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Stratospheric ozone projections in the tropics, modeled using the UKESM1 Earth system
model, are explored under different Shared Socioeconomic Pathways (SSPs). Consistent
with other studies, it is found that tropical stratospheric column ozone does not return to
1980s values by the end of the 21st century under any SSP scenario as increased ozone
mixing ratios in the tropical upper stratosphere are offset by continued ozone decreases in
the tropical lower stratosphere. Stratospheric column ozone is projected to be largest
under SSP scenarios with the smallest change in radiative forcing, and smallest for SSP
scenarios with larger radiative forcing, consistent with a faster Brewer-Dobson circulation
at high greenhouse gas loadings. This study explores the use of machine learning (ML)
techniques to make accurate, computationally inexpensive projections of tropical
stratospheric column ozone. Four ML techniques are investigated: Ridge regression,
Lasso regression, Random Forests and Extra Trees. All four techniques investigated here
are able tomake projections of future tropical stratospheric column ozone which agree well
with those made by the UKESM1 Earth system model, often falling within the ensemble
spread of UKESM1 simulations for a broad range of SSPs. However, all techniques
struggle to make accurate projects for the final decades of the SSP5-8.5 scenario.
Accurate projections can only be achieved when the ML methods are trained on
sufficient data, including both historical and future simulations. When trained only on
historical data, the projections made using models based on ML techniques fail to
accurately predict tropical stratospheric ozone changes. Results presented here
indicate that, when sufficiently trained, ML models have the potential to make
accurate, computationally inexpensive projections of tropical stratospheric column
ozone. Further development of these models may reduce the computational burden
placed on fully coupled chemistry-climate and Earth system models and enable the
exploration of tropical stratospheric column ozone recovery under a much broader
range of future emissions scenarios.
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INTRODUCTION

Stratospheric ozone is an important component of the Earth
system: it limits the amount of harmful UV-B radiation reaching
the Earth’s surface (e.g., Bernhard et al., 2020) and has both direct
and indirect effects on atmospheric composition and climate (e.g.,
Thompson and Solomon, 2009; Son et al., 2010; Zeng et al., 2010;
Thompson et al., 2011; Eyring et al., 2013; WMO, 2018).
Following the controls on the production of halogenated
ozone depleting substances (hODSs) imposed by the Montreal
Protocol and its subsequent amendments, stratospheric chlorine
mixing ratios have begun to decline (WMO, 2018) and
stratospheric ozone is projected to recover over the course of
the 21st Century (e.g., Dhomse et al., 2018; WMO, 2018; Keeble
et al., 2020). However, while hODSs are projected to decline, there
is much greater uncertainty around future anthropogenic
emissions of other species which affect stratospheric ozone,
including long lived gases such as CO2, CH4 and N2O.
Emissions of these species strongly influence projections of
stratospheric ozone, accelerating or delaying return of total
column ozone values to historic values through radiative
impacts, which affect both gas phase kinetics and stratospheric
dynamics, and in the case of CH4 and N2O by acting as source
gases for reactive HOx and NOy species (for a review of processes
affecting stratospheric ozone see Solomon, 1999). Future
emissions of these non-halogenated gases will strongly
modulate when stratospheric ozone will return to historic
values and may offset tropical stratospheric ozone recovery
entirely (e.g., Eyring et al., 2013; Meul et al., 2016; Keeble
et al., 2017).

While zonal mean ozone mixing ratios are largest in the
tropical stratosphere, tropical column ozone values are the
lowest of any region outside of the Antarctic ozone hole (e.g.,
WMO, 2018). This fact, combined with the high population and
large incident UV flux in the tropics, means it is important to
understand how tropical stratospheric column ozone will evolve
over the course of the 21st century. In contrast to high latitudes,
where heterogeneous activation of chlorine reservoir species on
polar stratospheric clouds within the polar vortex has resulted
in large ozone decreases between 1960 and 2000, ozone
depletion in the tropics has been comparatively modest (e.g.,
Weber et al., 2018; WMO, 2018). While a decrease in
stratospheric hODS loadings and an increase in CO2 mixing
ratios is expected to result in increased upper stratospheric
ozone mixing ratios (Haigh and Pyle, 1982; Jonsson et al.,
2004), projected acceleration of the Brewer-Dobson circulation
(BDC; Brewer, 1949; Dobson, 1956) is expected to decrease
tropical lower stratospheric ozone mixing ratios (e.g., Eyring
et al., 2013; Banerjee et al., 2016). These competing effects are
expected to prevent tropical stratospheric column ozone from
returning to historic values (Eyring et al., 2013; Austin et al.,
2017; WMO, 2018), and potentially result in renewed decreases
by the end of the 21st century (e.g., Meul et al., 2016; Keeble
et al., 2017).

In order to make projections of stratospheric ozone recovery,
simulations must be performed using complex, computationally
expensive chemistry-climate and Earth system models which

include interactive chemistry schemes. These simulations span
decades to centuries, resulting in a high computational burden,
further compounded by the need to runmulti-member ensembles
for each scenario. Additionally, many different emissions
scenarios are simulated, exploring a large potential range in
future anthropogenic emissions. The result is that for large
multi-model intercomparison projects hundreds to thousands
of model years are simulated and large quantities of data are
produced (Balaji et al., 2018). While it is necessary to use
complex, coupled models to examine the full Earth system
response to future anthropogenic emissions, recent research
has explored the potential for machine learning techniques to
be used to understand the impact of anthropogenic emissions on
stratospheric ozone. For example, Nowack et al. (2018) explore
the use of linear machine learning techniques to predict the ozone
response to changes in CO2 mixing ratios. A topic which has so
far not been explored is whether simple models built using
machine learning can be used to make accurate projections of
stratospheric ozone under different emissions scenarios using
multiple input features. Here we explore this potential for the first
time, focusing specifically on how stratospheric column ozone in
the tropics may evolve over the course of the 21st Century under
different emissions.

Projections of stratospheric ozone in the tropics were chosen
as the test case to explore the potential of machine learning for
making accurate, computationally inexpensive projections of
ozone recovery for two reasons. Firstly, tropical stratospheric
ozone recovery has, as discussed above, been highlighted in the
past as of particular interest given the possibility that ozone
recovery to historic values may not occur in this region.
Secondly, ozone in the lower and upper tropical stratosphere
is under different influences (dynamical vs chemical) which
operate on a broad range of timescales, with the combination of
these opposing changes giving the net stratospheric column
change. This provides a challenge for the machine learning
algorithms which is significantly different to other latitude
ranges where stratospheric ozone is projected to increase at
all altitudes under all future emissions scenarios (e.g., Keeble
et al., 2020).

Models based on machine learning algorithms have the
potential to provide fast, computationally inexpensive
projections of tropical stratospheric column ozone. Suitably
trained on a limited number of Earth system model
simulations, machine learning may then be used to explore a
large range of future emissions scenarios, such as the Shared
Socioeconomic Pathways (SSPs; Riahi et al., 2017) used within
phase six of the Coupled Model Intercomparison Project
(CMIP6; Eyring et al., 2016). In this study, the ability of four
machine learning techniques to reproduce stratospheric column
ozone projections made using a state-of-the-science Earth system
model is assessed. Projections are initially made using the
UKESM1 Earth system model (Sellar et al., 2019; Archibald
et al., 2020) following different SSPs and performed as part of
the Scenario Model Intercomparison Project (ScenarioMIP;
O’Neill et al., 2016) activity within CMIP6. Projections of
stratospheric column ozone made using the machine learning
models are then compared with the UKESM1 results to answer:
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(1) Can models based on machine learning algorithms make
accurate projections of stratospheric column ozone?

(2) What data is required to train the machine learning
algorithms?

METHODS

In this study the applicability of four different machine learning
methods for making projections of tropical stratospheric column
ozone is assessed. These methods are Ridge regression, Lasso
regression, Random Forests and Extra Trees. Ridge regression
(Phillips, 1962; Hoerl and Kennard, 1970) and Lasso (least
absolute shrinkage and selection operator; Tibshirani, 1996)
regression are linear methods built on multiple linear
regression (MLR) with added regularization designed to
minimize overfitting by penalizing the coefficients of the linear
regression. The methods differ in their regularization penalty
term: the L2 regularisation used in Ridge regression consists of
the sum of squares of the individual coefficients, while the L1
regularisation used in Lasso regression consists of the sum of the
absolute coefficient. As a result, for Ridge regression we minimise
the cost function:

∑n
i�1

⎛⎝yi − ∑p
j�1

xijβj
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+ α∑p
j�1

β2
j

While for Lasso regression we minimize the cost function:
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where y is the target, xij are the input features, βj are the
coefficients assigned to each of the input feature and α

controls the strength of the penalty term (set via cross
validation). The benefit of using Ridge or Lasso over MLR is
to reduce overfitting while still keeping the method linear and
highly interpretable.

In contrast to Ridge and Lasso regression, Random Forests
(Breiman, 2001) and Extra Trees (extremely randomized trees;
Geurts et al., 2006) are non-linear methods based on decision
trees. A decision tree consists of a series of branching splits on a
feature of the dataset. At the end of the process, each leaf node
represents a value or class label. The splits and nodes of the
decision tree are determined by the machine learning algorithm
itself (i.e., not by the user), and will always utilise the variable and
split that result in the largest decrease in mean square error (or
other suitable metrics) at every branch. Therefore, while accuracy
increases as the depth of the tree increases, each additional layer
provides diminishing returns (i.e. the first split always gives the
greatest decrease in mean square error). Bootstrapping is used for
the Random Forests, i.e., each decision tree only sees a portion of
the full dataset. This subsetting of data results in each decision
tree being different from the others, reducing noise and
preventing overfitting. In contrast to Random Forests, Extra
Trees employs weak learners as the base estimator for each

tree. As a result, while individual trees will likely perform
worse than the decision trees in a standard Random Forest,
the ensemble can perform better due to reduced noise and
reduced overfitting from the weak learners. The principle
differences between Extra Trees and the standard Random
Forest is that each tree is trained using the whole dataset
rather than bootstrapping and the split in each tree is
randomized as opposed to finding the best split point.
Random Forests and Extra Trees have the advantage of being
able to simulate non-linear behavior. However, both linear and
non-linear methods may struggle when required to extrapolate
for test data outside the training data range.

In order to train and test the machine learning models,
projections of tropical stratospheric column ozone and a set of
input features are required. Here data taken from a suite of
simulations performed using the UKESM1 model is used to train
and test these machine learning methods, and CO2, CH4, N2O,
CFC-11 and CFC-12 surface mixing ratios are chosen as input
features. The UKESM1 model (Sellar et al., 2019) is a fully
coupled Earth system model developed jointly by the United
Kingdom’|’s Met Office and Natural Environment Research
Council. It uses a combined stratosphere-troposphere
chemistry scheme (Archibald et al., 2020) which includes 84
tracers, 199 bimolecular reactions, 25 uni- and termolecular
reactions, 59 photolytic reactions, five heterogeneous reactions
and three aqueous phase reactions for the sulfur cycle. The
chemistry scheme includes gas phase catalytic Ox, ClOx, BrOx,
HOx, and NOx chemical cycles which drive stratospheric
chemistry changes and heterogeneous reactions which occur
on polar stratospheric clouds and liquid sulfate aerosols. The
radiative impacts of stratospheric ozone changes couple to the
dynamics so that the UKESM1model captures feedbacks between
composition and climate. This model has performed simulations
as part of CMIP6 and ScenarioMIP, and data from these
simulations is used within this study. In total, data from seven
scenarios are used: a historical simulation run from 1850-2014
(Tang et al., 2019) and six future scenarios following SSP1-1.9,
SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-6.4 and SSP5-8.5 (Good et al.,
2019). For the historical simulation and each of the SSP scenarios
five ensemble members were run, and data from all ensemble
members is used in the training of the ML models.

The SSP emissions scenarios span a large range in potential
future emissions pathways for anthropogenic emissions which
affect both climate and atmospheric composition. Key for the
future evolution of stratospheric ozone are CO2, CH4, N2O, CFC-
11 and CFC-12, which are prescribed in the model as surface
mixing ratios. All SSP scenarios assume compliance with the
Montreal Protocol, and so the trajectory of CFC-11 and CFC-12
is the same across the scenarios, with only minor differences
associated with differences in the chemical lifetime of CFC-11
and CFC-12 under different SSP scenarios (Meinshausen et al.,
2020). In contrast, CO2, CH4, N2O vary significantly across the
scenarios (Figure 1).

For each of theMLmodels explored here, annual mean surface
mixing ratios of CO2, CH4, N2O, CFC-11 and CFC-12 are used as
input features for the machine learning algorithm, while the
target feature is the annual mean stratospheric column ozone,
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averaged from 30°S–30°N. The stratospheric column ozone used
in this study is smoothed using an 11-point boxcar smoothing to
reduce both the effects of short-term variability and the signature
of the 11 years solar cycle. In contrast, the emissions of CO2, CH4,
N2O, CFC-11 and CFC-12 already follow very smooth
trajectories, and so these input features are not smoothed in
the same way. In order to build the ML models, the data must be
split into training and testing sets. For this work, each of the 4 ML
methods investigated here was trained on UKESM1 output from
the Historical and five of the SSP scenarios and then tested on the
sixth (i.e., to make predictions of stratospheric column ozone
changes under the SSP3-7.0 scenario, the machine learning was
trained using output from the Historical, SSP1-1.9, SSP1-2.6,
SSP2-4.5, SSP4-6.4 and SSP5-8.5 scenarios). For the Ridge and
Lasso regression methods the input features of both the training
and test data were scaled to a mean of zero and a standard
deviation of one prior to the regression, while the Random Forest
and Extra Trees methods use the unmodified datasets. The
hyperparameters (e.g., the number of trees, whether
bootstrapping is used, the maximum number of features
selected, etc) of the machine learning algorithms are tuned
using a 6-fold cross validation on the training data.

RESULTS

UKESM1 projections of tropical stratospheric column ozone
under the different SSP scenarios, smoothed using an 11-point
boxcar smoothing, are shown in Figure 2. There is little difference
between the projections in the first half of the 21st century, with

reductions in stratospheric chlorine loadings resulting in positive
trends in stratospheric column ozone, which increases from
258.5 DU in 2014 to 260.5 DU in 2050. In contrast, the
scenarios diverge significantly in the latter half of the 21st
century. Under SSP1-1.9 and SSP1-2.6 stratospheric column
ozone continues to increase linearly between 2050 and 2100,
reaching 264 DU by the end of the century, while for the same
period stratospheric column ozone remains relatively constant
under SSP2-4.5, SSP3-7.0 and SSP4-3.4. The most notable
difference occurs under SSP5-8.5, in which stratospheric
column ozone remains constant from 2050–2070, before
decreasing from 2070–2100. In this scenario, stratospheric
column ozone in the year 2100 is projected to be as low as it
was in 2014, indicating that the impacts of anthropogenic
emissions of greenhouse gases can entirely offset projected
increases in stratospheric column ozone driven by reductions
in hODSs. Stratospheric column ozone does not return to the
1980 (266 DU) or 1960 (270 DU) values modeled in the historical
simulation under any SSP scenario.

Figure 3 shows the percentage difference in zonal mean
stratospheric ozone mixing ratios between the end of century
(2085–2100) and present day (2000–2015) for each SSP scenario.
Broadly the change in ozone mixing ratios is similar across the
scenarios; all show decreased mixing ratios in the tropical lower
stratosphere by the end of the century and increased ozone
mixing ratios in the polar lower stratosphere and at all
latitudes above 35 km. Projected changes in polar lower
stratosphere ozone are broadly similar in magnitude between
the scenarios, with ozone increases largest in the southern
hemisphere polar lower stratosphere, consistent with healing

FIGURE 1 | Evolution of CO2, CH4, N2O, CFC-11 and CFC-12 surface mixing ratios throughout the historical period (1850–2014; black) and projected into the
future under the Shared Socioeconomic Pathways (2014–2100; colored lines). For the CFC panel, CFC-11 is shown in the solid lines and CFC-12 in the dashed lines.
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of the Antarctic ozone hole as stratospheric chlorine mixing ratios
decline. In contrast, larger relative differences are modeled in the
upper stratospheric and tropical lower stratospheric responses.
Under SSP scenarios which assume small future changes in
radiative forcing (e.g., SSP1-1.9 and SSP1-2.6), upper
stratospheric ozone is projected to increase by 10–15%, while
under SSP scenarios which assume larger future changes in
radiative forcing (e.g., SSP3-7.0 and SSP5-8.5), upper
stratospheric ozone is projected to increase by 25–30%.
Differences are between the SSP scenarios are also modeled in
the tropical lower stratosphere, where under SSP1-1.9 and SSP1-
2.6 ozone mixing ratios are projected to remain close their
present-day values, while under SSP3-7.0 and SSP5-8.5 ozone
mixing ratios are projected to decrease by 40–50%. Larger
decreases in lower stratospheric ozone mixing ratios are
modeled under scenarios with higher assumed radiative
forcing changes. These changes are consistent with other
studies (e.g., Oman et al., 2010; Eyring et al., 2013; Meul
et al., 2014; Banerjee et al., 2016; Keeble et al., 2017; Keeble
et al., 2020), and the drivers of these changes are now well
understood. In the tropical upper stratosphere, where the
chemical lifetime of ozone is short (∼1 day), increases are
driven by both a reduced stratospheric chlorine loading and
cooling of the upper stratosphere through longwave emission
by CO2 (Fels et al., 1980), which in turn slows the rate of
catalytic ozone destruction reactions (e.g., Haigh and Pyle,
1982; Jonsson et al., 2004). In the tropical lower stratosphere,
where the chemical lifetime of ozone is long (∼1 month),
decreases are driven by both a faster BDC, which transports
ozone poor air into the tropical lower stratosphere, and
reduced chemical ozone production due to the thicker
overhead ozone column (e.g., Meul et al., 2014; Keeble
et al., 2017).

The analysis presented above confirms that the UKESM1
model is making projections of tropical stratospheric column

ozone which are consistent with current understanding of the
drivers of future ozone changes. Distinct differences are modeled
between the SSP scenarios in the evolution of stratospheric
column ozone over the course of the 21st century, and it is
hoped that suitably trained models built using machine learning
techniques can accurately reproduce these differences.
Projections of stratospheric ozone made using UKESM1 and
four different machine learning techniques are shown in Figure 4.
While differences are evident between the machine learning
methods, all methods make reasonable projections, often
falling within the range of UKESM1 ensemble members. Both
Random Forests and Extra Trees (the non-linear methods)
perform particularly well for SSP2-4.5, SSP3-7.0 and SSP4-3.4
predictions, with Extra Trees also making accurate predictions for
SSP1-2.6. In contrast, there are periods of several decades in
which the non-linear methods exceed the range of the UKESM1
ensemble for SSP1-1.9, and while both methods accurately
predict the evolution of stratospheric column ozone under
SSP5-8.5 between 2014–2070, neither captures the decrease in
stratospheric column ozonemodeled in the last few decades of the
21st century. This is perhaps not surprising, as the SSP5-8.5
scenario assumes CO2 emissions much higher than in the other
scenarios (Figure 1) and therefore, given the take-one-out
method used to train the ML model, predictions in the last
decades of the 21st century are being made well outside of the
training data. In contrast, Ridge regression and Lasso regression)
the linear methods) each perform well for SSP1-1.9, SSP1-2.6 and
SSP2-4.5, but perform less well for SSP3-7.0, SSP4-3.4 and SSP5-
8.5. Overall, when trained on the maximum amount of available
data (i.e., the Historical simulation and all SSPs other than the one
being predicted) there is no clearly better method from the four
machine learning models tested here, and this is supported by
root mean square errors (RMSE) calculated between the
UKESM1 ensemble means and predicted stratospheric column
ozone values for the various SSPs (Table 1).

FIGURE 2 | UKESM1 projections of stratospheric column ozone under different Shared Socioeconomic Pathways, averaged over 30°S–30°N. Projections shown
here have been smoothed using an 11-point boxcar smoothing applied to the annual mean stratospheric column ozone values.
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The ability for the methods to make accurate projections is
predicated on being suitably trained. In the discussion above the
most ideal case, training the machine learning models using
UKESM1 data from every scenario except the one being
predicted has been explored. In order to test the extent to
which ML methods can make accurate projections when only
weakly trained, the impacts of using different input features and
numbers of scenarios has also been explored. In the first of these
tests, the machine learning models were trained using smaller
subsets of the UKESM1 simulations. These included training on
UKESM1 data from the historical and SSP5-8.5 scenarios; the
historical, SSP3-7.0 and SSP5-8.5 scenarios; and the historical,
SSP1-1.9, SSP3-7.0 and SSP5-8.5 scenarios. The rationale behind
these runs are as follows: together the historical, SSP1-1.9, SSP3-
7.0 and SSP5-8.5 scenarios cover the extreme (highest and lowest)

values for all five input features, while the historical and SSP5-8.5
together cover the extreme values for CO2. For each of these tests,
while machine learning predictions for individual scenarios can
fall within the ensemble spread and have RMSE values smaller
than the value calculated for the ensemble members (Table 1),
performance is generally worse than for the full training case. A
further test was performed in which the machine learning models
were trained only on data from the UKESM1 historical
simulations. In this case, no model is able to make accurate
predictions for future SSP scenarios, and by the end of the 21st
century the ML model predictions can differ from the UKESM1
results by more than 100 DU. This is due to the models being
asked to make predictions with input features that are outside of
the training dataset, and so rely on extrapolation, which can lead
to large errors in prediction, especially for non-linear methods

FIGURE 3 | Percentage zonal mean ozone difference between the present day (2000–2014 averaged) and end of century (2086–2100 averaged) modeled by
UKESM1 under the different Shared Socioeconomic Pathways.
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such as Random Forest and Extra Trees. A final test was
performed in which the machine learning models were only
trained using the same simulations as for the full training case
but using only CO2 and CFC-11 as input features (i.e., excluding
N2O, CH4 and CFC-12). Under these conditions, performance of
Random Forests and Extra Trees predictions is similar to the full
training case, while the linear methods, Ridge and Lasso
regression, perform noticeably worse for many of the SSPs.
Predictions made using the Extra Trees method for each of
these tests are shown in Figure 5, highlighting the difference
in performance for predictions made using machine learning data
when given different amounts of training data.

DISCUSSION AND CONCLUSION

Results presented in this study highlight, for the first time, the
potential for usingmachine learning techniques to make accurate,
computationally inexpensive projections of tropical stratospheric
column ozone for a range of different future emissions scenarios.
Four machine learning techniques were investigated, two linear
techniques (Ridge and Lasso regression) and two non-linear
techniques (Random Forests and Extra Trees), using CO2,
CH4, N2O, CFC-11 and CFC-12 surface mixing ratios as input
features. When trained on data from an ensemble of historical
simulations and five of the six available SSP scenarios performed

FIGURE 4 | UKESM1 projections of stratospheric column ozone under different Shared Socioeconomic Pathways, averaged over 30°S–30°N, for the ensemble
mean (black) and individual ensemble members (gray), smoothed using an 11-point boxcar smoothing. Also shown are predictions of stratospheric column ozonemade
using the four machine learning methods assessed in this study (Ridge regression, Lasso regression, Random Forests, Extra Trees). Envelops around the projections
made using the Random Forest and Extra Trees methods represent 1σ uncertainty estimates in those projections, calculated using the infinitesimal jackknife
method (Wager et al., 2014).
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by the UKESM1 Earth system model, the machine learning
techniques investigated here are able to accurately predict the
evolution of tropical stratospheric column ozone over the course
of the 21st century for a large number of the different SSP
scenarios. However, all machine learning approaches struggle
to make accurate predictions of the SSP5-8.5 scenario during the
last few decades of the 21st century when trained on the historical
simulation and the other SSP scenarios. During these decades,
stratospheric column ozone begins to decline, driven by an
increase in the speed of the BDC. However, this occurs under
CO2 mixing ratios which are outside of the range seen in the
training datasets (i.e., the other model scenarios), and this
highlights the difficulty encountered by machine learning
techniques in making accurate predications when required to
extrapolate beyond the range of training data. Despite this,
machine learning techniques can make accurate predictions of
the more moderate future emissions scenarios and show great
promise in being able to supplement future scenarios modeled by
fully coupled chemistry-climate and Earth system models.

A key requirement for making accurate predictions with
machine learning methods is providing sufficient training

datasets, and the amount of data required to make accurate
predictions was explored in this study. While none of the
methods explored here were able to make accurate predictions
of the future evolution of stratospheric column ozone when only
provided with data from historical simulations for training,
several methods show greater promise when trained on
selected scenarios. The Extra Trees method was shown to
make accurate predictions of stratospheric column ozone,
falling within the ensemble spread from the UKESM1
projections, for the SSP1-2.6, SSP2-4.5 and SSP4-3.4 when
trained on data from the historical simulations and SSP1-1.9,
SSP3-7.0 and SSP5-8.5 scenarios, and also make accurate
projections when trained only the historical simulations and
SSP5-8.5 scenarios for some scenarios.

The machine learning models explored in this study were built
using only information about the surface concentration (and by
extension emissions) of key anthropogenic species as input
features. This methodology has the benefit of using input
features that can be directly controlled by policy decisions,
and the result is that these models would provide an estimate
of the future evolution of tropical stratospheric column ozone for

TABLE 1 |Root mean square error (RMSE) for projections made using the four different machine learningmethods, compared to the UKESM1 ensemble mean for each SSP
scenario for different training conditions.

Full training Targeted training A Targeted training B Targeted training C Historical CO2 and
CFC-11

SSP1-1.9 (0.62)
Ridge regression 0.79 1.46 1.56 — 7.56 1.63
Lasso regression 0.63 2.43 1.75 — 7.36 1.61
Random forests 1.12 2.68 2.46 — 3.25 1.42
Extra trees 0.81 1.77 1.49 — 3.54 0.53

SSP1-2.6 (0.62)
Ridge regression 0.48 1.50 1.61 0.47 3.98 0.99
Lasso regression 0.56 2.37 1.80 0.46 3.68 0.98
Random forests 1.00 1.75 1.94 0.91 3.08 0.96
Extra trees 0.74 1.32 0.77 0.64 3.33 0.97

SSP2-4.5 (0.62)
Ridge regression 0.51 0.97 0.97 0.45 11.79 1.08
Lasso regression 0.47 1.66 1.09 0.45 10.85 1.13
Random forests 0.37 1.18 0.94 0.70 2.50 0.46
Extra trees 0.60 0.82 0.51 0.46 2.60 0.38

SSP3-7.0 (0.54)
Ridge regression 1.04 0.38 — — 27.51 0.40
Lasso regression 0.78 0.45 — — 25.77 0.48
Random forests 0.38 0.54 — — 2.32 0.28
Extra trees 0.50 0.79 — — 2.86 0.44

SSP4-3.4 (0.60)
Ridge regression 0.67 0.50 0.51 0.94 5.05 1.94
Lasso regression 0.93 0.44 0.44 0.96 4.76 1.95
Random forests 0.48 1.18 0.97 0.72 2.28 0.59
Extra trees 0.47 1.22 0.87 0.54 2.81 0.76

SSP5-8.5 (0.55)
Ridge regression 0.52 — — — 49.66 2.69
Lasso regression 1.21 — — — 46.54 2.45
Random forests 0.73 — — — 3.24 0.70
Extra trees 0.89 — — — 3.60 0.71

Full training refers to machine learning models trained on UKESM1 data from the historical simulations and from each SSP scenario not being evaluated. The three targeted training tests
use training data form 1) the historical and SSP5-8.5 scenarios; 2) the historical, SSP3-7.0 and SSP5-8.5 scenarios; and 3) the historical, SSP1-1.9, SSP3-7.0 and SSP5-8.5 scenarios.
Historical refers to machine learning models trained only on UKESM1 data from the historical simulations, while CO2 and CFC-11 uses the same simulations as full training, but only uses
CO2 and CFC-11 as input features. Values in parentheses following SSP scenario provide the RMSE for the combined UKESM1 ensemble members with respect to the ensemble mean,
while values in bold represent machine learning predictions which have RMSE values smaller than the value calculated for the ensemble members.
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any combination of CO2, CH4, N2O, CFC-11 and CFC-12 surface
mixing ratios which fell within the range of the training data
(i.e., the SSPs explored in this study). A limitation however is that
the machine learning models are not confronted with any process-
based information during the training process. Examples of these
process-based input features include age-of-air tracers and/or wpto
provide a measure of the speed of the BDC, and reaction flux
diagnostics to provide a measure of the chemical depletion of ozone.
By choosing different input features to those used in this study itmay
be possible to produce more accurate projections of tropical
stratospheric ozone. However, in order to include these features
in machine learning models some understanding of how they will
evolve in the future would be required, necessitating simulations
performed with chemistry-climate or Earth system models. The
work presented here provides a first exploration of the use of
relatively simple machine learning models for making projections
of stratospheric ozone, and there remains work to do in selecting the
best combination of input features and identifying whether more
complex machine learning approaches, such as neural networks, can
be used to further improve upon the models explored in this study.

It will always be necessary to make projections of future
changes to atmospheric composition with coupled chemistry-

climate and Earth systemmodels. Additionally, it is important to bear
inmind that chemistry-climate and Earth systemmodels can provide
much wider output, spanning a huge range of important chemistry
and climate variables, than is provided bymodels of just stratospheric
column ozone. However, the work performed here indicates that
machine learning and statistical models can be used to reduce the
computational burden required by performing large numbers of
future scenarios for studies which wish to know how stratospheric
column ozone may respond to future emissions changes. Results
presented here indicate that if Earth systemmodels and/or chemistry
climate models simulations are run following scenarios with the
largest and smallest estimates of future greenhouse gas emissions
(i.e., SSP1-1.9, SSP3-7.0 and SSP5-8.5), machine learning approaches
could be used to provide estimates of stratospheric ozone evolution
under the “middle-of-the-road” scenarios (e.g., SSP2-4.5, SSP4-3.4).
In the future, it is hoped to expand the training of the machine
learning models explored here to use ozone from all CMIP6 models.
Additionally, it remains to be tested whether these models can
accurately predict the evolution of stratospheric ozone in other
latitudinal ranges. Finally, it is hoped that the models investigated
here can be expanded to provide vertically resolved ozone changes,
which would provide an important step toward using machine

FIGURE 5 | Predictions of tropical stratospheric column ozone made using the Extra Trees machine learning method using different amounts of training data.
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learning based models within climate models which do not have
interactive chemistry schemes to estimate stratospheric ozone
changes.
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