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1 Introduction

The production of heavy quarks in association with other particles at hadron colliders

represents a crucial testing ground for our understanding of perturbative Quantum Chro-

modynamics (QCD) in the presence of several energy scales. This class of processes is

governed by at least two scales, namely the heavy-quark mass m and the (invariant) mass

M of the particle(s) produced along with the heavy quark. In these cases, large collinear

logarithms of the ratio M
m may jeopardise the convergence of the perturbative expansion of

relevant theoretical predictions. Fortunately, the impact of these logarithmic contributions

can be controlled by resumming them to all orders in αs, via a scheme in which the heavy

quark mass m is neglected at the level of the matrix element. Such a scheme is often re-

ferred to as massless or five-flavour scheme (5FS), in case the heavy quark is identified with

the bottom quark. As far as heavy quarks in the initial state are concerned, this procedure

amounts to introduce a suitable parton distribution for the heavy quark. An analogous

– 1 –



J
H
E
P
0
1
(
2
0
2
0
)
1
9
6

procedure for heavy quarks in the final state involves the use of fragmentation functions,

and is the subject of the present work. A scheme in which the heavy quark is produced

at the matrix-element level and is not treated on the same footings as the light quarks

is dubbed as massive scheme or four-flavour scheme (4FS). The resummation of powers

of log(M/m) in a 5FS is performed by solving the evolution equations (usually referred

to as Dokshitzer-Gribov-Lipatov-Altarelli-Parisi, or DGLAP, equations), at the price of

discarding power corrections of O(m2/M2), and thus of yielding less accurate theoretical

predictions for the observables related to the heavy-quark degrees of freedom.

In [1, 2], it has been shown that, for processes in which the heavy quarks (more specif-

ically bottom quarks) are dominantly produced via initial-state (spacelike) splittings, the

theoretical predictions in 4FS are not spoiled by initial-state collinear logarithms. This is

due to two main factors, one of dynamical and the other of kinematical origin. The first

is that the effects of the resummation of the initial-state collinear logarithms are relevant

mainly at large x and, in general, keeping only the explicit logs appearing at NLO in the

4FS is a good approximation. The second reason is that the scale which appears in the

collinear logarithms turns out to be proportional to the hard scale of the process but is

suppressed by universal phase space factors that, at hadron colliders, reduce the size of

the logarithms for processes taking place. This result makes it not only possible, but also

advisable — owing to the better perturbative description of the differential observables

involving the heavy quark(s) — to employ the 4FS for the exclusive description of these

processes. This has been shown explicitly to be the case in single-top production [3, 4],

bb̄H [5–16] and bb̄Z/γ production [16–23], and also for processes predicted by extensions

of the Standard Model (SM), such as heavy charged Higgs boson production in a two-

Higgs doublet model or in supersymmetry [24–34]. On the other hand, the calculations of

the total rates in the 5FS display a faster perturbative convergence and exhibit a smaller

scale uncertainty associated with missing higher orders. Methods that combine the 4F

and the 5F schemes, retaining the advantages of both, are actually available, but they are

generally tailored to a few specific observables. The FONLL scheme, first proposed for the

transverse momentum spectrum of bottom quarks produced in hadronic collisions [35], has

the advantage of being universally applicable and of allowing one to combine 4FS and 5FS

calculations performed at any perturbative order. The formulation of the FONLL scheme

has been extended to deep-inelastic scattering (DIS) [36] and adapted to the computation

of the total cross section for Higgs and Z production in bottom-quark fusion [37–39]. Var-

ious recent attempts to consistently include both the resummation of initial-state collinear

logarithms and mass effects also for differential and parton-shower matched observables

have been recently put forward, see for example the five-flavour-massive scheme proposed

in [16, 40] or a similar approach based on multi-jet merging [41]. Improvements at the

inclusive and at the differential level are on-going. Finally, consistent b-quark PDFs to be

used in association with massive initial states have also been defined [43], thus allowing the

bottom quark to be endowed with a standard PDF satisfying DGLAP evolution equations,

yet treating it as massive in hard matrix elements.

While initial-state collinear logarithms have been studied in details in the above-

mentioned literature, the situation is much less clear for processes in which final-state
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(timelike) splittings into heavy quarks contribute significantly to the process. It has to be

mentioned that, for what concerns the production of flavoured jets, higher-order corrections

are generally not finite (or they are logarithmically enhanced in a massive scheme) unless

dedicated jet algorithms are employed, see ref. [42]. Processes featuring final-state splittings

into heavy quarks include bb̄W production [18, 19, 44–49], the top-mediated contribution

to bb̄H production [50], tt̄bb̄ production [51–56] and multi-b final states [57, 58] (mostly

relevant for di- or triple-Higgs searches [59–61]). While the importance of the resummation

of collinear logarithms has been partially investigated for Q → Qg splittings [35, 62, 63],

no assessment of the impact of the logarithms of M
m exists to date, as far as the g → QQ̄

splittings are concerned.

An interesting process which involves bottom quarks in the final state is the production

of tt̄bb̄. This process is an important background to Higgs and top associated production, a

unique probe of the Yukawa coupling between the Higgs scalar and top quarks, and there-

fore it is of great relevance for present-day analyses [64, 65]. Different tools are available to

simulate this process in a 4FS, including NLO QCD corrections and matching with parton

showers. However, even when tuned comparisons are performed [66], the predictions ob-

tained by different tools display rather large differences, which have a dominant impact on

the systematic uncertainty in the determination of the top Yukawa coupling.1 The work

necessary to improve this situation by increasing the perturbative order of the computation

is not straightforward. Given the high multiplicity and the number of scales involved in

this kind of processes, the NNLO corrections in the 4FS are very hard to compute. On the

other hand, NLO QCD predictions for tt̄bb̄ plus one light jet have recently become avail-

able [67]. Assuming that the distortion due to parton showers is small, these calculations

could help to validate the light-jet spectrum. If the resummation of collinear logarithms

associated with the final-state splittings of gluons and bottom quarks is found to have

a strong impact on this observable, then a matched calculation could solve the observed

discrepancies. It is the purpose of the present work to make a first step in this direction.

In this paper, we assess the impact of missing powers of log M
m associated to final-state

splittings by means of fragmentation functions (FFs). Heavy quark FFs can be computed

in perturbation theory in QCD, starting from initial conditions at a reference scale µ0

and employing the timelike DGLAP evolution equations to evolve them up to any other

scale. Initial conditions for the gluon- and heavy-quark-initiated fragmentation into a

heavy quark are known at order αs [62, 68] and have been computed at order α2
s [69, 70],

while the DGLAP evolution equation is implemented in public codes such as QCDnum [71],

ffevol [72], APFEL [73] or MELA [74], up to NNLL logarithmic accuracy. The codes have

been benchmarked in [74]. An approach based on FFs will enable us to study the dynam-

ics of the bottom fragmentation in details and in an isolated environment. In particular,

the importance of the resummation of potentially large logarithmic contributions can be

assessed by comparing resummed predictions to the truncation of the FF at a given order

in αs, and the impact of the resummation of sub-leading logarithms can be studied up to

1Ongoing work and preliminary results are available here: https://twiki.cern.ch/twiki/bin/view/

LHCPhysics/ProposalWwbbbb.

– 3 –

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ProposalWwbbbb
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ProposalWwbbbb


J
H
E
P
0
1
(
2
0
2
0
)
1
9
6

NNLL accuracy. It must be stressed that, while the importance of resumming collinear

logarithms in bottom-quark initiated fragmentation has been known for a long time at

NLL [35, 62, 63], much less attention has been devoted to the role of gluon-initiated frag-

mentation to heavy quarks (one exception is ref. [75] in which the case of charm meson

production was studied). Such a negligence was justified the past by the sub-dominant

importance of this mechanism at LEP and at Tevatron, but this is no longer the case at

the LHC for the g → bb̄ splitting, and will not be the case for the g → tt̄ splitting at

future colliders.

The paper is organised as follows. We review the details of timelike DGLAP evolution

in section 2, where we also discuss how to truncate the evolution at a given order in αs. In

section 3, we discuss the setup employed for this computation, while results are presented

in section 4. In the light of our results, in section 5 we comment on how to simulate

processes in which b quarks are dominantly created in final-state splittings. In section 6

we link our findings to those obtained in the context of heavy quark multiplicity estimates.

We draw our conclusions in section 7, where we also discuss future outlooks of our work.

In appendix A, we provide supplementary material, namely the explicit expressions of the

truncated FFs up to order α3
s together with the discussion of their numerical validation.

2 Timelike DGLAP evolution

In this section we review the formalism of scale evolution for fragmentation functions, with

the main purpose of fixing notations and conventions. We also set the ground for the

derivation of explicit formulae for heavy-quark fragmentation functions at fixed order up

to order α3
s, which are reported in appendix A.

2.1 Strong coupling constant

We adopt the following notation for the evolution of the running coupling constant αs(µ)

of strong interactions:

dαs(µ)

dt
= β(αs(µ)) β(αs) = −α2

s (b0 + b1αs) +O(α4
s), (2.1)

where t = log µ2

µ2
0
, µ0 is a fixed reference scale, and

b0 =
11CA − 4nfTF

12π
b1 =

17C2
A − 10CAnfTF − 6CFnfTF

24π2
. (2.2)

As usual, TF = 1
2 , CA = 3 and CF = 4

3 for three-colour QCD. The number of active

flavours nf will always be set to 5.

We will need the expansion of αs(µ) in powers of αs(µ0) truncated at O(α3
s), which is

given by

αs(µ) = αs(µ0)− α2
s(µ0)b0t+ α3

s(µ0)(b20t
2 − b1t). (2.3)

The truncated expansion of αs(µ0) in terms of αs(µ) can be trivially obtained by swapping

µ and µ0 in the above equation obtaining

αs(µ0) = αs(µ) + α2
s(µ)b0t+ α3

s(µ)(b20t
2 + b1t). (2.4)
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2.2 Fragmentation functions

We consider the differential cross section dσ
dx for a generic process with a heavy quark Q of

mass m in the final state, where x is the energy fraction carried by the heavy quark:

x =
EQ
E
, (2.5)

where EQ is the energy of the heavy quark, and E the energy of the parton originating

from the matrix element. Then, standard factorisation implies

dσ

dx
(x,E,m) =

∑
i

∫ 1

x

dz

z

dσ̂i
dz

(z, E,m)Di

(x
z
, µ,m

)
, (2.6)

where dσ̂i
dz is the partonic cross section for parton i in the final state with energy fraction

z, and Di(x, µ,m) is the fragmentation function of parton i into the heavy quark.

The fragmentation functions depend on the factorisation scale µ according to the

evolution equations

µ2dDi

dµ2
(x, µ,m) =

∑
j

∫ 1

x

dz

z
Pij

(x
z
, αs(µ)

)
Dj(z, µ,m). (2.7)

The timelike splitting functions Pij have a power expansion in αs, whose coefficients have

been computed up to NNLO, and can be found in [76–78]. Note that, in the case of timelike

evolution, we have

P12(x, αs) = Pgq(x, αs); P21(x, αs) = Pqg(x, αs), (2.8)

contrary to what happens in the spacelike case. The timelike splitting functions are the

same as the spacelike ones at LO, while they differ at NLO and higher.

The DGLAP evolution equations are conveniently solved for Mellin-transformed quan-

tities, because Mellin transformation turns the integro-differential DGLAP equations into

ordinary differential equations. We define the Mellin transform f(N) of a generic function

f(x) by

f(N) =

∫ 1

0
dxxN−1f(x). (2.9)

We will use the same symbol for a function and its Mellin transform; this does not lead to

confusion, as long as functional arguments are explicitly indicated. We rewrite the timelike

DGLAP evolution equations as

dDi

dt
(N, t,m) =

∑
j

γij(N, t)Dj(N, t,m), (2.10)

where

γij(N, t) =

∫ 1

0
dz zN−1Pij(z, αs(µ))

=
αs(µ)

4π
γ

(0)
ij (N) +

(
αs(µ)

4π

)2

γ
(1)
ij (N) +

(
αs(µ)

4π

)3

γ
(2)
ij (N) +O(α4

s). (2.11)
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The LO singlet timelike anomalous dimensions γ
(0)
ij are given by

γ(0)
qq (N) = CF

[
3− 4S1(N) +

2

N(N + 1)

]
(2.12)

γ(0)
gq (N) = 2nfCF

2(N2 +N + 2)

(N − 1)N(N + 1)
(2.13)

γ(0)
qg (N) = TF

2(N2 +N + 2)

N(N + 1)(N + 2)
(2.14)

γ(0)
gg (N) = CA

[
11

3
− 4S1(N) +

4

N(N − 1)
+

4

(N + 1)(N + 2)

]
− 4

3
TFnf , (2.15)

where S1(N) is the harmonic sum of order 1 as defined in [79]. The anomalous dimensions

γ
(1)
ij were calculated in [80, 81]2 and γ

(2)
ij in [77, 78].

2.3 Initial conditions

We will need suitable initial conditions for the fragmentation functions. The perturbative

initial conditions have been computed at order αs in refs. [63, 68] and α2
s in refs. [69, 70]:

Db(N, 0,m) = 1 +
αs(µ0)

4π
d

(1)
b (N,µ0,m) +

(
αs(µ0)

4π

)2

d
(2)
b (N,µ0,m) ,

Db̄(N, 0,m) =

(
αs(µ0)

4π

)2

d
(2)

b̄
(N,µ0,m) ,

Dg(N, 0,m) =
αs(µ0)

4π
d(1)
g (N,µ0,m) +

(
αs(µ0)

4π

)2

d(2)
g (N,µ0,m) ,

Dq(N, 0,m) = Dq̄(N, 0,m) =

(
αs(µ0)

4π

)2

d(2)
q (N,µ0,m) . (2.16)

Initial conditions at order α3
s are currently unknown, and will be neglected in the following.

It is interesting to notice that the initial condition for the b quark fragmentation

function contains a non-logarithmic term already at NLO, namely

d
(1)
b (N,µ0,m) = 2CF

[(
3

2
+

1

N(N + 1)
− 2S1(N)

)
log

µ2
0

m2
− 2S2

1(N) (2.17)

+
2S1(N)

N(N + 1)
− 2

(N + 1)2
− 2S2(N) + 2− 1

N(N + 1)
+ 2S1(N)

]
,

contrary to the case of the b quark PDF in the spacelike evolution [82, 83]. The initial-

scale gluon fragmentation function has instead only a logarithmic term that vanishes

when µ0 = m:

d(1)
g (N,µ0,m) = γ(0)

qg log
µ2

0

m2
. (2.18)

2Note that an error in the computation of the splitting functions in [80] was fixed in [81], due to the

choice of an unphysical factorisation scheme.

– 6 –



J
H
E
P
0
1
(
2
0
2
0
)
1
9
6

It is customary to separate singlet from non-singlet evolution in the DGLAP equations.

To this purpose, we define the combinations

DΣ =

nf∑
i=1

D+
qi

DVi = Dqi −Dq̄i i = 1, . . . , nf

DT3 = (Du +Dū)− (Dd +Dd̄)

DT8 = (Du +Dū) + (Dd +Dd̄)− 2(Ds +Ds̄)

DT15 = (Du +Dū) + (Dd +Dd̄) + (Ds +Ds̄)− 3(Dc +Dc̄) (2.19)

DT24 = (Du +Dū) + (Dd +Dd̄) + (Ds +Ds̄) + (Dc +Dc̄)− 4(Db +Db̄)

with the valence contributions evolving according to the non-singlet (V ) timelike evolution

equations and the triplet contributions evolving according to the non-singlet (+) timelike

evolution equations. The evolution of the singlet combination DΣ is coupled with the

gluon. The bottom quark fragmentation is given by

Db =
DΣ −DT24 + nfDVb

2nf
, (2.20)

and the non-vanishing initial conditions are given by

DΣ(N, 0,m) = 1 +
αs(µ0)

4π
d

(1)
b (N,µ0,m) (2.21)

+

(
αs(µ0)

4π

)2

(d
(2)
b (N,µ0,m) + d

(2)

b̄
(N,µ0,m)

+ 2(nf − 1) d(2)
q (N,µ0,m))

DVb(N, 0,m) = Db −Db̄ = 1 +
αs(µ0)

4π
d

(1)
b (N,µ0,m) (2.22)

+

(
αs(µ0)

4π

)2

(d
(2)
b (N,µ0,m)− d(2)

b̄
(N,µ0,m))

DT24(N, 0,m) = 2(nf − 1)

(
αs(µ0)

4π

)2

d(2)
q (N,µ0,m) (2.23)

− (nf − 1)

[
1 +

αs(µ0)

4π
d

(1)
b (N,µ0,m)

+

(
αs(µ0)

4π

)2 (
d

(2)
b (N,µ0,m) + d

(2)

b̄
(N,µ0,m)

)]
.

To determine Db and Dg up to NNLO and their expansions up to O(α3
s), we need

solutions of the evolution equations for both the singlet and the triplet combinations

dDT (N, t,m)

dt
= γ+(t)DT (N, t,m) (2.24)

dDV (N, t,m)

dt
= γV (t)DV (N, t,m), (2.25)
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for DT24 and DVb respectively, and

d

dt

(
DΣ

Dg

)
=

(
γqq γgq
γqg γgg

)(
DΣ

Dg

)
. (2.26)

Note that eq. (2.26) differs from eq. (2.4) of ref. [74] only formally, because in the latter

γqg is the element of the spacelike singlet matrix evolution, that features a factor 2nf .3

2.4 Truncated solution of DGLAP equation in Mellin space

The DGLAP equations are usually solved in order to resum large logarithmic contributions;

the fragmentation functions are evolved from a reference scale µ0 to a generic scale µ

through an evolution operator, which in turn is given by an expansion in powers of αs(µ0)

with αs(µ0) log µ2

µ2
0

fixed. Here, we would like to compare such a logarithmic (resummed)

expansion with a truncated one, that is, a solution expressed as a power series in αs(µ),

up to a certain order.

We rewrite eq. (2.10) in matrix form, and with some of the functional arguments

omitted, to keep notation simple:

dD(t)

dt
= γ(t)D(t). (2.27)

Eq. (2.27) has the solution

D(t) = U(t, 0)D(0), (2.28)

with

U(t, 0) = I +

∫ t

0
dt1 γ(t1) +

∫ t

0
dt1 γ(t1)

∫ t1

0
dt2 γ(t2) + . . .

=
∞∑
n=0

1

n!

∫ t

0
dt1 . . .

∫ t

0
dtn T [γ(t1) . . . γ(tn)] , (2.29)

and T is the time-ordering operator. The matrix γ has a Taylor expansion in αs, given

in eq. (2.11), which starts at order αs. Therefore, it is easy to truncate the expansion of

U(t, 0) to any given order. Given that we are interested in the solution up to NNLO, we

keep terms up to order α3
s in U(t, 0). We find

UNNLO(t, 0) = I + γ(0)

∫ t

0
dt1

αs(µ1)

4π

+
1

2

[
γ(0)

∫ t

0
dt1

αs(µ1)

4π

]2

+ γ(1)

∫ t

0
dt1

(
αs(µ1)

4π

)2

+γ(0)γ(1)

∫ t

0
dt1

αs(µ1)

4π

∫ t1

0
dt2

(
αs(µ2)

4π

)2

+γ(1)γ(0)

∫ t

0
dt1

(
αs(µ1)

4π

)2 ∫ t1

0
dt2

αs(µ2)

4π

+
1

6

[
γ(0)

∫ t

0
dt1

αs(µ1)

4π

]3

+ γ(2)

∫ t

0
dt1

(
αs(µ1)

4π

)3

, (2.30)

3In MELA, particularly in eq. (2.4), Pij do not refer to the usual splitting functions, rather they refer to

the ij entries of the singlet spacelike evolution matrix (eq. (4.100) of ref. [84]). The factors 2nf and 1/2nf
are explained in appendix A2 of ref. [81].
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where t1 = log
µ2

1

µ2
0
, t2 = log

µ2
2

µ2
0
. Next, αs(µ1), αs(µ2) are expanded in powers of αs(µ0) as

in eq. (2.3), and the integrals easily performed. Finally, αs(µ0) is re-expressed in terms of

αs(µ), according to eq. (2.4).

In the following, we will call LO, NLO and NNLO truncated FFs, respectively the

expression obtained by evolving the initial conditions of eq. (2.16) with the evolution op-

erator in eq. (2.30), and retaining terms up to order αs(µ), α2
s(µ) and α3

s(µ) respectively.4

The full expressions are reported in appendix A.

3 Setup of the computation

The results presented in this paper are obtained by means of a private computer code which

links the public MELA (Mellin Evolution LibrAry) library [74]. MELA is an evolution program

in Mellin space, developed specifically to provide a simple and user-friendly framework

complementary to (and also serving as a validation of) the code APFEL [73], which works

in x space.

For the running of αs, we use the routines implemented in MELA with αs(MZ) = 0.11856

and MZ = 91.187 GeV, that solve the renormalisation group equation for αs(µ) consistently

with the DGLAP timelike equations. The charm and bottom thresholds are set to mc =

1.4142 GeV and mb = 4.7 GeV respectively. The top quark mass mt is set to infinity, so

that nf = 5 at all scales. The timelike splitting functions at LO, NLO and NNLO in the

N space are taken directly from MELA. Note that, due to the complexity of the expressions

entering the NNLO splitting functions, MELA implements the approximate representation

of ref. [85]. It was checked in [78] that, except for very small values of x, such approximate

expressions deviate from the exact ones by less than one part in a thousand. The N -space

solution of the timelike DGLAP evolution equation at LL, NLL and NNLL are also taken

from MELA. MELA implements the analytical solutions of the DGLAP evolution equations

as in PEGASUS[86], both the truncated solution and the iterated solution. In the former,

the resummed solution to the DGLAP equations in N space is exact up to terms of higher

orders in the perturbative expansion with respect to the order of the DGLAP solution.

In the iterated solution, all orders are kept in the solution of the DGLAP equation. The

NmLL solutions differ in terms of order n > m. In our case, we have verified that the effect

of the resummation of collinear logarithms does not depend on the settings of the solution

of the DGLAP evolution equation.

The initial perturbative conditions have been implemented in our own code in the N

space up to order α2
s by numerically Mellin-transforming the x-space expressions of refs. [69,

70] for real N . Di- and tri-logarithms appearing in these expressions are evaluated with

Chaplin [87]. Since we are currently lacking an analytically-continued Mellin transform of

the O(α2
s) terms of the initial conditions5 the evolved expressions cannot be inverted to x

4Note that Db starts at order α0
s(µ).

5More specifically: we succeeded to obtain analytically-continued Mellin transforms for d
(2)
b , d

(2)

b̄
, d

(2)
q ,

following the results and algorithms of refs. [88–92], (as implemented in the codes ancont and ancont1),

while for d
(2)
g some terms are still missing. We plan to report on the complete analytic continuation of the

initial conditions in a following publication.
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space if these initial conditions are included. As their impact in Mellin space is found to

be mild and rather flat in the N space, as we will show explicitly in section 4, we argue

that they will not play an important role in the x space. The numerical inversion of the

N -space truncated and resummed fragmentation functions from N space back to x space is

performed by means of an implementation of the Mellin inversion based on the Talbot-path

algorithm [93]. Matching conditions are implemented in the treatment of flavour threshold

crossing in the evolution of the fragmentation functions.

4 Impact of collinear resummation and results

In this section, we present results for the resummed and truncated FFs at different mass

scales, in Mellin (N) space as well as in the physical space of the energy fraction x carried

by the heavy quark.

By comparing the truncated and resummed predictions for the FFs for different values

of the scales µ and µ0 and at different orders, we can:

i) assess the typical size of the effects due to the resummation of final-state collinear

logarithms, in particular with respect to an approximation in which only logarithms

up to a given order in perturbation theory are included;

ii) compare the behaviour of the bottom-quark and gluon initiated FF;

iii) determine the importance of the inclusion of initial conditions at order α2
s, computed

in [69, 70].

In particular, the last point and the importance of the gluon FF have been neglected so

far in the literature, see e.g. [63].

We start by presenting results in N space, for the Db and Dg fragmentation functions,

in figures 1 and 2 respectively. The layout of the figures is the following. Shades of red

(blue), from lighter and more finely dashed to darker and solid, are used for truncated

(resummed) predictions of increasing perturbative orders, computed without initial condi-

tions at order α2
s. Symbols are used for the NLO (NLL) predictions which include the full

initial conditions up to order α2
s. Left panels show results for the FFs, while right panels

show the corresponding ratios w.r.t. the NNLL prediction. In the top panels, an initial

scale µ0 = m = 4.7 GeV is employed, while in the bottom ones it is set to µ0 = 2m. Finally,

each panel shows results at four different value of the scale µ: µ = 10, 30, 100, 300 GeV,

from left to right and from top to bottom.

First, we inspect the behaviour of Db(N), displayed in figure 1: in the left plots, we can

see how the resummed predictions are hard to distinguish one from another, and also how

the NNLO curve is close to them. This is not the case for the LO and NLO predictions:

the LO FF is clearly not apt at describing the bottom-quark initiated fragmentation, as

it visibly departs from the resummed predictions already for small or moderate values of

N (N < 10), and µ
µ0
' 2. The NLO-accurate predictions show better agreement with the

resummed ones.
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Figure 1. The N -space bottom-quark fragmentation function, computed at different orders for

the truncated solutions (LO, NLO, NNLO) and resummed solutions (LL, NLL, NNLL). NLO

and NLL solutions are shown both including (symbols) and discarding (lines) the O(α2
s) terms

in the initial conditions. Four values of the factorisation scale µ are considered in each panel:

µ = 10, 30, 100, 300 GeV. In the top (bottom) panels, the initial scale is set to µ0 = m = 4.7 GeV

(µ0 = 9.4 GeV). The right panels show the ratio over the NNLL-accurate predictions.
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Figure 2. Same as figure 1, for the gluon fragmentation function.

The N range in figure 1 is chosen to be 0 ≤ N ≤ 40 for illustrative purposes. However,

this is not really consistent, because at very large values of N (which correspond to values

of x close to 1) the initial conditions, computed at a fixed order in αs, get large corrections

from higher order contributions due to the presence of large powers of logN in the pertur-

bative coefficients. The effect of such large logarithms is that the Mellin transforms of the

fragmentation functions in figure 1 become negative around N ∼ 20, and consequently the

ratio plots display a peak in that region. This problem was pointed out in [94], where it is

also argued that a resummation of large N logarithms in the initial condition would push

the zero of the fragmentation functions toward much larger values of N . Even large-N

resummation, however, would not make the fragmentation functions positive in the whole
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range, due to non-perturbative effects, or equivalently due to the presence of the Landau

pole in the strong coupling at very small energy scales. Perturbation theory, even in its

resummed version, cannot provide a reliable description of fragmentation functions for x

larger than approximately 1 − ΛQCD/µ.

In the ratio plots the features described above can be appreciated with more details. In

particular, it can be appreciated how the NNLO-accurate prediction starts to depart from

the NNLL at large scales and large values of N , while in general, with the exception of the

aforementioned spike, resummed computations show a better agreement with each other at

large N . Increasing the initial scale µ0, reduces the differences between the resummed and

truncated predictions, as it is expected and as it was studied in details in [95]. However

the global pattern is unchanged. Finally, we observe how the impact of initial condition at

order α2
s is rather mild (at or below the 10% level), regardless of the scale.

Turning to Dg(N), in figure 2, we observe that the truncated expressions depart very

quickly from the resummed ones, and how the perturbative series wildly oscillates between

negative and positive values for N already as large as 8, with large differences from the

resummed curves. On the other hand, resummed curves lie rather close to each other

(again, with the exception of the spike at N = 20, induced by the initial conditions of

the quark FF), with differences that decrease with the scale, because of the running of

αs. Differences are reduced when the initial scale is doubled, and the impact of initial

conditions is mild and rather constant with N .

In figures 3 and 4 the x-space results are displayed. They generally reflect the pattern

of the Mellin-space results, giving a more direct feeling of the physics of the final-state

splittings. Looking at Db(x), in figure 3, we appreciate how close the three resummed

predictions are, for the four values of µ considered. Differences among the LL, NLL, and

NNLL predictions are always within 10% and with flat ratios, with the exception of very

small and very large x (x < 0.1 and x > 0.9). The first regime may only partially be acces-

sible, since the physical regime is typically x > m
µ . The behaviour in the second (large-x)

regime may be improved by resumming large-x logarithms on top of the DGLAP ones [94].

As far as the truncated predictions are concerned, they generally show a harder shape than

the resummed ones (more steeply peaked towards x = 1), and the hardness decreases as

higher orders are included. This is consistent with the fact that higher order effects (i.e.

extra radiations) soften the b quark during the fragmentation, and in the case of resummed

predictions these effects are included to all orders. If we take µ = 100 GeV as a repre-

sentative scale, µ0 = 4.7 GeV, and consider the range 0.1 < x < 0.9, the NLO-truncated

prediction undershoots the NNLL resummed one of -25% at small x, and overshoots it of

+50% at large x. At NNLO, differences are much reduced, at the level of -10% and + 15%.

The gluon-initiated FF, Dg(x), on the other hand, exhibits much larger differences

between the truncated and resummed predictions. The most visible feature is that the LO

FFs is symmetric around x = 0.5, while all the others are not. This is directly related

to the symmetry of the Pqg splitting function, which is the only term at LO, as it can be

seen from the first line of eq. (A.4).6 As a consequence, the shape of the LO-truncated

6The initial condition d
(1)
g is also proportional to Pqg.
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Figure 3. The x-space bottom-quark fragmentation function, computed at different orders for the

truncated solution (LO, NLO, NNLO) and resummed solutions (LL, NLL, NNLL). Four values

of the factorisation scale µ are considered in each panel: µ = 10, 30, 100, 300 GeV. In the top

(bottom) panels, the initial scale is set to µ0 = m = 4.7 GeV (µ0 = 9.4 GeV). The right panels

show the ratio over the NNLL-accurate predictions.
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Figure 4. Same as figure 3, for the gluon fragmentation function.

prediction does not change with the scale. Again, higher-order predictions soften the shape

of the splitting function, with rather dramatic effects both going from LO to NLO and from

NLO to NNLO. In section 5 we will show that these effects are dominantly due to the

radiation from the parent gluon. As we did for Db(x), considering the case µ = 100 GeV,

µ0 = 4.7 GeV, it is apparent how the (N)NLO prediction exceeds the NNLL baseline by

80% (15%) at large x, and undershoots it by -20% (-5%) at small x. Comparing resummed

predictions among themselves shows, again, that the effect of sub-leading logarithms is

rather mild and, as anticipated by studying the behaviour in Mellin space, it is reduced

when the scale µ is increased. Finally, some pathologic behaviour is visible both at small
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Figure 5. The ratio Dp(µ0 = 2m)/Dp(µ0 = m) in x space, with p = b, g in the left and right

panels respectively, computed at different orders for the truncated solution (LO, NLO, NNLO) and

resummed solutions (LL, NLL, NNLL). Four values of the factorisation scale µ are considered in

each panel: µ = 10, 30, 100, 300 GeV.

and large x. The latter can likely be cured by resumming large-x logarithms in the quark

initial conditions [94], while for the former small-x resummation and coherence effects need

to be considered, two ingredient which are crucial in order to obtain correct predictions for

heavy-quark multiplicities [96], as we will discuss in section 6.

We conclude this section by discussing the dependence of truncated and resummed

predictions on the initial scale µ0. The effect of changing the initial scale in the case of

perturbatively generated bottom PDFs has been studied in details in [95]. It is interesting

to compare the effects in the case of perturbative bottom fragmentation functions. This

is shown in figure 5, in x space only, both for Db (left panels) and Dg (right panels).

In this figure we plot, for each of the truncated and resummed predictions, the ratio

Dp(µ0 = 2m)/Dp(µ0 = m), for the same values of µ as before. First, we observe that at

LO, no µ0 dependence is there, neither for Db nor for Dg. This can be easily understood by

looking at the initial conditions in eqs. (2.17) and (2.18), and at the truncated expressions

in eqs. (A.5) and (A.4): the coefficient of the anomalous dimension, in both cases, will

be log
µ2

0
m2 + log µ2

µ2
0

= log µ2

m2 . For the other predictions, both truncated and resummed,

we observe how the µ0 dependence is rather mild (less than 10% for Db and 20% for Dg

for µ ≥ 100 GeV) for intermediate values of x and it decreases with the scale, because

of the DGLAP evolution. Truncated predictions exhibit a more unstable behaviour at

large x, with a divergent structure in the pathologic region where Dp(µ0 = m) vanishes,

and displaying larger uncertainties for higher perturbative orders. The same behaviour,

albeit with reduced µ0 dependence, is exhibited by resummed predictions. Overall, the µ0

dependence cannot be advocated to explain the large differences between fixed-order and

resummed predictions discussed earlier in this section.
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∼ Pgg

∼ Pqq

Figure 6. The g → bb̄ splitting, dressed with extra gluon radiation. In the collinear limit, radiation

off the parent gluon (red) corresponds to factors of Pgg, while radiation off the quarks (blue) to

factors Pqq.

5 On the simulation of processes with b quarks originated by timelike

splittings

The results presented in section 4, in particular those regarding the gluon-initiated FF,

can provide instructive information on the dynamics of final-state g → bb̄ splittings. As

mentioned in the introduction, such a mechanism is relevant for processes such as bb̄W ,

yt-induced bb̄H, tt̄bb̄ and multi-b production. We can schematically represent the g → bb̄

splitting, including extra gluon emissions, as in figure 6. In that figure, the radiation off the

parent gluon is shown in red, while the radiation off the originating bottom quark is shown

in blue. Given the large effects observed in section 4, a natural question to ask is whether

the former or the latter type of radiation play a dominant role. At least two arguments

can be used to show that the largest effects originate from the radiation off the gluon.

The first argument is related to color factors: in the collinear limit, each splitting from

the parent gluon corresponds to a factor Pgg, proportional to CA. Conversely, radiation

off the quark corresponds to Pqq, proportional to CF ; since CA ' 2CF , one expects the

former effect to dominate over the latter. The second argument is that, as it is visible

in figure 3, higher order effects distort the LO gluon-initiated FF towards small x, and

Pgg is the only splitting function which is singular in that regime. We support these

arguments by explicitly showing, in figure 7, the NLO and LL predictions for Dg(x) when

setting Pgg = 0, and comparing them to the full predictions (note that at NLO — second,

third and fourth line of eq. (A.4) — the logarithmically-dominant term has either a single

emission from the parent gluon, or one from the bottom quark). We choose µ = 100 GeV,

µ0 = 4.7 GeV as a representative example. We can clearly infer the importance of the

emissions from the parent gluon, particularly in the case of the NLO prediction. In that

case, the single emission from the quark only mildly affects the symmetry of the FF. Also

in the LL-resummed case, the prediction with Pgg = 0 is much closer to the LO than to

the complete LL prediction.

These findings bear quite important consequences for the simulation of exclusive ob-

servables or in general observables sensitive to the b-quark degrees of freedom, in particular

when predictions matched to parton shower are considered. Since a parton shower radiates

from external partons, if the bottom quarks appear in the hard-scattering process, only
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Figure 7. The Dg fragmentation function at LO (black), LL (orange) and NLO (green), for

µ = 100 GeV, µ0 = 4.7 GeV. Solid curves represent the complete expressions; dashed curves are

obtained by setting Pgg = 0.

the radiation off the bottom quarks (blue in figure 6) will be generated, while the radiation

off the parent gluon will be included only at a given order in perturbation theory, typically

NLO (with the exception of the results in [67] which may be considered partly NNLO.)

This is clearly not optimal. In general, resummed predictions exhibit a better perturbative

convergence with respect to finite-order calculations al ready at leading log. Hence, in

regimes dominated by the splitting mechanisms, it may be more appropriate to generate b

quarks by shower-evolving light partons, thus generating both kinds of radiation shown in

figure 6, rather than to include them at the matrix-element level.7

Of course, some caveats must be considered. The above statement holds in case of ex-

clusive observables, for which larger effects are expected. More inclusive observables (typi-

cally those related to the b-jet degrees of freedom) will display smaller effects. In section 6,

for example, we will show that this indeed the case for heavy quark multiplicities: the effect

of the resummation of final state collinear logarithms is much milder. Furthermore, an im-

portant assumption we are making is that fixed-order computations with a timelike g → bb̄

splitting follow the pattern of the FF at the corresponding order. This is certainly reason-

able to assume, at least in those kinematic regions in which the g → bb̄ splitting topology

dominates. However other effects must be taken into account: for example, mass effects

typically affect the endpoint (x → 1 and x → 0) behaviours of the FF, although not in a

dramatic way. A further aspect is that the collinear approximation underlying a FF-based

approach neglects the fact that the radiation recoil is spread among the other particles in

the final state (see the extensive discussion in the case of tt̄bb̄ in [67]). An assessment of

the impact of these effects on physical observables requires a convolution of fragmentation

functions with a suitable partonic cross section. This task is left for future work.

7The assumption that the shower is equivalent to our LL description holds up to small-x effects. However,

the largest differences between NLO and LL are at medium/large x.
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6 Relation with heavy quark multiplicities in gluon jets

Theoretical predictions for jet multiplicities, and in particular of heavy quark multiplicities,

has witnessed an important effort of the theory community during the 80’s (see e.g. [96, 97]

and references therein). It is instructive to illustrate if, and in case how, FFs can be

employed to predict such multiplicities. We start by considering the main result of ref. [96],

namely the probability of a gluon with virtuality Q2 to split into a pair of quark-antiquark

with mass m:

ρ(Q2) =
1

6π

∫ Q2

4m2

dK2

K2
αs(K)ng(Q

2,K2)

(
1 +

2m2

K2

)√
1− 4m2

K2
, (6.1)

where the gluon multiplicity ng is given by8

ng(Q
2,K2) =

(
αs(K)

αs(Q)

)a
cosh

[√
2CA
πb0

(
1√

b0αs(Q)
− 1√

b0αs(K)

)]
. (6.2)

The exponent a has the value a = −1
4

[
1 + 2CA

3πb0

(
1− CF

CA

)]
, but it can be set to zero as long

as one’s interest is restricted to the leading-logarithmic behaviour, which is the case we are

considering in this section. The authors of [96] mention that, in order to get the correct

multiplicity, coherence effects have to be accounted for in a systematic way. We will discuss

the corresponding effects in the case of FFs. We proceed by expanding eq. (6.1) in powers

of αs(Q
2) neglecting all m effects in the integrand, and by comparing such an expansion

with the leading-logarithmic terms in our truncation for Dg, eq. (A.4). The expansion of

eq. (6.1) to order α2
s(Q) reads:

ρ(Q2) =
αs(Q)

4π

2

3
log

Q2

4m2

+

(
αs(Q)

4π

)2 2

3

[
2πb0 log2 Q2

4m2
+

1

3
CA log3 Q2

4m2

]
. (6.3)

This expression should be compared with the first moment of the gluon fragmentation

function, as given in eq. (A.4), expanded to second order in αs(Q). Keeping only the

leading-log terms in eq. (A.4) we get

lim
N→1

Dg(Q) = lim
N→1

[
αs(µ)

4π

2

3
t+

(
αs(Q)

4π

)2 2

3

(
2CA
N − 1

+ 2πb0

)
t2

]
, (6.4)

where t = log Q2

µ2
0

, and we have used eqs. (2.12)–(2.15) for N = 1:

γ(0)
qq (1) = 0; γ(0)

qg (1) =
4

3
TF =

2

3
; γ(0)

gg (N) =
4CA
N − 1

+O
(
(N − 1)0

)
. (6.5)

We see that eqs. (6.3) and (6.4) actually coincide, with the choice µ0 = 2m, apart from

the term proportional to CA, which is singular as N → 1. This singularity arises from the

8With respect to the original eq. 1.2 in [96], we have replaced log Q2

Λ2 by 1
b0αs(Q)

(and similarly for log K2

Λ2 ).
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small-x behaviour of the fragmentation function, which diverges as 1
x . One may regularise

this singularity by restricting the integration range to xmin ≤ x ≤ 1, with xmin of order
m2

Q2 . This already provides the extra power of log m2

Q2 which appears in the CA term in

eq. (6.3), but fails to reproduce the coefficient of the CA term in eq. (6.3). A refinement

of this procedure is achieved by including a kinematical constraints in the form of a x

dependence of the scale argument of the fragmentation function [98, 99]. This is motivated

by the observation that the virtuality of a particle scales approximately as x when it decays

into two bodies with energy fractions x and 1− x, in the x→ 0 limit. The corresponding

integral reads ∫ 1

4m2

Q2

dxDg(x, xQ
2) 3

(
αs(Q)

4π

)2 4

3
CA

∫ 1

4m2

Q2

dx

x
log2 xQ

2

4m2

=

(
αs(Q)

4π

)2 4

9
CA log3 Q2

4m2
, (6.6)

which is a factor 2 larger than the corresponding term in eq. (6.3). The origin of this

residual discrepancy is due to dynamic (rather than kinematic) effects related to color

coherence and angular ordering, as it was shown explicitly in [100]. In general, at order

αps(Q), an extra factor 2p−1 will appear in the most singular term (∼ CA
p−1 log2p−1 Q2

4m2 )

of the FF-based prediction for the heavy quark multiplicity.9 Color coherence effects are

not included in our framework, and require matching with small-x resummation in order

to be fully accounted for.

We conclude this section by showing, in figure 8, the comparison of the truncation

of eq. (6.1) with the full result. The effect of the truncation can be appreciated both by

considering the absolute multiplicity (left panel), and the ratio of the truncation up to

order αs(Q), α2
s(Q) and α3

s(Q) over the complete result. We do not set the exponent a to

zero in this case. Owing to the inclusiveness of this observable, effects are much milder

than those observed in section 4: at Q = 100 GeV, the LO prediction is about 70% of the

total, while the NLO one approximates the total by less than 10%.10 This indicates how

the importance of the effects described in this paper changes when inclusive observables are

considered, and motivates further works assessing the impact of resummation of collinear

logarithm on realistic cross sections.

7 Conclusions and outlook

One of the major obstacles to precision physics at the LHC and at future hadron collid-

ers is currently given by our limited understanding of the associate production of heavy

quarks (typically bottom quarks) and heavier objects. Because of their multi-scale nature,

the description of such processes in perturbative QCD is highly non-trivial. In particu-

lar, processes where heavy quarks are dominantly produced via final-state splittings are

9Following the procedure outlined above, we also verified that this is the case at NNLO.
10Some unpublished results in a presentation by S. Pozzorini confirm these numbers, see

https://indico.cern.ch/event/727396/contributions/3018606/attachments/1659440/2657963/benasque18.

pdf.
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Figure 8. The heavy quark multiplicity computed by truncating eq. (6.1) up to different orders of

αs(Q
2), compared with the full result. The right panel show the ratio over the full result.

affected by the largest theoretical uncertainties, both due to missing higher orders and

to parton-shower and matching systematics. In this paper, we make a step forward in

the comprehension of the dynamics underlying these processes. We adopt a FF-based

approach, which allows us to assess the impact of logarithms appearing at each order in

perturbation theory, and to establish the importance of their resummation. By considering

truncated FFs up to NNLO in QCD, we mimic the description of a fixed-order computa-

tion for processes involving the corresponding splittings at the same order. We investigated

both bottom-initiated and gluon-initiated production of a bottom quark. In both cases,

and particularly for the latter, a fixed-order description at LO or NLO turns out not to

be adequate, and either NNLO effects must be included or collinear logarithms must be

resummed to all orders in order to get reliable predictions for the bottom quark kinematics.

When more inclusive observables are considered, these effects are (much) reduced, as it has

been shown for the case of heavy-quark multiplicities.

While the limits of a fixed-order description have been known for some time in the case

of bottom-initiated splitting, which is relevant e.g. for heavy-flavour production at large

transverse momenta, to the best of our knowledge this has never been investigated for the

gluon-initiated heavy quark production. We have discussed in details the implications of our

findings in the choice of scheme to describe this kind of processes. Our analysis motivates

the effort to develop techniques aimed at combining calculations matched to parton shower,

which retain the advantages of the 4F and the 5F schemes in the appropriate kinematics

region, as it is currently being developed for example in [41]. Furthermore, our study

outlines both a similarity and a difference between the timelike and the spacelike regimes.

In particular, the evolution of a gluon from a high to a low scale (timelike) or from a low

to a high one (spacelike), is associated mostly with radiating gluons, and only eventually

a gluon splits into a heavy-quark pair. This is true in both cases. The main difference is
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that, in the case of spacelike splitting, the heavy quark line enters the scattering process

and therefore gluon emissions are resummed by the evolution of parton distributions even

in a 4FS. On the contrary, in the case of a timelike splitting, the gluon is the particle linked

with the rest of the scattering, hence no resummation of these emissions is performed.

To conclude, for processes dominated by final-state g → bb̄ splittings, the dominant

contribution comes from the radiation off the parent gluon, rather than off the bottom

(anti-) quark. A recent study on charm production corroborates these findings: in fact,

in ref. [75] the authors comment on the importance of a proper treatment of final-state

splittings and on issues related to NLO+PS simulations in a massive scheme (see figure 12

therein and the relative discussion). As a result, simulations where bottom quarks are

treated at the matrix-element level might not be the most adequate to accurately describe

these processes, at least in phase-space regions in which these splittings are dominant.

Despite a massive scheme (or more generally a scheme where bottom quarks are generated

at the hard matrix-element level) is often advocated as superior with respect to a massless

one, thanks to the possibility it provides to describe the whole phase space, without cuts,

we have shown that assuming the smallness of collinear logarithms, analogously to what

happens with their initial-state counterpart, is not always correct and may yield serious

flaws in the description of the kinematics of the b quark.

This work has several natural follow-ups. First we will improve the description of FFs

by including the second-order initial-conditions in the x space, and assess the impact of

large- and small-x resummation. While these improvements will make our results more

consistent, we do not expect them to change the final picture in any dramatic way. Most

importantly, we will assess the importance of final-state collinear logarithms on a realistic

process and compare a FF-based description (both using resummed and truncated results)

within a NLO-accurate computation (the inclusion of FFs in NLO subtraction schemes can

be found in refs. [101, 102]) with a description at fixed order in QCD and possibly with

data. While typical analyses for processes like Wbb̄ and tt̄bb̄ study b-jet observables (for

the latter, see the recent analyses [103, 104]), it is not unreasonable to expect that more

exclusive quantities related to the bottom-flavoured hadrons will be measured, specially

with the larger statistics of the upcoming LHC runs.
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A Truncated expressions and validation

In this appendix we give explicit expressions for the truncation of the FFs up to oder α3
s

and discuss the method we used to validate numerically our analytic expressions.

A.1 Non-singlet solution

Expanding both eq. (2.30) and the initial conditions up to O(α3
s), and omitting the N

dependence everywhere and the m dependence from the coefficients of the initial conditions,

we obtain the following truncated solutions:

DT24(µ) =−(nf−1)

{
1+

αs(µ)

4π

[
d

(1)
b (µ0)+γ

(0)
+ t
]

+
(
αs(µ)

4π

)2
[
d

(2)
b (µ0)+d

(2)

b̄
(µ0)−2d(2)

q (µ0)

+
(
γ

(1)
+ +d

(1)
b (µ0)γ

(0)
+ +4πb0d

(1)
b (µ0)

)
t+
(

1

2
(γ

(0)
+ )2+2πb0γ

(0)
+

)
t2
]

+
(
αs(µ)

4π

)3
[((

d
(2)
b (µ0)+d

(2)

b̄
(µ0)−2d(2)

q (µ0)
)(

γ
(0)
+ +8πb0

)
+γ

(2)
+ +16π2b1d

(1)
b (µ0)+d

(1)
b (µ0)γ

(1)
+

)
t

+
(

4πb0γ
(1)
+ +d

(1)
b (µ0)

(
1

2
(γ

(0)
+ )2+6πb0γ

(0)
+ +16π2b20

)
+γ

(0)
+ (γ

(1)
+ +8π2b1)

)
t2

+
(

1

6
(γ

(0)
+ )3+2πb0(γ

(0)
+ )2+

16

3
π2b20γ

(0)
+

)
t3
]}
, (A.1)

and

DVb(µ) = 1+
αs(µ)

4π

[
d

(1)
b (µ0)+γ

(0)
V t
]

+
(
αs(µ)

4π

)2
[
d

(2)
b (µ0)−d(2)

b̄
(µ0)

+
(
γ

(1)
V +d

(1)
b (µ0)γ

(0)
V +4πb0d

(1)
b (µ0)

)
t+
(

1

2
(γ

(0)
V )2+2πb0γ

(0)
V

)
t2
]

+
(
αs(µ)

4π

)3
[((

d
(2)
b (µ0)−d(2)

b̄
(µ0)

)(
γ

(0)
V +8πb0

)
+γ

(2)
V +16π2b1d

(1)
b (µ0)+d

(1)
b (µ0)γ

(1)
V

)
t

+
(

4πb0γ
(1)
V +d

(1)
b (µ0)

(
1

2
(γ

(0)
V )2+6πb0γ

(0)
V +16π2b20

)
+γ

(0)
V (γ

(1)
V +8π2b1)

)
t2

+
(

1

6
(γ

(0)
V )3+2πb0(γ

(0)
V )2+

16

3
π2b20γ

(0)
V

)
t3
]
. (A.2)
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A.2 Singlet solution

Expanding both eq. (2.30) and the initial conditions up to O(α3
s), and omitting the N

dependence everywhere and the m dependence from the coefficients of the initial conditions,

we obtain the following truncated solutions11

DΣ(µ) = 1+
αs(µ)

4π

[
d

(1)
b (µ0)+γ(0)

qq t
]

(A.3)

+
(
αs(µ)

4π

)2
[
d

(2)
b (µ0)+d

(2)

b̄
(µ0)+2(nf−1)d(2)

q (µ0)

+
(
d

(1)
b (µ0)γ(0)

qq +d(1)
g (µ0)γ(0)

gq +γ(1)
qq +4πb0d

(1)
b (µ0)

)
t

+
(

1

2
(γ(0)
qq )2+

1

2
γ(0)
qg γ

(0)
gq +2πb0γ

(0)
qq

)
t2
]

+
(
αs(µ)

4π

)3
[((

d
(2)
b (µ0)+d

(2)

b̄
(µ0)+2(nf−1)d(2)

q (µ0)

)(
γ(0)
qq +8πb0

)
+d(2)

g (µ0)γ(0)
gq +γ(2)

qq +16π2b1d
(1)
b (µ0)+d

(1)
b (µ0)γ(1)

qq +d(1)
g (µ0)γ(1)

gq

)
t

+

(
4πb0γ

(1)
qq +d

(1)
b (µ0)

(
1

2
(γ(0)
qq )2+6πb0γ

(0)
qq +16π2b20+

1

2
γ(0)
gq γ

(0)
qg

)
+γ(0)

qq (γ(1)
qq +8π2b1)+

1

2
γ(0)
qg γ

(1)
gq +

1

2
γ(0)
gq γ

(1)
qg +

1

2
d(1)
g γ(0)

gq

(
γ(0)
gg +γ(0)

qq +12πb0

))
t2

+

(
1

6
(γ(0)
qq )3+2πb0(γ(0)

qq )2+
16

3
b20π

2γ(0)
qq +

1

6
γ(0)
qg γ

(0)
gq

(
γ(0)
gg +2γ(0)

qq +12πb0

))
t3
]
,

and

Dg(µ) =
αs(µ)

4π

[
d(1)
g (µ0)+γ(0)

qg t
]

(A.4)

+
(
αs(µ)

4π

)2
[
d(2)
g (µ0)+

(
d

(1)
b (µ0)γ(0)

qg +d(1)
g (µ0)

(
γ(0)
gg +4πb0

)
+γ(1)

qg

)
t

+
(

1

2
γ(0)
gg γ

(0)
qg +

1

2
γ(0)
qg γ

(0)
qq +2πb0γ

(0)
qg

)
t2
]

+
(
αs(µ)

4π

)3
[((

d
(2)
b (µ0)+d

(2)

b̄
(µ0)+2(nf−1)d(2)

q (µ0)

)
γ(0)
qg +8πb0d

(2)
g (µ0)+d(2)

g γ(0)
gg

+γ(2)
qg +16π2b1d

(1)
g (µ0)+d

(1)
b (µ0)γ(1)

qg +d(1)
g (µ0)γ(1)

gg

)
t

+

(
4πb0γ

(1)
qg +d

(1)
b (µ0)γ(0)

qg

(
1

2
γ(0)
gg +

1

2
γ(0)
qq +6πb0

)
+d(1)

g (µ0)
(

1

2
(γ(0)
gg )2+

1

2
γ(0)
gq γ

(0)
qg +6πb0γ

(0)
gg +16π2b20

)
+γ(0)

qg

(
1

2
γ(1)
gg +

1

2
γ(1)
qq +8π2b1

)
+γ(1)

qg

(
1

2
γ(0)
gg +

1

2
γ(0)
qq

))
t2

+
1

6
γ(0)
qg

(
(γ(0)
gg )2+γ(0)

gq γ
(0)
qg +(γ(0)

qq )2+γ(0)
gg γ

(0)
qq +12πb0(γ(0)

qq +γ(0)
gg )+32π2b20

)
t3
]
.

11Note that the products in eq. (2.30) are products of 2 × 2 matrices.
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A.3 Bottom quark

Summing up the singlet and non-singlet combinations according to eq. (2.20), we get

Db(µ) = 1+
αs(µ)

4π

[
d

(1)
b (µ0)+γ(0)

qq t
]

(A.5)

+
(
αs(µ)

4π

)2
[
d

(2)
b (µ0)+

(
d

(1)
b (µ0)γ(0)

qq +
1

2nf
d(1)
g (µ0)γ(0)

gq +γ̄(1)
qq +4πb0d

(1)
b (µ0)

)
t

+
(

1

2
(γ(0)
qq )2+

1

4nf
γ(0)
qg γ

(0)
gq +2πb0γ

(0)
qq

)
t2
]

+
(
αs(µ)

4π

)3
[(
γ̄(2)
qq +d

(1)
b (µ0)γ̄(1)

qq +d
(2)
b (µ0)(8πb0+γ(0)

qq )+
1

2nf
d(2)
g (µ0)γ(0)

gq

+16π2b1d
(1)
b (µ0)+

1

2nf
d(1)
g (µ0)γ(1)

gq

)
t

+

((
4πb0+γ(0)

qq

)
γ̄(1)
qq +d

(1)
b (µ0)

(
1

4nf
γ(0)
gq γ

(0)
qg +

1

2
(γ(0)
qq )2+6πb0γ

(0)
qq +16π2b20

)
+

1

2nf
d(1)
g (µ0)γ(0)

gq

(
1

2
γ(0)
gg +

1

2
γ(0)
qq +6πb0

)
+

1

4nf
γ(0)
qg γ

(1)
gq +

1

4nf
γ(0)
gq γ

(1)
qg +8π2b1γ

(0)
qq

)
t2

+
1

6

(
γ(0)
qq

(
32π2b20+12πb0γ

(0)
qq +(γ(0)

qq )2
)

+
1

2nf
γ(0)
gq γ

(0)
qg

(
12πb0+2γ(0)

qq +γ(0)
gg

))
t3
]
,

where we have defined

γ̄(p)
qq =

1

2nf

[
γ(p)
qq + (nf − 1)γ

(p)
+ + nfγ

(p)
V

]
. (A.6)

A.4 Validation

To conclude this appendix, we discuss how the above expressions were validated in our

computer code. We base our validation on two arguments: first, given an initial condition,

MELA can provide the evolution up to NNLL accuracy; second, the difference

∆Dp,q ≡
|Dp,NqLO −Dp,NqLL|

αq+1
s

, (A.7)

where p = b, g, . . . and q = 0, 1, 2, should be of O(αs). Thus, by changing the value of

αs(mZ), ∆Dp,q must display the same scaling. We show this scaling in figure 9, for Db

(left) as well as Dg (right), in N space, for q = 0, 1, 2 respectively in the top, central and

bottom row. We fix the scales to µ = 200 GeV, µ0 = 20 GeV, and the bottom mass to

m = 4.7 GeV (in particular, by choosing µ0 6= m, all initial conditions are non-zero).
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Figure 9. The scaling of the difference ∆Dp,q, defined in eq. (A.7), w.r.t. αs, for p = b, g (left,

right) and q = 0, 1, 2 (top, medium and bottom row).
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[41] S. Höche, J. Krause and F. Siegert, Multijet Merging in a Variable Flavor Number Scheme,

Phys. Rev. D 100 (2019) 014011 [arXiv:1904.09382] [INSPIRE].

[42] A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J.

C 47 (2006) 113 [hep-ph/0601139] [INSPIRE].

[43] S. Forte, T. Giani and D. Napoletano, Fitting the b-quark PDF as a massive-b scheme:

Higgs production in bottom fusion, Eur. Phys. J. C 79 (2019) 609 [arXiv:1905.02207]

[INSPIRE].

[44] F. Febres Cordero, L. Reina and D. Wackeroth, NLO QCD corrections to W boson

production with a massive b-quark jet pair at the Tevatron pp̄ collider, Phys. Rev. D 74

(2006) 034007 [hep-ph/0606102] [INSPIRE].

[45] J.M. Campbell et al., Associated Production of a W Boson and One b Jet, Phys. Rev. D 79

(2009) 034023 [arXiv:0809.3003] [INSPIRE].

[46] S. Badger, J.M. Campbell and R.K. Ellis, QCD Corrections to the Hadronic Production of

a Heavy Quark Pair and a W-Boson Including Decay Correlations, JHEP 03 (2011) 027

[arXiv:1011.6647] [INSPIRE].

[47] C. Oleari and L. Reina, W± bb̄ production in POWHEG, JHEP 08 (2011) 061 [Erratum

ibid. 11 (2011) 040] [arXiv:1105.4488] [INSPIRE].

– 29 –

https://doi.org/10.1140/epjc/s10052-012-2088-9
https://arxiv.org/abs/1203.1341
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1341
https://doi.org/10.1103/PhysRevD.91.075015
https://arxiv.org/abs/1409.5615
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5615
https://doi.org/10.1007/JHEP10(2015)145
https://arxiv.org/abs/1507.02549
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.02549
https://doi.org/10.1016/j.physletb.2017.06.037
https://doi.org/10.1016/j.physletb.2017.06.037
https://arxiv.org/abs/1607.05291
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.05291
https://doi.org/10.1088/1126-6708/1998/05/007
https://arxiv.org/abs/hep-ph/9803400
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9803400
https://doi.org/10.1016/j.nuclphysb.2010.03.014
https://doi.org/10.1016/j.nuclphysb.2010.03.014
https://arxiv.org/abs/1001.2312
https://inspirehep.net/search?p=find+EPRINT+arXiv:1001.2312
https://doi.org/10.1016/j.physletb.2015.10.051
https://arxiv.org/abs/1508.01529
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.01529
https://doi.org/10.1016/j.physletb.2016.10.040
https://arxiv.org/abs/1607.00389
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.00389
https://doi.org/10.1140/epjc/s10052-018-6414-8
https://arxiv.org/abs/1803.10248
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.10248
https://doi.org/10.1103/PhysRevD.98.096002
https://doi.org/10.1103/PhysRevD.98.096002
https://arxiv.org/abs/1712.06832
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.06832
https://doi.org/10.1103/PhysRevD.100.014011
https://arxiv.org/abs/1904.09382
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.09382
https://doi.org/10.1140/epjc/s2006-02552-4
https://doi.org/10.1140/epjc/s2006-02552-4
https://arxiv.org/abs/hep-ph/0601139
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0601139
https://doi.org/10.1140/epjc/s10052-019-7119-3
https://arxiv.org/abs/1905.02207
https://inspirehep.net/search?p=find+EPRINT+arXiv:1905.02207
https://doi.org/10.1103/PhysRevD.74.034007
https://doi.org/10.1103/PhysRevD.74.034007
https://arxiv.org/abs/hep-ph/0606102
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0606102
https://doi.org/10.1103/PhysRevD.79.034023
https://doi.org/10.1103/PhysRevD.79.034023
https://arxiv.org/abs/0809.3003
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.3003
https://doi.org/10.1007/JHEP03(2011)027
https://arxiv.org/abs/1011.6647
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.6647
https://doi.org/10.1007/JHEP08(2011)061
https://arxiv.org/abs/1105.4488
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.4488


J
H
E
P
0
1
(
2
0
2
0
)
1
9
6

[48] J.M. Campbell, F. Caola, F. Febres Cordero, L. Reina and D. Wackeroth, NLO QCD

predictions for W + 1 jet and W + 2 jet production with at least one b jet at the 7 TeV LHC,

Phys. Rev. D 86 (2012) 034021 [arXiv:1107.3714] [INSPIRE].

[49] L. Reina and T. Schutzmeier, Towards Wbb̄+ j at NLO with an Automatized Approach to

One-Loop Computations, JHEP 09 (2012) 119 [arXiv:1110.4438] [INSPIRE].

[50] N. Deutschmann, F. Maltoni, M. Wiesemann and M. Zaro, Top-Yukawa contributions to

bbH production at the LHC, JHEP 07 (2019) 054 [arXiv:1808.01660] [INSPIRE].

[51] G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the

NLO Wishlist: pp→ tt̄bb̄, JHEP 09 (2009) 109 [arXiv:0907.4723] [INSPIRE].

[52] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD Corrections to Top

Anti-Top Bottom Anti-Bottom Production at the LHC: 2. full hadronic results, JHEP 03

(2010) 021 [arXiv:1001.4006] [INSPIRE].
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[93] J. Abate and P.P. Valkó, Multi-precision laplace transform inversion, Int. J. Numer. Meth.

Eng. 60 (2004) 979.

[94] M. Cacciari and S. Catani, Soft gluon resummation for the fragmentation of light and heavy

quarks at large x, Nucl. Phys. B 617 (2001) 253 [hep-ph/0107138] [INSPIRE].

[95] V. Bertone, A. Glazov, A. Mitov, A. Papanastasiou and M. Ubiali, Heavy-flavor parton

distributions without heavy-flavor matching prescriptions, JHEP 04 (2018) 046

[arXiv:1711.03355] [INSPIRE].

[96] M.L. Mangano and P. Nason, Heavy quark multiplicities in gluon jets, Phys. Lett. B 285

(1992) 160 [INSPIRE].

[97] A. Bassetto, M. Ciafaloni and G. Marchesini, Jet Structure and Infrared Sensitive

Quantities in Perturbative QCD, Phys. Rept. 100 (1983) 201 [INSPIRE].

[98] A. Bassetto, M. Ciafaloni and G. Marchesini, Inelastic Distributions and Color Structure in

Perturbative QCD, Nucl. Phys. B 163 (1980) 477 [INSPIRE].

[99] D. Amati, A. Bassetto, M. Ciafaloni, G. Marchesini and G. Veneziano, A Treatment of

Hard Processes Sensitive to the Infrared Structure of QCD, Nucl. Phys. B 173 (1980) 429

[INSPIRE].

[100] A.H. Mueller, On the Multiplicity of Hadrons in QCD Jets, Phys. Lett. 104B (1981) 161

[INSPIRE].

[101] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO

QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323]

[INSPIRE].

– 32 –

https://doi.org/10.1007/BF01245820
https://doi.org/10.1007/BF01245820
https://arxiv.org/abs/hep-ph/9612398
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9612398
https://doi.org/10.1017/cbo9780511628788
https://doi.org/10.1017/cbo9780511628788
http://xxx.lanl.gov/abs/http://www.liv.ac.uk/~avogt/split.html
https://doi.org/10.1016/j.cpc.2005.03.103
https://arxiv.org/abs/hep-ph/0408244
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0408244
https://doi.org/10.1016/j.cpc.2014.05.022
https://arxiv.org/abs/1106.5739
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.5739
https://arxiv.org/abs/hep-ph/9708388
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9708388
https://doi.org/10.1103/PhysRevD.60.014018
https://arxiv.org/abs/hep-ph/9810241
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9810241
https://doi.org/10.1016/S0010-4655(00)00156-9
https://doi.org/10.1016/S0010-4655(00)00156-9
https://arxiv.org/abs/hep-ph/0003100
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0003100
https://doi.org/10.1016/j.cpc.2003.12.004
https://doi.org/10.1016/j.cpc.2003.12.004
https://arxiv.org/abs/hep-ph/0311046
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0311046
https://doi.org/10.1016/j.cpc.2009.07.004
https://arxiv.org/abs/0901.3106
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3106
https://doi.org/10.1002/nme.995
https://doi.org/10.1002/nme.995
https://doi.org/10.1016/S0550-3213(01)00469-2
https://arxiv.org/abs/hep-ph/0107138
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0107138
https://doi.org/10.1007/JHEP04(2018)046
https://arxiv.org/abs/1711.03355
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.03355
https://doi.org/10.1016/0370-2693(92)91316-2
https://doi.org/10.1016/0370-2693(92)91316-2
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B285,160%22
https://doi.org/10.1016/0370-1573(83)90083-2
https://inspirehep.net/search?p=find+J+%22Phys.Rept.,100,201%22
https://doi.org/10.1016/0550-3213(80)90413-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B163,477%22
https://doi.org/10.1016/0550-3213(80)90012-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B173,429%22
https://doi.org/10.1016/0370-2693(81)90581-5
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B104,161%22
https://doi.org/10.1016/S0550-3213(96)00589-5
https://arxiv.org/abs/hep-ph/9605323
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9605323


J
H
E
P
0
1
(
2
0
2
0
)
1
9
6

[102] R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, The automation of

next-to-leading order electroweak calculations, JHEP 07 (2018) 185 [arXiv:1804.10017]

[INSPIRE].

[103] ATLAS collaboration, Measurements of inclusive and differential fiducial cross-sections of

tt̄ production with additional heavy-flavour jets in proton-proton collisions at
√
s = 13 TeV

with the ATLAS detector, JHEP 04 (2019) 046 [arXiv:1811.12113] [INSPIRE].

[104] CMS collaboration, Measurement of the tt̄bb̄ production cross section in the all-jet final

state in pp collisions at
√
s = 13 TeV, arXiv:1909.05306 [INSPIRE].

– 33 –

https://doi.org/10.1007/JHEP07(2018)185
https://arxiv.org/abs/1804.10017
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.10017
https://doi.org/10.1007/JHEP04(2019)046
https://arxiv.org/abs/1811.12113
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.12113
https://arxiv.org/abs/1909.05306
https://inspirehep.net/search?p=find+EPRINT+arXiv:1909.05306

	Introduction
	Timelike DGLAP evolution
	Strong coupling constant
	Fragmentation functions
	Initial conditions
	Truncated solution of DGLAP equation in Mellin space

	Setup of the computation
	Impact of collinear resummation and results
	On the simulation of processes with b quarks originated by timelike splittings
	Relation with heavy quark multiplicities in gluon jets
	Conclusions and outlook
	Truncated expressions and validation
	Non-singlet solution
	Singlet solution
	Bottom quark
	Validation


