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Abstract

Poor air quality is a severe issue for society, affecting the health and well-being of huge parts
of the population worldwide. To efficiently reduce the risk of premature death associated with
air pollution, a deeper understanding of the causal links between air pollution exposure and
human health is needed. However, conventional health studies are restricted by methodological
limitations such as miss-estimations of personal exposure and the interdependence between
different pollutant species when using traditional outdoor exposure metrics.
Taking advantage of recent advancements in sensor technologies and computational techniques,
this dissertation presents a novel methodological approach to improve air pollution exposure
and dose estimates for epidemiological research.
The novel methodology combines personal air quality monitors (PAMs) measuring nitrogen
oxides (NOx), carbon monoxide (CO), ozone (O3), and particulate matter (PM), with a time-
location-activity model to generate accurate personal air pollution exposure estimations under
field conditions. The monitors were comprehensively characterised and deployed in different
exposure studies in the UK, China, Germany, and Kenya, supporting wider studies of air
pollution and human health.
The PAM measurements showed excellent agreement with standard instrumentation in indoor,
outdoor, and commuting environments. Field deployments involving hundreds of participants
revealed the substantial exposure misclassification introduced when using ambient measure-
ments as metrics of exposure. The correlation between individual pollutants usually observed
at air quality monitoring stations was found to substantially decrease using the high spatial
resolution of the portable sensors, allowing more refined estimates of the health effects of
different pollutants.
The deployments showed that local emission sources had often a far more important impact on
personal exposure than regional sources, and the air pollution composition changed distinc-
tively between local microenvironments. The home environment was identified as an important
exposure site, particularly in areas where populations rely on biomass burning for domestic
energy and cooking. In industrialised countries, peak exposure events were recorded during
commuting, although they frequently represented a minor component of the overall dose. By
separating regional from local air pollution and classifying exposure by microenvironment, this
work has made first steps towards assigning personal exposure to individual emission sources.
The findings of this dissertation should lead to a paradigm shift in quantifying air pollution
exposure in epidemiological studies and drive evidence-based policy to reduce the global
burden of disease.
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Glossary

Air pollution Contamination of air by any chemical, physical or biological agent (here:
gaseous and particulate pollutants).

Ambient pollution The air pollution levels measured at static air quality monitoring stations
are referred to as ambient or outdoor concentrations. As the monitoring stations are
usually designed to measure the regional pollution concentrations away from any direct
sources, the ambient concentration can also be regarded as regional background or
baseline concentrations.

C-reactive protein Blood component, rises rapidly in response to tissue injury, infection and
inflammation [135] (see Table A.4).

Coefficient of correlation Pearson’s correlation coefficient R contains information about the
strength and direction of the linear relationship between two different variables [51].
In this work, it was used to compare the concentration measurements of two different
pollutant species (e.g. CO and NO).

Coefficient of determination The coefficient of determination R2 is the squared coefficient
of correlation R and provides a measure of how well a predicted variable agrees with the
observed value [130]. It is therefore used to compare two measures of the same variable
(here: the concentration of a pollutant such as NO2). R2 only describes the shared
variability of two variables [51] and does not contain information about the absolute
difference between predicted and observed value. Therefore, it was complemented with
the root mean square error (RMSE, see Equation 3.1).

Confidence interval (CI) The 95% confidence interval (CI) is used to estimate the precision
of the odds ration (OR). A large CI indicates a low level of precision of the OR, whereas
a small CI indicates a higher precision of the OR. It is important to note, however, that
unlike the p value, the 95% CI does not report a measure’s statistical significance. In
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practice, the 95% CI is often used as a proxy for the presence of statistical significance
which is assumed when the CI does not overlap the null value (e.g. OR = 1). [51].

Dose The air pollution dose is the “amount of contaminant that is absorbed in the body of an
exposed individual over a specified time” [101]. The physiological dose is influenced
by weight, health condition and other characteristics of the individual; environmental
factors and the contaminant itself [101], and is consequently very complex to quantify.
The inhaled dose can, however, be approximated as the potential dose or intake which
assumes the total absorption of the contaminant by the body [101, 96]. In this dissertation,
the term dose refers to the potential dose .

Exposure metric An exposure measurement of a pollutant used to estimate the pollutant mass
delivered into the respiratory system.

Exposure misclassification Difference between a chosen measurement method of a pollutant,
usually measurements of the ambient air at postcode level or coarser, and the true
exposure of a person [33].

Fraction of exhaled NO (FeNO) Marker for respiratory inflammations [120] (see Table A.4).

Inhalation rate Volume of air breathed in by a person per unit of time.

LOD Limit of Detection. Conventionally, the LOD of air pollution sensors is determined by
measuring the sensor noise in zero air. In this work, the LOD was established from field
calibration data.

Measurement accuracy Closeness of the agreement between the measurement of a quantity
(here: the pollution concentration measured by a portable sensor) and the true value
of that quantity (here: the pollution concentration measured by a reference instrument)
[64]. Both, systematic errors (or bias) and random errors (precision) impact the accuracy.
The systematic component of the measurement accuracy can be improved by instrument
calibration.

Measurement error Difference between a measured quantity and the true value of a quantity
[68]. It can therefore be used to describe the accuracy of a measurement method.

Measurement precision Measure of the agreement between measurements of the same quan-
tity obtained under stipulated conditions [64]. It is only influenced by the distribution of
random errors and can be improved by averaging observations over time.
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Measurement reproducibility Precision of measurements of the same quantity obtained
by different instruments but with the same measurement method (= reproducibility
conditions) [64]. In this work it describes the agreement of different personal monitors
that are exposed to the same air pollution concentration (i.e. when being colocated).

Measurement uncertainty Statistical dispersion of the values attributed to a measured quan-
tity [68]. It can be interpreted as the "expected" measurement error.

Microenvironment A volume of air space with [an approximately] homogeneous pollutant
concentration [48].

Monocyte count Type of white blood cells, their count can be predictive of cardiovascular
events [117] (see Table A.4).

Odds ratio (OR) Measure of association between an exposure and a health outcome. The OR
represents the odds that an outcome will occur given a particular exposure, compared to
the odds of the outcome occurring in the absence of that exposure.
OR = 1 Exposure does not affect odds of outcome
OR > 1 Exposure associated with higher odds of outcome
OR < 1 Exposure associated with lower odds of outcome.

Personal exposure Air pollution concentration in the direct surrounding of a person, see
Section 1.2.2. To take the exposure duration into account, the integrated or cumulative

exposure can be calculated by integrating exposure over time (unit: µg m−3 min). More
commonly used is, however, the average exposure which is defined as the integrated
exposure divided by the exposure duration (unit: µg m−3) [96].

PM2.5 PM2.5 is defined as the mass of dry particles that pass through a size selective inlet with
a 50% cut-off efficiency at 2.5 µm aerodynamic diameter [133, 50]. The aerodynamic
diameter of an irregular particle is defined as the "diameter of the spherical particle with

a density of 1000 kg/m3 and the same settling velocity as the irregular particle" [60].

Pollutant concentration The terms "air pollution concentration" and "air pollution level"
refer to the amount of air pollution in the air. It is typically measured in micro grams per
cubic meter or in parts per billion. The latter unit strictly refers to a mixing ratio not a
concentration. In this work, however, the term "concentration" is used for all units. In the
case of particulate matter, the term concentration always refers to the mass concentration
(µg m−3).
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Pollutant ratio Ratio between the concentrations of two pollutants. May give indication of
the emission source and toxicity of the air pollution mixture.

Rural In the context of the AIRLESS project, rural refers to the monitoring site and study
cohort from Pinggu village which is actually located in the peri-urban periphery of
Beijing. Therefore, it is often also referred to as the peri-urban site.

Time budget Amount of time an individual spent on different activities within a specified
period (e.g. one week).



Chapter 1

Introduction

1.1 Health effects of air pollution

For centuries, air pollution has been a concern for societies all over the world. Records of the
nuisance of smoke and concerns about possible health effects have already been documented
more than two thousand years ago. For instance, ancient Greek policy documents regulated the
location of pollution sources well beyond the city walls to protect the population [21].
But only in the 20th century did researchers begin to conduct more systematic investigations
of the links between air pollution and human health. One famous example is Wilkins’ study
on the London Smog in December 1952 [148], when air stagnation and other meteorological
conditions led to an accumulation of air pollution in the city. Figure 1.1 shows the sulfur
dioxide (SO2) and particulate matter concentrations (in graph referred to as smoke) as well
as the number of deaths that were recorded during that event. The death rate increased with
a small time lag after the smog began, and it continued to be high for a few days after the
pollution had already cleared up, indicating the lagged effects of air pollution exposure on
health.
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Fig. 1.1 Daily air pollution and death rates during the London Smog of December 1952. From
Wilkins et al. [148].

The Harvard Six City Study [46], a long-term longitudinal cohort study of the health effects
of air pollution commenced in 1975, was the most significant scientific effort to quantify
the detrimental effects of air pollution on mortality and morbidity of the population. The
project monitored over 8,000 participants in six U.S. cities for 14-16 years to examine the
linkage between exposure to air pollution and mortality. The results in Figure 1.2 show the
city specific mortality rates1 plotted against the mean air pollution levels of each of the six
cities. A significant association between air pollution and mortality was found, which is clearly
demonstrated in Figure 1.2. Laden et al. carried out a follow up study for 8 years in a period of
reduced air pollution concentrations (1990-1998), finding that a reduction of air pollution was
associated with lower mortality risks [80].

1adjusted for personal factors, such as smoking habits, level of education, body-mass index, day of the week
and temperature
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Fig. 1.2 Estimated adjusted mortality-rate ratios and air pollution levels in six cities in the USA.
Mean values are shown for the measures of air pollution. P denotes Portage, Wisconsin, T
Topeka, Kansas; W Watertown, Massachusetts; L St. Louis; H Harriman, Tennessee; and S
Steubenville, Ohio. From Dockery et al. [46].
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In the past 30 years, air pollution has received an increasing amount of attention within the
research community. Figure 1.3 from Zell et al. presents the number of publications related to
air pollution in the years 1955-2006, showing a large increase of publication numbers since
1990. The intense research in recent decades has produced robust scientific evidence that
exposure to poor air quality increases morbidity and mortality rates of the global population
[34, 149, 23, 137, 31].

Fig. 1.3 Publications related to the topic air pollution 1955- 2006. Comparison of results in
"Web of Science" and "PubMed". From Zell et al. [155].

In 2015, the Global Burden of Disease report found that non-communicable diseases (NCDs)
are the major cause of premature deaths worldwide, and identified exposure to ambient and
household air pollution among the leading environmental risk factors [52]. While the number
of global deaths caused by communicable diseases and perinatal, maternal and nutritional
conditions is decreasing, the mortality due to NCDs is rising [100]. Mathers and Loncar
projected that this trend will further continue in the future as shown in Figure 1.4. It is therefore
essential to understand the causes and risk factors leading to NCDs in as much detail as possible.
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Fig. 1.4 Baseline projections of global deaths from communicable, maternal, perinatal and
nutritional causes (top) and non-communicable disease (NCD), 2002-2030. From Mathers
and Loncar [92]. CVD - cardiovascular disease. Note the different y-axis scales: The num-
ber of deaths attributed to NCD is approximately twice as high as the number attributed to
communicable diseases.
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Poor air quality has been mainly associated with cardiovascular conditions including increased
blood pressure, heart attack and stroke; and respiratory diseases, such as chronic obstructive
pulmonary disease (COPD), lung cancer and pneumonia. But studies suggest that air pollution
may also affect other organs, such as the brain or the reproductive system. For instance, air
pollution has been associated with metabolic diseases, premature births and decreased birth
weight, as well as with neurological and psychiatric conditions such as Alzheimer’s disease,
Parkinson’s disease and depression[137]. Figure 1.5 provides a full overview of the detrimental
health effects associated with air pollution. Despite this improved understanding over the last
decades, uncertainties remain as it is unclear which components of the air pollution mixture
cause the specific health outcomes [53]. The limitations that hinder epidemiological studies in
drawing more specific associations will be discussed in the following section.

Fig. 1.5 Overview of diseases, conditions and biomarkers affected by outdoor air pollution.
Bold type indicates conditions currently included in the Global Burden of Disease categories.
From Thurston et al. [137]

1.2 Limitations of conventional epidemiological studies

Studies like Dockery’s analysis of the London Smog event or the Six city study (Section 1.1)
established clear links between air pollution and mortality, but they have also left some ques-
tions unanswered. Decades after these compelling historical studies, the research community
struggles to draw specific associations between health outcomes and individual pollutants due
to the inherent limitations of epidemiological studies [53].
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Conventionally, epidemiological studies have relied on indirect approaches such as stationary
air quality measurements or air quality models to estimate the exposure risk of a population
(see Section A.1.1 in the Appendix). These methods are capable of generating exposure data for
very large cohorts, increasing the confidence of the health effect estimates in epidemiological
studies [96]. Relying on these indirect approaches entails, however, two major limitations of
conventional epidemiological studies outlined below.

1.2.1 Correlation between individual pollution species

Fig. 1.6 Modelled mean outdoor PM2.5 (b), NO2 (c), and O3 (d) concentrations in Beijing
(winter 2016) based on an emission inventory from 2013. From Biggart et al. [15]. PM2.5 and
NO2 are positively correlated, NO2 and O3 are negatively correlated.

Different pollutant species are often highly correlated in ambient air quality measurements due
to common sources [23]. As an illustrative example, Figure 1.6 shows the mean concentrations



8 Introduction

of particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3) in Beijing modelled
based on observations from China National Environmental Monitoring Center [15]. In regions
of elevated PM2.5 levels, the NO2 concentrations were also elevated. The two pollutants were
closely correlated while the NO2 and O3 levels were clearly anticorrelated.
Goldberg’s study on the interpretation of epidemiological studies of ambient air pollution
concluded that "it is impossible using standard epidemiological designs to uniquely identify

any individual component of air pollution as a causal agent of a health effect because of

simultaneous exposure to all or a subset of ambient pollutants" [53].
Historical evidence presented in the previous section from the London Smog Study and the Six
City Study (Figures 1.1 1.2) found a clear association between the exposure to air pollution and
mortality but not which specific component of the air pollution was responsible for the increase
in mortality because the different pollutant species (SO2 and PM) were closely correlated. A
reanalysis of the Six City Study concluded that increases in mortality "may be attributed to

more than one component of the complex mixture of ambient air pollutants" [77].
Similarly, a recent report of the Committee on the Medical Effects of Air Pollutants (COMEAP)
[33] on the associations of long-term NO2 exposure and mortality reviewed studies that used
multi-pollutant models to determine the combined health effects of two or more pollution
species, finding that the combined health effects of two pollutant species were "similar to, or

slightly larger than, the single-pollutant association reported with either pollutant alone" (i.e.
effect(a + b) = effect(a) = effect(b)). This suggests that summing up the health effects of the
individual components of a pollutant mixture would substantially overestimate the health effect
of the mixture. This discrepancy illustrates the limitation of epidemiological research that relies
on spatially and temporally aggregated data to reliably determine the harmful potential of one
individual pollutant species.

1.2.2 Exposure, dose and exposure misclassification

To standardise the concepts around human exposure to air pollution, in 1982 Wayne Ott defined
the term exposure as an event that occurs when a person comes in contact with an air pollutant
of a concentration c at a specific time [107]. Based on this definition, this dissertation uses the
term personal exposure, or simply exposure, to refer to the pollutant concentration in the direct
environment of a person. Consequently, the exposure is given in units of concentration2

In contrast to personal exposure, the term outdoor or ambient exposure refers to pollutant
concentrations measured by air quality monitoring stations which are located outdoors. Epi-

2For instance, if a person was located in an environment containing 15 µg m−3 of PM2.5, their personal
exposure to PM2.5 would be 15 µg m−3.
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demiological studies often use these ambient exposures as proxies for personal exposure [121].
In this work, ambient exposures will be always explicitly referred to using the terms outdoor,
static or ambient.

Fig. 1.7 Boxplots showing the distribution of ambient concentrations and personal exposures of
56 subjects in Baltimore by season and pollutant. PM2.5 of ambient origin was determined by
comparing the sulphate ([SO4]2−) content of personal and ambient PM2.5 filter samples. From
Sarnat et al. [121].

Exposure misclassification "refers to differences between the exposure metrics used in [an]

epidemiological study and the ‘true’ exposure of the population at risk" [33]. Conventional
epidemiological studies rely on exposure estimates from static outdoor monitoring stations
which are often only sparsely distributed over large areas and averaged over 1, 8, or 24 hours
[108]. Air pollution concentrations may, however, vary significantly in space and time because
they are affected by various factors such as local emission sources, surface losses or filtering
effects of buildings [74, 79]. For instance in the UK, two- to three-fold differences of NO2
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concentrations were found within distances of 50 meters or less [65] whereas air quality moni-
toring stations typically cover areas of several square kilometres3.
Studies that investigated the relationship between personal and ambient air pollution measure-
ments found poor correlations (often approaching 0) between the two parameters [11, 144].
Figure 1.7 from Sarnat et al. demonstrates this by comparing personal exposure measurements
from 56 subjects (yellow) with ambient concentrations recorded over the same time period (12
days; red) [121]. The concentration ranges of the two exposure metrics differ significantly, in
some cases by a factor of almost 10.
Although exposure misclassification is a well known issue in the scientific literature, it has
rarely been accounted for in health studies [124]. Refining the exposure metrics in epidemio-
logical studies may, however, lead to different or previously uncovered associations between
air pollution and health [18, 122]. For instance, Goldman et al. found that "health risks per

unit increase in pollutant concentration associated with primary air pollutants are predicted to

be attenuated by up to 80% when central monitor data are used [instead of spatially refined

exposure metrics]" [54].

The air pollution dose is the “amount of contaminant that is absorbed in the body of an exposed
individual over a specified time” [101].
The physiological dose is influenced by weight, health condition and other characteristics of
the individual; as well as by environmental factors and the contaminant itself [101], and is
consequently very complex to quantify. The inhaled dose can, however, be approximated as the
potential dose or intake which assumes the total absorption of the contaminant by the body
[101, 96]. In this dissertation, the term dose refers to the potential dose.
The air pollution dose, i.e. the amount of air pollution that is inhaled by the body, does not only
depend on the pollutant concentrations the person is exposed to, but also on their individual
characteristics and the person’s inhalation rate, and hence on their level of physical activity
[141] (see Section 6.1). Neglecting the inhalation rates of the population sample may introduce
further uncertainties in health studies. For instance, Int Panis et al. (2010) found that cyclists
received a PM2.5 dose 4.3 times higher than (physically less active) car drivers; even though
both groups were exposed to similar pollution levels [63].
The combination of exposure misclassification and the neglect of activity levels may lead to
large errors in the air pollution dose estimations of study populations, and consequently to large
uncertainties in the resulting associations between air pollution exposure and health effects.

3For instance, the London Air Quality Network (LAQN) operates ca. 100 monitoring stations
[London Assembly] across an area of ca. 1500 km2 (Greater London) representing a population of almost
nine million people.
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1.3 Importance of personal monitoring

The previous section stressed that epidemiological research on air pollution is still fraught with
large uncertainties due to inaccurate exposure measures and static populations. These methods
suffer from inter-pollutant correlations and exposure misclassification. To overcome these
challenges, air pollution exposure measurements need to be tied to individuals; which requires
changing exposure estimation techniques to more portable and flexible approaches. Personal
monitors reduce the exposure misclassification and are considered the gold standard for ac-
curate exposure measurements [96]. Moreover, the low costs and simple use make personal
sensors attractive for citizen science and awareness-raising projects. However, the miniatur-
isation and flexible operating conditions will inevitably compromise the the performance of
personal monitors compared to established standard instrumentation that can be operated under
controlled environmental conditions. Scientists have expressed their concerns regarding the
performance of the sensors, and remarked that mass applications by non-experts, who are
unaware of the limitations of the monitors, may lead to large volumes of erroneous air quality
data which may mislead policy decisions on air pollution mitigation strategies [84]. Many
scientists have stressed the importance of a thorough, ideally standardised validation process to
ensure sufficient data quality of newly developed personal sensors [84, 27, 69, 136, 98, 116, 12].
The following section provides an analysis of recent studies that deployed personal air quality
monitors with regard to the performance assessment of the deployed sensors. The overview
combines the work of two literature reviews on personal sensors from Rai et al. (2017) [116]
and Morawska et al. (2018) [98].
Rai et al. reviewed various performance characteristics4 of a large range of low-cost air pollu-
tion monitors, finding that "while many scientific studies have utilised low-cost PM and gaseous

sensors in a variety of air pollution monitoring activities, only a few have reported sensor

performance characteristics and the associated data quality".
Morawska et al. systematically reviewed low-cost sensors and monitoring platforms that have
been applied in research and/or citizen science projects up to 2017. Morawska concluded that,
although recent developments in the field of miniaturised sensors "enable a revolutionary shift

in air pollution monitoring and assessment"; insufficient performance assessment might lead to
unsuitable applications of the low-cost sensors.
Most sensors assessed by Rai et al. and Morawska et al. focused on measuring only one or

4accuracy (agreement between sensor and reference instrument), reproducibility (agreement between colocated
sensors, R2

xx), limit of detection (LOD), interference with environmental factors such as wind, temperature, pressure
and relative humidity (∆Xmet ), response times (tr), cross-interference with other pollutant species (∆XX−Y ), sensor
stability is the change in sensitivity over long time intervals (∆Xt ), and the impact of particle characteristics such
as size distribution and composition on particulate matter measurements (∆Xpart )
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two pollutant species whereas multiple pollutant approaches might be required to overcome the
current challenges in epidemiological research ([39], see Section 4.4.1). Hence, the following
analysis will focus on multi-pollutant5 monitoring platforms.
Table 1.1 combines the large database of sensor evaluation studies created by Morawska et
al. (Supplement) with the rigorous performance criteria of Rai et al. . The table summarises
which of Rai’s performance criteria were addressed in each study and whether they were
acknowledged only (+), corrected for in a generic way (e.g. using correction factors provided
by the manufacturer, ++), or experimentally quantified and individually corrected for each
sensor (+++).
Due to different environmental conditions, the sensor performance found in controlled labo-
ratory experiments might differ from the performance found in static daily life environments
(indoor, outdoor) or mobile sensor applications. Therefore, Table 1.1 specified the experimental
environments in which the sensor performance was tested.
Out of the 21 examined studies, 16 colocated the personal sensors with static outdoor monitor-
ing stations, but only 12 of these were in close proximity with the reference. Laboratory tests
to evaluate the sensor performance were performed in 7 studies, usually in addition to outdoor
colocations (6 of 7). Out of the 4 studies that performed additional tests (other), one study
assessed the indoor sensor performance by placing it into an experimental room of a known
volume and injecting pollutants of a defined concentration into the room[25]. Three studies
assessed the performance of the monitors in movement by comparing the mobile (outdoor)
measurements to nearby static reference stations [49, 58] or by qualitatively comparing the
pollution levels between different microenvironments [66].
Of the 21 validation studies, only one study [94] assessed all 7 selected performance criteria
quantitatively while the majority of studies evaluated only one or two criteria. Most studies
focused on the accuracy (i.e. agreement between sensor and reference), the limit of detection
(LOD) and sensor interference with the environment. Just six studies were concerned with the
sensor response time (3 x quantified, 3 x mentioned) and only one study [132] considered the
PM composition by separating the particles into size bins via a cyclone inlet. Note, however,
that their low-cost instrument ("Mini Air Station") was designed for static use only. Another
study discussed the impact of PM characteristics on PM measurements theoretically [26]; the
rest did not consider these limitations at all. Six studies did not address any of the performance
criteria [20, 55, 62] or only mentioned some of the criteria in their discussion[49, 75, 123].
Table 1.1 demonstrates that many studies that deployed personal multi-pollutant monitors
did not sufficiently characterise their instruments. Most studies determined the accuracy of

5measuring more than two pollutants
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the sensors by comparing them to reference instruments. However, these experiments were
mostly conducted outdoors and under static conditions, whereas the monitors need to be de-
ployed indoors and in a mobile configuration to collect personal exposures. Other performance
characteristics, such as the LOD and the cross interference with other pollutants, were rarely
considered, making sensor performance comparisons between studies difficult. The impact of
particle characteristics on particulate mass measurements still poses a big challenge in the field
of miniaturised sensors that has not been properly addressed by any of the reviewed studies.
This overview stresses the need for more thorough validation procedures for novel sensors that
should ideally follow standardised protocols.
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Table 1.1 Overview of studies that evaluate the performance of portable air pollution monitors
based on the performance criteria by Rai et al. [116] (legend at bottom of table). All studies
reviewed by Morawska et al. [98] that assessed multi-pollutant monitors were compared.

Ref Monitor name Dimensions Pollutants Colocation with ref R2
xx LOD ∆XX−Y ∆Xt ∆Xmet ∆Xpart tr

(cm) lab outdoor other

[1] unnamed 35x25x15* CO, NO2, PM +++ + - - - - -
[17] 6 different various various x - - ++ - ++ - -

monitors
[20] uSense 35x25x15* CO, O3, NO2 x x** - - - - - NA -
[25] unnamed NA CO, VOC, NO2,

CO2, O3

x +++ + - - + NA +++

[26] AQMesh 25x22x17 NO, NO2, O3,
CO, PM

x x +++ +++ +++ +++ +++ + -

[30] APOLLO NA CO, CO2, NO2,
PM, VOC

x - + - - ++ - +++

[49] EveryAware 20x15x8* VOC, CO, O3,
NO2, CO, H2

x** x - - + - + NA -

[55] ILM 43×33×20 PM, UFP, NO2,
O3

x +++ - + + + - -

[58] unnamed 30x20x15* CO, O3, NO2,
UFP

x** - - - - - NA -

[59] unnamed NA CO, NO, NO2,
CO

x** - + - + ++ NA +

[62] VIEW NA SO2, O3, CO x - - - - - NA -
[66] CamPerS 19x9x3 NO, NO2, CO x x x +++ + + - ++ NA -
[67] AQMesh 25x22x17 NO, NO2, O3,

CO, SO2

x +++ + + +++ +++ - -

[75] AirSensEUR 40x30x20* O3, NO2, NO, CO - + + + + NA -
[85] Makerbot NA CO, O3, NO,

NO2, SO2

x x ++ +++ +++ + +++ NA -

[94] unnamed 19x9x3 CO, NO, NO2 x x +++ +++ +++, ++ +++ ++ NA +++
[95] CanarIT 18x16x6.5 O3, NO2, VOC,

PM
x** +++ + - - + - -

[110] M-Pods 15x10x5* CO, VOC, NO2,
O3, CO2

x x +++ + + +++ ++ NA +

[123] AQMesh 25x22x17 NO, NO2, O3,
CO, PM

x + - + + + - -

[132] MAS 29x25x16.5 NO2, PM, CO x x - +++ + + +++, ++ ++ +
[152] MSS 18x12x4 CO, SO2, O3,

NO2, CO2

x +++ + - - - NA +

Performance criteria after Rai et al. [116]: R2
xx - Reproducibility; LOD - limit of detection; ∆XX−Y - cross-

interference with other gases; ∆Xt - drift / stability over time; ∆ Xmet - interference of meteorological changes
(temperature, humidity, pressure, wind); ∆Xpart - impact of particle characteristics; response time - tr
+ criterion was acknowledged (e.g. mentioned in the description of the monitor or discussed in the limitations) but
not quantified or corrected for
++ criterion was corrected for in calibration process (e.g. correction of temperature effects in NO sensors with
auxiliary electrode)
+++ criterion was experimentally quantified and corrected for (if applicable)
- criterion was neglected in performance assessment; NA criterion is not applicable for selected pollutants
* dimensions estimated from picture
** reference instrument not colocated
CO - carbon monoxide, CO2 - carbon dioxide, NO(2) - nitrogen (di)oxide, O3 - ozone, PM - particulate matter,
VOC - volatile organic compounds, UFP - ultrafine particles, SO2 - sulfur dioxide, H2 - hydrogen
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1.4 Aim and objectives of this dissertation

Although there is clear evidence that air pollution has a negative impact on human health;
inadequate exposure metrics led to exposure misclassification and interdependence between
pollutant species which impede the creation of reliable and specific epidemiological evidence.
Recent advancements in portable sensing technologies enable a paradigm shift in air quality
data collection [79, 93, 83], but concerns about the performance and validity of such data
remain [84].

The overall aim of this study is to develop a novel methodological framework that estimates
personal air pollution exposure and dose reliably at high spatial and temporal resolution. The
specific objectives of this study are:

1. To assess the performance of a personal air quality monitor (PAM) across distinct
geographical settings and meteorological conditions, and to deploy it to diverse cohorts;

2. To improve air pollution dose estimations by combining activity information with expo-
sure measurements at the individual level;

3. To compare the novel approach with conventional epidemiological methods;

4. To demonstrate the value of the novel analysis methods to disaggregate personal exposure
by the type of emission source; and

5. To present a number of case studies which provide insight into air pollution risks of
different environments and activities.





Chapter 2

Design, operation and deployment of the
personal air quality monitor (PAM)

The previous chapter emphasised the urgent need to tackle the growing problem of air pollution
in order to protect the global population from non-communicable diseases and premature
death. Current limitations in epidemiology prevent scientists to uncover causal relationships
between individual pollutant species and specific health effects. Novel sensing technologies
allow a paradigm shift from static outdoor to personal exposure monitoring in large-scale
studies, and have the potential to address current epidemiological limitations such as exposure
misclassification and multicollinearity in health models introduced by the correlation between
individual pollutant species.
The following chapter introduces the Personal Air Quality Monitor (PAM), a novel sensing
device which is the central subject of this dissertation. Section 2.1 describes the setup of the
monitor; calibration and data processing protocol of the collected measurements are explained
in Section 2.2. Section 2.3 describes the datasets collected during four main PAM deployments
in the UK, China, Germany and Kenya, which build the backbone of this work.

2.1 The Personal air quality monitor

The PAM 1 (Figure 2.1) is a portable platform to measure several air pollutants and additional
physical parameters including temperature, relative humidity, acceleration, ambient noise levels,
and location (the monitored quantities are presented in Table 2.1). Owing to the compact and

1Atmospheric Sensors Limited, Bedfordshire, UK. Developed at the Centre for Atmospheric Sciences, Univer-
sity of Cambridge.
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lightweight design (13 cm × 9 cm × 10 cm, ca. 500 g), as well as the long battery life2, the
PAM can be used for personal air pollution exposure assessment without interfering into daily
life activities. The PAM can be worn with a shoulder strap or attached to a belt. No other input
is required by the user other than to place it daily in a base station for charging and data upload.
The device works unattended and under almost silent conditions, which makes it suitable for
deployments in home and working environments. The combined cost of the sensors alone is
less than £600 and the total cost of the PAM is less than £2,000 making it a “lower-cost” system
[38]. Combined with the low maintenance costs, this allows deployments in large scales as
well as in areas with little research infrastructure.

Fig. 2.1 Setup of the PAM (left) and PAM in charging station (right).

Table 2.1 Summary of parameters monitored by the PAM and their corresponding sensor types.
A more comprehensive overview of the raw PAM outputs including sampling rates and units is
given in Table 2.2.

Parameter Method

CO, NO, NO2, O3 Electrochemical sensors
PM1, PM2.5, PM10 Optical particle counter (OPC)
Relative Humidity (RH) Electrical resistive sensor
Temperature Thermocouple
Physical activity Tri-axial accelerometer
Background noise Microphone
Spatial coordinates Global Positioning System (GPS)

229 hours between charges, optical particle counter turns off after approximately 15 hours.



2.1 The Personal air quality monitor 19

The sensor types integrated into the PAM were chosen based on sensor sensitivity, selectivity,
environmental interference, size and cost. A brief overview of different miniaturised air pollu-
tion sensors is given in Section A.1.1.2 in the Appendix. The advantages and disadvantages of
the sensors integrated in the PAM are discussed in the following paragraphs.

2.1.1 Electrochemical sensors for gaseous pollutants

For the measurements of CO, NO, NO2 and O3, electrochemical (EC) sensors were selected.
Although metal oxide sensors are less costly and slightly smaller than EC sensors, they have
higher power requirements and are less reliable as they suffer from measurement instability
and drift, poor selectivity, and temperature and RH effects [116]. EC sensors may also be
affected by temperature and RH fluctuations, however, the interference is less severe and can
be corrected with appropriate post-processing [27, 29]. The selectivity of EC sensors can be
improved with appropriate electrode materials and filters, although cross-interference between
some gases (e.g. O3 and NO2) still remains [27, 136]. By selecting both O3 and NO2 sensors
for the PAM, the cross interference between these two pollutants can be adjusted through
post-processing (Section 2.2). Spectroscopic sensors would be more sensitive to the target gas
and less affected by RH or temperature [93]. However, these sensors were not chosen due to
selectivity issues and much higher costs [136].
The PAM integrates Alphasense A4 sensors (CO-A4 [7], NO-A4 [9], NO2-A43F [6], Ox-A431
[8]) of 20 mm diameter that are based on an amperometric principle of operation [150] for the
quantification of carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2) and ozone
(O3). The devices operate on a four electrode system, where the conventional setup of working,
counter and reference electrode is supplemented with an additional auxiliary (or non-sensing)
electrode, to compensate for the temperature dependence of the cell potential [114]. A more
detailed description of the operation principle is given in Section A.2.1.1 in the Appendix.
Earlier variants of these EC sensors have been extensively characterised in laboratory conditions
and in static outdoor sensor networks (for example [94]). Those studies provided evidence that,
after appropriate post-processing, the sensors had a linear response to the targeted pollutants
and achieved excellent performance with limits of detection (LOD) < 4 ppb, demonstrating
their suitability for atmospheric air quality measurements.
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2.1.2 Optical particle counter (PM2.5)

To measure particulate matter, an optical particle counter (OPC) was selected. These type of
devices are able to classify particles into different size ranges which allows a size-specific
correction of RH interference [44]. However, all optical PM sensing devices suffer from the
limitation that they cannot detect particles below a certain diameter (300 - 500 nm, depending
on sensor setup [69]). Acoustic resonators or microbalances present substantially smaller
alternatives to OPCs which do not suffer from a limited detectable size range. However,
temperature interference and signal saturation due to mass loading might impede deployments
over longer time periods or in highly polluted environments [146].
The PAM integrates a commercially available miniaturised particle counter (Alphasense OPC-
N2 [5]) which uses Mie scattering for real-time aerosol characterisation. Particles pass through
a sampling volume illuminated by a light source (in this case a laser) and scatter light into
a photo detector. The amplitudes of the detected scattering pulses are related to the particle
size. The OPC counts these pulses and typically sorts them into different particle size bins
[145]. The OPC-N2 classifies particles in 16 sizes (bins) in the range 0.38 - 17 µm. The
procedure to convert the particle counts into mass concentrations is described in Section 2.2.3.
The laboratory comparison of this OPC model with reference instrumentation showed a high
degree of linearity [127]. Similarly, studies evaluating the OPC performance in outdoor static
deployments [44, 37] showed that, once site- and season-specific calibrations were applied, the
miniaturised sensor could be used to quantify number and mass concentrations of particles with
an accuracy and precision similar to other standard commercial PM instruments. Although
the OPC-N2 is capable of measuring PM1, PM2.5 and PM10, this work will focus on PM2.5

measurements only. This fraction was chosen because the PM1 measurements are regarded as
less reliable since a major part of the fraction (<0.38 µm) cannot be detected by the OPC [127],
and PM10 may be less relevant for health outcomes, as PM2.5 penetrates deeper into the body
[149].

2.2 From the raw measurements to the final exposure data

This section describes the procedure to clean, calibrate and ratify the PAM data to generate
reliable exposure and dose estimations from the raw PAM recordings. Figure 2.2 gives an
overview of the individual steps from the raw outputs of the PAM to a final dataset. User-
friendly, bespoke scripts have been developed to automate the management and post-processing
of the large volume of raw data collected with the PAM networks. All post-processing and
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data analysis was performed in R software [115]. The concentration of each pollutant was
determined from the very raw output of the sensors (given in voltages and counts, see Table
2.2). This way, full control over the data and the physical significance of each processing step
was maintained. After each post-processing step, the data were stored in a separate SQL table3

to allow immediate access at each stage (Level 0 to Level 3).
The following sections describe the data processing steps to generate a fully calibrated and
ratified exposure dataset (Level 2 in Figure 2.2). The estimation of the air pollution dose (Level
3) is described in Chapter 6. The "evolution" of the PAM data through each step is visualised
using measurements of a participant (U123) from the AIRLESS project as illustrative example.
The participant lived in urban Beijing and volunteered to carry the PAM for one week of their
daily life. Further details of the AIRLESS project are given in Section 2.3.2.

Fig. 2.2 Flow chart of the individual processing steps to convert raw PAM data into a final
dataset that can be used for personal exposure and dose assessments. Required input data on
the left (in grey boxes), processing steps in the middle (blue boxes) and function/application of
the output of each data processing step on the right (purple). The estimation of the air pollution
dose (Level 3) is described in Section 6.2.

3The PostgreSQL relational database management system is used because it is open source, has an unlimited
row-storage capacity and allows the querying of large quantities of data in a flexible manner while maintaining
performance as the volume of data grows.
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2.2.1 Level 0: Data download, formatting and quality control

Raw PAM measurements

The measurements were recorded as comma separated values (".csv") which were segmented
into individual 15-minutes files and saved on an SD card inside the monitor. From there they
were uploaded through GPRS to a secure access FTP server using a phone SIM card placed
inside the charging station of the PAM. Alternatively, the data could be manually downloaded
from the SD card inside the PAM (e.g. when no network connection was available).
Table 2.2 gives an overview of the raw output parameters of the PAM. The time resolution of
the collected measurements varied between the sensors (see "Sampling time" column). In this
work, the data were averaged on-board over 1-minute intervals4 before they were written into
the .csv file.
Each measurement was assigned to a time stamp taken from the GPS sensor. When no GPS
was available, the time stamp of the internal PAM clock, which was daily synchronised with
the GPS time, was used.
Due to heat generated by the internal battery, the PAM’s internal temperature was higher than
the ambient temperature. The external temperature outside the PAM case was modelled based
on experimental data and output by the PAM as "adjusted temperature".
The gas measurements (NO2, O3, CO, NO) were collected with electrochemical sensors as
described in Section 2.1.1. Particulate matter was measured via an OPC (Section 2.1.2) with
a sampling time of 20 sec per minute to save battery power. Estimations of the PM1, PM2.5,
PM10 mass concentrations from the bin counts were already provided by the manufacturer.
However, these were discarded as they were not corrected for humidity effects.
The noise and acceleration recordings were intended for relative comparison only (not cali-
brated). Four threshold values for each of the two parameters were experimentally set, and the
PAM recorded how often and for how long these thresholds were crossed each minute (100 Hz
sampling rate).
The quality of the GPS connection was assessed via the number of satellites the PAM was
connected to and the horizontal dilution of precision. The GPS connection can be obstructed
by building walls, therefore these parameters could be used to distinguish between indoor and
outdoor locations.
Besides the raw PAM outputs, external parameters were required for the creation of the final
exposure dataset. These included measurements from reference instruments for the PAM

4The time resolution of the PAM can be customised.
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calibration and a meta table that contained the deployment information of the PAM networks
(deployment times, assigned PAM of each participant, etc).

Table 2.2 Raw output parameters of the PAM as they were uploaded to the server.

Parameter Output unit Sampling time Comments

General
node ID 1 min individual PAM ID number
date, time 1 min from internal PAM clock and GPS
internal and adjusted temp °C 4 sec adjusted = external temperature
internal and adjusted RH % 4 sec adjusted = external RH
remaining voltage in battery V 1 min
input voltage from base station V 1 min charging variable

Air Pollution: Gases
working electrode signal
of each electrochemical sensor

mV 0.01 sec

auxiliary electrode signal
of each electrochemical sensor

mV 0.01 sec

Air Pollution: Particulate Matter
sample flow rate mL/sec 1 min 20 sec sampling, 40 sec off
sampling period s 1 min set to 5 sec
bin counts counts 1 min 16 size bins (OPC model N2)
PM1, PM2.5, PM10 µg m−3 1 min provided by manufacturer

Background noise
microphone RMS level mV 0.01 sec Root mean square level;

1 min cycle = 6000 samples/min;
output parameters below

mean RMS level mV 1 min mean over 1 min cycle
min RMS level mV 1 min minimum over 1 min cycle
max RMS level mV 1 min maximum over 1 min cycle
standard deviation of the RMS mV 1 min SD over 1 min cycle
counts when the RMS value
crosses threshold

counts 1 min thresholds: 5, 10, 20, 40 mV

counts when the RMS value is
greater than or equal to threshold

counts 1 min thresholds: 5, 10, 20, 40 mV

Acceleration
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SVM mg 0.01 sec Signal Vector Magnitude;
average acceleration over x, y
and z axis

mean SVM mg 1 min mean over 1 min cycle
min SVM mg 1 min minimum over 1 min cycle
max SVM mg 1 min maximum over 1 min cycle
SD of the SVM mg 1 min standard deviation over 1 min cycle
counts when the SVM
crosses threshold

counts 1 min thresholds: 0.8, 0.9, 1.2, 1.3g

counts when the SVM is
greater than or equal to threshold

counts 1 min thresholds:0.8, 0.9, 1.2, 1.3g

Location (GPS)
longitude, latitude degrees 1 min
altitude m 1 min
number of satellites counts 1 min Quality of GPS connection
Horizontal dilution of precision m 1 min Quality of GPS connection

The data processing script automatically downloaded all 15-min file segments that were
recorded during a specified period of time (determined via the meta table) from the ftp server
and archived the files in local directories. The raw segments were bound to a time-continuous
data frame. Figure 2.3 shows a time series of the raw output signals from the NO2 sensor and the
OPC. Both graphs are dominated by large outlier values that were caused by corrupt data entries.

Fig. 2.3 Illustrative example of the raw output from the air pollution sensors. Left: Electrode
signals of the NO2 sensor. Right: Particle counts of the 5 smallest size bins of the OPC. Time
in UTC.



2.2 From the raw measurements to the final exposure data 25

Level 0: Basic data quality control

Corruption of data rows when writing onto the SD card might lead to erroneous data entries
in the raw measurements (e.g. large signal spikes as seen in Figure 2.3). Entries that contain
values outside a physically meaningful range (e.g. RH > 100% or Longitude > 180°) were
discarded. An overview of the defined data ranges for each variable is given in Table A.2 in the
Appendix.
The Level 0 data were stored in an SQL data base and could be visualised instantaneously
as a time series or a spatial plot to monitor the deployment progress daily (e.g. to identify
malfunctioning sensors or participants who forgot to charge the PAMs over night). An example
of the resulting Level 0 data is given in Figure 2.4, with the outputs of the NO2 sensor on
the left. The working electrode signal (magenta) represents the sum of the signals caused by
electrochemical reactions with the target gas (NO2) and by environmental interference (e.g.
temperature fluctuations). The auxiliary electrode, which was not exposed to the gas, recorded
only the effect of the environmental changes. More details of the principle of operation are
given in Section A.2.1.1.
The right graph of Figure 2.4 shows a time series of the particle counts in the 5 smallest size bins
of the OPC (0.38-1.59µm). The highest particle counts were observed at diameters between
380 and 540 nm.

Fig. 2.4 Illustrative example of the Level 0 output from the air pollution sensors (raw data
cleaned from corrupt data entries). Left: Electrode signals of the NO2 sensor. Right: Particle
counts of the 5 smallest size bins of the OPC. Time in UTC.

2.2.2 Level 1: Artefacts caused by temperature and humidity

False responses of the EC sensors to rapid temperature changes

Moving rapidly between microenvironments that differ in temperature (e.g. from outdoors to
a warmer indoor environment) causes false peaks in the EC sensor measurements [3]. The



26 Design, operation and deployment of the personal air quality monitor (PAM)

response and recovery time following rapid temperature transitions was experimentally de-
termined by moving the sensors between a heated indoor environment (>20°C) and a cooler
outdoor environment (10-15°C; see Section A.2.1.3 in the Appendix). The recovery times
varied between the different gas sensors, with the CO sensor being affected by the temperature
change for longer (< 15 min) than the NO, NO2 and O3 sensors (< 5 min).
To account for the false sensor responses, the temperature transitions were automatically de-
tected based on the RH changing rate5. A 15-min window for CO and a 5-min window for
NO, NO2 and O3 measurements was removed from the data. Note that in the first cleaning
step (Section 2.2.1), the entire data entry was deleted when a physically unrealistic value was
identified, whereas only the readings of the EC sensors were removed at rapid temperature
transitions. The left of Figure 2.5 compares NO2 measurements before (cyan) and after (black)
the removal of the false temperature transition signals.
Though it potentially excludes peak exposure events, as rapid temperature changes often occur
when people leave heated buildings and enter (colder) traffic environments to commute, this
correction method removes typically less than 0.1% of the exposure data. The PM measure-
ments were not affected by these temperature transitions.

Hygroscopic growth of airborne particles

Due to their hygroscopic features, atmospheric particles grow in diameter when exposed to
ambient humidity. To maintain the comparability of PM levels between environments of
different humidities, the PM mass concentration is defined as the dry particulate mass per
volume of air. Standard PM measurement instruments dry the particles before the PM mass
concentration is measured. This feature was, however, not available for the PM sensor used in
this work. Instead, the hygroscopic growth of the particles was corrected for using the method
of Di Antonio et al. [44].
This method assumes that the particle diameter increases by a specific growth factor g when
exposed to a certain level of humidity. The growth factor g depends on the particle hygroscop-
icity κ (i.e. the ability to uptake water) , as well as on the RH value the particle is exposed to
(Equation 2.1). In this work, the value of κ = 0.61 was adopted from Di Antonio et al. who had
optimised it for urban aerosols in Europe. The growth factor was set to one (i.e. no change
of the particle diameter) at RH values below 35% due to efflorescence effects of the particle
material [44].
The growth factor was used to retrieve the dry diameter of a particle Ddry from the wet particle

5The RH sensor of the PAM reacted quicker to environmental changes than the temperature sensor
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diameter measured by the OPC at a certain RH Dwet(RH). As a result, a new particle number
distribution over the 16 size bins was obtained which was then used to calculate the RH adjusted
PM mass concentrations (see Section 2.2.3).
The right of Figure 2.5 compares the raw PM2.5 measurements (cyan) with the RH corrected
measurements (black). It shows that the RH correction has a particularly significant effect at
RH values above 65%.

Fig. 2.5 Comparison of PAM output before (cyan, Level 0) and after (black, Level 1) temperature
and RH effects were corrected.
Left: Correction of the effect of fast temperature transitions on the NO2 measurements. Right:
Correction of the RH interference with optical PM measurements.
The "saw tooth" patterns in the temperature and RH measurements below the pollutant graphs
were caused by the charging cycle of the PAM battery. Time in UTC.

g(RH) =
Dwet(RH)

Ddry
=

(
1+κ

RH
100−RH

) 1
3

(2.1)

g growth factor
Ddry particle diameter in dry state
Dwet(RH) particle diameter at a given RH
κ degree of hygroscopicity
RH relative humidity

2.2.3 Level 2: Calibration and validation with external reference

Level 0 and Level 1 dealt with data formatting, storage and QA/QC procedures. Level 2 uses
measurements from colocation deployments of the PAMs next to certified reference instruments
to calibrate the monitors, correct for potential sensor-sensor variability, and to validate the
sensor performance.
The colocations were performed under similar environmental conditions and in the same
geographical area in which the monitors had been or were to be deployed. The advantage of this
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approach over laboratory calibration was that the sensors were exposed to the actual air pollution
levels and meteorological conditions under which they were expected to operate. Furthermore,
it provided the opportunity to evaluate any potential site-specific cross-interference. In the
following section, colocations from the AIRLESS winter campaign are presented as illustrative
examples. During the AIRLESS project, 60 PAMs were colocated with reference instruments
on the roof of Peking university in Beijing for each 19 days in winter and in summer. Further
details of the AIRLESS project are given in Section 2.3.2.

Conversion of raw EC sensor signals into gas concentrations

A linear regression model (Equation 2.2) was applied to the colocation data (reference and
PAM data) to determine the calibration parameters a - d needed to convert the raw sensor
signals (mV) into mixing ratios (ppb). The temperature dependence of the working electrode
can be corrected through the auxiliary electrode AE which may, however, have a different
sensitivity than the working electrode WE (a ̸= b). The cross-sensitivities between the NO2

and O3 measurements were corrected via parameter c (the cross sensitive gas Y is NO2 for
O3 measurements and vice versa). As the CO and NO sensors were found to be sufficiently
selective, c was set to zero for the calibration of those sensors.

[X ]re f = aWEX +bAEX + cWEY +d (2.2)

[X ]re f Reference measurement of pollutant X [ppb]
a sensitivity of the working electrode [ppb / mV]
WEX ,AEX raw signal of the working and auxiliary electrode [mV]
b sensitivity of the auxiliary electrode [ppb / mV] (accounts for temperature)
c cross sensitivity with gas Y [ppb / mV], c = 0 for CO and NO
WEY raw signal of the working electrode of the cross sensitive gas Y [mV]
d intercept [ppb]

The calibration model was evaluated by splitting a colocation dataset into two parts: a training
period to determine the model parameters, and a testing period to subsequently validate these.
The performance test found an excellent performance of the calibration model (see Section 3.1).
It should be noted, however, that relationships in regression models should not be extrapolated
beyond the range of observations (including meteorological conditions). The calibration periods
should therefore be made sufficiently long to cover the temperature and concentration ranges in
which the sensors are deployed [38].
As a last data cleaning step, any negative gas measurements that might be caused by sensor
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noise at low pollutant concentrations or incomplete removal of the temperature transitions were
discarded.

From particle counts to PM mass concentrations

The PM2.5 mass concentrations were generated from the particle counts of the RH-corrected
size bins of the OPC. The mass of the particles in each size bin was estimated via Equations 2.3
and 2.4 (inserting the dry particle diameter Ddry for Di), assuming a spherical particle shape and
a fixed particle density of ρ = 1.65 g cm−3 [111]. The particle number concentration n_conci

was calculated by dividing the particle counts of each bin i by the sampling volume (Equation
2.5). The particulate mass concentration was then calculated as the product of particle mass
and number concentration (Equation 2.6 [44]), summed over all size bins.
PM2.5 is defined as the mass of dry particles that pass through a size selective inlet with a
50% cut-off efficiency at 2.5 µm aerodynamic diameter6 [133, 50]. This means that 50% of the
2.5 µm particles contribute to the PM2.5 mass, while a larger proportion of the smaller particles
and a smaller amount of bigger particles also contribute to the PM2.5 fraction. Hence, the
different size bins do not equally contribute to the PM2.5 mass. A size-specific penetration
factor pi was applied to the mass concentration of each size bin to account for the penetration
efficiency [50] (Equation 2.6).

Vi =
π

6
(Di)

3 (2.3)

Mi = ρVi (2.4)

n_conci =
Ni

Vsample
(2.5)

PM = ∑
i

pi Mi n_conci =
∑i pi Mi Ni

Vsample
(2.6)

6The aerodynamic diameter of an irregular particle is defined as the "diameter of the spherical particle with a
density of 1000 kg/m3 and the same settling velocity as the irregular particle." [60]
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Vi volume of a particle in size bin i
Di diameter of particles in bin i
Mi mass of a particle in bin i
ρ density of particle material
n_conci number concentration of particles in bin i
Ni particle counts in bin i
Vsample sampling volume
PM particle mass concentration
pi penetration factor

In the final step, a linear fit between the RH-corrected PM measurements and the reference
measurements was performed. A scaling factor for each OPC was extracted to account for
particle densities differing from the one initially assumed, and for the under-prediction of
mass due to undetected smaller particles and sensor-sensor variability (e.g. caused by different
reflectivities of the optical sensor components).

Validation of the concentration measurements

The comparison between PAM and reference was used to ratify the pollutant measurements
and identify malfunctioning sensors or potential errors in the calibration process. Figure 2.6
compares the calibrated Level 2 data (PAM 165) with reference measurements of NO2 and
PM2.5 during the colocation deployment of the AIRLESS campaign. The PAM measurements
closely followed the concentrations measured by the reference instrument, as shown in the
time series (top). The high agreement between the PAM sensors and reference instruments can
also be found in the scatter plots (bottom, coefficient of determination R2 ≥ 0.90), suggest-
ing that any interference with other pollutants or meteorological factors has been sufficiently
corrected for. A more comprehensive validation of the sensor performance is given in Chapter 3.



2.3 Deployment of the PAM: Measurement campaigns 31

Fig. 2.6 Comparison of the final NO2 and PM2.5 concentrations (Level 2) with colocated
reference measurements in form of a time series (top) and scatter plots (bottom). Time in UTC.

The pollutant concentrations resulting from Level 2 were fully calibrated and ratified. They
served as personal exposure (i.e. the concentration in the direct environment of a person)
measurements of participants and may be used, among others, for the evaluation of exposure
risks (Chapter 4) or source attribution analyses (Chapter 5). The measurements may be further
refined by estimating the air pollution dose, i.e. the amount of air pollution that is inhaled by
the body, which is described in Chapter 6.

2.3 Deployment of the PAM: Measurement campaigns

The previous section introduced the PAM as alternative to conventional exposure measurement
methods. In this work, a total of 85 PAMs were deployed in four different countries as indicated
in Figure 2.7. The measurement data collected in these settings form the backbone of this
dissertation. Table 2.3 gives an overview of the gathered personal exposure data including
deployment dates, duration and location; numbers of deployed PAMs and study volunteers;
a brief description of the type of experiment; and the percentage of captured observations7.
In total, 3,771 measurement days were collected from over 300 volunteers. The data capture
during the field deployments was generally high with 77-93% of the theoretically possible
number of records being obtained (see Equation 2.7).

7Data loss can be due to missed charging of the PAM, failed data transmission or data removal in the basic
cleaning step, see Section 2.2.
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Fig. 2.7 World map with countries in which PAM deployments for this work were conducted
marked in black.

For calibration and validation purposes (see Section 2.2.3), the PAMs were colocated with
reference instruments in each project. A summary of the colocation datasets is given in Table
2.4. More information about the reference instruments used for each colocation are given in
Table 3.1 in Chapter 3.
The following sections will describe the data collection procedure for each of the four field
campaigns this work is based on.

Table 2.3 Overview of the collected personal exposure datasets.
Ambient air quality data and baseline participant questionnaire data (not applicable for metro
project) are available to complement all datasets.

Project Collection pe-
riod

Location PAMs N Deployment type t (d) c Additional data

Pilot July-Dec 2015 Cambridge,
London (UK)

18 38 personal exposure in
daily life

388 81% activity diaries

AIRLESS Nov 2016-
July 2017

Beijing,
Pinggu
(China)

60 251 personal exposure in
daily life

3288 79% medical data

Metro Sep 2018 Berlin
(Germany)

1 NA exposure in metro
systems

1 93% manual location track-
ing

Cooking
fuels

May 2019 Dunga Beach
(Kenya)

6 12 cooking exposure in
households

94 77% Cooking fuel use

PAMs - Number of deployed PAMs; N - number of participants; t (d) - total recorded time in days; c - percentage of captured observations
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Table 2.4 Static colocations of PAMs with reference instruments during the four main field
deployments for calibration and validation purposes.

Project Collection
period

Location PAMs t(d) c Reference data

AIRLESS Nov 2016-
July 2017

regional background, Beijing 60 2x19 winter: 85%
summer: 54%

Peking University

AIRLESS May 2017 indoor (residence), Beijing 2 12 86% York University
Pilot Nov 2015 regional background, Cambridge 3 10 99% Cambridge University
Metro Sep 2018 highly frequented road, Berlin 1 7 94% Berlin air quality network

(BLUME)
Cooking
exposure

July 2019 main square of Dunga village 6 24 63% AQMesh (Cambridge)

t(d) - colocation time in days; c - data capture (number of recorded observations/theoretical number of observations
between deployment start and end)

c =
Nrecorded

Ntheoretical
(2.7)

Nrecorded number of recorded observations
Ntheoretical theoretical number of observations between deployment start and end

2.3.1 Pilot project in Cambridge and London, UK

The pilot deployment of the PAM aimed to test the acceptability of the PAM as novel sens-
ing technology and the feasibility of collecting data with it during daily life activities. The
dataset was also used to develop the time-location-activity classification described in Chap-
ter 6. The deployment used a small sample of 38 participants in London and Cambridge in 2015.

Data Collection

Healthy participants from London and Cambridge were recruited via the exhibition of flyers
and email distribution lists at the Department of Chemistry (University of Cambridge) and the
Department of Analytical Environmental Sciences (King’s College London). Participants who
were willing to participate in the study were asked to carry the PAM close to their body for one
week of their daily lives while keeping an activity diary via a smart phone app (smart phones
were supplied by the university on request). The reported activities were defined by the volun-
teers and later sorted into activity categories with assigned inhalation rates8 following Table 2.5.
Additional information such as age group, sex and socio-economic status were acquired via a
questionnaire. The participants did not receive compensation for their contribution; however a

8The inhalation rates were used to calculate the air pollution dose, see Chapter 6.
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brief evaluation of the activity and location dependent exposure data was created and send to
them as feedback.

Table 2.5 Categorisation of reported activities in participants’ diary logs during the Pilot project.
Assigned inhalation rates were also used for the dose estimations in the AIRLESS project (see
Chapter 6).

Category Reported Activities Inhalation rate (L/min) Reference [141]

home home (excluding sleep), resting, eat-
ing, cooking, shower, computer, TV,
reading/studying, housework

general: 8.94 Table 6-5

sleep sleeping 5.50 Table 6-48

other static work, lab, meeting, lecture, cinema,
cafe, pub, restaurant, church, library,
hospital, dentist, shopping

predominantly
sedentary: 8.51

Table 6-40

transit walking 22.2 Table 6-40
cycling moderate activity:

39.2
Table 6-42

car, taxi, bus, bus stop 9.87 Table 6-40
motorcycle as car: 9.87 Table 6-40
tube, train, overground, incl stations mean (car - sitting):

9.19
Table 6-40

NA,
no label

left monitor home, monitor covered,
no diary entries

general: 8.94 Table 6-5

Outdoor air pollution levels were available from a monitoring station on the roof of the
Chemistry Department in Cambridge and from North Kensington station9 of the London
Air Quality Network (LAQN [King’s College London]). All 24 sensors were deployed in a
controlled indoor environment over a period of 25 days (Aug 1st - Aug 26th 2015) to assess
their reliability and reproducibility before the field deployment. Due to space restrictions only
3 sensors were colocated with reference instruments on the roof of Cambridge University (Nov
6th - Nov 16th 2015). The calibration parameters from this colocation (extracted as described in
Section 2.2.3) were extrapolated to the entire sensor network using the indoor colocation data.

9A part of the ambient measurements in London was considered unreliable and discarded as described in
Section A.2.2.1 in the Appendix.
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Description of the cohort

In total, 38 volunteers agreed to participate in this study of which 85% carried the PAM for the
7 suggested study days or longer. Figure 2.8 gives an overview over the length of the individual
participation times.
The characteristics of the cohort retrieved from the questionnaire are shown in Figure 2.9. Most
participants were aged between 20 and 50 years. The majority of the cohort performed office
based occupations which are mainly associated with sedentary activities. All 38 participants
used central or electric heating; 7 participants used a gas stove, 19 an electric stove and one
participant used both cooking methods. The heating and cooking type might be relevant for
personal exposures as they might generate indoor pollutant emissions.
Figure 2.10 shows the visited locations of all participants in London and Cambridge coloured
by different modes of transport (as reported in activity diary). Commuting in Cambridge
was mainly dominated by cycling and walking whereas participants in London used a mix of
transport modes including tube, train, buses, walking and cycling.
The tracked movements on the maps, as well as the willingness of many volunteers to extend
the participation time, indicate that the participants did not feel restricted by the PAM when
pursuing their daily activities.

Environmental conditions

During the main data collection period (20th Oct - 15th Dec 2015), the temperature ranged from
-2◦C to 19◦C (mean: 11◦C) and the RH from 48% to 98% (mean: 82%). The ambient pollutant
concentrations differed little between London and Cambridge. Mean ambient concentrations
during the main deployment period were 8 ppb for NO, 14 ppb for NO2, 282 ppb for CO, 19 ppb
for O3 and 10 µg m−3 for PM2.5 (for more details see Table A.3 in the Appendix).
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Fig. 2.8 Participation times of individuals in the pilot project cohort. Each bar represents one
participant (grouped by PAM number at the y-axis), the number inside the bar gives the days of
participation. 15 subjects carried the PAM for 7 days, 6 participants cancelled the deployment
earlier (after 2-6 days) and 17 participants offered to keep the PAM for longer (up to 24 days).
The average participation time was 8.9 days.

Fig. 2.9 Descriptive statistics of the pilot cohort (London and Cambridge combined). Left: his-
togram of age distribution; middle: gender ratio; right: occupations of participants - occupations
associated with low physical activity in blue shades.
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Fig. 2.10 Visited locations of all participants during the pilot project split by different modes of
transport (as reported in activity diary). Left: Cambridge, right: London.
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2.3.2 AIRLESS project in Beijing, China

A major part of this dissertation is based on data from the AIRLESS10 study which aimed to
find more reliable links between air pollution exposure and acute health effects by introducing
novel methods of exposure and health assessment. AIRLESS was part of the cross-disciplinary,
international research programme "Air Pollution and Human Health in a Chinese Megacity"
(APHH) which was joint-funded by the UK Natural Environment Research Council (NERC),
the Medical Research Council (MRC) and the National Natural Science Foundation of China
(NSFC). The AIRLESS project was the first epidemiological study that linked personal exposure
data with biological markers on an individual level. The study protocol of the AIRLESS project
was comprehensively described by Han et al. [57]. A brief summary of the project, with focus
on the collection of personal exposure data, is given in the following section.

Data collection

The project was based on two comprehensive field working campaigns: one in winter and one
in summer. The data were collected at two monitoring sites: Peking University (PKU) campus
and its surroundings in the city of Beijing as urban site; and Pinggu, a village which is about
70 km outside of Beijing, as a rural site (see Figure 2.11). Air quality monitoring stations were
recording meteorological data and air pollution levels away from direct emission sources in
both sites (details of the available reference instruments are given in Table 3.1 in Chapter 3).
Medical data and questionnaires were collected in clinics which were located close to the air
quality monitoring stations. Both clinics were equipped with 30 monitors each which were
distributed to the study participants by trained nurses. The volunteers were recruited from
previous established cohorts; in the urban site from the Chinese Multi-Provincial Cohort Study
(CMCS [87]), in the rural site from the International Study of Macro/Micro-nutrients and
Blood Pressure (INTERMAP [129]). The subjects were asked to carry the PAM for seven
days while continuing to engage in their daily activities. The medical state of the individuals
was assessed by members of the AIRLESS team from PKU and King’s College London who
collected different biomarkers to measure changes in cardiopulmonary functions at Day 0, Day
3 and Day 7. Table A.4 (Appendix) lists all collected biomarkers. The PAM was handed out
on Day 0 and collected at Day 7. The data quality of all deployed PAMs was monitored daily
and participants were contacted when problems (e.g. with charging) occurred. The participants
received compensation for their contribution in form of food and household products, and a
brief summary of their exposure and health measurements was sent to them as feedback.

10“Effects of AIR pollution on cardiopuLmonary disEaSe in urban and peri-urban reSidents in Beijing”
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After the field deployment, all PAMs were located for 18 days next to the reference instruments
of PKU (urban site). They were put into air-permeable shelter boxes to protect them from rain
and direct solar radiation. The data gained during this colocation were used to calibrate the
monitors and evaluate their performance. An overview of the deployment dates is given in
Figure 2.12.

Fig. 2.11 Deployment sites of the AIRLESS project.

Fig. 2.12 Deployment periods of AIRLESS project in 2016 and 2017. Detailed dates are
summarised in Table 2.6.
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Table 2.6 Deployment dates of the AIRLESS project

Winter campaign Summer campaign

Sensor checks and repairs, transport
to clinics

03/11/2016 - 12/11/2019 10/05/2017 - 21/05/2017

Indoor validation experiments 11/05/2017 - 22/05/2017
Field deployment 14/11/2016 - 21/12/2016 22/05/2017-26/06/2017
Colocation with reference instru-
ments

28/12/2016 - 15/01/2017 28/06/2017-16/07/2017

Description of the cohort

In total 251 individuals participated in this study. Figure 2.13 shows the visited locations of
both cohorts over the winter field campaign (corresponding maps of the summer campaign are
shown in Figure A.6 in the Appendix). The large spatial area that the measurements covered
indicates that the PAM did not restrict the mobility of the participants and that they readily
carried the monitor with them. Figure 2.14 summarises socio-economic and exposure-relevant
information of the cohorts. The rural cohort (age range: 45-70 years) was mainly engaged
in agricultural activities and housekeeping, whereas the major part of the urban cohort (age
range: 55-75 years) was already retired and only a fraction was pursuing a profession (mainly
employees of Peking University).
The rural and urban cohort differed distinctively in their heating methods. According to the
baseline questionnaires, 86% of the urban cohort depended on central heating (remaining 14%
unspecified), whereas peri-urban households used a combination of charcoal- or firewood-
fueled stoves with chimney ventilation (91%), charcoal- or firewood-fueled braziers (100%) and
electric heaters (83%) to heat their homes in winter. Figure 2.14 shows the different cooking
fuels used in the rural and urban cohorts, revealing that the majority of both cohorts used gas
stoves. However, a small fraction (10%) of the rural cohort relied on coal or biomass burning
as primary cooking stove.

Environmental conditions

During the winter campaign, outdoor temperatures ranged from -9◦C to 16◦C (mean: 1◦C) and
the relative humidity (RH) from 7 to 91% (mean: 46%). In contrast, the participants (PAM
measurements) were exposed to average temperatures of 20◦C in the urban site and 11◦C in the
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Fig. 2.13 Maps indicating the participant movement (blue) and home locations (red) of the
urban (left) and rural (right) cohort during the winter campaign. Corresponding maps for the
summer campaign can be found in the Appendix (Figure A.6)

rural site11 during the winter campaign because they spent a major part of their time in heated
buildings. In the summer campaign, outdoor temperatures and RH ranged between 15-41◦C
(mean: 27◦C) and 11-100% (mean: 55%), respectively. Participants were exposed to similar
temperatures (mean: 25◦C in both cohorts).

11Rural cohort was engaged in more outdoor activities and their building insulation might be less efficient than
in Beijing city.
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Fig. 2.14 Participant statistics of the AIRLESS cohorts (based on questionnaire answers). Top
row: Age distribution and gender ratio (rural and urban combined). Middle row: reported
occupations of the rural (left, N = 128) and the urban cohort (right, N = 123). Bottom row:
Cooking fuels used in the rural and urban cohort.

2.3.3 Case studies in highly polluted microenvironments

2.3.3.1 Air pollution in metro systems in Berlin, Germany

During a research exchange with the German Environment Agency and the Leibniz Institute
for Tropospheric Research, an experiment aiming to characterise air pollution exposures in the
Berlin metro system was conducted. Short air pollution exposure snapshots were taken in three
metro lines and three metro stations (Figure 2.15) which were selected to ensure maximum
variability.
Metro lines: The U1 and U2 pass through the city centre, whereas the U5 moves through
suburban regions in the outskirts of Berlin. The U2 line is mainly subterranean, while the major
part of the U1 line is overground. U5 contains both, underground and overground passages. For
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the air quality assessment inside the metro trains, a PAM was placed in the passengers’ seating
area. Due to a poor GPS connection in the underground system, a time sheet of the visited
metro stations was kept and GPS data manually added to the dataset afterwards.
Metro stations: Alexanderplatz was selected because it is the most frequented metro station
in Berlin, the second (Gesundbrunnen) is the deepest metro station, while the third (Tierpark)
is located in a suburban area of Berlin. Static deployments of one PAM (20-30 min) were
performed in the selected metro stations.
Measurements have been collected in the metro stations and lines described above on Sept
10th 2018, after the monitors had been calibrated with reference instruments from a kerbside
monitoring station (Frankfurter Allee) of the Berlin air quality network (BLUME; Sept 4th -
Sept 10th morning, see [76]). The average outdoor temperature was 15◦C (average RH 52%).

Fig. 2.15 Selected metro stations and metro lines for air quality measurements in Berlin.
Frankfurter Allee: static kerbside measurements for calibration.
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2.3.3.2 Domestic exposure using different cooking fuels in rural Kenya

This feasibility study was performed in Dunga Beach, a fishing village located on the shores
of Lake Victoria, near Kisumu, the third largest city in Kenya (Figure 2.16). The area is
characterised by a tropical climate with heavy year-round rainfalls. The data were collected
between May 27th and June 13th 2019.
The study was conducted collaboratively by the Cambridge Institute for Sustainability Leader-
ship (CISL), the Cambridge Department of Chemistry, Biogas International Limited (BIL) and
AstraZeneca. The overarching aim of this project was to evaluate the impact of introducing
innovative energy sources into rural communities in Kenya. The role of the Department of
Chemistry in this project was to quantify the changes in household air pollution when switching
from traditional indoor biomass burning to domestically generated biogas as household energy
source (primarily for cooking).
Before the start of the air quality project, 50 households in Dunga had already been equipped
with the new biogas technology. It consisted of a digester unit located outside the house which
used microorganisms to convert organic waste such as cow-dung, household food waste and
shredded water hyacinth12 into biogas which was then simply piped into the household where
it was connected to a double-ring stove and ready to burn.
Of the 50 biogas households, 8 were randomly selected for the experiment. A control group
of 4 additional households using traditional cooking methods was simultaneously monitored.
As outdoor air quality monitoring stations were not available, the ambient air quality was
monitored by three AQMesh13 units distributed over the study area. The locations of the
selected households and outdoor monitors are shown in Figure 2.17.
A PAM was placed into the kitchen of each selected household. Each deployment lasted for
7-8 days in which the participants were asked to keep a diary of the cooking methods used for
each meal. The exact cooking times were determined using the indoor CO concentrations as
proxy for cooking activity (further described in Section A.2.2.4 in the Appendix). The costs of
the used electricity (for charging the PAMs) and participants’ time investment were financially
compensated. Only two of the 8 biogas households used solely biogas. The other households
continued to use traditional fuels parallel to biogas. The most common traditional cooking fuel
was charcoal. Occasionally, the use of wood, papyrus and liquefied petroleum gas (LPG) was
reported.

12Water hyacinth is an invasive weed having a disastrous ecologic and economic effect on lakes and waterways
across Africa.

13Environmental Instruments Ltd, UK
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For calibration, the PAMs were colocated with the AQMesh instruments as reference after
the deployment (13/06/2019 - 05/08/2019). However, the NO2 and O3 measurements of the
AQMesh instruments were not reliable enough (temperature interference) to serve as reference.
Hence, the NO2 and O3 measurements of the PAM had to be excluded from this study.

Fig. 2.16 Location of Dunga Beach (deployment area). Image: Googlemaps

Fig. 2.17 Locations of selected households using biogas (blue) and traditional cooking methods
(red), and locations of ambient measurements (black) in Dunga Beach. Map: Googlemaps
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2.4 Chapter summary

This chapter described the methodological framework applied to generate the data this work
builds upon. The main focus of this dissertation lies on the Personal Air Quality Monitor (PAM),
a portable measurement platform which, thanks to its wearability and high spatio-temporal
resolution, promises to address current limitations in exposure epidemiology.
The PAM integrates five miniaturised pollutant sensors measuring the concentrations of NO,
CO, NO2, O3 and particulate matter, as well as additional sensors to measure auxiliary param-
eters such as temperature and location. A complex data processing scheme was applied to
ensure high data quality and convert the raw PAM data into ratified pollutant concentrations.
Overall, 85 PAMs were deployed in four different countries to gather a total of 3771 measure-
ment days. The largest dataset of this work was collected during the AIRLESS project in which
60 PAMs were deployed to a total of 251 volunteers residing in urban and peri-urban Beijing
during winter and summer seasons. Previous to the AIRLESS project, a pilot project was
conducted to assess the deployment feasibility of the PAM in daily life. Furthermore, this work
evaluates two case studies in highly polluted microenvironments: underground train systems
and domestic environments that operate biomass burning as energy source for cooking.
The following chapters will draw on these datasets to assess the performance of the PAM,
demonstrate its potential to improve personal exposure and dose estimations, and provide
insights into air pollution risks of different environments and activities.



Chapter 3

Characterisation of the PAM performance

The previous chapter introduced the PAM as a wearable multi-pollutant sensor with the potential
to improve personal exposure and dose estimations, and thus, advance our understanding of the
detrimental health effects of air pollution. As described in Section 1.3, a wide range of portable
air pollution monitors has already been developed for personal exposure measurements but
only few had their performance and reliability thoroughly evaluated. Negligent or incomplete
sensor testing remains one of the biggest concerns among exposure scientists. To address
these concerns and to advance the application of novel sensor technologies in exposure science,
this chapter aims to comprehensively evaluate the performance of the PAM when deployed
outdoors, indoors and in motion. To account for environmental variability, the performance
was evaluated across seasons, in different geographical areas with distinct air pollution levels
(UK and China), and in urban and rural locations.

The sensor performance was generally assessed by evaluating the level of agreement between
the measurements of one or multiple PAMs and certified reference instruments that were
placed in vicinity to them in the local environment where the PAMs were deployed. Sensor
performance may vary significantly with season (e.g. temperature and RH artefacts) while
meteorological conditions may affect the variation in outdoor air pollution levels directly (e.g.
stability of the atmosphere) and indirectly by socioeconomic patterns (e.g. increased energy
demand for heating). Similarly, indoor air may be directly affected by the seasonal variation
of outdoor air pollution, and indirectly through the change of the behavioural patterns of
occupants between seasons (e.g. window adjustment to achieve thermal comfort). To account
for variations in environmental and air pollution levels that might affect sensor performance,
five static colocation experiments were conducted in China and the UK: four experiments
in different outdoor environments across varying seasons, (Sections 3.1 and 3.2), and one
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experiment in an indoor environment (Section 3.3). The performance of the PAM in movement
was assessed with two short-term experiments (pedestrian and vehicle) in Section 3.4. Details
of the reference instrumentation, including the description of the colocation sites, principle of
operation and instrument models, are summarised in Table 3.1.

Table 3.1 Details of the reference instruments used for the performance evaluation of the PAM.
Time resolution of all measurements was 1 min.

Deployment Site description NO, NO2 CO PM O3

Outdoor
China

Urban background
in Peking University
(PKU) campus,
Beijing

Chemiluminesence,
Thermo Fisher
Scientific model 42i

Nondispersive
Infrared,
Thermo Fisher
Scientific model
48i

PM2.5*: TEOM
(Tapered Ele-
ment Oscillating
Microbalance)

UV absorption,
Thermo Fisher
Scientific model
49i

Outdoor UK Urban background
at the Department
of Chemistry,
Cambridge

Chemiluminesence,
Thermo Fisher
Scientific model 42i

Nondispersive
Infrared,
Thermo Fisher
Scientific model
48i

Aerosol spec-
trometer, FIDAS
PALAS 200S

UV absorption,
Thermo Fisher
Scientific model
49i

Indoor resi-
dential China

Indoor deployment
in an urban high-rise
Beijing flat

NO2 cavity at-
tenuated, phase
shift spectroscopy
(CAPS), Teledyne
API T500U

NA aerosol spec-
trometer,
GRIMM 1.108

NA

Commuting
environment
UK

Monitoring vehicle
equipped with com-
mercial instruments
driving in central
London

NO2 CAPS, Tele-
dyne API T500U

NA Nephelometer
(scattering), Met
One ES642

UV absorption,
Teledyne API
T400

*Due to malfunctioning of the TEOM in PKU during the non-heating season, measurements from a TEOM at a
nearby governmental site (Haidianwanliu ∼ 3 km, time resolution 1 h) were used. NA: not available.

The deployments in China were part of the AIRLESS project (Section 2.3.2) whereby the
outdoor colocation was performed for 1 month each during winter and summer after they
had been deployed to the AIRLESS cohorts (see Figure 2.12 and Table 2.4 for deployment
dates). The colocation in the UK involved PAMs that had been previously deployed to 150
participants of a COPD cohort for 2 years continuously [97]. Taking into account the strong
seasonal variation in air pollution levels, the performance of the PAM was evaluated during both
the “heating” (when the majority of householders heat their home on a regular basis) and the
“non-heating” season (see Section 3.2). The residential central heating season in Beijing is from
15 November to 15 March (Beijing municipal government), while in the UK the equivalent
heating season is 5.6 months (October-March/April) [19].
To evaluate the agreement between two concentration measurements the coefficient of determi-
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nation R2 as well as the gradient of the linear fit between two sensors were assessed. Figure
3.1 compares the concentration measurements within a network of PAMs that were colocated
during the AIRLESS winter campaign, indicating a high reproducibility (i.e. agreement be-
tween different sensors measuring the same quantity) of the sensors. This level of agreement
between individual sensors was found across all colocation experiments (UK and China) and
seasons, even when the ambient concentrations were close to the LOD (mean R2 ≥ 0.80 for
EC sensors and R2 ≥ 0.91 for the OPC; see Table A.5 in the Appendix). Hence, the results
of the performance evaluation of one selected PAM appear representative of the entire sensor
network.

Fig. 3.1 Reproducibility of a PAM network (in that case 59 PAMs) that was colocated outdoors
in Beijing during the heating season after one 1 month of field deployment to participants. (a):
Scatterplot of the PM2.5 measurements between 10 sensor pairs. The 1:1 line in black; and
linear fit line in red. (b): “Close-up” of a scatterplot from (a) of one representative sensor pair.
(c): Histograms of the coefficient of determination (R2) between all sensor pairs with median
values R̃2 given for each species. R2 values during this deployment were higher than 0.90 for
all pollutants indicating the high reproducibility of the sensors’ readings (see Table A.5 for
all colocations). O3 sensors R2 > 0.80 due to very low ambient levels close to the LOD of the
sensors.
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3.1 Performance of the calibration model and limit of detec-
tion

Fig. 3.2 Outdoor colocation of one representative PAM with certified reference instruments in
China (winter 2016/17) split into a training and a validation set to evaluate the performance
of the PAM calibration method. The first five days were used to calibrate the monitor, the
remaining colocation data (14 days) were used to validate the extracted calibration parameters.
The scatterplots on each side show the correlations between reference and PAM measurements
with the 1:1 line in black. The scale of the X- and Y-axis of the scatterplots is identical to the
concentration scale given in the time series of the corresponding pollutant (e.g. 0-12 ppm for
CO).

The performance of air quality monitors does not solely depend on the physical functionality of
their components but also on the data correction and calibration approaches applied to process
the raw measurement data [86]. This section uses the dataset of the AIRLESS winter campaign
to evaluate the performance and reliability of the PAM calibration procedure described in
Section 2.2.3.
The AIRLESS sensor network (N=59) was colocated with static reference instruments from
Peking University (more deployment details in Section 2.3.2). The collected dataset was split
into a training (i.e. calibration) and a validation period. The calibration coefficients (e.g.
electrode sensitivity) were extracted from the training period as described in Section 2.2.3, and
then applied to the raw PAM data of the validation set. The resulting PAM measurements were
then compared to those from the reference instruments.
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Figure 3.2 demonstrates the procedure at the example of one representative PAM from the
sensor network. A time series of the PAM measurements (blue) compared with the reference
measurements (red) during both, the calibration period (training set, left) and the validation pe-
riod (right) is shown in the centre. Scatter plots between the PAM and reference measurements
are shown on each side of the split datasets, with the adjusted coefficient of determination R2

and intercept n of the linear fits given in the corresponding colour.
The PAM measurements were highly correlated with the reference instruments during the
calibration period (R2 ≥ 0.94, for O3 R2 = 0.65). This agreement remained high during the
validation period (R2 ≥ 0.92, for O3 R2 = 0.71), suggesting that the calibration parameters
generated from the training set may be applied to measurements beyond the calibration periods.
Table 3.2 presents the mean coefficients of determination R̄2 averaged across the entire sensor
network (N=59) during the calibration and the validation period. The agreement between
PAM and reference does not significantly differ between the training and the validation period
(difference of R̄2 within one SD) which indicates an overall reliable calibration process across
the entire PAM network.
Approximately a quarter of the dataset (5 days) was selected as a training set in Figure 3.2.
The test was repeated for different training periods between 1 and 16 days, finding that the
agreement between PAM and reference (R2) in the validation period remained stable for train-
ing periods longer than 3 days. The training period must be of sufficient length to cover the
environmental conditions under which the sensors will be deployed (here in the validation
period) [38], which was achieved after 3 days. Due to the small difference observed in sensor
performance between the training and the validation period, the following section will use the
entire colocation periods for the calibration and the evaluation of the sensor performance.
The calibration parameters obtained from the training period did not vary significantly between
the two AIRLESS deployments in winter and in summer which were 6 months apart, indicating
that the sensors exhibited stability over these timescales. Calibration parameters were also very
similar across the sensor network. Although sensors produced under the same specifications
tend to have similar parameters, it is still important that a local calibration of the sensors is
performed under similar environmental conditions as those found during the deployment.
Greater variability of the calibration parameters was observed between different geographical
locations (e.g. UK and China). However, as novel sensor technologies advance rapidly, different
sensor variants were used in the different projects that were performed years apart. Therefore,
the variability of the calibration parameters between different locations can be most likely
attributed to sensor variation rather than potential effects of the local environment.
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Table 3.2 Mean coefficients of determination (R2) between PAM and the reference instruments,
averaged over the entire PAM network (N=59, AIRLESS winter colocation), for the training
and the validation period.

CALIBRATION SET VALIDATION SET
R̄2 ± SD R̄2 ± SD

CO 0.98 ± 0.01 0.99 ± 0.01
NO 0.98 ± 0.03 0.97 ± 0.06
NO2 0.99 ± 0.00 0.97 ± 0.02
O3 0.81 ± 0.09 0.83 ± 0.15
PM2.5 0.97 ± 0.01 0.92 ± 0.03

The calibration-validation approach described above may also be used to estimate the limit of
detection (LOD) of the sensors. Conventionally, the LOD of air pollution sensors is determined
in the laboratory, by placing them into a test chamber filled with zero air (i.e. air that does not
contain the target pollutant), and determining the sensor noise under these conditions [128].
However, this approach is time- and labour-intense, especially for large numbers of sensors.
More importantly, the sensor performance under controlled laboratory conditions might differ
significantly from the sensor performance in the field [116]. Therefore, in this work the LOD
was established from field calibration data.
The intercept of the linear fit between PAM and reference data was set to zero by default in
the training period through the calibration process. Ideally, this intercept would remain zero in
the validation period. However, small intercepts were found in the linear fit between PAM and
reference during the validation period. This is illustrated in Figure 3.2 where the intercept of n
= 0 during the training period diverged, for instance, to n = 0.01 ppm for CO or n = -3.9 ppb for
NO. In this work, these deviations were established as the LOD.
The mean LOD for each pollutant was determined by averaging the intercepts across the whole
PAM network. The mean intercepts n̄ and their standard deviation are given in Table 3.3. The
LOD values determined from the field calibration agree with the results from laboratory cali-
brations in previous publications (e.g. Mead et al. [94] found the LODs of the electrochemical
sensors below 4 ppb). The LOD of the CO sensor was found to be higher (13 ppb) which is,
however, due to the known high intrinsic noise and LOD of the reference instrumentation [134].



3.2 Outdoor performance of the PAM 53

Table 3.3 Limits of detection of the PAM determined from field calibration. n̄ - mean intercepts
(validation period); SD - standard deviation of n (validation period). All data from colocation
of 59 PAMs (AIRLESS winter).

n̄ SD (n)

CO / ppm 0.013 0.008
NO / ppb -3.0 4.3
NO2 / ppb 1.7 2.1
O3 / ppb 1.8 2.3
PM2.5 / µg m−3 8.8 4.1

3.2 Outdoor performance of the PAM

In the following section, the sensing performance of multiple PAMs was tested against static
outdoor reference instruments under varying meteorological conditions (ambient temperature
range: -3.6°C to 36.3°C, RH range: 15% to 96%) and levels of air pollution (e.g. range of
mean CO concentrations: 192 ppb to 2561 ppb).
In total, four outdoor colocation deployments have been performed: each one in the UK and
China, during the heating and non-heating season. In each experiment, PAMs were placed in
protective shelters close to the inlets of the certified air pollution monitoring stations.
Figures 3.2, 3.3, Figure 3.4 and 3.5 illustrate the four colocation experiments, comparing
the measurements of each two1 randomly selected PAMs (blue, black) with the reference
measurements (red). The left side of each Figure (a) shows a time series of the measurements,
the right side presents scatter plots between the two PAMs (reproducibility, b) and between a
PAM and the reference instrument (accuracy, c).

While the figures assess the accuracy of individual PAMs, the performance parameters across all
N PAMs of each colocation experiment were averaged and presented in Table 3.42. Besides the
coefficient of determination (R2), the root-mean-square error (RMSE, Equation 3.1) between
PAM and reference has been included as performance criterion. R2 can be a misleading indicator
of sensor performance when measurements are taken close to the LOD of the instruments.
The RMSE can be a complementary parameter of R2 for the evaluation of performance,
as it summarises the mean difference between measurements from the sensor and certified

1Figure 3.2 compares only one PAM to the reference. The reproducibility of the PAMs during the AIRLESS
winter colocation is shown in Figure 3.1

2This table includes is a very comprehensive and detailed performance evaluation. For an overview of the
broader conclusions see Section 3.2.3.
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instruments.
Additionally, the ambient temperature and RH (median, range: 5% - 95%) as well as the mean
and maximum pollutant concentration measured by the reference are presented in Table 3.4
to describe the ambient conditions of each colocation. Because the air pollution sensors were
exposed to the internal conditions of the PAM (see Section 2.2.1), the internal temperatures of
the PAM are also presented in Table 3.4.

RMSE =

√
1
n ∑(cestimator − ctrue)2 (3.1)
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Table 3.4 Overview of sensors’ performance during outdoor colocations in China and the UK. Median
values (range: 5th - 95th percentiles) of the ambient and internal temperature and relative humidity
(RH) are presented. The 95th percentile of the reference concentration measurements over the entire
colocation period is given as maximum concentration. The mean adjusted coefficients (R̄2) and root-
mean-square errors (RMSE) indicate the agreement between the measurements of the sensors and
reference instruments. Average values across each network of N sensors are given. The colocation in
China in June is shown in italics as sensors were regularly exposed to temperatures higher than 40◦C
where they did not show linear temperature responses. Summary given in Table 3.5. Equivalent table for
sensor reproducibility in Table A.5.

Heating season Non-heating season

Location China UK China UK
Start date - end date (total hours) 28/12/2016

- 15/01/2017
(447h)

27/10/2017
- 13/11/2017
(408h)

28/06/2017
- 16/07/2017
(432h)

26/03/2018
- 10/04/2018
(342h)

Illustrative graphical example Figure 3.2 Figure 3.3 Figure 3.4 Figure 3.5

Ambient condi-
tions

Ambient Temp (◦C) 1.1 (-3.6 - 6.1) 9.3 (4.3-14.4) 29.9 (22.8-36.3) 8.3 (4.7-18.1)

Ambient RH (%) 40 (15-79) 81 (61-93) 68 (43-96) 83 (48-93)

Internal con-
ditions of the
PAM

Internal Temp (◦C) 10.5 (5.3-18.0) 15.9 (11.0-20.8) 40.2 (32.7-45.8) 17.7 (12.2-26.8)

Internal RH (%) 27 (14-44) 52 (39 -59) 38 (23 - 55) 52 (34 - 60)

Number of sen-
sors (N)

[-] N = 59 N = 3 N = 59 N = 3

CO Maximum (mean) mix-
ing ratio (ppb)

6845 (2561) 357 (237) 916 (575) 276 (192)

R̄2 0.98 0.74 0.71 0.67
mean RMSE in ppb
(percentage of max)

31 (0.5%) 31.6 (8.9%) 212 (23%) 33.3 (12.1%)

NO Maximum (mean) mix-
ing ratio (ppb)

132 (38) 19 (5) 5 (1) 6 (2)

R̄2 0.94 0.89 0.2 0.58
mean RMSE in ppb
(percentage of max)

11.7 (8.9%) 3.0 (15.8%) 13.0 (260%) 2.2 (36.6%)

NO2 Maximum (mean) mix-
ing ratio (ppb)

98 (42) 35 (15) 42 (22) 19 (10)

R̄2 0.84 0.9 0.2 0.84
mean RMSE in ppb
(percentage of max)

11.8 (12.0%) 3.0 (8.6%) 13.3 (31.7%) 2.6 (13.7%)

O3 Maximum (mean) mix-
ing ratio (ppb)

33 (13) 30 (16) 109 (49) 44 (28)

R̄2 0.87 0.92 0.8 0.89
mean RMSE in ppb
(percentage of max)

3.6 (10.9%) 2.7 (9%) 14.9 (13.7%) 4.2 (9.5%)

PM2.5 Maximum (mean)
conc. (µg m−3)

432 (114) 32 (12) 110 (55) 37 (3)

R̄2 0.93 0.57a 0.65b 0.8
RMSE in µg m−3 (per-
centage of max)

37 (8.6%) 9 (28%)a 25 (22.7%)b 2 (5.4%)

a Due to unavailable data, PM mass measurements are not corrected for RH effects. b Comparison with
governmental station ca 3 km away.



56 Characterisation of the PAM performance

3.2.1 Sensor performance during the heating season

During the outdoor colocations in the heating season, ambient temperatures ranged from -4
to 6◦C in China and between 4 and 14◦C in the UK. Air pollution in China was characterised
by elevated levels of CO and PM2.5 for extended time periods (haze events). Compared with
pollutant levels in the UK, the concentrations of CO and PM2.5 were approximately 10 times
higher while the contrast in ambient NO2 levels was less pronounced with levels in China only
approximately 3-fold higher.
Illustrative examples for the outdoor colocations in China and the UK are given in Figures 3.2
and 3.3, respectively. The performance of all N PAMs during the heating season is summarised
in the first two result columns of Table 3.4.
The O3, NO and NO2 sensors exhibited excellent performance (R̄2 ≥ 0.84) in both geographical
settings. The median RMSE values were close to the LOD of the sensors (< 3 ppb) in the
UK and slightly higher in China (< 12 ppb). In both deployments, the RMSE values of these
gaseous sensors were negligible compared to the ambient concentration ranges of the targeted
pollutants (less than 16% of the maximum mixing ratio recorded by the reference instruments).
While the median R̄2 between the CO sensor and the corresponding reference was reasonably
high in both outdoor deployments (≥ 0.74), the median RMSE values were also quite large
(< 32 ppb). In fact, this is due to the previously mentioned high intrinsic noise and LOD of
the reference instrumentation (> 40 ppb, [134]), which is much higher compared to that of the
electrochemical sensors.
Following the RH correction of the size-segregated particle measurements (Section 2.2), the
PM mass quantification with the miniaturised OPC agrees with the TEOM reference instrument
with an adjusted R̄2 of 0.93. The low RMSE values (8.6% of the maximum concentration)
demonstrate that the scaling factor adequately addresses the under-prediction of mass due to
undetected smaller particles when derived from field calibration in the local environment. Due
to unavailable measurements, the PM measurements in the UK could not be corrected for RH
effects, which resulted in only a moderate correlation with the reference instrument (R̄2 = 0.57,
Figure 3.3).
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Fig. 3.3 Outdoor colocation of two PAMs with reference instruments in Cambridge for three
weeks during the heating season. The PAMs had been previously deployed for two years to
participants of a London cohort with chronic pulmonary disease. (a): Time series of two PAMs
(blue, black) and the reference instruments (red). Due to unavailable data, the PM measurements
of the PAM are presented without the RH correction resulting in an over-prediction of PM mass
during certain periods. (b): correlation between PAMs and (c) correlation between PAM and
reference. The 1:1 line in black; and gradients m in red. The scale of the X- and Y-axis of the
scatterplots is identical to the concentration scale given in the time series of the corresponding
pollutant.
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3.2.2 Sensor performance during the non-heating season

One outdoor colocation in China (Figure 3.4) and one in the UK (Fig 3.5) were performed
during the non-heating season, both over periods of 2 weeks. The performance of all N PAMs
during the warmer season is summarised in the two columns on the right of Table 3.4.
In the UK, the seasonal variation in ambient temperatures, RH and pollution levels was rela-
tively small. In contrast, in China, the seasonal variation was large with ambient temperatures
reaching up to 36.3◦C (median: 29.9◦C) and generally lower pollution levels compared to the
heating season. However, in both geographical settings, O3 was significantly elevated.
The performance of the O3 sensor remained reliable across all colocation experiments with
median R̄2 ≥ 0.80 and RMSE values < 15 ppb, which might provide valuable insights into the
health effects of this pollutant because (a) ozone is a strong oxidant with a high potential to
affect the body ([105]) and (b) has the highest concentrations during the non-heating season
compared to other pollutants which usually peak during the heating season.
Due to a malfunction of the PM reference instrument (TEOM) during the non-heating season
at PKU, the PAM PM measurements had to be compared with a TEOM installed at a nearby
governmental site (Haidianwanliu). Although not closely colocated (∼3 km), the gradient be-
tween the PAMs and reference measurements was close to one (average m = 0.96, see example
Figure 3.4) and there was still a notable correlation (R̄2 = 0.65) with a median RMSE of 25 µg
m−3 indicating that, away from direct sources, PM concentrations are essentially homogeneous
over relatively large urban areas. Compared with the heating season, PM concentrations in
China were significantly lower, whereas PM levels in the UK varied little with season. After
correcting for the effects of RH on PM, the PAM performance in the UK during the non-heating
season significantly improved compared with the heating season (RMSE = 2µg m−3 within the
particle size range 0.38-17 µm).
While the performance of the O3 and OPC sensors remained reliable across seasons and geo-
graphical settings, the performance of the CO, NO and NO2 sensors decreased significantly (R̄2

≥ 0.20) during the hottest parts of the non-heating season in China due to extreme temperatures
(internal median temperatures of the PAM: 40.2◦C, 5%-95%: 32.7-45.8◦C, Table 3.4). It should
be noted that NO levels were close to the LOD of the sensor, which also affects the R̄2 values.
We conclude that the measurements of the CO, NO and NO2 sensors should be interpreted with
caution when the sensors are exposed to temperatures above 40◦C. However, during the field
deployment to participants, the sensors were exposed to lower temperatures due to occupants
adjusting their thermal environment for comfort (see Fig. A.9) which did not impact the sensor
performance.
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Fig. 3.4 Outdoor colocation of two PAMs with reference instruments in China during the
non-heating season (June). The PAMs have been previously deployed in China for two months
to participants of a cardio-pulmonary cohort. Due to malfunctioning of the TEOM in PKU
during the non-heating season, measurements from a TEOM in a nearby governmental site
(Haidianwanliu ∼ 3 km, time resolution 1 hour) were used for comparison with the PAM. (a):
Time series of two PAMs (blue, black) and the reference instruments (red). (b): correlation
between PAMs and (c): correlation between PAM and reference. The 1:1 line (x=y) in black;
and gradients m in red.The scale of the X- and Y-axis of the scatterplots is identical to the
concentration scale given in the time series of the corresponding pollutant.
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Fig. 3.5 Outdoor colocation of two PAMs with reference instruments in the UK during the
non-heating season (April- May). (a): Time series of two PAMs (blue, black) and the reference
instruments (red). (b): correlation between PAMs and (c): correlation between PAM and
reference. The 1:1 line (x=y) in black and gradients m in red. The scale of the X- and Y-
axis of the scatterplots is identical to the concentration scale given in the time series of the
corresponding pollutant.
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3.2.3 Summary of the outdoor performance

Sections 3.2.1 and 3.2.2 comprehensively described the performance of each pollutant sensor of
the PAM under diverse conditions. This section provides an overview of the main conclusions
from the static outdoor colocation experiments. Table 3.5 summarises the sensor performance
characteristics from Table 3.4 and the factors that may have impacted the agreement between
reference and PAM.
The performance of the CO sensor was comparable with the reference instruments during the
heating season in China. In the other three colocation experiments it was impaired by external
factors, such as sensor overheating and intrinsic noise of the reference instrument. Further
validation experiments in Section 5.1.3 indicate that the CO sensors generally agree with the
reference when not impacted by external factors.
In three of the four outdoor colocation experiments, ambient NO concentrations were close to
or below the LOD of the NO sensors, resulting in low correlations between the NO sensors
and the reference. At higher NO concentrations, however, they showed a strong agreement
with the reference. Because emission sources in the direct environment of an individual
caused the personal NO exposures to frequently exceed the ambient concentrations (Chapter 4),
deployment measurements were performed within the concentration range in which the NO
sensor performed sufficiently.
The NO2 sensor performance was good or very good across all experiments apart from the
non-heating season in China where extreme ambient temperatures (internal PAM temperature >
40°C) deteriorated the sensor performance. The O3 sensors also showed good or very good
performance across all seasons and locations, despite the extreme temperatures during the
summer colocation in China.
The RH corrected PM2.5 measurements agreed well with the reference instruments. The
agreement was impacted when the RH correction could not be applied, or when the PAM data
had to be compared to a non-colocated reference instrument (ca. 3 km distance).
In summary, the outdoor performance of the PAM in a static configuration was sufficient for
personal monitoring purposes, provided appropriate data processing (including RH correction
of PM2.5) and suitable environmental conditions (T < 40°C; pollution concentrations > LOD).
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Table 3.5 Summary of the sensor performance of the PAM during the four outdoor colocation
experiments (UK and China, during the heating and non-heating season). The performance
was classified based on a combination of RMSE and R2 between PAM sensors and reference.
The exact correlation parameters are given in Table 3.4. Factors that may have impacted the
agreement between PAM and reference are given in brackets (1-5, legend below).

Location Season CO NO NO2 O3 PM2.5

China heating very good (1) very good good good very good
China non-heating medium (1, 2) low (2, 3) low (2) good (2) medium (5)
UK heating medium (1) medium (3) very good very good low (4)
UK non-heating medium (1) low (3) good good good

Performance classification
very good R2 > 0.9 AND RMSE < 10% of max. concentration
good R2 > 0.8 AND RMSE < 15% of max. concentration
medium 0.6 < R2 < 0.8 AND RMSE < 25% of max. concentration
low R2 < 0.6 OR RMSE > 25% of max. concentration

Impact on PAM-reference agreement
1 High intrinsic noise of reference instrument
2 Internal PAM temperature > 40°C
3 Pollutant concentration close to LOD (mean ≥ 5 ppb)
4 RH correction not applicable
5 Reference instrument not colocated
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3.3 Indoor performance of the NO2 and PM sensors

Low-cost air pollution sensors have widely been characterised in outdoor colocation exper-
iments as they were described in the previous sections. However, little is known about the
performance of these sensors in indoor environments, where people spend most of their time
([73]), and environmental conditions (e.g. temperature, RH) as well as emission sources may
be significantly different compared with nearby outdoor environments.
When comparing indoor pollution concentrations measured by PAMs with outdoor pollution
levels obtained at reference stations, it was found that, in the absence of local emission sources,
the indoor CO and NO levels were similar to the outdoor concentrations whereas the NO2,
PM2.5 and O3 levels were much lower than outdoors (see Section 4.3). It is widely recognised
that, due to its high reactivity, O3 concentrations inside buildings are usually much lower than
outdoors [96, 149, 153]. Previous studies on the indoor to outdoor (I/O) ratio of air pollutants
in residential buildings found I/O ratios ranging from 0.4 to 1.6 [61] for NO2 and I/O ratios in a
broad range from 0.2 to 2.5 for PM2.5; however, average values of the ratios were close to one
(1.01-1.08). The low I/O ratios for NO2 and PM2.5 found during the AIRLESS deployment
were surprising, especially considering the strong indoor sources.
To ensure that the low indoor concentrations were not caused by sensor artefacts, the OPC and
NO2 sensor were tested against reference instruments in an urban flat in central Beijing during
the non-heating season (May 2017).
One PAM was deployed in the living area next to two commercial instruments that were used
to provide reference measurements: (1) a cavity attenuated phase shift spectroscopy instrument
(CAPS Teledyne T500U) for NO2 and (2) a portable commercial spectrometer (GRIMM 1.108)
for particulate matter measurements (Table 3.1). The results are shown in Figure 3.6. During the
experiment the occupants relied on natural ventilation, adjusting the windows freely to achieve
thermal comfort. Median indoor temperatures were 26.0◦C (5%-95% range: 17.1-28.8◦C),
and the median internal PAM temperature was 33.0◦C (5%-95% range:24.3-36.2◦C), which
is comparable with the temperature range during the non-heating season field deployment to
participants (median internal temperature: 35.0◦C, 5%-95% range: 28.5-39.9◦C, Figure A.9).
The sensors were calibrated as described in Section 2.2 using the the sensitivities extracted from
the outdoor colocations of the heating and non-heating seasons combined. The performance
of the low-cost sensors in the indoor environment (Figure 3.6) was comparable to the outdoor
performance demonstrated in the previous section (R2 ≥ 0.93; gradient m = 0.97 and m = 1.1;
RMSE = 3 ppb and 7µg m−3 for NO2 and PM2.5, respectively), proving their suitability to
quantify indoor air pollution levels for these species when adequately calibrated under similar
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environmental conditions. The low NO2 and PM2.5 concentrations observed in Figure 4.1 were
therefore not an artefact of corrupt sensor responses but represented concentrations close to
the real ones. The pollutant losses in the indoor environment of a representative participant
(U123) were further analysed by quantifying the concentration decays of each pollutant (Section
5.2.1), finding that PM2.5 and NO2 were in fact affected by pollutant sinks lowering the indoor
concentrations compared to the outdoor levels.

Similar to Section 3.1, this indoor experiment extracted the calibration parameters from a train-
ing dataset (here: the combined outdoor colocation periods in winter and summer) and applied
them to a validation dataset (here: the indoor colocation period). The excellent agreement of
the PAM measurements with the indoor reference reinforces the conclusion from Section 3.1
that the developed linear model is robust and can reliably be applied beyond the calibration
periods to a mainly indoor dataset collected during the deployment to the participants
This section validated the indoor performance of the NO2 and PM2.5 sensors of one PAM. The
performance of two large PAM networks measuring personal (i.e. mainly indoor) exposures
will be further evaluated in Section 5.1.3.

Fig. 3.6 Indoor colocation of a PAM (blue) with portable commercial instrumentation as
reference (red; Table 3.1) in an urban flat in China during the non-heating season. Left:
Time series of the measurements. Right: Scatter plots between commercial instruments and
miniaturised sensors. The 1:1 line is in black and linear fit in red. Mass concentrations were
calculated from particle counts within the size range 0.38 -17 µm and same aerosol density for
both instruments
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3.4 Mobile applications of the PAM

The aim of this section is to evaluate the PAM reproducibility and accuracy while in motion,
with pedestrian and on-vehicle deployments.

3.4.1 Reproducibility of the PAM during a pedestrian deployment

Multiple (in this case nine) PAMs were carried by a pedestrian while keeping an activity diary
and walking between two indoor environments via a busy road in Cambridge, UK (weekday in
January). Using NO measurements (the main traceable component from combustion engines)
as an illustrative example, Figure 3.7 shows the simultaneous measurements of all PAMs as a
time series (a) and the scatterplots between the measurements of two of those PAMs separated
into indoor (b) and outdoor data (c).
Significant changes of the pollution levels were observed when moving between the different
environments, illustrating the high heterogeneity of personal exposure in daily life. Compared
with the indoor environments, walking in traffic resulted in elevated pollution exposure events.
As illustrated in the time series of Figure 3.7, the difference in pollution levels between the three
micro-environments was significantly higher than the variability between PAM measurements.
Table 3.6 gives an overview of the median correlations between the sensors of the colocated
moving network. In indoor environments an excellent agreement between all sensors (median
R2 ≥ 0.96) was found, indicating a high sensor reproducibility. An exception was the O3

sensor, which showed a poor between-sensor correlation due to very low indoor and outdoor
concentrations near the LOD of the sensor (< 5 ppb). There was still a good agreement between
the sensors in the road environment, although it was lower than indoors (median R2 ≥ 0.85)
due to highly heterogeneous air pollution concentrations driven by complex factors (e.g. canyon
air mixing, moving vehicle sources, topology). This signifies that in such environments air
pollution concentrations might differ on such short spatial and temporal scales that even sensors
that are less than 1 m apart from each other capture a slightly different exposure profile.
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Fig. 3.7 Short-term deployment of nine PAMs carried simultaneously by a pedestrian moving
between two indoor environments (laboratory, café) in Cambridge, UK, in January 2018. (a):
Time-series of NO measurements from the PAM sensors (blue lines). (b) and (c): Scatterplots
between two of those PAMs, where indoor data was separated from outdoor data. The 1:1 line
in black; and linear fit line in red.

Table 3.6 Correlations between PAM sensors. Adjusted R2 values of each sensor pair of the
simultaneously carried PAMs were determined. Median values R̄2 of all combinations are
presented in the table below. Very low O3 levels (< 5 ppb) resulted in poor between-sensor
correlations and are given in italics.

Median R̄2

Indoor Outdoor

NO 0.99 0.87
NO2 0.96 0.94
O3 0.16 0.46
CO 0.99 0.95
PM2.5 0.99 0.85
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3.4.2 Accuracy of the PAM during a vehicle deployment

A PAM was mounted on the roof of a battery-powered vehicle equipped with multiple com-
mercial instruments (Table 3.1) mapping air pollution levels in London at speeds of up to
60 km h−1 for 1 day during the non-heating season (Figure 3.8). The PAM was mounted on the
roof with the OPC inlet facing forwards and the EC sensors facing to the sides. The reference
instrument inlets were located on the car roof as well. No correlation between car speed and
RMSE values in the gaseous and particulate measurements was observed as the OPC contains
an airflow measurement unit which compensates for any wind or internal flow dependence.
Considering the high spatial variability of air pollution in traffic environments (as discussed
in the previous section), the accuracy of the PAM in a mobile configuration was high for all
targeted pollutants (R̄2 ≥ 0.54). To illustrate the large degree of variability of air pollution
concentrations over time, the investigated area was mapped throughout the day multiple times
with the highest concentrations of PM2.5 and NO2 recorded during the morning rush hour.
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Fig. 3.8 The vehicle deployment in London, UK: a PAM was attached to a car equipped
with multiple commercial instruments (Table 3.1) for four days. (a): Time-series of PAM
measurements (blue) and commercial instruments (red). (b): Corresponding scatterplots
between measurements from commercial instruments and the PAM in motion. The 1:1 line in
black; and linear fit line in red. (c): Maps (map data 2019 Google) of the mobile deployment
over 2-hour windows illustrating the large temporal variability of NO2.
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3.5 Chapter summary

This chapter demonstrated that, with suitable calibration and post-processing, the performance
of currently available low-cost air quality sensors, in this case incorporated into a highly portable
personal monitor (the PAM), is comparable with the performance of reference instrumentation
across a wide range of conditions:

• in diverse outdoor environments with varying emission sources (urban background and
traffic);

• across seasons (over a wide temperature and RH range);

• in two geographical settings with differing air pollution levels and meteorological profiles
(UK and China);

• in indoor environments (residential, laboratory, café), and

• in static and in non-static deployments.

There are certain performance caveats with the PAMs which, once identified, are likely to be
addressed in future generations of sensors:

• The performances of the CO, NO and NO2 sensors were found to degrade at temperatures
above 40◦C. However, such extreme environmental conditions were not encountered
when the personal exposure measurements were obtained (Section 2.3), i.e. the perfor-
mance criteria were met during the field deployment.

• A limitation of all optical PM sensors, low-cost or reference, is that they cannot measure
small particles below a critical size threshold (typically 200–400 nm). This chapter shows
that by appropriate local calibration, this shortcoming can be largely accounted for.

The key conclusion of this chapter is that, when suitably operated, the personal air pollution
monitors can deliver traceable high-quality exposure metrics which can address scientific,
health and policy questions for the indoor and outdoor environment in a way that has not been
previously possible.
Based on the conclusions of this chapter, it can be assumed that the personal exposure data
collected in the UK, China, Germany and Kenya (Section 2.3) are reliable and of appropriate
quality for the exposure analysis described in the three following chapters.





Chapter 4

Improving personal exposure estimates:
PAM vs monitoring station

Due to limitations in cost, instrument availability and participant burden, air pollution epidemi-
ology has traditionally relied on proxies to represent the exposure of a person. The metrics used
to describe personal exposure usually come from monitoring stations that measure the outdoor
pollutant concentrations rather than representing the actual pollution exposure of a person. In
the scientific literature this is called exposure misclassification. It is defined as the difference
between a chosen exposure metric, usually derived from measurements of the ambient air at
postcode level or coarser, and the true exposure of a person [33].
This chapter uses the exposure measurements from the AIRLESS project to demonstrate the
potential of portable air quality monitors to improve the accuracy of personal exposure esti-
mates and therefore to support epidemiological research in drawing more reliable associations
between air pollution and health impacts. The chapter additionally addresses considerations
on the suitability and reliability of novel sensor technologies to advance our understanding on
multi-pollutant exposures on health. Collecting personal exposure measurements of multiple
pollutants at unprecedented spatial and temporal resolution could enable researchers, for the
first time, to directly and accurately assess the toxicity of a specific pollutant, or indirectly
reflect source-related health effects. Section 4.4 introduces the concept of breaking the correla-
tion between individual pollutants (and thus reducing the multi-colinearity between different
pollutant species in health models), as well as the concept of looking at their ratios to infer
sources.
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4.1 An illustrative example of exposure misclassification (AIR-
LESS panel)

As part of the AIRLESS project, personal exposure measurements were collected with a
network of PAMs in rural and urban Beijing (see Section 2.3.2). In the following, these
personal exposure measurements are compared with simultaneous observations from static air
quality monitoring stations in close proximity to participants’ home locations.

Fig. 4.1 Time series of the air pollution exposure of a representative AIRLESS participant
(urban participant U123 carrying PAM 165 during the heating season). Personal exposure
measurements (PAM, blue) are compared with data from the closest monitoring station (station,
grey) to the participant’s home (ca. 5 km, see map in Figure A.10 in the Appendix). Mean
exposures are given on the right. The top row indicates whether the participant is outdoors or
indoors (based on time-activity model, see Section 6.2). PAM and reference measurements and
time-activity classification are in 1 min resolution. Time in UTC.

Using a representative participant as an illustrative example, Figure 4.1 highlights the complex
issues of personal exposure to multiple pollutants during daily life. On one hand, personal
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CO, NO, NO2 and PM2.5 concentrations regularly exceeded the outdoor levels suggesting the
presence of strong indoor emission sources. The fairly regular diurnal pattern of operation
indicates that occupant behavioural patterns (i.e. cooking activities in a gas stove) caused
personal exposures up to 10 times higher than the ambient pollution levels. On the other
hand, when no emission sources were active, the personal NO2, O3 and PM2.5 levels were
much lower than the outdoor concentrations, indicating the presence of indoor pollution sinks.
In the case of ozone particularly, the personal indoor exposures were up to 25 times lower
than the ambient concentrations, due to the high indoor reactivity of the pollutant. On the
contrary, indoor CO and NO approached the outdoor concentrations because they are relatively
stable in these timescales in indoor environments. As a result, the mean personal CO and NO
exposures (given on the right of Figure 4.1) were higher than the mean ambient concentrations,
whereas the personal O3, NO2 and PM2.5 concentrations were on average lower than the
ambient concentrations. These findings were found to be broadly representative across the two
AIRLESS cohorts as demonstrated in Section 4.3.
These results emphasise the significant differences between personal and ambient pollution
concentrations. The extent of this exposure misclassification depends on the reactivity of the
pollutant, as well as on the characteristics of the individual environments a person is located
in (e.g. distinct air pollution sources and sinks). The potential of novel sensor technologies
to expand the spatial and temporal coverage of personal exposure measurements of multiple
pollutants allows to capture the high variability between individuals, microenvironments,
seasons and settings. The interrelationships between personal and outdoor levels are quantified
in more detail in Chapter 5.

4.2 Exposure misclassification vs. measurement uncertainty

The comparison in the previous section is based on the assumption that the PAMs measure
the true personal exposure of a person. However, the observations from portable monitors
also contain uncertainties due to measurement error which is a major concern in the research
community [84]. To address such concerns, this section compares the exposure estimation error
introduced by the poor spatial resolution of monitoring stations (exposure misclassification)
with the exposure estimation error due to the instrument uncertainty of the personal monitoring
devices.
Figure 4.2 uses again the example of AIRLESS participant U123 to illustrate this comparison.
For clarity reasons, the graph here shows only one day of the volunteer’s participation week
(3rd Dec 2016), comparing the NO2 concentrations measured at PKU monitoring station (grey)
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with the personal NO2 exposures measured with a PAM (blue, cf. Figure 4.1). The instrument
uncertainty was determined as the RMSE (Equation 3.1) of the PAM compared to a reference
station when the two instruments were colocated (see Section 3.2). The RMSE of U123’s PAM
was 12.2 ppb which was close to the average RMSE found for NO2 during the AIRLESS winter
campaign (11.8 ppb, see Table 3.4). This uncertainty was added as confidence intervals of the
personal exposure measurements in Figure 4.2 (blue shades).
The difference between the personal NO2 concentrations and the observations from the outdoor
monitoring station represents the exposure misclassification. For most of the day, this difference
was substantially larger than the instrument uncertainty of the PAM, may it be introduced
by indoor sinks that caused lower personal NO2 exposures or by local emission sources that
led to higher personal NO2 exposures than captured at the station. This illustrative example
demonstrates that the PAM improves the accuracy of personal exposure estimations despite
measurement uncertainties that may be higher than those of established air quality instruments.

Fig. 4.2 Instrument uncertainty vs. exposure misclassification: One day of personal NO2
exposure measurements of participant U123 (blue) compared to outdoor NO2 from PKU
monitoring station (grey, cf. Figure 4.1). The instrument uncertainty of the PAM (RMSE) is
illustrated as confidence interval around the personal measurements. The difference between
personal exposure and stationary measurements due to indoor chemical sinks and local sources
is substantially larger than the instrument uncertainty.

Table 4.1 looks at the comparison between instrument uncertainty and exposure misclassifica-
tion across the entire AIRLESS sensor network. The instrument uncertainty for each pollutant
was determined as the RMSE between PAM and reference instrument during the AIRLESS
winter colocation as described in Section 3.2. Similarly, the RMSE between monitoring station
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Table 4.1 Comparison between exposure misclassification of static monitoring stations and
measurement uncertainty of the PAM. Normalised RMSE values between PAM and station
(see footnote), averaged over entire sensor network. Data from AIRLESS winter campaign.

instrument uncertainty exposure misclassification

CO 0.12 1.00
NO 0.25 1.04
NO2 0.28 3.68
O3 0.33 5.89
PM2.5 0.31 2.80

and personal measurements was calculated as a measure for the exposure misclassification1.
For better comparison across the pollutants, the RMSEs were normalised by dividing their
values by the mean concentration of each pollutant measured with the corresponding method.
The resulting normalised RMSE (nRMSE) values, averaged over the entire AIRLESS sensor
network, are summarised in Table 4.1.
The instrument uncertainty was in a comparable range for all five pollutant sensors (nRMSE
between 0.12 and 0.33). The CO sensor showed the lowest uncertainty (nRMSE = 0.12), due to
the outstanding performance of this sensor already demonstrated in Chapter 3. The O3 sensor
had the highest uncertainty (nRMSE = 0.33) which might be attributed to the relatively low O3

concentrations during winter. The exposure misclassification of the stations was substantially
(up to over 17 times) larger than the measurement uncertainty of the PAM for all pollutants.
This crucial finding emphasises that the personal monitoring devices are, despite their lower ac-
curacy compared to static monitoring stations, a more reliable alternative for the quantification
of personal exposures of individuals.
The misclassification of the CO and NO exposure estimations was comparable, whereas the
NO2, PM2.5 and O3 misclassification was distinctly higher. This agrees with the findings from
Section 4.3 and can be attributed to the interactions of pollutant-specific sinks and sources
which will be further discussed in Chapter 5.

1Note that the reference instruments at the monitoring station were used as true values and the PAM as
estimator of the measured pollutant concentrations to calculate the instrument uncertainty. For the exposure
misclassification, the PAM measurements served as true values and the station measurements as estimator for
personal exposures.
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4.3 Seasonal and spatial variability of daily life exposures in
China

This chapter has so far highlighted the necessity of collecting personal exposure measurements
at high spatial and temporal resolution to capture the strong variability of sources and chemical
sinks in the environment of an individual. This section examines how these relationships vary
across the AIRLESS cohorts and between seasons.
The average air pollution exposure of each participant was calculated with two methods: (1)
by averaging their PAM measurements over the entire participation time (one week) c̄(PAM)
and (2) by averaging the measurements of the closest monitoring station over the same time
period c̄(station) to generate the exposure estimates from ambient air as they are conventionally
used by epidemiological studies (see Section 1.2). These two exposures were plotted against
each other (Figure 4.3). In an ideal scenario, the exposure metric (c̄(station)) would accurately
predict the true exposure of a participant (c̄(PAM)), and all points should fall on the identity
line (x=y). Deviations from this line may be attributed to exposure misclassification. Points
above the identity line indicate that the true personal exposures were higher than the ambient
estimates while points below suggest that the personal exposures were lower. A larger vertical
distance between a data point and the identity line indicates a larger exposure misclassification
for the corresponding participant.
As the people spend on average over 90% of their time indoors [73] (see also Figure 6.17),
the exposure misclassification can be mainly attributed to the air quality differences between
indoor and outdoor environments. Keeping this in mind, the following points describe the
relationships between ambient measurements and personal exposures for each pollutant in
winter and summer based on Figure 4.3.
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Fig. 4.3 Personal exposure of each participant (measured by PAM, y-axis) plotted against average
exposure estimates based on static observations over the same time period (monitoring station, x-axis) in
winter (top) and summer (bottom). Every dot represents one participant, marking their average exposures
measured over their participation week. Identity line (x=y) dotted in black.



78 Improving personal exposure estimates: PAM vs monitoring station

Differences between personal and ambient concentrations in the urban and rural site
during the in winter season (top of Figure 4.3)

• The personal CO and NO exposures were generally higher than the exposure estimations
based on ambient measurements. The outdoor concentrations of both these gaseous
pollutants were higher at the urban site, however personal exposure of urban and peri-
urban participants was comparable, stressing the importance of sources close to the
individual on overall exposure.

• In contrast to CO and NO, the personal NO2, O3 and PM2.5 concentrations were generally
lower than the ambient estimations. Local pollution sinks significantly reduced personal
exposure to these harmful pollutants.

• Following the trend of CO and NO, ambient NO2 concentrations were substantially
higher in the urban environment than at the rural site which can probably be ascribed to
the higher traffic volume in Beijing city. This difference was, however, less marked in
the personal exposure estimations where the majority of the urban exposures was in the
same range as the rural personal exposures. This indicates that the local NO2 sinks and
sources may have a stronger impact on personal exposures than the ambient levels.

• The ambient O3 levels were slightly lower at the urban site, probably because O3 reacted
with the higher local NO2 concentrations. However, no difference between the rural
and urban cohort was observed in the personal exposure estimates due to the previously
mentioned strong indoor sinks.

• Contrary to NO2 levels, the ambient PM2.5 concentrations were higher at the rural site.
The personal exposures were also higher in the rural cohort. This indicates stronger local
PM2.5 sources in the rural area which might be attributed to bio fuel burning for domestic
energy use (urban: mainly central heating, rural: mainly charcoal and firewood-based;
see Section 2.3.2).

In general, the personal exposures of individuals that are exposed to the same ambient

pollution levels vary substantially (shown as the vertical spread of the points). This variability

can be ascribed to the complex interactions of local pollution sinks and sources in the

individual microenvironments.



4.3 Seasonal and spatial variability of daily life exposures in China 79

Differences between personal and ambient concentrations in the urban and rural site
during the summer season (bottom of Figure 4.3)
The ambient pollution levels in summer were lower than in winter for all pollutants except
for ozone. Higher O3 levels in summer were caused by the raised intensity of UV light which
increases the O3 production. Large-scale meteorological analysis performed by Shi et al.
suggests that the higher ambient air pollution levels in winter were due to more frequent air
stagnation and weak southerly circulation [125]. Winter outdoor air pollution was characterised
by several high PM2.5 pollution events, whereas, during the summer there were events of high
O3 concentrations.

• As in the winter season, personal levels of CO and NO were higher than the ambient
levels. The absolute values of the personal exposure were, however, lower than in winter
driven by lower outdoor concentration and weaker local sources. The variability between
individuals was larger than the variability between sites showing the relative importance
of local sources on personal exposure.

• Similar to the case in winter, the ambient NO2 levels in the urban site were higher than
in the rural site, and the opposite case was observed for the PM2.5 concentrations. These
local differences were even more distinct in summer.

• Although the ambient O3 concentrations were significantly higher in the summer, the
major part of the personal O3 exposures was in the same range as the personal O3

exposures observed in winter. This indicates the presence of strong local O3 sinks.

• The personal PM2.5 concentrations were very similar to the ambient PM2.5 levels during
the summer time (points close to 1:1 line). This might be due to increased building
ventilation in the summer.

A distinct profile of exposure is evident between the urban and rural panels, as the urban

participants are exposed to significantly higher levels of NO2 while the rural panel is exposed

to significantly higher concentrations of particulate matter. These marked differences indicate

variable sources of exposure in the two panels, which will be discussed in more detail in

Section 4.4, and their implications on health in Section 4.5.
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Figure 4.4 summarises the personal air pollution exposures of the two AIRLESS cohorts
(blue boxplots) and the exposure estimations based on monitoring station observations (white
boxplots). Note that here, the 1-min time resolution of the concentration measurements was
preserved rather than averaging the exposures over the participation time of each volunteer as
done in Figure 4.3. This way, peak exposure events were included.
As already observed in Figure 4.3, the ambient concentrations of all pollutants but O3 were
substantially higher in winter than in summer. The personal CO and NO exposures followed
this seasonal trend and were on average higher than the ambient levels. The difference between
personal and outdoor concentrations was much higher during winter indicating stronger sources
in proximity to the participants compared with the summer.
Contrary to personal CO and NO levels, which broadly followed the outdoor trends, the NO2,
O3 and PM2.5 levels were significantly lower than the ambient levels in both seasons and
showed little (PM2.5 and O3) or no (NO2) seasonal variation. The personal measurements
show that there is a substantial exposure misclassification that could be introduced when using
outdoor measurements as exposure metrics and the extent of the error depends on season and
reactivity of each pollutant.
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Fig. 4.4 The white boxplots illustrate outdoor air pollution levels measured at the reference
monitoring stations at the urban and peri-urban sites during the summer (May-June 2017)
and winter (Nov-Dec 2016) campaigns. The blue boxplots show the personal exposure levels
measured with 60 PAMs deployed to 251 participants at the urban and peri-urban site during
the same periods. Stable pollutants left (CO, NO), reactive pollutants right (PM2.5, NO2, O3).
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4.4 Relationships between different pollutant species

When measured at low spatial and/or temporal resolution, pollutants with common sources
often appear correlated, as is the case between traffic related pollutants (e.g. PM2.5 and NO2)
in outdoor environments. Section 1.2 highlights that such correlations between individual
pollutants inhibit epidemiological studies from identifying single air pollutant species as causal
agents for health outcomes.
Section 4.4.1 will examine whether the use of personal monitors has the potential to break this
correlation and therefore to ultimately allow epidemiological research to identify individual
pollutants as causal agents for adverse health effects. The ratio between two pollutant species
might substantially vary in different environments and provide information about the air
pollution mixture and, therefore, the type of emission sources in the direct environment. Section
4.4.2 assesses the concentration ratios between the measured pollutant species, comparing the
observations from a monitoring station with those from a PAM.

4.4.1 Correlation between pollutants

The correlation between CO and NO was investigated by comparing measurements of a
representative personal monitor with the observations collected at the nearest static monitoring
station. The recorded concentrations over this period were plotted against each other in a
scatter plot and linearly fitted for the calculation of the coefficient of correlation R. Figure
4.5 compares the CO-NO correlation found at the monitoring station of Peking University
(top figure) against the personal exposure measurements of PAM 174 during the winter field
deployment (deployed to five participants over the course of the campaign, bottom figure).
Despite measured in relative vicinity, the two exposure measurements differ both in their profile
as well as in average pollution levels. The time series recorded by the monitoring station
tracks rather slow changes of the surrounding air pollution levels, whereas the PAM captures
short term events from local sources which can be seen as sharp peaks in the time series. The
CO concentrations recorded by the PAM were higher than the CO levels seen by the fixed
monitoring station: While PKU reference station measured CO levels of maximum 6 ppm, the
CO concentrations collected by the PAM often exceeded 10 ppm with high exposure events
of up to 30 ppm. Similarly, the NO measurements of the monitoring station rarely exceeded
200 ppb whereas short term NO exposures in the PAM measurements reached much higher
concentrations of up to 600 ppb.
The high concentration peaks experienced by the PAM show that the monitor was exposed to
air pollution sources in close vicinity. The monitoring station is instead relatively far away
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from any direct pollution sources and therefore exposed to a mixture of different emissions
from its wider environment blended with ambient air.
The scatter plots on the right of Figure 4.5 where linearly fitted to determine the correlation
coefficient R. The linear fit of the observations from the monitoring station is shown as a red
line in the top scatter plot. The blue line in the bottom graph indicates the linear fit of the PAM
measurements. For comparison, the linear fit of the stationary measurements was added to the
bottom graph as a red dashed line.
A relatively high correlation was observed between the CO and NO concentrations measured
at the monitoring station (R = 0.85) which is also visible in the strong similarity of the two
corresponding time series. The two pollutants are less correlated when measured by the PAM
(R = 0.37). Note that a large number of PAM observations fall onto the same gradient as
the monitoring station (highest point density around the red dashed line). These observations
occurred when the participants were exposed to the regional CO and NO concentrations
(away from local emission sources) which were also measured at the monitoring station. The
distinction between local and regional air pollution sources is further discussed in Chapter 5.
Figure 4.6 shows the correlations between all possible combinations of air pollutant species
when measured at PKU monitoring station (top) and when measured with a portable monitor
(bottom). The measurements from the station show high correlations between all pollutant
combinations (R = 0.55 - 0.85; ozone is anti-correlated with other pollutants: R = -0.39
and -0.68). The correlation between the different pollutants is substantially reduced in the
PAM observations (R = 0.24-0.38, ozone: -0.05 and -0.16). The reduction of the pollutant-
pollutant correlation emphasises the value of personal exposure monitoring since it may help
epidemiological studies to disaggregate the health effects of different air pollutant species.
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Fig. 4.5 Correlation between the concentration measurements of two different pollution species
measured at PKU monitoring station (upper panel) and with a PAM (lower panel) deployed to
five participants over the course of the campaign. Both datasets were collected over the same
time period and at the urban site (Beijing) during the winter campaign. Left: time series of CO
(blue) and NO (black) measurements. Right: hexbin plots of the corresponding measurements
with linear fit and correlation coefficient R. The linear fit of the monitoring station data is
shown as red dashed line in the bottom plot (PAM data) for comparison.
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Fig. 4.6 Correlation coefficients between the concentration measurements of different pollution
species when measured by a monitoring station (at urban site, upper graph) and with a portable
air quality monitor deployed to five participants (PAM 174 - urban cohort, lower graph). All
measurements from the winter field deployment (14/11-20/12/2016). The black square frames
mark the pollutant pair that is shown in Figure 4.5.
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4.4.2 Ratio between pollutants

The previous section showed that the concentrations of different pollutant species were strongly
correlated when measured at ambient monitoring stations. Consequently, there was also a
relatively constant ratio between the concentrations of those species, caused by a relatively
constant mix of emission sources in the wider surroundings of the station.
Figure 4.7 illustrates this at the example of the relationship between NO2 and PM2.5 in urban
and rural Beijing. The pollutant exposures of each participant of the AIRLESS cohorts were
averaged over their participation period (same as in Figure 4.3). The mean PM2.5 exposure
of each participant were plotted against their mean NO2 exposure. The exposure estimations
based on stationary outdoor measurements (left) were compared with the exposures measured
by the PAMs (right). The bottom graph of Figure 4.7 shows a histogram of the ratios between
the mean PM2.5 and NO2 exposures with a solid line indicating the median and a dashed line
indicating the mean ratio.

Stationary exposure estimates: At the rural site, the PM2.5 levels were usually ca. 5 times
higher than the NO2 levels (red line in histogram), whereas at the urban site PM2.5 was only
twice as high as NO2 (blue line). The lower PM2.5/NO2 ratio at the urban site can be attributed
to the higher traffic volume in urban Beijing which led to higher NO2 concentrations in the area.
The histogram of the stationary observations (bottom left) shows a very narrow distribution
of the PM2.5/NO2 ratios around the value of 22 for the urban site and 5 for the rural site, with
almost no overlap between the two sites.

Exposure estimates from the PAM: As already shown in Section 4.4.1, the correlation be-
tween the two pollutant species was visibly lower in the personal exposure measurements of
the PAM. The concentrations of the two pollutants were generally lower when measured with
the PAM than at the static monitoring station which agrees with the findings from Figure 4.4.
The personal NO2 exposures were higher in the urban cohort which was, like in the case of
the static observations, due to the higher traffic volume in urban Beijing. The personal PM2.5

exposures were slightly higher in the rural cohort which might be due to stronger local PM2.5

emission sources at this site.
The mean PM2.5/NO2 ratio was around 4 (median: 2.5) in the urban cohort and 17 (median: 8)

2Because PM2.5 was given as concentrations (µg m−3 ) and the gas measurements, including NO2, were given
as mixing ratios (ppb), the PM2.5/NO2 ratio is actually not dimensionless. However, this section compares the
same ratios measured in two different ways (PAM vs station). Hence, the units are irrelevant for this comparison
and were omitted for more clarity.
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in the rural cohort. The pollutant ratios based on the PAM measurements differed significantly
from the ratios observed at the monitoring station, suggesting that the participants were exposed
to a very different air pollution mixture than the one observed in ambient air.
The differences between the mean and median values of the pollutant ratios indicate a wide dis-
tribution of the ratios, especially in the rural cohort where the PM2.5/NO2 ratio reached values
of up to over 100. The large distribution of the pollutant ratios within one cohort indicates that
the air pollution mixtures varied largely between the individuals. This variability was due to
the large range of microenvironments and local emission sources individual participants were
exposed to. Different microenvironments contain a variety of air pollution sources which emit
different amounts of pollution species.The histograms of the rural and urban pollutant ratios
overlap which means that the participant-participant variability of the air pollution mixture was
higher than the variability between the sites.
Figure 4.7 looked at the ratios between the PM2.5 and NO2 concentrations during the AIRLESS
project. Figure 4.8 presents the pollutant ratios for all pollutant combinations measured at
a monitoring station (top) and with personal monitors (bottom). The histograms show the
distribution of the ratios for the two cohorts, whereby the top pollutant species (columns) is
divided by the pollutant species given on the side (rows). For instance, the histogram in the top
left corner of each triangle shows the distribution of the observed NO2/O3 ratios.
The pollutant ratios observed at the monitoring station were generally very narrowly distributed
around the mean (≈ median) value, suggesting a fairly constant air pollution mixture around
the monitoring station. The distribution of the ratios measured by the PAMs is much wider
compared to the stationary observations, suggesting that the air pollution composition indi-
viduals are exposed to varies substantially more than around ambient monitoring stations.
This can be explained by the heterogeneity of air pollution sinks and sources in the different
microenvironments an individual passes through during daily life. This is further discussed in
Chapter 6.
Not only the distribution of the ratios, but also the absolute values of the ratios differed between
ambient and PAM measurements. For instance, the mean CO/NO2 ratio (triangle middle of
Figure 4.8) observed at the station was 59 for the rural site and 56 for the urban site, while
the same ratio measured by the PAMs was 1327 for the rural site and 402 for the urban site.
This stresses the difference in the air pollution mixture observed in personal and ambient
exposures, as well as at the two monitoring sites. Different air pollution mixtures are likely
to have different toxicities and health impacts. Preliminary results from a health analysis of
the AIRLESS data confirmed this hypothesis by showing that some health effects (monocyte
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count) of PM2.5 were different in the rural than in the urban cohort, suggesting that PM2.5 has
different toxicities at the two sites (see Section 4.5 in the Appendix).
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Fig. 4.7 Top: Mean NO2 exposure of each participant vs mean PM2.5 exposure measured
by station (left) and by personal monitor (right). Exposure estimates were averaged over the
participation week of every participant as in Figure 4.3.
Bottom: Histogram of the PM2.5/NO2 ratios across all participants. The wider distribution of
the PM2.5/NO2 ratio is due to different sources and microenvironments which will be discussed
in more detail in Chapter 6.
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Fig. 4.8 Distribution of the ratios between different pollutants. Ratios calculated as demon-
strated in Figure 4.7.
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4.5 Preliminary associations between personal exposure to
PM2.5 and acute health outcomes

The aim of this section is two-fold: firstly to stress the importance of employing accurate
personal exposure estimates in health studies; and secondly to highlight the distinct health
responses of the two cohorts exposed to different air pollution sources.
The AIRLESS project collected a large number of detailed medical biomarkers (Section 2.3.2).
Han et al. [56] conducted a preliminary analysis on the acute inflammatory effects of the
exposure to PM2.5 using a single-pollutant linear model adjusting for confounding effects
(conventional model used in epidemiological studies). In this preliminary analysis, three
biomarkers were used: fractional exhaled nitric oxide (FeNO) from exhaled breath to represent
respiratory inflammation, and the counts of monocytes and C-reactive protein in the blood
serum to represent systemic inflammation (see [56] for details). Inflammation is known to
play an important role in the biological mechanisms leading to the adverse health effects of air
pollution [22].
Figure 4.9 shows the increase of each medical parameter observed for an interquartile range
(IQR) increment of PM2.5. The results were compared for an analysis based on ambient expo-
sure metrics, as conventionally used in epidemiological studies (blue), and based on personal
exposure metrics measured by PAMs (red) to quantify the impact of exposure misclassification
on health models. The assessment of the two cohorts combined (first column of Figure 4.9)
showed that significant associations between personal PM2.5 exposure and health effect were
found for all three biomarkers, while the associations were weaker or insignificant when ambi-
ent concentrations were used. This suggests that ambient concentrations may not be adequate
to quantify the health effects of PM2.5 on individuals.
A striking finding is that the monocyte counts (middle row in Figure 4.9) were significantly
associated with increases in personal PM2.5 exposures (red) in the urban cohort, but the as-
sociation was insignificant in the rural cohort. The opposite trend was observed for health
predictions based on ambient measurements (blue). The findings from Figures 4.7 and 4.8
suggest that different sets of emission sources in urban and peri-urban Beijing caused a distinct
air pollution mixture (and PM2.5 composition) at each site. These differences are reflected in
the health responses of the two panels as illustrated in Figure 4.9.
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Fig. 4.9 Preliminary analysis of the association between health effects and PM2.5 exposure.
Odds ratio (OR) with 95% confidence interval (CI) for the occurrence of inflammatory responses
associated with an interquartile (IQR) increase of PM2.5. The association is assumed significant
when OR ± CI do not cross the zero line. The specific biomarkers selected as indications
of systemic inflammation included exhaled NO (FeNO), monocyte count, and C-reactive
protein; see Table A.4. The analysis was repeated using ambient PM2.5 concentrations (red)
and personal exposure data (blue) to assess how the choice of exposure metrics impacts health
models. From [56].
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4.6 Chapter summary

This chapter explored the potential of portable monitoring devices to improve personal air
pollution exposure metrics and corresponding health effect estimations on the example of 251
subjects participating in the AIRLESS project in China.
The measurements of example participant U123 demonstrated that the exposure misclassifi-
cation (i.e. the difference between static ambient measurements and personal exposures) was
large for each pollutant species measured by the PAM. These results were consistent across the
two cohorts (rural and urban) and the two seasons. The personal CO and NO concentrations
were usually underestimated by the monitoring stations while the personal NO2, O3 and PM2.5

exposures were overestimated. This is due to different emission sources and indoor reactivities
of the pollutant species which will be further discussed in Chapter 5. The exposure misclassifi-
cation was generally higher in winter than in summer which might be due to different heating
and ventilation behaviours of the participants.
A crucial finding of this chapter is that the personal exposure estimation error of conventional
exposure metrics, such as ambient observations from monitoring stations, is much larger than
the error introduced by the instrument uncertainty of adequately calibrated (Section 2.2) per-
sonal monitors: In the AIRLESS project, the mean exposure misclassification of the monitoring
stations was approximately 4 (NO) to 17 times (O3) larger than the measurement uncertainty of
the PAMs. As a result, the associations of ambient and personal exposure metrics with health
outcomes were inconsistent not only in the magnitude but also in the significance. The exposure
metrics collected with the PAM showed a stronger effect on health suggesting that air pollution
is more harmful than previously thought. This result indicates the large uncertainties of health
effects derived from crude exposure metrics, and that the PAM is, despite its lower accuracy
compared to more established air quality measurement methods, a more suitable option for
quantifying the air pollution concentrations a person is directly exposed to.
Static outdoor monitoring stations are exposed to air pollution mixtures originating from emis-
sion sources in their wider surroundings blended with ambient air. Because these emissions do
not vary much over time, the concentrations of the different pollutant species in the mix are
often highly correlated which inhibits epidemiological research to draw specific associations be-
tween air pollutants and health outcomes. Section 4.4 demonstrated that the pollutant-pollutant
correlations were significantly reduced in the PAM measurements compared to static obser-
vations which was due to the highly heterogeneous air pollution field the participants were
moving through. The ratios between two pollutant species, which contain information about
air pollution composition and, hence, the emission sources in the environment, differed also
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significantly from the ratios observed at the monitoring stations. The source-related difference
in the air pollution mixture was also reflected in the distinct health responses with stronger
effect of PM2.5 on systemic inflammation in the urban panel compared with the suburban.

In summary, this chapter demonstrated that the personal air quality monitors significantly
reduce exposure misclassification and the correlation between pollutant species which are both
major limitations in current epidemiological research. The larger measurement uncertainties of
the novel portable devices compared to more established reference instruments were clearly
outweighed by the high spatial and temporal resolution of the devices which led to more precise
personal exposure estimations and a preliminary understanding of the source-related health
effects.
These advancements may be crucial to gain a deeper understanding of the detailed effects of
individual air pollutant species on the human body, and may also help to design more efficient
strategies to mitigate the detrimental health effects of air pollution on populations across the
globe.



Chapter 5

Source apportionment of personal
exposure using networks of mobile sensors

Static air quality monitoring stations are usually located outdoors and away from any direct
emission sources in order to capture the regional air pollution concentrations, i.e. the pollutant
levels that are relatively homogeneously distributed over larger areas (∼ km2). The previous
chapter demonstrated that these static measurements are not representative for the air quality in
the direct environment of individuals as they move through different microenvironments with
varying air quality levels.
The heterogeneity of air pollution between different daily microenvironments is caused by local
air pollution sinks and sources that modify the regional air pollution levels. For instance, in the
measurements of case example U123 (see Figure 4.1), regional NO outdoor concentrations were
found to be around 50 ppb, whereas local emission sources, in this case probably caused by
cooking activities, raised the personal NO exposure of U123 to levels of over 800 ppb. Moreover,
local air pollution sources are likely to emit a different mixture of pollutants than regional
sources. Consequently, the toxicity of the air pollution mixture between microenvironments is
likely to vary as well.
This chapter demonstrates how mobile networks of wearable air quality monitors may be used
for the source attribution of personal exposure into a local and a regional component to gain
more detailed insights into exposure risks in large scale health studies.
Section 5.1 introduces a method to determine the regional pollutant concentration from the
measurements of a network of portable sensors. While that section focuses on pollutant species
that are approximately inert in the atmosphere, Section 5.2 discusses how the method needs to
be adapted for the source attribution of reactive pollutant types. Section 5.3 applies the source
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attribution method to personal exposure measurements from the AIRLESS cohorts to analyse
the impact of regional and local sources on personal exposure in China.

5.1 Developing a method for the disaggregation of total per-
sonal exposure into local and regional components

Based on a conceptual model of personal exposure (Section 5.1.1), a method to extract the
regional background concentration from a network of personal sensors is described in Section
5.1.2 and validated in Section 5.1.3.

5.1.1 A conceptual model to understand personal exposure

As people spent the majority of their time (∼ 90%) indoors [73], indoor environments have a
major impact on their personal exposure. Therefore, it is important to understand the processes
that determine indoor air quality. Equation 5.1 (adapted from [32]) describes the factors that
may alter the pollutant concentration inside buildings.

Indoor air pollution can either originate from outdoors via building ventilation and infiltration
(kvent), or from indoor emission sources such as cooking, heating or smoking (Sindoor). The loss
of indoor pollutants can occur through the exchange with cleaner outdoor air (kvent) and through
additional indoor pollution sinks like surface reactions or deposition mechanisms. Assuming
natural building ventilation 1, the change of the indoor pollutant concentration per time can be
expressed via Equation 5.1.

dcin

dt
= (cout − cin)kvent − cin ksink +Sindoor (5.1)

cout , cin pollutant concentration outdoors and indoors (ppb)
kvent rate coefficient of building ventilation (hour−1)
ksink rate coefficient of indoor losses (pollution sinks) (hour−1)
Sindoor emissions from indoor air pollution sources (ppb hour−1)

In the absence of indoor emission sources (Sindoor = 0), the indoor concentration reaches a
steady state2 in equilibrium with the outdoor concentration. This equilibrium is based on the
assumption that the time lag between indoors and outdoors (i.e. the time needed by the outdoor

1Air exchange from indoors to outdoors is the same as air exchange from outdoors to indoors
2Steady state can be assumed because kvent and ksink are much faster than the change of the ambient pollution.
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pollution to penetrate into the building) is negligible.
The indoor-to-outdoor (I/O) ratio of the pollutant concentrations can be determined from
Equation 5.1, assuming dcin

dt = 0 (steady state) and Sindoor = 0. The resulting expression for the
I/O ratio is given in Equation 5.2. The I/O ratio determines the baseline pollutant concentration
in an indoor environment. The stronger the indoor sinks are, the smaller is the I/O ratio.

I/Os.s. =
cin

cout
=

kvent

kvent + ksink
=

kvent

κ
(5.2)

Additional emission sources (Sindoor) cause concentration peaks on top of this baseline that
decay exponentially until the concentration reaches the indoor baseline again. By solving the
differential Equation 5.1, the indoor pollutant concentration can be expressed as a function of
time given as Equation 5.3. The first term of this Equation describes the decay of concentration
peaks caused by indoor sources. The decay rate κ is the sum of the building ventilation rate
and the loss rate through indoor pollutant sinks (κ = kvent + ksink).

cin(t) =C e−κ(t−t0)+ cout
kvent

κ
+

Sindoor

κ︸ ︷︷ ︸
baseline

(5.3)

with C = cin(t0)−baseline

κ pollutant decay rate (kvent + ksink)
cin(t0) indoor pollutant concentration at time t0

In other words, the indoor decay rate κ depends not only on the ventilation rates but also on
the type and reactivity of the pollutant species. Some air pollutants are very stable and not
notably affected by indoor sinks. For instance, CO has lifetimes in the troposphere in the order
of months [104] and can therefore be treated as approximately inert (ksink ∼ 0).
Figure 5.1 illustrates two model scenarios that were generated from Equation 5.3. Scenario
(A) illustrates the case of an inert pollutant (ksink ≈ 0), scenario (B) the case of a more reactive
pollutant that is affected by indoor pollution sinks (ksink > 0). The black line represents the
indoor concentration, and the dotted blue line marks the outdoor concentrations.
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Fig. 5.1 Schematic indoor concentration model based on Equation 5.3. (A) Inert pollutant
unaffected by indoor sinks (ksink = 0) and (B) reactive pollutant (ksink = 3 h−1). The ventilation
rate is constant for both cases (kvent = 2 h−1). Exposure that originates from local sources is
shaded in grey and exposure from regional sources is shaded in blue. The bar plot on the right
of each graph represents the mean personal exposure for each case and how much the local and
regional sources contributed to it.
The green square between 13:00 and 17:00 shows how the personal exposure would change
if, instead of being indoors, the individual was being outdoors (assuming no local outdoor
sources).

In the absence of indoor emissions (Sindoor = 0), the indoor concentration of the inert pollutant
(case A) is equal to the outdoor concentration (I/O = 1), whereas the indoor concentration of
the reactive pollutant (case B) is lower than outdoors (I/O < 1).
Indoor emission sources typically cause a steep increase of the pollutant concentration which
then exponentially decreases with a decay rate of κ = kvent in case of inert pollutants and κ =
kvent + ksink for reactive pollutant.

The total personal exposure cpersonal(t) can be expressed as the sum of a local component and
a non-local or regional component (Equation 5.4) whereby the local signal cloc is attributed
to emission sources in the direct environment of a person and the regional component cBG(t)

originates from emission sources across the wider region [119].

cpersonal(t) = cloc(t)+ cBG(t) (5.4)
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cpersonal total personal air pollution exposure
cloc air pollution attributed to local emission sources
cBG exposure attributed to regional air pollution (BG = background)

The non-local signal cBG is usually defined as the background concentration of a pollutant
which is identical over a large region (e.g. a city) and may originate from sources outside
the area of interest [113]. For indoor exposures, the regional component is defined as the
regional outdoor pollution that penetrates inside the building via ventilation (kvent). In Figure
5.1, the local component is shaded in grey, and the regional component is shaded in blue. An
important observation is that, for inert pollutants (case A), the regional component of indoor
exposure (blue shaded) is equal to the regional outdoor exposure (blue dotted line). The regional
component of the exposure to reactive pollutants (case B), however, is only a fraction of the
regional outdoor concentration.
The bar plots on the right of each graph represent the total personal exposure to the corre-
sponding pollutant, and how much local and regional sources contributed to it. Although the
conceptual model assumes the same number and magnitude of indoor emission sources for
both cases; the total exposure to reactive pollutants is lower than the total exposure to inert
pollutants. Note that the ratio between the local and regional component of the total exposure
does not differ between the two pollutant types because air pollution sinks equally affect the
regional and local component of personal exposure. The ratio is, however, dependent on the
number and intensity of local emission sources as well as by the absolute outdoor air pollution
concentrations (see Section A.5.1 in Appendix for details).
The black lines in Figure 5.1 show the modelled pollutant concentrations inside a building.
People spend the majority of their time inside buildings, but will also move through outdoor
environments. The green square in each graph of Figure 5.1 marks the pollutant concentration
a person would be exposed to when moving outside. For inert pollutants there is no difference
in exposure because the indoor concentration is equal to the outdoor concentration (assuming
no local emissions and a negligible time lag). In case of the reactive pollutants, however, there
would be a rapid rise in the personal levels because the person is suddenly exposed to higher
pollutant levels outdoors compared to indoors. This distinction is important for determining the
regional outdoor concentration from a sensor network which will be discussed in the following
sections.
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5.1.2 Using networks of sensors to determine the regional concentration
of inert pollutants

As demonstrated in the previous section, the total air pollution exposure of a person consists of
a regional component that originates from sources in the wider area, and a local component
which is caused by emission sources in the direct environment of the person (see Equation
5.4 and Figure 5.1). A similar approach can be adopted for the urban environment, where a
relatively homogeneous dispersion of pollutants affected by regional air pollution transport (non-
local) and a variety of additional urban (local) emissions sources determine the air pollution
levels. Previous studies on urban air quality ([113, 59]) have used dense outdoor monitoring
networks of low-cost novel sensor technologies to separate long-range pollution transport
(urban background concentration) from local emissions; however, to date no studies have
applied this method on personal sensor networks which are moving through (mainly indoor)
daily life environments.
This section introduces a method to extract the regional signal of personal exposure from
a mobile network of PAMs using the AIRLESS dataset as example (Section 2.3.2). Some
pollutant species are stable in indoor environments (Case A) while other pollutants are affected
by indoor sinks (Case B) (Section 5.1.1). Because the sensor networks of the AIRLESS project
were mainly located indoors (Section 2.3.2), these two cases were considered separately. Using
the CO measurements of the mobile sensor networks as an example of an inert pollutant, the
regional CO concentrations in Beijing and Pinggu were extracted. The method for the source
attribution of personal exposure to inert pollutants is based on the following assumptions:

(1) Inert pollutants are not affected by local air pollution sinks (ksink = 0)

(2) Thus, the personal exposure can only be equal to or higher than the regional concentration

(3) Local emissions (cloc) are zero for a large fraction of time [119]

(4) At any given point in time, at least one sensor of the network is away from direct emission
sources and only exposed to regional air pollution

In the absence of local air pollution sinks (assumption 1), the indoor to outdoor ratio is ap-
proximately one, i.e. the air pollution concentrations that originate from regional sources are
equal outdoors and indoors (see Figure 5.1 left graph). Consequently, the minimum personal
exposure (both inside and outside) will be the regional pollutant concentrations (assumption 2).
Due to the sporadic nature of local emissions (assumption 3), and assuming the sensor network
is large enough, at least one sensor will be away from local sources and exposed only to the
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regional background levels at any point of time (assumption 4).

Based on similar assumptions, Popoola et al. [113] defined the background concentration as
the minimum concentration measured across a sensor network over a defined time period. To
account for instrument artefacts, they used the 10th percentile rather than the minimum.
Assuming that local pollution sources in indoor environments occur equally frequently as in
outdoor environments, this method is applicable to stable pollutants in indoor environments.
However, while Popoola et al. extracted the background concentrations over one-hour measure-
ment windows, in this work the background extraction was performed by extracting the 10th

percentile value of the 1-min data of the PAM network to retain the high temporal resolution.

Fig. 5.2 (a) 3D presentation of CO concentration time series measured by 30 PAMs deployed
during the AIRLESS winter campaign in urban Beijing (grey). Short term exposure events
("spikes") were removed by applying a rolling 10th percentile over a 3 hour window. The blue
line represents the background concentrations extracted from the mobile sensor network. (b)
CO measurements of all Beijing PAMs (grey), and CO background signal extracted from mobile
network (blue). This graph represents a frontal view of the 3D graph on top but additionally
includes short term exposure events.

Figure 5.2 provides a graphical illustration of the extraction method based on the CO concentra-
tions measured during the AIRLESS winter campaign. The top graph shows a 3D presentation
of the recorded CO levels of the 30 PAMs carried by the urban cohort of the AIRLESS project.
For clarity, short term exposure events were removed by applying a rolling 10th percentile over
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a 3 hour window on each PAM measurement. The graph shows that all PAMs follow roughly
the same concentration trends.
The bottom graph in Figure 5.2 represents a frontal view of the 3D graph above but including
short term exposure events. While each individual monitor captures various short term exposure
events caused by local emissions (sharp spikes, grey), a mutual baseline of all PAM measure-
ments is clearly visible. This confirms that all participants are exposed to the same background
CO levels when no local emission sources are present. This regional background concentration
was extracted by selecting the 10th percentile of all measurements across the sensor network
for each point of time (blue), retaining the high temporal resolution. The extraction method
was repeated with varying percentiles (from the minimum measurement across the network to
the 30th percentile, see Section A.5.2 in the Appendix), finding that the optimum percentile
was the 10th percentile (as in Popoola et al).

5.1.3 Comparison of the extracted regional concentration with reference
measurements

The outdoor background concentrations that were extracted from the sensor network were
compared to the measurements of a nearby monitoring station. Each station was located
away from any local emission sources (see Table 3.1) and, therefore, measured the regional
background pollution. Figure 5.3 compares the CO measurements from a monitoring station
with the regional background concentration that was extracted from a sensor network as
described in Section 5.1.2, for both deployment sites of the AIRLESS winter campaign.
The extracted backgrounds (blue) closely follow the measurements taken at the reference
station (red). High coefficients of determination (R2 ≥ 0.87) and gradients close to one between
reference instruments and extracted backgrounds indicate a high agreement between the two
regional concentration measurements.
This agreement suggests that the method introduced in Section 5.1.2 is suitable to determine the
regional background concentration of inert pollutants. Moreover, the regional concentrations
extracted from the sensor network may only agree with the reference when all sensors of the
network are well calibrated and functioning correctly. Therefore, the background extraction
is an excellent method to validate the performance-in-use of an entire sensor network. The
advantage of this validation method is that it can be applied with little effort while the data
collection is still ongoing. This way, faulty monitors can be identified and replaced early on.
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Furthermore, this method may be used to estimate the outdoor pollution levels in areas where
no air quality monitoring stations are available.

Fig. 5.3 Comparison between the regional background concentrations extracted from mobile
sensor networks as described in Section 5.1.2 (blue) with reference measurements from mon-
itoring stations (red). Left: Time series of the two parameters; right: scatter plots of the
corresponding measurements on the left. AIRLESS winter campaign. Equivalent graph for
summer deployment shown in Figure A.12.

5.2 Source attribution for chemically reactive species

The background extraction method introduced in the previous section is based on the assumption
that the personal pollutant concentration does not drop below the regional concentrations. While
this requirement is met for inert pollutants, the local concentrations of chemically reactive
pollutant species may drop below the regional background due to local pollution sinks which are
often found indoors (see case B in Figure 5.1). This section firstly classifies pollutant species
by their chemical indoor reactivity. Section 5.2.2 then discusses alternative approaches to
determine the regional background concentration of reactive pollutants from the measurements
of a mobile sensor network.

5.2.1 Characterising the indoor reactivity of pollutants

Section 5.1.1 conceptualised how concentration peaks of indoor pollutants which are caused
by short term emissions, such as cooking, decay exponentially with a rate of κ (see Equation
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5.3). This decay rate depends on the ventilation of the building kvent which affects all pollutant
species in the same way, and on additional indoor losses ksink that depend on the reactivity of
each pollutant species. The stronger a pollutant species is affected by indoor sinks, the faster
its decay rate κ .
Figure 5.4 illustrates this principle using the data of example participant U123 (Nov 29th - Dec
1st 2016). The upper time series shows the personal CO exposure of the participant. The CO
loss through chemical reactions is assumed to be negligible. Therefore, its indoor lifetime
depends on building ventilation only (κ = kvent). The lower panel shows a time series of the
participant’s NO2 exposure over the same period of time. The NO2 concentrations decayed
visibly faster than in the case of CO because they were additionally affected by indoor pollution
sinks.
The exponential decays in the exposure time series were automatically detected and fitted3.
Each detected decay is marked in red in Figure 5.4, with the text quantifying the decay rate
determined from the exponential fit. The decay rates of CO vary over time which might
be attributed to changes in the building ventilation (e.g. opening of windows or doors), or
additional changes in the indoor reactivity (e.g. caused by temperature changes) in case of NO2.
However, all CO decay rates were notably lower than those of NO2, indicating the presence of
a constant removal mechanism for NO2.

3R script developed by Elizabeth Martin and Lia Chatzidiakou
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Fig. 5.4 Indoor decay analysis of the CO (top) and NO2 (bottom) exposures of participant U123
(Nov 29th - Dec 1st 2016, only data at home, time in UTC). The decays of exposure peaks
(marked in red) were exponentially fitted to determine the pollutant decay rates (red text). The
NO2 decays were substantially faster than the CO decays because CO was affected by building
ventilation only while NO2 was additionally affected by indoor pollution sinks.

Observations collected in the home microenvironment (classified using the method described in
Section 6.2) were selected for further analysis. In total, 7762 exponential decays were detected
in the entire exposure dataset of the urban AIRLESS cohort (for all five pollutant species). The
decay rates resulting from the exponential fits are summarised as boxplots in Figure 5.5.
Since CO is assumed to be inert, the CO decay rates in the Figure represent the range of
the ventilation rates of the urban AIRLESS building stock. The NO decays were found in
approximately the same range (CO median decay rate: 0.58 h−1, NO: 0.60 h−1), indicating
that the effect of indoor sinks on NO concentrations was negligible, and indoor NO losses
were dominated by building ventilation. The NO2, O3 and PM2.5 decays were generally much
faster than the building ventilation rate (median decay rates: NO2 1.24 h−1, O3 1.21 h−1, PM2.5

0.85 h−1), indicating additional losses through indoor removal mechanisms. Therefore, these
species were classified as chemically reactive pollutant types.
This classification agrees with the results from Section 4.3 which compared the personal (i.e.
mainly indoor) exposures measured with PAMs to observations from monitoring stations (i.e.
regional background levels) in the AIRLESS project. The findings showed that the personal
exposures to NO and CO were generally higher than the regional outdoor concentrations
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whereas the personal NO2, O3 and PM2.5 exposures were substantially lower than outdoors,
owing to the reductions from indoor sinks (see e.g. Figure 4.4). As the concentrations of
reactive pollutants may drop below the ambient levels, the background extraction method
described in Section 5.1.2 is not applicable for these pollutants (assumption 2 is not met).

Fig. 5.5 Summary of the indoor decay rates extracted from exponential fits of the exposure data
from the urban cohort during the AIRLESS winter campaign. In total, 7762 peaks were fitted in
this dataset (5 pollutants, 123 participants, home exposures only). CO and NO were identified
as approximately inert. NO2, PM2.5 and O3 were classified as reactive pollutants because of
their faster decay rates compared to CO and NO. Outliers not shown in the boxplots.

5.2.2 Determining the regional outdoor concentration of reactive pollu-
tants

Section 5.1.2 described how the regional background concentration of inert pollutants may be
determined as the lowest measurements across a sensor network. This method is based on the
assumption that the regional background concentration is homogeneously distributed across
all indoor and outdoor environments, and therefore the regional background is the minimum
pollutant level a sensor might be exposed to. While this is the case for inert pollutants (case A in
Figure 5.1), the concentrations of chemically reactive species (case B) are affected by local air
pollution sinks which means that the local pollutant concentrations may drop below the regional
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background concentration. The exact fraction to which the outdoor concentration is reduced
when entering a building (I/O ratio) differs from household to household. Consequently, the
nodes of an indoor sensor network are not exposed to a common baseline. Extracting the lowest
concentration of reactive pollutants from a sensor network would only extract the concentration
in the household with the strongest local sinks and not the regional background concentration.

To extract the regional outdoor concentrations of reactive pollutants, a different set of assump-
tions was applied:

(1) The regional outdoor concentration is reduced by indoor air pollution sinks when entering
a building (ksink > 0)

(2) In the absence of local emissions, the personal exposure is either equal to or lower than
the outdoor levels

(3) At least one individual of the cohort has very weak indoor sinks or is exposed to outdoor
air at any point of time

(4) Local emissions are sparse events and no more than 10% of the cohort are simultaneously
exposed to them

Reactive pollutants reduce the indoor air pollution levels compared to outdoors (assumption 1).
Therefore, the personal exposure to reactive pollutants increases when the individual moves
from indoors to outdoors (see Figure 5.1 green square). Hence, the regional outdoor back-
ground would be the maximum concentration measured across the network, if no local emission
sources were present (assumption 2). Assuming that local emissions occur only sporadically
(assumption 4), they can be accounted for by taking the 90th percentile instead of the maximum.
Based on these assumptions, the regional outdoor concentrations may be extracted as the 90th

percentile of the measurements across the entire sensor network.
Figure 5.6 illustrates this method at the example of the NO2 measurements of the urban AIR-
LESS cohort in the summer (top) and winter (bottom) campaign. The measurements of all
individual sensors of the network are shown in grey, and the 90th percentile extracted across
these measurements is shown in blue. The outdoor concentrations that were observed at PKU
reference station are added in red.
The extracted NO2 background agrees strikingly well with the reference measurements during
the summer campaign. In the winter time, the 90th of the network generally underestimates
the outdoor concentrations of the reference, yet it broadly captures the features (e.g. spikes) of
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the outdoor levels. This seasonal difference may be attributed to a change of the ventilation
behaviour of the cohort. The outdoor concentration may only be captured by the network when
at least one sensor is exposed to outdoor air at any time (assumption 3). Keeping in mind that
people spend around 90% of their time indoors, it is unlikely that a member of the cohort is
located outdoors at all times. In winter, the building ventilation is reduced to a minimum to
preserve heat. Consequently, the indoor pollution differs strongly from the outdoor levels. In
the summer, however, building ventilation is substantially increased which allows the outdoor
air to penetrate into the building and reach the sensors less affected by indoor sinks. As a result,
the extracted outdoor concentration agrees better with the reference in summer.
A limitation of this method is the assumption that local emissions occur so rarely that they may
not happen to more than 10% of the cohort at the same time (assumption 4). Some common
emission sources are bound to specific times of the day. For instance, it is likely that more
than 10% of the cohort are exposed to cooking emissions during lunch or dinner time. In this
case the 90th percentile may capture these local emissions rather than the regional outdoor
levels. These cases can be observed when the extracted outdoor concentration (blue) exceeds
the reference measurements (red) in Figure 5.6 (e.g. May 23rd and 24th in summer, Dec 4th and
5th in winter).
The regional background extraction of the PM2.5 and O3 concentrations, as well as of NO2 for
the peri-urban cohort in Pinggu, resulted in similar findings (see Figure A.12 in the Appendix).
In summary, the method of extracting the regional outdoor concentration of reactive pollutants
is less accurate than the method for inert pollutants because the assumptions are not met at all
times. However, the method may still be used for reliability checks of the sensor network per-
formance, keeping in mind that better agreements between extracted background and outdoor
reference are expected in the summer season.
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Fig. 5.6 NO2 measurements of all PAMs from the urban sensor network of the AIRLESS
project (grey), and 90th percentile extracted from these measurements (blue; c.f. Figure 5.2
bottom). Observations from outdoor monitoring station in red. The 90th percentile replicates
the outdoor NO2 levels strikingly well in summer. Equivalent graphs for peri-urban sensor
network and other pollutant species in Figure A.12.

A crucial difference of reactive pollutants compared to inert species is, however, that the
regional outdoor concentration is not equal to the regional component of the total personal
exposure (see Section 5.1.1). Therefore, the extracted background of reactive species may
not be used to separate the contributions from local and regional sources to the total personal
exposure. Alternative methods to determine the regional component of the total exposure are
currently under development but exceed the scope of this dissertation. Therefore, the source
apportionment of personal exposure in the next section focuses on inert pollutants.
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5.3 Separating the contribution of local and regional sources
to personal exposure in large scale health studies

This section uses the background extraction method introduced in Section 5.1.2 to disaggregate
the local and regional components of individual CO exposures measured in the AIRLESS
winter campaign. The Section aims to demonstrate how this source attribution method may
introduce new opportunities for epidemiological research to gain a deeper understanding of the
health effects of air pollution.

5.3.1 Case example U123

The conceptual model in Section 5.1.1 showed that a person is fully exposed to the regional
levels of an inert air pollutant (without reductions through local air pollution sinks), and to
additional emissions from local sources. This Section illustrates how the background extraction
introduced in Section 5.1.2 can be applied to disaggregate the contributions from regional and
local sources to the mean personal exposure using again participant U123 as a representative
example.
Figure 5.7 (left) shows a time series of the personal CO exposure of case participant U123
(grey), and the regional outdoor concentration extracted from the sensor network (blue).
The personal exposure of U123 followed a distinct daily pattern of sharp increases occurring
every evening around 6-7 pm. These exposure events were driven by local emissions. Their
time of occurrence indicates that they might have been caused by cooking activities for dinner
preparation. The elevated CO concentrations inside the participant’s home slowly decayed
over the course of the night and approached the regional background levels at some point
of the following day. On some days, the exponential decay was interrupted early and the
personal exposure "jumped" down to match the regional outdoor concentration (e.g. mornings
of Dec 1st and Dec 5th). These rapid decreases of personal exposure can be explained by
the participant moving from inside the house, which still contained elevated CO levels, to an
outdoor environment which was affected by regional CO concentrations only.
While the regional concentration changed by maximally 4 ppm over time periods of more than
10 hours, local sources caused the personal exposure to rise by over 15 ppm in less than two
hours (e.g. Dec 2nd, 6 pm). This indicates that the variability of the local component was
much higher than the variability of the regional component. Capturing this variability might
be crucial for a better understanding of the health effects of air pollution since such highly
concentrated peak exposures might trigger acute health responses.
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The right side of Figure 5.7 shows a bar plot that represents the mean exposure c̄personal of
participant U123 over their participation week. The blue component of the bar represents
the contribution of regional air pollution to their personal exposure (proportional to the area
under the blue line). The remaining part of their personal exposure (grey) was attributed to air
pollution from local emission sources (proportional to the area between the grey and the blue
line; based on Equation 5.4).
The major part of the participant’s CO exposure (61%) originated from local sources whereas
the regional air pollution contributed to only 39%. Outdoor air quality monitoring stations may
only capture the regional component of personal exposure. Neglecting the local component of
personal exposures would introduce large uncertainties (in that case 61%) in the quantification
of the health effects of air pollution exposure. More importantly, indoor-generated CO is likely
to be co-emitted with other pollutants than outdoor CO, and is therefore potentially a useful
proxy of exposure.

Fig. 5.7 Left: Time series of participant U123’s personal CO exposure measurements (grey)
compared to the regional CO background levels (blue, extracted from urban sensor network).
Right: Mean contributions of local emission sources (grey) and regional air pollution (blue) to
the average exposure of the participant. Graph in local time.

5.3.2 Source attribution of exposures from the AIRLESS project

The separation between the local and the regional component of personal exposure described
in the previous section was applied to all participants of the AIRLESS cohorts. Each bar in
Figure 5.8 represents the mean personal exposure of one participant with the contributions from
local sources marked in grey and from regional background pollution in blue. Conventional
exposure estimations based on static observations can assign only one exposure value for all
participants in a cohort. In Graph 5.8 this value is shown as a dotted line. Note that it is based
on measurements from monitoring stations, whereas the contributions of the regional pollution



112 Source apportionment of personal exposure using networks of mobile sensors

to the mean exposure (blue bars) are based on the background concentrations extracted from
the mobile sensor networks. The two parameters were, however, almost identical for CO as
inert pollutant (see Section 5.1.3).
The contribution from regional emission sources was strikingly constant across the two cohorts
(with slightly higher levels in the urban site, see Section 4.3). As expected from the personal
exposure model in Section 5.1.1, the regional exposure components were very close to the
exposure estimations from monitoring stations (dotted lines) as these usually capture the re-
gional pollution levels only. The local components varied considerably more and constituted
up to 95% (participant R159 in peri-urban cohort) of the total exposure. Although not shown
here, the analysis of the personal CO exposures collected in the AIRLESS summer campaign
resulted in very similar findings to those from the winter campaign.

Fig. 5.8 Mean CO exposures (averaged over 7 days) in the urban and peri-urban (rural) cohorts.
Each bar represents the exposure of one participant with the contributions from local and
regional sources marked in grey and blue, as demonstrated in Figure 5.7. The dashed lines
mark the mean exposure based on monitoring station measurements. The mean and standard
deviations of the contributions are shown in Figure 5.9.

The results from Figure 5.8 are summarised in Figure 5.9 which shows the mean regional and
local contributions to personal exposure, averaged over the two AIRLESS cohorts in winter and
summer. The standard deviations of the contributions were added as whiskers to illustrate the
variability of each component. A quantitative summary is given in Table A.6 in the Appendix.
The lower personal exposure in summer compared to the winter season, which was already
found in Section 4.3, can be attributed to a reduction in both the regional and the local emissions.
Lower regional levels were observed at the monitoring stations (see Section 4.3). The reduction
in local emissions may be attributed to less use of indoor biomass burning for heating, and a
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faster removal of local air pollution from indoor environments thorough increased building
ventilation.
The contribution from regional air pollution was relatively constant across all participants,
especially in the rural cohort: The regional components varied by ± 0.31 ppm in Pinggu and by
± 0.68 ppm in Beijing (standard deviation). The local contributions, which in this case amount
to exposure misclassification, varied substantially more (SD = 1.56 ppm (rural) - 3.69 ppm
(urban)) and contributed on average to 45% (urban winter) - 65% (rural winter) of the total
personal exposure.
The exposure differences between participants within a cohort were much larger than the
differences between the different sites (urban vs rural). This stresses that epidemiological
studies that rely only on regional exposure metrics (static monitoring stations) may suffer from
large uncertainties in individual exposure estimations.

Furthermore, the air pollution mixture, and therefore also its effects on the human body, can
vary significantly between different emission sources. CO could be a proxy for other potentially
harmful pollutants that were co-emitted from the same source. Analysing the health effects
of local and regional air pollution separately might help to gain a better understanding of the
health effects of air pollution, and how to mitigate these most efficiently.



114 Source apportionment of personal exposure using networks of mobile sensors

Fig. 5.9 Mean contributions from background air pollution (blue) and local sources (grey) to
the total CO exposure (= sum of the two components). Standard deviations were added as
whiskers to illustrate the variability between participants. The left part of the graph (winter) is
an average over the two cohorts of the data shown in Figure 5.8, the right part represents the
equivalent for summer. Quantitative summary in Table A.6.

5.4 Chapter summary

This chapter demonstrated, using the AIRLESS dataset, how mobile sensor networks contribute
to a better understanding of the different origins of the air pollution that people are exposed to
in daily life.
The methodology described in this chapter builds upon a conceptual model of personal expo-
sure, and a statistical approach using a large sensor network.
Similarly to urban air pollution studies, the total personal exposure to inert pollutants can be
expressed as the sum of the regional background concentration and additional local emissions.
Hence, the background concentration extracted from the network could be used to separate
the regional and local components of personal exposure. The results of this source attribution
showed that a large fraction (up to 95%, mean: 55%) of personal CO exposures originated
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from local sources. This finding confirms the results from Section 4.3 that outdoor monitoring
stations which measure only the regional pollution concentrations massively underestimate the
personal exposures to inert pollutants.
The extent to which the local emissions contributed to the total personal exposure varied
largely between individual participants. The regional component of personal exposure was, in
contrast, relatively stable within each cohort. The exposure variability between participants
within one cohort was much larger than the differences in the regional pollution between the
two deployment sites (Beijing and Pinggu), suggesting that one monitoring station in each
deployment site cannot represent the individual exposures of the surrounding cohorts.
More reactive pollutants such as NO2 required an adapted extraction method (90th percentile)
which in many cases did not capture the fine structure of the regional background pollution or
underestimated the outdoor levels, particularly when there was reduced building ventilation
(winter). However, general trends (e.g. haze events) and the magnitude of the regional outdoor
pollution were still successfully extracted which renders this method useful for sanity checks
of the sensor network performance.
As the impact of regional outdoor pollution on personal exposure varies from household to
household, the 90th percentile method could not be used to separate the regional and the local
components of personal exposure. However, the total personal exposure to reactive pollutants,
i.e. local and regional component combined, was still lower than the regional outdoor con-
centration measured at monitoring stations (see e.g. Figure 4.3). This shows that exposure
metrics based on monitoring stations generally overestimate the personal exposures to reactive
pollutants.

Generally, the air pollution mixture that originates from local sources is likely to differ from the
mixture caused by regional sources. Ongoing work focuses on the disaggregation of personal
exposure to reactive pollutants to better understand the air pollution origins. This may also
include the investigation of co-emitted pollutants which are not currently detected with low-cost
sensors. The composition of particulate matter, and therefore its toxicity, may vary substantially
between different source types.
A separate epidemiological analysis of the health impacts of regional and of local air pollution
may offer new insights into the medical effects of air pollution. Furthermore, it may help to
estimate the scale of intervention policies to mitigate harmful air pollution exposures.





Chapter 6

Activity-specific personal exposure and
dose estimations

Analysis of measurements collected with portable air pollution monitors increases the spatial
and temporal coverage of personal exposure, providing more accurate exposure estimates
(Section 4.2), breaking the correlation between individual pollutants (Section 4.4.1) and disag-
gregating total exposure into indoor- and outdoor- generated components (Section 5.3). The aim
of this chapter is to show how novel sensor technologies coupled with advanced computational
techniques can evaluate the exposure risks of different activities and derive air pollution dose
estimations in daily life.
Four studies in China, Kenya, Germany and the UK illustrate different aspects of exposure and
dose analyses for health studies. The first part of this chapter explains the concept of personal
exposure and air pollution dose using a modelled agent (Section 6.1). Section 6.2 introduces
a time-location-activity model that automatically classifies the activity pattern of a person
using input parameters from a PAM. Section 6.3 examines the variability of personal exposure
between different activities, and Section 6.4 looks at additional factors that may influence the
air pollution dose. Finally, Section 6.5 compares the results of two cohort studies (AIRLESS
and Pilot project) regarding the activity-dependent personal exposure and dose.

6.1 Concepts of personal exposure and air pollution dose

While personal exposure to a pollutant will be similar for individuals in a given microenviron-
ment, the amount of the pollutant actually received by the body, i.e. the air pollution dose, will
depend on personal characteristics and also on the volume of air a person breathes in.
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The air pollution dose is estimated 1 as the product of the pollutant concentration a person is
exposed to c and the breathing rate f of that person during the exposure (Equation 6.1).

D(t) = f (t)c(t) (6.1)

It can be estimated using any of the following three methods:

• Method A, often employed in large scale epidemiology, uses air pollution measurements
from the static monitoring station closest to the participant’s residential address cstat . The
method uses one generic inhalation rate (fgen = 8.94 L min−1) (Table 2.5) as the level of
physical activity may not be available

• Method B assumes the same generic inhalation rate fgen, but utilises highly resolved air
pollution measurements in the immediate proximity of the participant (cPAM)

• Method C estimates the air pollution dose in an optimal way by using air pollution con-
centrations measured in the immediate environment of each participant at high temporal
resolution (cPAM), and inhalation rates derived from the physical activity intensity (fact)
for an individual.

Figure 6.1 shows the dependence of the inhalation rate (amount of inhaled air per unit time) on
the level of physical activity of diverse people. The graph is based on values from the Exposure
Factors Handbook of the EPA [141] which distinguishes five levels of activity: Sleep describes
sleeping or napping; sedentary contains activities such as watching television, reading or simple
desk work; light activities comprise cooking, ironing, and office tasks; moderate activities
include house cleaning, walking, light yoga, and leisure cycling (< 15 km/h); and the high

intensity category contains activities such as cycling, dancing, and running, but also carrying
groceries.
The graph demonstrates that the inhalation rate may change by a factor of more than ten
depending on the type of activity a person pursues. Consequently, the amount of inhaled air
pollution may change drastically with the level of physical activity. For the dose analysis in
this chapter, mean inhalation rates for adults (male and female combined) were used (see Table
2.5).

1assumes the total absorption of the contaminant into the body, whereas a fraction of the inhaled pollution is
exhaled again [96].
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Fig. 6.1 Average inhalation rates for different levels of physical activity. The values are given
for males (blue) and females (red) of different age groups between 16 and 81 years. With
increasing age the inhalation rate approaches a maximum (varies with activity level and gender)
and then decreases again. Values from Tables 6-17 and 6-19 of [141].

The total dose D, i.e. the amount of pollution inhaled over a determined period of time, which
may cover various activities, is the integral of the time-dependent dose d(t) over the selected
period (Equation 6.2).

D =
∫

d(t)dt =
∫

f (t)c(t)dt (6.2)

d(t) dose at time t
D total dose over defined time period
f inhalation rate
c personal exposure (pollutant concentration in direct environment)

The relationship between personal exposure c, breathing rate f , the dose per unit time d and
the total dose D is illustrated in a simplified model of a person whose activity pattern is shown
in Figure 6.2 and incorporated in Figure 6.3. The model represents an idealised day of an office
worker who commutes to work (= sedentary activity) via walking and cycling, and spends the
rest of his day at home pursuing other sedentary activities.
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Fig. 6.2 Idealised activity pattern of an office worker who commutes to work (= sedentary) via
walking and cycling, and spends his leisure time pursuing other sedentary activities (e.g. eating,
reading, television). A simplified exposure and dose analysis of this case example is shown in
Figure 6.3.

Part A of Figure 6.3 shows the pollutant concentrations the person was exposed to during the
four activities: cycling and walking took place outdoors while sleeping and sedentary activities
were performed indoors. For this example, a reactive pollutant such as NO2 or PM2.5 was
selected. In the absence of local sources, its concentration is lower in indoor environments
compared to ambient levels (Section 5.2.1). For simplicity, the indoor pollutant levels were as-
sumed to be constant across the two indoor microenvironments (work, home); and the pollutant
concentration in the street environment was assumed to be equal to the ambient concentration
(blue). Note that this is a gross simplification of reality as air pollution concentrations are likely
to vary between different indoor environments (e.g. work and home), as well as within highly
polluted environments, such as busy streets, which are often more polluted than the background
locations.

Part B of Figure 6.3 assigns inhalation rates to the four activities of the case example (c.f.
Table 2.5) with lowest inhalation rates during sleeping (5.5 litres per minute) and highest
during cycling (39.2 litres per minute). If the activity pattern of a person is unknown, a generic
inhalation rate may be applied. In Part B of Figure 6.3 it is shown as the blue bar. Note that the
generic inhalation rate2 (8.94 L min−1) is very similar to the inhalation rate during sedentary
activities (8.51 L min−1).

Following Equation 6.1, the product of the exposure levels (A) and the inhalation rates (B)
can be defined as the air pollution dose per unit time (here: per minute). Part D of Figure 6.3
shows these values for the four different activities. The modelled person inhales substantially

2derived from average daily inhalation rate of free-living normal-weight adults; Table 6-5 in [141]
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Fig. 6.3 Schematic example illustrating how the combination of personal exposure c (A),
activity-specific inhalation rates f (B) and the time t spent on different activities (C) may be
used to estimate the pollutant dose per unit time d (D) and the total dose D (E). Based on the
activity pattern of the case example shown in Figure 6.2.

more pollution during cycling and walking because both the air pollution exposure and the
inhalation rates were highest during these activities.
The blue bar in Part D represents the generic dose per minute which would be assumed if no
personal exposure measurements and no information about the activity pattern of the person
were available. In this case, the dose per minute is calculated as the product of the ambient
concentrations measured at static monitoring stations and the generic inhalation rate of adults
(blue bars in Parts A and B, respectively).
Even though the street exposure is assumed to be the same as the ambient levels, the generic
dose would massively underestimate the amount of pollution inhaled during cycling and walk-
ing by neglecting the activity-specific inhalation rates; and overestimate the inhaled dose during
sleeping and sedentary activities.

Part C of Figure 6.3 indicates the total amount of time spent on the four activities. The person
was physically active (cycle and walk) for a small fraction of the day (in total 2 hours) and
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spent most of his time sedentary (14 hours) or asleep (8 hours).

The time budgets (Part C) may be used to determine the total air pollution dose per day and how
much each activity contributes to this daily dose (Part E of Figure 6.3). The total dose that
was inhaled over the course of each activity is determined by integrating the activity-specific
dose per time (Part D) over the time budget of the corresponding activity (Part C, see Equation
6.2). The sum of the individual doses from each activity (coloured fractions of bar) thus gives
the total daily dose (left bar in Part E). If no activity information is available, the generic dose
per time (blue bar in Part D) is simply integrated over 24 hours. The resulting generic total
dose is shown as a blue bar on the right of Part E.
Although the highest amount of inhaled air pollution per time was found during cycling, it
contributed to only 14% of the total daily dose. On the other hand, indoor activities that
were associated with low amounts of pollution inhaled per time (sleeping and sedentary) were
responsible for the major part (62%) of the total dose due to the large fraction of time budget
they occupy.
In this case example, the generic approach would overestimate the total daily dose of the
participant. Note that the outcome in Part E of Figure 6.3 is totally dependent on the set of
assumptions going into the dose calculation (Parts A to C). But as Section 6.4 will demonstrate,
these are not unrealistic for pollutants like NO2 or PM2.5, indicating that indoor exposures are
driving a significant fraction of the total dose.
Finally, the pollution mixture inhaled during different activities likely originates from different
emission sources and, therefore, may contain different chemicals with varying potential toxicity.
Therefore, neglecting the activity component in air pollution dose-health relationships might
lead to erroneous conclusions regarding the toxicity of air pollution.

6.2 Development and validation of a time-location-activity
classification algorithm

The previous section highlighted the importance of time-activity patterns regarding personal
exposure/dose and potential health implications. Because it is labour intensive to collect de-
tailed personal exposure profiles at the individual level in large scale studies, it is necessary to
develop an automated algorithm for activity detection using readily available parameters.
The time-location-activity model presented in this section automatically classifies behavioural
patterns of individuals using auxiliary parameters collected with the PAM (geo-coordinates,
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background noise and acceleration levels) as input. As these parameters can be collected with
ubiquitous smartphone technologies, this model has wider applicability than the specific sensor
platforms. The classifications are extracted by employing machine learning techniques of
spatio-temporal clustering, movement analysis methods, geographical information systems
(GIS) [106] and rule-based algorithms.

6.2.1 Description of the automated time-location-activity model

The flow chart in Figure 6.4 gives an overview of the data processing steps integrated in the
model which are elaborated in this subsection.

Fig. 6.4 Flow chart of the classification model. In the first step the home location was identified
with a rule-based model. In step 2, observations outside of the home are separated broadly into
directional movement and static clusters using a space-time utilisation distribution [90], i.e.
information on the frequency and duration of visits. In the final step 3, segments of directional
movement were classified to transportation modes based on acceleration, speed and GIS.
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Step 1: Home location

As people may spend as much as 90% of their time at home, the first step aimed to reduce the
computational burden in the subsequent analysis using a simple rule-based modelling approach.
It was assumed that the monitors were located at home when they were placed in a charging
station between 02:00 AM and 04:00 AM (local time).
Using a representative participant from the pilot project, Figure 6.5 illustrates the spatial cluster
formed around the home location due to the GPS scattering indoors. The scattering distances
δLon and δLat were used to create a spatial zone where all included points were classified as
home, and were further subclassified as indoor and outdoor based on a rule-based algorithm
of number of visible satellites (with higher numbers typically seen outdoors), acceleration
and charging status of the PAM. Missing GPS coordinates were also classified as home if the
previous and last observations were in that same category.
If the algorithm was not able to identify home location for a participant in this step (for example,
sleeping in multiple locations or a lack of satellite reception during the selected time period),
then it was classified in the next step as the location where the participant spent most of their
time.
Sleeping was classified based on time of day, relatively lower background noise levels and
lower concentrations of the larger particulate matter fraction (PM10) which re-suspend during
periods of physical activity of the occupants.
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Fig. 6.5 Classification of home location of a representative participant from the pilot project
at 1 min resolution. The cyan spatial points indicate observations that do not belong in the
home cluster. The red and blue spatial points denote indoor and outdoor locations at home. An
excellent agreement was generally found between reported and modelled home location. Map
data from OpenStreetMap

Step 2: Separation between static clusters and directional movement

The timestamped GPS data that remained unclassified (i.e. were not within the home bound-
aries) were analysed using a technique3 that models space-use and time-use simultaneously to
identify spatio-temporal patterns in the data.
Parts (a) and (b) of Figure 6.6 illustrate how the method distinguishes between a participant
moving between two locations (directional movement), and a participant remaining at one
static location (e.g. at home or at work).
Part (a) shows all locations visited by a representative participant from the AIRLESS cohort,
coloured by the amount of time they spent in each place. The space-time analysis also in-
cludes the number of times a person re-visits each location (re-visitation rate), and metrics
of directional movement. The model automatically computes these parameters from the GPS
coordinates of each participant.
The results from the space-time analysis were combined with the home classification from
Step 1 to classify each data point in one of three core location categories: home, other static
locations and in transit (Figure 6.6 (b)).

3implemented using the R package "Time Local Convex Hull" (T-LoCoH) [90]
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Work was defined as the static location that has both high re-visitation rates (i.e. ≥ 3 per
week) and extended duration of visits. Similarly with the home location, work was further
sub-classified to indoor and outdoor locations.

Fig. 6.6 Spatial classification of the PAM data of a representative participant from the AIRLESS
winter campaign (rural cohort). (a) 3D map illustrating the relative amount of time spent in
visited locations. (b) Separation between static clusters and clusters with directional movement.
(c) Classification of mode of transport. Map data Google 2019.

Step 3: Mode of transport classification

Observations belonging to non-static clusters were further analysed with the adehabitatLT
package [24] in R. The trajectories between two static locations were partitioned into smaller
segments because people may change the mode of transport during a single journey (e.g. walk-
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ing then travelling by metro train). Each segment was classified using speed and acceleration,
as well as GIS data (obtained from OpenstreetMap [106]) which contains information such
as train routes and bicycle paths. The classification included walking, cycling, in-vehicle,
motorbike and train/tube. The in-vehicle travel refers to car, taxi or bus.
Figure 6.6 (c) shows the commuting mode classification of the example participant from the
AIRLESS project. Their main mode of transport was by motorbike which is relatively common
in the area of Beijing.

The time-location-activity algorithm was validated by comparing model classifications with
diary entries of 38 volunteers residing in London and Cambridge (Pilot project, see Section
2.3.1). All in all, there was a good agreement between the results of the time-location-activity
model and the activity diaries (see Section A.6.1).

6.2.2 Illustrative example of activity classification and dose estimation

Using the time-location-activity model introduced in the previous section, Figures 6.7 and 6.8
illustrate the activity classification and dose calculation using a one-day snapshot of the data
from AIRLESS case participant U123 (Dec 2nd 2016).
Figure 6.7 shows how the different activity patterns of the participant affect auxiliary parameters
of the PAM (top rows, black). Commuting events can be identified by the rapidly changing GPS
coordinates. The rate of change in longitude and latitude is proportional to the participant’s
speed. For example, motorised travel (B) has a faster rate of change than walking (C). In static
locations, longitude and latitude values remained constant.
Background noise and accelerometry readings were highest during commuting (in vehicle
B and walking C), and lowest during sleep (A). Drastic temperature and humidity changes
happened when the participant moved from indoors to outdoors and vice versa (e.g. when
leaving home at 07.00 am) because the outdoor temperature (∼ 0°C) was much lower than
indoors.

The inhalation rates varied by a factor of four over the course of the day, with the highest
volume of air breathed in during walking (22.2 L/min) and the lowest volume breathed in during
sleeping (5.5 L/min).
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Fig. 6.7 Relationship between auxiliary parameters and participant’s activities predicted by the
time-location-activity model (see Section 6.2). One-day snapshot of U123 data (Dec 2nd 2016).
A - sleeping; B - inside a motorised vehicle (bus /car); C - walking in traffic.
Given in local time (UTC + 8). Temperature and RH outside the monitor maximum noise
recordings and acceleration counts above threshold 1 are shown (see Table 2.2).
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Figure 6.8 demonstrates how the modelled activities of participant U123 and the inhalation
rates derived from these were used to estimate the air pollution dose. The graph shows the same
one-day snapshot as Figure 6.7 with the activity classification at the top (blue). The second and
third row show the calibrated and ratified NO2 and PM2.5 exposure (Level 2) of the participant.
These concentrations were multiplied by the inhalation rate (blue) to estimate the dose, i.e. the
amount of pollutant inhaled per minute (bottom row, Equation 6.1).
Reflecting occupancy patterns, indoor exposures showed large variability with lowest PM2.5

and NO2 concentrations during sleeping hours (e.g. 2 am to 6 am), and highest concentrations
when indoor emission sources operated indoors (cyan shaded areas "D"). The pollutant levels
were similarly elevated in commuting environments (car/bus B or walk C); however, the air
pollution dose was much higher during walking due to the higher inhalation rates.
The effect of inhalation rates on dose may be further highlighted by comparing walking in
traffic (C, gold) with peak indoor exposures (D, cyan). The air pollution doses were comparable
during these two events although indoor peak levels were much higher. A detailed analysis of
the air pollution dose risks of different activities is given in the subsequent sections.
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Fig. 6.8 The air pollution dose of a pollutant (purple) is calculated by multiplying the personal
exposure to this pollutant (black) with the activity-dependent inhalation rate (blue).
B - inside motorised vehicle (bus /car); C - walking in traffic; D - indoor emission source.
One-day snapshot of U123 dataset (Dec 2nd 2016), given in local time (UTC + 8). For the
dose calculation, the NO2 mixing ratio (ppb) was first converted into a concentration (µg m−3 )
using a fixed conversion factor of 1.91 µg m−3 /ppb.

6.3 Case studies: assessing personal exposure in different
microenvironments

In epidemiological studies, data from ambient monitoring stations typically cover the exposure
estimates of large study areas, and short-term exposures are assumed to be the same for the
entire population in those areas [18]. The following section examines exposure differences
between microenvironments in three case studies in the UK, Germany, and Kenya. While these
studies only represent snapshots of different exposure scenarios, they illustrate the complexity
of air pollution exposures that may be found even within small study areas.
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6.3.1 Daily life exposures in the UK

During the pilot project, 38 participants carried a PAM with them while keeping a record of
their daily activities. The participation time was on average 8.9 days (see Section 2.3.1, time
budgets shown in Figure A.13).
The exposure data of the participants were classified into the activity categories introduced in
Section 6.2. The NO2 and PM2.5 exposures measured across the 38 participants during these
seven activities are summarised as boxplots in Figure 6.9. NO2 and PM2.5 were selected as
example pollutants as these species are regarded as particularly harmful to human health.

Fig. 6.9 Concentration ranges of NO2 (left) and PM2.5 (right) measured in different microenvi-
ronments during the pilot project (Section 2.3.1, London and Cambridge combined). Diamond
shapes mark the mean exposure. Activity-location classification derived from diary data. Work
is included in the category "other static".

The NO2 and PM2.5 concentrations varied widely between the different activities, with lowest
levels during sleep. As the two pollutants are strongly associated with traffic emissions, it is not
surprising that their highest concentrations were generally observed during commuting activi-
ties. PM2.5 exposures in the rail environments were particularly high. A further disaggregation
of the rail category (based on the participants’ diary entries) showed that this was mainly due
to increased PM2.5 exposures in the tube (mean train exposure: 6µg m−3 , mean tube exposure:
23µg m−3 ).
NO2 and PM2.5 concentrations were generally lower in indoor environments due to indoor
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sinks (Section 5.2.1). Interestingly, even the space inside vehicles seemed to be affected by
indoor sinks as the concentrations inside cars or busses were lower than the pollutant levels in
the outdoor street environment (walking and cycling).

Table 6.1 Ranking of daily activities by average exposure measured during the pilot project
(London and Cambridge combined).

Highest exposure Lowest exposure
1 2 3 4 5 6 7

CO walk / run home car / bus cycle other static sleep train / tube
NO car / bus cycle train / tube walk / run home sleep other static
NO2 cycle train / tube walk / run car / bus other static home sleep
O3 cycle walk / run train / tube car / bus other static home sleep

PM2.5 train / tube walk / run home cycle sleep car / bus other static

Table 6.1 gives an overview of all pollutants measured by the PAM, ranking the activities from
highest to lowest mean exposure for each pollutant. In general, commuting activities caused
higher air pollution exposures than indoor activities (home, sleep, other static). The exposure
risk associated with an activity was different for each pollutant. On one hand, the highest PM2.5

concentrations were found during commuting in rail systems (train / tube), whereas the same
commuting mode was associated with relatively low CO concentrations. On the other hand,
CO levels were relatively high at home possibly due to additional indoor cooking emission
sources. This highlights the fact that, to comprehensively evaluate the health risk of an activity
or microenvironment, multi-pollutant monitoring is essential.

6.3.2 Air pollution in the Berlin metro system

The Pilot UK project found the highest PM2.5 exposures in metro systems. In fact, previous
studies consistently found substantially higher aerosol levels in various underground transport
systems than above ground [91, 151]. The following case study presents a one-day snapshot
of the PM2.5 concentrations in the metro system of Berlin, Germany. A personal monitor
was deployed for short-term experiments in three metro stations and three metro lines in the
underground rail system of Berlin (Figure 6.10, for details of the deployment see Section
2.3.3.1).
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Fig. 6.10 Investigated metro lines and stations in Berlin, Germany.

Figure 6.11 shows the PM2.5 concentrations observed at a selected metro station (Gesundbrun-
nen) and line (U2). The aerosol concentrations measured at the kerbside of a busy 4-lane road
were added for comparison (red line). The underground PM2.5 levels were so high that the
temporal variability of the kerbside PM2.5 levels (< 15 µg m−3 ) was almost not noticeable.
The time series at the metro station shows a distinct pattern of regularly occurring exposure
peaks which coincided precisely with the scheduled departure times of the trains [14]. This
pattern was caused by the piston effect, i.e. the approaching train pushing polluted air from the
tunnel into the station and the leaving train drawing cleaner air from overground environments
into the station. This process caused the PM2.5 levels inside the station to change by up to 80 µg
m−3 in less than 5 minutes.
When the train emerged from the underground system the elevated PM2.5 concentrations inside
the metro train decreased and approached the (lower) outdoor concentrations (Figure 6.11
right). Note however, that the measurements were taken in the summer season when the
metro cars were strongly ventilated by open windows. It is likely that such quick changes
would not be observed in the winter season when less ventilation is present. In that case the
air quality inside trains might be even poorer, as air exchange with cleaner outside air is reduced.
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Fig. 6.11 Illustrative examples of the personal PM2.5 exposures (black) inside a metro station
(Gesundbrunnen, left) and during a metro train ride (U2 line, right), compared with measure-
ments from an air quality monitoring station located at a highly trafficked street (Frankfurter
Allee, red). The PM2.5 concentrations in the station were strongly correlated to the departure
times of the trains (blue line). Overground sections of the line (yellow shaded) were less
polluted than underground sections.

The left of Figure 6.12 summarises the PM2.5 concentrations measured at the investigated metro
stations and metro lines. In line with previous literature, the air quality differed significantly
between subsurface and overground sections of the lines. The right part of Figure 6.12 shows
PM2.5 concentrations measured in different lines of the London Underground for comparison
[126]. The aerosol concentrations in the underground parts of the rail system (station and
underground sections of the lines; mean: 84 µg m−3 ) were on average almost 8 times higher
than the outdoor levels at the kerbside (mean: 11 µg m−3 ), and almost twice as high as the
exposures in overground sections of the metro lines (mean: 48 µg m−3 ). These results agree
with previous studies on other metro systems finding underground aerosol concentrations being
1.3 to 15 times higher than in the corresponding outdoor environments, and clearly depending
on the tunnel depth [91, 126, 151].

Table 6.2 compares the average concentrations measured at the metro system with kerbside and
ambient observations for all five pollutants measured by the PAM. While the PM2.5 concentra-
tions were higher in the metro environment than on the street, the concentrations of the gaseous
pollutants were lower in the subway and in the case of O3 and NO2 also lower than the ambient
background concentrations, suggesting the presence of indoor sinks in underground systems.
The PM2.5 concentrations in the Berlin underground were comparable to the PM2.5 levels found
at the Piccadilly line of the London Underground (study by Smith et al.; right of Figure 6.12).
It is remarkable that the metro systems in the two cities contained comparable PM2.5 levels
although they have very different characteristics (age, depth, ventilation system).
Smith’s study was also able to point to differences in the chemical composition of the aerosol
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Fig. 6.12 Left: Boxplots comparing the personal PM2.5 exposures inside metro stations and
trains with the PM2.5 concentrations measured at a kerbside monitoring station in Berlin,
Germany. Graph includes the measurements from all examined metro stations (Gesundbrunnen,
Alexanderplatz, Tiergarten) and metro lines (U1, U2, U5; split into underground and overground
sections). Right: PM2.5 concentrations measured in different lines of the London Underground
[126]. Mean line depth shown in brackets beneath. Note the different scaling of the y-axis.

between sub-surface and above-ground sections of the London tube which may have an im-
portant impact on potential health effects. Particulate matter in subway systems is usually
characterised by larger fractions of metallic compounds which originate from the wear of
steel components of the trains and rails [126]. As these compounds are often regarded as the
most toxic compounds in particulate matter [126], special care must be taken when evaluating
the health effects of underground air pollution. The measurement technology used in this
work (PAM) was not able to capture the different PM compositions, however, the relationship
between two pollutant species such as NO2 and PM2.5 might give an initial indication of the
emission sources in the surroundings (Figure 6.13).

Overall, confirming and extending previous findings in metro systems, this deployment indi-
cated that different commuting modes result in exposure to a unique chemical mixture with
street level commuting dominated by gases and underground systems dominated by particulate
matter.



136 Activity-specific personal exposure and dose estimations

Table 6.2 Mean pollutant concentrations measured during metro commute (stations and trains)
and in road traffic, compared with urban background concentrations in Berlin.

Metro Road traffic
kerbside

Urban BG

CO / ppb 330 402 NA
NO / ppb 11 13 4
NO2 / ppb 10 28 17
O3 / ppb 2 32 35
PM2.5 / µg m−3 67 11 NA

Kerbside concentrations from air quality station Frankfurter Allee. Urban BG from air quality stations Neukölln
in Berlin (BLUME network [13]). Concentrations averaged over the metro data collection time (10/09/2018

09:00-20:00)

Fig. 6.13 PM2.5/NO2 ratio measured at metro stations (left), inside metro trains (middle) and at
the kerbside of a busy street (right). The underground was dominated by PM2.5 while the street
environment was dominated by NO2.
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6.3.3 Domestic exposures using different cooking fuels

People spend the majority of their time inside their homes [73]. Hence, household air pollution
is an important contributor to their overall exposure. According to the WHO, over 4 million
people died prematurely in 2012 as a result of this household air pollution [147]. Cooking and
heating practices contribute substantially to domestic air pollution, particularly in low- and
middle-income countries where people often rely on biomass burning [147]. Even in the UK
(no indoor biomass burning), high PM2.5 and CO concentrations were measured in the home
environments of the pilot participants which likely originated from cooking emissions.
The following case study investigates how cooking practices may affect the air pollution levels
in rural Kenyan households. During the study, portable air quality monitors were deployed in
the kitchen areas of eight households with newly introduced biogas plants and four households
that used traditional cooking fuels (mainly charcoal).
The outdoor air quality was monitored with three AQMesh instruments distributed in strategic
locations around the settlement to extract the background air pollution concentrations. Further
details of the Kenyan deployment are given in Section 2.3.3.2.

The participants spent on average 77 min per biogas cooking session whereas charcoal cooking
events lasted for 127 min. Because of the convenience of the biogas cooker, however, people
used it on average 1.7 times more often than the charcoal stove. As a result, the residents spent
the same amount of time per day (on average ca. 2 hours) on cooking with both types of fuels.
Figure 6.14 presents the CO, NO and PM2.5 concentrations measured when the participants
were cooking with biogas (green) and with charcoal (grey), compared to the outdoor back-
ground concentrations (white). Both biogas and charcoal fuels raised the indoor pollution
concentrations to levels approximately 10-15 times higher than the regional outdoor concentra-
tions. Charcoal fuels caused on average higher gaseous pollution levels (CO and NO). Higher
CO levels indicate a lower combustion efficiency of the charcoal stove which raises the question
whether other pollutant species were co-emitted during the charcoal burning which were not
detected by the PAM but nevertheless could have serious toxic effects on the human body.
Biogas generated higher PM2.5 levels than traditional cooking fuels. A possible explanation
for the higher PM levels might be related to the instrumentation i.e. the light scattering OPC.
While convenient due to high portability, low power consumption and low-noise levels, the
OPC could not detect soot which might be produced in large quantities during charcoal burning.
Furthermore, emissions from cooking may not only originate from the heating source but also
from the food itself [138].
The introduction of biogas as cooking fuel reduced the exposure to gaseous air pollutants
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during cooking events, but not the exposure to particulate matter. Hence, the use of biogas
plants did not result in a clear improvement of domestic air quality. However, it improved the
life quality of the residents in other respects such as lower financial costs, reduced time for
domestic chores (i.e. firewood collection), convenience and environmental sustainability.

Fig. 6.14 Concentration ranges measured during indoor cooking events using biogas (green)
and charcoal (grey), compared to outdoor background pollution levels (white). For technical
reasons, NO2 data were not available (see Section 2.3.3.2). Time periods when the participants
were cooking indoors with one cooking fuel only (biogas or charcoal, no other simultaneous
fuels in use) were included in the graph.

6.4 Estimations of air pollution dose of the AIRLESS project

The following section combines activity dependent inhalation rates with personal exposure
measurements to generate improved air pollution dose estimations for 251 participants.
This novel dose estimation approach will be compared to conventional methods based on
generic inhalations rates and static exposure measurements. Section 6.4.1 examines the air
pollution dose per unit time that is inhaled during specific activities (c.f. Figure 6.3 D) and
Section 6.4.2 looks at their total dose per day (c.f. Figure 6.3 E).
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The Section focuses on the data from the winter campaign of the AIRLESS project which has
been extensively characterised in Chapters 4 and 5 (data collection described in Section 2.3.2).

6.4.1 Activity specific dose estimates per unit time

Section 6.1 demonstrated how strongly the inhaled amount of pollutant may differ between
various activities. For instance, in the example given in Figure 6.3 (Part D), the pollution dose
inhaled while cycling was over 10 times higher than the dose inhaled while sleeping, which
was due to a combination of different air pollution concentrations and different inhalation rates
during the two activities.
This section examines the activity specific dose estimations in the AIRLESS project. Figure
6.15 shows the average pollutant dose per minute inhaled by the AIRLESS participants during
different activities, calculated with the three methods A, B and C (Section 6.1).
Method A may not distinguish between different activities; therefore, the same dose estimation
is given for all activities (white bar). As method B integrates one generic inhalation rate across
all activities, the resulting average dose is proportional to the mean pollutant concentrations the
participants were exposed to during the different activities.
The home environment had the biggest impact on the CO dose/min, which was probably caused
by indoor emission sources such as cooking and heating (c.f. Section 6.3.3). The average NOx
dose/min was highest during street-level transportation, likely due to strong sources in the
traffic environment.
When inhalation rates were taken into account (method C), the maximum dose was received
during active modes of transport (walking, cycling) owing to the increased physical activity
level. In contrast, the dose during sleep was usually the smallest because of the low breathing
rate during this activity. The generic inhalation rate (8.94 L/min) was very similar to the
inhalation rate during sedentary activities (8.51 L/min). As a consequence, the difference
between dose estimation approaches B and C (generic and activity adjusted) was negligible for
mainly sedentary activities (home, other static, commuting sitting in vehicles).
The air pollution dose varied by a factor of up to ∼ 20 between different activities (e.g. NO2

dose during sleeping: 0.085 µg/min, during cycling: 1.59 µg/min). Conventional approaches
(method A) may not capture this variability and, thus, may be prone to large uncertainties in
the dose estimation of individuals.
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Fig. 6.15 Mean pollutant dose per minute during different activities using the three estimation
methods A, B and C (averaged over the urban and peri-urban cohort). Error bars indicate the
standard error of dose estimations across the cohort. [28]

6.4.2 Total air pollution estimation across all visited microenvironments

So far, the highest dose per minute was observed during commuting. However, people usually
spend only a small fraction (< 10%) of their time in transit [73], so this has only a small impact
on their total dose. To date, it is still not clear if exposure peaks or elevated mean exposure
levels are significant for health effects. The following section examines the contribution of
different activities to the total pollutant dose received over a full day, taking into account the
time budgets of each activity (c.f. Figure 6.3 Part E).
The bar plots in Figure 6.16 show the average daily pollution dose of urban and peri-urban
participants calculated with the three dose estimation methods described in Section 6.1. As
methods A and B are integrating a constant inhalation rate, the average dose depends only on
the measured pollutant concentrations in the surrounding microenvironment. Therefore, the
difference between methods A and B is a measure of the exposure misclassification between
personal and ambient estimates, which was substantial in all cases. For example, the outdoor
monitoring stations over-predicted PM2.5 exposure by almost four times, while exposure to CO
was under-predicted by approximately the same factor.
The difference between method B and method C, both derived from personal measurements,



6.5 Comparison between dose estimations from the AIRLESS and the pilot project 141

was marginal despite integrating activity-dependent inhalation rates in method C. This was
mostly due to the low physical activity levels of the participants which resulted in an average
inhalation rate similar to the generic one used for methods A and B.
On the one hand, the home microenvironment was the most important contributor to the total
daily dose, partly because participants spent most of their time there. In addition, strong indoor
sources of CO and NO operated there, elevating personal dose. On the other hand, the doses
of NO2, O3 and PM2.5 were lower than the estimates based on ambient exposures due to the
indoor reactivity of these pollutants (c.f. Section 5.2.1).

Fig. 6.16 Average daily pollution dose inhaled by the AIRLESS participants during the winter
deployment estimated using methods A–C (see Section 6.1). Averaged over the urban (left)
and peri-urban cohort (right); error bars indicate the standard error of dose estimations across
the cohort [28]

6.5 Comparison between dose estimations from the AIRLESS
and the pilot project

Although not representative of the UK or Chinese populations, the comparison of personal
doses in this section highlights some differences that may be related to geographical variation
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of air pollution or socio-economic factors, and others which may be due to the different charac-
teristics of the specific cohorts.

6.5.1 Differences in time budgets

One factor that determines the total air pollution dose and how much different daily activities
contribute to it, is the activity pattern of a participant, i.e. the time a person spent on different
activities (Section 6.1). Figure 6.17 shows the time budgets of the project cohorts by hour of
the day classified with the time-activity model.
The majority of the participants in both projects stayed at home during the night hours (11pm
to 6am). The participants of the pilot project were more mobile than the AIRLESS participants,
with larger time fractions spent in transit or at other static locations during daytime hours.
This is probably due to differences in the socio-economic and demographic characteristics of
the cohorts: the participants of the AIRLESS project were predominantly retired or working
from home4, whereas the participants of the pilot project were younger and mainly working or
studying at universities.
The urban participants (both in London and in Beijing) spent generally more time on commut-
ing than the peri-urban participants (Cambridge and Pinggu), probably because commuting
distances were greater in the urban cohorts.

4A large part of the peri-urban cohort was working in the agricultural sector. However, little outdoor work was
performed during the winter months.
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Fig. 6.17 Time budgets of the the AIRLESS (top, winter campaign) and Pilot (bottom) cohorts
as predicted by the time-location-activity model (Section 6.2). For each hour of the day the
fraction of the cohort spending time at home (red), another static location (cyan) or in transit
(blue) is given. The time that could not be classified by the model is shown in grey.

6.5.2 Exposure differences

Figure 6.18 compares personal exposures measured during different activities in the AIRLESS
and Pilot project using NO2 and PM2.5 as example pollutants.
The observations from the AIRLESS project were substantially higher than those from the
pilot project, with the difference between the two locations being more distinct for the PM2.5

exposures than for the NO2 exposures. This difference was probably due to the higher ambient
pollution concentrations in China compared to the UK (mean ambient NO2 concentrations:
13 ppb (Pilot UK), 33 ppb (AIRLESS China); PM2.5: 10 µg m−3 (UK), 92 µg m−3 (China)).
Despite that, the air pollution exposures in rail systems were comparable between the two
projects. This is probably due to the London underground being one of the most polluted metro
systems in the world [151].
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Fig. 6.18 Comparison of the NO2 (left) and PM2.5 (right) concentrations in different microenvi-
ronments measured during the AIRLESS (left box for each activity) and the pilot project (right
box). The average ambient pollutant concentrations are added as dashed lines. Diamond shapes
mark the mean exposure. The exposures from the pilot project can be seen in larger scale in
Figure 6.9.

6.5.3 Differences in the air pollution mixture

Besides the absolute exposure differences, the air pollution mixture differed between the two
locations. As already demonstrated in Figure 6.13, the ratio between two pollutants such
as NO2 and PM2.5 changes between different microenvironments, suggesting different air
pollution compositions and potential toxicities.

Figure 6.19 illustrates this using the ratio between PM2.5 and NO2 measured during the pilot
project and the AIRLESS project (winter campaign) as an example. In ambient air (measured
by monitoring station, left of Figure 6.19) the PM2.5/NO2 ratio was higher in China than in the
UK owing to different regional emission sources (UK has more NO2 emissions from diesel
vehicles, China has more PM2.5 emissions from coal plants). As personal exposures are driven
primarily by local sources, this difference in the ratios was substantially larger with PM2.5

dominating personal exposure in China.

Figure 6.20 investigates the relationship between the mean PM2.5 and NO2 exposures of each
participant (c.f. Figure 4.7) based on measurements from a static reference station (left) and
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Fig. 6.19 Boxplots of the PM2.5/NO2 ratios observed in ambient air (left) and personal exposures
(right) during the AIRLESS and the Pilot project. Note the different y-axis scaling.

based on PAM measurements split by activity (right). As discussed in Section 4.4.1, different
pollutant species were highly correlated in the static observations. In other words, the ambient
air pollution mixture was relatively constant.The right graphs of Figure 6.20 show the air
pollution mixtures split by microenvironment. In line with the findings from Section 4.4.1, the
correlation between the two pollutants was substantially reduced in the PAM measurements.

The air pollution mixture changed distinctly between the different microenvironments, which
is visible at the different slopes of the linear fits in Figure 6.20. In the Pilot project, the street
environment was dominated by relatively high NO2 levels (low PM2.5/NO2 ratio), probably due
to NO2 emissions from diesel vehicles. The rail systems contained higher PM2.5/NO2 ratios
which were likely due to the high PM2.5 levels in the London underground (see Section 6.3.2).
In the home microenvironment the Pilot participants were exposed to the highest PM2.5/NO2

ratios, possibly due to highly effective NO2 removal mechanisms inside the buildings.
Different patterns were found in the AIRLESS project indicating different types of emission
sources in the Chinese microenvironments.



146 Activity-specific personal exposure and dose estimations

Fig. 6.20 Relationship between PM2.5 and NO2 in static observations (left) and in different
microenvironments (right) as indicator for the air pollution mixture. Comparison between Pilot
(top) and AIRLESS project (bottom). Exposures averaged by participant.

6.5.4 Contributions of activities to the total air pollution dose

The previously examined time budgets and personal exposures during different activities de-
termine the total daily air pollution dose of the participants (Equation 6.2). The air pollution
levels during the AIRLESS project were much higher than the ones observed during the pilot
project, resulting in much higher total doses for the AIRLESS participants. To compare the
contributions from different activities, each total dose was normalised to 100% (Figure 6.21).
The home environment (including sleep) had a much larger impact on the air pollution doses in
China (left) than in the UK (right). This can be attributed to the larger amount of time spent at
home by the older AIRLESS participants (see Figure 6.17), but also to stronger indoor emission
sources in China, particularly in the peri-urban cohort.
Despite the fact that the highest pollution exposures in China were found during commuting
(walking, cycling, car; see Figure 6.18), the contribution from transit modes to the overall
pollution dose was very small because of the relatively small fraction of time spent in transit.
Although indoor environments (home, sleep, other static) contributed less to the pilot doses
compared to the AIRLESS doses, they nevertheless constituted a large fraction (> 50%) of the
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total dose. This emphasises the urgent need to include indoor exposures in health studies.

Fig. 6.21 Mean contributions of different activities to the total air pollution dose of the cohorts
from the AIRLESS project (left) and the pilot project (right). Doses were normalised to 100%.

Table 6.3 (a) ranks the activities by exposure, i.e. the concentration measured during each
activity (c.f. Figure 6.3 A). The highest NO2 exposures were found in traffic environments
(UK: cycling, China: in vehicle), and the lowest levels were found in indoor environments.
Table 6.3 (b) ranks the activities by the average amount of NO2 that was inhaled by the par-
ticipants per unit time (c.f. Figure 6.3 D). In this case, the activities which required higher
levels of exercise and caused faster breathing rates (cycling, walking) were associated with the
highest NO2 dose per minute, while indoor activities bore the lowest risks.
Table 6.3 (c) shows a completely different picture as the time budget plays a significant role in
determining the relative importance of different microenvironments on the total daily dose.
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Table 6.3 Ranking of daily activities by NO2 exposure and dose risk (c.f. Table 6.1). Findings
from the AIRLESS project (China) were compared to those from the Pilot project (UK).

(a) Personal exposure to NO2
UK 1 cycle 2 train / tube 3 walk / run 4 car / bus 5 other static 6 home 7 sleep
China 1 car / bus 2 cycle 3 walk / run 4 home 5 other static 6 train / tube 7 sleep

(b) NO2 dose per minute
UK 1 cycle 2 walk 3 train / tube 4 car / bus 5 other static 6 home 7 sleep
China 1 cycle 2 walk 3 car / bus train/ tube 5 other static 6 home 7 sleep

(c) Contribution to total NO2 dose
UK 1 other static 2 home 3 walk / run 4 sleep 5 cycle 6 car / bus 7 train / tube
China 1 home 2 sleep 3 other static 4 car / bus 5 walk / run 6 cycle 7 train / tube

6.6 Chapter summary

Time-activity patterns are important determinants of personal exposure and dose, but have been
largely omitted from health studies due to the difficulty of collecting detailed activity profiles
of individuals. This chapter combined a time-location-activity model with data from personal
monitors to comprehensively characterise personal exposure and dose during various daily life
activities.

As it is not yet clear whether peak exposures or the prolonged exposure to higher pollution
levels are more important for health outcomes, a detailed picture of exposure during daily life
is necessary. Four case studies were selected to demonstrate driving factors of exposure to
air pollution in different microenvironments. The level of physical activity can alter the mean
temporary dose by a factor of 10, however, high intensity activities are usually performed over
only short periods of time. The impact of inhalation rates is expected to be higher in more
active subpopulations such as children.

The disaggregation of air pollution exposures by activity showed that not only the air pollu-
tion concentrations, but also the chemical composition differ between microenvironments. A
separate epidemiological analysis of the health risks of the exposures in different types of
microenvironments may bring new insights into the toxicity of air pollution mixtures orig-
inating from various sources. Underground commuting modes in particular were found to
significantly elevate PM levels that are potentially more harmful due to the high fraction of
metallic compounds.
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In summary, this chapter demonstrated how a comprehensive exposure and dose analysis can
be achieved by combining a time-location-activity classification model with personal exposure
data. Neglecting the air pollution differences between microenvironments and/or the activity
patterns of individuals (including their breathing rates) may lead to significant errors in air
pollution dose estimations in health studies.





Chapter 7

Conclusions and Outlook

7.1 Main achievements

This work has created and validated a reliable, cost-effective, and convenient method for
monitoring personal air pollution exposure with high and well quantified accuracy. It has also
highlighted the substantial exposure errors which can be introduced when using conventional
exposure measurement methods in large scale epidemiology.
This work represents an important next step for future epidemiological research towards an
improved assessment of personal exposure to advance our understanding of the detrimental
effects of air pollution.

The novel methodology presented in this work also combined personal air quality monitoring
with a time-location-activity model to generate air pollution exposure and dose estimations
under field conditions with a level of detail hitherto impossible.

The novel devices were deployed in a range of studies in China, the UK, Germany and Kenya,
demonstrating excellent performance in a wide range of environmental conditions and pollution
levels. Participants from all these diverse socio-economic backgrounds readily accepted the
PAM in their daily lives, making it a practical device for exposure and health studies.

Compared to conventional epidemiological approaches based on air quality monitoring stations,
the PAM demonstrated the following advantages:

(a) Potential to establish reliable links between air pollution and health effects by reducing

exposure misclassification

Thanks to its wearability and high spatio-temporal resolution, the PAM substantially reduced



152 Conclusions and Outlook

the exposure misclassification of static approaches. Its small size, user-friendly application and
almost silent operation qualified it as an ideal, unobtrusive tool to measure personal exposures
in previously neglected microenvironments such as homes, offices or in public transportation.
The PAM was able to capture the high exposure variability between individual members of a
cohort caused by their unique behavioural patterns.

(b) Reduction of the multicollinearity between different pollutant species

Ambient air quality observations often suffer from highly correlated concentration measure-
ments of multiple pollutant species which prevent epidemiological studies from identifying
specific pollutants as harmful for human health. By capturing the high variability of daily life
exposures, this correlation was substantially reduced in the personal measurements.

(c) Capability to assign exposure and health risks to daily life activities

The combination of personal exposure and behavioural information allows on one level to link
exposure to health outcomes, and on another level to link exposure to activity. Together, this
may generate policy-relevant conclusions in terms of clearly associating specific pollutants
either to health impacts or to activities which could be mitigated to reduce exposure.

(d) Ability to characterise personal exposure and dose in under-researched areas

The PAM captured the large heterogeneity of air pollution across urban and rural locations in
diverse geographical settings. While rural environments are often characterised by stronger and
more diverse air pollution emission sources, their research infrastructure is often not configured
to evaluate these exposure risks, perhaps preventing the emergence of policy-relevant evidence.
The low production and maintenance costs, and the limited dependence on mains power make
the PAM suitable for deployments in countries or areas with less developed research infrastruc-
tures to deal with urgent environmental challenges.

Overall, this work has demonstrated not just the feasibility, but also the necessity of under-
standing personal exposure when undertaking epidemiological studies and is an important step,
when combined with other statistical and AI methods, to create population scale estimates of
both causal linkages between exposure and health outcomes, and the impacts of politically
based interventions.
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7.2 Policy relevant findings

This work adopted a multidisciplinary approach to comprehensively characterise personal
exposure and dose during daily life scenarios. The following conclusions were drawn from this
study.

• indoor environments are the main contributor to the daily air pollution dose;

• local emission sources had often a far more important impact on personal exposure than
regional sources;

• the ratios between different pollutant species, and therefore their relative importance in
terms of health effects, differed between ambient and personal exposure measurements;
and

• the air pollution mixture, and therefore its potential toxicity, distinctly changed between
different microenvironments.

These findings stress that ambient air quality monitoring, as it has conventionally been used in
virtually all epidemiological studies, is not suitable to correctly quantify personal exposure or
dose; and that, to maximise the impact of policy interventions, more attention must be paid
to indoor environments. While mitigation policies often focus on highly polluted outdoor
locations such as traffic environments, more recent approaches are starting to acknowledge the
importance of indoor environments regarding the air pollution burden of society [139]. Novel
exposure analysis approaches, as the one presented here, may help to generate more efficient
policies to protect the population from the negative effects of air pollution.

7.3 Limitations and future work

Future developments may lead to more advanced and perhaps even smaller sensing technologies
which would help to further characterise health-relevant aspects of personal exposure. Such
new sensors could be integrated into improved versions of personal monitoring devices, and
possibly be combined with smartphones or smartwatch technologies which are now routinely
providing estimates of physiological parameters such as heart rate/variability, V02max, and
even ECG information. Integrating such complex and sophisticated data into health studies is a
task for the near future.
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Future possibilities may also involve sensors that quantify a larger number of harmful pollu-
tants (such as VOCs) or even real-time feedback to participants to minimise their health risks.
Nevertheless, this work has demonstrated the value of research into this direction and defined
the general strategy of how miniaturised sensors may be deployed to exploit their full potential.

It is possible, but this is true for any epidemiological study, that, rather than observing the
direct health effect of a targeted pollutant, a pollutant in fact serves as a proxy for one or more
co-emitted chemical compounds that may impact on health. Research to date has yet to clearly
define the differential toxicity of particle compositions, owing to the limited high-quality mea-
surements of pollutant species applied in most epidemiological studies, and the high correlation
between multiple pollutants.
By separating regional from local air pollution and classifying exposure by microenvironment,
this work has made first steps towards assigning personal exposure to individual emission
sources. Integrating such source-segregated exposure information in future epidemiological
studies may help to differentiate source-related health effects.

The studies in this work focused on specific subpopulations which inevitably have demograph-
ics that do not represent the whole population. However, the exposure and dose estimations
of these investigated cohorts changed drastically after applying the novel methodology for
reasons that are independent from the characteristics of the cohorts. The importance of personal
monitoring rather than ambient monitoring is therefore relevant across multiple subpopulations.

Because it is unfeasible to expand an approach based on personal devices to cohorts that are
large enough to represent an entire population, there is an urgent need for a validated personal
exposure modelling tool. The methodological framework developed for this work provides a
basis of this which can be extended to support and validate a population-scale personal exposure
model with detailed time-activity profiles and corresponding measurements at high spatial and
temporal resolution.

Epidemiological models linking air quality and heath will need to be adapted to the increasing
complexity of the exposure data (high resolution, activity data etc.) in order to exploit the full
potential of this new exposure and dose assessment approach.

7.4 Concluding remarks

The findings of this dissertation should lead to a paradigm shift in quantifying air pollution
exposure in epidemiological studies and generate important knowledge which might be critical
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for the development of efficient strategies to mitigate the detrimental effects of air pollution on
the human population.
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Appendix A

Supplementary materials

A.1 Introduction

A.1.1 Overview of different methods to estimate personal exposure

A.1.1.1 Indirect methods: Stationary measurements and models

Ambient measurements

A traditional approach in epidemiology to estimate a population’s exposure to air pollution is
using data from static air quality monitoring stations [79]. Equipped with certified reference
instruments, these stations provide very accurate and reliable pollutant concentration measure-
ments. The monitoring stations are only located outdoors and, because of their high acquisition
and maintenance costs, they are scarcely distributed over large regions (postcode level or more).
Consequently, one monitoring station is often used to estimate the exposure of large numbers
(n > 1000) of individuals.

Satellite measurements

An alternative way to measure air pollution concentrations is using optical instruments attached
to satellites. Based on the specific absorption or scattering properties of a pollutant, their surface
concentration can be estimated using far-range spectroscopic methods [142, 82]. The spatial
resolution of this method is often only in degrees of longitude and latitude (up to > 100 km,
e.g. [118]), making the term "high-resolution" in this context referring to resolutions of around
1 km [70, 88].
Satellite air pollution measurements have been used in global epidemiological studies such
as Anderson et al. who "did not find evidence of a positive association between ambient
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air pollution and asthma prevalence in contrast to reports from within-community studies of
individuals exposed to traffic pollution" [118].
The conflicting conclusions between studies based on satellite observations and those based on
finer scale exposures indicate that more accurate estimates of personal air pollution exposure
are needed to draw reliable associations between air pollution exposure and health outcomes.
Air pollution concentrations can vary significantly in space and time because they are affected
by various factors such as local emission sources, surface losses or the filtering effects of
buildings. Therefore, the correlation between ambient and personal exposure can be very
small (R2=0.09-0.83, median 0.54 [11]) which makes static monitoring stations or satellite
observations a poor predictor for personal exposure.

Air quality models

The low spatial resolution of air quality data can be overcome by applying air quality models.
They can be based on ambient air pollution observations (from satellites / monitoring stations)
or emission inventories (amount of air pollution discharged by different sources over a specified
period of time). By taking into account meteorological factors, atmospheric dispersion, air pol-
lution transport dynamics, deposition, local emission sources, industrial activities, atmospheric
chemistry, and building ventilation and infiltration, the temporal and spatial resolution of air
pollution data can be significantly improved [101]. Air quality models can estimate the air pol-
lution exposures of very large populations, and are useful to predict future pollution scenarios
and inform policy makers about the expected outcomes of air pollution mitigation strategies.
However, the experimental validation of the model outcomes is challenging, particularly on
fine spatial scales.

Microenvironments and time budgets

A microenvironment is a "[volume] of air space with homogeneous pollutant concentration"
[48]. If the concentrations of all microenvironments visited by a person were known as well as
the amounts of time spent in each location (time budgets), a person’s personal exposure could
be calculated very accurately. Due to the great number of microenvironments visited in daily
life, microenvironmental approaches are usually limited to pollution measurements in the main
microenvironments such as home, work/school, and traffic environments (e.g [103, 81, 131]).
Instead of directly measuring the pollution concentration in microenvironments, they can also
be estimated using air pollution models.
The time budgets (time spent in each location) can be retrieved directly from GPS instruments
(e.g. smartphones) or diary entries [41, 154], or they can be estimated based on common
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behavioural patterns. Nieuwenhuijsen et al. [103] estimated the personal exposures of school
children using a "CalFit" activity tracking software and modelled black carbon concentrations in
microenvironments visited by the pupils. The comparison of the estimated results with directly
measured personal black carbon exposures showed moderate to good correlations in static
indoor environments (home, school; r = 0.59-0.68) and lower correlations during commuting
(r = 0.21-0.32).

A.1.1.2 Direct measurements: Personal sampling

Personal samplers are directly attached to an individual which allows them to capture the
pollutant concentrations in the immediate environment of the person. Depending on the target
pollutant, different sensor types are available:

Light scattering devices

Virtually all portable particulate matter sensors are based on light scattering [98]. The particles
pass through a sensor chamber and scatter the light of a laser beam. The detected scattered light
contains information about the particle concentration. Volume scattering devices illuminate a
number of particles in a defined volume and output, via calibration with test aerosols, a mass
concentration of particulate matter. Optical particle counters (OPCs) illuminate individual
particles to retrieve information about particulate number and size. The mass concentration
is then estimated by assuming a spherical particle shape and a predefined density (for more
details see Section 2.1.2). Optical aerosol measurement methods are limited to particle sizes
above 300 nm and suffer from RH interference. However, with appropriate data-processing
they can achieve great accuracy and reproducibility [44, 29].

Acoustic resonators

Acoustic resonators, such as quartz chrystal microbalances (QCM), detect subtle changes of
the resonance frequency of an oscillating body (e.g. a quartz crystal) when exposed to a gas
[98]. The adsorption of the gas onto the resonator, or onto a thin film coating it, changes the
mass of the resonator and therefore its resonance frequency. Typical analytes are NO [156],
NH3 or CO2 [143]. These devices are very precise, fast responding and have low production
costs. However, they can suffer from significant cross-interference with other gases [136].
Resonating systems can also be used to measure particulate mass concentrations [158]. Com-
pared to optical systems, they can detect particles of all sizes. Their high precision and tiny
dimensions ("two orders of magnitude smaller than [currently] commercially available PM
sensors" [47]) make them strong candidates for personal sampling. However, these techniques



174 Supplementary materials

struggle with signal saturation due to mass loading [146], low particle capture efficiencies and
temperature interference. Nevertheless, the technology is greatly progressing at the moment
and might gain significant importance in the field of portable PM monitors in the near future
[112].

Metal oxide semiconductor (MOS)

Along with electrochemical sensors, MOS sensors are the most commonly used portable gas
sensors [116, 93]. When exposed to the target gas, the integrated metal oxide changes its con-
ductivity proportionally to the concentration of the gas. MOS sensors have very low production
costs, are simple to use and may detect a large range of gases including O3, NO2, CO and
NH3; [93]. However, they suffer from measurement instabilities and drifts and display severe
cross-interference with other gases as well as with temperature and RH [116].

Electrochemical (EC) sensors

Electrochemical gas sensors can be amperometric, coulometric and potentiometric. However,
amperometric sensors are most suitable for the quantification of atmospheric pollutant gases
due to their high sensitivity and good performance under atmospheric conditions. In the
following, the term "electrochemical (EC) sensor" will refer to the amperometric type only.
Their principle of operation is based on redox reactions of the target pollutant at the sensor
electrode surface which cause a measurable electric current that is proportional to the pollutant
concentration (more details in Section 2.1.1). Typical analytes are e.g. CO, NOx, SO2 and CO.
EC sensors need less power and are more reliable and sensitive than MOS sensors, however,
they are more expensive and slightly larger [116]. EC sensor measurements may be affected by
temperature, RH and pressure fluctuations which can, however, be corrected for by appropriate
post-processing [27, 29]. Their cross-interference with other pollutants can be adjusted by
selecting appropriate electrode materials and filters, however cross-interference with some
gases (e.g. between O3 and NO2) still remains [27, 136].

Spectroscopic gas sensors

Spectroscopic measurements are based on light absorption. The intensity I of a laser beam with
a certain wavelength λ is attenuated when passing through the absorbing analyte. The light
attenuation depends on the path length of the light beam l, the wavelength-specific extinction
coefficient ελ , and the concentration of the analyte c as described in the Beer-Lambert law
(Eq. A.1). The laser wavelength of spectroscopic sensors for atmospheric gases can be in the
infrared (IR) or the ultraviolet (UV) spectrum.
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The most popular analyte for IR spectroscopic sensors is carbon dioxide CO2 because of its
strong absorption band in the IR (4.3 µm) [16], other analytes include methane CH4, ammonia
NH3 and formaldehyde CH2O. Typical analytes for UV absorption include O3, VOC and NO2.
Spectroscopic sensors can respond very fast to concentration changes [93, 10]. They can
suffer from multi-gas interference which can, however, be corrected with filters or correction
algorithms [45]. Excellent sensitivities can be achieved by increasing the path length using
multipass cells or cavity ring down methods. Overall, spectroscopic gas sensors seem to be
unaffected by temperature and RH fluctuations [93] although minor RH interference has been
reported [10]. Optical sensors require highly reflective optical equipment which adds significant
costs and makes spectroscopic sensors a fairly expensive alternative as portable sensors [136].

log10
Iλ

Iλ ,0
= l cελ (A.1)

Photo ionisation detectors

This type of sensors uses high-energy UV light to separate electrons from the gas molecules
which are then exposed to an electrical field where they generate a current which is proportional
to the rate of ionisation and, hence, related to the gas concentration [27]. All molecules with
lower ionisation energies than the photon energy of the UV light (around 10 eV, depending on
light source) are ionised which means that they cannot detect specific gases selectively. They
can also be affected by interferences with RH and temperature [93, 27]. However, they respond
fast to concentration changes and are very sensitive, therefore they can be useful to detect a
range of VOCs. Photo ionisation detectors are relatively expensive compared to other portable
gas sensors (e.g. EC, MOS or passive samplers) [136].

Passive samplers

Passive samplers or diffusion tubes are based on either chemical absorption or physical ad-
sorption of gaseous pollutant on the sampling material. The concentration is determined by
lab analysis of the sampling material after it has been exposed to the pollutant for a defined
period of time. Typical pollutants include O3, SO2, NO2 [36] and various VOCs [72]. Passive
samplers are easy to use, inexpensive and require no electricity which makes them suitable for
large-scale deployments. However, effects of temperature, RH, solar radiation, wind velocity
and cross-interference with other gases need to be considered, and the subsequent lab analysis
requires additional resources [78]. Furthermore, they can only measure the cumulative expo-
sure, hence a temporal disaggregation is not possible and peak emission events may not be
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identified.

Biomarkers

Although not strictly a sensor, biological markers are another direct method to assess personal
exposure to environmental pollution. Biomarkers of exposure are "cellular, biochemical,
analytical, or molecular measures that are obtained from biological media such as tissues, cells,
or fluids and are indicative of exposure to an agent" [141]. They can be residues of the original
pollutant, metabolites of the pollutant or the product of an interaction between the pollutant
and agents within the organism [140]. Typical analytes are VOCs including e.g. benzene
and alkenes. The comparison of biomarker analysis with other direct exposure measurements
showed that high correlations between the two assessment techniques can be found [159].
The relationship between the measured biomarker concentration and the ambient exposure
information needs to be modelled based on parameters like half-life, kinetics, and metabolic
transformation [159]. These parameters might vary from person to person and/or might not
be available for large scale studies. Like passive sampling techniques; biomarkers can only
give information about the cumulative exposure. Furthermore, the biomarker concentration
is the result of all exposure routes including, besides inhalation exposure, also dermal and
ingestive exposures. On the other hand, they are an accurate measure of the actual pollutant
dose received by the body which is valuable information for determining the health effects of
environmental pollutants.

A.2 Design, operation and deployment of the personal air
quality monitor

A.2.1 Description of the PAM

A.2.1.1 Operation principle of electrochemical sensors

In this project the concentrations of the air pollutants NO, NO2, O3 and CO are measured
by amperometric electrochemical sensors. Their principle of operation is based on a three
electrode system (Figure A.1): Working electrode (WE), counter electrode (CE) and reference
electrode (RE) are put in electrical contact via wetting filters containing an electrolyte liquid (3
- 7 M conc. H2SO4) that acts as an ionic conductor [4]. While reference and counter electrode
are enclosed in the sensor and not exposed to environmental air, the working electrode is in
contact with all gases of the surroundings through a gas permeable membrane. The target gas
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Fig. A.1 Schematic of amperometric four electrode gas sensor. The target gas is oxidised or
reduced on the surface of the working electrode which is exposed to ambient air through a gas
diffusion barrier. The counter reaction happens at the surface of the counter electrode. The
potential of the working electrode is kept constant by the reference electrode. The auxiliary
electrode compensates for temperature effects. Graph: Lia Chatzidiakou

reaches the surface of the WE via diffusion and is oxidised (CO, NO) or reduced (NO2, O3) at
the surface of the WE (see Reaction A.2), causing a change of the electrochemical potential of
the electrode. A high surface area and a target gas specific catalyst enhance the reaction rate
and the selectivity of each individual sensor.
The change of the electrochemical potential of the WE is balanced out by a complementary
reaction at the CE, i.e. if the target gas is oxidised at the WE, oxygen is reduced at the CE to
form water, and if the target gas is reduced, the CE oxidises water to O2 (see Table A.1).
The electrochemical potential of the WE is kept at a constant value by the RE, in order to ensure
a constant sensitivity and selectivity while the CE potential is allowed to vary. The electric
current measured between the WE and the CE is proportional to the concentration of the target
gas. This is converted into voltage by an internal resistor of the sensor so that the raw output
signal is given in microvolts.
A fourth electrode, the auxiliary electrode (AE), is built into the sensor to compensate for the
temperature dependence of the cell potential. It is identical to the WE with the only difference
that it is not exposed to ambient air. Hence, the AE tracks all changes of the cell potential
which are not caused by concentration changes of the target gas in the ambient air. Under ideal
conditions, the difference between the WE and the AE signal is only dependent on the ambient
concentration of the target gas.

Ox+ne− <=> Red (A.2)



178 Supplementary materials

E = E0 +
RT
nF

ln
( cOx

cRed

)
(A.3)

Ox Oxidant - gas species which is reduced (here: NO2 or O3)
Red Reductant - gas species which is oxidised (here: CO or NO)
E Electrochemical cell potential
E0 Standard cell potential
R Universal gas constant (8.314 J/K mol)
T Temperature
n Number of transferred electrons
F Faraday constant (96485 C/mol)
cOx, cRed Concentrations of oxidant and reductant

Table A.1 Electrode and overall reactions of the electrochemical sensors. In each case the
first line refers to the reaction at the WE, the second to the reaction occurring at the CE. The
cell voltage corresponds to the difference between WE and CE (theoretical Nernst potential),
referenced to a standard hydrogen electrode at 25◦C [2]

Cell reaction Cell voltage

CO sensor -1.28 V
CO + H2O CO2 + 2 H+ + 2 e–

1
2 O2 + 2 H+ + 2 e– H2O
CO + 1

2 O2 CO2

NO sensor -0.27V
NO + H2O NO2 + 2 H+ + 2 e–

1
2 O2 + 2 H+ + 2 e– H2O
NO + 1

2 O2 NO2

NO2 sensor -0.16 V
NO2 + 2 H+ + 2 e– NO + H2O
H2O 1

2 O2 + 2 H+ + 2 e–

NO2 NO + 1
2 O2

O3 sensor 0.73 V
O3 + 2 H+ + 2 e– H2O + O2
H2O 1

2 O2 + 2 H+ + 2 e–

O3 O2 + 1
2 O2
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Table A.2 Variable ranges used to clean the data set from erroneous data entries

Variable Range Typical value

Input voltage 0-15 V 12 V
Battery voltage 0-25 V 8.5 V when fully charged
Noise 0-100.000 0.1 (arbitrary units)
Temperature <100°C 20°C
RH 0 - 100% 60%
Longitude -180° - 180° 0°
Latitude -90° - 90° 50°
Acceleration 0.05-10 g 1 g
Speed 0-500 m/s 2 m/s
GPS horizontal
dilution of precision

<1000 km 100 m

PM10, PM2.5, PM1 <10 mg/m3 ambient usually <<1 mg/m3

EC sensor electrode voltage 1 mV – 10 V 300 mV

A.2.1.2 Allowed variable ranges for raw measurements

Corruption of data rows when writing onto the SD card might lead to erroneous data entries
in the raw measurements (e.g. large signal spikes as seen in Figure 2.3). Entries that contain
values outside a physically meaningful range (e.g. RH > 100% or Longitude > 180°) were
discarded. An overview of the defined data ranges for each variable is given in the following
Table.

A.2.1.3 Effects of fast environmental changes on EC sensor performance

The following section (including graphs) has been published in Chatzidiakou et al. (2019) [29].
"To investigate the effect of fast environmental changes on sensor performance, a controlled
experiment was set up at a residential house in an urban background area in Cambridge. One
PAM was deployed outdoor and a second PAM was deployed indoors. A third PAM was
moved rapidly between an indoor and an outdoor location while a detailed time record (“diary”)
of the transition movements was kept (Figure A.2, top). Commonly encountered residential
indoor emission sources such as cooking (e.g. 11:30) and cigarette smoking (e.g. 17:30, PM
measurements) were then introduced. The temperature difference between the indoor and the
outdoor microenvironment was about 10-15°C (from >20°C indoors to 10-15°C outdoors)
resulting in an RH difference of about 20% (30% indoors vs 50% outdoors). While the
temperature sensor inside the PAM showed a relatively slow response when moved between
indoors and outdoors, a rapid response of the RH sensor was evident (Figure A.2, derivative of
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RH). The environmental changes were identified based on the time-derivative of the RH and
were clearly distinguished from emission events (cooking, smoking). PM measurements were
not affected by the rapid temperature changes; however, short-term transient changes were
noticed in the measurements of the EC sensors. Figure A.3 demonstrates that the recovery time
of the NO, NO2 and O3 sensors was shorter (< 5 min) than that of the CO sensor (15 min)." [29]

Fig. A.2 "An experiment to characterise sensor responses to rapid environmental changes
between different microenvironments. Time-series of one PAM deployed outdoors (black), a
second PAM was deployed indoors (red) and a third PAM (grey, original signal) was moved
rapidly between the indoor and the outdoor environment in the premises of a residence in an
urban background area in Cambridge, UK. The rapid temperature changes resulted in sharp
responses of the EC sensors whereas the PM measurements stay unaffected. A selective
algorithm based on the on the time-derivative of the RH (dRH) was applied on the data of the
moving PAM to flag and remove the false responses (blue line, filtered data) without filtering
out short-term pollution events." [29]
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Fig. A.3 "Close-up of one indoor-outdoor transition. The dotted orange line shows the original
signal before removing the false temperature response. The blue line shows the remaining
measurement after the removal. The stabilisation time after the transition depends on the sensor
type with higher times for CO (15 min) and faster recovery times for the rest of the sensors (5
min)." [29]
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A.2.2 Measurement campaigns

A.2.2.1 Reliability of London reference measurements during the pilot project

Fig A.4 compares the ambient pollutant concentration measurements from LAQN monitoring
station North Kensington [King’s College London] and the monitoring roof of the Chemistry
department in Cambridge. Generally, the two monitoring stations captured roughly the same
trends for all pollutant concentrations. NOx concentrations are higher and O3 concentrations
lower in London due to higher traffic density.
The CO concentrations in London have a clear offset compared to the Cambridge data which
changed (presumably through instrumentation maintenance) around Nov 29th. Because of
this artificial offset change the ambient CO measurements from London were discarded and
replaced by the Cambridge ambient CO measurements as an approximation for the regional
levels.
Around Nov 1st very high CO, NOx and PM2.5 concentrations were recorded at the London
monitoring station whereas such a significant increase was not observed in Cambridge. This
indicates that the station in London might have captured emissions from local sources in the
direct environment. To further investigate, the two stations were compared to the measurements
of a PAM that was deployed with a participant in London during that time. Fig A.5 shows the
comparison for CO and NO1. The baseline of the PAM measurements follows the Cambridge
monitoring station much closer than it follows the London station which confirms that the
increase of pollution levels on Nov 1st observed at the London reference was caused by a local
emission event close to the station. The ambient concentrations of all pollutant species from the
London reference were excluded from Oct 31st until Nov 5th 2015 and replaced by the ambient
measurements from Cambridge as a closer approximation to the regional air quality.

Table A.3 Range (1st - 99th percentile) and mean concentrations (in brackets) of ambient air
pollution concentrations measured at monitoring stations in London (North Kensington) and
Cambridge (Chemistry Department).

London Cambridge
CO 184-1147 (346) 114-428 (217)
NO 0-157 (12) 0-38 (3)
NO2 3-43 (19) 0-28 (9)
O3 0-36 (16) 0-40 (21)
PM2.5 0-64 (10) 1-33 (9)

1CO and NO have no significant indoor sinks (see Section 5.2.1). Hence, the indoor concentrations are
expected to be similarly high as outdoors.
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Fig. A.4 Comparison of the ambient measurements from the monitoring stations in London
(red) and Cambridge (blue). A quantitative overview is given in Table A.3. The pollution
episode highlighted inside the black square is shown in more detail in Figure A.5.
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Fig. A.5 Comparison of ambient CO and NO measurements from London (red) and Cambridge
(blue) and measurements of PAM 52 (black) which has been deployed in London in the time
window marked in Figure A.4.
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A.2.2.2 Medical parameters collected in the AIRLESS project

Table A.4 Collected biomarkers during the AIRLESS field campaigns

Health characteristic Biomarker Explanation
Cardiovascular function Blood serum and plasma Monocytes: type of white blood cells, their count

can be predictive of cardiovascular events [117]
C-reactive protein (CRP): rises rapidly in response
to tissue injury, infection and inflammation [135]

Endothelial function Puls wave velocity / Endothelium: layer of cells inside blood vessels,
blood pressure early indicator for cardiovascular diseases [43]

Oxidative stress Creatinine Indicator for renal function [109]
8-Oxo-2’-deoxyguanosine Product of DNA oxidation [42]
Malondialdehyde Marker of oxidative lipid injury [40]
8-Isoprostane Bioactive product of lipid peroxidation [99]
Metabonomics Measurement of metabolic responses to

environmental stressors [102]

Respiratory Peak expiratory flow Measurement of lung function
Fraction of exhaled NO (FeNO) Marker for respiratory inflammations [120]
Exhaled breath condensate Marker for inflammatory airway diseases [35]

A.2.2.3 Participant movement during the AIRLESS summer campaign
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Fig. A.6 Maps indicating the participant movement (blue) of the urban and rural cohort during
the summer campaign. The corresponding maps of the winter campaign are presented in Figure
2.13

A.2.2.4 Determination of the exact cooking times of participants in rural Kenyan house-
holds

The participants of the case study in rural Kenyan households (Section 2.3.3.2) were asked to
fill in a diary form to report which cooking fuels they used for every meal. An example form is
given in Figure A.7. Because the participants did not report the exact times of their cooking,
they were determined using CO emissions as a proxy.
Figure A.8 illustrates the procedure of determining the exact cooking times. The reported
cooking events from the diaries were first roughly placed into time windows (breakfast: 5am -
11 am, lunch: 11 am - 3pm, dinner: 5pm - 12pm, shown in lightblue) and then refined based
on measured CO emissions. If the indoor CO concentrations exceeded 1.7 ppm (maximum
outdoor concentration measured during the deployment), the data point was flagged as indoor
source. The cooking times were defined as the time periods in which the detected indoor
sources overlapped with a time window of reported cooking fuel use.



A.2 Design, operation and deployment of the personal air quality monitor 187

Fig. A.7 Example of a filled in cooking fuel diary of participant 3. The diary forms were
given out in the local language (Luo). Translations are given in blue. Participant 3 was from
the control group that did not use biogas. They mainly used charcoal for indoor cooking,
supplemented with liquid petroleum gas (LPG) and outdoor wood burning.
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Fig. A.8 Determineation of the exact cooking times. The reported cooking events from the
diaries were first roughly placed into time windows (lightblue) and then refined (blue) based on
the detected indoor sources from CO observations (black).
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A.3 Characterisation of the PAM performance

A.3.1 Temperature ranges measured during the AIRLESS summer cam-
paign

The results of Section 3.2 indicated that the performance of the gas sensors inside the PAM
degraded when the sensors were exposed to temperatures above 40◦C. Figure A.9 compares the
temperature ranges the PAMs were exposed to during field deployment (mainly indoors, green)
with the temperatures measured during the summer colocation when the PAMs were placed
outdoors for the entire time (red). The figure shows that the sensors were exposed to lower
temperatures during the field deployment due to occupants adjusting their thermal environment
for comfort.

A.3.2 Sensor reproducibility

"To evaluate the reproducibility of the sensors, the coefficient of determination between the
raw PM measurements and working electrode readings of all EC sensor pairs during the four
co-locations in the UK and China in both seasons are presented in Table A.5. All EC sensors
show excellent correlations across the network with mean R2 > 0.80 with the exception of the
NO2 sensors during the non-heating season in China, possibly affected by the high temperatures
that the sensors were exposed to. The coefficient of determination between the OPC-N2 sensors
was high across seasons and settings (R2 > 0.91); however, the gradient was lowest in the UK
co-location during the heating season." [29]
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Table A.5 Summary of reproducibility between sensors in outdoor co-locations in China and
the UK that ranged from 7 to 19 days during the heating and non-heating season. Linear fitting
equations between sensors generated the coefficient of determination (R2) and the gradient [m]
matrices. The average values of all N sensors for each variable are given, the standard deviations
(σ ) indicate the variation within the sensor network [29]. The corresponding summary of the
linear models with the reference instruments is presented in Table 3.4.

Heating season Non-heating season

China UK China UK
(Dec- Jan) (Oct- Nov) (June) (April)

Internal PAM tem-
perature (◦C)

10.5 (5.3-18.0) 15.9
(11.0–20.8)

40.2
(32.7–45.8)

17.7
(12.2–26.8)

Internal RH (%) 27 (14-44) 52 (39 -59) 38 (23 – 55) 52 (34 – 60)

N sensors N =59 N=3 N=59 N= 3

CO Maximum mixing
ratio (ppb)

6845 357 916 276

R2 (σ ) 1.00 (0.01) 0.98 (0.00) 0.94 (0.03) 0.94 (0.00)

NO Maximum mixing
ratio (ppb)

132 19 5 6

R2 (σ ) 0.89 (0.17) 0.80 (0.01) 0.81 (0.07) 0.94 (0.005)

NO2 Maximum mixing
ratio (ppb)

98 35 42 19

R2 (σ ) 0.97 (0.04) 0.98 (0.00) 0.60 (0.12) 0.89 (0.03)

O3 Maximum mixing
ratio (ppb)

33 30 109 44

R2 (σ ) 0.91 (0.05) 0.80 (0.00) 0.90 (0.03) 0.96 (0.01)

PM2.5 Maximum conc.
(µm−3)

432 32 110 37

R2 (σ ) 0.95 (0.17) 0.91 (0.05) 0.96 (0.01) 0.98 (0.01)
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Fig. A.9 Histogram of internal temperatures (on average 7°C higher than ambient temperatures)
of 60 PAMs recorded during the co-location period with reference instruments (pink) and
during the deployment to participants (cyan) during the non-heating season in China.

A.4 Improving personal exposure estimates: PAM vs moni-
toring station

A.4.1 Case participant U123
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Fig. A.10 Map of the locations visited by participant U123. The red dot refers to the participant’s
home location, the cyan dot indicates the location of the PKU reference instruments. The
distance between home and reference station is approximately 5 km. An air pollution exposure
time series of participant U123 can be seen in Figure 4.1

A.5 Source apportionment of personal exposure using net-
works of mobile sensors

A.5.1 Impact of indoor air pollution sinks on local and regional air pol-
lution

Section 5.3 demonstrated how the total personal exposure to stable pollutants was split into
a regional and a local component. This separation is not valid for reactive pollutants (ksink

> 0, see Figure 5.1) as the regional outdoor levels are reduced by indoor sinks when the air
enters the building. The following section will examine how the reactivity of a pollutant affects
the ratio between the local and regional component of indoor exposures using the indoor air
pollution model introduced in Section 5.1.1.
The analysis will focus on the cumulative exposures (sum of exposure over total time, corre-
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sponds to area under the concentration time series).
The regional part of the total indoor pollution [Xin]reg(t) originates from regional outdoor pollu-
tion [Xout ]reg penetrating into the building and can be expressed via Equation A.4. The local
contribution to the total indoor exposure is generated by indoor sources. Assuming that a source
causes a sudden increase of the indoor pollution by ∆[Xin]loc and then ceases exponentially, the
local contribution can be expressed through Equation A.5.

[Xin]reg(t) = [Xout ]reg
kvent

κ
(A.4)

[Xin]local peak(t) = ∆[Xin]loc(t0) e−κ(t−t0) (A.5)

[Xin]reg, [Xout ]reg regional component of indoor/outdoor air pollution concentration (ppb)
κ indoor decay rate = kvent + ksink (hour−1; see Section 5.1.1)
kvent rate coefficient of building ventilation (hour−1)
ksink rate coefficient of indoor pollution sinks (hour−1)
∆[Xin]loc(t0) increase of indoor pollution caused by indoor emissions at time t0 (ppb)

By integrating the two equations over time, the local and regional component of the total
cumulative exposure can be determined (Equations A.6 and A.7). [Xout ]reg can hereby be
assumed as a constant as the change of the outdoor concentrations is much slower than the loss
mechanisms through building ventilation and indoor sinks.

∫
[Xin]reg(t)dt = [Xout ]reg

kvent

κ
∆ t (A.6)

∫
[Xin]local peak(t)dt =

∆[Xin]local peak

κ
(A.7)

Equation A.7 describes the cumulative local exposure caused by a single emission event.
However, it is likely that the indoor exposure of a person is impacted by multiple (i) emission
events of different magnitudes ∆i[Xin]loc. Hence the local component of the indoor exposure
changes to Equation A.8:

∫
[Xin]local total(t)dt =

1
κ

∑
i

∆i[Xin]local peak (A.8)

The ratio between the local and the regional component is calculated via Equation A.9. The
ratio depends on the number i and intensities ∆i[Xin]local peak of the local peaks caused by indoor
pollution sources (the more frequent the sources and the stronger their emissions, the higher
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the contribution of local sources to the overall exposure). Similarly, the ratio depends on the
outdoor concentration: the higher the regional outdoor levels, the higher the regional component
of indoor exposure. The ratio does, however, not change with κ which contains the indoor
reactivity of the pollutant (κ = kvent + ksink with ksink = 0 for stable pollutants). This means that
the ratio between local and regional component is independent from the impact of indoor sinks.

local
regional

=

∫
[Xin]loc(t)dt∫
[Xin]reg(t)dt

=
∑i ∆i[Xin]local peak

[Xout ]reg kvent ∆ t
(A.9)

A.5.2 Optimum percentile to determine the regional pollution levels from
the AIRLESS sensor network

Different percentiles (minimum - 30th percentile) were used to extract the regional outdoor air
pollution levels as described in Section 5.1.2 (CO observations, AIRLESS winter campaign,
urban sensor network). The extracted backgrounds were linearly fitted to the reference mea-
surements of the urban ambient monitoring station (c.f. Section 5.1.3). The fitting parameters
(slope, intercept, adj. R2, RMSE) are plotted against the selected percentiles in Figure A.11. In
line with previous literature, the 10th percentile was identified as optimum.

Fig. A.11 Selection of the optimum percentile for background extraction. The 10th percentile
(green shaded) was identified as optimum. Dotted line indicates optimum value.
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A.5.3 Comparison of the extracted regional pollutant levels from the sen-
sor networks with reference observations

Fig. A.12 Comparison between the regional background concentrations extracted from mobile
sensor networks (blue) with reference measurements from monitoring stations (red) for all five
pollutants during the AIRLESS winter (left) and summer campaign (right). Individual sensor
measurements shown in grey.

Sections 5.1 and 5.2 introduced an approach to determine the regional background concentra-
tions from a network of mobile sensors. Figure A.12 presents the results of this method when
applied to the AIRLESS measurements of all pollutant types during the winter and the summer
campaigns.
The 90th percentile method generally resulted in underestimations of the outdoor background
concentrations because the assumption that one sensor is exposed to outdoor air at any point
of time was probably not met. The extracted backgrounds agreed generally better with the
reference in summer and in the peri-urban sensor network (Figure A.12), probably due to higher
building ventilation in both cases.
The extracted PM2.5 concentrations particularly underestimated the outdoor levels in winter,
perhaps due to reduced building ventilation to conserve heat, and the use of air purifiers. How-
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ever, the features of the outdoor PM2.5 trends (e.g. build-up of haze events) were still captured.
Similar results were observed for the extracted NO2 backgrounds.
The 90th percentile method worked excellent to extract the diurnal variations of the outdoor O3

levels, although the extracted O3 levels were notably underestimating the outdoor backgrounds,
particularly in the urban cohort in summer. The O3 agreement between the sensor network
and reference was very good in peri-urban Pinggu (Figure A.12), again due to higher building
ventilation.
Compared to the case of a stable pollutant (CO, Section 5.1.3), the agreement between the
extracted backgrounds and the reference was poorer for reactive pollutants. This was due
to the limitations mentioned in Section 5.2 (entire network located indoors at certain times;
interference with local emission sources). However, the magnitude and general features (e.g.
diurnal patterns) were still captured by the network, which can be used for sanity checks of the
network performance.

A.5.4 Contribution of local and regional air pollution to the total per-
sonal exposure
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Table A.6 Quantitative summary of the Figure 5.9. The variation between the participants
(SD-standard deviation) is substantially higher for the local components than of the regional
components.

Urban Peri-urban
Regional Local Regional Local

WINTER
Mean contribution
(% of total exposure)

1.95 ppm
(55%)

1.59 ppm
(45%)

1.67 ppm
(35%)

3.07 ppm
(65%)

variation (SD) 0.68 ppm 1.56 ppm 0.31 ppm 3.69 ppm
SUMMER

Mean contribution
(% of total exposure)

0.44 ppm
(47%)

0.50 ppm
(53%)

0.37 ppm
(41%)

0.53 ppm
(59%)

variation (SD) 0.09 ppm 0.40 ppm 0.09 ppm 0.81 ppm

A.6 Activity-specific personal exposure and dose estimations

A.6.1 Validation of the time-location-activity model

The time-location-activity algorithm was applied to the data of the pilot project. In this project,
38 volunteers from the UK were asked to carry a PAM for 7 days while keeping an activity
diary (see Section 2.3.1). The results of the activity model were compared to the entries from
the activity diary.
The boxplots in Figure A.13 present the time budgets spent on each activity as reported in the
diary logs (left bar) and as predicted by the model (right bar).
The results for the four core locations are shown in the left graph of Figure A.13. The
participants spent the majority of their time indoors at home or at work, while travelling and
time spent in other static locations accounted only for a small part of their total time budget.
The automated model shows an excellent agreement with the activity logs for the location
prediction.
The right graph shows the results for the different modes of commuting. The model slightly
overpredicts cycling and in-vehicle trips compared with the activity logs. Note, however, that
the right graph only covers the time which is labelled as "in-transit" in the left graph and
represents only a small fraction of the total time budgets of the participants.
All in all, there was a good agreement between the results of the time-location-activity model
and the activity diaries.
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Fig. A.13 Comparison between the results of the time-location-activity model with the activity
logs kept by the participants of the pilot project. For each activity, the left boxplot shows the
time budget based on diary logs and the right boxplot shows the results of the model. Left:
Boxplots showing the time (minutes per week) spent at different locations for 38 participants.
Middle: Time budgets of the same cohort for different modes of commuting (i.e. "in transit"
category split up). While there is a greater level of discrepancy in the classification of the mode
of transport, note that this represents only a small fraction of the total time. Right: Legend of
the graph.
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