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Abstract—The non-homogeneous Poisson process provides a
generalised framework for the modelling of random point data
by allowing the intensity of point generation to vary across its
domain of interest (time or space). The use of non-homogeneous
Poisson processes have arisen in many areas of signal processing
and machine learning, but application is still largely limited by
its intractable likelihood function and the lack of computationally
efficient inference schemes, although some methods do exist for
the batch data case. In this paper, we propose for the first time
a sequential framework for intensity inference which combines
the non-homogeneous model of Poisson data with continuous-
time state-space models for their time-varying intensity. This
approach enables us to design efficient online inference schemes,
for which we propose a novel sequential Markov chain Monte
Carlo (SMCMC) algorithm, as is demanded by many applications
where point data arrive sequentially and decisions need to be
made with low latency. The proposed approach is compared with
competing methods on synthetic datasets and tested with high-
frequency financial order book data, showing in general improved
performance and better computational efficiency than the main
batch-based competitor algorithm, and better performance than
a simple baseline kernel estimation scheme.

I. INTRODUCTION

The Poisson process stands out for its ability to model point
data in both temporal and spatial settings. Intensity inference
for Poisson processes under various settings provides valuable
insights into both the behaviour of the stochastic process itself
and the prediction of future events.

Poisson processes have been widely applied in many
disciplines, for example modelling of neuronal spike trains as
Poisson processes [1] and the study of earthquake sequences
[2]. In finance, transactions of orders in an open limit order
book market are frequently modelled as Poisson processes
[3]; and thanks to its convenient mathematical properties, the
process is also combined with other sophisticated models
such as state-space models (SSMs) in order to capture salient
features of dynamical systems with jumps [4], [5].

The non-homogeneous Poisson process (NHPP), as an
important variant of the standard Poisson process [6],
provides extra flexibility by allowing process intensity to
vary across time and/or space, which gives more general and
realistic modelling of real-world data. However, intensity
inference for the NHPP is non-trivial and has been discussed

in many literatures. The early frequentist approach proposed
in [7] uses kernel densities to construct an intensity estimator
for the NHPP. The method developed in [8] assumes a
piecewise-linear form of the intensity function and estimates
linear function parameters via regression. Both methods
have achieved relatively fast estimation of intensity but
the inference accuracy is rather sensitive to the choice of
hyperparameters and model assumptions. The authors of [9]
proposed the first tractable approach to perform Bayesian
intensity inference on Cox processes as a type of NHPP with
a sigmoid transformation function. Based on the ideas in [9],
the model was later extended in [10] to include variational
sampling of hyperparameters and parallel inference for
multiple correlated processes. However, both approaches
scale poorly with the size of the dataset due to the high
complexity of the Gaussian process prior and Bayesian
computation. Inspired by sparse Gaussian process models,
[11] uses generative inducing points and the convolution
process to perform tractable Bayesian intensity inference
on multiple correlated NHPPs, which achieves reduced
complexity compared to the naive implementation.

A short conference paper summarising an early version of
our work was published as [12] which includes a much more
limited theoretical discussion and experimental evaluation,
does not include full details of the our SMCMC scheme,
and relies on a much more basic version of SMCMC, not
including for example the rejection sampling (RS) approach
or the Gibbs-like refinement steps that are newly proposed in
this paper. The contributions of this paper are:

• We propose a novel model of NHPP in which the intensity
function is governed by a continuous-time state-space
model.

• We then develop a new point process version of the
SMCMC algorithm [13], [14] as the inference method to
allow sequential online Bayesian inference for the process
intensity.

• We propose the use of a mixture sampling scheme and
sequential batch scheme to improve inference accuracy
and computational efficiency including a new rejection
sampling method.

• An empirical study of inference performance on both
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synthetic and real datasets in comparison with the fre-
quentist kernel density estimation (KDE) approach [7]
and Sigmoidal Gaussian Cox Process (SGCP) approach
[9].

The remainder of the paper is organised as follows. We first
introduce general properties and simulation methods for the
NHPP in Section II before reviewing the SGCP model [9].
Sections III and IV introduce the newly proposed model
of a SSM-governed NHPP and its corresponding SMCMC
inference algorithm, respectively. Experimental results are
shown in Section V including comparisons between models,
convergence tests and hyperparameter analyses.

II. BACKGROUND

In this section, we briefly introduce the NHPP and its
generative procedures for data when the intensity function is
known. We then review the SGCP method [9], which forms a
starting point for our proposed approach.

A. Non-homogeneous Poisson Processes

In contrast with the standard Poisson process, the non-
homogeneous variant generalises the process by allowing
a time-varying intensity function. The NHPP itself can be
defined in several equivalent ways, each fitting the general
definitions of a Poisson process. For the application to our
setting, we present an intuitive definition of the NHPP as
introduced in [6]:

Definition 1. Non-homogeneous Poisson Process: For a do-
main S = RD, we define a NHPP with an intensity function
λ(s) ≥ 0, s ∈ S, and the counting measure N(T ) (i.e. number
of occurrences) in any bounded region T ⊂ S s.t.:

1) N(∅) = 0
2) {N(Ti)}i are independent for any disjoint subsets {Ti} ⊂
S

3) N(T ) ∼ Poisson(Λ), with Λ =
∫
T λ(s) ds

Let {sk}Kk=1 be a set of K events/occurrences in a region
T ; then with the definition above we can write the likelihood
function of the NHPP with intensity λ(s) as the product of
three probabilities: (1) the Poisson probability of observing K
events in T : e−ΛΛK

K! ; (2) the density of the events {sk}Kk=1:∏K
k=1

λ(sk)
Λ ; and (3) the K! number of possibilities of ordering

the K events. Thus the likelihood can be expressed as:

p({sk}Kk=1 |λ(s), T ) =
e−ΛΛK

K!
×

K∏
k=1

λ(sk)

Λ
×K!

= exp
{
−
∫
T
λ(s)ds

} K∏
k=1

λ(sk)

(1)

It is clear that the direct computation of the above likelihood
requires not only pointwise evaluations of the intensity func-
tion at event times/locations {sk}Kk=1 but also an integration
of the intensity function λ(s) over the region of interest T .
The integration is in general intractable, except for simple
known forms of intensity function. Such intractability inhibits
the inference of intensity function via direct likelihood-based

or Bayesian inference approaches. It is of course possible to
perform intensity inference (either Bayesian or non-Bayesian)
assuming tractable functional forms for the intensity function,
but this leads to restrictive modelling constraints.

B. Thinning and Simulation

Despite the intractability of the likelihood, exact simulation
of fairly general classes of NHPP can be performed tractably
using thinning methods as introduced in [15]. The thinning
operation entails removing point(s) from an existing point
process based on some predefined rules in order to produce a
new point process.

Here, we focus on independent thinning, where the deci-
sion about removing each point is made by an independent
Bernoulli trial and interactions between points has no effect
on this decision [16]. The following thinning theorem is
fundamental to the NHPP simulation:

Theorem 1. [15] Consider a homogeneous Poisson process
(HPP) with constant intensity λ∗ over a domain S = RD, so
that the counting measure over any bounded region T ⊂ S is
N∗(T ) ∼ Poisson(λ∗|T |), where |T | is the Lebesgue measure
of T . If the points of this process undergo an independent
thinning operation with a spatially varying deletion probability
1 − p(s), the remaining points form a NHPP with intensity
function λ∗p(s) within region T .

Following Theorem 1 to generate a NHPP with desired
intensity λ(s), we can simply start with a HPP having intensity
λ∗ and perform the described thinning operation with spatially
varying Bernoulli (retaining) probabilities:

p(s) =
λ(s)

λ∗
, λ∗ ≥ sup

s∈S
{λ(s)} (2)

The value of λ∗ should be chosen such that it serves as an
upper bound on λ(s). It is also worth noting that the starting
process (of counting measure N(T )) is not restricted to HPP
and the method of generating non-homogeneous realisations
via thinning also generalises to NHPP as long as the initial
intensity λ∗(s) is an envelope of the desired intensity λ(s)
such that λ∗(s) ≥ λ(s), ∀s ∈ T [15]. From this, we observe
a close relation between thinning and rejection sampling
(RS), as the tighter the envelope λ∗(s) is, the more efficient
simulation will be.

Based on the above, without requiring any form of
integration we can thus simulate any NHPP whose intensity
function is upper-bounded and which can be evaluated
point-wise. A set of N homogeneous Poisson points
{sn}Nn=1 are generated by first drawing the variable N from
a Poisson distribution with parameter (λ∗|T |), followed
by N independent uniform random draws within T .
The homogeneous points are then thinned with Bernoulli
probabilities (1−λ(s)/λ∗) to provide the NHPP events having
the desired intensity function λ(s). Algorithm 1 shows the
detailed procedure of simulating a NHPP, accompanied by a
graphical illustration in Fig. 1.

It can be noted that the application of Theorem 1 requires
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Algorithm 1 Simulation of a NHPP
Inputs: domain of interest T ⊂ S, intensity function λ(s), upper-bound
intensity λmax
Outputs: A set of (random) K NHPP events Φ = {sk}Kk=1 within T

1: N ∼ Poisson(λmax|T |) . No. events in HPP
2: {sn}Nn=1 ∼ Uniform(T ) . Sample event locations
3: Φ← ∅ . An empty set for NHPP events
4: for n = 1 : N do
5: ρn ∼ Uniform(0, 1)
6: if ρn ≤ λ(sn)/λmax then . Thinning decision
7: Φ← Φ ∪ sn
8: end if
9: end for

10: Return Φ

0

λ ∗

(a) {
sn
}
N
n= 1

λ ∗

0

λ ∗

(b)

λ(sn)

λ(sn)

sn

0

λ ∗

(c)

ρn

T
0

λ ∗

(d) {
sk
}
K
k= 1sk

Fig. 1: The figure shows the generative procedure of the NHPP
with a periodical intensity function: (a) simulation of HPP with
intensity λ∗; (b) point-wise evaluation of λ(s) at locations
{sn}n; (c) sample variates ρn ∼ Uniform(0, λ∗); (d) retain
points with ρn ≤ λ(sn)
an assumption of an attainable maximum intensity λ∗ of
the NHPP. Although this assumption may seem restrictive,
it can generally be satisfied in most real-world applications
especially as λ∗ is not necessarily a tight upper bound
or a supremum of the intensity function λ(s). In practice,
an intuitive value of λ∗ is often inherently defined by the
modelled systems e.g. the maximum number of phone calls
that can be processed by the call center at one time; and in
the real-data experiment presented later in Section V-B, the
maximum number of limit order arrivals is also restricted by
the exchange. However, this intuitive bound may not be the
best choice for λ∗ as we discussed above the tightness of
this upper bound is closely related to algorithm efficiency
(for both simulation and intensity inference). The value of λ∗

should be tuned to accommodate the specific application.

C. Sigmoidal Gaussian Cox Process

Inference for the NHPP usually involves a non-preconceived
functional form of the intensity function, which incites the

development of doubly-stochastic Poisson process where the
varying intensity function λ(s) is governed by another stochas-
tic process {g(s), s ∈ T }. The SGCP model introduced in [9]
uses a Gaussian process (GP) [17] as the prior, which is then
mapped to the non-negative intensity function through a scaled
sigmoid function λ(s) = λ∗σ(g(s)), with σ(x) = (1+e−x)−1.
Inspired by the constructive generative process of the NHPP,
the SGCP model achieves tractability by considering the ob-
served NHPP as the output from a thinning operation applied
to a latent HPP. Define in ∈ {0, 1} as an indicator associated
with each Poisson event, taking value 0 for an observed data
point and 1 for a ‘thinned’ point. We thus have the retaining
probability for an observed point as λ(s)

λ∗ = σ(g(s)); and an
augmented joint probability for NHPP:

p({sn}Nn=1,g1:N , {in}Nn=1 |λ∗, T )

= (λ∗)N e−λ
∗|T |︸ ︷︷ ︸

(1)

p(g1:N |{sn}Nn=1)︸ ︷︷ ︸
(2)

N∏
n=1

σ{(−1)ing(sn)}︸ ︷︷ ︸
(3)

(3)

where g1:N is the concatenated vector with g1:N =
[g(s1), g(s2), . . . , g(sN )]T . The formulation of Eq. (3) follows
similar steps to the simulation in Algorithm 1, with the
addition of random simulation from the intensity function:
(1) represents the probability of generating N ordered points
in T according to the upper-bound intensity λ∗; (2) is the
probability of generating stochastic process values g1:N at
times {sn}Nn=1 from the prior; and (3) is the probability of
the Bernoulli trials, since 1−σ(x)=σ(−x). Inference for the
SGCP model is achieved in [9] by offline batch-based MCMC
samplers for each latent variable which alternate in a Gibbs
sampling manner.

The SGCP model has illustrated a tractable inference pro-
cedure for NHPPs. However the practical application of the
model is limited by the O(N3) complexity arising from the
GP prior and the corresponding MCMC inference methods.
The value of N is the total number of homogeneous points,
and this can be much larger compared to the number of
input points when the intensity function has regions of low
intensity compared to the upper-bound intensity λ∗. Further-
more, the batch-based MCMC sampler proposed provides only
retrospective knowledge of the NHPP and cannot readily be
adapted to a sequential, online setting.

III. NEW MODEL

In order to alleviate these limitations, a new state-space
intensity model is proposed in this section under the generative
thinning framework, which in the meantime allows efficient
sequential Bayesian inference.

A. Continuous-time State Space Model

In order to construct a computationally tractable sequential
framework for non-homogeneous point process data while
allowing flexibility in choice of prior characteristics, we
employ a continuous-time SSM, as is commonly used in
tracking applications, to replace the fully correlated Gaussian
process prior. Denoting g(t) as the state vector at time t,
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we formulate the SSM as the following stochastic differential
equation (SDE):

dg(t) = Ag(t) dt+ h dWt (4)

where {Wt} is a Wiener process. Such a model, which is
linear and Gaussian, can be discretised exactly in closed form
using Itô calculus. The solution of the SDE, integrating from
time P to Q for Q ≥ P , is:

g(Q) = eA(Q−P )
[
g(P ) +

∫ Q−P

0

e−Aτh dWτ

]
(5)

and the conditional transition density p
(
g(Q)|g(P )

)
can be

readily computed to be Gaussian and Markovian:

p
(
g(Q) | g(P )

)
∼ N

(
g(Q) | µ(Q,P ), C(Q,P )

)
(6)

with mean and covariance calculated directly from the stochas-
tic integral in Eq. (5):

µ(Q,P ) = E{g(Q) | g(P )} = eA(Q−P )g(P ) (7)

C(Q,P ) = E
{[

g(Q)− µ(Q,P )
][

g(Q)− µ(Q,P )
]′}

= eA(Q−P )K(Q,P )
(
eA(Q−P )

)′ (8)

where

K(Q,P ) =

∫ (Q−P )

0

e−Aτhh′(e−Aτ )′dτ (9)

The computation of K(Q,P ) is non-trivial and can be ob-
tained using matrix fraction decomposition [18] or approxi-
mated by series expansion of the exponential functions [19].
With the above definition of the conditional transition density,
and a Gaussian initial state prior, we can obtain the joint
probability of all or part of the state vector by conditioning
and probability chain rule, thanks to the Markovian property.

While any Gaussian SSM could in principle be applied in
our framework, we have adopted for illustration a Langevin
dynamical model that is similar to that used in [5]. In such a
model, the state vector gt = [g1,t, g2,t]

T contains a value term
g1,t and a stochastic trend term g2,t at time t. The general
SDE in (4) is reformulated as:

d

[
g1,t

g2,t

]
=

[
0 1
0 θ

] [
g1,t

g2,t

]
dt+

[
0
σ

]
dW (t) (10)

where θ is the non-positive reversion coefficient and σ > 0 is
the scale of the trend process. The Langevin dynamics have
the advantage of being analytically tractable while allowing
either long term or short term trend behaviours of the intensity
depending on the choice of θ. We denote the joint prior under
this model as:

p(g1:N | {sn}Nn=1) = LD(g1:N | {sn}Nn=1) (11)

where gn=
[
g1,sn , g2,sn

]T
and {sn}Nn=1 are the time stamps.

B. Doubly-stochastic Process with SSM Dynamics

Under the Gaussian assumption the process values g1,s can
lie anywhere on the real line. Hence, as in [9], a sigmoidal
mapping onto [0, λ∗] is adopted:

λ(t) = λ∗σ(g1,t) (12)

although we note that any suitable function σ(.) that maps
to [0, 1] could be used in place of the sigmoidal function.
Under this formulation we may use Algorithm 1 to generate
realisations of the NHPP with dynamics specified in (10).
With sampled event timestamps {sn}Nn=1 proposed from the
homogeneous Poisson process, the state vectors {gn}Nn=1 and
corresponding intensities {λ(sn)}Nn=1 are evaluated sequen-
tially through the conditional transition density (6) and the
mapping function (12). Second row of Fig. 3 shows a typical
realisation of a NHPP generated with Langevin governing
stochastic intensity (in solid purple line). Such a realisation
is later used in testing of the proposed model and methods.

IV. SEQUENTIAL INFERENCE

As in the SGCP model [9], our model works with the
tractable augmented joint probability in Eq. (3) but with the
prior being the SSM. However unlike the GP in [9], the
Markovian property of the SSM allows efficient sequential
inference for the intensity. By inputting short batches of data
delineated by times tk, k = 0, 1, ..., inference is updated
with arriving data for each batch. The time intervals Tk =
(tk−1, tk] ⊂ T could be e.g. regularly spaced, tk = kδT , or
spaced according to the timings of the input (observed) points
{sn; in=0}.

We further define the notation xk = {sn,gn, in; sn ∈ Tk}
as the locations, the state vectors, and the indicators corre-
sponding to all events in the interval Tk. Note that xk includes
both unobserved (latent) and observed components of the
model. We write the recursion for the joint distribution as:

p(x1:k |λ∗, T1:k) = p(x1:k−1 |λ∗, T1:k−1) p(xk |λ∗, x1:k−1, Tk)
(13)

where the second term of the conditional propagation can be
conveniently factorised based on Eq. (3) as:

p(xk |λ∗, x1:k−1, Tk)

= p(xk |λ∗, xk−1, Tk)

= (λ∗)Nk e−λ
∗|Tk| × LD({g}Tk |{g}Tk−1 , {s}Tk)

×
∏

n:sn∈Tk

σ{(−1)ing1,n}

(14)

and Nk = |{n ; sn ∈ Tk}| is the total number of events
in Tk. Note that the number of events Nk in Tk is itself a
random variable, therefore extra care is needed in performing
the correct sequential inference. A suitable scheme is proposed
below.

Suppose that at time interval k−1 we have a large collection
of random and possibly weighted samples (‘particles’) drawn
from the posterior joint distribution at k−1 with the pth particle
and its corresponding weight denoted as:{
xp1:k−1, w

p
k−1

}
∼ p(x1:k−1|λ∗, T1:k−1), p = 1, ..., Np (15)
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We can therefore approximate p(x1:k−1|λ∗, T1:k−1) (the
‘smoothing’ distribution at k−1) with the empirical distribution
of the particles:

p(x1:k−1|λ∗, T1:k−1) ≈
Np∑
p=1

wpk−1 δxp
1:k−1

(x1:k−1) (16)

with wpk−1 ≥ 0 and
∑
p w

p
k−1 = 1. Combining the above

approximated posterior with the factorised joint recursion of
Eq. (13) & (14), we obtain an updated particle posterior
distribution at interval k:

p(x1:k|λ∗, T1:k) ≈
Np∑
p=1

wpk−1 δxp
1:k−1

(x1:k−1)

× p(xk|λ∗, xpk−1, Tk)

(17)

The above equation gives a mixed discrete-continuous dis-
tribution containing the point masses for the “past history”
variables xk−1 = xpk−1 = {sn,gn, in; sn ∈ Tk−1}p and the
conditional distributions for the “new variables” xk. We can
now propose samples jointly from this entire approximated
distribution of past and new variables and compute the im-
portance weights or MCMC acceptance probabilities, leading
to standard particle filtering methods or SMCMC procedures
respectively. In either case, it is helpful to keep in view that
the samples produced are joint samples approximating the
posterior for all T1:k.

The posterior propagation proceeds by selecting one parti-
cle, say p = p̃, randomly from the smoothing distribution in
Eq. (16) represented empirically by the ‘history’ collection
at the end of interval Tk−1. Based on the drawn particle
xp̃1:k−1, we propose new sets of variables xk from either
priors or pre-assigned proposal distributions and compute the
corresponding weight/acceptance ratio accordingly. Enough
repetitions of this procedure during interval Tk will yield a
set of importance-weighted/converged samples from the joint
smoothing distribution p(x1:k|λ∗, T1:k). Note that for math-
ematical convenience, we have treated the observed events
{sn; in = 0} jointly with the latent events as random variables
whose values are known with probability 1, and hence simply
chosen deterministically in the proposal step. We note that
the particle approximation of Eq. (17) approximates the joint
distribution of input points {sn; in = 0} and all the remaining
unknowns in the system. Since this joint distribution is directly
proportional to the posterior distribution of the unknown state
elements, conditional on a particular realisation of the input
points (the ‘data’), we obtain posterior Monte Carlo samples
simply by extracting the Monte Carlo samples of the unknowns
and excluding the known fixed input points. Fig. 2 shows
graphically the scheme of propagation as described in Eq. (17)
across batches for different particles in the algorithm.

We have so far described a scheme that can be easily
implemented with the variable-rate particle filter (VRPF) [4].
Such an approach however is not especially effective for this
task as the factorisation in Eq. (14) requires the proposal
of multiple latent variables of varying dimension in a single
propagation step, which will inevitably result in the inherent
weight degeneracy problem of the particle filter. Instead,

Fig. 2: Propagation scheme of the SMCMC algorithm across the
batch boundary between Tk−1 and Tk. Number and locations of
‘thinned’ events are proposed independently for each particle p.

we address this high-dimensional proposal with a SMCMC
algorithm which targets sequentially the joint distributions of
Eq. (17), using both local and global Metropolis-Hastings
(MH) accept-reject moves instead of importance sampling or
resampling [20], [14], [21], [22].

Furthermore, a mixture sampling procedure is adopted in
this paper: at each MCMC iteration, a decision is made on
performing either a joint MH proposal step with probability
PJ or a sequence of individual refinement Metropolis-within-
Gibbs (MwG) transitions with probability 1− PJ . Such a
scheme provides an effective trade-off between the speed
and accuracy of the inference via adjusting the value of PJ .
In Section IV-A, we briefly cover the generic algorithm of
SMCMC before proceeding to the detailed design of joint
proposal and refinement steps in Section IV-B, IV-C and IV-D.

A. A Generic SMCMC Algorithm

The generic algorithm (SMCMC) also tries to approximate
the posterior density with an empirical representation of the
particles. However in contrast to a standard particle filter, the
particles in SMCMC are not weighted and each is guaranteed
to be a representative sample of the posterior density with the
assumption that the MCMC run has converged.

Targeting the posterior joint density e.g. Eq. (17) at each
propagation, the SMCMC algorithm selects historic particles
from {xp1:k−1}

Np

p=1 and conditionally proposes new latent vari-
ables xk from one joint MCMC kernel or several conditional
kernels in turn. The samples accepted after a burn-in period are
included into the particle collection for the next propagation
step requiring neither weight assignments nor a resampling
step in the manner of the regular particle filter. However,
we should note that any of the MCMC moves that involve
proposing the sequence x1:k−1 (or x0:k−1 if involves a random
initialisation), i.e. the discretely approximated ancestor states,
are in some sense equivalent to a resampling operation. Thus
we can expect some degree of path/time degeneracy in the
SMCMC method, as for regular particle filtering. We are not
aware of theory that proves which method would be less
degenerate. However, we would postulate that the wide range
of MCMC moves available in a single SMCMC scheme may
improve on path degeneracy in the SMCMC case compared
with particle filtering, although a full exploration of this is left
for future work.

Both generic algorithms of particle filter and SMCMC are
shown in Algorithm 2 and 3 respectively. SMCMC may be
favourable in the case of high-dimensional latent variables, as
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Algorithm 2 A generic particle filter (PF) algorithm

Inputs: A set of (observed) events {sk}Kk=1 in T .
Outputs: A collection of weighted particles {xp0:K}

Np

p=1 with nor-

malised weights {wp
K}

Np

p=1

1: Initialisation: (k = 0) Sample Np particles {xp0}
Np

p=1 from the prior
p(x0) and assign uniform weights wp

0 = 1/Np.
2: for k = 1 : K do
3: for particle p = 1 : Np do
4: Sample xpk ∼ q(xk |x

p
0:k−1)

5: Compute weight w̃p
k = wp

k−1 ×
p(x

p
k
| xp

0:k−1)

q(x
p
k
| xp

0:k−1)

6: end for
7: Normalise weights: wp

k = w̃p
k /

∑Np

p′=1
w̃p′

k
8: Resample if necessary
9: end for

10: Return: {xp0:K}
Np

p=1, {wp
K}

Np

p=1

Algorithm 3 A generic SMCMC algorithm

Inputs: A set of (observed) events {sk}Kk=1 in T .
Outputs: A collection of (unweighted) particles Ω.

1: Initialisation: (k = 0) Sample Np particles {xp0}
Np

p=1 from the prior
p(x0) to form the initial particle collection Ω0.

2: for k = 1 : K do
3: Ωk = ∅
4: for iteration p = 1 : (Np +Nburn) do
5: Sample x∗0:k ∼ q(xk |x0:k−1) q(x0:k−1)
6: if p = 1 then
7: xp0:k = x∗0:k . Accept the initial condition
8: else
9: Compute ρ = min

{
1,

p(x∗0:k)q(x
p−1
k
|xp−1

0:k−1) q(x
p−1
0:k−1)

p(x
p−1
0:k

)q(x∗
k
|x∗

0:k−1) q(x
∗
0:k−1)

}
10: Draw u ∼ Uniform(0, 1)
11: if u < ρ then . MH accept-reject
12: xp0:k = x∗0:k
13: else
14: xp0:k = xp−10:k
15: end if
16: end if
17: if p > Nburn then
18: Ωk ← Ωk ∪ xpk
19: end if
20: end for
21: end for
22: Return: Ω = Ω0 ∪ Ω1 ∪ · · · ∪ ΩK

in practice the proposal q(xk |x0:k−1) q(x0:k−1) will be split
up into a number of blockwise Gibbs steps and Metropolis-
within-Gibbs (MwG) moves. This allows us to adopt suitable
MCMC schemes based on domain knowledge, which is likely
to lead to better convergence [23]. In later sections, we will
show how to design both joint MH samplers and MwG sam-
plers to give good inference performance with the SMCMC
algorithm.

B. Joint Proposal of Latent Variables

The first MCMC move described is a joint MH kernel that
provides fast proposals of the ‘new’ latent variables xk in each
interval Tk. This consists of a discrete uniform draw of the
converged sample x1:k−1 from the ‘past’ particle collection
obtained from the previous step at the end of interval Tk−1,
followed by proposals of xk conditioned on the sampled
particle xp1:k−1.

More specifically, this latter proposal step is split into three
sampling sub-steps, applied in sequence: 1) the total number of
thinned events M̃ in Tk sampled from a Poisson distribution;

2) the locations of thinned events {s̃m}M̃m=1 sampled uniformly
within Tk; and 3) the state vectors {g}Tk of all events
(both observed and latent) in Tk sampled from the LD prior
conditioned on the events’ locations and the sampled particle
xp1:k−1. This gives an overall proposal density as:

qJ(xk) =
Poisson(M̃ |λ∗, Tk)

|Tk|M̃
LD
(
{g}Tk |{g}Tk−1 , {s}Tk

)
(18)

Note that since the thinned events and input events jointly con-
tribute to form the prior homogeneous Poisson process, there
is no tractable prior distribution for the number of thinned
events M̃ . However, we can still sample it from the Poisson
distribution with the upper-bound intensity λ∗ (or an arbitrary
discounted intensity) as the MH acceptance probability will
adjust for the values of M̃ proposed. Incorporating Eq. (14),
we can write down the MH acceptance probability for joint
latent variable xk at the pth MCMC iteration:

ρJ = min

{
1 ,

(λ∗)N
∗
kLD

(
{g}∗Tk | {g}

∗
Tk−1 , {s}

∗
Tk
)

(λ∗)N
p−1
k LD

(
{g}p−1
Tk | {g}

p−1
Tk−1 , {s}

p−1
Tk

)
×
∏
n σ
{

(−1)i
∗
n g∗1,n

}
qJ(xp−1

k )∏
n σ
{

(−1)i
p−1
n gp−1

1,n

}
qJ(x∗k)

} (19)

where the superscript ‘∗’ indicates the samples proposed in
the current iteration and ‘p−1’ indicates the previous iteration
of the MCMC. Note that the nature (i.e. latent or observed)
of the events are known a priori, hence the indicators {i}Tk
of the events in Tk are assigned determinstically with values
of either 0 or 1.

As is common practice, it is suggested to take Nburn
iterations before including any MCMC output into the new
particle set, in order to neglect non-converged MCMC sam-
ples. Algorithm 4 outlines the pseudo-code of the general
scheme for performing SMCMC inference with the joint
proposal. Tuning of the proposal intensity and alternative
proposals incorporating domain knowledge could improve the
convergence rate and inference performance, although this is
not investigated here.

C. Refinement Metropolis-within-Gibbs (MwG)

A second step in the MCMC procedure involves refinement
moves using MwG. The joint proposal of the previous section
can sometimes result in low acceptance rate and consequently
low particle diversity, which is analogous to the weight de-
generacy encountered in importance sampling particle filters
[24], although we stress that the SMCMC procedure operates
entirely without particle weights. Therefore we here propose
to use a MwG refinement step in conjunction with the joint
MH kernel, as shown in Algorithm 4.

We choose to split the refinement moves into: a reversible-
jump step for adding or removing thinned events and their
positions; a MwG step for refining the positions of the thinned
events; and finally a MwG step for moving the state vec-
tors {g}Tk using a Metropolis-adjusted-Langevin-algorithm
(MALA) procedure. While these three Gibbs sampling steps
are likely to make smaller moves than those of the joint MH
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Algorithm 4 SMCMC algorithm for sequential intensity inference

Inputs: A set of events {sk}Kk=1 in T .
Outputs: Posterior filtering samples of underlying intensity.

1: Initialisation: (k = 0) Create a particle collection Ω0 of Np particles from the prior.
2: for batch Tk = T1 : TK do
3: Initialise a new (empty) particle collection Ωk = ∅
4: for iteration p = 1 : (Np +Nburn) do
5: if p = 1 then . Initial condition
6: Draw a sample x∗k−1 discretely from collection Ωk−1
7: Propose No. thinned points M̃∗ ∼ Poisson{λ∗|Tk|}
8: Propose positions of thinned points {s̃∗m}M̃

∗
m=1 ∼ M̃∗ × Uniform(Tk)

9: Propose {g}∗Tk from LD prior (6) conditioned on x∗k−1
10: xpk = {s,g, i}∗Tk
11: else
12: u ∼ Uniform(0, 1)
13: if u < PJ then . A joint proposal
14: Draw a sample x∗k−1 discretely from collection Ωk−1
15: Propose No. thinned points M̃∗ ∼ Poisson{λ∗|Tk|}
16: Propose positions of thinned points {s̃∗m}M̃

∗
m=1 ∼ M̃∗ × Uniform(Tk)

17: Propose {g}∗Tk from LD prior (6) conditioned on x∗k−1
18: x∗k = {s,g, i}∗Tk
19: Compute MH acceptance probability ρJ from Eq. (19)
20: if Uniform(0, 1) < ρJ then
21: xpk = x∗k . Accept proposed variables
22: else
23: xpk = xp−1k . Reject proposed variables
24: end if
25: else . Metropolis-within-Gibbs
26: Perform MwG refinement moves
27: end if
28: end if
29: if p > Nburn then
30: Ωk ← Ωk ∪ xpk . Include the converged sample into particle collection
31: end if
32: end for
33: end for
34: Map all posterior state vector samples to intensity λp(sk) with Eq. (12)
35: Return: Intensity samples {λp(sk)}Np

p=1 at each input event sk

sampler, they are also able to achieve more local exploration
of the latent sample space through higher acceptance proba-
bilities. A similar MwG construction was adopted in the non-
sequential SGCP model of [9]. We now detail these three sub-
steps.

1) Reversible-jump MCMC for M̃ : The value of M̃ deter-
mines the number of thinned event locations and state vectors
that need to be proposed in the other two MwG samplers.
Therefore, we use the reversible-jump Markov chain Monte
Carlo [25] algorithm to navigate the variable dimension of the
sample space.

The sampler first makes a Bernoulli decision on whether
to insert or delete a latent event. An insertion proposal qins
consists of a uniform proposal of the event location s̃′ in Tk,
followed by a draw of its corresponding state vector g(s̃′)
from the LD prior conditioned on the state vectors of the
two events immediately preceding and following s̃′, whilst a
deletion proposal qdel simply consists of a uniform random
selection and removal of an existing latent event, say s̃m,
out from a total of M̃ events. Thus, we obtain the following

proposal densities:

qins(M̃+1← M̃) =
PB
|Tk|
LD(g(s̃′) | s̃′, {g}Tk) (20)

qdel(M̃−1← M̃) =
1− PB
M̃

(21)

where PB is the Bernoulli probability of making an insertion
move which we set to 0.5. Incorporating the joint recursion in
(13) and (14), we obtain the acceptance ratio for both moves:

ρins = min
{

1 ,
(1− PB) |Tk|λ∗

PB (M̃ + 1)(1 + exp{g1(s̃′)})

}
(22)

ρdel = min
{

1 ,
PB M̃ (1 + exp{g1(s̃m)})

(1− PB) |Tk|λ∗
}

(23)

Algorithm 5 shows the pseudo-code for performing one
iteration of the reversible-jump move. It is found advisable to
perform several iterations of this MH kernel before proceeding
to the other two samplers.

2) Metropolis-Hastings for {s̃m}M̃m=1: Conditioned on the
total number of thinned events M̃ , the posterior thinned event
locations are sampled from a standard MH kernel. For each
thinned event s̃m, a new location s̃′m is proposed from a pre-
assigned conditional transition kernel qloc(s̃

′
m ← s̃m) followed
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Algorithm 5 Single-iteration reversible-jump MCMC for M̃
Inputs: Event positions {s}Tk and state vectors {g}Tk in Tk; the
number of thinned events M̃
Outputs: Updated number of thinned events M̃ (and corresponding
event positions and state vectors).

1: Draw u ∼ Uniform(0, 1)
2: if u < PB then . Insertion
3: Draw s̃′ ∼ Uniform(Tk)
4: Draw g(s̃′) ∼ LD(g(s̃′)|s̃′, {g}Tk )
5: Compute ρins from Eq. (22)
6: if Uniform(0, 1) < ρins then
7: Accept s̃′ and g(s̃′) as a new thinned event
8: M̃ = M̃ + 1
9: end if

10: else . Deletion
11: Draw s̃m discretely uniformly from {m = 1, 2, ..., M̃}
12: Compute ρdel from Eq. (23)
13: if Uniform(0, 1) < ρdel then
14: Remove s̃m and g(s̃m) from the thinned events
15: M̃ = M̃ − 1
16: end if
17: end if
18: Return: M̃

by a draw of the new state vector g(s̃′m) at time s̃′m from the
conditional Langevin prior:

LD
(
g(s̃′m) | s̃′m, {g}Tk\g(s̃m)

)
(24)

where {g}Tk\g(s̃m) stands for all state vectors in the batch
Tk except for the one at s̃m. We can therefore write out the
acceptance probability as:

ρloc = min
{

1 ,
qloc(s̃m ← s̃′m)(1 + exp{g1(s̃m)})
qloc(s̃′m ← s̃m)(1 + exp{g1(s̃′m)})

}
(25)

In the case where qloc is symmetric, the acceptance probability
is further reduced to the ratio of two sigmoidal thinning
probabilities.

3) Metropolis-adjusted-Langevin-algorithm (MALA) for
state vectors: Conditioned on the number and locations of
the thinned events, we can also sample the posterior state
vectors of all events within the batch. The exploration of the
state vectors takes place in a multi-dimensional continuous
space and hence requires a well-tuned sampling method to
ensure fast convergence. Based on the conditional propagation
equation shown in Eq. (14), we can write the Log-posterior of
the state vector subject to an additive constant (normalising
constant):

L
(
{g}Tk |xk−1, {s}Tk , {i}Tk , λ∗, Tk

)
=ln

{
LD({g}Tk |{g}Tk−1 , {s}Tk)

}
−

Nk∑
n=1

ln
[
1 + (−1)in exp{g1,n}

]
+ const.

(26)

As Eq. (6) shows the conditional progression of the state
vectors, one can concatenate {g}Tk into a 2Nk-dimensional
multivariate Gaussian vector Gk:

p({g}Tk |{g}Tk−1 , {s}Tk) = N (Gk | µ̂, Σ̂) (27)

which essentially allows further simplification over the Log-
posterior:

L
(
{g}Tk |xk−1, {s}Tk , {i}Tk , λ∗, Tk

)
=− 1

2
(Gk − µ̂)T Σ̂−1(Gk − µ̂)

−
Nk∑
n=1

ln
[
1 + exp{(−1)ing1,n}

]
+ const.

(28)

We take advantage of the Log-gradient information and use
MALA to accelerate the convergence by proposing from a
gradient-adjusted transition kernel:

q(G∗k|G
p−1
k ) = N

(
G∗k | G

p−1
k +

ε2

2
Σ∇logπ̃(Gp−1

k ), ε2Σc

)
(29)

where ∇logπ̃(.) is the gradient of Eq. (28), ε is the integration
step size and Σc is a pre-defined (constant) covariance matrix.
MALA is then completed with a standard accept/reject step
with acceptance probability:

ρMALA = min

{
1,

π̃(G∗k)q(Gp−1
k |G∗k)

π̃(Gp−1
k )q(G∗k|G

p−1
k )

}
(30)

Additional, we perform the gradient calculation and MALA
diffusion over the ‘whitened’ space of the variable Gk. This is
achieved by applying Cholesky decomposition on the precision
matrix Σ̂−1 = LLT and rewrite the Log-posterior of Eq. (28)
as:

L
(
{g}Tk |xk−1, {s}Tk , {i}Tk , λ∗, Tk

)
=− 1

2
(Gk − µ̂)T LLT (Gk − µ̂)

−
Nk∑
n=1

ln
[
1 + exp{(−1)ing1,n}

]
+ const.

=− 1

2
(Gw

k − µ̂w)T (Gw
k − µ̂w)

−
Nk∑
n=1

ln
[
1 + exp

{
(−1)in [L−TGw

k ]2n−1

}]
+ const.

(31)

where Gw
k = LTGk, µ̂w = LT µ̂ and the subscript 2n−

1 represents the (2n−1)th element of the 2Nk-dimensional
vector. This allows us to carry out the same MH routine of
MALA on the whitened variable Gw

k instead of Gk, which
gives a better-conditioned covariance matrix (I) and fastens
the convergence.

D. Refinement with Rejection Sampling (RS)

Recall that we can derive the thinning operation in point
process from rejection sampling, in this paper we also try
to use RS as a possible refinement approach to obtain the
posterior approximation of latent variables. RS is a technique
used to generate samples from distributions that cannot be
sampled directly. Denoting the target density as f(x) and the
proposal density as q(x), the rejection sampling compute the
acceptance probability ρ(x) as:

ρ(x) =
f(x)

B × q(x)
(32)
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Algorithm 6 Rejection Sampling
Inputs: target density f(x), proposal density q(x), bound B
Outputs: X as a sample from f(x)

1: flag = False
2: while not flag do
3: Draw X ∼ q(x)

4: Compute ρ(X) =
f(X)

B×q(X)
5: Draw u ∼ Uniform(0, 1)
6: if u < ρ(X) then
7: Accept sample X
8: flag = True
9: end if

10: end while
11: Return: X

where 1 ≤ B < ∞ is a finite bound over the probability
ratio f(x)/q(x), i.e. f(x) ≤ Bq(x),∀x. Therefore RS is
usually more restrictive to use than other MCMC methods as it
requires the calculation of a tractable bound B. However, RS
does not require any burn-in for convergence as the generated
samples are guaranteed to come from the target distribution.
Algorithm 6 shows the standard RS procedure to generate
one sample from the target distribution, the general structure
of which is used repeatedly in the refinement step below.

To apply RS in the refinement step, we again use three
separate rejection samplers in a Gibbs manner as in MwG:
(i) sampling the number thinned events M̃ ; (ii) sampling the
location of the thinned events {s̃m}M̃m=1; and (iii) sampling
the state vectors of all events in the batch {g}Tk

.

(i): Denoting the number of observed events in the batch Tk as
K̂, these together with the M̃ thinned events should constitute
a HPP with counting measure N(Tk) ∼ Poisson(λ∗|Tk|). The
target density can thus be written as:

f(M̃) = Poisson
(

(M̃+K̂) | λ∗|Tk|
)

(33)

With a simple proposal of M̃ from a discretely uniform
distribution with G ∈ N+ bins i.e. {0, 1, 2..., G−1}, the bound
B(M̃) and corresponding acceptance ratio ρ(M̃) are:

B(M̃) =
(λ∗|Tk|)bλ

∗|Tk|c exp{−λ∗|Tk|}G
(bλ∗|Tk|c) !

(34)

ρ(M̃) =
bλ∗|Tk|c !× (λ∗|Tk|)M̃+K̂−bλ∗|Tk|c

(M̃ + K̂) !
(35)

Note that unlike the corresponding MH sampler in MwG, the
described rejection sampler does not propose locations and
state vectors of the M̃ thinned events.

(ii): As it is impossible to ‘fill’ thinned events into a
NHPP to make it homogeneous without knowledge of
intensity function (or state vectors), we propose jointly
the location s̃m and the state vector g(s̃m) for M̃ times
conditioned on the existing state vectors in the batch (for
input points and already proposed latent points).

To this end, we can write the target density and the proposal

density respectively as:

f
(
s̃m, g(s̃m)

)
=

1

|T |
× LD

{
g(s̃m)|s̃m, {g}Tk

}
× σ(−g1(s̃m))

(36)

q
(
s̃m, g(s̃m)

)
=

1

|T |
× LD

{
g(s̃m)|s̃m, {g}Tk

}
(37)

As the additional term in the target density is always
less than 1, the proposal itself is already a finite bound
of the target with B = 1, giving the acceptance ratio
ρ
(
s̃m,g(s̃m)

)
= σ(−g1(s̃m))

(iii): With the locations of both input and latent events
in the batch fixed, the proposal of state vectors {g}Tk can
simply be the conditional prior of the Langevin dynamics.
In this case, we achieve a simplified acceptance ratio as
the product of Bernoulli probability of each event, with the
bound B equal to unity. Hence, one joint proposal of {g}Tk
will give an acceptance probability:

ρ({g}Tk) =
∏

n:sn∈Tk

σ{(−1)ing1,n} (38)

It is worth noting that the product of multiple sigmoid func-
tions could result in an extremely low acceptance ratio which
stagnates the algorithm and increases computation. To work
around this issue, the rejection sampler is applied individually
to each state vector conditional on all others e.g. propose from
the conditional prior as in Eq. (24). Such rejection sampler
provides a better acceptance ratio as a single sigmoid function
at the cost of reduced mixing among state vectors.

Furthermore, this RS process can be regarded as the reverse
of the thinning operation: instead of deciding whether the point
should be thinned or retained given intensity, we now try to
find the appropriate intensity (state vector) value given the fact
that a point is either latent (in = 1) or observed (in = 0).

E. Sequential Batch Scheme

With the interval Tk defined earlier in this section, the choice
of how to delineate the entire domain of interest is largely
arbitrary. However, the most intuitive choice that fixes these
intervals to correspond to the observed event times, may not
yield best algorithmic performance. We propose the use of
regular sized batches of duration δT in this paper. With the
appropriate choice of δT , the scheme recovers the temporal
correlation among points within the same batch and thus tends
to improve the sequential inference accuracy. Moreover, the
batch scheme provides the possibility to replace the global
maximum intensity λ∗ with maxima λ∗k that vary with batch
number k and these can be updated individually in a Gibbs
manner with a Gamma prior specified for each λ∗k. The
Gibbs conditional parameters for the posterior are: αpost =
αprior +Nk, βpost = βprior + |Tk|. This local maximum intensity
considerably reduces the number of latent variables proposed
for inference and thus enables computational savings.
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(d) S-LD (VRPF) on λ1(s)
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(e) S-LD (SMCMC-MwG) on λ2(s)
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(i) S-LD (SMCMC-MwG) on λ3(s)
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Fig. 3: Figure shows the intensity inference results estimated using different methods on three synthetic datasets. True intensity curves and
KDE results are displayed in all panels. Three Bayesian approaches are shown individually with corresponding means in solid lines and
±1σ (68%) confidence intervals as shaded regions. The occurrences of input events are shown as scatter lines on the x-axes

TABLE I: Hyperparameters settings for each inference approach on synthetic datasets

S-LD (SMCMC) SGCP S-LD (VRPF)

λ1(s)
θ = −0.7, σ = 0.5, KMwG =KRS =5,
Pj = 0.5, Nburn = 200, Np = 200

Niter = 400,
Nburn = 200, lk = 2.0

θ = −0.7, σ = 0.5,
K = 5, Np = 800

λ2(s)
θ = −0.5, σ = 0.8, KMwG =KRS =20,
Pj = 0.7, Nburn = 200, Np = 200

Niter = 400,
Nburn = 200, lk = 1.0

θ = −0.5, σ = 0.8,
K = 20, Np = 800

λ3(s)
θ = −0.2, σ = 0.2, KMwG =10, KRS =50,

Pj = 0.5, Nburn = 200, Np = 200

Niter = 400,
Nburn = 200, lk = 15.0

θ = −0.2, σ = 0.2,
K = 10, Np = 1500

TABLE II: Numerical results for models. Bold is the best.

S-LD (SMCMC-MwG) S-LD (SMCMC-RS) KDE SGCP S-LD (VRPF)

λ1(s)
MSE 0.0257 0.0342 0.129 0.0704 0.187
L(p) 1.825 -6.379 – -9.440 -5498

Time (s) 15.86 36.46 0.01 60.23 14.89

λ2(s)
MSE 0.6531 0.6018 0.8599 1.5257 1.7004
L(p) -248.1 -233.85 – -326.6 -9.3×1034

Time (s) 60.05 490.4 0.05 1326.28 64.25

λ3(s)
MSE 0.0986 0.1157 0.2166 0.0637 0.4286
L(p) -69.20 -74.54 – -28.34 -5.93×1029

Time (s) 100.3 125.3 0.05 522.2 98.38

V. RESULTS AND DISCUSSION

In this section, we present empirical performance analysis
of the proposed sequential-Langevin (S-LD) model. Section
V-A assesses the relative performance of S-LD, SGCP and
a baseline kernel density estimation (KDE) method [7] on
three synthetic datasets of distinct intensity functions λ(s) with
ground truth available. In the same section, the S-LD model
and the KDE approach are further tested on 4 realisations
of the doubly-stochastic Poisson process which are found

computationally challenging for the SGCP model. The S-LD
model is then applied to a real financial dataset with high-
frequency input events in Section V-B. Finally, we examine
the convergence behaviour of the SMCMC algorithm under
different refinement schemes (MwG or RS); and the effect of
hyperparameters on the S-LD model performance.



11

A. Synthetic Data

Three sets of one-dimensional data are generated using
Algorithm 1 with the following intensity functions:

1) A sum of an exponential and a Gaussian bump:
λ1(s) = 2 exp{−s/15}+ exp{−((s− 25)/10)2} on the
interval [0, 50] with 55 events.

2) A doubly-stochastic process with λ2(s) governed by
Langevin dynamics with parameters θ = −0.5, σ = 0.5
and λ∗ = 5 on interval [0, 100] with 156 events.

3) A piece-wise linear intensity function λ3(s) on interval
[0, 100] with 230 events

Synthetic datasets similar to 1) and 3) were also used in the
original SGCP paper [9]; while 2) is the dataset generated from
the matching prior model. Furthermore, the three synthetic
intensity functions also test the models’ ability in generalising
to underlying intensities not drawn from the assumed prior
structure of the model.

In these experiments, we infer the S-LD model intensity
functions using both the proposed SMCMC algorithm and a
batch-based variable-rate particle filter (VRPF). Additionally,
the SMCMC algorithm is tested separately using both MwG
refinement and RS refinement schemes. The number of parti-
cles used in VRPF is tuned to roughly match the computational
cost of SMCMC algorithm. The results are compared with
those obtained by the SGCP model using a square-exponential
covariance function (with lengthscale lk) and by the KDE
approach with Gaussian smoothing kernel [26]. Table I lists
the hyperparameter values used by each approach, except for
KDE, for all three synthetic cases. The hyperparameters are
heuristically tuned to provide representative results for com-
parison purpose. Fig. 3 shows the graphical results of the four
approaches and Table II quantitatively reports the performance
averaged across 10 trials in terms of the computational time,
the mean squared error (MSE) to the true intensity function,
and a probabilistic metric L(p). The log-probability L(p) is
computed as follows:

L(p) =

K∑
k=1

log
{
N
(
λ(sk) | µ̂k, σ̂2

k

)}
(39)

where λ(sk) is the true intensity value at sk; µ̂k and σ̂2
k are

mean and variance empirically approximated by the particles
obtained from the inference algorithm. In addition to the mean
error, L(p) also quantifies the uncertainty of different Bayesian
approaches.

Inferred with SMCMC, the proposed S-LD model is able to
outperform the other two models in both MSE and L(p) for the
first two synthetic datasets while giving satisfactory accuracy
for the third dataset. VRPF on the other hand fails to provide
good inference for the S-LD model due to particle weight
degeneracy as discussed in Section IV, which can be seen from
the extremely low L(p) values. Computationally, the KDE
always gives the fastest run-time because of its algorithmic
simplicity, but gives no confidence intervals as a frequentist
approach. The SGCP model is significantly more expensive
and scales poorly with λ∗, which can be observed from
the results for datasets 2 and 3. Comparing between MwG
refinement and RS refinement, both schemes give similar

estimation accuracy whilst MwG refinement requires lower
computational cost than RS. It is typically more difficult to
maintain a salable computational cost using RS algorithms due
to its inherent sampling mechanism. The MwG refinement on
S-LD model shows roughly linear computational cost with the
number of input events.

Visually from Fig. 3, despite the prior mismatches for λ1(s)
and λ3(s) compared with the model used in inference, the
S-LD model inferred with both refinements of the SMCMC
algorithm still captures the overall shape of the true intensity
function and gives a reasonable estimate of uncertainty. The
SGCP model on the other hand, was found to be sensitive
to the choice of hyperparameters e.g. different forms of
covariance functions and values of lengthscale. The KDE
method tends to over-smooth the intensity and ignores short-
term variations. From the figure, one can again notice the
degeneracy in particles for the S-LD(VRPF) as it provides
overly narrow confidence intervals.

We also apply the S-LD model (inferred by SMCMC-MwG)
to additional 4 realisations of the doubly-stochastic Poisson
process with the same parameters used to generate λ2(s). Fig.
4 shows the results obtained using the same set of inference
hyperparameters for λ2(s) as listed in Table I. The S-LD
model is compared to KDE only as the SGCP model was
found to be impractically slow. In terms of both accuracy
and computational time, the results are consistent with those
obtained from earlier three experiments on synthetic datasets.

B. Application to Order Book Data

Limit order books [27] in modern financial markets, record
and display order operations performed by market participants
all over the world. With momentum strategy as a common
technique used by the traders in high-frequency finance [28],
being able to infer the intensities of limit order arrivals,
cancellations and executions provides crucial insights into
the future market structure and price trends. This demands
the development of a computational-efficient online intensity
inference method for market analysis based on time-of arrival
trading data.

We apply the S-LD model on a set of LOB data collected
from the EUR-USD FOREX market on the 2nd of September
20151. The tick data used in the experiments is a record of all
limit order arrivals at 51 different price levels (‘ticks’) around
the mid-price for a duration of 5 minutes (19:35–19:40) from
one of the busiest hours of the day.

We construct 51 independent S-LD models for the 51 price
levels of interest. A volatile Langevin prior with σ = 1.0,
θ = −0.7 and λ∗ = 5.0 is assigned to all models to
accommodate possible drastic changes of the intensity curve
in the highly stochastic market. The SMCMC algorithm with
MwG refinement is used for inference with PJ =0.7, K=20,
Np=400 and Nburn =400 to ensure convergence.

Fig. 5 shows the inference results presented as a 3D surface
plot and a heatmap. Both plots exhibit reasonable behaviours

1The authors would like to thank Cambridge Capital Management for
providing the datasets for these experiments.
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Fig. 4: Additional tests of the S-LD model on doubly-stochastic Poisson processes. In comparison to KDE, the S-LD model is able to
achieve an average MSE of 0.6806 and an average computational time of 0.863s per input point; while KDE only provides an average MSE
of 1.032 with an average computational time of 1.576× 10−4s per input point.

with the mid-price lying in a ‘valley’ formed between the high-
intensity ridges and peaks at prices above and below the mid
price: this price region close to the mid-price is where the
market orders are typically placed and matched (executed)
immediately, presenting little interest for limit-order traders.
In contrast, the limit order arrivals have high intensity a few
ticksizes away from the mid-price as these levels are most
likely to become the best prices in future market fluctuations.
We can also observe from the heatmap that the high intensity
of bid or ask arrivals exerts pressure on the mid-price to go in
the opposite direction, as would be expected from the market
supply-demand relationship.

Fig. 6 presents a detailed view of the inferred arrival inten-
sity at the price of $1.12960 with a reference to the mid-price
shown in the bottom panel. The figure again demonstrates how
intensity changes in relation to the mid-price movements and
during ask-bid transitions.

Based on the results obtained from this example, it is
reasonable to conclude that the proposed S-LD model may
be useful for providing predictive inference about market
behaviours, although we leave a full investigation of this for
future work. The SGCP model was not tested on this dataset
due to its impractical computational cost.

C. Convergence Evaluation

When it comes to an iterative sampling method such as
SMCMC, it is important to ensure its convergence while main-
taining reasonable computational efficiency. In this section,
we evaluate the convergence behaviours of different SMCMC
refinement setups by computing their corresponding integrated
autocorrelation times (IACTs).

(1) 3D surface plot of the limit order arrival intensities
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(2) 2D intensity heatmap

Fig. 5: The top panel shows the surface plot of the inferred (filtering)
intensity with time, price and intensity on x, y and z axes respec-
tively; the bottom panel shows the intensity heatmap with market
mid-price plotted in black solid line.

The IACT for a sequence f(t) is defined as:

τf =

∞∑
k=−∞

ρf (k) = 1 + 2

∞∑
k=1

ρf (k) (40)
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TABLE III: IACT values computed from RMSE sequence and intensity sequences obtained from 6000 iterations of SMCMC run on λ1(s).
Intensity IACT values are averaged across all input points/events.

Refinement method Joint move ratio
PJ = 0.1 PJ = 0.5 PJ = 0.9

MCMC (MwG) RMSE IACT 37.23 7.46 18.37
Intensity avg. IACT 43.91 15.88 29.88

RS RMSE IACT 49.17 18.92 12.97
Intensity avg. IACT 50.08 15.24 15.08

Fig. 6: Top panel shows the S-LD model intensity inference result on
limit order (both bid and ask) arrival data at price $1.12960. Bottom
panel shows the market mid-price for the same duration.

where ρf (k) is the normalised autocorrelation function (ACF):

ρf (k) =
E
[(
f(t)− µf

)(
f(t+ k)− µf

)]
σ2
f

(41)

with µf and σ2
f being the mean and variance of the sequence.

With f(t) being the sequence output (e.g. intensities) from
the SMCMC algorithm, τf quantifies the factor by which
MCMC chain’s Monte Carlo error is degraded comparing to
standard i.i.d. Monte Carlo from the target posterior distri-
bution. Therefore, the SMCMC refinement setup with better
mixing and faster convergence would give a smaller value of
τf . We approximate the IACT with a finite summation using
the method suggested in [29].

Running the SMCMC algorithm for 6000 iterations (i.e.
particles+burn-in) on synthetic dataset λ1(s), Table III re-
ports the IACTs of root-mean-square errors (RMSE) and
intensities for different configurations of refinement step. Both
RS and MCMC refinement show relatively poor convergence
at low PJ due to the lack of resampling of the ‘ancestor’
particle. At high PJ , MCMC suffers from inadequate mixing
of Markov chains (i.e. MwG); while RS provides lower IACTs
as it is guaranteed to produce representative posterior samples
and it only requires convergence in the conditional Gibbs step.
An intermediate value of PJ yields the best result for MCMC
and outperforms all other configurations.

In summary, the refinement moves used in the SMCMC
algorithm provide improved mixing of the Markov chains
without dramatic increase in computation. Meanwhile, it is
also necessary to maintain enough resampling of the ‘ancestor’
particles from the previous batch. Each sampling step of
the RS refinement scheme provides better/more representative
posterior samples, which means that the RS refinement can
achieve good mixing of the Markov chains without requiring a
large amount of expensive Gibbs-like refinements. The overall
low values of IACT computed in this experiment suggest that
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Fig. 7: The S-LD model performances under different settings of
hyperparameters using synthetic dataset λ1(s)

the proposed SMCMC algorithm requires only a moderate
amount of particles and burn-in for inference.

D. Hyperparameter Settings

Tuning of hyperparameters is crucial in Bayesian inference
and learning. The hyperparameters in the SSM determine
loosely the prior dynamics of the state vector diffusion, and
hence case-specific domain knowledge should be incorporated
to improve the fit of the prior model to the data. Alternatively,
SSM hyperparameters can be learned directly from the data
with an extension of a variational structure [30] or particle-
MCMC methods [31]. In this section however, we present a
focused analysis on the algorithm-related hyperparameters.

As introduced in Algorithm 4, the SMCMC inference
routine is controlled by two hyperparameters: joint proposal
ratio PJ and batch size Tk. Both values affect the inference
accuracy and computational speed. We run the S-LD model
on the same set of NHPP realisations from λ1(s) with the
same SSM settings described in Table I. Algorithm-wise, we
use both MwG and RS refinement while setting Np = 200
and Nburn = 800, which constitute to a total of 1000 iterations
to ensure convergence. Each result presented here is averaged
across 10 random runs of the SMCMC algorithm.

Fig. 7 shows two plots of computational cost and MSEs
under a range of values of PJ and K. The top panel shows
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that the inference time reduces linearly with the increase of PJ
as both MwG and RS refinements require more computation
especially in the MALA step and rejection sampling steps.
MSE shows weaker correlation with PJ but deteriorates dras-
tically without refinement (i.e. PJ = 1), which emphasises the
importance of refinement steps in the SMCMC algorithm. At
low values of PJ , the MSEs for both refinement schemes rise
slightly due to the lack of resampling of ‘ancestor’ particle.
Despite the small difference, RS refinement gives lower MSEs
at high values of PJ which supports the findings in Section
V-C.

With MALA being the computational bottleneck of MwG
refinement, the sequential batch scheme changes the complex-
ity fromO(N3) to roughlyO(N

3

K3 )×O(K). This gives obvious
drops in computational cost especially upon using the batch
scheme (i.e. K changes from 1 to 2) as shown in the bottom
plot of Fig. 7. RS refinement’s cost is relatively less sensitive
to this change as RS does not involve the O(N3) matrix
inversion. However, the low acceptance rate of the rejection
sampler still renders it slower than MwG. The cost later
increases slightly with K, as the O(K) part becomes more
dominant. For MwG refinement, MSE generally improves
with an increasing K value because the sequential batch
scheme reduces the dimension of latent variables in each
batch and hence improves MCMC samplers’ performance.
However, the rising trend in MSE that is just observable as K
increases becomes more acute at larger K values (not shown
on the plot), as the batches tend to de-correlate local location
information of the input points. As for RS refinement, the
problem of high-dimensional latent space is primarily reflected
in the high computational cost (i.e. low acceptance probability
in rejection samplers) and hence the small value of K has
little influence on its MSE. But the de-correlation of input
points will also have a negative impact on the MSEs for RS
refinement at larger K values.

Based on above analyses, we can also conclude that despite
higher computational cost, RS refinement is able to provide
more robust inference results across a range of algorithmic tun-
ing hyperparameters. A drawback of the current RS refinement
scheme is its relative slowness compared to MwG. This could
potentially be overcome by using more sophisticated proposals
such as adaptive rejection sampling (ARS) [32], [33] and its
variants. In practice, one may choose to use a mixture of both
RS and MwG refinement moves to achieve the best trade-
off between computational time per iteration and convergence
over iterations.

VI. SUMMARY AND FUTURE WORK

In this paper, we have presented a novel approach of
modelling the intensity function of a NHPP with a continuous-
time SSM. In addition to using a generative prior and latent
variables to mitigate the inherent intractability of NHPP, we
further utilised the Markvoian property of the SSM and per-
formed sequential Bayesian inference for the intensity function
with a novel design of SMCMC algorithm. The proposed al-
gorithm not only dealt with the degeneracy problem caused by
high-dimensional latent variables, but was also favourable in
practical applications that require online intensity estimations.

We also proposed two refinement schemes (MwG and
RS) and a sequential batch scheme to further improve the
inference performance by increasing Markov chain mixing. In
comparison with the KDE and SGCP approaches on synthetic
datasets, our model has demonstrated better inference accuracy
and reasonable computational cost while maintaining a fully
Bayesian framework. The results obtained using FOREX data
again demonstrated that the proposed model is capable of
handling real-world intensity inference tasks while giving
plausible interpretations of the data.

In our current work we are investigating automated hyper-
parameter learning for the SSM and also extensions to our
models for multiple correlated point processes by encapsulat-
ing them into a single SSM (see also [13] and [11]), which
would be highly beneficial in many applications such as the
financial order book examples considered earlier.
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