state of interest, which
was further extended by Kumar et al. [245] into a widely used method known as
the weighted histogram analysis method (WHAM). This method involves self-
consistently solving a set of equations to provide the partition functions up to a
multiplicative constant, allowing for free-energy differences between the states to
be calculated. This method does not provide an estimate of the variance, so another
method such as bootstrapping must be used. The multi-Bennett acceptance ratio
(MBAR) method [246] was also developed to allow data from multiple simulations
to be combined, although in contrast to WHAM, it does not require the data to be
binned to form histograms and provides an estimate of the variance. Both WHAM
and MBAR may be used to combine and reweight the results of multi-window US
simulations, or to reweight REMC simulations to take advantage of data at states
other than those of interest. We chose to use the MBAR method for both US and
REMC simulation analysis.

The MBAR method requires a series of independent samples as input. We use
the method of Chodera et al. [247] to estimate the statistical inefficiency, which
allows an uncorrelated subset of the samples generated by the simulations to be
extracted. Convergence of expectation values can be achieved with less data by
discarding samples from the start of the simulation, when there are often highly
atypical configurations. We use an automated method for determining the equilibra-
tion, or burn-in, steps [248]. We used a freely available software package, pymbar,
for the MBAR, statistical inefficiency, and automated equilibration detection time
calculations. For the calculation of burn-in steps and statistical inefficiency, we use a
form of the reduced potential as the input series [246],

𝑢𝑖( ⃗𝑥) = 𝛽𝑖 (𝑈𝑖( ⃗𝑥) + 𝜇𝑖𝑁( ⃗𝑥)) , (3.30)

where the indices refer to the particular state being considered. The reducedpotential
is a suitable choice because it is a relatively general measure of relevant fluctuations
in the system, and because it is also a required input of the MBAR method.
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3.10 Numerical validation of MCMC move types

To examine the validity of the move types, simulations of a simple system were run
and compared to exact results. The system used consists of a four-binding-domain
scaffold and two staples, in which one of the staples links the terminal scaffold
binding domains in the assembled state, as can be seen in Figure 3.4(b). The exact
results were calculated by taking the ensemble averages across all configurations that
have at most four total staples or two staples of a given type, which were determined
with a recursive enumeration algorithm. The move set was nearly the same as the
temperature REMC move set described in the following section, with the exception
that the maximum number of scaffold domains to regrow is set to four. The MBAR
method was used to calculate the expectation values for selected order parameters.
The average number of bound-domain pairs, the average number of (mis)bound
staples, the average number of misbound-domain pairs, and the average number of
stacked-binding-domain pairs for both the simulation and enumeration results are
plotted in Figure 3.4(a), which clearly shows that the two approaches agree within
sampling error.

3.11 Optimization of MCMC parameters

A given move set has many free parameters and cannot be fully optimized without
extensive efforts. For the move sets used in this thesis, which have an orientation
rotation move type, a staple exchange move type, a CB staple regrowth move type,
a contiguous CTRG scaffold regrowth move type, a non-contiguous CTRG scaffold
regrowth move type, and a REMC exchange move type, there are 12 adjustable
parameters. Further, the optimal parameters will be different depending on the
system being simulated, as well as the simulation conditions and model parameters.
We instead undertake only a small amount of optimization to avoid wasting effort on
the diminishing returns associated with more thorough optimization. The strategy
was to optimize parameters in isolation by assuming that the dependency in optimal
value of a given parameter on the others is small.

The individual parameters were optimized primarily by running simulations on
the 24-binding-domain scaffold system (see Figure 4.2), although some additional
optimization was performed on the 56-binding-domain scaffold system (see Fig-
ure 4.11). To optimize the parameters, we considered the acceptance frequencies
(and in the case of scaffold regrowth moves, acceptance frequencies as a function
of the number of scaffold domains being regrown), the mean times to the first as-
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Figure 3.4: Numerical validation of the move types and their implementation. (a)
Mean order parameters plotted against temperature. The exact result for each order
parameter is plotted in dashed black lines. The error bars represent the standard
error as calculated with the MBAR method, using data from ten independent simu-
lation. Simulations were run with the same parameters as the simulations referred
to in Figure 4.3. (b) Representation of the four-binding-domain scaffold system
used. (i) Helical cartoon representation of the system in a fully stacked assembled
configuration. (ii) Representation of the system with the implicit helical model. The
scaffold (left) and staples (right) are shown in the assembled, planar configuration,
but for clarity have been drawn separately. A full legend for all diagram elements is
provided in Figure 2.1.

sembled state and the first fully stacked assembled state, expectation values of order
parameters, and the effective sample size [247] (see Figure 3.5 for an example of
selecting the RG move type parameters). Based on this, for both the contiguous and
non-contiguous CTRG scaffold regrowth move types, we chose a maximum of one
recoil, a maximum of 36 (all possible) configurations to be attempted at each growth
step, and a maximum of 12 total scaffold binding domains to attempt to regrow. For
the non-contiguous CTRG move type, we chose a maximum of two scaffold binding
domains to attempt to regrow per segment. For the ratio of move type frequencies,
we chose orientation rotation, staple exchange, staple regrowth, contiguous CTRG
scaffold regrowth, and non-contiguous CTRG scaffold regrowth moves in a ratio of
2 ∶ 1 ∶ 1 ∶ 1 ∶ 1. Finally, we make an exchange attempt between replicas every 100 steps.
For many of the parameters, there was a substantial range in which the sampling
efficiency was very similar, so many of the values given above could well have been
chosen differently.

65



Simulation methods

Figure 3.5: Example of analysis used to optimize move set parameters. Indepen-
dent simulations were run for each temperature, which were analyzed separately
(i.e. without the MBAR method). The error bars represent the standard error in the
means across three independent simulations. An older version of model with an
unoptimized stacking energy was used in these simulations.
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4
Feasibility and validity of approach

4.1 Motivation

In the present chapter, we run simulations of the model described in Chapter 2. The
goal is to test whether the model is capable of representing assembled states in a way
that matches our expectations. Additionally, we want to test whether the simulation
methods described in Chapter 3 are able to efficiently sample assembled states. We
also provide some simple examples of the types of thermodynamic analyses possible
with the model and simulation methods.

4.2 Simulation and analysis methods

The simulations are runwithHamiltonian REMC in the grand ensemble as described
in Chapter 3, with staple concentration held constant across the replicas. The move
set and associated parameters are those described in Section 3.11. We calculated the
free-energy differences that are plotted in Figure 4.1 by directly using the ratio of
stacked to unstacked states. All expectation values for the 24- and 21-binding-domain
scaffold systems were calculated by taking simple means at the thermodynamic state
in question; standard errors were calculated frommeans taken for each independent
simulation run in the same state. For the 56-binding-domain scaffold system, the
expectation values and standard errors were calculated with the MBAR method
discussed in Section 3.9, which combines the data from all thermodynamic states
and independent simulations in a single analysis.
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4.3 Initial parameter selection

There are three main parameters related to the assembly conditions that must be
chosen in order to run a simulation: the staple concentration, the salt concentration
and the temperature. Here, we set all staples to have the same amount concentration
𝐶. While staple concentrations used vary from study to study, typical values are
around 100 nM, which is the value we use here. Assembly is typically carried out
in solutions with significant amounts of dissolved salts, so we set the monovalent
cation concentration to be 0.5M, which is the same concentration as that used by
Snodin et al. [120] in their oxDNA simulations.

As we are running REMC simulations, we do not have to select a single tempera-
ture; the selection of the range is guided by two principles. The first is to encompass
the region of the relevant order parameter curves with the steepest gradient, approx-
imately centred on the melting temperature. The second is to keep the acceptance
probabilities of replica swaps roughly uniform between each adjacent pair. In the
selection of the stacking multiplier for the 2D REMC simulations, the first principle
does not apply; in this case the states with other stacking multipliers are only used
to improve sampling.

The physical origin of the stacking interactions involves a favourable electro-
static component and an entropic penalty. However, because some of the entropic
component of the stacking free energy is accounted for by constraining the orien-
tation vectors in bound states within our model, we assume the stacking interac-
tion parameter is entirely energetic and treat the stacking interaction as a single
temperature-independent tunable parameter. To select its value, we ran short serial
simulations of a two-binding-domain scaffold with two single-binding-domain sta-
ples at a temperature below the melting temperature and calculated the free-energy
difference between the stacked and unstacked states for a range of stacking energies
(Figure 4.1). We selected a value of −1000 kBK, which gave a free-energy difference
that roughly matched experimentally measured values [249, 250] of ∼−5 kJmol−1.

A few of the model parameters are different those described in Chapter 2. First,
we used a different expression for chemical potential than Equation (2.22) that did
not account for the internal staple degrees of freedom. We assumed that we could
write the staple-strand chemical potential to within a constant as 𝜇𝑖 = 𝑘B𝑇 ln(𝐶/𝐶−∘ ),
where 𝐶−∘ = 1M. In Section 4.5, we argue that while this will affect the results
in a quantitative way, the qualitative results of this chapter will hold. For the uni-
molecular binding reactions, we included Δ𝐺−∘

initiation in 𝜖u, essentially using 𝜖b for
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Figure 4.1: Stacking free energy as a function of stacking energy calculated from
simulations of a two-binding-domain scaffold system with two one-binding-domain
staples. The simulations were run at 320K, which is below the melting temperature.
The error bars represent the standard error in the means across three independent
simulations. Simulations were run with a staple concentration of 100 nM and a
monovalent cation concentration of 0.5M.

all binding energies. The contribution of Δ𝐺−∘
initiation to Δ𝐺−∘

NN is small, and so this is
unlikely to havemuch of an impact on the results. We also do not include the 𝑘B𝑇 ln 6
term that appears in 𝜖s from the loss of the orientation vector degrees of freedom
upon binding. While this will cause a small shift in the assembly curves, it will not
affect the qualitative results presented here. Finally, we do not apply any mean field
corrections for changes in the model’s degrees of freedom as it assembles.

4.4 Results

To test the efficacy of our model, we ran simulations of a 24-binding-domain scaffold
system previously studied with the oxDNA model [120] (Figure 4.2). This system
has 12 staple types that bind to the scaffold, each with two 16-nt binding domains.
The REMC simulations were run with temperature as the independently controlled
exchange variable with 16 replicas in under three hours of walltime on a commodity
cluster. To determine the extent of assembly, we look at two order parameters: the
number of staples in the system, whether bound ormisbound (henceforth referred to
as (mis)bound), and the number of bound domain pairs that have formed. As can be
seen in Figure 4.3(a), at low temperatures the system has the number of (mis)bound
staples and the number of bound domain pairs expected in the assembled state.
The error bars are quite narrow, which gives us confidence that the averages have
converged. In Figure 4.3(b), we show a typical assembled configuration. Unlike
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Figure 4.2: Schematic representations of the 24-binding-domain scaffold system.
(a) Helical cartoon representation of the system in a fully stacked assembled con-
figuration. (b) Representation of the system with the lattice model. The scaffold
(left) and staples (right, numbered) are shown in the fully stacked assembled con-
figuration, but for clarity have been drawn separately. A full legend for all diagram
elements is provided in Figure 2.1.

its schematic representation in Figure 4.2, the conformation of the scaffold is not
planar. That a typical assembled configuration is not a well-ordered planar state is
reasonable because the scaffold is relatively unconstrained by staple crossovers, in
part because the crossovers that occur connect only relatively close segments of the
scaffold. Moreover, non-planar configurations were also found to be typical of the
assembled state of the same system in oxDNA simulations [120].

We can examine the extent of the assembled state’s structural disorder by looking
at the number of stacked binding domain pairs. In the assembled state, the planar
configuration is also the configuration that maximizes the number of stacked binding
domain pairs. As can be seen in Figure 4.3, the average value of this order parameter
converges to a value that is well below the fully stacked assembled configuration at
the lower temperatures. Nevertheless, an examination of a step series of the num-
ber of stacked binding domain pairs (Figure 4.4) reveals that, while the average
number of stacked binding domain pairs is below that of a fully stacked assembled
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Figure 4.3: Mean order parameters as a function of system temperature and a typi-
cal assembled configuration of a 24-binding-domain scaffold system. Simulations
were run with a staple concentration of 100 nM, a monovalent cation concentration
of 0.5M, and a stacking energy of −1000 kBK. (a) Mean order parameters plotted
against temperature. The black dashed lines correspond to the expected order pa-
rameter values in the fully stacked assembled configuration. The error bars represent
the standard error in the means across three independent simulations. (b) An as-
sembled configuration at 330K.

system, the simulation does sample such configurations. The fact that the simula-
tions generate such configurations and the large degree of fluctuation in the number
of stacked domain pairs gives us confidence that the simulation methods are able to
sample origami configurations effectively even in near- and fully assembled states.
Simulations generally result in full assembly within about one hundred seconds of
walltime, and fully stacked assembled configurations within an hour.

The efficiency of our model and sampling methods allows us to run simulations
across a range of assembly conditions and design parameters. While 100 nM is
a typical value for staple concentrations, the concentration used for a particular
assembly protocol commonly varies from tens to hundreds of nM. To see how staple
concentration affects the assembly of this system within and beyond the ranges
found in experimental conditions, we ran simulations with staple concentrations
from 1 nM to 1mM in intervals of factors of 10. As can be seen in Figure 4.5, at low
temperatures, from 1 nM to 1µM, the order parameters indicate that the assembled
state is the prevalent structure, with the melting temperature shifting to higher
values as the concentration is increased. However, at 10µM, the average number of
(mis)bound staples exceeds 12 and the number of misbound domain pairs is near
zero, indicating that at least some of the configurations now have two of the same
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Figure 4.4: Order parameter step series for a 330K replica of a REMC simulation
of a 24-binding-domain scaffold system. The simulations were run on a single node
of a commodity cluster. The black dashed lines correspond to the expected order
parameter values in the fully stacked assembled configuration.

type of staple bound to the scaffold. This situation is referred to as ‘blocking’ [120]
because such staples prevent each other from fully binding to the scaffold. This is
also approximately the staple concentration used in the simulations of Snodin et
al. [120], who speculated that they seemed to be in a range in which blocking was
somewhat favourable. Blocking becomes substantially more prominent at 100µM, at
which there are now significant contributions from configurations that have blocked
staples for more than one staple type. The number of stacked binding domain pairs
also significantly increases at such high staple concentrations. The reason for this
behaviour is that with multiple staples of the same type bound to the system, there
will be fewer crossovers, which can allow for longer segments of stacked helices.
Also at 100µM, misbinding begins to increase, and becomes even more substantial
in the millimolar regime. This can occur as the staples are able to misbind to staples
already bound to the scaffold.

Because our choice of the stacking energy was somewhat crudely determined,
we ran further simulations with a range of stacking energies to see how strong an
effect the choice can have on the thermodynamic assembly behaviour. According to
Figure 4.6, the average number of stacked binding domain pairs changes quite dra-
matically when the stacking energy is halved or doubled. The melting temperature
is also shifted, although not as dramatically. When the stacking energy is doubled,
the number of stacked binding domain pairs plateaus at nearly the value expected in
the planar state. However, beyond this, the average number of (mis)bound staples
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Figure 4.5: Mean order parameters from simulations of the 24-binding-domain
scaffold system plotted against temperature for a range of staple concentrations.
The black dashed lines correspond to the expected order parameter values in the
fully stacked assembled configuration. The error bars represent the standard error
in the means across three independent simulations. Simulations were run with a
monovalent cation concentration of 0.5M and a stacking energy of −1000 kBK.

exceeds that expected in the assembled state. At high enough values of the stacking
energy, even the number of stacked pairs begins to exceed that expected in the as-
sembled state. This is possible because if the double crossover binding domains at
the edges bind two copies of the same staple, they will be able to form an additional
stack as part of a single helix, rather than crossing over, as they would in the desired
assembled state. It seems that if the stacking energy is sufficiently favourable, the en-
tropic cost of binding multiple copies of the same staple can become overshadowed
by the stacking energy. While our choice of stacking energy is in the right range,
because of the sensitivity of the average number of stacked binding domain pairs
to this value, if we want to make a more direct comparison between our model and
real experiments, the stacking energy should be tuned such that the ratio of planar
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Figure 4.6: Mean order parameters from simulations of the 24-binding-domain
scaffold system plotted against temperature for a range of stacking energies. The
black dashed lines correspond to the expected order parameter values in the fully
stacked assembled configuration. The error bars represent the standard error in the
means across three independent simulations. Simulations were run with a staple
concentration of 100 nM and a monovalent cation concentration of 0.5M.

to non-planar configurations matches experimental values.
While salt concentration can also play a role in the self-assembly behaviour, its

primary effect is to shift the melting temperature slightly (see Figure 4.7). We have
only included monovalent cation dependence in our version of the NN model, but
non-monovalent cations, particularly Mg2+, are commonly used in experimental
set-ups. Such ions can be accounted for in a crude manner by simply increasing
the effective monovalent cation concentration. It is possible to use more general
corrections to account for such ions within the NN model [180]; however, since the
effect is relatively small given our model’s intended level of accuracy, we have not
included such corrections at present.

In order to see how the thermodynamic behaviour of individual staples is affected
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Figure 4.7: Mean order parameters from simulations of the 24-binding-domain
scaffold system plotted against temperature for a range of sodium ion concentrations.
The black dashed lines correspond to the expected order parameter values in the
fully stacked assembled configuration. The error bars represent the standard error
in the means across three independent simulations. Simulations were run with a
staple concentration of 100 nM and a stacking energy of −1000 kBK.

by the scaffold, we ran simulations of the same system, but with the sequence specific
hybridization free energies replaced by their average value. We computed two
different averages: one over all the bound pairs and one over all the misbound pairs.
In Figure 4.8, the mean staple occupancy curves are plotted for all staples in the
system. In general, staples with two binding domains can be classed by the number
of scaffold binding domains that are spanned by the staple binding domains in the
assembled structure. In the target structure we are assembling here, there are those
that span zero and two scaffold binding domains, as well as those that do not have a
crossover at all.

The curves of the individual staples turn out to be grouped by these structural
classifications. Those with the highest melting temperatures, which we define as the
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Figure 4.8: Mean staple occupancy from simulations of the 24-binding-domain scaf-
fold system plotted against temperature for simulations with averaged hybridization
free energies. The NN values were calculated directly with the averaged hybridiza-
tion free energies by assuming the staple strands are in excess of the scaffold strands.
The error bars represent the standard error in the means across three independent
simulations. Simulations were run with the same parameters as the simulations
referred to in Figure 4.3.

midpoint of the mean occupancy curves, are those that have no crossovers (same
helix; see Figure 4.2(b), staples 1 and 12), followed by those that span two scaffold
binding domains (span-2; see Figure 4.2(b), staples 3, 6, and 9), followed by those
that span no scaffold binding domains (span-0; see Figure 4.2(b), staples 2, 4, 5, 7,
8, 10, and 11). The staples with no crossovers are expected to be the most stable, as
they have an extra stacking interaction between the two domains compared to the
staples that have a crossover. Further, these staples happen to occur at the termini of
the scaffold, so the rigidity that they introduce is placed at a point that will restrict
the configuration of the scaffold the least. However, these staples are still shifted to
lower melting temperatures relative to the pure NN curve.

The staples that span no scaffold domains are edge staples, and thus have half
as many potential stacking interactions available to them. These staples are also
involved in two crossovers, one with the staple strand, and one with the scaffold
strand. A double crossover will restrict the configuration of the scaffold more than a
single crossover, so, combined with reduced stacking interactions, it is expected that
these double crossover bound domains pairs will have a lower melting temperature
than those staples that span two scaffold domains.

The curves of the staples involving double crossovers are further split into two
distinct groups. The staples with higher melting temperatures turn out to be those
that are within the span of a staple that spans two scaffold binding domains (span-0,
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inside span-2; see Figure 4.2(b), staples 4, 7, and 10), while the staples with the
lower melting temperature are those that are not within the span of any other staples
(span-0, outside span-2; see Figure 4.2(b), staples 2, 5, 8, and 11). Again, this seems
reasonable because the staples that span two scaffold domains will already restrict
the scaffold, such that there is a smaller entropic penalty for the staples within their
span.

This analysis suggests another possible way of selecting the stacking energy: we
could choose a value at which the mean staple occupancy curve of a two-binding-
domain helix with no breaks in the backbone overlaps with the NN mean staple
occupancy curve. Simulations of such a system reveal that the stacking energy
would need to be approximately double that of the value that we selected via the
comparison of stacking free-energy differences between our model and experiment.
However, the number of stacked binding domain pairs for a system with such a
favourable stacking energy (Figure 4.6) suggests that this would make the system on
average nearly planar, which contradicts the simulations of Snodin et al. [120]. This
suggests that the entropy differences between pairs of bound-domain pairs with an
intact backbone and pairs without are not as large as they should be, and so it may
be that one stacking term should be used for staples that bind to two contiguous
scaffold binding domains, and another for all other pairs. Nevertheless, for the level
of accuracy this model is designed for, it may be sufficient to choose a single stacking
energy that is optimal for staples that are involved in crossovers, as staples that bind
contiguously to the scaffold at multiple binding domains to form a single helix are
uncommon. It may also be sufficient to use the mean field approach outlined in
Chapter 2 for a staple that binds two contiguous scaffold domains to form a single
helix.

The 24-binding-domain scaffold system contains staples that span at most two
scaffold binding domains, which are relatively short spans compared to typical
origami structures. To test whether our sampling methods are able to handle a
system with staples that span longer regions of the scaffold, we also ran simulations
of a 21-binding-domain scaffold system with staples that span 0, 2, 4, 6, 8, 10 and 12
scaffold binding domains (Figure 4.9). The fully stacked assembled state comprises
three parallel helices composed of seven binding domains each; the design is a
subset of the tile design of Dunn et al. [109] (the top three rows on the left side of the
seam).1 The assembly of this system is further complicated by the presence of single-
binding-domain staples, which are expected not to bind until significantly lower

1We removed the binding domains of staples that are complementary to a scaffold binding domain
outside of the included subset, but otherwise use the sequences as given in [109].
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(a)

(b)

Figure 4.9: Schematic representations of the 21-binding-domain scaffold system.
(a) Helical cartoon representation of the system in a fully stacked assembled con-
figuration. (b) Representation of the system with the lattice model. The scaffold
and staples are shown in assembled configurations, but for clarity have been drawn
separately. A full legend for all diagram elements is provided in Figure 2.1.

temperatures than the two-binding-domain staples. The simulations were again
run for under three hours of walltime on a commodity cluster. The relevant order
parameters as a function of temperature are plotted in Figure 4.10. As with the 24-
binding-domain scaffold system, at low temperatures, the system is assembled but
not fully stacked. The order parameter curves now display two distinct regions and
do not approach the assembled state values until significantly lower temperatures,
as expected.

Since converged values were able to be obtained from both systems in only a
few hours, we decided to further increase the complexity of the design along with
the total number of binding domains and staple types involved. We again took a
subset of the tile design of [110], this time considering the top 4 rows from both
halves such that some of the seam staples were included (see Figure 4.11). The seam
staples are those that connect the two mirrored halves of the design. This system has
a 56-binding-domain scaffold with 34 staple types.2 REMC simulations were run,
this time with 18 replicas; the means are plotted in Figure 4.12. Unlike the previous
two systems, convergence was not achieved in 3 hours. In fact, it took over a week

2As with the 21-binding-domain scaffold system, we removed the binding domains of staples that
are complementary to a scaffold binding domain outside of the included subset, and additionally
modified the sequences of some of the single-binding-domain staples to compress the temperature
range over which assembly occurs.
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Figure 4.10: Mean order parameters from simulations of the 21-binding-domain
scaffold system plotted against temperature. The black dashed lines correspond to
the expected order parameter values in the fully stacked assembled configuration.
The error bars represent the standard error in the means across three independent
simulations. Simulations were run with the same parameters as the simulations
referred to in Figure 4.3.

of walltime before all three independent simulations had sampled fully stacked
states. This seems to imply a very non-linear scaling in the sampling efficiency with
increasingly large designs. It is unlikely that there is a simple scaling law for the
convergence time needed by our algorithm as a function of DNA origami design
size, as the design itself likely has a large effect on the sampling efficiency, and more
complex designs are only possible with larger origamis.

In contrast to the time required to sample a fully stacked assembled state, the
time to sample any fully assembled state was around a day of sampling time, which
is nearly an order of magnitude smaller. It would seem that the slowest timescale is
the sampling of stacked states. While an individual stacked pair does not contribute
a substantial amount to the stability at these temperatures, if many pairs must be
unstacked and restacked to transition between different relevant stacked states, then
there would be substantial barriers to sampling these states. Therefore, to see if we
could increase sampling efficiency, or at least reduce the walltime required to achieve
sufficient sampling, we employed 2DREMC,with amultiplier on the stacking energy
acting as the second independent exchange variable.

We ran the 2D REMC simulations with the same temperature range, but added
in 10 different stacking multipliers ranging between zero and one, for a total of 180
replicas. Because of the number of threads required for a single simulation, we
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(a)

(b)

Figure 4.11: Schematic representations of the 56-binding-domain scaffold system.
(a) Helical cartoon representation of the system in a fully stacked assembled con-
figuration. (b) Representation of the system with the lattice model. The scaffold
and staples are shown in assembled configurations, but for clarity have been drawn
separately. A full legend for all diagram elements is provided in Figure 2.1.

ran only two independent simulations. The first fully stacked state was sampled
within two days in the first and within four days in the second. While this is an
improvement in terms of walltime, in terms of total resources it is less efficient.

We continued the first simulation for a little under 6 days in order to obtain a well
converged sample. As can be seen in Figure 4.12, while the number of (mis)bound
staples and the number of bound domain pairs are in good agreement, the number
of stacked pairs is higher in the 2D REMC simulations. The convergence should
be better in the 2D REMC simulations with respect to the number of stacked pairs
because of the inclusion of states with weaker stacking interactions, and so we
assume that the result reveals a lack of convergence in the 1D REMC simulations.
It is unclear how much longer the 1D REMC simulations would need to be run to
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Figure 4.12: Mean order parameters from simulations of the 56-binding-domain
scaffold system plotted against temperature. The black solid lines correspond to
the 1D REMC simulations, while the coloured lines correspond to the 2D REMC
simulations. The black dashed lines correspond to the expected order parameter
values in the fully stacked assembled configuration. The error bars represent the
standard error as calculated with the MBAR method, using data from one (2D
REMC) or three (1D REMC) independent simulations. Simulations were run with
the same parameters as the simulations referred to in Figure 4.3.

achieve the same level of convergence, but this underlines the difficulty in not only
achieving good sampling, but determining whether sampling has converged at all.
Thus, while the 2D REMC did not improve initial sampling of fully stacked states, it
may still be of use to achieving properly converged samples.

A 2DREMC simulation of the 56-binding-domain scaffold systemwith a uniform
potential was run to carry out a similar analysis of the thermodynamics of individual
staple types as was done for the 24-binding-domain scaffold system. The same two
averages as before were calculated for use by the uniform potential, but with the se-
quences from this system. The mean staple occupancies as a function of temperature

81



Feasibility and validity of approach

S
ta

p
le

 o
cc

u
p

an
cy

Figure 4.13: Mean staple occupancy (top) and melting temperatures (bottom)
from simulations of the 56-binding-domain system with averaged hybridization free
energies. The mean staple occupancy curves are coloured according to the melt-
ing temperatures. The melting temperatures are plotted on a grid corresponding
to the staple locations in the fully stacked assembled state. The error bars repre-
sent the standard error as calculated with the MBAR method, using data from one
independent simulation. For reference, the scaffold in a fully stacked assembled
configuration has been superimposed on the melting temperature heat map; see
Figure 4.11 for the corresponding staple configurations. Simulations were run with
the same parameters as the simulations referred to in Figure 4.3.

are plotted in Figure 4.13. Here, there are manymore staple types and environments,
so instead of classifying the staple types structurally as before, we simply group
them by their melting temperature, which we estimate by interpolation.

There are four clear groupings of staple types bymelting temperature, and as can
be seen from the schematic plot of themelting temperatures, there is a clear symmetry
between the left and right half, as anticipated. The most stable are the staples that
have no crossovers, and are essentially one binding domain that is twice as long as the
rest. The least stable are, as expected, the single-binding-domain staples. However,
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it is surprising that the four single-binding-domain staples that are adjacent to the
most stable staples are less stable than the other eight single-binding-domain staples.
This does not seem to be explainable with simple topological considerations; we can
only speculate that this is caused by subtleties in the model potential or to a lack of
sufficient sampling.

The two-binding-domain staples that have a crossover fall into the remaining
cluster, and the errors in the curves overlap amongst many of them. However, there
are still a few observations that can be made. First, the two staples that have the
highest melting temperatures are actually the ones that span the second fewest
scaffold binding domains. The explanation for the staples spanning the fewest
scaffold binding domains not being the most stable is similar to that given for the
same observation in the 24-binding-domain system: the staples that span the fewest
scaffold domains are edge staples and so have half as many stacking interactions
available, and also are double crossover staples, so are somewhat more constrained
and thus incur a higher entropic penalty upon binding. Second, the seam staples,
which span 26 scaffold binding domains – far more than any other staple type – are
in the middle of the cluster, which naively would be unexpected given the much
larger entropic cost of closing such a large loop. That they have a similar melting
temperature to the other two-binding-domain staples is an indication of cooperativity
playing a role in staple binding: the binding of other staples in the system reduces
the size of the loop that these staples must close, and unlike any other staple in the
system, it is effectively the same loop that both seam staples are closing.

4.5 Conclusions

We have introduced a model and sampling methods for simulating DNA origami
self-assembly that is computationally feasible, yet includes the structural information
most relevant to the assembly process. We demonstrated that small origamis can
be sampled efficiently enough to achieve good statistics for not only one particular
set of assembly conditions and design parameters, but for a range of values of these
variables. It is difficult to predict how the approach will scale with system size, as we
expect this may be highly dependent on the specifics of the origami design. However,
even if simulating the self-assembly of very large systems may not yet be tractable,
much insight can be gained from studying smaller origami system.

For example, we canuse themodel to study thermodynamic properties of origami
designs, such as the relative stability of staples, the types and degree of staple binding
cooperativity, or the effects of scaffold routing and loop closure on the cost of staple
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binding. Because we use MC simulations to sample configuration space, we cannot
directly study dynamical quantities. However, we can calculate free-energy barriers
along selected order parameters, which in turn could be used to estimate relative
rates between different assembly pathways. Such calculations would allow us to
pursue questions relating to the kinetics of assembly, such as whether there is a
nucleation barrier, and how it depends on assembly conditions and staple design
(which we address in Chapter 5). Wemay also be able to shed some light onwhether
and why hysteresis occurs for a given design and set of assembly conditions.

There are several caveats to our approach. We assume that the staples are always
in excess of the scaffold. If that were not the case, the assumption that the free staple
concentration remains constant regardless of the degree of assembly would become
less convincing. One solution may be to reduce the free staple concentration relative
to the total staple concentration based on the average number of staples (mis)bound
to the scaffold. Of course, because simulations must be run to determine the average
staple occupancy on the scaffold, this would require an initial guess and subsequent
iterations to converge to a consistent value. An alternative solution may be to make
the free staple concentration a function of the number of staples currently bound to
the system. While not ideal, it may be sufficient for the level of accuracy the model
is intended to provide.

In the derivation of the model in Chapter 2, we make a different assumption
about the relationship between the chemical potential and the staple concentration
that takes into account the orientation degrees of freedom present on each binding
domain. For systems that have only one staple length, this has the effect of shifting
the staple concentration to higher values for a given chemical potential. In the
case of the simulations presented in this chapter, the staple concentration used
would become an order of magnitude larger. While for the 24-binding-domain
scaffold system this would change the results presented here quantitatively, the
qualitative interpretations do not change. However, because the 21- and 56-binding-
domain scaffold systems have single binding domain staples, it does have the effect
of narrowing the temperature range over which assembly occurs, an effect we deem
more important than an overall shift.

It has been found experimentally that the stacking free energy is sequence-
specific [249, 250] and depends on both temperature and salt concentration. It
has been observed to range from below −10 kJmol−1 to slightly above 1 kJmol−1

(i.e. for some sequences and conditions, stacking is slightly disfavoured), which
corresponds to a stacking energy range in our model of half to double the chosen
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value. As discussed in Section 4.4, the mean number of stacked binding domain
pairs shifts substantially over this range of stacking energies. While some of the tem-
perature dependence is taken into account here by the explicit modelling of some of
the entropic contribution to the stacking free energy, the sequence specificity and salt
dependence are not accounted for. For this pilot study, a roughly selected constant
value is sufficient to demonstrate that the model is reasonable, but in future studies,
we may also consider using sequence-specific salt-dependent stacking energies for
more accurate predictions for a particular design.

Finally, in Chapter 2 we used relatively simple arguments to support our choices
of which kinked configurations are to be allowed and which are to be disallowed
within our model. It may well be that different choices could improve both the
reproduction of the balance of the energy/entropy trade-off of stacked assembled
configurations and the structural accuracy of the model. Using a more detailed DNA
model such as oxDNA, one could run simulations of helices with breaks in the back-
bone or simulations of helices with crossovers in order to provide a more detailed
reference point from which to determine which configurations are sensible to allow.
Furthermore, another term could be introduced into the potential to weight kinked
configurations based on their frequency in the higher resolution simulations. If an
even more accurate model were desired, we could consider implementing the ex-
plicit helical axis model of Section 2.3. Such a model would allow us to control more
finely the level of flexibility afforded to kinked segments in the structure and would
make it more straightforward to prevent some of the non-physical configurations
without introducing further many-body interactions.

While such modifications may improve the accuracy of the model, they would
also be costly in both development time and simulation time, and we do not expect
they would fundamentally alter the results, but rather may incrementally improve
them. For studying fundamental aspects of DNA origami self-assembly, we believe
that such expensive incremental improvements are likely to be of marginal use. We
are therefore hopeful that the use of ourmodel will be able to yield both fundamental
and practical insights into the thermodynamics and kinetics of DNA origami self-
assembly.
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5
DNA origami and nucleation

5.1 Motivation

While there is much practical knowledge on how to optimize the assembly of DNA
origamis, an understanding of the underlying physical reasons—such as the na-
ture of any free-energy barriers to assembly and how they change with assembly
conditions—is lacking. Many studies on DNA origami have found hysteresis be-
tween melting and annealing as the temperature is varied [98, 109–115, 117, 251],
where the annealing curves tend towards the melting curves when the reactions are
carried out over a longer time [98, 110]. This suggests that the temperature-ramp
assembly process is out of equilibrium, and that there are significant free-energy
barriers present.

One class of barrier to consider are nucleation barriers to staple binding. These
barriers can be split further into two classes: those that inhibit staple binding, and
those that inhibit the scaffold from folding up to its designed shape. The analogy to
crystal nucleation is more clear with the first class, while the second can be related to
the lesswell defined idea of nucleation in protein folding [252]. It has been suggested
that the melting–annealing hysteresis could be attributed to a nucleation barrier to
staple binding [98, 116, 253], but no concrete evidence has been given to show that
such a barrier exists.

Perhaps the most closely related work has been studies of the self-assembly of
“DNAbrick” structures [7, 8], which consist of a large number of short unique strands
that assemble in the absence of any longer scaffold strand. DNA-brick self-assembly
does entail a nucleation barrier, which plays an important role in allowing error-free
assembly of these many-component systems [190]. The origins of this barrier and
details on the pathways taken have been studied in some depth, uncovering its very
non-classical behaviour, which has the potential to inform future rational designs of
these systems such that they have favourable assembly kinetics [191–193, 200, 254].
However, while the DNA origami assembly process has been modelled with success

87



DNA origami and nucleation

already [109, 110, 120], and has even benefited experimental work [255], none of
these efforts specifically examined the role of nucleation or calculated the associated
free-energy landscapes.

Here, we use the lattice model of DNA origami described in Chapter 2 to deter-
mine under what conditions nucleation barriers affect the assembly process. We
simulate three systems with a sequence-specific potential and initially find no nucle-
ation barriers to assembly. We then focus on a set of three additional systems with a
sequence-averaged potential that allows us to vary the number of binding domains
per staple. The simulations of these systems reveal a nucleation barrier that, while
significant, is not prohibitively large relative to thermal fluctuations.

5.2 Simulation and analysis methods

We again run Hamiltonian REMC simulations in the grand ensemble with the staple
concentration held constant across the replicas, as described in Chapters 3 and 4.
Here we consider systems with staples that have up to four binding domains.

We use the same default assembly condition parameters and stacking energy as
discussed in Section 4.3. For some of the REMC simulations that used temperature
as the independently controlled exchange variable, the temperatures are generated
in an iterative, automated fashion. In these simulations, the temperatures are initially
spaced uniformly, but at regular intervals the averages of a selected order parameter
are calculated and used to select a new temperature set. The new temperature set
is selected with a simple linear interpolation such that the averages of the selected
order parameter will be spaced uniformly, with the exception of a slightly higher
density of temperature points at the upper and lower temperature range. In addition
to the use of temperature as an exchange variable for the REMC simulations, we
also separately use a multiplier on the stacking energy as an exchange variable. The
stacking multipliers could be iteratively updated in a similar manner, although here
we use a uniform spacing.

Like the simulations of Chapter 4, some of the model parameters are different
from those in Chapter 2. Unlike in Chapter 4, we do use Equation (2.22) for the
chemical potential. However, like Chapter 4, we included Δ𝐺−∘

initiation in 𝜖s. The
𝑘B𝑇 ln 6 term was included for 𝜖b, but not for 𝜖u. Again, while such differences will
cause a small shift in the assembly curves, they will not affect the qualitative results
presented here. We also do not apply any mean field corrections for changes in the
model’s degrees of freedom as it assembles.
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5.3 Results

To begin our investigation of nucleation barriers in DNA origami self-assembly,
we ran REMC simulations of three small designs and calculated LFEs for several
order parameters. The first is a 24-binding-domain scaffold system with 12 staple
types, each with two binding domains (Figure 4.2). The second system is a 21-
binding-domain scaffold system with 7 two-binding-domain staple types and 7
single-binding-domain staple types (Figure 4.9). The third is a 56-binding-domain
scaffold system with 22 two-binding-domain staple types and 12 single-binding-
domain staple types (Figure 4.11). The 21- and 56-binding-domain scaffold systems
are subsets of the monomer tile design used by Dunn et al. [109]; the 21-binding-
domain scaffold design is taken from the top three helices on the left side of the
seam, while the 56-binding-domain scaffold design is taken from the top four helices
(including both sides of the seam). We have previously simulated these systems
with our model in Chapter 4, and the 24-binding-domain scaffold system has also
been simulated with the oxDNA model [120].1

To quantify the progress of the assembly reaction, we must select order parame-
ters along which we can construct a free-energy landscape. The first order parameter
we considered was the number of (mis)bound staples (defined as in Section 4.4).
This is perhaps the closest analogue of the order parameter used in simulation stud-
ies of DNA bricks, i.e. the number of bricks in the largest cluster [190, 192, 200,
256]. We calculated the LFEs along this order parameter for each system at each
temperature (Figure 5.1) As the temperature decreases, the number of bound staples
shifts towards higher values. At the lowest temperatures, the favoured state has the
number of bound staples expected in the assembled state. Most importantly, for
all systems at all temperatures, the free energy is always downhill to the favoured
state, implying that there is no nucleation barrier to assembly, in contrast to the
self-assembly of DNA bricks [190].

One problem with the above order parameter is that it cannot be used to deter-
mine whether the system is fully assembled, and it does not directly show the extent
to which the scaffold is correctly folded. By way of example, suppose that a copy
of each staple type is bound to a completely unfolded scaffold. This would be the
case if each staple was bound at only one of its binding domains; clearly, such a
configuration is far from assembled, but cannot be differentiated from an assembled
state with this order parameter. A related order parameter which circumvents this

1The 56-binding-domain-scaffold system differs slightly from that of Chapter 4 in that the sequences
of the single-binding-domain staples were not modified to compress the assembly temperature range.
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(a)

(b)

(c)

Figure 5.1: LFEs along the number of (mis)bound staples. (a) 24-binding-domain
scaffold system. (b) 21-binding-domain scaffold system. (c) 56-binding-domain
scaffold system. Only half of the number of temperatures used in the REMC sim-
ulations are plotted here for clarity. The error bars represent the standard error as
calculated with the MBAR method, using data from three independent temperature
REMC simulations.

issue is the number of fully bound staples, where a fully bound staple is one in which
all of its binding domains are bound to the correct scaffold binding domains. In
Figure 5.2 we have plotted the LFEs as a function of this order parameter. However
for all three systems there is again no barrier, and overall the curves are very similar
to those of the previous order parameter.

In order to achieve a higher resolution view of the binding of each staple, we
can use the total number of bound domains as an order parameter. The associated
LFEs plotted in Figure 5.3 are more jagged, and both the 21- and 24-binding-domain
scaffold systems show small peaks at odd numbers near the bottom of the LFE curves
at a given temperature. This is consistent with the second binding domain of a staple
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Figure 5.2: LFEs along the number of fully bound staples. (a) 24-binding-domain
scaffold system. (b) 21-binding-domain scaffold system. (c) 56-binding-domain
scaffold system. Only half of the number of temperatures used in the REMC sim-
ulations are plotted here for clarity. The error bars represent the standard error as
calculated with the MBAR method, using data from three independent temperature
REMC simulations.

having a lower entropic cost of binding than the first binding domain of a staple, and
with a small easily surmountable barrier for staples that are near their individual
melting points. That the jaggedness of the curves decreases in the 21- and even
further with the 56-binding-domain scaffold systems is likely related to the presence
of single-binding-domain staples, which could wash out the jaggedness caused by
the two-binding-domain staples.

Yet another possibly relevant view of the assembly process may be gained by con-
sidering the number of stacked binding domain pairs, which can vary independently
and substantially for given values of the previously considered order parameters.
While less regular than the number of (mis)bound and fully bound staples, the
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(b)
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Figure 5.3: LFEs along the number of bound domains. (a) 24-binding-domain
scaffold system. (b) 21-binding-domain scaffold system. (c) 56-binding-domain
scaffold system. Only half of the number of temperatures used in the REMC sim-
ulations are plotted here for clarity. The error bars represent the standard error as
calculated with the MBAR method, using data from three independent temperature
REMC simulations.

LFEs (Figure 5.4) are also downhill to the favoured state, with only a few small
exceptions. The most prominent exception is the peak at 50 stacked pairs in the
56-binding-domain scaffold system. This does not represent a barrier along relevant
assembly pathways because in highly stacked states the number of stacked pairs can
increase by more than one in a single move. This jaggedness is not seen at lower
numbers of stacked pairs because there aremore configurations in which the binding
of a domain can increase the number of stacked pairs by just one.

In a simulation study using a model that was originally created to study DNA
bricks, it was found that increasing the coordination number of the assembly units
increased the barrier height [256]. Typical DNA bricks have a coordination number
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(b)

(c)

Figure 5.4: LFEs along the number of stacked pairs. (a) 24-binding-domain scaffold
system. (b) 21-binding-domain scaffold system. (c) 56-binding-domain scaffold
system. Only half of the number of temperatures used in the REMC simulations are
plotted here for clarity. The error bars represent the standard error as calculated
with the MBAR method, using data from three independent temperature REMC
simulations.

of four, while the DNA origami designs simulated so far have at most a coordination
number of two, so to test whether the same principle might apply in the context of
DNA origamis, we increased the number of binding domains per staple as a way
of increasing the coordination number. To test whether changing the number of
binding domains per staple can lead to a barrier in a systematic manner, we designed
a set of systems that have the maximum number of crossovers possible for a system
with a given number of staple types and helices in the fully stacked assembled
structure (Figure 5.5). In the fully stacked assembled state of these designs, the
scaffold forms a series of rows, each of which consists of a single helix. At each
column, a single staple crosses over all helices formed by the scaffold, and thus the
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number of binding domains per staple corresponds to the number of rows in the
design. We use two averaged values for the entropies and enthalpies of hybridization:
one for bound states and one for misbound states. The average values for the bound
states were calculated by using a value for each NN pair which was averaged over all
10 possible nucleotide pairings,2while the average values for the misbound pairings
was taken to be those used in Chapter 4 for the 56-binding-domain scaffold system.
Taking a simple mean over all misbound pairs may not give a good representation
of misbinding, as a small number of much more favourable pairings may make a
much larger contribution than the majority of pairings; however, we have chosen to
start with this very simple model for simplicity, and use the results of the previous
chapter, which find very little misbinding when using real sequences.

We beganwith systems that had 9 binding domains per row, and considered two-,
three-, and four-row variants. Before examining the LFEs, it is instructive to examine
the mean order parameter values across a range of temperatures (Figure 5.6). While
we expect the systems to assemble over quite a narrow temperature range given that
all binding domains have the same hybridization free energy, these systems have
an impressively narrow range within which they transition, with both the three-
and four-row systems going between entirely unbound and entirely bound within
less than 1K. For comparison, we have plotted in the same figure the curves for
the number of (mis)bound and fully bound staples that result from assuming that
all binding domains act independently of each other. We have recentred them to
the simulation curves at the temperature at which the order parameter is halfway
between zero and its value in the assembled state (henceforth referred to as the
halfway temperature) in order to give a better comparison of the differences in
transition temperature ranges. The much narrower range of the simulation curves is
a clear sign of cooperativity in the system.

In Figure 5.7 the temperature curves and halfway temperatures are plotted for the
staple states of each staple type for each of the three systems. In all systems, the staple
with the lowest halfway temperature is always an edge staple, which is consistent
with both that these staples additionally contain scaffold crossover(s) and that they
are only able to form half as many stacks as the other staples. Outside of these edge
staples, the two-row system has a small but significant shift in halfway temperatures,
going from higher on the right to lower on the left, with the edge staple on the
right side having an intermediate halfway temperature. This is consistent with an

2A small error was discovered in the calculation of this average after running all simulations
which resulted in a slightly more favourable average value being used. This is not expected to have a
qualitative impact on the results presented here.
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(a)

(b)

(c)

Figure 5.5: Schematic representations of the maximum crossover systems. (a)
Two-row system. (b) Three-row system. (c) Four-row system. For each system,
the helical cartoon representation of the system in a fully stacked assembled con-
figuration is given above, and the lattice model representation of the system in the
same configuration is given below. The scaffold (left) and staples (right) have been
drawn separately for clarity. A full legend for all diagram elements is provided in
Figure 2.1.
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Figure 5.6: Mean order parameters plotted across a range of temperatures for the
two-, three-, and four-row systems. The dashed lines correspond to the expected or-
der parameters in the fully stacked assembled state. The solid lines without markers
present in the top two plots represent the shifted curves that would result if all do-
mains were isolated from each other. The error bars represent the standard error as
calculated with the MBAR method, using data from three independent temperature
REMC simulations.

increasing entropic cost as the loop size increases from right to left. However, in the
three- and four-row systems, outside of the edge staples, the halfway temperatures
are nearly identical. This seems reasonable for the three-row system given that it has
two loops that increase in size in opposing directions, the effects of which should
cancel each other. In the four-row system, such uniformity is less expected. There
are two identical loops that increase in size from right to left and one loop that
increases in size from right to left, which should give an overall entropic cost of loop
formation that increases from right to left. This suggests that there is an increase in
cooperativity relative to the two-row system.

Consistent with the previous simulations, the LFEs along the number of (mis)-
bound staples and the number of fully bound staples (Figure 5.8) for the two-row
system are downhill to the favoured state at all temperatures, although now the
favoured state is either a fully bound or a fully misbound state. By contrast, the
three- and four-row systems have a clear barrier to assembly that is apparent along
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Figure 5.7: Mean staple states plotted across a range of temperatures (above)
and mean staple state halfway temperatures plotted as a heat map (below). The
mean staple state halfway temperatures are calculated from the curves by simple
interpolation and plotted on a grid corresponding to the staple locations in the
fully stacked assemble state. For reference, the scaffold in a fully stacked assembled
configuration has been superimposed on the halfway temperature heat map; see
Figure 5.5 for the corresponding staple configurations. (a) Two-row system. (b)
Three-row system. (c) Four-row system. The error bars represent the standard
error as calculated with the MBAR method, using data from three independent
temperature REMC simulations.

both of these order parameters. If we define the staple melting temperature as
the point at which the local minima on either side of the barrier of the number of
fully bound staples are equal, we can use the MBAR method [246] to reweight the
configurations for an arbitrary thermodynamic state and thus iteratively solve for
this temperature. This assumes that there is good overlap in the distribution at this
state and states that have been sampled, which should be the case here, given that the
REMC simulations span a range of temperatures or stacking energies. The melting
temperatures calculated using the number of (mis)bound staples are very similar to
those calculated using the number of fully bound staples.

The sharp response to temperature that these systems displayed provided an
additional challenge to the simulations in the selection of the temperatures. Selection
of a temperature range that has good coverage of the transition region by hand
becomes infeasible, and so an automated iterative approach to selecting temperatures
was employed, as described in Section 5.2. While this was sufficient for the above
analysis, the LFEs proved to bemore sensitive to insufficient sampling, which seemed
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(a)

(b)

(c)

(Mis)bound staples

Figure 5.8: LFEs along the number of (mis)bound and the number of fully bound
staples. (a) Two-row system. (b) Three-row system. (c) Four-row system. The error
bars represent the standard error as calculated with the MBAR method, using data
from three independent temperature REMC simulations.

in particular to stem from sampling of stateswith different stacked pair combinations,
something which was touched upon in Chapter 4.

We began our search for a better sampling procedure by again considering 2D
REMC with both the temperature and a stacking multiplier as exchange variables,
but found that the sharp transitions presented by these systemsmade this an inviable
approach. This is because the transition is not only sensitive to temperature, but
also to the stacking multiplier. Even a small change in the stacking multiplier can
lead to a sufficiently large change in the average number of bound staples that the
swap probabilities become very small. Further, without using an excessive number
of replicas, the temperature range will either be optimized for a single stacking
multiplier and give poor coverage along the others, or provide mediocre coverage
for all stacking multipliers.
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The approach which seemed to provide the best sampling was to use only the
stacking multiplier as the exchange variable. Here, the idea is to use temperature
REMC simulations to estimate the melting temperature, which is used as the initial
temperature for the stacking multiplier REMC simulations. The temperature is then
iteratively updated, with the temperature for each new run being the estimated melt-
ing temperature from the current run. The melting temperatures estimated with
this approach were higher than those estimated from the temperature REMC simu-
lations, which is consistent with a broader set of configurations in near-assembled
and assembled states, which would provide entropic stabilization. This broader set
of configurations may not differ in the examined order parameters, but can contain
different combinations of locally stacked pairs.

The LFEs calculated with this approach are plotted in Figure 5.9. The barrier
for the three-row system occurs nearly halfway to the fully assembled state, at 4
(mis)bound or fully bound staples, with a magnitude of between 5 to 6 𝑘B𝑇. The
two order parameters are nearly identical, which suggests that staples bind fully
if they are bound at all. In contrast to the three-row system, the four-row system
peaks at two (mis)bound or fully bound staples with a magnitude of around 8
𝑘B𝑇, and the LFEs are qualitatively different between these two order parameters.
Along the number of (mis)bound staples, the LFE peaks sharply at two, while along
the number of fully bound staples, it has nearly peaked by one and only increases
marginally at two. In contrast to the three-row system, this suggests that there is a
tendency for staples not to bind fully in the four-row system, at least when only a
small number of staples are present.

We can examine the behaviour of staple binding in more detail by again examin-
ing the LFEs along the number of bound domain pairs. We focus our investigation
on the LFEs at the melting temperature defined above (Figure 5.9), using the melting
temperature calculated with the number of fully bound staples. In both the three-
and four-row systems, there is clearly a barrier reminiscent of the one observed along
the bound staple order parameters. In all three systems, there are again peaks at reg-
ular intervals, occurring with a frequency equal to the number of binding domains
in the staple. This is consistent with a barrier to the initial binding of a staple to the
scaffold, followed by favourable binding of the remaining binding domains of the
staple.

However, in the three- and four-row systems, the pattern is broken at lower
values of the order parameter. In the three-row system, the LFE is higher at three
bound domains than at two, which is consistent with the binding of the third staple
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Figure 5.9: LFEs at melting temperatures for the two-, three-, and four-row systems.
The error bars represent the standard error as calculated with the MBAR method,
using data from three independent stacking multiplier REMC simulations.

domain closing a longer loop than the second binding domain. In the binding of
subsequent staples, the entropic cost of closing the longer loop is reduced by the
binding of previous staples in a cooperative manner. In the four-row system, the
LFE increases until five domains are bound. If the first staple to bind is that with
the lowest entropic cost, then there are now two smaller loops and one larger loop
to be closed to fully bind the staple. That the closing of the smaller loops is now
outweighing the gain in hybridization free energy could be explained by the higher
melting temperature of the four-row system, which would increase the entropic cost.

The LFEs along the number of stacked pairs also show an overall barrier in addi-
tion to some smaller, regular peaks. The smaller peaks along this order parameter
become more exaggerated as the number of bound domains increases. These peaks
cannot be entirely related to the peaks seen along the number of bound domains;
in a fully stacked structure, unbinding of one domain would lead to the loss of two
stacked pairs. To explain these peaks, consider the final peak of the four-row system.
When the number of stacked pairs is four less than the maximum possible number,
a kink can form in the structure without any domains being unbound. This means

100



DNA origami and nucleation

that there are many more possible structures with a more favourable energy at this
number of stacked binding domain pairs than at one, two, or three fewer stacked
binding domain pairs than in the fully stacked state. However, as discussed above,
the number of stacked pairs can change by more than one in a single step, so these
barriers do not necessarily have to be crossed in order to reach the fully stacked state.
An analogous explanation holds for the other systems.

To further test the validity of these results, we ran US simulations of the three-
row system. While we could have used a similar approach to the stacking multiplier
REMC for iteratively updating the simulation temperature, the increased walltime
required for running adaptive multi-window US made this impractical. Instead, we
use the melting temperature estimated from the temperature REMC simulations.
We applied the bias along the number of (mis)bound staples order parameter. We
did find a barrier (Figure 5.10), confirming the qualitative result found above, but
the LFEs indicate that the simulation is being run above the melting temperature, yet
the simulation temperature is below the melting temperature found in the stacking
multiplier REMC. Because we expect the sampling of near and fully assembled
states to be more difficult than unassembled states, and because poor sampling of
near and fully assembled states would tend to lead to underestimating their stability,
this result implies that the US simulation is not equilibrated.

In an attempt to improve sampling convergence, we instead used the number of
bound domains as the order parameter along which to apply the bias. While this
improved sampling along this order parameter, it did not result in better agreement
with respect to the melting temperature. We also considered using the number of
stacked pairs as the order parameter onwhichwe apply the bias, but it seems unlikely
this would provide much additional benefit, as the issue seems to be sampling
different states with the same number of stacked pairs, rather than sampling a range
of states across the stacked pairs order parameter. For US to be effective here, it
would likely need to be combined with REMC at each window, or between windows.
We decided to focus on the REMC methods we developed for the remainder of the
study.

Turning back from considerations of sampling, we can further investigate the
pathways taken by calculating expectations of individual staple states for set values
of the number of fully bound staples at the melting temperature. In the case of
the two-row system, the staples tend to bind in the order the halfway temperature
predicts: from shorter to longer loops formed with the scaffold upon fully staple
binding, and edge staples last (Figure 5.11). The three-row system has diffuse
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(Mis)bound staples

Bound domain pairs

Figure 5.10: LFEs calculated from US simulations. The error bars represent the
standard error as calculated with the MBAR method, using data from a single US
simulation.

averages across the staple types until five fully bound staples, which is one more
than at the barrier peak, at which point the central staple is nearly always bound
(Figure 5.11). As the number of fully bound staples increases beyond five, the staples
become more bound moving out from the centre. Unlike the two-row system, this
is not clear from the temperatures of the staples, as they are nearly identical across
the staple types. The behaviour of the four-row system is similar to the two-row
system in that staples first bind on the right where the loop closure cost is lower
and progress towards positions that form more costly loops. However, unlike the
two-row system, the staples tend to bind fully after the first three have bound, which
also contrasts with the nearly indistinguishable temperatures of each staple type.

Cooperative behaviour of staples and binding domains can occur via three routes:
closing of scaffold loops, stacking with other binding domains adjacent in the same
helix, and, for cooperativity within a single staple, binding one of the staple domains
to the scaffold. The last route is demonstrated by all systems, and while it can lead
to a barrier in the initial binding of each staple, it cannot explain the barrier we have
observed along the order parameters based on the number of staples in the system.
The first route, the closing of loops, could plausibly lead to a nucleation barrier.
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Figure 5.11: Expectation values for staple states at slices along the number of
fully bound staples. The number of fully bound staples of the slices begins at 1 and
increases from top to bottom to 8. (a) Two-row system. (b) Three-row system. (c)
Four-row system.
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If the cost of forming a large loop was sufficiently high such that multiple staples
were required to bind to make loop closure thermodynamically favourable, then
there would be a critical number of staples after which further binding of staples
involving this loop could be downhill in free energy. However, this would require the
staples that initially close the loop to bind substantially more strongly than staples
that could alternatively close the loop by in a zip-like fashion, taking a pathway
where the shortest loops are closed first, for this assembly pathway to be viable. The
sequence design and scaffold routing requirements for such a barrier to be present
seem unlikely to be common in origami designs. Further, this cannot be the case
here, as we are using uniform hybridization entropies and enthalpies. This type of
cooperativity likely does contribute to the sharp transitions observed through the
zip-like mechanism, however.

We therefore focused our investigation on the stacking of binding domains ad-
jacent along the same helix. We began by setting the stacking energy to zero and
running simulations of the three-row system. The LFEs reveal that the barrier in-
volving the number of bound staples is effectively no longer present, being less than
1 𝑘B𝑇 (Figure 5.12). Unlike the two-row system, the LFEs are not flat; at the melting
temperature, there is a relatively flat region at lower values of the order parameter
before a substantial increase. The LFEs look similar at one-quarter of the standard
stacking energy, while at half the standard stacking energy the curve becomes effec-
tively flat; not until the stacking energy reaches three-quarters of the reference value
does the barrier become apparent again.

If the barrier is controlled by the stacking energy, then increasing the number of
binding domains per staple may cause the appearance of a barrier simply due to an
increase in the number of stacking interactions possible per staple. A further test
of this would be to see if increasing the stacking energy can lead to a barrier in the
two-row system. We again ran simulations for a range of stacking energies, this time
from the original stacking energy to twice its value. As can be see in Figure 5.13,
while negligible, a small barrier appears even at the first increment of the stacking
energy (1.25 times the original value), and then increases monotonically.

When a fluctuation occurs where several staples bind concurrently in such a
way that they can stack with each other, the energetic gain is sufficient to overcome
the entropic cost of binding at a temperature that is higher than it would be for a
given staple in isolation. The stronger the stacking per staple, whether by higher
stacking at each domain or by having more domains to stack per staple, the higher
the temperature at which a cluster of staples is able to bind relative to the staples
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Figure 5.12: LFEs at melting temperatures for the three-row system for a range of
stacking energies. The error bars represent the standard error as calculated with the
MBAR method; in the case of the simulations with a stacking energy of 0, −250, and
−500 kBK, data from three independent temperature REMC simulations were used,
while in the case of the simulations with a stacking energy of −750 and −1000 kBK,
data from three independent stacking multiplier REMC simulations were used.

in isolation. The per-domain stacking could be controlled by changing the salt
concentrations, by modifying the sequence pairings that occur at breakpoints, or
even by using modified nucleobases which have different stacking interactions.

This increased temperature difference also leads to a higher barrier, as the fluc-
tuation needed for a given staple to bind has a higher entropic cost. While the
barrier in the number of total bound staples is most clear along either the number of
(mis)bound or the number of fully bound staples, the total barrier, which includes
the initial cost of binding a staple to the scaffold, is more accurately seen along the
number of bound domain pairs. Even considering the highest barrier along the num-
ber of bound domains, it is still of a magnitude that is surmountable in a fraction of
the time required in typical self-assembly protocols for DNA origami.
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Figure 5.13: LFEs at melting temperatures for the two-row maximum crossover
system for a range of stacking energies. The error bars represent the standard error
as calculated with the MBAR method; in the case of the simulations with a stacking
energy of −1000 and −1250 kBK, data from three independent temperature REMC
simulations were used, while in the case of the simulations with a stacking energy
of −1500, −1750, and −2000 kBK, data from three independent stacking multiplier
REMC simulations were used.

From these considerations, one conclusion we may arrive at is that increased
heterogeneity in the individual staple hybridization free energies may lead to lower
barriers. With sufficiently wide spacings in the melting temperatures, the stacking
energy will be insufficient to allow for multiple staples binding such that they stack
with each other to overcome the entropic cost of binding. As a first step to testing
whether these barriers exist with a non-uniform hybridization potential, we simu-
lated the 21-binding-domain scaffold system again, but with the stacking energy
doubled. As can be seen in Figure 5.14, a local maximum does appear in the LFEs,
although it is too small to be called a barrier. Having four binding domains per
staple is common, so the 21-binding-domain scaffold system, and all the systems we
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Figure 5.14: LFEs calculated for the 21-binding-domain scaffold systemwith double
the default stacking energy (−2000 kBK). The error bars represent the standard
error as calculated with the MBAR method, using data from three independent
temperature REMC simulations.

simulate here with NN hybridization free energies, are not a representative sample
of DNA origami designs. Perhaps the next step in systematically examining the link
between staple binding heterogeneity and nucleation barriers would be to draw a set
of hybridization free energies from a normal distrubution to create multiple staple
sets, and calculate the average barrier height as a function of the variance of the
distribution.
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Because our selection of 9 binding domains per row was arbitrary, we ran sim-
ulations of the three-row system with 3, 5, and 7 binding domains per row. The
LFEs have been plotted in Figure 5.15. The barrier in the number of (mis)bound
and fully bound staples increases with the number of binding domains per row,
while the location of the barrier increases from 2 with 3 binding domains per row,
to 3 with 5 binding domains per row, and finally to 4 with 7 binding domains per
row, which is also the location of the peak with 9 binding domains per row. In
contrast to the monotonically increasing barrier height in staple-based order param-
eters, the barrier height along the number of bound domain pairs is quite similar
between the systems, especially between 7 and 9 binding domains per row, with
a greater difference appearing in the troughs. The melting temperatures of the 5-
and 7-binding-domains-per-row systems were nearly identical, differing by only
0.01K, while the 9-binding-domains-per-row system’s melting temperature was ap-
proximately 1.5K higher. Because these systems were smaller, we assumed that the
iterative stacking multiplier REMCwe used above would not be necessary to achieve
good sampling, so the difference in melting temperature could be a sampling issue.
It seems possible that once a certain number of binding domains are present per
row, a ‘bulk phase’ is entered in which the nucleation barrier remains largely the
same, where there are enough staple types to form a critical ‘nucleus’, and effects
of the edge staples become insignificant. However, we would need to run further
simulations on systems with more binding domains per row to confirm this.

One potential criticism of our findings is that they may strongly depend on the
details of the model. As a final test of the validity of our results, we use a different
representation of the three-row system, with 8 nt binding domain lengths, instead
of 16 nt, which requires the use of the three-quarter-turn binding domain, rather
than the half-turn binding domain (see Chapter 2 for the differences between these
domain types). The first point of interest is that this change in representation of the
system results in a very large shift of the expectation values of the order parameters
towards lower temperatures (Figure 5.16). Such a shift can be explained as the 8
nt representation having a larger entropic cost to assembly than the 16 nt, which is
consistent with the 8 nt having more states available to it in an unassembled state.
In addition to including the 𝑘B𝑇 ln 6 for 𝜖u, a mean field correction would be needed
to better match experimental curves, as discussed in Section 2.2.1. However, if we
consider the LFEs (Figure 5.17), they agree qualitativelywith the 16 nt representation
simulations. The two-row system is effectively downhill to either the fully assembled
state or the unassembled state, while the three-row system has a small barrier on
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Figure 5.15: LFEs at melting temperatures for varying number of binding domains
per row in the three-row system. The error bars represent the standard error as
calculated with the MBAR method, using data from three independent temperature
REMC simulations (the 9-binding-domains-per-row system uses the previously
presented data from three independent stacking multiplier REMC simulations).

the order of 5 𝑘B𝑇.

5.4 Conclusions

We have used the model developed in Chapter 3 to investigate whether nucleation
barriers exist and are relevant to the self-assembly of DNA origami. We have found
that nucleation barriers are dependent on the co-axial stacking of staples to each
other when adjacent on the same helix. Changing either the strength of the indi-
vidual stacking interactions or the number of stacking interactions per staple (by
increasing the number of binding domains per staple), we were able to control, and
even completely remove, the barrier. With the standard stacking energy, the size
of the barrier is not overly large relative to thermal fluctuations, and is thus easily
surmountable.

The small barriers, and especially the total lack of a staple binding nucleation
barrier in systems with staples that have only two binding domains, may be useful
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Figure 5.16: Mean order parameters plotted across a range of temperatures for the
two- and three-row systems with three-quarter-turn and half-turn binding domain
representations. The dashed lines correspond to the expected order parameters in
the fully stacked assembled state. The error bars represent the standard error as
calculated with the MBAR method, using data from three independent temperature
REMC simulations.

in a number of applications. The nature of the barriers would allow for a reversible
change in state, and thus the origami may be switched between a bound and un-
bound configuration by changing solution conditions for functional purposes. The
high degree of cooperativity in the maximal crossover system and the associated
narrow temperature range over which these systems transition between is an ad-
ditional property that may be of interest. One example of where these properties
could be desirable is in creating molecular-scale thermometers, somewhat analo-
gously to DNA origami being used as an in situ ruler [257]. However, this sensitivity
may be extend or be extended (say by functionalizing the staples with the appropri-
ate species) to other system conditions to act as a more general molecular sensor;
these conditions may include pH, ionic strength, or concentration of various species.
Because increasing the number of binding domains per staple increases the level
of cooperativity and the narrowness of the transition range, the precision of these
sensors may be tuned by the number of rows in the system.

Because of current limitations of the sampling methods, sampling efficiency
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(a)

(b)

Figure 5.17: LFEs along the number of (mis)bound and the number of fully bound
staples with three-quarter-turn binding domains. (a) Two-row system. (b) Three-
row system. (c) Four-row system. The error bars represent the standard error as
calculated with the MBAR method, using data from three independent temperature
REMC simulations.

does not scale well with system size, and so we have been limited to relatively small
designs in our study. It may be that with significantly more complex scaffold routing,
other barriers may present themselves which have large enough magnitudes to be
relevant to the assembly protocol. However, many commonly used origami designs
are simply scaled up versions of what we have considered here, withmore crossovers
and some longer loops. We speculate that these results will hold for such larger
designs, given that the barrier height scales with the per-staple stacking strength,
rather than a global measure of the origami size.

Even if it is the case that our results are valid only for small origamiswith a narrow
range of hybridization free energies, they are still relevant to realizable designs and
applications. While it is true that most origami designs employ larger scaffolds than
those used here, that has been in part because of the convenience and availability
of the M13mp18 phagemid. Smaller scaffolds have been developed [83, 85, 87, 88,
90, 91], the most recent of which additionally provides software and experimental
protocols for the efficient creation of scaffolds of a range of sizes with minimal
sequence constraints and with various user-determined desired properties [83]. We
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speculate that the use of smaller scaffolds may become more popular with these
innovations. Further, the use of custom scaffolds would allow for the creation of
the highly cooperative maximum crossovers designs with a uniform hybridization
potential that we simulated here by allowing for binding domains with a narrow
distribution of hybridization free energies.

In studies such as these, poor selection of order parameters can not only misrep-
resent the barriers involved in assembly, but can also hinder efficient sampling if
biased methods (e.g. US) are used. In addition to the order parameters considered
here, we also consider order parameters more directly related to the configuration
of the scaffold, including the radius of gyration, the end-to-end distance, the root
mean square deviation (RMSD) of the scaffold relative to a fully stacked assembled
configuration, and sums of the scaffold’s internal distance matrix, including sums
exclusively of distances of scaffold domains that are spanned by staples; however,
none of these order parameters provided any additional insight. We also considered
calculating LFE difference between staple states and binding domain states as a
function of the total number of bound staples or domains, but these proved difficult
to interpret because of insufficient statistics.

In the case of the 56-binding-domain scaffold system, we explored other order
parameters by applying principal component analysis (PCA) on a vector of the
occupancies of each scaffold site, the staple type states, and the scaffold stacked
pairs (which does not sum to the number of stacked pairs order parameter, as this
only considers pair stacking rules). The top two components were then combined
in various ways, and clustering applied to identify macrostates. However, no clear
or meaningful macrostates were discovered with the components examined. We
do not rule out the possibility of utility in such an approach that was overlooked,
but we concluded that it was unlikely to be fruitful and did not pursue it further by
examining LFEs along the various components or applying the same approach to
other systems.

Because of both the coarseness of ourmodel and the fact thatwe use non-dynamic
MC simulations, we cannot estimate absolute assembly rates. It may be that even
with the small systems that have a small nucleation barrier or none at all, the assembly
rate is slow enough to prevent effective use of the in principle reversible assembly.
Such slow assembly could be caused by details finer than what we include here, and
the rates of rearranging and aligning helices. If staples bind to multiple places on
the scaffold concurrently, the rearrangement times may become quite slow. These
jammed configurations could be avoided by designing the staple’s hybridization free
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energies to bind at higher temperatures to one particular location on the scaffold,
and relying on cooperative effects to thermodynamically stabilize the subsequent
binding of staples on adjacent parts of the scaffold. However, if one is interested in
creating systems that can assemble in a narrow temperature range, an alternative
approach to achieving this would be to design a nucleation barrier by using more
binding domains per staple to increase the amount of stacking.

One possible difference between the self-assembly behaviour of DNA origami
and DNA bricks is their propensity for aggregating in such a way as to prevent
full assembly. In studies of DNA bricks, it was found that at lower temperatures
incidental interactions led to aggregation of partially assembled structures, creating
a rugged free energy landscape that inhibits the assembly process [190, 191, 193].
Our approach cannot directly simulate such aggregation in DNA origami systems
because it does not include free staples or other scaffolds. However, some insight
may still be gleaned from our simulations. Here, the LFEs along the number of
bound domains are almost always downhill after the binding of the first domain
of a staple. This would seem to imply that the staples tend to bind fully and have
fewer unhybridized segments available. This could make DNA origami less prone
to aggregation, as the partially assembled structures have fewer possibilities for
incidental interactions with each other.

In summary, our results reveal that DNA origami self-assembly exhibits funda-
mentally different nucleation behaviour from DNA bricks self-assembly, and that
it is possible to control the size of the barrier with the staple design, and even to
eliminate it. We hope that our findingswill prove useful in the creation of small DNA
origami designs that utilize reversible folding for functional purposes, and more
broadly to assist in the design of DNA origamis with desirable assembly pathway
characteristics.
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6
Conclusions

The self-assembly of DNA origami is a process that is of both practical and
theoretical interest. We have introduced a lattice model that includes a level of detail
relevant to uncovering the unique elements of the self-assembly mechanism, while
ignoring further detail to allow for efficient simulation. The model is novel in the
way it represents the helical twist constraints, with potential energy terms that are a
function of the orientation vectors associated with the binding domains. Variations
on the potential for different binding domains lengths are provided such that all
designs able to represented on a simple cubic lattice are able to be modeled.

Efficient simulation of partially and fully assembled states required specialized
MCmethods. Twomain ideas underly our approach. The first is that simulations are
run in the grand ensemblewith just a single copy of the scaffold, which allows staples
not bound to the scaffold to be ignored. The second is that the sampling of staple
binding states is done separately from the sampling of scaffold configurations, which
both increases acceptance frequencies of moves and simplifies the development of
new move types. New move types were developed that extend CB and RG for
regrowing what can be seen generally as branched and looped lattice polymers,
given that the staple states are held constant.

We have demonstrated that our model and methods are able to effectively sam-
ple assembled states, including fully stacked states, when starting from a fully un-
bound scaffold. The example thermodynamic analyses that we performed on the test
systems, which included a system also simulated with the oxDNA model, largely
matched our expectations. We found that staple blocking, where two copies of the
same staple type bind to the scaffold and block each other from fully binding, was
thermodynamic in origin once the staple concentration was sufficiently high.

We used the model to study the kinetics of origami self-assembly by examining
barriers to assembly, and in particular investigated whether nucleation barriers
were present and, if so, whether their role was significant. Systems with only two
binding domains per staple were found to be downhill in free energy along all order
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parameters tested. However, when we increased the number of binding domains per
staple to three and four, a nucleation barrier appeared, albeit one easily surmountable
with typical thermal fluctuations. The barrier was found to be primarily caused
by the coaxial stacking between staples adjacent on the same helix. Increasing the
number of binding domains per staplewas oneway of increasing the level of stacking
per staple; we were also able to reproduce the nucleation barrier in systems with two
binding domains per staple by increasing the stacking energy. Finally, the systemswe
designed to systematically test for nucleation barriers exhibited a very high degree
of cooperativity, which could be useful in the creation of molecular sensors.

The model could be improved in a number of ways. We discussed how the
reproduction of the stacking behaviour could be improved in Section 4.5 by having
more than one stacking parameter depending on the context, and by including
sequence specificity. We further discussed the possible pitfalls of assuming a constant
staple concentration, and some possible alternatives to making such an assumption.
In Section 2.3, we described what may be a more intuitive version of the model, the
explicit helical axis model. Aside from being easier to reason about, it may allow for
a more accurate representation of kinks and Holliday junctions, and would make
the implementation of some of the potential terms that are a function of three or
four binding domains be a function of only two binding domains, which could lead
to gains in efficiency. However, as we argue in Section 4.5, the gains from such a
model seem likely to be marginal over an implicit helical model. On a similar note,
an off-lattice analogue could also be of interest to explore, but we note that the off-
lattice analogue of the DNA bricks model was largely in agreement with the lattice
model [192], which provides some support for a similar result here.

Perhaps the most important improvement that could be made to the model
would be to better represent the trade-off between enthalpy and entropy as the
system transitions to an assembled state. One approach to doing so would be to
introduce additional parameters that could be tuned by comparison to experiment or
simulations with a more detailed model. In fact, detailed simulations of a Holliday
junction have been performed with the oxDNAmodel [187], which could be used
to set an additional parameter for these junctions in our model. There are also a
number of experimental studies that involve global transitions between the two
isoforms of the Holliday junction in DNA origami (i.e. which strands continue the
helix and which are involved in a strand crossover) [251, 258–261]. These studies
additionally propose functional uses for such a global transition between distinct
structures provided by the Holliday junction isoform transition, so it would be of
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interest to reproduce the transition in our model beyond simply improving the
accuracy of the results in other contexts.

The sampling methods likely represent the bottleneck to the applicability of
our approach, rather than the accuracy of the model. In particular, the sampling
of different stacked states of similar energies was one of the main culprits of the
sampling difficulties. Even though individual stacked pair interactions are small,
if a configuration is proposed with many fewer stacks, this will will result in a low
likelihood of acceptance. To transition between configurations with many stacks,
they will have to pass through these energetically unfavourable configurations, as
the scaffold regrowth move types will not often propose configurations with as
many stacks if they are regrowing many binding domains. While both CB and
RG are biased towards lower energy configurations at the growth of each binding
domain, a stack requires previous binding domain positions and orientation vectors
to already be set a particular way for a stacked configuration to be an option to select
from. This issue is similar to the issue that if a naive regrowth scheme were used,
i.e. with no endpoint constraints as in the conserved topology move types developed
here, moves would not often propose configurations with as many bound domains.
Unfortunately, there is obvious analogous splitting of sampling of stacked states and
scaffold configurations.

With smaller systems, our methods can effectively produce samples with well
converged quantities of interest. However, the scaling seems to be rather poor with
system size and complexity. There are a number of improvements that could bemade.
It was found that with larger systems, 2D REMC with a stacking energy multiplier
and the temperature acting as independent exchange variables may provide an ad-
vantage over 1D REMCwith temperature alone as an exchange multiplier. However,
with systems that display high levels of cooperativity and a correspondingly sharp
assembly transition, this method failed because of a lack of good coverage of the
transition at multiple values of the stackingmultiplier without having a prohibitively
large number of replicas. One solution may be to vary the stacking multiplier with
the staple concentration such that the total number of bound staples remains con-
stant, or to vary the stacking multiplier with a multiplier on the hybridization free
energy such that the total number of bound domain pairs remains constant.

For the calculation of LFEs, we found that themulti-window adaptive US scheme
used here to be much less effective than the REMC schemes. However, the REMC
schemes, at least for calculating LFEs of the highly cooperative systems that displayed
nucleation barriers, were very sensitive to the selection of exchange variables with
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respect to their sampling efficiency, and required the use of iterative schemes to select
these variables. A more robust approach could be to use a form of replica exchange
US with exchanges between windows, as this would ensure good sampling across
the order parameter space. It could also be of some interest to explore other methods
for calculating free energies which involve flattening the free-energy landscape, such
as Wang–Landau sampling and its variations [262–265].

It may also be productive to further develop move types for sampling scaffold
configurations. One idea that showed promise, but which has not been fully devel-
oped, was amove type that we refer to as transformation-linker-regrowth. Thismove
type allowed a segment of the scaffold and any bound staples to be transformedwith
a series of translations and rotations, without regrowing it. It also involved the selec-
tion of linker regions that would be regrown after the transformation was applied.
Such a move type allows separate chunks of the system that may be individually in a
stacked assembled state to be reoriented with respect to each other without the cost
of proposing a regrowth of many binding domains in the same stacked assembled
state.

A more general extension would be to include an additional method for regrow-
ing binding domains, in addition to the symmetric, CB, and RG methods. Recently,
Boon [266] developed a polymer regrowth scheme that combines the advantages
of the CB scheme with the PERM scheme, and can effectively apply a technique
known as “waste recycling” that allows rejected configurations to be used in the
ensemble averages to reduce statistical noise [267]. Like the RG method, it is useful
for avoiding dead ends during regrowth, but compared against RG, it was found to
be an order of magnitude more efficient with their test system and implementations.
One of the problems with RG in our work was that the cost of ‘looking further ahead’
by allowing for more recoils, while effective at increasing the acceptance rate of long
chain regrowths, came at a very high computational cost, which made it less efficient
than using a relatively small maximum number of recoils. It seems plausible that the
method of Boonmay scale better than RG in this respect, given its use of a PERM-like
method for avoiding dead-ends.

Our approach should be generally useful in a variety of contexts. We focused our
efforts on systems that had two binding domains per staple, and systems that had
staples which crossed over at every opportunity (at least given the resolution of the
model). However, there are otherways to design staples, with even the designs in the
original paper of Rothemund [9] having motifs that we have not studied. It would
be of interest to perform similar analysis to those performed in this thesis on such
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systems. It would also be of interest to study systems that are designed to assemble
into 3D structures. With the current form of our model, it would be possible to
simulate 3D designs that are based on a square lattice, as Ke et al. [73] pioneered. It
would also not be difficult to extend the approach to allow for simulation of ssDNA
origami [92]. The model might also be extended to include staples that have been
functionalized in some way by adding additional terms to the potential that act to
occupy lattice sites or even to interact with each other or binding domains in the
system.

The model with the half-turn and three-quarter-turn binding domains have been
implemented as a computer program which we have released to the public with a
permissive license. The software has been designed to not requiremodification of the
source code to run a simulation. Options are specified as command line arguments
or in a configuration file with key value pairs, with additional options including
system definitions, configurations, biases, order parameters, and move sets being
defined in JSON formatted files. Also included are a variety of scripts to analyze
and visualize the simulations. We hope that the software will be of some general
utility to the community, and that its use by a broader set of researchers will lead to
further applications of the model that we have not even considered here.
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