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Abstract

Human herpesvirus 6A and 6B (HHV-6) can integrate into the germline, and as a result, �70 million people harbor the
genome of one of these viruses in every cell of their body. Until now, it has been largely unknown if 1) these integrations
are ancient, 2) if they still occur, and 3) whether circulating virus strains differ from integrated ones. Here, we used next-
generation sequencing and mining of public human genome data sets to generate the largest and most diverse collection
of circulating and integrated HHV-6 genomes studied to date. In genomes of geographically dispersed, only distantly
related people, we identified clades of integrated viruses that originated from a single ancestral event, confirming this
with fluorescent in situ hybridization to directly observe the integration locus. In contrast to HHV-6B, circulating and
integrated HHV-6A sequences form distinct clades, arguing against ongoing integration of circulating HHV-6A or
“reactivation” of integrated HHV-6A. Taken together, our study provides the first comprehensive picture of the evolution
of HHV-6, and reveals that integration of heritable HHV-6 has occurred since the time of, if not before, human migrations
out of Africa.
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Introduction
Viral sequences can become integrated into the host genome,
either as part of their replication strategy or through host-
mediated recombination. When this occurs in germline cells,
individuals can arise harboring the virus in every cell of their
body, and transmit it to their offspring in a Mendelian fashion
(Katzourakis and Gifford 2010; Aswad and Katzourakis 2016).
These endogenous viral elements (EVEs) can eventually reach
fixation in the population and persist for millions of years
(Katzourakis et al. 2009).

Such ancient integrations are an invaluable resource for
studying the long-term evolution of viruses and the evolu-
tionary dynamics with their hosts. However, far less is known

about the early stages of endogenization—before an EVE has
reached fixation—because this requires large-scale genomic
screening at the population level. For this reason, only a hand-
ful of unfixed EVEs have been identified, such as the cancer-
inducing koala retrovirus (Tarlinton et al. 2006), or the
HERVK(HML2) group of endogenous retroviruses, which
are insertionally polymorphic in humans in different popula-
tions (Wildschutte et al. 2016).

Among the most notable unfixed EVEs are the roseolovi-
ruses human herpesvirus 6A and 6B (HHV-6), which are
found in ~1% of the human population (Pellett et al. 2012).
In contrast to these EVEs, the closely related circulating strains
of HHV-6A and 6B are extremely widespread. For instance,
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the seroprevalence of HHV-6B is over 90% worldwide (Kaufer
and Flamand 2014; Kühl et al. 2015). Primary infection occurs
in infants under the age of three, and typically presents with a
high fever and rash, and complications include febrile seizures
and encephalitis (Hall et al. 1994; Mohammadpour
Touserkani et al. 2017).

Like most herpesviruses, HHV-6A and 6B establish life-long
latency but can reactivate resulting in virus replication. HHV-
6 reactivation has been implicated in a number of diseases
including encephalitis and graft rejection in transplant
patients (Pantry et al. 2013; Hill et al. 2016). HHV-6A and
6B integrate their genomes into the telomeres of latently
infected cells, possibly as a strategy to maintain their genomes
during latency. This feature of their viral replication cycle,
unique among HHVs, could explain why they are the only
endogenous HHVs identified (a similar Roseolovirus has been
identified in the genome of the Philippine Tarsier) (Aswad
and Katzourakis 2014). In its endogenous form, the virus is
described in the literature as inherited chromosomally inte-
grated HHV-6 (iciHHV-6). Previous reports on iciHHV-6 have
used pedigrees to demonstrate inheritance of iciHHV-6
(Huang et al. 2014), but the deeper evolutionary history of
iciHHV-6 has thus far only been performed on relatively small
data sets (Zhang et al. 2017).

Reactivation of HHV-6 and iciHHV-6 has been confirmed
by a number of studies experimentally as well as from evi-
dence in iciHHV-6 positive patients (Hall et al. 2010; Gravel,
Hall, et al. 2013; Prusty et al. 2013; Huang et al. 2014; Kühl et al.
2015). Recent work has demonstrated a link between likely
iciHHV-6 reactivation in patients with various cardiovascular
and myocardial diseases, including angina pectoris, chronic
heart failure in adults, and a case of neonatal dilated cardio-
myopathy (Das 2015; Gravel et al. 2015; Kühl et al. 2015).
Multiple other associations between HHV-6/iciHHV-6 and
disease have been documented ranging from graft rejection
in transplant patients to Alzheimer’s disease, but the causal
role of HHV-6A or 6B remains uncertain (Hill et al. 2017).

In order to understand the relationship of iciHHV-6 to the
onset and/or progression of specific diseases, there are a num-
ber of crucial questions that need to be tackled first. For
instance, we do not know if and how iciHHV6 differs from
circulating viral strains, or if there is a difference between the
integration mechanism for HHV-6A and HHV-6B. Moreover,
we do not know whether germline integrations are still

occurring, or whether the 1% of iciHHV6 carriers represents
a limited number of ancient events that expanded to their
current prevalence.

There has been an increasing number of iciHHV6 genome
sequences available, thanks to the development of enrich-
ment techniques that use an Illumina-based approach
(Depledge et al. 2011; Brown et al. 2016; Greninger,
Knudsen, et al. 2018). However, these data do not allow the
identification of the chromosomal location of the virus due to
the short length of NGS reads and the fact that the virus
integrates into difficult-to-sequence host telomeres.

One direct approach to identifying the chromosomal lo-
cation of the iciHHV-6 genome is by fluorescence in situ hy-
bridization (FISH), but this approach is laborious, expensive,
and requires considerable technical expertise. Thus far,
iciHHV-6 has been identified in several chromosomes, with
certain loci recurring more often than others (e.g., 17p and
22q) (Osterrieder et al. 2014). It is important to understand
whether a bias for certain chromosomes exists in order to
investigate the reasons and effects of such a bias, which may
be linked to disease phenotypes.

Given the nature of the challenges associated with study-
ing iciHHV-6, we set out to develop a phylogenetic framework
to address these basic questions about the evolution and
natural history of this phenomenon. In addition to collating
existing HHV-6 sequencing data, we sequenced additional
patients and mined public human genomes to identify novel
integrations. Our conclusions are strengthened by corrobo-
rating FISH experiments that specify the chromosomal inte-
gration loci of the major global clades of endogenous HHV-6
which we identify here.

Results
We collected sequences from 11 papers published between
1999 and 2018 containing 84 circulating HHV-6 and 112
iciHHV-6 genome sequence (Gompels et al. 1995;
Dominguez et al. 1999; Isegawa et al. 1999; Gravel, Ablashi,
et al. 2013; Tweedy et al. 2015, 2016; Zhang et al. 2016, 2017;
Greninger, Knudsen, et al. 2018; Greninger, Roychoudhury,
Makhsous, et al. 2018; Telford et al. 2018) (table 1). To expand
this data set, we performed targeted NGS HHV-6 sequencing
on subjects previously identified to carry iciHHV-6: 33 sam-
ples from a chronic heart failure cohort and 25 samples from

Table 1. Sources for Existing Sequences That Were Reanalyzed as Part of the Data Set for This Study.

Date HHV-6A HHV6-B Strain Circulating/Endogenous Publication

1999 1 Z29 Circulating Dominguez G, et al. J Virol. 73:8040–52 (1999).
1999 1 HST Circulating Isegawa Y, et al. J Virol. 73:8053–8063 (1999).
1995 1 U1102 Circulating Gompels UA, et al. Virology 209:29–51 (1995).
2013 1 GS Circulating Gravel A, Ablashi D, Flamand L. Genome Announc. 1 (2013).
2015 1 AJ Circulating Tweedy J, et al. Genome Announc. 3 (2015).
2016 1 Endogenous Tweedy JG, et al. Viruses 8 (2016).
2016 1 Endogenous Zhang E, et al. Sci Rep. 6 (2016).
2017 6 21 Endogenous Zhang E, et al. J Virol. 91:JVI.01137-17 (2017).
2018 3 6 Endogenous Telford M, Navarro A, Santpere G. Sci Rep. 8:3472 (2018).
2018 10 125 74 endogenous, 60 circulating Greninger AL, et al. BMC Genomics 19:204 (2018).
2018 9 8 Circulating Greninger AL, et al. J Virol. 92 (2018).
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a study of preeclampsia study. We developed a new bioinfor-
matic mining technique for NCBI sequence read archive
(SRA) that allowed identification of 97 records with HHV-6
read depth suggestive of iciHHV-6. Seven of these could be
assembled into near full-length HHV6A/B genomes. Sample
information for all sequences used in this study can be found
in supplementary table S1, Supplementary Material online.

Circulating and Integrated HHV6 Have Distinct
Evolutionary Histories
To determine if the circulating strains differ from the in-
tegrated viruses, we reconstructed the phylogeny of 261
HHV-6 genomes, annotating their source (iciHHV-6 or cir-
culating strain). This generated a strikingly different result
for HHV-6A compared with HHV-6B (figs. 1 and 2 and
supplementary figs. S2 and S3, Supplementary Material

online). For HHV-6A, the circulating strains (clade A1)
and iciHHV-6 sequences belong to distinct clades sepa-
rated by long internal branches and supported with a pos-
terior probability of 1 (fig. 1). iciHHV-6A genomes at
different chromosomal loci and in people from a diverse
geographical origin are more closely related to one another
than any of them are to the circulating strains (clades A2–
4, fig. 1 and supplementary fig. S2, Supplementary Material
online). This phylogenetic pattern indicates that the an-
cestral circulating strains that resulted in these particular
independent integration events are not among the known
currently circulating strains sampled here. Similarly, the
integrated HHV-6A is not acting as a reservoir for ongoing
production of circulating strains. We would stress, how-
ever, that future sampling could change either or both of
these interpretations.

FIG. 1. (A) HHV-6A subtree consisting of 13 circulating HHV-6A and 38 iciHHV-6A sequences. Gray numbers at each node represent posterior
probabilities, showing only those with >0.80. Green labels represent endogenous iciHHV-6, whereas blue labels represent circulating infectious
viruses. Where available, confirmation of the chromosomal location of iciHHV-6 is indicated with red labels. Gray text at each tip describes the
geographical source of the sequence as well as the ethnicity of the patient where this information was available. Black labels indicate known
reference strains of HHV-6A. Note that the long branch of KT895199.1 means that we cannot be confident about its placement due to evidence of
long-branch attraction from the ML tree (supplementary fig. S2, Supplementary Material online). (B) HHV-6 Bayesian phylogenetic tree recon-
structed using 261 HHV-6 and iciHHV-6 sequences.
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In contrast to HHV-6A, the tree for HHV-6B revealed a
more entangled topology between circulating and endoge-
nous genomes, where no phylogenetic segregation between
the two was observed (fig. 2 and supplementary fig. S3,
Supplementary Material online). Overall, the branch lengths
within the HHV-6B subtree are much shorter than those that
separate HHV-6A clades. The iciHHV-6B sequences we

observe are within the diversity of the known circulating
strains. In spite of the overall lower phylogenetic diversity,
we were able to identify specific lineages of circulating
HHV-6B strains that are very closely related to the viruses
that iciHHV-6B sequences derived from. Specifically, there
are two well-supported clades (posterior probability >0.95)
composed primarily of circulating strains, but also include

FIG. 2. (A) HHV-6B subtree consisting of 72 circulating HHV-6B and 137 iciHHV-6B sequences. Gray numbers at each node represent posterior
probabilities, showing only those with >0.80. Green labels represent endogenous iciHHV-6, whereas blue labels represent circulating infectious
viruses. Collapsed nodes are represented as triangles for clarity (expanded in fig. 3). Collapsed nodes are labeled either green, blue, or both
depending on whether the clade consists entirely of iciHHV-6B, HHV-6B, or a mixture of both. Where available, confirmation of the chromosomal
location of iciHHV-6 is indicated with red labels. Gray text at each tip describes the geographical source of the sequence as well as the ethnicity of
the patient where this information was available. Black labels indicate known reference strains of HHV-6B. (B) HHV-6 Bayesian phylogenetic tree
reconstructed using 261 HHV-6 and iciHHV-6 sequences.
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endogenous sequences (four in clade B1 and one in B7, figs. 2
and 3). As with HHV-6A, there are “exclusive” clades that only
contain either circulating or endogenous viruses, however for
HHV-6B these are interspersed throughout the tree, indicat-
ing that certain endogenous lineages are more closely related
to some circulating lineages than they are to others (fig. 2 and
supplementary fig. S3, Supplementary Material online). This
overall topology is also supported by a maximum-likelihood
tree constructed using all codon positions of the coding re-
gion (supplementary figs. S2 and S3, Supplementary Material
online). Taken together, these observations suggest that
HHV6B viruses capable of integration are nested within the
diversity of currently circulating HHV-6B.

In addition to the clades described earlier, the HHV-6B
subtree also contains sequences (of both iciHHV-6B and
HHV-6B) that are in poorly supported and/or small clades
(fig. 2). Some of these may represent integrations that remain

at very low prevalence, perhaps because they occurred very
recently, or perhaps appear rarely in our data set because they
derive from undersampled populations. For instance, a triplet
of sequences from two unrelated Kenyan people and one
individual of unknown origin grouped with high posterior
probability, suggesting an ancestral integration event
(MG894375.1, MG894376.1, and heart disease cohort 23, re-
spectively, fig. 2). This is further supported by FISH evidence
we generated that demonstrates that both Kenyans harbor
the virus in chromosome 1q (fig. 2).

Bioinformatically Identifying iciHHV-6 Chromosomal
Locations
We hypothesized that at least some of the clade structure
apparent in the phylogenetic reconstruction is the result of
single ancestral events that are stably replicated in the human
germline. Such integration events would be identical-by-

FIG. 3. HHV-6B subtrees of clades B1–8 collapsed in figure 2. Gray numbers at each node represent posterior probabilities, showing only those with
>0.80. Green labels represent endogenous iciHHV-6, blue labels represent circulating infectious viruses. Where available, confirmation of the
chromosomal location of iciHHV-6 is indicated with red labels. Gray text at each tip describes the geographical source of the sequence as well as the
ethnicity of the patient where this information was available.
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descent, expanding via human reproduction and linear, ver-
tical transmission, in contrast to expansion by viral replication
and horizontal spread. Such endogenous viruses would be
predicted to diversify more slowly than expanding during viral
replication. The tree evidences such integrations, in the form
of monophyletic clades with high posterior probabilities.
These clades are characterized by extremely short branch
lengths and are separated from one another by relatively
longer internal branches, which is particularly clear in the
case of HHV-6A clades A2–4 (fig. 1) and HHV-6B clades
B3–6 and B8 (figs. 2 and 3). Moreover, the sequences in our
data set that derived from families resolve within the same
clades, except in the case of the child “Preeclampsia cohort
20,” whose mother was not sequenced and whose father
possesses a different iciHHV-6 sequence.

To confirm one prediction of this model, that individuals
from these clades indeed have the virus integrated into the
same chromosomal location, we performed FISH analyses on
18 cell lines derived from patients whose iciHHV-6 genome is
represented in the tree (supplementary fig. S1,
Supplementary Material online). In combination with FISH
confirmation performed by other groups, we now have direct
evidence for the integration locus of 25/177 iciHHV-6 sequen-
ces. Across the whole tree, we now know the integration
locus for at least one sequence in 11 different clades. We
obtained the highest number of confirmations (total seven)
for the location of the virus in the HHV-6B clade B8. All of
these integrations are located on chromosome 17p, which is
therefore almost certainly the site of the integration event
that has been expanded via human reproduction to lead to all
41 sequences in clade B8 (fig. 3). The sequences in clades B4,
B5, and B6 are almost certainly all represent integrations in
chromosomes 11p, 19q, and 9q, respectively. In figure 2, we
can infer that the sequences identified by FISH on chromo-
some 15q, 1q, and 3q are also the locations of the viruses for
the other sequences in those smaller clades (fig. 2). For HHV-
6A, we infer that clades A2, A3, and A4 are integrations in
chromosomes 17p, 19p, and 18q, respectively.

Phylogeographic Patterns Reflect Human Migration
Transposable element and EVE insertions can be useful
markers to trace human demographic patterns and migra-
tions (Sudmant et al. 2015; Li et al. 2019). Therefore, we next
assessed our phylogenetic reconstruction to determine if in-
tegrated HHV-6 diversity mirrors the ethnic or geographic
distribution of the human hosts. The major clades likely to
represent single ancestral integrations are ethnically and/or
geographically homogeneous. For instance, among the
iciHHV-6A sequences, we observed that individuals from
clades A2 and A4 are exclusively European or North
American (fig. 1). HHV-6B clades B3–6 and B8 are similarly
homogenous and likely represent orthologous integrations in
white Europeans and North Americans (and one Australian).
This suggests that for each of these clades, those now carrying
the virus share a common ancestor who was also European,
and thus the virus integration event occurred prior to the
diaspora of ancestors of these individuals; the virus thus likely
integrated before the colonial era.

Conversely, our analysis also revealed a previously uniden-
tified Native American carrier of iciHHV-6B, who possesses an
HHV-6B sequence distinct from the other North American
samples. Instead, this sequence is almost identical to the
iciHHV-6B genome of a Maasai Kenyan sequence uncovered
through our SRA mining, and a previously identified Pakistani
sample (Zhang et al. 2017) (figs. 2 and 4). Unlike the ancestral
European integrations, the last common ancestor of these
individuals would have been before humans migrated out
of Africa (50–100,000 years ago; Nielsen et al. 2017) (fig. 4).
The observation that they also resolve near the base of the
tree further supports this interpretation, as does the fact that
the most closely related sequence outside this clade is a cir-
culating strain isolated from a Ugandan patient (figs. 2 and 4).

In addition to the phylogenetic evidence, we performed a
dating analysis to examine the age of the different iciHHV-6
clades (fig. 5). Consistent with our interpretation regarding
the Maasai–American–Pakistani, we find that the estimated
time of this integration to be ~85,000–342,000 years old

FIG. 4. (A) The Ancient integration of HHV6B. Part of the HHV-6B tree containing the triplet of sequences derived from a Pakistani, Native
American, and Maasai Kenyan. (B) A cartoon cladogram indicating the relationships between modern human populations that diverged as
humans migrated out of Africa. The model illustrates that the last common ancestor of the three people carrying a near-identical copy of iciHHV-
6B must have been before humans left Africa. The cartoon is a simplified interpretation of the model presented in Nielsen et al. (2017).
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(depending on the mutation rate used). Interestingly, the
analysis also revealed that iciHHV-6A clades (A2–4) are
much older than iciHHV-6B, offering further evidence to sup-
port the different evolutionary histories between them. The
mean estimates for the integration times of iciHHV-6A
genomes are ~31,000–124,000 years ago, compared with the

~3,500–14,000 years ago for clades B3–6 and B8.
The tree also revealed several other clades containing

iciHHV-6 sequences from geographically diverse subjects,
such as HHV-6B clade B1. This clade includes samples from
Uganda, Japan, China, Vietnam, and the Americas (fig. 2).
However, a strong case cannot be made for common human
ancestry of the iciHHV-6 represented in this clade for two
reasons. Firstly, the branch lengths are relatively longer than
those of other clades containing iciHHV-6. This indicates a
more dynamic evolutionary history than for iciHHV-6 clades
for which ancestral integration is the parsimonious interpre-
tation, for example, HHV-6B clades B3–6, B8 and HHV-6A
clades A2–4. Secondly, this clade includes both circulating
and endogenous viruses. Some of these integrations may be
relatively recent events that occurred from strains that re-
main in circulation. This explanation is particularly compel-
ling in the case of HHV-6B clades B7, where a large group of
circulating strains include a single integrated sequence at the
tip of the clade, located on chromosome 15p (fig. 3). In con-
trast to this situation, we do not find examples of rare circu-
lating strains nested within a clade of otherwise endogenous
HHV-6, as might be expected if endogenous HHV-6 were
acting as a reservoir for ongoing horizontal spread of endemic
circulating strains, at least within the limited resolution of the
sampling performed to date.

Discussion
We set out to address key questions about the evolution of
iciHHV-6 using a phylogenetic approach. We combined this
approach with a series of FISH experiments to identify the

chromosomal location of the integrated virus for many indi-
viduals in the cohort. This analysis revealed several clades that
represent single ancestral integration events. Such clades are
characterized by extremely short branch lengths that contrast
sharply with the between-clade branch length, as well as the
longer branch lengths that characterize the evolution of cir-
culating infectious viruses. Moreover, clades of single ancestral
integrations include unrelated individuals, from different
countries which make it extremely unlikely that they repre-
sent multiple integrations of nearly identical strains. This is
further corroborated with FISH experiments that consistently
support the phylogenetic prediction.

Among the most interesting of these ancestral integrations
is one that is represented in our data set by three viral sequen-
ces from a Maasai Kenyan, a Pakistani, and Native American.
Because the common ancestor of these three people existed
before humans emigrated from Africa, we can infer a mini-
mum age for this integration. This interpretation depends on
accurate ethnicity information, which we are confident of in
this case as all three of these individuals are from well-
documented reference panels of projects investigating the
population genetics of these groups. The Native American
is a reference individual used in a South American study on
the influences on physical appearance (Chac�on-Duque et al.
2018), the Pakistani sample is from the HGDP-CEPH human
diversity reference panel (Bergström et al. 2020), and the
Maasai Kenyan is from the international HapMap project
(Pemberton et al. 2010). We can therefore be confident
that an integration of HHV-6 into anatomically modern
humans occurred at least 50–100,000 years ago (Nielsen
et al. 2017), which is consistent with the results of the dating
analysis, in that all our age estimates are older than
50,000 years.

Calculating the age of the hypothesized OoA integration
using the phylogenetically estimated rate of 1�109

2 or our
arbitrary higher value of 2�109

2 offered a plausible time of
integration. Using the 0.5�109

2 rate based on observed inter-
generational SNPs results in an estimate of nearly
350,000 years which would predate the emergence of modern
humans. Alternatively, this could be an indication that the
true rate of iciHHV-6 is >0.5�109

2.
Identifying the chromosome in which the inherited virus is

integrated is a precursor to a wide range of unanswered
questions about HHV-6 integration as a human genetic struc-
tural variant, such as whether there is a bias for some chro-
mosomes over others or if there are particular phenotypes
associated with specific integrations. Although FISH is a rela-
tively reliable method to locate the endogenous virus, it is
expensive and time consuming to perform routinely, espe-
cially in a clinical setting. Using our rigorous phylogenetic
reconstruction allows us to predict the chromosomal loca-
tion of the virus based on its sequence without performing
FISH for every sample, once a certain number of individuals of
the clade have been confirmed by FISH. For instance, we can
predict with confidence the integration site of individuals
bearing clade B8 endogenous HHV-6B (fig. 3), for which ter-
minal chromosome 17p has now been shown to be the cy-
togenetic locus in seven individuals by FISH. Moreover, there

FIG. 5. Integration dating analysis. Chart depicting integration date
estimates for iciHHV-6 clades A2–4, B3–6, B8, and the “Out of Africa”
(OoA) clade consisting of iciHHV-6B sequences from a Maasai
Kenyan, Native American, and Pakistani. Each of the colored bars
(yellow, blue, and green) represent estimates calculated using differ-
ent mutation rates as indicated by the key. The error bars shown
represent the age estimates based on the upper and lower limits of
the 95% confidence interval of the mean pairwise distances in each
clade.
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are eight members of this clade derived from parent–off-
spring pairs, undoubtedly the same integration. Similarly,
we have corroborated the chromosome for at least two
sequences in clades A2, A3, B4, B5, and B6, as well the small
clade consisting of two Kenyan samples and heart disease
cohort 23. Therefore, including the inferences, we can make
from the tree, we can assign a chromosomal location for 140
different endogenous HHV6 sequences, 79% of all the iciHHV-
6 included here.

Our analysis has also revealed the markedly distinct evo-
lutionary history of HHV-6A and HHV-6B. The phylogenetic
pattern exhibited in HHV-6A sequences indicates that inte-
grated and circulating viruses diverged long ago, and it may be
the case that infectious HHV-6A sequences no longer inte-
grate into the germline or reactivate. This scenario is sup-
ported by our dating analysis, which revealed that all three
ancestral iciHHV-6A clades are on an average between

~31,000–124,000 years old (depending on the rate used). In
contrast, the average age of iciHHV-6B clades (except for the
OoA clade) is ten times lower, between ~3,500 and
14,000 years (fig. 5). These findings must be confirmed with
further sequencing of both circulating HHV-6A and iciHHV-
6A, which may reveal a more complex reality that is con-
cealed by undersampling. Nonetheless, integrations of HHV-
6B viruses that are within the diversity of the currently circu-
lating strains is a characteristic that sets the virus apart from
HHV-6A, even if some HHV-6A strains are eventually shown
to still integrate.

On the other hand, the interlaced phylogenetic pattern
exhibited in the HHV-6B subtree is consistent with more
recent, even ongoing integration in human genomes (such
as those in B1 and B7). We attempted to date the examples of
such one-off integrations using the divergence of the DR
regions that are identical in the exogenous virus (similar to
LTR dating for ERVs). However, we found that all the iciHHV-
6B sequences that resolved within a clade of exogenous vi-
ruses maintained identical DRs. This is supportive of recent
integration because the genomes have not had time to accu-
mulate mutations. Furthermore, although iciHHV-6B is capa-
ble of reactivation (Prusty et al. 2013; Endo et al. 2014), this is
not reflected in the tree topology here. It remains to be seen
whether or not reactivation of integrated virus genomes can
result in virus transmission, which should become clear with
further sampling. This is directly relevant to the safety of
blood and organ transplantation from iciHHV-6B donors,
where preliminary evidence suggests a higher incidence of
graft versus host disease using organs from iciHHV6 donors
(Hill and Zerr 2014; Hill et al. 2017).

Current scientific consensus is that HHV-6B exhibits ex-
tremely low levels of diversity (Greninger, Knudsen, et al.
2018), and at first glance, our tree seems to confirm this.
However, much of this homogeneity can actually be attrib-
uted to the large clades of orthologous iciHHV-6 sequences
that should be considered as single data points in terms of
viral diversity. Moreover, a large proportion of the sequences
sampled (both circulating and endogenous) were obtained
from white European and North American patients. As viral
genomes samples derived from African, Asian, and South

American sources exhibit much longer branches, we suspect
that the impression of homogeneity will decrease with im-
proved geographical sampling.

Additional sampling is also important to corroborate our
phylogenetically inferred conclusions that certain clades rep-
resent single ancestral integration events. Given that FISH
analyses are not always feasible, developing long-read se-
quencing approaches that can bridge the virus/subtelomere
junction is a priority. This would serve as an alternative source
of confirmation that iciHHV-6B genomes sequenced in the
future that fall within this clade (or any other) are in fact
present at the same chromosomal location. In addition, sam-
pling further diversity will allow us to reconstruct more ac-
curate trees, particularly in the case of HHV-6B. Although we
were able to draw important conclusions with this sequence
set, much of the deeper structure of the HHV-6B subtree is
poorly supported in both the Bayesian reconstruction (fig. 2)
and the ML tree (supplementary figs. S2 and S3,
Supplementary Material online).

This study developed and applied a conceptually new
method to use viral phylogeny to predict the chromosomal
location of shared endogenous HHV-6, and showed that this
prediction is born out in all cases with available FISH data.
Defining endogenous HHV-6 as a discrete set of human ge-
netic structural variants, as this does, is crucial to a range of
different questions, such as whether there is a bias toward
endogenous HHV-6 integrating or persisting in certain chro-
mosomes (and if so, why), and if different integrations have
certain phenotypic effects. The evidence strongly indicates
that the integration of HHV-6 has been a feature of human
evolution since before our migration out of Africa, which will
help us to understand how and why iciHHV-6 sequences
have been maintained in the population, and whether such
ancient integrations differ in some way from more recent
integrations.

Among the most practical of our findings is the observa-
tion that HHV-6A viruses are apparently no longer endoge-
nizing (at least in the genomes of Europeans most well
represented here) and that iciHHV-6A does not seem to con-
tribute to the pool of circulating HHV-6A. Pending confirma-
tion through further sampling and experimental work, this
would be valuable information for medical professionals con-
sidering the suitability of blood and organ transplant donors.
Conversely, knowing that HHV-6B sequences may still be ca-
pable of reactivation will help medical professionals in mon-
itoring posttransplantation patients for potential treatment
with antivirals.

Materials and Methods

Sequence Data Collection
To assemble a large data set of HHV-6 genomes, we per-
formed targeted-enrichment Illumina sequencing of 33 heart
disease patients confirmed to be carriers of iciHHV6, as well as
25 iciHHV-6 genomes from a preeclampsia study that include
mothers, fathers, and their children. iciHHV-6 status was con-
firmed for samples in this study by identifying a 1:1 ratio of
HHV6 genomes to a housekeeping gene through qPCR. In
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addition, we mined the NCBI SRA to identify seven novel
iciHHV-6 sequences in human genome data. To these new
sequences, we added 196 publicly available HHV-6 and
iciHHV-6 genome sequences that were previously published
in 11 papers (table 1).

To identify iciHHV-6 sequences in the SRA database, we
developed a strategy to circumvent the prohibitively long
download and search time it would take to examine thou-
sands of records. First, we downloaded a list of 213,740 SRA
accession numbers (chosen using NCBI Entrez; filtering for
publicly accessible human DNA records). We then used a
custom python script to web-scrape information from the
SRA browser for each record. Specifically, we wanted to iden-
tify records for which a basic taxonomic assignment for the
reads had been performed by NCBI’s in-house algorithm, the
SRA Taxonomy Analysis Tool. The taxonomy information
was not available for the majority of records. In cases where
the analysis results were available, we considered any records
where reads were tagged as “Roseolovirus.” To minimize the
detection of false positives, we calculated an approximate
read coverage for reads tagged as HHV-6 to compare with
the coverage of human reads. In the cases of true iciHHV-6,
we would expect a 1:2 ratio, but we examined all hits with a
ratio between 1 and 10 to avoid false negatives since both the
taxonomic analysis and initial sequencing are inexact
procedures.

According to the above-described criteria, we downloaded
a list of 97 records for mapping to an HHV-6A or HHV-6B
reference genome and eliminated low-coverage records. After
consolidating any of the remaining records that corre-
sponded to the same sample (e.g., multiple runs), and exclud-
ing previously identified iciHHV-6 samples, we were left with a
list of seven undescribed iciHHV-6 sequences that could be
assembled into near full-length genomes, which was per-
formed using SPAdes (Nurk et al. 2013).

Sample Collection, NGS Sequencing, and
Phylogenetics
Patients in the heart disease cohort underwent a first endo-
myocardial biopsy (EMB) at the Institut Kardiale Diagnostik
und Therapie in Berlin after excluding coronary artery disease.
All patients presented with unexplained clinical symptoms of
heart failure including fatigue, weakness, chest pain at rest or
on exertion, dyspnea on exertion, palpitations and reduced
physical capacity, and clinically suspected myocarditis or id-
iopathic dilated cardiomyopathy. All patients gave written
informed consent for biopsy-based and genetic analyses to
determine the underlying cause of the disease. The protocol
was approved by the local medical ethics committee from the
Charitè University Hospital Berlin, Germany. They underwent
EMB and right heart catheterization in a standardized manner
as previously described (Kühl et al. 2008).

The samples in the preeclampsia study are from the preg-
nancy outcome prediction study—a prospective cohort
study of unselected nulliparous women with a singleton preg-
nancy attending the Rosie Hospital (Cambridge, UK) as pre-
viously described (Pasupathy et al. 2008; Sovio et al. 2015;
Gaccioli et al. 2017). At 20 weeks of gestational age, maternal

blood and paternal saliva were obtained for genotyping the
parents. At the time of delivery, the placenta was systemat-
ically biopsied and a sample of umbilical cord was obtained
for genotyping the offspring. We identified the iciHHV-6 pos-
itive samples by identifying a 1:1 ratio of the virus and a
human housekeeping gene (RPP30) and used target enrich-
ment and deep sequencing. We used droplet digital PCR to
discriminate between HHV-6A and B and to select probes for
the hybrid capture as described previously (Sedlak et al. 2014;
Tweedy et al. 2015). To ensure that the samples are indeed
from an iciHHV-6 patient, HHV-6A, HHV-6B, and the human
RPP30 were quantified using specific primer and probes
(Sedlak et al. 2014).

Approximately 100 ng of extracted gDNA was used to
make sequencing libraries, as described previously
(Greninger, Knudsen, et al. 2018; Greninger, Roychoudhury,
Xie, et al. 2018). DNA was fragmented using the Kapa
HyperPlus Kit (Roche) or the Covaris system followed by
ligation of dual-indexed Truseq adapters. xGen
Hybridization Capture reagents with either HHV-6B or
HHV-6A/B custom capture probe pools (IDT and
SureSelect) were used to enrich HHV-6, following manufac-
turer protocols. Sequencing was performed using 2�300 bp
runs on an Illumina MiSeq. Genome assemblies for the heart
disease cohort were created using a custom HHV-6 genome
pipeline (https://github.com/proychou/HHV6, last accessed
August 05, 2020). Sequencing reads and assemblies are avail-
able on GenBank with accession numbers MT508913–
MT508970.

In the case of the preeclampsia cohort samples, Quality
control and mapping was performed as part of the Pathogen
Genomics Unit (PGU), Cambridge bioinformatics service.
Quality filtering (base quality <30) and trimming was per-
formed with TrimGalore (https://www.bioinformatics.babra-
ham.ac.uk/projects/trim_galore/, last accessed August 05,
2020). Data were then mapped with Bbmap (https://jgi.doe.
gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-
guide/, last accessed August 05, 2020) to both HHV-6A/B and
the best reference was selected based on coverage (references
accessions NC_001664.4 and NC_000898.1, respectively). (A
summary of mapping statistics can be found in supplemen-
tary table S2, Supplementary Material online and a represen-
tative example of mapped reads visualized in IGV is shown in
supplementary fig. S3, Supplementary Material online) Bam
files were then sorted and indexed with Samtools and dupli-
cates removal performed with Picard. The reads were then
assembled de novo using SPAdes (Nurk et al. 2013) and the
chosen reference used to aid in scaffolding using PROmer
(Kurtz et al. 2004). Although HHV6-A and HHV-6B are capa-
ble of coinfection (Leibovitch et al. 2014), we did not observe
any evidence of samples containing both viral species.
Although the genomes are extremely similar, there are none-
theless distinguishing SNPs which would have appeared as
two separate populations of reads mapping to either refer-
ence virus. Moreover, because the phylogenetic separation
between HHV-6A and HHV-6B is clear, a chimeric assembly
would have resolved near the base of the tree which did not
occur for any of our samples.
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A total of 261 genome sequences of HHV-6A and 6B were
aligned using a combination of MUSCLE (Edgar 2004) and
manual adjustment. Each coding sequences was then
extracted from the alignment and corrected for orientation
and adjusted to maintain the correct reading frame, removing
introns. The genes based on the refseq version NC_001664.4
of HHV-6A were concatenated and only the third-codon po-
sition was retained for phylogenetic reconstruction in
MrBayes (Ronquist and Huelsenbeck 2003; Altekar et al.
2004), since the alignment length was well beyond the max-
imum allowed by the software. Each gene was designated a
separate partition for the estimation of model parameters
and the MCMC chains were run for 20 million generations,
sampling every 1,000 generations. In addition to the Bayesian
tree, we also reconstructed a phylogeny using the maximum
Likelihood approach in RaxML, using the full sequence since
the software does not have a length limitation (supplemen-
tary figs. S1 and S2, Supplementary Material online).

Fluorescence In Situ Hybridization
The HHV-6A/B genome and specific human chromosomes
were detected by FISH as described previously (Kaufer 2013;
Prusty et al. 2013; Wallaschek et al. 2016), with the following
modifications and additions. HHV-6 probes were generated
from HHV-6 BAC (strain U1102) and labeled using Biotin-
High Prime (Sigma-Aldrich, St. Louis, MO); chromosomes
probes were generated from chromosome-specific human
BACs (clones RPCI-11; Source BioScience, Nottingham,
England) and labeled using DIG-High prime (Sigma-
Aldrich). Detection of probes signal was achieved using
Cy3-Streptavidin for HHV-6 probes (1:200; Roche, Basel,
Switzerland) and anti-DIG FITC Fab fragments for chromo-
somes probes (1:1,000; GE healthcare, Chicaco, IL). To obtain
an adequate number of metaphases, the treatment of the
cells with Colcemid for 16–24 h prior to preparation. DNA
was stained with DAPI for 10 min (1:3,000; Biolegend, San
Diego, CA), followed by washes in 1� PBS. Slides were
mounted with a drop of ProLong Glass Antifade Mountant
(ThermoFisher, Waltham, MA). Images were acquired with a
Zeiss M1 Microscope using a 100� objective and Axio Vision
software (Carl Zeiss, Inc). Images were analyzed using ImageJ
(https://imagej.nih.gov/ij/, last accessed August 05, 2020) and
its specific processing package Fiji (https://imagej.net/Fiji, last
accessed August 05, 2020).

Dating Analysis
We performed a simple estimate of the divergence times of
clades of endogenous HHV-6 that we propose originate from
a single integration event. This assumes that SNPs observed in
the viral genomes of each clade accumulated after endogeni-
zation, and therefore can be used as a measure of age when
combined with an appropriate mutation rate. The age of a
clade was calculated T ¼ D

n

� �
=R, where T is the time before

present, D is the mean pairwise distance of iciHHV-6 genomes
in a clade, n is the number of tips in a clade, and R is the
average number of mutation/site/year. This basic approach is
similar to the method commonly used to estimate integra-
tion dates for endogenous retroviruses (Hayward 2017). We

employed two different rate estimates (0.5�109
2 and

1�109
2), reviewed in Scally and Durbin (2012), since we do

not have a direct measure of the rate for endogenous HHV 6.
The rate of 0.5�109

2 is based on observations of per-
generation mutations in modern humans and assumes a
generation time of between 20 and 30 years. Another rate
that is often used is 1�109

2, which is derived from the phy-
logenetic divergence between humans and other great apes
or old-world monkeys. Because iciHHV-6 may accumulate
mutations at a higher rate than the rest of the genome, we
also used R¼ 2�109

2 to illustrate such a scenario on the age
estimate. We also recalculated the times of integration using
the upper and lower limits of the 95% confidence interval for
the distance estimates.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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