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Abstract

Holmboe waves are long-lived traveling waves commonly found in environmental stratified shear flows in which
a relatively sharp, stable density interface is embedded within a more diffuse shear layer. Although previous
research has focused on their linear properties (the Holmboe instability), and on their turbulent properties
(Holmboe wave turbulence), little is known about their finite-amplitude properties in the nonlinear but non-
turbulent regime. In this paper we tackle this problem with a weakly-nonlinear temporal stability analysis
of Holmboe waves. We employ the rigorous and versatile amplitude expansion method recently proposed
by Pham & Suslov (R. Soc. Open Sci. 5: 180746, 2018), which remains well-posed a finite distance away
from the critical point of linear instability. Starting with the most amplified linear Fourier mode (order 1
in amplitude), we systematically derive the hierarchy of nonlinear modes (order 2 and 3) required to obtain
Landau coefficients that allow the instability to eventually saturate to a stable equilibrium amplitude. We
introduce the algorithm step by step, first on a single-mode instability (suited to the weakly-stratified Kelvin-
Helmholtz instability), before extending it to the more subtle case of a double-mode instability (suited to the
more strongly-stratified Holmboe instability of interest). We present numerical solutions for the canonical
stratified shear layer with hyperbolic-tangent symmetric profiles, shear-to-density thickness ratio R = 5, and
Prandtl (or Schmidt) number Pr = 700. We select four locations on the linear stability boundary: three
qualitatively distinct Holmboe cases (having widely different Reynolds numbers Re, Richardson numbers J ,
steamwise wavenumbers k, and phase speeds), and one Kelvin-Helmholtz case to serve as a comparison. We
produce supercritical bifurcation diagrams for each case, both in Re and J , and we find great differences in
the scaling and magnitude of stable equilibrium branches, be it between Holmboe cases, between the Holmboe
and Kelvin-Helmholtz cases, and between bifurcations in supercritical Re or J . We also study phase portraits
to delve into the transient dynamics of the two counter-propagating Holmboe modes, and we find a special
case in which specific initial conditions can lead to the non-monotonic growth or decay of individual modes.
Next, we deconstruct the perturbation expansions to investigate in detail the spatial structures of all the
component modes (linear and nonlinear), and highlight the underlying saturation mechanisms. We again find
differences between Holmboe cases, and Re or J (such as the dominance of order 2 vs order 3 terms, and
of various wavenumber harmonics 0, k, 2k, 3k). Finally, we discuss the potential relevance of our analysis to
recent experimental measurements of supercritical Holmboe waves, and its possible extension to asymmetric
Holmboe waves to tackle the question of mode selection. We believe these results provide a basis for a future
fully-nonlinear analysis of the Holmboe dynamical system.

I. INTRODUCTION

Stratified shear flows – Due to their physico-chemical heterogeneity, most environmental flows are stratified
in density. The atmosphere and oceans are mostly stably stratified, i.e. their density tends to decrease with
height (gravitational potential). Moreover, flows driven by buoyancy forces often have vertical shear, i.e.
fluid layers at different densities tend to flow at different velocities. The complicated hydrodynamic stability
properties of such stably-stratified shear flows control the presence and amplitude of waves, which in turn
control the mixing and transport of heat, salt and other tracers between atmospheric and oceanic layers.

Nonlinear Holmboe waves – Focusing our attention on parallel shear flows with a single stable density interface,
two distinct and contrasting types of linear instabilities stand out as particularly important. In the Kelvin-
Helmholtz instability, a single mode of instability grows with zero phase speed (relative to the mean base
flow). Its characteristic billows tend to grow to large enough amplitudes to overturn and trigger turbulence
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and mixing, such that the instability is typically short-lived for a wide range of relevant parameters. By
contrast, in the Holmboe instability, two modes of instability grow and travel with non-zero, opposite phase
speeds. Its characteristic cusped waves tend to grow to moderate amplitudes and to actively preserve the sharp
density interface on which they rely, such that the instability is typically long-lived [1]. In this paper, we seek
to understand the nonlinear growth and saturation of the Holmboe instability, which controls its asymptotic
finite-amplitude properties and therefore its long-lived geophysical properties.

Context – Over the last decades, Holmboe waves (defined here as being the long-lived, finite-amplitude waves
originating from the linear Holmboe instability) have been the focus of numerous numerical and experimental
studies. Direct numerical simulations (DNSs) in two and three dimensions have shed light on some aspects
of their rich nonlinear behaviors, such as interaction between the two traveling waves, mixing of the density
interface [1–7]. Laboratory experiments in salt-stratified exchange flows have also observed, measured, and
attempted to explain and classify Holmboe waves [6, 8–10]. More recently, novel three-dimensional, volumetric
measurements of the velocity and density fields have allowed to accurately measure the amplitude of these
waves and to compare their spatial structure to linear stability predictions with excellent agreement [11, § 3.2],
[12]. However, to the authors’ knowledge, there exists no systematic investigation of the nonlinear saturation
and observed amplitude of these waves, and in particular no nonlinear stability theory to compare numerical
or experimental results against.

Motivation – This paper proposes to build the basis for such a theory by performing a weakly-nonlinear analysis
of Holmboe waves, as suggested in [13]. Contrary to ‘fully nonlinear’ DNSs or experiments, our analysis is
only ‘weakly-nonlinear’ in the sense that it considers only the ‘weakest’ nonlinearities necessary for a linear
instability (of initially infinitesimal amplitude) to reach a stable, asymptotic finite amplitude (a process that
we call ‘nonlinear saturation’). Such a weakly-nonlinear analysis has a number of advantages, which make it
well suited for an exploratory investigation of nonlinear stability. First, it elucidates, through its methodical
and elegant construction, the specific nonlinear contributions responsible for nonlinear saturation. Second,
although it is in principle valid only in a narrow region of parameter space (near the onset of linear instability,
where nonlinearities are ‘weak’), its low computational cost allows its practical implementation over its full
range of validity (in contrast to fully nonlinear DNSs or experiments, which are ‘valid everywhere’, but whose
cost prohibits their practical implementation over a wide range of parameters).

Supercritical vs subcritical – The field of nonlinear stability makes an important distinction between super-
critical and subcritical bifurcations, depending on whether the finite-amplitude equilibrium branch of interest
exists under supercritical conditions, i.e. for parameters where the base flow (zero-amplitude solution) is
linearly unstable, or under subcritical conditions, i.e. for parameters where the base flow is linearly stable.
In a subcritical pitchfork bifurcation, the finite-amplitude solution branch is unstable, and is therefore not
expected to be observed either numerically or experimentally (at least close to the critical point, in the ab-
sence of a subcritical saddle-node bifurcation creating a further stable branch). Such a branch however reveals
a (nonlinear) instability to finite-amplitude perturbations, which has a particular interest in explaining tur-
bulent transitions in flows that are always linearly stable (e.g. Hagen-Poiseuille and plane Couette flows).
By contrast, in a supercritical bifurcation, the finite-amplitude branch is stable, and is therefore expected to
be observed numerically or experimentally, at least for parameters near the critical point. In this paper, we
focus exclusively on supercritical bifurcations, as we seek to gain insight into the long-lived, finite-amplitude
Holmboe waves found under linearly unstable conditions relevant to laboratory and geophysical applications.
This focus has the additional advantage of ruling out the existence of complicated subcritical resonances (as
we will explain later).

Previous weakly-nonlinear work – Weakly-nonlinear stability theory, even when restricted to the narrow class
of parallel shear flows, is a rich area of research, dating back at least to the early ideas of Stuart [14], and
formalized by the twin studies of Stuart [15] and Watson [16]. It has been applied to a variety of flows, notably
to the unbounded free shear layer [17, 18], and to three bounded shear flows: plane Poiseuille flow ([15],
etc), plane Couette flow ([16], etc), and Hagen-Poiseuille (pipe) flows ([19, 20], etc). Unbounded stratified
shear layers have also received some attention, most notably in [21] and [22], who primarily studied the
influence of stratification on the Kelvin-Helmholtz instability (their choice of base flows and parameter values
did not support the Holmboe instability). Moreover, we note that most studies to date focused on subcritical
bifurcations. We therefore propose to add to the current state of knowledge by carrying out the first weakly-
nonlinear analysis of supercritical Holmboe waves.

Moreover, past weakly-nonlinear analyses had highly disparate formulations, making it exceedingly difficult to
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obtain a unified picture of their results, which were besides rarely framed with applications to ‘real’ flows in
mind. The choice of asymptotically small parameter varied between studies, which has non-trivial implications;
some did not include, for simplicity, all nonlinear terms required at a particular order of the expansion; and
some used other types of arcane simplifying assumptions and specific scaling laws causing a hazy loss of
generality and applicability (see e.g. [23] and [24] for a comparison of different formulations). Recently Pham
& Suslov [25] proposed an clear, elegant, and rigorous formulation which solves the above limitations, and Dey
& Suslov [26] extended it to a pair of unstable modes, which is required in the Holmboe instability. We will
therefore apply their formulation to our problem, in order to strive towards results that are more generally
applicable and straightforward to interpret.

Objectives and outline – In § II we introduce our setup (equations, base flows, parameters). The next three
sections §§ III-V address the three key objectives of this paper. In § III we develop a weakly-nonlinear
formulation for Holmboe waves. In order to do so, we will first introduce a single-mode analysis (suited to
Kelvin-Helmholtz), before building on it and introducing a double-mode analysis (suited to Holmboe). We
will limit the scope of this paper to (i) the case of symmetric Holmboe waves, in which the mid-point of
the velocity and density base flows are coincident; (ii) the inclusion of third-order nonlinearities necessary to
obtain nonlinear saturation and supercritical pitchforks. However our formulation will be clear, robust and
versatile enough to be readily generalizable to asymmetric Holmboe waves, and higher-order nonlinearities.
In § IV we produce amplitude bifurcation diagrams in Reynolds and Richardson numbers for the supercritical
Holmboe bifurcations in three distinctly different regions of parameter space. We also compare these Holmboe
bifurcations to Kelvin-Helmholtz bifurcations. In § V we investigate the spatial structure of all terms in the
nonlinear expansion to highlight the mechanisms responsible for nonlinear saturation. In § VI we conclude
and suggest future directions.

II. SETUP

A. Governing equations

The fully nonlinear Navier-Stokes-Boussinesq equations are given non-dimensionally as:

∇ · u = 0, (1a)

∂tu + u ·∇u = −∇p+ Jρ d̂ +
1

Re
∇2u, (1b)

∂tρ+ u ·∇ρ =
1

RePr
∇2ρ. (1c)

In the above, u(x, t) ≡ [u,w]T is the two-dimensional velocity along x = [x, z]T , ρ(x, t) is the density field,
understood as a perturbation around the neutral density ρ = 0 (the buoyancy field b ≡ −ρ is often used instead
in the literature). We allow for the possibility of gravity to be inclined at an angle θ from the vertical of our

coordinate system, resulting in d̂ = [sin θ,− cos θ]T . This is motivated by applications in which the flow is
obtained by exchange through a channel inclined at an angle θ ≥ 0 from the horizontal (see [12] figure 1 and
equation 5.1). The non-dimensional parameters Re, J, θ, Pr are discussed in § II D.

B. Base flow

The one-dimensional base flow around which we will investigate perturbations throughout this paper is:

u00(z) ≡
[
u00(z)
w00(z)

]
≡
[
− tanh z

0

]
ρ00(z) ≡ − tanhRz, (2)

where ≡ denotes a definition. The corresponding square buoyancy frequency is N2
00 ≡ −J∂zρ00 = JR sech2Rz

and the gradient Richardson number is Rig,00(z) ≡ JR sech2Rz/ sech4 z. Our choice of superscript 00 notation
highlights the fact that the base flow is a contribution ‘at order 0’ (in powers of amplitude) and ‘wavenumber
0’ (streamwise invariant), as will be systematized in the next section. The minus sign in u00 is arbitrary and
unimportant; it is retained purely for consistency with prior notation in [12].
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We selected this smooth, hyperbolic tangent base flow (2) because it has been extensively used in the literature
as a convenient and canonical mathematical model of stratified shear layers (e.g. [1, 27–29]). Requiring this
base flow to be a steady-state solution of (1b)-(1c) will require additional forcing terms as we explain below.

C. Streamfunction and forcing

In the remainder of the paper, we adopt a streamfunction formulation. We define the usual scalar stream-
function ψ(x, t) as u ≡ [u,w]T ≡ [∂zψ,−∂xψ]T , noting that the divergence-free condition (1a) is satisfied by
construction.

Combining the x and z component of the momentum equation (1b), we obtain the evolution of the (negative)
scalar vorticity −ω ≡ ∂zu − ∂xw = ∇2ψ. Gathering linear terms on the left-hand side, and nonlinear terms
on the right-hand side, we rewrite (1) as:

∂t(∇2ψ)− J d̂′ ·∇ρ− 1

Re
∇4ψ + J sin θ ∂zρ00 +

1

Re
∂zzzzψ00︸ ︷︷ ︸

forcing

= ∂xψ∂z(∇2ψ)− ∂zψ∂x(∇2ψ)︸ ︷︷ ︸
convection (nonlinear)

(3a)

∂tρ−
1

RePr
∇2ρ+

1

RePr
∂zzρ00︸ ︷︷ ︸

forcing

= ∂xψ∂zρ− ∂zψ∂xρ︸ ︷︷ ︸
advection (nonlinear)

(3b)

where d̂′ = [cos θ, sin θ]T . These two equations will form the basis of our theory in § III. The left-hand
side ‘forcing’ terms are required by the implicit requirement that the base flow (2) satisfies the steady-state
momentum and density equations (1b)-(1c) i.e. ∂tψ = ∂tρ = 0 when ψ = ψ00 = ln(cosh z), ρ = ρ00 =
− tanhRz. These terms counteract diffusion of u00, ρ00, and acceleration of u00 when θ > 0. Although
necessary, these forcing terms rarely need to be explicitly written in simple, linear stability analyses, as they
(by construction) vanish when solving for the evolution of perturbations. We write them here explicitly for
completeness and greater transparency in the development of our weakly-nonlinear analyses in § III. Note
that this forcing was used in the recent fully-nonlinear DNSs of [30] (see their ‘Class S steady shear layer’).

D. Parameters

The above model (2)-(3) has five non-dimensional parameters:

1. the Reynolds number Re measuring the inverse ratio of inertial over viscous time scales;

2. the bulk Richardson number J (also called Ri or Rib in the literature) measuring the inverse square ratio
of buoyancy over shear time scales;

3. the title angle θ, set in this paper at θ = 0 (for simplicity, noting that the role of θ on stability properties
is poorly understood);

4. the Prandtl number Pr measuring the ratio of momentum to scalar diffusion, set in this paper at Pr = 700
(representing salt stratification, noting that the role of Pr on stability properties is poorly understood);

5. the ratio of velocity to density interface thickness R, set in this paper at R = 5 (representative of the
salt-stratified experiments in which Holmboe waves are observed, e.g. in [12]).

To find out more about the link between the dynamical non-dimensional parameters Re, J and the dimensional
experimental parameters (scales of velocity, length and density), the reader is referred to [12] (equations 3.4,
3.5, 5.1).

In the remainder of this paper, we gather these five parameters in a single parameter vector Q:

Q ≡
[
Re, J, θ, Pr, R

]T ≡ [Re, J, 0, 700, 5
]T
, (4)

which we will only vary in the two dimensions of Re and J . These two parameters are well-known to be
the two key parameters influencing the Kelvin-Helmholtz and Holmboe instabilities, and therefore constitute
natural starting points to explore their nonlinear behaviors.
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III. THEORY: WEAKLY-NONLINEAR ANALYSES

A. Method

Since the 1960s, a large number of (often subtly) different weakly-nonlinear methods have been employed. All
methods ultimately rely on the choice of a small parameter used to construct an asymptotic series approximat-
ing the fully nonlinear solution (the Stuart-Landau series for the perturbation amplitude A introduced further
down in (15)). The two most popular families of methods are (for a review, see [23], [25] § 1 and references
therein):

1. Multiscale expansions, in which the expansion parameter is ||Q − Qc||/||Qc||, the relative parametric
distance away from the critical point Qc at which linear instability first appears (method first introduced
by [15]). The resulting multiple timescale expansion enforces a specific, rigid scaling of the solution near
||Qc|| (in particular a linear growth rate) which is only expected to hold very near ||Qc||. The validity
of this method is therefore not guaranteed away from the critical point, which is primarily why we did
not employ it.

2. Amplitude expansions, in which the expansion parameter is the magnitude of the perturbation amplitude
|A| itself (method first introduced by Watson [16]). This parameter does not enforce any specific scaling
on the solution and can be applied near and away from ||Qc||. The validity of this method is guaranteed a
posteriori as long as |A| remains small enough. Near Qc, the multiscale and amplitude expansions method
are formally equivalent. Away from Qc, the amplitude expansion method is ambiguous and requires an
additional constraint to guarantee a unique solution |A|, whose application and interpretation have been
recently made straightforward [25]. It is essentially this method that we employ in this paper.

Our amplitude expansion takes fundamentally different forms depending on whether the linearized equations
admit a single unstable mode (Kelvin-Helmholtz instability), or a couple of complex conjugate modes (Holmboe
instability), which are the first-order perturbations in our expansion. We therefore need to treat each case
separately, and start with the simpler single-mode analysis in § III B, before building on it to develop the
double-mode analysis in § III C. For succinct summaries and schematics of the solution algorithm, we refer
the impatient reader directly to § III B 6, figure 1 (single mode), and § III C 6, figure 2 (double mode).

B. Single-mode analysis (Kelvin-Helmholtz instability)

1. Order 1 perturbation

Expansion – We start with a first order (hereafter ‘order 1’) perturbation in our amplitude expansion:

ψ(x, z, t) = ψ00(z) +
{
A(t)ψ11(z)E(x) + c.c.

}
, (5a)

ρ(x, z, t) = ρ00(z) +
{
A(t)ρ11(z)E(x) + c.c.

}
, (5b)

where the x-dependence is E = eikx, with k ∈ R∗+. Note that the total flow and the base flow are real
(ψ, ρ, ψ00, ρ00 ∈ R), while the amplitudes and vertical structures are generally complex (A,ψmn, ρmn ∈ C for
n,m > 0), which is why we always add the complex conjugate (c.c.) of any complex terms.

Throughout § III B, the subscripts mn denote a vertical mode factored by a temporal amplitude of order m,
i.e. Am(t), and streamwise wavenumber nk, i.e. En = einkx. In particular, this highlights the interpretation
of our base flow [ψ00, ρ00] as a mode with temporally steady amplitude A0(t) = 1 and streamwise invariant
structure E0(x) = 1.

Defining our flow state vector as w = [ψ, ρ]T (and similarly for all subscripts mn) we rewrite (5) in shorthand
as:

w(x, z, t) = w00(z) +
{
A(t)w11(z)E(x) + c.c.

}
. (6)

Evolution – Substituting (5) into our nonlinear equations (3) and neglecting any terms of order m > 1, we
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obtain the order 1 (linear) evolution:

dA

dt
(ψ′′11 − k2ψ11)E = A

{
J sin θρ′11 + ikJ cos θρ11

+
1

Re
(ψ

(4)
11 − 2k2ψ′′11 + k4ψ11)− ikψ′00(ψ′′11 − k2ψ11) + ikψ′′′00ψ11

}
E

(7a)

dA

dt
ρ11E = A

1

RePr

{
(ρ′′11 − k2ρ11) + ikρ′00ψ11 − ikψ′00ρ11

}
E, (7b)

where ′ denotes differentiation with respect to the only variable z. In matrix notation, this reduces to:

dA

dt
Akw11 = ABk,Qw11, (8)

where the left-hand side and right-hand side linear differential operators Ak,Bk,Q ∈ C are given in the
Appendix B 1 (equation (B1)). They are indexed by k and Q to highlight their dependence on the wavenumber
k and parameter vector Q (defined earlier in (4)).

Eigenvalue problem – This differential system is soluble only if dtA = σA such that:

Lk,σ,Qw11 = (Bk,Q − σAk)w11 = 0 , (9)

where we defined the linear operator Lk,σ,Q ≡ B(k,Q)−σAk (see (B2)-(B3) for the full expression). Therefore
σ ∈ C and w11 ∈ C are eigenvalues and eigenvectors of the generalised eigenvalue problem for Ak,Bk,Q,
describing the temporal stability of the perturbation.

Mode symmetries – We note that there is an important symmetry to these equations: if ψ(z), ρ(z) are solu-
tions with eigenvalue σ, then ψ∗(−z), −ρ∗(−z) are solutions with eigenvalue σ∗, which we summarize by the
expression

{ψ(z), ρ(z), σ} → {ψ∗(−z),−ρ∗(−z), σ∗}. (10)

In the single-mode analysis of this section, we consider the case of a single real eigenvalue σ = σr ∈ R and
single eigenmode w11. In the double-mode analysis of the next section § III C, we will consider a pair of
complex conjuate eigenvalues and eigenmodes, and will impose this complex conjugate symmetry condition
exactly in order to improve the accuracy of solutions.

2. Order 2 perturbation

Expansion – We extend the perturbation expansion (6) to order 2 in order to take into account the first
nonlinear effects:

w(x, z, t) = w00(z) + |A(t)|2w20(z)︸ ︷︷ ︸
new term

+
{
A(t)w11(z)E(x) +A2(t)w22(z)E2(x)︸ ︷︷ ︸

new term

+ c.c.
}
. (11)

The two new order 2 terms (m = 2) are: w20 corresponding to a distortion (or ‘feedback’) on the mean flow
(n = 0), and w22 corresponding to the second harmonic (n = 2). Note the distinction between the original
base flow w00(z), and the resulting mean flow at order 2 w00(z) + |A|2w20(z).

For a summary of the terms wmn required by the nonlinearity of the Navier-Stokes equations at successively
higher orders m = 2, 3, . . . see Appendix A 1 (table III).

Evolution – Substituting our expansion (11) into the nonlinear equation (3) and collecting like terms we
get a system of equations which we again reduce to a matrix form, using the same operator L (defined in
(9), (B2), (B3)) but with modified arguments since dt|A|2 = 2σr and dtA

2 = 2σ:

L0,2σr,Qw20 = f20 and L2k,2σ,Qw22 = f22 , (12)

where the forcing terms f20, f22 are given in the Appendix B 1 (equation (B4)). The two linear operators in
(12) are non-singular, and therefore invertible, even in the limit Q→ Qc, σr → 0+, so these equations always
have unique solutions w20,w22 [25]. All equations that are boxed are key in the solution algorithm.
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3. Order 3 perturbation

Extending the perturbation to order 3, we have (see Appendix A 1, table III):

w = w00 + |A|2w20 + (Aw11E +A2w22E
2 +A|A|2w31E +A3w33E

3︸ ︷︷ ︸
new terms

+ c.c.). (13)

Substituting into (3) and collecting like terms, we get:

Lk,σ+2σr,Qw31 = f31 and L3k,3σ,Qw33 = f33 . (14)

In the subcritical bifurcations (not treated in this paper), [25] noted that when σr < 0, the operator Lk,σ+2σr,Q

can in principle be singular, which would signal the existence of resonances beween decaying instability modes
that need to be solved separately [19, 31], adding complexity to the solution and its interpretation.

In the supercritical bifurcations (treated in this paper) subcritical resonances are fortunately always ruled out.
Instead, care needs to be exercised only in the limit Q→ QC , σr → 0, since Lk,σ+2σr,Q → Lk,σ,QC

, which by
construction is singular (see (9)) and does not admit a solution w31. This singularity is treated next.

4. Landau coefficient

Stuart-Landau equation – To resolve the singularity in (14) (for w31), we assume (without a priori justification)
that we can write the following Stuart-Landau evolution equation:

dA

dt
= σA+KA|A|2 + . . . , (15)

i.e. an asymptotic series that can be truncated after some finite number of terms, here after the first Landau
coefficient K. This does not affect the problem in (9) (for w11) or in (12) (for w20,w22), nor indeed to the
second problem in (14) (for w33). However, the problem in (14) (for w31) now reads:

Lk,σ+2σr,Qw31 = −KAkw11 + f31, (16)

due to an additional term that had been neglected in (9).

Solution method – Near the critical point (in the limit Q→ QC , σr → 0) Lk,σ+2σr,Q is singular and a unique
solution w31 exists only for a specific K, classically obtained by enforcing a solvability condition involving the
adjoint problem of (9) as explained in Appendix D.

However, it was found in practice that, for the problems solved in this paper, the solvability condition could
be replaced in favor of a more straightforward and efficient method described in Pham & Suslov [25] and
summarized below.

Away from the critical point Lk,σ+2σr,Q is non-singular and a unique solution w31 exists for any choice of K.
This ambiguity in K is resolved by enforcing a (weighted) orthogonality condition between w11 and w31 (the
order 1 and order 3 modes at the fundamental wavenumber k):

〈w11, w31〉M ≡ wH
11 ·Mw31 = 0, (17)

where H denotes the Hermitian (or conjugate) transpose. The matrix M is a positive-definite Hermitian
matrix which essentially selects a low-dimensional projection of the solution. In this work, we chose M to
represent the total (kinetic + scalar) energy norm, as explained in Appendix C. This integral measure has
the advantage of using all components of w, and making our results readily comparable with DNSs or recent
experimental measurements (such as those of [32]). As explained in [25] § 4, a different choice of M would
yield results viewed under a different – but equally valid – angle (such an analysis is beyond the scope of this
paper).

The extended system (16)-(17) for w31 is then given by:

L̂31 ŵ31 = f̂31 , (18)
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where the hat variables have an additional row:

L̂31 =

[
Lk,σ,Q − 2σrAk Akw11

wH
11M 0

]
, ŵ31 =

[
w31

K

]
, f̂31 =

[
f31
0

]
. (19)

The operator L̂31 is always non-singular, but may be poorly conditioned near the critical point, in which
case the solvability condition in Appendix D should be used. However, in our work, it was found to remain
sufficiently well-conditioned to be inverted reliably and give w31 and K.

5. Equilibrium amplitude

The equilibrium amplitude (implicitly taken as its modulus |Ae| > 0) is found when the truncated Stuart-
Landau series (15) reaches steady-state, or:

(
1

|A|2
d|A|2

dt

)
e

= 2σr + 2K|Ae|2 = 0 =⇒ |Ae| =
√
−σr
K

. (20)

One of the main results of the above analysis is a bifurcation diagram: the variation of |Ae| as the bifurcation
parameter Q is varied away from the critical point Qc, and the |Ae| = 0 solution becomes unstable.

In this paper we only consider supercritical bifurcations, in which σr > 0,K < 0 and therefore dt|A|2 ≷ 0 for
|A| ≶ |Ae| making it a stable, or attracting, solution. In other words, the weak nonlinearities embedded in the
Landau coefficient saturate the linear instability by negative feedback.

The validity of our amplitude expansion must be assessed a posteriori. The solution is valid only if |Ae| remains
sufficiently small so that its successive powers decay fast enough (|Ae|2m+2 � |Ae|2m, m = 0, 1, . . .) for the
Stuart-Landau series to be meaningfully truncated (subject to the hope that the next Landau coefficient is not
exceedingly large). In our numerical computations, we imposed an additional criterion for the validity of the
procedure, that the total energy of the perturbation (given by Ae but also all wmn) remains small compared
to that of the base flow w00 (more details in our results section § IV).

6. Algorithm

Figure 1 summarizes the above single-mode algorithm used in the numerical solution of the problem. The
key equations to solve are boxed in the above section and in the figure: (9) (eigenvalue problem), (12), (14),
(18) (matrix inversions), and (20). One feature that is worth emphasizing here is that, for each successive
value of the parameter Q, the eigenvalue problem (9) (‘Order 1’ top box in figure 1) is solved over a range of
wavenumbers k in order to find the maximum σr (which requires high resolution in k near Qc, where σr & 0).

The numerical implementation, including the discretization of the problem and the boundary conditions are
discussed in § III D. The results of this analysis applied to Kelvin-Helmholtz supercritical bifurcations are
discussed in §§ IV-V.

C. Double-mode analysis (Holmboe instability)

1. Expansion and Stuart-Landau equations

We now extend the above single-mode analysis to the case of two complex conjugate dominant modes, adapted
to the symmetric Holmboe instability. Instead of deriving the expansion step by step as in the single-mode
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FIG. 1: Algorithm to obtain the single-mode (Kelvin-Helmholtz) expansion and equilibrium amplitude
(summarizing § III B).

analysis, we follow [26] and seek a solution of the form:

w(x, z, t) = w000 +
{
A

(1)
200w

(1)
200 +A

(2)
200w

(2)
200

}
+
{

(A110w110E1 +A101w101E2)+

(A21−1w21−1E1E
∗
2 +A220w220E

2
1 +A202w202E

2
2 +A211w211E1E2)+

(A
(1)
310w

(1)
310E1 +A

(2)
310w

(2)
310E1 +A

(1)
301w

(1)
301E2 +A

(2)
301w

(2)
301E2) + c.c.

}
, (21)

where the subscripts mno allow for an explicit interpretation of each term as being of order m in amplitude and
with powers n and o of Fourier components En1 = eink1x and Eo2 = eiok2x. Note that although E1 = E2 = eikx

in our case, since symmetric Holmboe modes have identical wavenumber k = k1 = k2, we track E1,2 separately
for clarity of interpretation and in order to allow for a potential future extension to the asymmetric Holmboe
instability having different wavenumbers k1 6= k2 (maximizing σr1, σr2). We also note that the base flow
remains identical: w000 = w00.

Importantly, (21) contains all necessary order 2 terms, but has been conveniently truncated at order 3. In the
single-mode analysis, we indeed saw that the order 3 fundamental contribution w31 was sufficient to obtain
the Landau coefficient K and equilibrium amplitude |Ae|, which are our main focus (the third harmonic w33

was not necessary). Similarly, in the double-mode analysis, the order 3 fundamental contributions w
(j)
310,w

(j)
301

included in (21) are sufficient to obtain the Landau coefficients (the numerous remaining order 3 contributions
are ignored here for simplicity). For more details on how the hierarchy of order 2 and order 3 terms are
generated by nonlinearities, see Appendix A 2, tables IV-V, and the graph in figure 10.

We identify the amplitude of mode 1 and 2 respectively as A1,2 ≡ A110,101 (shorthand notation) and we seek
truncated Stuart-Landau evolution equations of the form:

dA1

dt
= σ1A1 +K11A1|A1|2 +K12A1|A2|2, (22a)

dA2

dt
= σ2A2 +K21A2|A1|2 +K22A2|A2|2, (22b)
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where σ1,2 = σr ± σi are the two complex conjugate eigenvalues, and K11,K12,K21,K22 are the four Landau
coefficients (K11,K22 describe mode self-interactions, whereas K12,K22 describe mode coupling).

In the following, we proceed by solving at each order of amplitude m = 1, 2, 3, collecting terms with the same
Fourier components n, o at each stage. Much of the work in deriving the relevant operators was done in the
single-mode analysis. Throughout this section, Ak and Bk,Lk,σ are defined identically (see (B1)-(B3)), with
the dependence of B and L on Q implicit to simplify the notation.

2. Order 1 perturbation

At first order, there is no mode interaction and so we recover two independent copies of the single-mode linear
equation (9):

(A110Bk −
dA110

dt
Ak)w110 = 0, (23)

(A101Bk −
dA101

dt
Ak)w101 = 0. (24)

For these equations to be consistent, we must have

dA1,2

dt
= σ1,2A1,2, (25)

where σ1,2 are the complex conjugate eigenvalues of Lk,σ ≡ Bk − σAk = 0, as shown in the single-mode
analysis (9).

3. Order 2 perturbation

At second order, we recover mean flow and second harmonic contributions (two each, as opposed to one in the
single-mode analysis), as well as new interaction terms (breather and mixed modes).

Mean flow E0
j – We have two contributions:

(A
(j)
200B0 −

dA
(j)
200

dt
A0)w

(j)
200 = |Aj |2f (j)200 for j = 1, 2, (26)

where the index (j) refers to contribution of mode j to a term in mno = 200 (we recall our shorthand

notation that mode 1 is ‘110’ and mode 2 is ‘101’). The full expressions for the forcing terms f
(j)
200 are given in

Appendix B 2, equation (B6). The form of (26) along with (25) leads to:

A
(j)
200 = |Aj |2 =⇒ dA

(j)
200

dt
= 2σr|Aj |2 =⇒ L0,2σr

w
(j)
200 = f

(j)
200 for j = 1, 2 . (27)

Second harmonics E2
j – By the independent self-interaction of each mode, we have:

(A220B2k −
dA220

dt
A2k)w220 = A2

1f220 (28a)

(A202B2k −
dA202

dt
A2k)w202 = A2

2f202, (28b)

where the forcing terms are given in (B7). The form of (28) gives

A220 = A2
1 =⇒ dA220

dt
= 2σ1A

2
1 =⇒ L2k,2σ1

w220 = f220 , (29a)

A202 = A2
2 =⇒ dA202

dt
= 2σ2A

2
2 =⇒ L2k,2σ2

w202 = f202 . (29b)
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Breather mode E1E
∗
2 – We have:

(A21−1B0 −
dA21−1

dt
A0)w21−1 = A1A

∗
2f21−1, (30)

where the forcing term is given in (B8). The form of (30) gives:

A21−1 = A1A
∗
2 =⇒ dA21−1

dt
= (σ1 + σ∗2)A1A

∗
2 = 2σ1A1A

∗
2 =⇒ L0,2σ1

w21−1 = f21−1 . (31)

Note that the conjugate mode E∗1E2 is implictly accounted for in the complex conjugate in (21). In the case
of symmetric Holmboe modes E1E

∗
2 = 1; in other words this ‘breather’ mode (as it is called in the literature)

is simply a mean flow contribution.

Mixed mode E1E2 – We have:

(A211B2k −
dA211

dt
A2k)w211 = A1A2f211, (32a)

where the forcing term is given in (B9). The form of (32a) gives:

A211 = A1A2 =⇒ dA211

dt
= (σ1 + σ2)A1A2 = 2σrA1A2 =⇒ L2k,2σr

w211 = f211 . (33)

4. Order 3 perturbation

At order 3, we only focus on the fundamental contributions (in E1 and in E2) in order to obtain the Landau
coefficients.

Fundamental E1– We have:

(A310Bk −
dA310

dt
Ak)w310 = A1|A1|2f (1)310 +A1|A2|2f (2)310 − (K11A1|A1|2 +K12A1|A2|2)Akw110, (34)

which we split into two equations which must both be satisfied:

(A
(j)
310Bk −

dA
(j)
310

dt
Ak)w

(j)
310 = A1|Aj |2(f

(j)
310 −K1jAkw110) for j = 1, 2. (35)

This form gives:

A
(j)
310 = A1|Aj |2 =⇒ dA

(j)
310

dt
= σj + 2σr =⇒ Lk,σ1+2σr

w
(j)
310 = f

(j)
310 −K1jAkw110 for j = 1, 2. (36)

The K1j can be specified by imposing the orthogonality condition 〈w110 , w
(j)
310〉M = 0. As shown in the

single-mode analysis (18), this is equivalent to solving the extended system

L̂310ŵ
(j)
310 = f̂

(j)
310 for j = 1, 2 , (37)

where

L̂310 =

[
Lk,σ,Q − 2σrAk Akw110

wH
110M 0

]
, ŵ

(j)
310 =

[
w

(j)
310

K1j

]
, f̂

(j)
310 =

[
f
(j)
310

0

]
. (38)

Fundamental E2– By analogy, we have:

L̂301ŵ
(j)
301 = f̂

(j)
301 for j = 1, 2 , (39)

where

L̂301 =

[
Lk,σ,Q − 2σrAk Akw101

wH
101M 0

]
, ŵ

(j)
301 =

[
w

(j)
301

K2j

]
, f̂

(j)
301 =

[
f
(j)
301

0

]
. (40)

The four Landau coefficients of (22) are obtained by solving (37), (39).
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5. Equilibrium amplitudes

We return to the Stuart-Landau equations (22), which we recast in polar form by writing Aj ≡ |Aj |eiϕj . Upon
cancelling the eiϕj factors and taking real (R) and imaginary (I) parts, we obtain:

d|Aj |
dt

= |Aj |
{
σr + R(Kj1)|A1|2 + R(Kj2)|A2|2

}
for j = 1, 2, (41a)

dϕj
dt

= σi + I(Kj1)|A1|2 + I(Kj2)|A2|2 for j = 1, 2. (41b)

We recall the Holmboe symmetry (10), which, when tracked through the whole series expansion, gives K11 =
K∗22 and K12 = K∗21. Defining κ1 ≡ R(K11) and κ2 ≡ R(K12) (shorthand notation), (41a) becomes:

1

|A1|
d|A1|
dt

= σr + κ1|A1|2 + κ2|A2|2, (42a)

1

|A2|
d|A2|
dt

= σr + κ2|A1|2 + κ1|A2|2. (42b)

Note that (42) describes a two-dimensional dynamical system, where σr, κ1 and κ2 are complicated functions
of the parameters Q. We obtain a bifurcation diagram for |A1|, |A2| by varying Q and assessing the stability
of the four equilibrium solutions (fixed points), by inspecting the eigenvalues of the Jacobian of (42) in a
supercritical scenario (σr > 0). The results are in table I and can be described as follows.

TABLE I: Equilibrium solutions and stability conditions for symmetric Holmboe modes.

Name Mode 1 amplitude Mode 2 amplitude Stability conditions Type for σr > 0

|A1e| |A2e|

(i) 0 0 σr < 0 Unstable star

(ii) 0

√
−σr

κ1
σr > 0, κ2 < κ1 < 0 Saddle

(iii)

√
−σr

κ1
0 σr > 0, κ2 < κ1 < 0 Saddle

(iv)

√
− σr

κ1 + κ2

√
− σr

κ1 + κ2
σr > 0, κ1 < 0, |κ2| < |κ1| Stable node

Symmetric Holmboe waves – Symmetry requires that κ1 < 0 and |κ2| < |κ1| because (ii)-(iii) must be saddles,
while solution (iv) must be stable. In other words, although different initial conditions |A1(0)| 6= |A2(0)| 6= 0
will lead to generally different finite-time amplitudes |A1| 6= |A2|, asymptotically the only stable (relevant)

equilibrium (iv) has equal amplitudes |A1e| = |A2e| = |Ae| =
√
−σr/(κ1 + κ2), while equilibria (ii) and (iii)

can only be approached if |A1(0)| = 0 or |A2(0)| = 0 respectively. Futhermore, the reflectional symmetry of
the vector field in the (|A1|, |A2|) phase space on either side of the |A1| = |A2| line requires that (iv) is a stable
node (rather than a focus/spiral), as summarized in table I.

Asymmetric Holmboe waves – The linear operators L and forcing terms f would need to be changed throughout
§§ III C 2-III C 4 to reflect the fact that k1 6= k2, σ1r 6= σ2r, σ1i 6= −σ2i. However, we expect the dynamical
system for |A1|, |A2| to be of the same form as (41a) (replacing σr by σ1r, σ2r and retaining all four Kij instead
of the two κ1,2 of (42)). We also expect the four equilibria of table I to persist, in particular the unstable star
(i). However (ii)-(iv) will have |A1e| 6= |A2e|, and their type for σr > 0 will depend on the parameters Q. As
the linear amplifications (σ1,2) and nonlinear attenuations (K11,K12,K21,K22) are varied in complicated ways
by Q, any combinations allowing for at least one stable equilibrium are a priori possible, i.e. only (ii) stable,
only (iii) stable, only (iv) stable, or a combination of two or three of them, with different basins of attractions.
In other words, we expect two types of scenarios: either that, regardless of the initial conditions, one mode
only, or both modes, could reach finite equilibrium amplitude(s); or the initial conditions could decide whether
one mode, or both modes would reach finite equilibrium amplitude(s).
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FIG. 2: Algorithm to obtain the double-mode expansion and equilibrium amplitude (summarizing § III C in
the symmetric Holmboe case E1 = E2 = E = eikx).

6. Algorithm

Figure 2 summarizes the above double-mode algorithm. The key equations to solve are boxed: (9) (same
eigenvalue problem as for the single-mode analysis but with complex conjugate solutions), followed by (27),
(29), (31), (33), (37), (39) (matrix inversions), and row (iv) of table I.

Note that the expansion on the right-hand side of figure 2 is less general than expansion (21) in that it specif-
ically describes the symmetric Holmboe case in which E1 = E2 = E = eikx (since it is the case investigated in
this paper, and it simplifies the figure and its interpretation). We however retained the important distinction
between A1, A2 because for general initial conditions A1(t) 6= A2(t), even though at the stable equilibrium
|A1e| = |A2e| = |Ae|.

The numerical implementation is discussed next, and the results are discussed in §§ IV-V

D. Numerical implementation

Discretization – The problem was discretized in the vertical direction on a uniform grid of N = 500 points.
The differential operators were discretized by second-order accurate finite differences (centered in the middle,
one-sided at the boundaries). This formulation was chosen because (i) it was relatively straightforward to
implement in Matlab and ran sufficiently fast on workstations for the cases investigated in this paper; (ii) it
provided well-converged bifurcation diagrams and spatial structures (stencils with higher-order accuracy did
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not significantly improve convergence).

Boundary conditions – The domain was set to z ∈ [−3, 3] in an attempt to avoid finite-height effects (at the
boundaries u00 = ±0.995 and ρ00 = ±1.00). The boundary conditions at z = ±3 ensure that all density and
velocity perturbations cancel: ρ = u = w = 0. The latter two were implemented through the perturbation
streamfunction (ψ = ∂zψ = 0). These boundary conditions mimick solid boundaries and proved to be the
most natural and straightforward to implement (using ghost points).

IV. RESULTS: AMPLITUDES

In this section we present our results on the weakly-nonlinear amplitudes. We start with identifying interest-
ing locations on the linear stability boundary in § IV A, then tackle the asymptotic equilibrium amplitudes
(bifurcation diagrams) in § IV B, and finally the transient dynamics (phase portraits) in § IV C.

A. Linear stability boundary and bifurcation locations

In figure 3a we plot contours of the linear growth rate σr maximized over all wavenumbers k (solid lines spaced
by 0.01) in the (Re, J) plane (log-log scale spanning four orders of magnitude in either dimension). We recall
that the three remaining parameters (θ, Pr,R) are constant and set as in (4). The blue contours at low J
represent a Kelvin-Helmholtz instability (‘KH’, i.e. a single mode with σ = σr + 0i) whereas the red contours
at higher J represent a Holmboe instability (‘H’, i.e. a double mode with σ = σr ± iσi). In the H region, we
superimpose contours of the phase speed |c| = | − σi/k| 6= 0 (thin dashed lines spaced by 0.1). We see that
both instabilities coexist in a narrow band J ≈ 0.02− 0.05. However, when looking at the stability boundary
σr = 0, shown as a thick solid line, the KH to H transition occurs at (Re, J) ≈ (30, 0.02). In agreement with
previous linear stability studies, both the KH and H growth rates increase monotonically with Re, and the
KH growth rate decreases monotonically with J [29]. The KH instability appears to be bounded above by
J ≈ 0.05, corresponding to a mid-point (maximum) gradient Richardson number Rig,00(z = 0) = JR ≈ 0.25.
Futhermore, the H growth rate has an interesting non-monotonic behavior in J : at high Re, σr reaches a
maximum at J ≈ 0.3, a minimum at J ≈ 2, another (weak) maximum at J ≈ 5, etc. This causes the stability
boundary to bend ‘right’ towards high Re between J ≈ 0.3−2, to bend ‘left’ towards low Re between J ≈ 2−5,
and so on (note that values of J & 5 are of lesser interest to us because rarely encountered in natural flows).

In figure 3b we plot the same stability boundary σr = 0, and add the wavenumber kc at which the maximum
maxk σr = 0 is achieved in colour. We see that this phenomenon of non-monotonic behaviour of σr(J) is
associated with changes in the most unstable wavenumber. As J increases in the range J ≈ 0.3 − 2, k also
increases from ≈ 0.3 (long waves) to ≈ 3 (short waves) since the increasingly large potential energy of long
waves render them more stable. However, as J further increases in the range J ≈ 2 − 5, k takes again small
values ≈ 0.5− 1.

This interesting linear instability behaviour allows us to identify three qualitatively different H mode couples
of interest, and to pick three representative marginally-stable modes on the stability boundary for our weakly-
nonlinear analysis (in red):

1. a long-wave, weakly-stratified, slow-traveling H double-mode called H1;

2. a short-wave, strongly-stratified, fast-traveling H double-mode called H2;

3. a long-wave, strongly-stratified, fast-traveling H double-mode called H3

We also pick a representative marginally-stable long-wave KH single mode called KH1 (in blue). We note with
interest that relatively small changes in J can drastically change the type of instability from KH1 to H1 or from
H2 to H3. In the following, we will investigate weakly-nonlinear bifurcations from these four representative
locations, whose ‘critical’ Rec, Jc, kc, cc values at marginal stability (σr = 0) are summarized in table II.
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FIG. 3: Linear stability results for the base flow (2) in the (Re, J) plane of parameters as in (4). Note the
log-log scale. (a) Contours of the most unstable linear growth rate σr maximised over k (solid) and phase

speed c = |σi/k| (dashed). Blue denotes Kelvin-Helmholtz instability (single mode with c = 0); red denotes
Holmboe instability (double mode with two opposite ±c). The stability boundary σr = 0 is shown as a thick
solid line. (b) Stability boundary showing the variation of the critical wavenumber kc (maximising σr,c = 0),

as well as the four bifurcation locations and directions in (Re, J), as in (a) (coordinates given in table II).

TABLE II: Critical parameters for the four bifurcation cases considered in the remainder of the paper (one
Kelvin-Helmholtz and three Holmboe instabilities). Their locations on the stability boundary are shown in

figure 3.

name Rec Jc kc cc = −σi,c/kc

KH1 14.8 0.0090 0.41 0

H1 24.6 0.026 0.34 ±0.15

H2 498 1.66 2.5 ±0.70

H3 458 2.37 0.71 ±0.50

B. Bifurcation diagrams

The bifurcations diagrams were constructed using the algorithm in figure 1 for KH1 and in figure 2 for H1, H2,
H3. All bifurcations were run for increasing Re > Rec; however KH1 and H2 were run for decreasing J < Jc
while H1 and H3 were run for increasing J > Jc, reflecting the non-monotonic behavior of σr with J in the
Holmboe instability. The direction of bifurcations is summarized by the arrows in figure 3b.

The results are shown in figure 4; the left column (panels a,c,e,g) show the bifurcations in Re, while the right
column (panels b,d,f,h) show the bifurcations in J . The four rows correspond to the four cases in table II.
Two-dimensional bifurcation diagrams in the (Re, J) plane were computed and inspected but provided little
additional information compared to the one-dimensional diagrams shown here.

1. Qualitative analysis

First, focusing on the stable equilibrium amplitude |Ae| curves (black thick solid), we notice that the classical

supercritical pitchfork scaling |Ae| ∝
√
Re−Rec or

√
|J − Jc| is rarely observed at a finite distance away from

the critical point. Instead of this square root scaling, we observe ‘steeper’ scalings (linear, or even superlinear,
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FIG. 4: Bifurcation diagrams for the four cases of table II. Left column: bifurcations in Re. Right column:
bifurcations in J . We plot the unstable equilibrium amplitude |Ae| = 0 (in black thick dashed), stable

equilibrium amplitude |Ae| (in black thick solid), growth rate σr (in black dotted), Landau coefficients K for
the single mode and κ1, κ2 for the double mode (in gray dash-dotted and dotted, with their own vertical axis

scale in gray). Note that the double mode analysis also gives an unstable (saddle) amplitude |Ae| 6= 0 (in
black dashed, only appreciably different from the stable amplitude in (c)).

as in panels a,b,c,d,f ) and ‘shallower’ scalings (as in panels e,g). Surprisingly, we also observe a case in which
|Ae| is non-monotonic in J , reaching a peak before falling back to 0 (panel h) where it hits the stability
boundary again (see figure 3b). Interestingly, we conclude that there is a large variability in the shape of these
bifurcations, especially between the three H cases, and between bifurcations in Re and J .

All of these scaling behaviors in |Ae| can be explained by the underlying behavior of the growth rate σr (black
dotted line) and of the Landau coefficients K for KH1 (gray dash-dotted line), and κ1, κ2 for H1-H3 (gray dash-
dotted and dotted lines) having their own gray vertical axis on the right. The departure from the classical
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pitchfork square root scaling in |Ae| is explained by the fact that the scaling of σr is only approximately linear in
panels a-c, and that K,κ1, κ2 are rarely constant. In particular, the Holmboe mode-specific damping coefficient
κ1 < 0 typically exhibits a sharp increase away from the critical point (i.e. |κ1| decreases) followed by a long
plateau, whereas the Holmboe mode-interaction growth coefficient κ2 > 0 typically remains relatively small
|κ2| � |κ1|. As a consequence, the unstable (saddle) equilibrium amplitude (black dashed line) is generally
indistinguishable from the stable (relevant) equilibrium amplitude, except in panel c where both are visible
(see table I for a reminder).

2. Quantitative analysis

Second, focusing on the numerical values in |Ae|, the different axis limits highlight differences among all
panels. Although our amplitude expansion allows us a priori to compute bifurcations at any arbitrary distance
away from the critical point, we imposed strict ‘stopping criteria’ in order to show results most likely to
be mathematically valid and physically sensible. Our primary criterion was that the global energy of the
perturbation (1/2)||w−w00||2M should not exceed 1 % of that of the base flow (1/2)||w00||2M (computed using
the kinetic + scalar energy norm, where M is defined in appendix C). This conservative criterion is consistent
with the fully-nonlinear Kelvin-Helmholtz simulations of [30] who reported that ‘nonlinear effects become
important’ at a relative energy of 0.75%. This criterion was only limiting in the H diagrams of figure 4c,d,f.
Our secondary criterion was that the modulus of the perturbation density |ρ−ρ00|(z) should not locally exceed
0.2 anywhere in the domain (i.e. 20 % of the maximum |ρ00|). Although rather arbitrary, this criterion was
intended to reject any clearly unphysical density perturbations. This criterion was limiting in the two KH
diagrams of figure 4a,b where |ρ− ρ00| peaked at the interface despite contributing little scalar energy due to
the low J ≈ 0.09. Finally, when neither of these criteria was limiting, the bifurcation diagrams were stopped
either because the distance from the critical point was judged excessive (at a rather arbitrary Re = 2000 in
figure 4e,g), or because |Ae| fell back to 0 (at J = 6.5 in figure 4h).

These stopping criteria yield ‘final’ values of |Ae| between a minimum of 0.002 (panel b, limited by a local
perturbation density of 0.2) and a maximum of 0.06 (panel f, limited by a global perturbation/base flow energy
of 1 %). Overall KH1 reach their final |Ae| much more ‘rapidly’ than any H in terms of relative distance to
the critical point (Re − Rec)/Rec and |J − Jc|/Jc. It is particularly interesting to compare KH1 and H1

(panels a-d), which are so close in parameter space (Re, J), but so different in weakly-nonlinear behaviour.
The ‘faster’ growth of |Ae| in KH1 than in H1 (again in terms of relative distance to the critical point) is no
doubt primarily caused by a higher linear σr, but the latter is counter-balanced by a larger Landau damping
constant |K| � |κ1|. Among H (panels c-h) the ‘slower’ growth of |Ae| at increasing J (i.e. H3 is generally
‘slower’ than H2, and H2 is ‘slower’ than H1) not only results from generally lower σr, but also from higher
damping |κ1|. It is particularly interesting to compare H2 and H3, which are so close in parameter space, but
have very different |κ1| near the critical point (the gray right axis limits in panels g,h are ten times larger
than in the other panels). Overall, this suggests that weakly-stratified, low-Re Holmboe waves will reach
appreciable amplitudes much more ‘rapidly’ than strongly-stratified, high-Re Holmboe waves.

In most panels, the distance away from the critical point is larger than is typically ‘allowed’ in weakly-nonlinear
analyses. However, as explained in § III A, our amplitude expansion is different from a multiscale expansion
in that its validity is not restricted to a small distance away from the critical point. Instead, the validity
of our diagrams is guaranteed a posteriori as long as |Ae| remains small enough for our truncation of the
Stuart-Landau series (15), (22) to accurately approximate the full series (1/|A|)d|A|/dt. Although it appears
to be the case, we cannot exclude that the next term in the series (∝ |A|4) might be multiplied by a very large
second Landau coefficient, rendering it non-negligible and effectively reducing the radius of convergence of the
series below what we assumed in figure 4. Such a scenario would be interesting; however, a tedious amplitude
expansion up to order 5 would be required to obtain the second Landau coefficient and verify it.

C. Phase portraits

We now turn our attention to the transient dynamics of weakly-nonlinear Holmboe waves in the phase space
(|A1|, |A2|), as introduced in § III C 5 (recall the shorthand notation A1 = A110, A2 = A101). Our results of
σr, κ1, κ2 allow us to plot phase portraits of the two-dimensional Stuart-Landau dynamical system (22) for a
given couple (Re, J). These phase portraits describe the unsteady growth of the amplitude of each mode (from
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FIG. 5: Phase portraits showing the transient dynamics of weakly-nonlinear Holmboe waves for location H1

in (a) Re and (b) J (see figure 4c-d). In addition to the tangent arrows, we plot the three unstable fixed
points (empty circles), the stable fixed point |A1| = |A2| = |Ae| (full circle) and four example trajectories.

arbitrary initial conditions) and asymptotic saturation to the stable equilibrium (|Ae|, |Ae|) (whose value is
given by the previous bifurcation diagrams).

The results are shown in figure 5 for case H1 only, since the results for H2 and H3 are similar and are not
shown for conciseness. In panel a (resp. panel b) we show the phase portrait near the ‘final’ bifurcation
location Re = 35 (resp. J = 0.13). These portraits have a mirror symmetry with respect to the unit line
|A1| = |A2| (dashed line), as expected in symmetric Holmboe waves. Any slight asymmetry in the location of
the base density profile ρ00 with respect to the velocity profile u00 would break this symmetry and result in
more intricate (and interesting) transient dynamics and fixed points stability, as explained in § III C 5.

These portraits illustrate the fact that complex conjugate symmetric Holmboe modes can transiently have
very different amplitudes, and how they converge to the equilibrium stable node. In most cases, including case
H1 in J (panel b), this convergence is monotonic, i.e. |A1(t)| and |A2(t)| either grow or decay monotonically
to equilibrium. However, in the exceptional case of H1 in Re (panel a), this convergence is non-monotonic,
i.e. |A1(t)| and |A2(t)| can transiently grow above or decay below the equilibrium value. This is due to the

fact that the two saddles |Ae| =
√
−σr/κ1 (empty circles on the axes) are located below the stable node

|Ae| =
√
−σr/(κ1 + κ2) (full circle), a fact that we indeed noted as exceptional in case H1 in Re (figure 4c).

These non-monotonic transient dynamics are ultimately caused by a mode-mode interaction coefficient κ2
which is non-negligible compared to the mode-specific coefficient κ1. Why this is observed only in the long-
wave, weakly-stratified H1 mode, and only at supercritical Re (not J), remains an open question.

V. RESULTS: FLOW STRUCTURES

In this section we present our results on the weakly-nonlinear flow structures. We start with the vertical (z)
profiles of each term in the amplitude expansion in § V A, before turning to the planar (x, z) contours in § V B.

A. Vertical structures in z

1. Kelvin-Helmholtz case KH1

In figure 6 we deconstruct the single-mode perturbation of (13) and figure 1 in case KH1 near the final
bifurcation locations in Re > Rec (top row) and in J < Jc (bottom row). To do so, we plot the vertical
profiles of the modulus of (from left to right) the order 1 term |Ae||w11|, order 2 terms |Ae|2|w20|, |Ae|2|w22|,
and order 3 terms |Ae|3|w31|, |Ae|3|w33|. To provide a complete picture, we examine the streamfunction |ψ|
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FIG. 6: Vertical structure of a deconstructed weakly-nonlinear Kelvin-Helmholtz perturbation KH1, away
from the critical point in Re (top row) and J (bottom row). From left to right: inset showing the location on

the bifurcation diagram (taken from figure 4a,b); order 1 fundamental mode; order 2 mean and second
harmonic modes; and order 3 fundamental and third harmonic modes (see expansion in (13) and figure 1).

Axis limits are identical across a given row.

(in cyan, a proxy for the vertical velocity |w| ∝ |∂xψ| ≈ k|ψ|), the vorticity |ω| = |∇2ψ| (in orange), and
the density |ρ| (in purple). The latter is multiplied by J in order to more accurately reflect the importance
of density in this weakly-stratified case. Although the Kelvin-Helmholtz case is not the primary focus of this
paper, we believe that figure 6 provides a useful introduction and basis for the more complicated Holmboe
cases in the next section.

First, comparing both rows, we notice that the bifurcations in Re and J yield very similar vertical profiles
(despite a factor two in the amplitude). As expected, all profiles are perfectly symmetric about z = 0.

Second, examining either row column by column, we notice that the order 1 fundamental |Ae||w11| is by
far dominant, except in the density field. The dominant higher-order term chiefly responsible for nonlinear
saturation appears to be the order 2 feedback on the mean density |Ae|2|ρ20|, which has a distinct double peak
on either side of the density interface, in contrast with the order 1 fundamental which has a single peak. The
order 2 second harmonic |ρ22|, the order 3 first harmonic |ρ31|, and the order 3 third harmonic |ρ33| have yet
different and interesting structures localized at the interface, but are comparatively small.

2. Holmboe cases H1, H2, H3

In figure 7 we deconstruct the double-mode perturbations of (21) and figure 2 in cases H1, H2, H3 (top to
bottom row), both in Re and J (see bold parameters and bifurcation diagram insets in the leftmost column).
The figure is designed much like the previous figure 6; in particular all modes are plotted already multiplied
by their respective amplitude (|Ae|, |Ae|2, |Ae|3). In this double-mode analysis, we only plot the seven terms
that result from mode 1 (a.k.a. mode 110) and a combination of modes 1 and 2. The remaining five terms
result from the counter-propagating mode 2 alone (a.k.a. mode 101); they can thus be deduced from their
respective counterpart by the symmetry relation (10), and would provide no additional information (these are

w101, w
(2)
200, w202, w

(1)
301, w

(2)
301).

First, by surveying the relative magnitude of each term, we note that in all rows except the top row, the
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FIG. 7: Vertical structure of deconstructed weakly-nonlinear Holmboe perturbations H1, H2, H3, away from
the critical point in Re and J (top to bottom). From left to right: inset showing the location on the

bifurcation diagram (taken from figure 4c-h); order 1 fundamental mode; order 2 mean, second harmonic,
breather and mixed modes; and order 3 fundamental modes (see expansion in (21) and figure 2). The

remaining five terms resulting from mode 2 alone can be deduced by (10).
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order 2 and order 3 terms are plotted on a horizontal scale that is ten times smaller than the order 1 term for
visualisation purposes. As a consequence, the general appearance of the total weakly-nonlinear perturbation
(sum of all these terms) should only be a minor distortion of the order 1 fundamental mode w110.

Second, by focusing on this mode w110 (first column), we find that for a given case (H1, H2, or H3) this
mode remains fairly similar away from the critical point, whether the bifurcation is in Re or J . However, we
find clear differences in w110 across the three H cases, both in the structure of the individual ψ, ω, ρ (broad
or localised character, shape of the peaks) and in their relative magnitude. In other words, the structure of
Holmboe waves shows much variation in the (Re, J, k) space (however this is a linear phenomenon).

Third, by looking for the dominant higher-order nonlinear terms (order 2 and 3), we find again differences
across the three H cases, but similarities between their respective bifurcations in Re or J . In H1, nearly all
order 2 and order 3 terms contribute significantly, albeit with very different structures. In H2, most terms
remain significant, and only a couple become insignificant. In H3, which we remember is so close to H2 in

parameter space, only two order 2 terms remain significant: the distortion of the mean flow w
(1)
200 (caused

by self-interaction of w110 with its implicit complex conjugate) and the second harmonic w220 (caused by
self-interaction of w101). The former is highly localised well above the density interface, while the latter affect
the shear layer more globally.

Interestingly, we note in case H2 in Re the rather unexpected dominance of the order 3 term w
(1)
310 (caused

by the interaction of the second harmonic w220 with the complex conjugate of w110 and of the mean flow

distortion w
(1)
200 with w110). This could be an artefact caused by an excessively large distance away from the

critical point; however we must stress that the amplitude remains very small |Ae| ≈ 0.003, and corresponds
here to a global perturbation energy of 0.0012 % of the mean flow (well below our 1 % stopping criterion).
However, we will not delve further on case-by-case analyses of order 3 terms since Appendix A 2 makes it clear
that they are exceedingly difficult to interpret physically.

However, our result demonstrate that in parallel stratified shear flows the mean flow distortion w
(1)
200 does not

appear to be generally and overwhelmingly dominant, in contrast with the assumptions and results of the
‘self-consistent mean flow analysis’ of Mantič-Lugo, Arratia & Gallaire [33] who tackled vortex shedding in the
wake of a cylinder.

B. Planar structures in (x, z)

1. Reconstructed perturbations

To complement our previous deconstructions and analyses of vertical structures, we now turn to the recon-
structions (sum) of perturbations and analyses of their full two-dimensional, planar structures in (x, z) (with
phase information). In figure 8 we plot, for all four cases (KH1, H1, H2, H3), the reconstructed expansion
corresponding to figures 6-7 (thick solid contours). We superimpose the order 1 fundamental mode (or ‘linear’
mode, thin dashed contours) in order to assess the nonlinear distortion caused by order 2 and order 3 terms.
For each field, we plot a single wavelength along x, and a single couple of contours of opposite values (e.g.
±0.003, ±0.001 etc) near the maximum values in order to faithfully represent the dominant shape of the signal.

Two further technical details are worth mentioning. First, we plot these contours at a single time (snapshot)
when the complex amplitude is real Ae = |Ae|ei0, i.e. has zero phase. We do this without loss of generality
since the phase varies linearly in time and does not saturate to a fixed point equilibrium like the modulus |Ae|.
Second, as in figure 7, we only plot the terms corresponding to mode 1 and the stationary (standing wave)
combinations of mode 1 and 2; the remaining five terms resulting from the counter-propagating mode 2 alone
(deduced by symmetry) are not added. The reason is that the total wave field resulting from the superposition
of two counter-propagating Holmboe modes can take very different shapes based on their relative phase shift.
By avoiding an arbitrary choice of phase shift and mode superposition, we facilitate the present comparison
of the nonlinear effects on a single mode.

To begin with, a quick comparison between the thick solid and thin dashed contours in all panels reveals that
the reconstructed perturbation is almost indistinguishable from the linear mode. In other words, the effects
of higher-order modes, although sufficient to saturate the growth of the linear mode to an finite-amplitude
equilibrium, are not sufficient to visibly alter its planar structure. This is of course a consequence of the
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FIG. 8: Planar structure of reconstructed weakly-nonlinear expansions in the Kelvin-Helmholtz case (KH1,
top half) and Holmboe cases (H1, H2, H3, bottom half). The linear mode is superimposed for comparison
(dashed contours). The value of each pair of contours is chosen near the maximum value to highlight the

main signal. The bifurcation locations are given by the bold parameter Re or J , and correspond to those in
figures 6-7. In the H cases, we only plot harmonics of mode 1 and mean modes resulting from mode 1 and 2

(avoiding the superposition of counter-propagating mode 2 harmonics, which have a known symmetry).

relatively small ‘final’ amplitudes |Ae|, which result from our stopping criteria. These stopping criteria were
chosen as ‘reasonable’ in order for the expansion to remain valid and sensible, but they have an inherent degree
of arbitrariness. Although it would be possible to ‘push’ some of these bifurcations to larger |Ae| and find
structures with stronger nonlinear distortion, the question of their validity must always be kept in mind.

Having established that the linear modes are excellent approximations of all ‘reasonable’ weakly-nonlinear
expansions, we briefly comment on them, especially on the differences between H cases, as briefly noted in
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FIG. 9: Visualizations of the total flow in cases H1 (top row), H2 (middle row), H3 (bottom row). The total
vertical velocity w (left column), spanwise vorticity ω (middle column), and density (right column) are

obtained by adding to the base flow (w00 = 0, ω00 = − sech2 z, ρ00 = − tanh 5z) the reconstructed
perturbation of figure 8 magnified by a factor λ = 10 or 100 for easier visualization. Colorbars are identical

in the middle and right column.

figure 7. First, the linear modes have different structures when computed away from the critical point in Re
or J (compare the two columns of either H1, H2, H3). In other words, nonlinearities essentially tell us how far
away from the critical point the expansion can be computed, and therefore allow us to find the structure of the
linear mode at this distance, which can differ from the critical mode. Second, the linear modes themselves have
different structures across the three H cases, beyond the obvious differences in wavelengths 2π/k (long wave
vs short wave). The weakly-stratified, slow-traveling Holmboe case H1 is very similar to the Kelvin-Helmholtz
case KH1, and very different from the two highly-stratified fast-traveling Holmboe cases H2, H3. In the latter
two, the vorticity perturbation is more localized at the interface, and the density has a double perturbation
above and below the interface which are almost perfectly in phase (this phase information was not contained
in figure 7).

2. Reconstructed total flow

We plot in figure 9 visualizations of the total weakly-nonlinear Holmboe flow fields at equilibrium, including
the reconstructed expansion (the ‘perturbation’) and the base flow. We plot the vertical velocity w = −∂xψ,
vorticity ω, and density ρ with a streamwise extent equal to one H1 wavelength in all panels (which corresponds
to multiple wavelengths in H2, H3). This visualization would be typical of experimental measurements using
particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) as done in Lefauve [11] (§ 3.2)
and Lefauve et al. [12] (see their figure 8). However, since the perturbations are too small to be easily visualized
here, we artificially magnified them by a factor λ = 10 in H1–H2 and λ = 100 in H3 (making them 10 or 100
times more dramatic). For conciseness, we only show results for the bifurcations in J (not Re, see parameter
in bold on the left).

This figure gives us yet another view of the differences in structure between the three Holmboe cases, which
as we now know, is primarily due to their linear mode. We note the particularly strong w signal in H2

(middle left panel, having larger colorbar limits) relative to the other signals (in particular the ρ signals are
all comparable). We also note the strong and characteristically different ω signals in H2 and H3. However,
it must be remembered that the perturbations have been amplified by factors of 10 and 100 respectively, in
order to reach a level typical of some laboratory flows.
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C. Saturation energetics

To conclude this section, we comment on the mechanism responsible for nonlinear saturation from an energetics
point of view. Consider the mean and perturbation kinetic energies,

K̄(z) ≡ 1

2
ū · ū and K ′(x, z, t) ≡ 1

2
u′ · u′, (43)

respectively associated with the mean flow ū ≡ 〈u〉x,t (averaged in the periodic streamwise direction and time)
and the (x, t)-periodic perturbations away from it u′ ≡ u − ū. By analogy, we also consider the mean and
perturbation scalar variances:

K̄ρ(z) ≡
J

2
ρ̄2 and K ′ρ(x, z, t) ≡

J

2
ρ′2, (44)

with ρ̄ ≡ 〈ρ〉x,t, ρ′ ≡ ρ− ρ̄. The temporal evolution equations for each energy or variance is deduced from (1),
and when averaged over x and t, give the following budgets:

∂tK = −P + F − D̄ (K̄ budget), (45a)

∂tK ′ = +P −B −D (K ′ budget), (45b)

∂tKρ = −Pρ + Fρ − χ̄ (K̄ρ budget), (45c)

∂tK ′ρ = +Pρ − χ (K ′ρ budget). (45d)

The fluxes are: the production terms P ≡ −u′w′∂zū, Pρ ≡ −J w′ρ′∂z ρ̄; the forcing terms F, Fρ (see equation
(3)); the buoyancy flux B ≡ Jw′ρ′ (related to Pρ); and finally the dissipation terms D̄ ≡ (2/Re)s̄ij s̄ij , D ≡
(2/Re)s′ijs

′
ij (s being the strain rate tensor), χ̄ ≡ J/(RePr)∂xi ρ̄∂xi ρ̄, and χ ≡ J/(RePr)∂xiρ

′∂xiρ
′ (summing

over repeated indices).

During the unsteady growth of the instability, the average of any quantity φ over a period T (taken as the
first harmonic) is ∂tφ(t) = (1/T )(〈φ〉x(t+T )−〈φ〉x(t)) 6= 0. As a result, the mean budgets (45a), (45c) do not
exactly cancel, because the initial base flow w000 is being modified by the mean flow feedback at order 2 (which

we recall are |A1|2w(1)
200, |A2|2w(2)

200 and A1A
∗
2w21−1+c.c). In the meantime, the perturbation budgets (45b),

(45d) also vary from period to period, since the essence of a linear instability (σr > 0) is precisely to transfer
enough mean energy to perturbation energy through P such that P − B − D > 0 (indeed when computed
using only the linear mode w110,w101, P − B −D is proportional to σr). As the amplitudes A1, A2 increase
and further harmonics are generated, the nonlinear saturation mechanism observed in this paper (typical of
supercritical pitchforks) corresponds to the gradual modification of all fluxes in (45) by order 2 and 3 terms
until a stable equilibrium is reached and all budgets cancel ∂tK = ∂tK ′ = ∂tKρ = ∂tK ′ρ = 0.

A more detailed and physically-based understanding of weakly-nonlinear Holmboe waves would require the
computation and comparison of all fluxes in (45) at equilibrium, using the the total flow expansion (21) (having
four mean flow contributions and nine periodic contributions, not including complex conjugates). An even
more detailed investigation of the role of individual higher order terms in the vertical structure of the flow,
e.g. causing the local distortion of the mean shear layer or the sharpening/broadening of the mean density
interface, would require the investigation of all products of periodic contributions, especially in the crucial
P, Pρ, B fluxes, which are each composed of 9 + 8 + . . . + 1 = 45 dyadic products (where the average of each

dyad is given by {a(z)einak(x−ct) + c.c.} {b(z)einbk(x−ct) + c.c.} = a∗b + ab∗ over a fundamental wavelength
2π/k and period 2π/(kc)). Although a priori valuable, this study is beyond the scope of this paper.

VI. CONCLUSIONS

A. Summary

In this paper we tackled the weakly-nonlinear temporal stability properties of parallel shear flows that are
stably-stratified in z (see equation (2)). We focused on Holmboe waves, comparing them in passing to the re-
lated Kelvin-Helmholtz waves, and investigated separately the role of two bifurcation parameters, the Reynolds
number Re and bulk Richardson number J (equation (4)).
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We developed rigorous weakly-nonlinear amplitude expansions to study the evolution of two-dimensional per-
turbations having a normal mode in x (periodic), and an inhomogeneous structure in z. Simply speaking, the
nonlinearities in equation (3) affect the linear eigenmode (order 1 in amplitude) and excite the growth of order
2 modes (mean flow distortions and second harmonics). Further nonlinear interactions between the order 1
and order 2 modes excite order 3 modes, which eventually provide negative feedback on the exponential growth
of the amplitude and stabilize it to a finite value (Stuart-Landau equations (15), (22)). The derivation takes
two distinct forms in the case of a single unstable mode (Kelvin-Helmholtz instability, see expansion (13)), or
in the case of a couple of complex conjugate modes (counter-propagating symmetric Holmboe instability, see
expansion (21)). By carefully solving for these higher-order modes (see hierarchy in Appendix A) we proposed
a single-mode algorithm (figure 1) and a double-mode algorithm (figure 2) to calculate the stable equilib-
rium amplitude |Ae| away from the critical point where the flow first becomes linearly unstable (supercritical
bifurcation).

After studying the linear stability of our system (figure 3a), we applied our weakly-nonlinear algorithms at
four qualitatively distinct locations on the stability boundary (figure 3b and table II). We selected a low-Re,
long-wave, weakly-stratified Holmboe case (named H1, supercritical for increasing J), and two shorter-wave,
strongly-stratified Holmboe cases (H2 and H3, supercritical for decreasing and increasing J , respectively). For
comparison, we also selected a Kelvin-Helmholtz case (KH1) very near H1.

Our bifurcation diagrams (figure 4) showed the steady-state |Ae|(Re, J) as well as the underlying linear growth
rate σr and Landau coefficients. They revealed a variety of behaviors that are richer than the classical
supercritical pitchfork typical of other (multiscale) expansions in the literature. The KH case and the three
H cases all have different branches, both qualitatively in their scaling law and quantitatively in their ‘final’
amplitude, the latter being set by stopping criteria (capping the global perturbation energy, the local values
of perturbations, or the distance away from the critical point). We then illustrated the transient dynamics
of the amplitudes of the counter-propagating (double-mode) Holmboe waves with phase portraits (figure 5).
This revealed that, in some rare cases, one of the two modes can transiently growth above (or decay below)
its long-time equilibrium amplitude (here only in H1 when bifurcating in Re but not in J).

Finally, we investigated the spatial structures of these weakly-nonlinear expansions at equilibrium. First, the
vertical (z) structures of the deconstructed expansions (figures 6-7 showing a breakdown of the modulus of
modes present at order 1, 2, 3) revealed differences across all eight cases (KH1, H1, H2, H3 when bifurcating
in Re and J). Not only do they have different linear (order 1) modes, but also different higher-order (order
2 and 3) modes, and therefore, different weakly-nonlinear saturation mechanisms underlying the previous
bifurcation diagrams. Although the order 2 distortion of the mean flow and the order 2 second harmonic
are generally the dominant higher-order terms, in some cases other terms are significant and possess highly-
localized vorticity or density structures. Second, the planar (x, z) structures of the reconstructed perturbation
expansions (figure 8 showing the sum of all modes with phase information) highlighted the very weak and
barely-noticeable distortions caused by higher-order modes, and gave more detailed view of the differences
in order 1 modes (e.g. the relative magnitudes of w, the single- vs double-peaked ρ and its relative phase
shifts, the interfacial localization of ω). Visualizations of the total reconstructed flow field (figure 9, adding
the base flow) revealed the (largely linear) finite-amplitude signature of Holmboe waves as they would be
observed in experiments, while highlighting their small equilibrium amplitude |Ae| (the perturbation had to
be artificially amplified to be clearly visible). Third, we outlined the basic energy mechanisms responsible for
nonlinear saturation, and emphasized the challenges of a detailed physical understanding, which remain an
open question.

Next, we discuss some limitations of these results and some possible future directions for the study of the
nonlinear Holmboe dynamical system.

B. Limitations and future directions

The ‘final’ equilibrium amplitudes |Ae| shown in our bifurcation diagrams and spatial structures are limited by
the absence of a clear-cut, unambiguous criterion guaranteeing the validity of our expansions. In other words,
how far away from the critical point can we ‘push’ the weakly-nonlinear analysis?

On the one hand, the experiments and linear stability analysis of Lefauve et al. [12] suggest that we might
be allowed to ‘push’ it much further away from what we have done in the present paper. Their measurements



26

of finite-amplitude Holmboe waves revealed much larger perturbations (comparable to the visualization of
figure 9 in which |Ae| was amplified by a factor 10 to 100), which nevertheless agreed remarkably well with
their most unstable linear mode (computed on the mean flow). Thus, even at larger |Ae|, nonlinear modes
might still only very weakly distort the linear mode, and might still be well described by a weakly-nonlinear
analysis (although we need to appreciate that their linear mode was computed not on a perfectly steady base
flow but on the measured mean flow, which is already affected by nonlinear modes).

On the other hand, theoretical arguments and numerical studies warn against pushing the weakly-nonlinear
analysis too far. First, our implicit assumption throughout the weakly-nonlinear analysis that the linear mode
has a single wavenumber k (maximizing σr) becomes increasingly inaccurate away from the critical point,
where we have instead a whole continuous band of unstable wavenumbers (clear in the dispersion relation
figure 6a of [12]). Second, a proper assessment of the validity of our truncated Landau series would require the
computation of second Landau coefficients, and therefore, extending our perturbation expansion to order 5 (not
a trivial step as becomes clear in Appendix A). However, this course of action is discouraged by conventional
wisdom because higher Landau coefficients tend to be very large, reducing the radius of convergence of the
series (see [23] and the recent results of [34, 35]).

The above discussion pleads in favour of a fully-nonlinear analysis. DNSs of finite-amplitude Holmboe waves
with periodic boundary conditions in x have long been performed, but not yet with the specific aim of system-
atically finding the bifurcation diagram |Ae|(Re, J) under supercritical conditions (this requires, in particular,
to impose the forcing in (3) to maintain a steady base flow). However, recent Newton-GMRES iteration
methods [36] now allow this fully-nonlinear analysis to be performed accurately, as demonstrated by Parker,
Caulfield & Kerswell [34] who revealed the unexpected subcritical bifurcation diagram of Kelvin-Helmholtz
waves near J ≈ 0.25 (at [Re, θ, Pr,R] = [4000, 0, 1, 1], see their § 3.1 and figure 1). Although very costly in
computing time, and requiring an extension of the current method to a couple of counter-propagating waves,
this course of action appears the most judicious next step.

If the validity and relevance of our (much less costly) weakly-nonlinear analysis is confirmed, two natural ex-
tensions would bring its predictions closer to ‘real-life’ experimental and geophysical flows. First, the extension
to three-dimensional perturbations (inhomogeneous in y and z) on a two-dimensional base flow u00(y, z), as
introduced in [12], in order to assess the role of spanwise variations and presence of side-walls, as was done in
linear stability in [37]. This is expected to be very tedious (as will be clear from Appendix B and the fact that
our streamfunction formulation would no longer hold). Second, a less tedious and probably more rewarding
extension to asymmetric Holmboe waves, which are commonly found in real flows whenever the velocity and
density interface are not exactly coincident as in [5, 12] (e.g. if ρ00 = − tanhR(z − z0) and z0 6= 0). This
extension, and the resulting changes in the stability of fixed points at |z0| is varied, were conjectured at the end
of § III C 5. It would allow progress on the interesting question of nonlinear mode selection, such as predicting
the long-time co-existence or sole dominance of either mode, and the dependence on initial conditions (basins
of attractions).
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Appendix A: Weakly-nonlinear expansions

Below we complement § III with additional information about the hierarchy of nonlinear terms.

1. Single mode: expansion summary

At each successively higher order, new terms are added to the perturbation to match those which were neglected
during the calculations at lower order. This results in the hierarchy shown in Table III.

TABLE III: For an single-mode expansion at order m (columns), the crosses denote all wavenumber
harmonics n (rows) required (terms wmnA

mEn). At order m ≥ 2, the expansion must also include all terms
at smaller m (e.g. a total of four terms at order 2, six terms at order 3, etc). Although we only considered in
this work expansions up to order m = 3 (in bold), here we include higher orders for completeness (expanding

the Landau equation to obtain a second Landau coefficient would require computation up to order 5).

m → 0 1 2 3 4 5

n ↓
0 × × ×
1 × × ×
2 × ×
3 × ×
4 ×
5 ×

2. Double mode: origin of the order 2 and 3 terms

Here we complement the double-mode expansion (21) by explaining the origin of the order 2 terms (table IV)
and order 3 terms (table V) from nonlinear interactions, and showing the terms that are implicitly accounted
for in the complex conjugate part (+ c.c.). Table V also shows (through its empty cells) the order 3 terms that
have been neglected in the expansion (21) because they are not necessary to compute the Landau coefficients.

TABLE IV: Table showing how order 1 terms (left column and top row) multiply to make order 2 terms
(main body of the table) in the double-mode analysis. Bold order 2 terms are tracked explicitly in the

expansion (21), while non-bold order 2 terms are implicitly accounted for through the complex conjugate.

Order 1 ↓ → A110 A101 A1−10 A10−1

A110 A220 A211 A
(1)
200 A21−1

A101 A202 A2−11 A
(2)
200

A1−10 A2−20 A2−1−1

A10−1 A20−2

TABLE V: Table showing how order 1 terms (left column) and order 2 terms (top row) multiply to make
order 3 terms (main body of the table) in the double-mode analysis. Bold and non-bold terms order 3 terms
are respectively tracked explicitly and implicitly through the c.c. as in table IV. Empty cells denote order 3

terms that we neglected (20 out of 40, i.e. half).

Order 2 → A
(1)
200 A

(2)
200 A220 A202 A211 A21−1 A2−20 A20−2 A2−1−1 A2−11

Order 1 ↓
A110 A

(1)
310 A

(2)
310 A

(1)
3−10 A

(1)
30−1 A

(1)
301

A101 A
(1)
301 A

(2)
301 A

(2)
310 A

(2)
30−1 A

(2)
3−10

A1−10 A
(1)
3−10 A

(2)
3−10 A

(1)
310 A

(1)
301 A

(1)
30−1

A10−1 A
(1)
30−1 A

(2)
30−1 A

(2)
301 A

(2)
310 A

(2)
3−10
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FIG. 10: Graph representation of tables IV-V. Order 2 terms only have one contribution each, i.e. they
appear only once in table IV. Each is represented by a bullet representing the product of two order 1 terms.

By contrast, order 3 terms have two or three different contributions, i.e. as many times as they appear in
table IV. Each order 3 term is the sum all the bullets lying on the dashed circle around them, while each
bullet represents the product of an order 1 with an order 2 term. As in the tables, bold vs non-bold term

(and thick vs thin lines) are tracked explicitly vs implicitly.

Finally, for completeness, we show in figure 10 the information of these tables in graph form. Despite our
efforts to adopt a clear notation and our neglect of half the order 3 terms (empty cells in table V), this figure
demonstrates that a double-mode expansion at order 3 is already exceedingly challenging to interpret...

Appendix B: Full expressions of the linear operators and forcing terms

1. Single mode

a. Order 1 linear operators

Ak ≡
[
−k2 + ∂zz 0

0 1

]
(B1a)

B(k,Q) ≡

 −ikψ′00 (−k2 + ∂zz) + ikψ′′′00 +
1

Re
(k4 + ∂zzzz − 2k2∂zz) J(sin θ ∂z + ik cos θ)

ikρ′00 −ikψ′00 +
1

RePr
(−k2 + ∂zz)

 (B1b)

For the next orders, it is convenient to define the linear operator L :

Lk,σ,Q ≡ Bk,Q − σAk ≡
[

L11 L12

L21 L22

]
(B2)

where

L11(k, σ,Q) = −ikψ′00 (−k2 + ∂zz) + ikψ′′′00 +
1

Re
(k4 + ∂zzzz − 2k2∂zz)− σ(−k2 + ∂zz) (B3a)

L12(k, σ,Q) = J(sin θ ∂z + ik cos θ) (B3b)

L21(k, σ,Q) = ikρ′00 (B3c)

L22(k, σ,Q) = −ikψ′00 +
1

RePr
(−k2 + ∂zz)− σ (B3d)
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b. Order 2 forcing

f20 ≡


ikψ11(ψ∗′′′11 − k2ψ∗′11)− ikψ∗11(ψ′′′11 − k2ψ′11)

−ψ′11(−ikψ∗′′11 + ik3ψ∗11)− ψ∗′11(ikψ′′11 − ik3ψ11)

ikψ′11ρ
∗
11 + ikψ11ρ

∗′
11 − ikψ∗11ρ′11 − ikψ∗′11ρ11

 (B4a)

f22 ≡

 ikψ11(ψ′′′11 − k2ψ′11)− ikψ′11(ψ′′11 − k2ψ11)

ikψ11ρ
′
11 − ikψ′11ρ11

 (B4b)

c. Order 3 forcing

f31 ≡


−2ikψ∗′11(ψ′′22 − 4k2ψ22)− ikψ∗11(ψ′′′22 − 4k2ψ′22) + ikψ′22(ψ∗′′11 − k2ψ∗11)+

2ikψ22(ψ∗′′′11 − k2ψ∗′11)− ikψ′20(ψ′′11 − k2ψ11) + ikψ11ψ
′′′
20

ikψ′22ρ
∗
11 + 2ikψ22ρ

∗′
11 − 2ikψ∗′11ρ22 − ikψ∗11ρ′22 − ikψ′20ρ11 + ikψ11ρ

′
20

 (B5a)

f33 ≡


−2ikψ′11(ψ′′22 − 4k2ψ22) + ikψ11(ψ′′′22 − 4k2ψ′22)−
ikψ′22(ψ′′11 − k2ψ11) + 2ikψ22(ψ′′′11 − k2ψ′11)

−ikψ′22ρ11 + 2ikψ22ρ
′
11 − 2ikψ′11ρ22 + ikψ11ρ

′
22

 (B5b)

2. Double mode

a. Order 2 forcing

Mean flow:

f
(1)
200 ≡


ikψ110(ψ∗′′′110 − k2ψ∗′110)− ikψ∗110(ψ′′′110 − k2ψ′110)

−ψ′110(−ikψ∗′′110 + ik3ψ∗110)− ψ∗′110(ikψ′′110 − ik3ψ110)

ikψ′110ρ
∗
110 + ikψ110ρ

∗′
110 − ikψ∗110ρ′110 − ikψ∗′110ρ110

 (B6)

Note: f
(2)
200 is given by replacing the subscripts 110 by 101 in (B6).

Second harmonics:

f220 ≡

 −ikψ′110(ψ′110 − k2ψ110) + ikψ110(ψ′′′110 − k2ψ′110)

ikψ′110ρ110 + ikψ110ρ
′
110

 (B7)

Note: f202 is given by replacing the subscripts 110 by 101 in (B7).

Breather mode:

f21−1 ≡


ikψ′110(ψ∗′′101 − k2ψ∗101) + ikψ110(ψ∗′′′101 − k2ψ∗′101)

−ikψ∗′101(ψ′′110 − k2ψ110)− ikψ∗101(ψ′′′110 − k2ψ′110)

ikψ′110ρ
∗
101 + ikψ110ρ

∗′
101 − ikψ∗101ρ′110 − ikψ∗′101ρ110

 (B8)
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Mixed mode:

f211 ≡


−ikψ′110(ψ′′101 − k2ψ101) + ikψ110(ψ′′′101 − k2ψ′101)

−ikψ′101(ψ′′110 − k2ψ110) + ikψ101(ψ′′′110 − k2ψ′110)

−ikψ′110ρ101 + ikψ110ρ
′
101 − ikψ′101ρ110 + ikψ101ρ

′
110

 (B9)

b. Order 3 forcing

f
(1)
310 ≡


ikψ110ψ

(1)′′′
200 − ikψ

(1)′
200 (ψ′′110 − k2ψ110)− 2ikψ∗′110(ψ′′220 − 4k2ψ220)

−ikψ∗110(ψ′′′220 − 4k2ψ′220) + ikψ′220(ψ∗′′110 − k2ψ∗110) + 2ikψ220(ψ∗′′′110 − k2ψ∗′110)

ikψ110ρ
(1)′
200 − ikψ

(1)
200ρ

′
110 − 2ikψ∗′110ρ220 − ikψ∗110ρ′220 + ikψ′220ρ

∗
110 + 2ikψ220ρ

∗′
110

 (B10a)

f
(2)
310 ≡



ikψ101ψ
′′′
21−1 − ikψ′21−1(ψ′′101 − k2ψ101)− 2ikψ∗′101(ψ′′211 − 4k2ψ211)

−ikψ∗101(ψ′′′211 − 4k2ψ′211) + ikψ′211(ψ∗′′101 − k2ψ∗101)

+2ikψ211(ψ∗′′′101 − k2ψ∗′101) + ikψ110ψ
(2)′′′
200 − ikψ

(2)′
200 (ψ′′110 − k2ψ110)

ikψ101ρ
′
21−1 − ikψ′21−1ρ101 − 2ikψ∗′101ρ211 − ikψ∗101ρ′211

+ikψ′211ρ
∗
101 + 2ikψ211ρ

∗′
101 + ikψ110ρ

(2)′
200 − ikψ

(2)′
200ρ110


(B10b)

f
(1)
301 ≡



ikψ110ψ
∗′′′
21−1 − ikψ∗′21−1(ψ′′110 − k2ψ110)− 2ikψ∗′110(ψ′′211 − 4k2ψ211)

−ikψ∗110(ψ′′′211 − 4k2ψ′211) + ikψ′211(ψ∗′′110 − k2ψ∗110)

+2ikψ211(ψ∗′′′110 − k2ψ∗′110) + ikψ101ψ
(1)′′′
200 − ikψ

(1)′
200 (ψ′′101 − k2ψ101)

ikψ110ρ
∗′
21−1 − ikψ∗′21−1ρ110 − 2ikψ∗′110ρ211 − ikψ∗110ρ′211

+ikψ′211ρ
∗
110 + 2ikψ211ρ

∗′
110 + ikψ101ρ

(1)′
200 − ikψ

(1)′
200ρ101


(B10c)

f
(2)
301 ≡


ikψ101ψ

(2)′′′
200 − ikψ

(2)′
200 (ψ′′101 − k2ψ101)− 2ikψ∗′101(ψ′′202 − 4k2ψ202)

−ikψ∗101(ψ′′′202 − 4k2ψ′202) + ikψ′202(ψ∗′′101 − k2ψ∗101) + 2ikψ202(ψ∗′′′101 − k2ψ∗′101)

ikψ101ρ
(2)′
200 − ikψ

(2)
200ρ

′
101 − 2ikψ∗′101ρ202 − ikψ∗101ρ′202 + ikψ′202ρ

∗
101 + 2ikψ202ρ

∗′
101

 (B10d)

Appendix C: Energy norm matrix M

In our work, the following choice of M representing total energy was used:

M =

[
4DHD + 12k2I 0

0 J · I

]
, (C1)

where I is the identity matrix and D the discretized first order differentiation operator.

This corresponds to a discretized action of the bilinear form:

〈[ψ1, ρ1], [ψ2, ρ2]〉M 7−→ 4R(∂zψ1)R(∂zψ2) + 4R(∂xψ1)R(∂xψ2) + 4JR(ρ1)R(ρ2), (C2)

on w11,w31 (see (17)). This form was chosen such that the norm of a state vector [ψ(x, z), ρ(x, z)] =

[ψ̂(z)eikx, ρ̂(z)eikx]+ c.c. at x = 0 is given by:

〈w, w〉M = 〈[ψ, ρ], [ψ, ρ]〉M |x=0 =
{

2R(∂zψ̂)
}2

+
{

2R(ikψ̂)
}2

+ J
{

2R(ρ̂)
}2

=
∑
z

u2(0, z) + w2(0, z) + Jρ2(0, z) (C3)
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which is twice the sum of the kinetic and scalar energies, as desired (the scalar variance ρ2 contributes in
proportion to the stratification J).

Appendix D: Solvability condition

This solvability condition (or Fredholm alternative) method to solve for the Landau coefficient K was never
used in our work because the method of [25] described in § III B 4 and (16) was sufficient. It is included here

for completeness and in case future extensions of this work suffer from poor conditioning of L̂(k,σ+2σr,Q) as
Q→ Qc, σr → 0, and thus require this method.

To enforce the solvability condition, we consider the adjoint problem of (9) (which we recall is Lk,σ,Q w11 = 0),
defined formally as:

L †k,σ,Qw†11 = 0, (D1)

where L †k,σ,Q is the adjoint operator and w†11 the adjoint eigenvector. Since the numerical discretization and
adjoint operators do not necessarily commute, care must be exercised in computing the actual discretized
adjoint operator. A simple practical way to do so is to remove boundary conditions on the discretized direct
operator, take its complex conjugate transpose (H), before finally adding adjoint boundary conditions.

We now take the inner product of w†11 with (16) in the limit σr → 0:

〈w†11, Lk,σ,Qw31〉 = K〈w†11, Akw11〉+ 〈w†11, f31〉 (by (16))

=⇒ 〈L †k,σ,Qw†11︸ ︷︷ ︸
=0

, w31〉 = K〈w†11, Akw11〉+ 〈w†11, f31〉 (by (D1)) (D2)

=⇒ K = − 〈w†11, f31〉
〈w†11, Akw11〉

, (D3)

assuming that 〈w†11, Akw11〉 6= 0. We recall that Ak is given in (9), and that the inner product is with respect
to M as in (17), (C1).

It is worth noting that in the limit Q → QC , K = 〈w†11, f31〉 is independent of M (consistent with the fact
that K is always uniquely defined in the case σr → 0).
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