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Abstract

Active sampling, scaling and dataset merging for large-scale image quality assessment

Aliaksei Mikhailiuk

The field of subjective assessment is concerned with eliciting human judgements about a set
of stimuli. Collecting such data is costly and time-consuming, especially when the subjective
study is to be conducted in a controlled environment and using a specialized equipment. Thus,
data from these studies are usually scarce. One of the areas, for which obtaining subjective
measurements is difficult is image quality assessment. The results from these studies are used to
develop and train automated or objective image quality metrics, which, with the advent of deep
learning, require large amounts of versatile and heterogeneous data.

I present three main contributions in this dissertation. First, I propose a new active sampling
method for efficient collection of pairwise comparisons in subjective assessment experiments. In
these experiments observers are asked to express a preference between two conditions. However,
many pairwise comparison protocols require a large number of comparisons to infer accurate
scores, which may be unfeasible when each comparison is time-consuming (e.g. videos) or
expensive (e.g. medical imaging). This motivates the use of an active sampling algorithm that
chooses only the most informative pairs for comparison. I demonstrate, with real and synthetic
data, that my algorithm offers the highest accuracy of inferred scores given a fixed number of
measurements compared to the existing methods. Second, I propose a probabilistic framework
to fuse the outcomes of different psychophysical experimental protocols, namely rating and
pairwise comparisons experiments. Such a method can be used for merging existing datasets of
subjective nature and for experiments in which both measurements are collected. Third, with a
new dataset merging technique and by collecting additional cross-dataset quality comparisons I
create a Unified Photometric Image Quality (UPIQ) dataset with over 4,000 images by realigning
and merging existing high-dynamic-range (HDR) and standard-dynamic-range (SDR) datasets.
The realigned quality scores share the same unified quality scale across all datasets. I then use
the new dataset to retrain existing HDR metrics and show that the dataset is sufficiently large
for training deep architectures. I show the utility of the dataset and metrics in an application to
image compression that accounts for viewing conditions, including screen brightness and the
viewing distance.
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Chapter 1

Introduction

1.1 Background

Automatic or objective assessment of image and video quality is a stepping stone for accurate
compression, reconstruction, enhancement and tone-mapping algorithms [120, 17, 8, 68, 122].
Since the ultimate consumer of visual content is a human observer the results of these algorithms
must be perceptually pleasing. The final model built for this type of applications should show
high correlation with subjective quality as perceived by human observers. In my dissertation
I focus on image quality assessment and, thus, in most experiments and discussions I refer to
image quality scale and datasets. However, many of the findings can also be applicable in other
problems, where human judgements are elicited.

A typical objective image quality metric takes as input a test image, with or without the
reference counterpart, and produces a single number – the quality score, where the quality scale
has been fixed beforehand. Objective image quality assessment is a multi-faceted problem
and achieving high correlation with subjective quality is challenging. Generally, two types of
objective quality assessment methods are distinguished: model-based and data-driven [59]. The
former relies on assumptions about the human visual system and has no or very few trainable
parameters, whereas the latter often has millions of trainable parameters and relies heavily on
large quantities of versatile training data. It has been shown that perceived image quality depends
on the content of the image. Here, distortions on the common fixation points [95], such as human
faces, are more noticeable [110]; and the viewing conditions – distance from the display and
display brightness [145]. Traditionally, image quality metrics relied solely on the differences in
pixel values and ignored the physical specification of the display and viewing environment. This
limitation can be partially attributed to the standards [127] developed in the era of standardized
displays. The standards stipulate in what conditions and what displays the content are to be
viewed. However, these are outdated, given various ways in which visual content is displayed
nowadays – mobile devices of different sizes and resolution, SDR and very bright HDR displays.

In this dissertation, I define an ideal perceptual quality metric as the one that: (i) has a high

15



correlation with the quality as perceived by human observers; (ii) is content-driven, so that it
accounts for common fixation points; (iii) is differentiable, enabling its ubiquitous use as an
optimization objective; (iv) is viewing condition dependent, considering the parameters of the
plethora of modern displays; and (v) has a meaningful scale, important for image compression
algorithms, where an improvement in quality can be quantified and interpreted. To the best
of my knowledge, no metric that would adhere to all these requirements exists. Nevertheless,
certain metrics have successfully incorporated some of the features defined above. Model-based,
HDRVDP-2.2 [82], based on the assumptions about the human visual system (HVS), accounts
both for the display brightness and the viewing distance. However, it is not differentiable, does
not use an interpretable quality scale and, is not content-driven. Data-driven metrics, on the
other hand, are content driven, differentiable and can learn a meaningful scale. To make them
viewing condition dependent, they need to be trained on a dataset with image quality evaluated
at different viewing conditions.

The major obstacle to developing an “ideal” metric is, thus, the lack of a sufficiently diverse
training dataset that considers different content and distortions, viewing distance and display
brightness. Training data for image and video quality assessment is hard to obtain, as it requires
running expensive and time-consuming subjective quality assessment experiments with human
observers. The problem of collecting such data for a set of viewing conditions is even more acute,
as it may require specialized equipment and a controlled experimental environment, preventing
the use of crowd-sourced image quality assessment studies. Thus, existing subjective image
quality datasets are homogeneous and fragmented, covering only a small number of image
contents and impairments. Using these datasets together is not possible as the data coming from
different quality assessment experiments might be scaled differently, often resulting in very
different quality scores for images of similar perceived quality. For example, an image rated
four on a five-point scale in one experiment could be rated two in another experiment because of
differences in the training of the participants, range, and type of considered distortions. Dealing
with widely different scales when training quality metrics is problematic, often requires using
rank-order correlation, which has limited expressive power, as a measure of prediction accuracy,
and makes difficult the use of multiple datasets for training [102, 148].

1.2 Objective

In my dissertation, I focus on efficient data collection and aggregation for image quality assess-
ment experiments. More specifically, I concentrate on image fidelity metrics within the wider
topic of image quality. Here the test image of highest quality would be indistinguishable its’
pristine counterpart. The ultimate goal of my work is creating a dataset that would be: (i) of
high quality, containing accurate estimates of the ground truth scores, and (ii) large enough for
training data-driven metrics. I look into how to minimize the number of required measurements

16



for obtaining an accurate representation of perceived subjective quality by proposing a new
active learning method for pairwise comparison experiments. By noting that many datasets can
be re-used, I argue for the consolidation of existing datasets and propose a new procedure for
merging existing datasets coming from both types of experiments. Using the methods proposed
in this dissertation, I construct the largest subjective photometric image quality dataset and show
the utility of such a dataset by training a deep perceptual image quality assessment metric that
adheres to the criteria set for an “ideal” metric and re-train existing quality metrics. To show the
utility of the new dataset, I present examples of novel applications enabled by the metrics trained
on it.

Although I mainly consider image quality in my dissertation, my findings are far-reaching
and can be applied to many problems where data collection may involve human participants.
Examples of such problems are: i) user preferences (i.e. recommendation systems, information
retrieval and relevance estimation) [61]; ii) matchmaking in gaming systems such as TrueSkill
for Xbox Live [41] and Elo for chess and tennis tournaments [33]; iii) psychometric experiments
for behavioural psychology [19].

1.3 Structure of the dissertation

In Chapter 2 I cover the fundamentals of objective and subjective quality assessment and
psychometric scaling, focusing on pairwise comparisons and rating experiments. In Chapter 3 I
use the concepts discussed in Chapter 2 to improve the scores of one of the largest subjective
image quality assessment (IQA) dataset, TID2013 [106]. I then discuss active sampling for
pairwise comparisons in Chapter 4, which can greatly decrease experimental effort with an
increasing accuracy. In Chapter 5 I propose a new scaling method for unifying the results of
pairwise comparisons and rating experiments. In Chapter 6 I use the scaling method from
Chapter 5 for merging together four existing IQA datasets, producing the largest photometric
IQA dataset to date. In Chapter 7 I show the utility of the new dataset by re-training existing
objective HDR IQA metrics and show that the dataset is sufficiently large for deep convolutional
neural network (CNN)-based metrics by training the first deep photometric image quality metric.
I also present novel applications, enabled by the metrics trained on my dataset. In Chapter 8 I
verify whether the state-of-the-art objective IQA metrics can be used for finding the threshold
for viewing condition dependent visually lossless image compression. Chapter 9 concludes my
dissertation.
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Chapter 2

Background

2.1 Introduction

The field of subjective assessment is concerned with measuring and modeling human judgments.
Here, the ultimate goal is to map the subjective degree of belief or strength of human participants’
experiences to a scale. The field stems from social and psycho-physical studies. Here the
perceptual processes are analyzed by studying the subject’s experience or behaviour conditional
on the systematic changes in the the properties of a stimulus along one or more physical
dimensions [123]. However, since in my dissertation I am concerned with image quality
assessment, most examples and explanations are focused on it. In typical subjective image
quality assessment experiments, participants rate a set of stimuli or conditions according to
some criteria, or rank a subset of them. Rating is inherently more difficult for participants than
ranking. Before the rating experiment participants need to undergo training, as the notion of the
scale depends on the selected conditions for the experiment and varies from observer to observer.
Whereas a binary choice for the question “which condition is better?” or “what is the order of the

conditions in terms of quality?” carries a much lower cognitive load and as a result is less biased
[125, 114, 84, 146]. Because of that advantage over rating, comparative judgment experiments
gain attention in subjective assessment and crowd-sourced experiments. The simplest form
of ranking experiments is comparing conditions in pairs (pairwise comparison protocol), and
hence it is the most common ranking choice. Here observers are asked to choose one out of two
conditions according to some criteria. To construct a scale from pairwise comparisons, unlike in
rating, in which conditions are mapped directly to a scale by averaging the observers’ scores, we
need to model and infer the latent scores. This problem is known as psychometric scaling. Once
the quality scale is available, the scores can be used to develop objective quality assessment
algorithms.

In this chapter, I give an overview of subjective image quality assessment methods, talk about
advantages and disadvantages of uni-dimensional and multi-dimensional scaling, explain the
observer model, show the procedural prerequisites for obtaining an accurate and interpretable
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Figure 2.1: Examples of different subjective judgment experiments.

scale and discuss different procedures of scale construction from collected measurements. I then
introduce various quality assessment criteria and objective IQA methods, I also talk about the
ways of making them account for display brightness.

2.2 Subjective quality assessment

Methodologies for subjective quality assessment [127, 46, 27] can be generally classified as
rating and ranking (or comparative judgment) methods. Figure 2.1 shows some examples of
rating and comparative judgment experiments. Rating methods can be single, double, or multi-
stimuli [128] (the latter can only be applied to audio signal and, thus are out of the scope of
this dissertation), depending on the presentation of the test stimuli. Users are asked to rate the
stimuli using either a categorical or continuous interval scale. The most commonly used rating
methodologies for single-stimulus are: absolute category rating (ACR) [127], where only test
stimuli are rated; or absolute category rating hidden reference (ACR-HR), in which the reference
stimuli is mixed among test ones and in the experiment observers are prompted to rate both of
them. For double stimulus the common methodologies are: double stimulus impairment scale
(DSIS) – with reference stimuli preceding the corresponding test stimuli, but only test stimuli
being rated; or double stimulus continuous quality scale (DSCQS) [46] for double-stimulus
cases – where the order in the pair of test and reference stimuli is randomized. Rating methods
generally work better when stimuli are easily distinguishable from one another.

Comparison methods require observers to rank two or more stimuli [26]. These are more
suitable for cases in which the visual difference between two stimuli is small. The most commonly
used comparative approach is referred to as pairwise comparisons (PWC) when only two stimuli
are compared at a time. The main advantage of this approach is its simplicity. The weaknesses
and strengths of these strategies were compared in several studies [103, 124, 111, 84].
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Essentially, rating has the advantage to provide an interpretable, supra-threshold scale of
quality or distortion impairment, but it also requires careful training of subjects, who might have
a different interpretation of the scale adjectives. As a consequence, the rating scale is, in general,
not universal and may require further calibration to adjust the scores obtained from individual
observers [125]. On the other hand, pairwise comparison experiments have a lower cognitive
load, require little training, and generally eliminate the observer’s bias and are therefore well
suited for non-expert participants and crowd-sourcing experiments. However, the total number
of possible comparisons increases quadratically with the number of stimuli. In practice, not all
comparisons are equally useful, e.g., comparing stimuli with too distant impairment levels is
generally uninformative [138]. Pairs of stimuli to be compared can be sampled iteratively based
on: (i) the previously compared stimuli; (ii) the heuristics [106] or; (iii) information-theoretic
criteria [146]. Recently, Shah et al. [114] compared rating and pairwise comparison experiments
by conducting a series of subjective experiments in which ground truth was available – e.g. the
correct radius of the presented circle or the word count in a paragraph. Comparison experiments
were found to be more accurate in most cases and took less time compared to rating. However,
the authors also found that the performance of rating and pairwise comparison experiments
depends on the measurement noise of each experiment (standard error of the estimation of the
mean), due to a limited sample size.

2.2.1 Uni-dimensional and multi-dimensional scaling

A natural question of scale dimensionality arises in many psychophysical experiments [86].
Uni-dimensional and multi-dimensional models are distinguished. Both have their advantages
and disadvantages. However, their usage is experiment and application-specific. For example,
where data possess a higher number of latent dimensions, uni-dimensional models would be
insufficient in explaining them, as such, distances between the capitals of the largest countries
on different continents require to be projected on multiple dimensions. At the same time,
uni-dimensional scaling can be sufficient in cases where the experimental procedure explicitly
measures a single data dimension, for example, when measuring the skill of a game player or
perceived brightness of a display. Furthermore, interpreting multi-dimensional models, where
the dimensions are not clearly defined beforehand, can be challenging [86]. In my work, I am
interested in the quality of impaired images judged relative to the reference image, where the
produced scale must be interpretable – with distances in the scale mapped to physical, explainable
quantities. Many applications require one-dimensional scale – for example, image compression
algorithms [109, 117], which need to be fine-tuned, or neural network based images-translation
algorithms, which require a one-dimensional loss function [122, 8, 152]. Although I focus on
uni-dimensional scaling, I explore the possibility of using multi-dimensional scaling on image
quality datasets in Chapter 3.
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2.2.2 Observer model

To build a quality scale, certain assumptions need to be made about how observers respond
and perceive quality. Such assumptions are encapsulated in the observer model. The model,
described in this section, will be used to formulate the dataset-merging procedure in Chapter 5.

It is often assumed, that quality is a one-dimensional variable, i.e., observers assign a scalar
quality value to each condition. However, observers might vary in their notions of quality
(inter-observer variance), and their opinions are also likely to change when they repeat the same
experiment (intra-observer variance). Thus, quality is not a deterministic value, but a random
variable, which accounts for the subjective nature of these experiments.

Suppose we aim to form a scale for a set of n conditions S = {o1, . . . , on} (conditions
being images, players, etc.) that are evaluated according to a feature or characteristic (subjective
measurements such as aesthetics, relevance, quality, etc.) with unknown underlying ground truth
scores q = (q1, . . . , qn), qi ∈ R. Here I simply refer to these as quality scores.

Rating experiments In rating experiments the random variable associated with the quality can
be expressed using the following mixed-model [30] of observer rating behavior [52]:

πik = qi + δk + ξik, (2.1)

meaning that the rating πik for observer k and condition i depends on: the scalar qi, the ground
truth quality score; random variable δk, the subject bias; and random variable ξik the subject
inaccuracy and stimulus scoring difficulty. Bias and inaccuracy components in the model are
assumed to be independent random variables that are normally distributed and ξik is assumed to
have a zero mean and δk has a zero mean when observed across all subjects. This makes rating
πik also normally distributed.

Pairwise comparison experiments Two most widely used observer models for pairwise
comparisons are Thurstone [123] and Bradley-Terry [10]. In practice, both lead to similar
solutions. Within the Thurstone model, the perceived quality of condition i is modeled as a
random variable ωi:

ωi ∼ N (qi, β
2
i ), (2.2)

where the mean of the distribution is assumed to be the true quality score qi and the standard
deviation βi accounts for combined inter- and intra-observer variance. Individual quality scores
of compared conditions can be inferred from the relative distances, calculated as:

ωj − ωi ∼ N (qij, β
2
ij), (2.3)
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Figure 2.2: (a) Thurstone observer model assuming normal distribution and Bradley-Terry
observer model assuming Gumbel distribution. (b) Cumulative distribution functions mapping
probabilities to distances in the scale. Parameters for Thurstone Case V and Bradley-Terry
models were chosen such that the difference in 1 unit correspond to 75% probability of one
condition being better than another.

where βij is the standard deviation of a new distribution obtained from the difference between
two quality distributions, its exact formulation, presented below, depends on the Case of the
Thurstone model; and qij is the new mean of the distribution, i.e., qij = qi − qj .

Five cases of the original Thurstone model are distinguished, based on simplifying assump-
tions imposed on βij:

1. The original Thurstone model, referred to as Case I, assumes that only one participant is
performing the experiment and the standard deviation of the difference between random
variables ωi−ωj is βij =

√
β2
i + β2

j − 2ρβiβj , where ρ is the correlation between individ-
ual scores. Despite being general, Thurstone Case I is insolvable, as every new observation
will introduce a new unknown, making the number of unknowns always greater than the
number of equations [123].

2. Thurstone Case II assumes that the model can be applied to a group of participants, i.e.,
the results of individual participants can be aggregated.

3. Thurstone Case III assumes that βij =
√
β2
i + β2

j , that is ρ = 0.

4. Thurstone case IV further assumes that βi and βj are approximately equal, resulting in
further simplification βij =

βi+βj√
2

.

5. Thurstone Case V assumes βi and hence βij are constant across all conditions. For
simplicity of notation, I refer to βi as β∗ and βij as β throughout the whole dissertation.
Thus, for a single random variable wi the following holds: ωi ∼ N (qi, β

2
∗)

When Thurstone Case V is compared to the rating model in Equation 2.1, it can be noticed
that it eliminates the observer bias δi (since pairwise comparisons are relative) and that it assumes
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Figure 2.3: Bottom row – examples of a matrix with the results of pairwise comparison ex-
periments (C); top row visualization of a comparison graph corresponding to the matrix C,
the thickness of lines corresponds to the number of comparisons between conditions for: (a)
full balanced design, where everything is compared to everything the same number of times
(in this case five); (b) full unbalanced design, where everything is compared to everything not
necessarily the same number of times; (c) incomplete balanced design, where some pairs are
not compared, but those that are compared, have the same number of comparisons (five in this
case); (d) incomplete unbalanced design, where some comparisons are omitted, and those that
are compared have a different number of comparisons; (e) disconnected design, the graph of
comparisons is not connected (conditions one, two and three are connected, but disconnected
from conditions four and five).

the same standard deviation β∗ for different comparisons. It is important to note that this standard
deviation describes the inherent inter- and intra-observer variations, and it is not an estimate of
the measurement noise due to the limited sample size (standard error of the mean). As both are
often confused in the context of pairwise comparison experiments, I will discuss these differences
in greater detail in Section 5.5.

Thurstone and Bradley-Terry models Another frequently used observer model is a Bradley-
Terry model [10]. The main difference between Thurstone Case V and Bradley-Terry models is
that in the latter, the difference between quality scores is expressed using a logistic distribution
instead of a normal distribution. Logistic distribution allows for a more efficient numerical
solution when optimizing quality scores [125], however, it has limitations when used in the
probabilistic formulation, as it is not conjugate to Gaussian prior. When a logistic distribution
describes the difference, individual quality measurement are described by the Gumbel distribution
[125], shown in Figure 2.2a. It can be seen that the Bradley-Terry observer model is not
symmetric. However, it leads to a very similar description of the difference in quality scores,
as shown in the next section. In my dissertation I focus on the Thurstone Case V, however, the
findings also generalize to the Bradley-Terry model.
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2.2.3 Pairwise comparisons and psychometric scaling

To project pairwise comparison data to one dimension, while maintaining as accurately as possi-
ble individual relationships between conditions, one requires to run an optimization procedure. In
this subsection, I describe the ways of mapping the results of pairwise comparison experiments to
a quality scale. Procedures described here are applied in Chapter 3 to map pairwise comparisons
of one of the largest datasets to an interpretable scale and in Chapter 4, for building an active
sampling procedure.

The results of a pairwise comparison experiment are usually arranged in a pairwise com-
parison matrix C, in which element cij counts the number of times stimulus i was chosen as
better than j. Depending on what and how many times pairs of conditions are compared, full,
incomplete, balanced, and unbalanced matrices C are distinguished (Figure 2.3). Pairwise
comparison experiments can be viewed as a graph, in which conditions represent nodes and
comparisons edges. A necessary condition for mapping pairwise comparisons to a scale is a
connected graph of pairwise comparisons. An example of a disconnected graph is given in Figure
2.3e (top).

Figure 2.4 shows a graphic representation of four steps in scaling pairwise comparisons.

1. First pairwise comparisons are aggregated into a matrix of comparisons.

2. Comparisons are mapped to an empirical probability of one condition being better than
another.

3. Probabilities are then converted to distances in the quality scale.

4. Then, assuming an observer model, such as those described in Section 2.2.2, individual
quality scores are recovered from distances with an optimization procedure.

Below I discuss each step in more detail.
Obtaining empirical probabilities p̂ij of a condition oi being better than condition oj , from

the matrix of pairwise comparisons is straightforward:

p̂ij =
cij

cij + cji
, i 6= j. (2.4)

To obtain the scores, their connection with empirical probabilities needs to be established.
Since scores are relative, when scaling pairwise comparison data, we can only recover the
distance qij:

qij = qi − qj, (2.5)

between underlying quality scores qi and qj .
In the Thurstone observer model, we rely on the fact that the difference between two normal

random variables ωi ∼ N (qi, β
2
i ) and ωj ∼ N (qj, β

2
j ) representing perceived quality, is also a
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Figure 2.4: Graphic representation of scaling with pairwise comparisons.

normal random variable, as shown in Equation 2.3. The probability of choosing condition oi
over oj can thus be computed using the cumulative distribution over the difference ωi − ωj:

P (ωi > ωj|qi, qj, β2) = Φ(qij, β
2) ≈ p̂ij, (2.6)

where Φ(·) is the cumulative distribution function associated to the chosen observer model, i.e.,
the normal distribution in Thurstone model and the logistic function in Bradley-Terry model.
Note that β determines the relationship between distances in the quality scale and probabilities
of better-perceived quality. Parameter β is often set to 1.4826 for Thurstone Case V (to 0.9102

for Bradley-Terry) so that when conditions are 1 unit apart in the quality scale, 75% of observers
select one condition over another (pij = 0.75). Such units are referred to as Just-Objectionable-
Differences (JOD)s or Just-Noticeable-Differences (JND)s [100] and are discussed later in
Section 2.2.7. The mapping between the probabilities and distances for JOD/JND units is
shown in Figure 2.2b. To obtain the distances qij from the probabilities p̂ij , we can use the
inverse cumulative distribution qij = Φ−1(p̂ij, β

2). In the following sections, I will explain the
procedures used to elicit the scores.

2.2.3.1 Maximum likelihood estimation

Psychometric scaling aims to find estimated scores q̂ such that distances between scores closely
resemble distances qij . The simplest way is to solve a least square optimization [28] of the form:

q̂ = argmin
q1,...,qn

n−1∑
i=1

n∑
j=i+1

((qi − qj) − Φ−1(p̂ij, β
2))2. (2.7)
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Since scores are relative, the optimization needs to be constrained. In practice, either the
first condition, q1 or the average of all conditions is set to 0. The least squares solution is simple
but presents limitations when: (i) unanimous answers, in which all observers agree (pij = 0 or
pij = 1), result in an infinite distance betweenAi andAj , and (ii) confidence in the measurements
is not considered, where the total number of performed measurements cij + cji is not accounted
for.

A more elegant solution is provided by the maximum likelihood estimation (MLE), where
the probability of observing pairwise comparisons cij given latent quality scores qi is explained
by the Binomial distribution:

P (C|q, β) =
∏
i,j

(
nij
cij

)
Φ
(
(qi − qj), β2

)cij (1− Φ
(
(qi − qj), β2

))nij−cij , (2.8)

where nij = cij + cji and Φ is the cumulative distribution from Equation 2.6. Given the
probability in Equation 2.8, the latent quality scores can be found using the maximum likelihood
estimation:

q̂ = argmax
q1,...,qN

L(q|C, β). (2.9)

More information on this formulation can be found in [100].

2.2.3.2 Maximum a posteriori estimation

When prior information about the scale is available, one can use it to improve the accuracy of
the solution. This prior is included in the objective function forming a maximum a poseteriori
estimation (MAP). The probability from Equation 2.9 becomes:

q̂ = argmax
q1,...,qN

L(q|C, β)p(q), (2.10)

where p(q) =
∏N

i=1
1√
2πβ2

e
− (µq−qi)

2

2β2 and µq = 1
N

∑N
1 qi, is the mean of all scores q. One of the

cases where MAP significantly improves the estimation accuracy is when unanimous answers
are present. These put no upper bound on the distance between two conditions. In these cases
either, normal prior acting like ridge regularization [38] or bounded prior can be used [100].

2.2.3.3 Bayesian approach to psychometric scaling

MLE and MAP solutions provide point-estimates of the quality. However, it is possible to
recover the distribution of the scores when the Bayesian approach to psychometric models is
used. In Chapter 4, I use the score distribution, obtained following the steps described in this
section, to actively sample pairwise comparisons.
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Estimation Model The model is similar to Thurstone’s model Case V [123], with unobserved
normally distributed independent random variables. However, given the approach is fully
Bayesian, and so instead of point value scores qi for each condition oi, it is assumed that each
score is a random variable ri with a distribution ri ∼ N (µi, σ

2
i ). Analogous to Thurstone’s

model, ri represents the distribution of the score qi, with the mean µi and the uncertainty σ2
i

in an estimate of qi. σ2
i is not explicitly expressed in Thurstone’s model (it can be obtained,

for example by bootstrapping [100]). To avoid confusion in the subsequent chapters I refer to
qi as a point estimate and to ri as a random variable. Similar to Equation 2.6, by noting that
ri − rj ∼ N (µi − µj, σ2

ij), the probability that oi is better than oj is given by:

P (oi � oj |ri, rj) , Φ

(
µi − µj
σij

)
, (2.11)

where Φ denotes the cumulative density of a standard normal distribution function and σ2
ij =

σ2
i + σ2

j + β2, with β representing an observer/comparison noise. I further assume Thurstone
Case V model in which β is constant across all conditions. The difference here is that this
formulation explicitly models both the variance due to measurements error (σ) and the variance
due to variability within and across observers (β).

For a pair of compared conditions At = (oi, oj) for t ∈ {1, . . . , T}, where T is the total
number of comparisons measured so far, I denote the comparison outcome as yt ∈ {−1, 1},
where 1 indicates that oi was preferred and −1 indicates that oj was preferred, with no draws
allowed. In the inference step, we want to estimate the distribution of score variables r given y

and A , {A1, . . . , AT}. The posterior distribution is:

P (r|y,A) =
P (y|A, r) · p(r)

P (y|A)
, (2.12)

where a factorizing normal prior distribution over scores p(r) ,
∏n

i=1N (ri; νi, α
2
i ) is assumed,

νi and α2
i being the parameters of the prior, usually set to 0 and 0.5, respectively. The likelihood

P (y|A, r) of observing comparison outcomes y given the ground truth scores is modelled as:

P (y|A, r) =

T∏
t=1

P (yt|At, r), (2.13)

where individual likelihoods can be defined as P (yt|At, r) = I (yt = sign(ri − rj)), i.e., equal
to 1 if the sign of yt is the same as that of the difference ri − rj and 0 otherwise.

Posterior Estimation Inference Figure 2.5 shows a factor graph implementing the distribution
P (r|y, A), used as the basis for efficient inference, and built based on the TrueSkill algorithm
[41]. A factor graph is a bipartite graph describing a joint probability with variable (circles) and
factor nodes (squares). It is used to factorize the probability distribution functions to enable
more efficient computations. In the general case of n conditions and T comparisons, we will
have n score variables and prior factors, T difference factors, difference variables, output factors,
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Figure 2.5: Factor graph for two comparisons of three condition implementing the distribution
P (r|y, A). Real problems may have hundreds of conditions and thousands of comparisons.

and output variables. The posterior over ri is inferred via message passing between nodes on
the graph, with messages computed using the sum-product algorithm [66]. The sum-product
algorithm can be described by:

• variable node messages: the product of all messages received on the edges;

• factor node message: the product of all messages received on the other edges multiplied
by the factor function and summed over all variables except the one being sent to;

• observed node message: a point mass at the observed value.

The algorithm begins with messages sent from leaf nodes and factors. If the graph is acyclic
and the messages can be expressed and calculated exactly each message is computed once,
otherwise several iterations are required to reach convergence. In our case, although the score
posterior can be written via Bayes rule, the binary nature of the output factor means that the
likelihood in Equation 2.13 is not conjugate to the Gaussian prior (p(r)). This would lead to
a non-Gaussian posterior for ri, and result in challenging, high-dimensional integrals for the
inference. A Gaussian approximation to messages yields a multivariate Gaussian posterior with
a diagonal covariance matrix, resolving both issues. To approximate messages from the binary
output factors as Gaussians, Expectation Propagation via moment matching [91] is used, where
the mean and variance of the Gaussian is matched to those in the original distribution. That
requires iterations of the algorithm.

2.2.3.4 Limitations

As any model psychometric scaling discussed above has several limitations: (i) observers or
repetitions effects are not considered (specific scaling models can account for this); (ii) as
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discussed above, the model represents quality in a one-dimensional scale, however, due to
transitivity violations present in the data, where, for example, for three conditions oa, ob and
oc, oa � ob and ob � oc and oc � oa, a one-dimensional scale might not be enough to represent
quality scores [13] and (iii) case V of Thurstone model was used, however, quality scores may
have different variances. I discuss these in greater detail in the next Chapter 3.

2.2.4 Vote counts

If Φ in Equation 2.6 is set to the uniform distribution, Equation 2.7 corresponds to ranking
conditions according to q̂i = (1/n)

∑n
j=1 cij . This last idea is usually referred to as vote or borda

counts [23] – the number of times one condition was selected as better than any other condition.
However, this approach has limitations, i.e., qi ≥ qj doest not imply pij ≥ 1

2
, when there are

transitivity violations in the data or when conditions are not compared the same number of times.
In those situations, psychometric scaling algorithms are usually preferred. These algorithms
will produce correct ranking and capture the magnitude of the differences between conditions
in a principled way. Moreover, vote counts do not explicitly account for the relative quality
difference between the conditions, whereas psychometric scaling infers the scores by considering
relationships among all compared conditions.

In this regard, Zerman et al. compared psychometric scale and vote counts to the scores
obtained in a direct rating experiment [149]. They showed that psychometric scaling scores are
stronger related to rating scores than vote counts, confirming that quality magnitudes are better
captured when pairwise comparison data are scaled. In Chapter 3 I conduct a set of experiments
to verify that observation.

2.2.5 From ratings to a scale

Obtaining a scale from rating experiments does not require an optimization procedure and
relies on averaging the scores from individual observers per condition. This average is called
Mean Opinion Scores (MOS). The scores provided by MOS, when test stimuli correspond
to different reference stimuli, are not comparable. To take the relative ratings into account
they are assumed to be anchored at the same values. In this case Differential Mean Opinion
Scores (DMOS) [46, 127] is used. To obtain DMOS scores, the MOS scores given to the test
stimuli are subtracted from the scores given to the corresponding reference stimuli. For a test
stimulus j with a corresponding reference i and judged by observer k, with ratings mijk and mik

respectively, the DMOS is computed as follows:

dijk = mik −mijk. (2.14)

Essentially, DMOS also represents the amount of impairment from the reference stimulus,
similar to the psychometric scaling results. As a concept, the ‘distance’ found by DMOS to the
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undistorted reference stimulus is very similar to the scaling solution with the reference anchored
at 0.

It is also common to account for the difference among observers in their perception of the
scale by computing Z-score of the ratings per observer:

zijk =
dijk − µk

σk
, (2.15)

where σk and µk are the mean and standard deviation of the scores provided by observer k [84].

2.2.6 Pairwise comparisons, requirements for a meaningful scale

The vast majority of image quality assessment studies, employing pairwise comparisons, compare
only images depicting the same content, e.g., comparing different distortion levels applied to
the same original image. This “apple-to-apple” comparison simplifies the observers’ task, but
it comes with some limitations. Assessing and scaling each content independently makes it
impossible to obtain scores that correctly capture quality differences between conditions across
different contents on a common quality scale. Secondly, pairwise comparisons capture only
relative quality relations. Therefore, to assign an absolute value to such relative measurements,
the experimenter needs to assume a fixed quality for a particular condition, which is then used as
a reference for the scaling.

To scale the pairwise comparisons in a consistent manner, there should be no disconnected
components in the graph of comparisons. However, when each content is assessed individually,
this forms a set of disconnected graphs, each with its relative quality scale. We could potentially
anchor each content by assuming that each component’s reference has a fixed quality score,
for example, 0. However, the accuracy of the scale then suffers from the lack of relative
information between the conditions far away in quality from the reference. Thus, connecting
these disconnected parts is an essential step for a unified quality scale.

To address these problems, cross-content pairs can be used to connect the disconnected
‘nodes’ and to eliminate the error accumulation. Additionally, assuming that all the undistorted
reference stimuli are equivalent to each other (i.e., having pristine quality with “0” quality score),
this graph can be connected at the reference ‘node’. All the distorted images would then have
negative quality values after scaling, corresponding to the distortions compared to the undistorted
reference stimuli (unless enhancement is considered).

2.2.7 JNDs and JODs

Results of pairwise comparisons are typically scaled in Just-Noticeable-Difference (JND) units
[28]. Usually, the scale is constructed such that two stimuli are 1 JND apart when 75% of
observers can see the difference between them. However, considering measured differences as
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Figure 2.6: Illustration of the difference between just-objectionable-differences (JODs) and
just-noticeable-differences (JNDs). The images affected by blur and noise may appear to be
similarly degraded in comparison to the reference image (the same JOD), but they are noticeably
different and, therefore, several JNDs apart. The mapping between JODs and JNDs can be very
complex and the relation shown in this plot is just for illustrative purposes.

“noticeable” leads to an incorrect interpretation of the experimental results. Let us take as an
example two distorted images shown in Figure 2.6: one image is distorted by noise, another by
blur. They are noticeably different, and, intuitively, should be more than 1 JND apart. However,
the question asked in an image quality experiment is not whether they are different, but, which
one is closer to the perfect quality reference. Note that a reference image does not need to be
shown to answer this question as we usually have a mental notion of how a high-quality image
should look like. Therefore, the collected data is not related to noticeable differences between
images, but rather to image quality difference in relation to a perfect quality reference. For that
reason, this quality measure is often described as JOD rather than JNDs [149]. Note that JOD is
the measure of impairment and not overall image aesthetics and, therefore, is related to DMOS
rather than to MOS. Note also that JOD does not replace JND, and the term JND is still more
appropriate for the tasks that involve direct discrimination between a pair of conditions. Since
JOD scores are relative to the anchored reference condition, they are particularly suitable for
image fidelity metrics, the focus of my dissertation. For the same reason these are more suitable
for scaling conditions that are not substantially different from the pristine reference condition.
With no bound on the distance from the reference, estimated scores for the conditions far away
from the anchor are likely to be inaccurate.

The relation between JOD values and the probability of selecting condition A over condition
B is illustrated in Figure 2.2b. When an equal number of observers vote for both conditions, the
probability is 0.5 and JOD difference between the conditions is 0. The differences of 1 JOD,
2 JOD and 3 JOD correspond to the probabilities P (A > B) of 0.75, 0.91, and 0.97. The negative
JOD values indicate that more observers preferred B over A. In all examples through out the
dissertation I assume that the reference condition is at 0 JOD. Because of that, most reported
JOD scores are negative (worse than the reference).
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2.3 Objective quality assessment

In the previous section, I discussed how to elicit subjective quality from psychometric experi-
ments with human participants. The scores obtained from subjective experiments are useful in
training and testing automated or objective quality metrics. Thus, this section gives an overview
and the background of modeling the perceived image quality. I first discuss various quality
assessment criteria. I then talk about the dynamic range of a scene and the ways of modeling the
perceived dynamic range. Finally, I discuss different approaches to objective IQA.

2.3.1 Quality assessment criteria

There are at least three standard criteria related to image quality: aesthetics, visibility, and
impairment. Aesthetic judgments are concerned with the quality of an image as judged by
commonly established photographic rules, such as appropriate lighting, contrast, and image
composition. Here, the quality may be perceived in terms of creative composition and execution
of an image, rather than artifacts [25]. Visibility assessment predicts whether a difference
between a pair of images is going to be visible, but does not assess the magnitude of a distortion
[141]. It also produces visual difference maps rather than a single quality score. Impairment
assessment, which is the focus of this work, assesses the quality of distorted test images, with
artifacts such as noise, blur, compression, etc., with reference to its original undistorted version.
As a specific case, image enhancement, treated as part of image aesthetics falls outside the
scope of this dissertation. However, when enhancement introduced to an image is treated as the
distortion of the reference image, it falls into the impairment assessment category, discussed
within this work.

2.3.2 Existing approaches to objective IQA

Image quality metrics can be divided into full-reference, where all information about the undis-
torted reference image is available, reduced-reference, where partial information is available, and
no-reference, where no information about the reference image is available. The metrics can be
either model-based or data-driven. Model-based metrics aim to capture image difference statistics
relevant to quality. These metrics do not require extensive training and their performance depends
on assumptions made about the human visual system or image statistics [14, 148]. Data-driven
metrics, on the other hand, such as those based on CNNs [60, 31, 151, 107, 59, 77], are capable
of extracting features in an automated way, learning complex relationships without the need to
make assumptions about the human visual system. However, these desirable properties come
with limitations – complex machine learning models are susceptible to the quality and quantity of
the training data. If data are scarce, the model will fail to generalize. To alleviate the problem of
insufficient and noisy data, transfer learning is often used. For example, authors in [31, 2, 72, 7]
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pre-trained the CNN model on image classification tasks, arguing that learned features would
capture image statistics important for IQA. Others [151] pre-trained the network on the quality
predictions of the model-based quality metrics, and then, fine-tuned on the subjective image
quality scores. Authors in [80] exploited yet another approach — they first pre-trained the
network to classify distortions. The risk of this approach, however, is that it can overfit the
model to the given set of distortions. Other works were based on training on image ranking
[77, 107, 151]. The advantage of that approach is that training can be performed directly on the
pairwise comparison data. But the shortcoming of this approach is that it discards meaningful
information by converting the quality scores to a binary classification problem. Although all
those approaches can improve the ability of the ML-metrics to generalize, they do not substitute
the need for a larger and diverse IQA dataset, which was acknowledged in most works. Collecting
such a dataset is one of the main objectives of my dissertation.

2.3.3 Dynamic range of an image

Perceived image quality depends on the brightness of the display [145]. The human eye can
perceive luminance in the range from 10−5 to over 104 cd/m2 [43]. However, in typical SDR
displays, the colour is encoded in 8 bits, bound in a rather small range of integer numbers
between 0 and 255. This range was sufficient in the era of cathode ray tube (CRT) monitors,
where the difference between the brightest and the darkest points of a displayed image (its
dynamic range (DR)) was between 1 and 100 cd/m2 [83]. Modern display technologies allow
for much larger DR, and thus a higher amount of transmitted information. The aim of expanding
DR of gamma-corrected images is to achieve that of the real world. Not only are the images
brighter, but they are also perceived as more colorful [83] and realistic [57]. Human observers
also reported better depth perception for brighter images, with average luminance of 1000 cd/m2,
than darker, with average luminance of 50 cd/m2 [131].

An image captured by a camera is represented in radiance. It then undergoes post-processing
steps, including compression via gamma-encoding and tone-mapping [43], resulting in an SDR
image. During this process brighter regions of the images are compressed more – the human eye
is less susceptible to high spatial frequency variations in the brighter areas [116]. Whereby this
can described as:

Igamma−encoded = (Ilinear)
1
γ , (2.16)

where γ is usually set to 2.2. SDR images are thus represented with gamma-encoded values.
This process of transferring linear luminance values to digital representation is also referred
to as forward display model. The inverse display model is the backward process of mapping
digital values to linear luminance values. Here some model of the display is assumed. The most
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(a) PU encoding (b) Extending SDR metrics to HDR content

Figure 2.7: (a) PU-transform used to transform absolute physical values (in cd/m2) into ap-
proximately perceptually uniform units that can be used with existing quality metrics. Note,
some values are negative – to ensure that the luminance range of a typical (sRGB) monitor of
1 cd/m2 to 80 cd/m2 is mapped to the range 0–255. (b) Pipeline for extending SDR metrics to
photometric values. An SDR image is first converted from gamma-corrected pixel values to
linear luminance values, via a display model. For HDR images the “Display model” is omitted,
as those already store luminance values. Luminance values are then passed via the PU-transform
to obtain perceptually uniform code. This code is then passed to an SDR image quality metric.

practical one is gamma-offset-gain (GOG) display model [35]:

Cdisplayed = (Lpeak − Lblack)Cγ
original + Lblack + Lrefl, (2.17)

where γ = 2.2, Clin is linear, CsRGB is the gamma-encoded colour value for one of the channels
(R, G or B), Lpeak is the the peak luminance of a given display, Lblack is the black level and Lrefl

is the ambient light that is reflected from the surface of a display (usually assumed to be 0).
Different from SDR images, which are represented with gamma-encoded values, HDR

images store linear luminance values. There are several approaches to producing an HDR image
– either inverse tone-mapping, where a SDR image is mapped to luminance values, or multiple
SDR images with different exposures are processed together for wider luminance range [43].

2.3.4 Dynamic range in objective IQA

As the range of luminance a display can cover affects the visibility of distortions of a viewed
image, a reliable quality metric should account for it. I will refer to the metrics that operate on
physical photometric/luminance values as photometric quality metrics. HDR quality metrics,
such as HDR visual difference predictor (HDR-VDP) [82] or HDR video quality measure
(HDR-VQM) [99]), are photometric to account for a large range of luminance produced by
HDR displays. SDR metrics can also be adapted to operate on photometric quantities [3]. For
that, luminance values of HDR images need to be converted into Perceptually Uniform (PU) or
logarithm values, with the former achieving better results [3, 62]. Perceptually uniform values
are then passed to an SDR image quality metric.
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PU transform is derived from the contrast sensitivity function (CSF) that predicts detection
thresholds of the human visual system for a broad range of luminance adaptation conditions.
This transformation is necessary as the response of the human eye to luminance is not linear.
We perceive relative, rather than absolute difference in luminance. To adapt quality metrics
accordingly, we transform linear luminance values of images to the perceived luminance via PU
encoding. The transform is given by:

PU(L) =

∫ L

Lmin

1

T (l)
dl, (2.18)

where Lmin is the minimum luminance to be encoded, T (l) is the detection threshold of absolute
luminance l defined as:

T (l) = S

((
C1

l

)C2

+ 1

)C3

, (2.19)

where S is the absolute sensitivity constant and C1, C2, C3 are scaling parameters. Through-
out my dissertation I use the values for parameters from [82]. The transformation is further
constrained to map luminance values typically reproduced on SDR monitors (0.8-80 cd/m2)
to a range 0 − 255. Thus, resulting quality values for SDR images converted to photometric
units assuming a display with (0.8-80 cd/m2) dynamic range correspond to those without such
transformation. The shape of the PU-transform is given in Figure 2.7a.

Similar procedure can be applied to evaluate quality of SDR images when these are shown
on displays with different brightness. Before passing through the PU-transform an SDR image is
first transformed to luminance emitted from a display, assuming a model of that display, such as
the one in Equation 2.17. The full pipeline of making SDR image quality metrics photometric is
given in Figure 2.7b.

2.4 Summary

In this Chapter, I provided background on subjective and objective quality assessment methods. I
described two most commonly used subjective assessment protocols, rating, and ranking. These
are the core experimental procedures used in my dissertation and will be used to collect data in
Chapter 3, Chapter 4, and Chapter 5. While the construction of the scale from rating experiments
is trivial, scaling pairwise comparisons requires several assumption on how individual judgements
are distributed (an observer model). I discussed the two widely used observer models for scale
construction from pairwise comparisons, Bradley-Terry [10], and Thurstone [123]. I have also
discussed the requirements for constructing a meaningful scale from pairwise comparisons in
image quality assessment. Although in many subjective studies involving human participants
pairwise comparisons are scaled in JND (just-noticeable difference) units, I showed that a more
appropriate choice for image quality assessment is JOD (just-objectionable-difference) units. I
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then discussed areas forming the field of IQA, objective IQA metrics, and the influence of the
dynamic range on the perceived quality and ways of embrasing it within objective quality metrics.
These topics are relied upon in Chapter 6, where I propose a new subjective photometric IQA
dataset, in Chapter 7, where I test objective IQA metrics and Chapter 8, where I present a new
dataset with quality threshold for viewing condition dependent visually lossless compression.
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Chapter 3

Psychometric image quality assessment

3.1 Introduction

In Chapter 2 I introduced the protocols for conducting subjective image quality assessment
experiments and ways of obtaining an accurate and interpretable scale from the collected
measurements. In practice, however, many of the requirements for obtaining such a scale
are neglected. An example dataset, where these requirements are violated, is a widely used
benchmark subjective image quality dataset, TID2013 [106]. The scores in this dataset were
obtained from pairwise comparisons with vote counts, lacking an observer model, and, important
for an accurate scale, cross-content and with-reference comparisons were not performed (Section
2.2.6). The dataset is used for training and testing objective quality metrics. Thus, the limitations
present in the dataset, if not addressed, propagate, resulting in poorly tuned objective quality
metrics and misinterpreted results. In this chapter, following the procedures for an accurate and
interpretable scale, I improve the scores of the TID2013 dataset1. Doing so required running
additional psychometric experiments with human participants. Using the original data from the
TID2013 dataset and newly collected measurements, I analyze the requirements necessary for
scaling image quality datasets and validate assumptions set in Chapter 2.

The work in this chapter is based on my publications at IEEE Transactions on Image
Processing [108] and IEEE Conference on Quality of Multimedia Experience [88]. However, I
also extend the published work with Section 3.6.

3.2 TID2013 dataset

One of the most recent and extensively evaluated image quality datasets, TID2013 [105, 106],
uses a crowd-sourced experiment with pairwise comparisons to measure image quality. The
quality scale, in this dataset, was obtained from vote counts. TID2013 presents 3000 distorted

1I make the re-scaled TID2013 available online: https://doi.org/10.17863/CAM.21517
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Figure 3.1: Example images from the TID2013 dataset for two contents and two distortion types
at five distortion levels. Numbers on top of the images, are the corresponding vote count based
quality scores, found in the original dataset.

conditions (25 contents, 24 distortion types, and 5 levels of distortions). Example images from
the TID2013 dataset are given in Figure 3.1 Approximately 30 observers were involved in the
measurement of every content. In total, more than 900 observers participated in the experiments,
completing over 400,000 comparisons.

Each observer in one experiment only performed comparisons within one content, i.e., no
cross-content comparisons were performed. In the pairwise comparison experiments, the less
distorted image was chosen with an aid of the reference image, displayed alongside. The pairs
of conditions to compare were chosen using the Swiss chess system [20]. With this method,
all conditions are compared the same predefined number of times. The first comparisons are
chosen at random. In later stages, conditions are sorted based on the number of times they were
previously selected by an observer and conditions having similar quality compete in pairs.

Subjective image quality scores presented in TID2013 are given in vote counts. Vote counts
were obtained for each content separately by taking the total number of times a condition was
selected as better and dividing by the number of observers. Every observer compared each
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condition within one content in nine pairwise comparisons, producing a scale between 0 and 9.
Therefore, the matrix of comparisons in TID2013 has an incomplete, unbalanced design with 25
disconnected components and no comparison to the reference. As discussed in Chapter 2, the
absence of cross-content comparisons and comparisons with the reference makes it impossible
to construct a unified quality scale for all contents.

3.3 Psychometric scaling and vote counts simulation

To compare the scores produced by vote counts with those produced by psychometric scaling,
introduced in Section 2.2.3.1, I use a Monte Carlo simulation. Since it is nearly impossible to
obtain the ground truth scores in quality assessment experiments, simulation of these experiments
is necessary to draw conclusions about the consistency of both vote counts and psychometric
scaling. Two types of data were used as the ground truth in the simulation: i) randomly generated
quality scores within a fixed range and ii) TID2013 vote counts for content 1.

3.3.1 Simulation procedure

The simulation of an experiment was designed to mimic the experimental procedure from
TID2013 i.e. every condition was compared nine times in three random and six sorted rounds
using the Swiss system by each of the 30 observers. In the simulation of a comparison between
two conditions, every simulated observer chooses condition oi over oj with a probability defined
by P (oi � oj) ∼ Φ(

qi−qj
β

), following Equation 2.6 where I set β = 1.4826, i.e., assuming that
the scores for conditions are given in JOD units. Randomly generated true quality scores q

for the first simulation were uniformly sampled at random from the [0, 9] interval, to match
the range of the scale in TID2013. For the simulation with the data from the TID2013 score
distribution, true quality scores were randomly sampled from the vote counts for the first content.
Comparison matrices produced by the simulated observers were aggregated.

Vote counts are produced by summing elements along the rows of the resultant matrix, i.e., the
number of times every image was preferred divided by the number of observers. Psychometric
scaling is produced using MLE with the Thurstone Case V model in JOD unites (described
in Section 2.2.3.1) and the Matlab code provided in [100]. To compare the scales, I calculate
the spearman rank order correlation coefficient (SROCC) and root-mean-squared error (RMSE)
between the standardized scores used for the simulation, and those produced by vote counts
and psychometric scaling (also standardized). SROCC and RMSE values are averaged for the
simulation repeated 1000 times.
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Figure 3.2: (a), (b) Simulation of the experiment with random data; (c), (d) Simulation of the
experiment with TID data. Lower is better for RMSE, higher is better for SROCC. Confidence
intervals are computed for 75% level.

3.3.2 Simulation results

The results of the simulation are depicted in Figure 3.2. Regardless of the number of condi-
tions, psychometric scaling consistently outperforms vote counts in estimating both the ranking
(SROCC) and the scale (RMSE). The difference in SROCC between the psychometric scal-
ing and vote counts increases with the number of conditions, and so psychometric scaling is
preferable as the number of conditions increases.

3.4 Psychometric scaling of TID2013

The experimental procedure in TID2013 presents two important limitations. First, although
reference images were used to help observers choose between distorted images, comparisons of
the distorted images to the corresponding references were never performed. A common quality
anchor for every content, i.e., a reference image, is necessary for constructing a fully connected
graph of comparisons. Second, comparisons across different contents were not performed.
Without cross-content comparisons, contents cannot be accurately scaled [149]. Therefore
original TID2013 scores cannot be compared across different contents. These required types of
comparisons are shown in Figure 3.3.

3.4.1 Experimental setup

I extend the data collected in TID2013 with five additional experiments. The first experiment was
used to include reference images. The next three include cross-content comparisons and further
comparisons to the reference to improve the scale. The last experiment is a validation experiment,
used to evaluate the quality of scales produced by vote counts and psychometric scaling. I later
use comparisons from all five experiments to construct the final scale. Each experiment had ten
participants. In a single experiment each participant completed 300 trials. Overall additional
15,000 comparisons were collected. For the design of the first four experiments, I consider
that it is often more informative to compare conditions that are of similar quality (which is the
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0

Figure 3.3: Representation of different types of comparisons, necessary to position all contents
on a common quality scale.

primary motivation for the use of the Swiss system in TID2013). I asked observers to select the
better quality image among distorted ones. The order of comparisons in every experiment was
randomized.

Overall 14 observers participated in all experiments, 11 male and three female with most
participants performing all three experiments. All participants were research members of the
Rainbow group. The mean age of the group was 32 years. The youngest participant was 20
years old and the oldest was 47 years old. Participants were represented by three ethnic groups
with four participants from Asian group, eight from white and two from Arab groups. All
observers were paid for the participation with 10£ Amazon vouchers per hour. Ethical approvals
are provided in Appendix A.1.

3.4.1.1 Inclusion of reference

To select comparisons for the first experiment, I scaled pairwise comparisons from the original
TID2013 dataset for each content separately using the MLE based scaling procedure from Section
2.2.3.1. I then compared each reference image to four conditions (within the same content) with
the best quality score. For 25 contents present in TID2013, 25 ∗ 4 = 100 pairs were selected
to include reference images in the quality scale. Each measurement was repeated three times
by each of the ten observers. I then included the newly collected data to the dataset and scaled
it. I assumed that all reference images have a common quality score of zero. This assumption
holds within the image fidelity assessment, where the quality of the test condition is judged by
the proximity to the undistorted reference condition. For other quality assessment criteria, for
example, aesthetics or where there is no access to the ground truth image, such as evaluation
of the tone-mapping algorithms, this assumption might not hold due to the dependency on the
content of the image. In these cases validation of the assumption with a benchmark study on the
reference conditions is necessary.
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VC and JOD scales before the validation experiment
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VC and JOD scales with validation data included
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Figure 3.4: Relationship between vote counts (VC) and JOD scales when adding new data. The
left part shows the scatter plot of the VC scores versus JOD values using the data from the first
four experiments only. The dashed horizontal and the bold vertical lines illustrate the procedure
for the maximum differentiation competition. The method is used to select the validation
comparisons. To select the pairs of images one scale is kept constant e.g. JOD (horizontal line),
and the leftmost and the rightmost conditions are selected to form a pair. Similarly for the vertical
line (VC scaled set constant) the bottom and the top condition are chosen for comparison. The
plot on the right represents the final scale after including comparisons from all five experiments.

3.4.1.2 Inclusion of cross-content comparisons and scale refinement

For the next three experiments, I included 300 more pairs of conditions, most of which were
cross-content, i.e., 40 comparisons to the reference, 240 cross-content comparisons, and 20
within content comparisons. After each experiment, I re-scaled the data and used the produced
new scale to select comparisons for the next experiment.

3.4.1.3 Validation experiment

To compare the consistency of both scales on real data, I conducted an additional experiment.
Using both scales (as represented in the left part of Figure 3.4), I found the cases in which
VC and JOD differ the most. This strategy is referred to as maximum differentiation (MAD)
competition [153]. It is used to compare subjective and objective image quality metrics. The
hypothesis of the procedure is that for the selected pairs oi, oj the empirical probability of one
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Figure 3.5: Scatter plot of the empirical probabilities of one condition being better than another
found from the validation experiment versus the distance between these conditions in both VC and
JOD scales. Red circles show pairs of conditions for which V Ci � V Cj and JODi ≈ JODj

and blue starts show pairs of conditions for which JODi � JODj and V Ci ≈ V Cj .

condition being better than another pij = P (oi � oj) =
cij

cij+cji
would be better reflected in

the distances of the more accurate scale. For example, if two images oi and oj are close in the
VC scale (V Ci ≈ V Cj) and far apart in the JOD scale (JODi � JODj) and the empirical
probability of selecting one over another is pij ≈ 0.5, and similarly for conditions V Ci � V Cj

(JODi ≈ JODj) the probability pij ≈ 1, VC scale would also be more accurate.
Thus, I selected 150 pairs of conditions oi, oj for which JOD is as different as possible and

VC scores were as close as possible i.e. argmaxij(|JODi − JODj| − |V Ci − V Cj|). And
similarly, for oi, oj for which VCs were different and JODs were similar. To promote diversity,
I allowed each content to participate only in 50 comparisons. Overall I selected 300 pairs of
images with 150 images in each group and asked ten observers to perform a pairwise comparison
experiment.

3.4.2 Results and discussion

Correlation comparison To compare both scales, I computed the SROCC between the prob-
ability pij = P (oi � oj), of an image being better, inferred from the pairs of comparisons in
the validation experiment (following Equation 2.4) and the difference in quality scores in both
VC and JOD scales for the selected pairs. Figure 3.5 shows the scatter plot of the pij versus
differences in both scales. The SROCC between V Ci − V Cj and pij is 0.52, and between
JODi − JODj and pij is 0.69, indicating that the output of the new JOD scale better correlated
with ranking of the conditions. I then included the data from the validation experiment into
the psychometric scale. The SROCC for JODi − JODj and pij improved to 0.84, indicating
that psychometric scaling can successfully include the information from collected comparisons.
Nevertheless, the SROCC is still far from one, as the psychometric scaling finds the best one-
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Figure 3.6: Histograms of the probability counts for the validation experiment under two
scenarios: (i) selected pairs of conditions oi and oj are far in the JOD scale, and close in the VC
scale (JODi � JODj , V Ci ≈ V Cj), left; (ii) selected pairs of conditions oi and oj are far in the
VC scale, and close in the JOD scale (V Ci � V Cj , JODi ≈ JODj), right. The horizontal axis
is the probability of image oi being better than oj , pij , inferred from the validation experiment.
Dashed and solid black curves represent the hypothesis, from which the data might be coming
and are re-scaled binomial distributions with parameters N = 10 and p = 0.5, N = 10 and
p = 0.9 respectively.

dimensional scale, taking into account all relationships in the data. Due to the transitivity
violations present in the data, the mapping cannot not be optimal.

Histogram comparison The histogram on the left of Figure 3.6 shows probability counts for
150 pairs of conditions oi and oj for which JODi � JODj and V Ci ≈ V Cj . Similarly, the
histogram on the right shows 150 probability counts for pairs of conditions oi and oj for which
JODi ≈ JODj and V Ci � V Cj . Dashed and solid black curves represent the hypothesis and
are re-scaled binomial distributions with parameters N = 10 and p = 0.5, N = 10 and p = 0.9

respectively (not 1 since the average distance between the images for the chosen pairs is 2 JOD,
corresponding to ≈ 90% of observers choosing one image over another). Ideally, the distribution
of the probability counts for a better scale would follow the black solid line. The frequency
around P (oi � oj) ≈ 1 is higher for JOD (left plot of Figure 3.6). The frequency for the VC
scale gradually increases with pij , whereas for the JOD, the change is abrupt, with a sharp rise of
the counts (right plot of Figure 3.6). The frequency for high probability P (oi � oj) > 0.7 is also
greater for the JOD scale. Nevertheless, the plot on the right does not exactly follow the JOD
hypothesis (bell shaped dashed distribution centered at 0.5), meaning that it can be improved.
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Table 3.1: Log-likelihood of observing the data collected in a validation experiment, assuming
binomial distribution.

Data Assumption Log-likelihood

JODi � JODj and V Ci ≈ V Cj oi ≈ oj -672.98

JODi � JODj and V Ci ≈ V Cj oi � oj -393.34

V Ci � V Cj and JODi ≈ JODj oi ≈ oj -546.98

V Ci � V Cj and JODi ≈ JODj oi � oj -543.47

Log-likelihood comparison Another way of evaluating the consistency of both scales is to
compute the log-likelihood of observing the data collected in the validation experiment, assuming
binomial distribution, for two hypotheses: oi ≈ oj , and hence P (oi � oj) = 0.5 and oi � oj ,
and hence P (oi � oj) = 0.9:

L =
K∑
k=1

logBin(ckij, N, p), (3.1)

where p = {0.5, 0.9} corresponding to two hypothesis, N = 10, since I performed 10
comparisons per pair and cij is the number of times condition i was selected over j in a pair k.

Table 3.1 suggests that the JOD scale better explains the validation data. The bottom two
rows indicate that conditions far apart in the VC scale are equally likely to come from both
hypotheses.

Scatter plot comparison Figure 3.4 shows the relationship between vote counts and psycho-
metric scaling. The plot in the left part of Figure 3.4 shows the relationship after including
comparisons from the first four experiments (without the validation experiment). It can be
seen that there are some cases, for example, content 5 and 8, which are consistently ranked
better on the JOD quality scale than the rest, and others, such as contents 4, 10, and 12, which
are consistently ranked worse. There are several reasons for this effect. First of all, only a
small number of cross-content experiments were performed, and the selection of compared
conditions might not be sufficient to accurately capture all variations in the quality. Secondly,
annoyance caused by different distortions is conditional on the content to which they are applied,
for example, they are more noticeable on human faces [95]. The relationship between VC and
the final psychometric scaling, which includes the data from all experiments, is shown in the
right part of Figure 3.4. Here the contents are more mixed in the scale. Both scales have a
substantial positive correlation for conditions within the same content. I hypothesize that this is
because the original TID dataset contains many more comparisons than the ones I collected, thus
significantly impacting the psychometric scaling.
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Figure 3.7: Representation of comparisons where VC and JOD scales differ the most, and
empirical probabilities are unanimous (all observers agreed). In each pair, the left image was not
chosen by any of the observers, and the right was chosen by all observers (highlighted with a
green line). First six pairs represent cases where VC failed to correctly rank conditions (but JOD
succeeded) and last six comparisons depict failure cases in JOD (where VC ranking succeeds).

Inconsistencies A selection of pairs of images used for the validation experiment with the
largest inconsistencies in both scales is plotted in Figure 3.7. Interestingly, most of the cases
are cross-content and cross-distortion – the first two rows of pairs in Figure 3.7 show obvious
failures of the VC scale, which are resolved by the JOD scale. The last two rows show failures in
the JOD scale, which are, however, less obvious.

3.4.3 Limitations

Even though the new psychometric scale is more accurate and thus is an appealing alternative
to vote counts, the dataset can still be improved. Unanimous answers (in which all observers
agree) represent 56% of comparisons in the TID2013 dataset. These may introduce a bias in the
scaling, as no upper bound is imposed on the distance between compared conditions [100]. The
majority of these answers are due to some conditions being compared only once by one observer
because of the use of the Swiss system.
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Figure 3.8: An example of different comparisons types for images selected from the TID2013.

3.5 Validation of Thurstone Case III vs. V

In Section 2.2.2, I stated that the most commonly used assumption for the observer model,
Thurstone Case V, stipulates that the standard deviation for each pair of measured conditions is
the same. This would imply that the difficulty of assessing each pair of conditions and the level
of confusion is the same across all pairs. However, cross-content comparisons are clearly more
difficult for observers to perform than within-content comparisons [149]. Thus, it is reasonable to
expect that more difficult types of comparisons will have higher variability in human judgments
and the Case V model assumption will no longer be valid.

To determine whether Thurstone Case V assumption is valid for cross-content and within
content comparisons, I ran an additional experiment. I selected ten groups of six conditions. Each
group included two contents from the TID2013 dataset, and consisted of all possible comparisons:
with-reference, within-content, cross-content, within-distortions and cross-distortions. The types
distortions and distortion levels were the same across two contents. I then asked ten participants
to perform ten comparisons: six within-content and four cross-content, on every group of six
conditions, as illustrated in Figure 3.8.

To validate whether the type of comparisons has an effect on the level of confusion (βij
in Equation 2.3), I performed a MLE-based scaling in which βhard for all “hard” comparisons
(shown as solid lines in Figure 3.8) was a free parameter. The standard deviation for all “easy”
comparisons was fixed to the usual value of βeasy = 1.4826. The estimated value of βhard for
all ten groups is shown in Figure 3.9a. The result of a one-sample t-test, with a null hypothesis
of the βhard = βeasy, (p0.05 = 0.72) indicates that I do not have evidence to suggest that the
comparisons of different difficulty result in a different standard deviation β. Therefore, contrary
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Figure 3.9: (a) The estimated standard deviation of the “hard” comparisons (βhard) for ten groups
of conditions. The blue line represents the fixed standard deviation of the “easy” comparisons. (b)
Time to complete each comparison for both difficulty levels. The box-plot shows 95% confidence
intervals with median values marked in red and whiskers showing the outliers.

to the expectations, I cannot reject the assumptions of the Thurstone Case V model.
Figure 3.9b shows the average time spent on easy and hard comparisons. Although the

result for 10 groups of a two-sample Kolmogorov-Smirnov test [119] (null hypothesis: data in
vectors x1 and x2 are from the same continuous distribution) does not indicate a statistically
significant difference (p0.05 = 0.36), the observers spent, on average, 3.9s on hard and 3.3s on
easy comparisons.

I do not have sufficient evidence that the harder difficulty of comparisons results in a higher
level of confusion. Therefore, even though the standard deviations could potentially be different,
Case V is a good simplifying assumption and a pragmatic choice.

3.6 Multidimensional scaling

In this section, I explore multidimensional scaling applied to the TID2013 dataset. For ease of
presentation, I use only two dimensions. Here I use the metric based multidimensional scaling,
where the metric is the Euclidean distance. I treat the empirical probability pij = P (oi � oj) =
cij

cij+cji
, for one condition being better than another converted to JODs dij = Φ−1(pij, β

2) as the
distance. Thus, the goal is to find the position of each condition [o1 . . . on] in the two-dimensional
scale [x1 . . .xn], where xi = [xi1, xi2], minimizing the loss function (also called Stress):

Stress = (
n∑

ij=1,i 6=j

(dij − ||xi − xj||)2)1/2 (3.2)

Figure 3.10a shows the scatter plot of all conditions in the TID2013 dataset with contents
marked with different colors. The conditions are uniformly spread around the reference. Figure
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Figure 3.10: Two-dimensional scaling of the TID2013 dataset, the data were re-scaled so that
the reference condition has a score of zero in both axes. (a) Scatter plot of the whole dataset with
contents displayed in different colors; (b) scatter plot of the images with the lowest and highest
distortion levels given in different colors.

3.10b shows conditions with the lowest (level 1) and the highest distortion (level 5) levels applied
to them in different colors. The data was re-scaled so that the reference has a score zero in both
dimensions. Several trivial observations can be drawn from the plots. First, all contents are
similarly distributed in both dimensions. Second, less distorted conditions are placed close to
the reference condition, which is at the center of both scales, whereas distorted ones are placed
further away.

Since the scatter plot of all contents, distortion types, and distortions levels can be hard to
analyze and interpret, I plot the scores of the conditions with the first three distortion types at two
impairment levels from the first two contents in Figure 3.11. Consider, for example, distortions
one and two with the small impairment levels for both contents. Visual impairment level for
both conditions is similar and is almost indistinguishable from the reference. This is reflected
in the one-dimensional JOD scale, however, not so in the two-dimensional case. For content 1,
distortion one is far away from the reference, whereas distortion two is close. For content 2 the
reverse holds. Similar pattern can be observed across all conditions.

Although multidimensional scaling is a useful tool for analyzing distance relationships in
the dataset, it is hard to interpret. Furthermore, with a growing number of dimensions, grows
the degree of freedom – the data can be represented in multiple ways without violating the
constraints. This property might be desirable in many problems, however, it is not suited for
image quality assessment, where the goal is to identify a single easy to interpret scale. The
growing degree of freedom presents problems for sparse comparison graphs, where conditions
are connected to a few or a single other conditions. One advantage of one-dimensional scale
is that it provides additional regularization - the space of solutions is much smaller than in the
case of multidimensional scaling. Ultimately the scale depends on the task in the subjective
experiment, and if the task is: “Assign a single quality value to an image.”, a one-dimensional
scale must suffice.
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3.7 Summary

In this chapter, I investigated how quality scores change when computed using psychometric
scaling instead of vote counts. I showed that psychometric scaling produces more accurate
results than vote counts in a simulated experiment, especially as the number of conditions
in the experiment increases. I also demonstrated that the additional set of comparisons and
psychometric scaling improve the consistency of quality scores of the TID2013. I validated that
the assumptions of Thurstone Case V are sufficient for modeling image quality in this specific
case and did not find sufficient evidence for using Thurstone case III. Finally, I investigated
the results of applying multidimensional scaling to modeling image quality. Findings suggest
that although some of the data patterns are reflected in the scale produced by multidimensional
scaling, difficult to interpret distances is a substantial limitation of the scale with more than one
dimension.

The procedure used to select pairs of conditions for the experiments described in this chapter
has an important limitation. The pairs were chosen manually, based on the heuristic that similar
in quality images form informative pairings. However, this approach is far from ideal, and a
more effective and elegant way of selecting pairs can be used. I discuss a new method for active
sampling of pairwise comparisons in the next chapter.
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Chapter 4

Active sampling for pairwise comparisons

4.1 Introduction

The main limitation of pairwise comparison experiments is that for n conditions, there are(
n
2

)
= n(n− 1)/2 possible pairs to compare, which makes collecting all comparisons too costly

for large n. However, active sampling can be used to select the most informative comparisons,
minimizing experimental effort while maintaining accurate results. In the previous chapter, I
used a simple heuristic to manually select pairs to compare, to improve the TID2013 dataset. In
this chapter, I talk about active-sampling of pairwise comparisons, where pairs for comparisons
are selected automatically.

State-of-the-art active sampling methods are typically based on information gain maximiza-
tion [101, 34, 15, 146, 70, 144], where pairs in each trial are selected to maximize the weighted
change of the posterior distribution of the scale. However, these are computationally expen-
sive for a large number of conditions, as they require computing the posterior distribution for
n(n− 1)/2 pairs at every iteration of the algorithm. To make active sampling computationally
feasible, most existing techniques update the posterior distribution only for the pairs selected
for the next comparison. I show that this leads to a sub-optimal choice of pairs and worse
accuracy as the number of measurements increases. To address this problem, I substantially
reduce the computational cost of active sampling by using approximate message passing for
inference, described in Section 2.2.3.3, and by computing the expected information gain only
for the subset of the most informative pairs. The reduced computational overhead allows to
update the full posterior distribution at every iteration, thus significantly improving the accuracy.
To ensure balanced design and allow for a batch sampling mode, I sample the pairs from a
minimum spanning tree as in [70]. The proposed technique (ASAP - Active SAmpling for
Pairwise comparisons) results in the most accurate psychometric scale, especially for a large
number of measurements. Moreover, the algorithm has a structure that is easy to parallelize,
allowing for a fast GPU implementation. I show the benefit of using the full posterior update by
comparing it to an approximate version of the algorithm (ASAP-approx), which, similar to other
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methods, relies on the online posterior update.
The work in this chapter is based on my publication at IEEE International Conference

on Patter Recognition [1]. The proposed algorithm was also used for data collection in the
SIGGRAPH publication [24] I co-authored.

4.2 Related work

This section discusses related work, divided into four groups, based on the type of an approach:
passive, sorting, information-gain, and matchmaking. The methods tested in the experiments are
highlighted in boldface. I also distinguish between sequential methods —where the next pair
is generated only upon receiving the outcome for the preceding pair —and batch, or parallel
methods —where a batch of comparison pairs is generated and outcomes can be obtained
in parallel. Batch methods are preferred in crowd-sourcing, where multiple conditions are
distributed to participants in parallel. Although other works exist, e.g., estimating total or
partial order rankings [39, 40, 51, 147, 121], my dissertation is focused on active sampling for
psychometric scale construction, which uses pairwise comparisons to estimate quality scores q.

Passive approaches When every condition is compared to every other condition the same
number of times, the experimental design is referred to as full pairwise comparisons (FPC).
Such an approach is practical only for a small number of compared conditions, as it requires
n(n− 1)/2 comparisons per participant. Another approach, nearest conditions (NC), relies on
the idea that conditions that are similar in quality are more informative for constructing the
quality scale. Thus, if the approximate ranking is known in advance, one can compare only the
conditions that are neighbors in the ranking. Such initial ranking, however, may not be available
in practice.

Sorting approaches Similar to NC, sorting-based methods first sort the conditions, based
on some criteria, and then compare conditions that are of similar quality. Authors in [21]
proposed an active sampling algorithm using a binary tree. Every new condition descends the
tree, branching depending on whether it is better or worse than the current node’s condition.
Authors in [85] applied Quicksort [42] using pairwise comparisons as the comparison operator.

Recently, [106] used the Swiss system in chess to rank subjective assessment of visual
quality. The Swiss system first chooses random conditions to compare, then sorts the conditions
to find similar pairings. This method was used by the authors in [106] to collect the TID2013
dataset, discussed in the previous chapter. A related method is the Adaptive Rectangular Design
(ARD) [48], which allows comparison of conditions far apart on the quality scale in the later
stages of an experiment. The work of [16] takes a different approach, where active sampling
(AKG) is based on the Bayesian decision process maximizing Kendall’s tau rank correlation
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coefficient [58].
Sorting approaches are praised for their simplicity and low computational complexity and

are thus often employed in practice. However, these approaches use heuristics that often result in
suboptimal comparison choices, and in general, perform worse than the methods that rely on
information gain.

Information-gain approaches These methods are based on information maximization. That
is, the posterior distribution of quality scores is computed, and the next comparison is selected
according to a utility function, e.g., Kullback-Leibler (KL) divergence [67] between the current
distribution and the distribution assuming any possible comparison [112]. This group is the most
relevant to the new method. Methods listed in this section are sequential unless stated otherwise.

A greedy Bayesian approach, Crowd-BT, was proposed in [15]. The entropy for every pair
of conditions is computed using the posterior distribution of each pair individually rather than
jointly. The method also explicitly accounts for the reliability of each annotator: scores and
annotator quality are updated using an alternating optimization strategy.

Authors in [101] derive the score distribution from the maximum likelihood estimation and the
negative inverse of the Hessian of the log-likelihood function. Since the original implementation
was not provided by the authors, and my implementation suffered from numerical instability, I
did not include it in the tests.

Authors in [34, 146] develop a fully Bayesian framework to compute the posterior distribution
of the quality scores. Hybrid-MST [70] extends this idea by selecting batches of comparisons
(instead of single pairs) to maximize the information gain in the minimum spanning tree [18]
of a comparison graph. The time efficiency of the method over its predecessor is improved by
computing the information gain locally —within the compared pair.

A different approach is taken by [144], where authors propose to solve a least-squares
problem to elicit a latent global rating of the conditions using the Hodge decomposition of
pairwise comparison data. Like other methods, the information gain is computed using the
posterior of only the pair of compared conditions. I refer to this approach as HR-active.

Matchmaking A matchmaking system, which I refer to as TS-sampling, was proposed for
gaming, together with the TrueSkill algorithm [41]. The aim is to find the pairs of players with
similar skills. The skill distribution of two players is used to predict the match outcome.

My work In contrast to the previous work, my method (i) allows for batch and sequential
modes, which only one other method allows for [70]; (ii) estimates the posterior using the entire
set of comparison outcomes that has been collected so far; and (iii) computes the utility function
for a subset of pairs, saving computations without compromising on performance.
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4.3 Sampling algorithm: ASAP

The algorithm consists of two main steps: (i) computing the posterior distribution of score
variables r using the pairwise comparisons collected following TrueSkill based Bayesian score
estimation in Section 2.2.3.3; (ii) using the posterior of r to estimate the next comparison to be
performed based on a criterion of maximum information gain.

4.3.1 Pair selection

Given the scores r, where each score ri is a random variable ri ∼ N (µi, σi) estimated using the
procedure from Section 2.2.3.3, we can find the next pair of conditions to compare. For that we
would look for the pair of conditions for which the result of a trial improves the scores r the
most.

Several utility functions can be used to compute the expected information gain (EIG). A
commonly used choice is Kullback-Leibler (KL) divergence [67] between the distribution at a
time step t and the one at t+ 1, assuming all possible comparison outcomes. For two continuous
distributions G and J the KL divergence is given by:

DKL(G||J) =

∫
G(x)log

(
G(x)

J(x)

)
dx. (4.1)

For discrete distribution the integration is replaced with a summation.
More specifically, my active sampling strategy picks conditions (oi, oj) = At to compare in

measurement t, such that they maximize a measure of information gain I ijt−1:

At = argmax
(oi,oj)∈S2,i 6=j

Iijt−1, (4.2)

where S is the set of all conditions and subindex t− 1 indicates that we use all measurements
collected up to the point in time t. For simplicity, I define r̂t−1 as the estimated posterior after
measurement t− 1.

For each possible pair At, let P (r̂t|yt = +1, At) and P (r̂t|yt = −1, At) denote the updated
posterior distributions (i.e., including comparison At) if oi is selected over oj (yt = +1 for
At = (oi, oj)) and vice versa. Since we cannot guarantee the outcome of the next pairwise
comparison, i.e., which condition will be selected, similarly to other active sampling methods
[70, 144, 15, 101, 34], for the expected information gain computation I weight the information
gain from each outcome by the probability of each outcome. I compute this probability using
Equation 2.11, P (oi � oj|r̂t−1) , Φ

(
µ̂i−µ̂j√

2σ̂ij

)
where σ̂2

ij = σ̂2
i + σ̂2

j + β2; for condition oi
selected over oj and vice versa, EIG is then defined as:

Iijt−1 =P (oi � oj |r̂t−1) ·DKL (P (r̂t|yt = +1, At) ‖ p(r̂t−1))

+ P (oi ≺ oj |r̂t−1) ·DKL (P (r̂t|yt = −1, At) ‖ p(r̂t−1)) .
(4.3)
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4.3.2 Efficiency considerations

At every iteration t, there are n(n− 1)/2 comparisons to consider, where n is the total number of
compared conditions. The complexity of the posterior evaluation is O(n+ t), thus the complexity
of selecting the next comparison is O(n2(n+ t)). This may be very costly when the number of
conditions is large. Here, I discuss two modifications that reduce the computational cost, and a
batch mode, which also improves the accuracy.

Approximate (online) posterior estimation (ASAP-approx) To quantify the improvement
in accuracy brought by the full posterior update, I follow the common approach and use an online
posterior update with assumed density filtering (ADF) [91]. Here, unlike the full posterior update
described in Section 2.2.3.3, where the posterior is computed based on all observed outcomes t,
we update the posterior only with the most recent outcome, using the posterior from the previous
step as the prior. That is, the posterior r̂t−1 is used as the prior when computing the posterior for
the tth comparison, allowing the algorithm to run in an online manner [92]. The update for two
conditions (winning oW and loosing oL) is formulated as follows:

µW = µW +
σW
ζ
υ(
τ

ζ
),

µL = µL −
σL
ζ
υ(
τ

ζ
),

σW/L = σW/L(1−
σ2
W/L

ζ2
χ(
τ

ζ
)), (4.4)

where ζ2 = 2β2 +σ2
W +σ2

L, τ = µW −µL, υ = N (t)
Φ(t)

and χ = υ(t)(υ(t)+ t) andN and Φ(t)

are probability density function and cumulative density function of a standard normal distribution
respectively.

Thus, for every oi and oj pair, I update only the scores ri and rj , resulting in O(1) complexity
per pair. No additional ADF-projection step is required since expectation propagation has already
yielded a Gaussian approximation to the posterior. The time complexity of selecting the next
comparison is thus decreased to O(n2). However, computational efficiency comes at the cost of
accuracy in posterior estimation [92]. I refer to the algorithm using the approximate posterior
update as ASAP-approx.

Selective EIG evaluations EIG evaluations are computationally expensive. It is thus desirable
to compute EIG only for a subset of the pairs. To select the pairs for EIG evaluation I rely
on the fact that some comparisons are less informative than others [112], such as between
conditions far apart on a scale where the outcome yt is obvious [101, 34]. Thus, I want to
prioritize EIG computation for the pairs of conditions which are closer in the scale and which
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are thus more informative. For that I use a simple criterion from Equation 2.11 and compute
the probability Qij that conditions oi and oj are selected for EIG evaluation. Since pij in the
Equation 2.11 is the probability of condition oi being better than oj , to identify obvious outcomes
I set Qij = min(pij, pji), where pji = 1− pij . Thus, the probability is large when the difference
between the scores and their standard errors are small. To ensure that at least one pair including
oi is selected, I scale Qij per condition, i.e., Q∗ij =

Qij
max∀j(Qij)

. Since computing the probability
Q∗ij is computationally less expensive than EIG, I compute Q∗ij for each pair of conditions.

Minimum spanning tree for the batch mode When a sampling algorithm is in the sequential
mode, one pair of conditions is scheduled in every iteration of the algorithm. However, selecting
a batch of comparisons in a single iteration of the algorithm is computationally more efficient
and can yield superior accuracy [70]. To extend the algorithm to the batch mode, I treat pairwise
comparisons as an undirected graph. Vertices are conditions, and edges are pairwise comparisons.
I follow the approach from [70], where the minimum spanning tree (MST) is constructed from
the graph of comparisons. The MST is a subset of the edges connecting all the vertices, such that
the total edge weight is minimal. The edges of the graph are weighted by the inverse of the EIG,
i.e., for an edge Eij connecting conditions Ai and Aj the weight is given by w(Eij) = 1

Iij
. n− 1

pairs are selected for the MST, allowing us to compute the EIG every n− 1 iterations, greatly
improving speed. Since each condition is compared at least once within the batch, detrimental
unbalanced designs [113], where a subset of conditions is compared significantly more often
than the rest, are eliminated.

4.4 Evaluation

To assess different sampling strategies, I run a Monte Carlo simulation on synthetic and real
datasets. SROCC and RMSE between the ground truth and estimated scores are used for
performance evaluation. I report the results as multiples of standard trials, where 1 standard
trial corresponds to n(n− 1)/2 measurements (the number of possible pairs for n conditions).
For clarity, I present RMSE on a log-scale, and SROCC after a Fisher transformation (y′ =

arctanh(y)). The same method, based on the MLE-based from Section 2.2.3.1, was used to
produce the scale from pairwise comparisons for each method.

4.4.1 Simulated data

To generate synthetic data, I run a Monte Carlo simulation. I note that the strongest influence on
the results is the proximity of compared conditions in the target scale. When conditions have
comparable scores, they are confused more often in comparisons. In contrast, when conditions
are far apart in the scale, they are easily distinguished, resulting in different performances for
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Figure 4.1: Heatmaps for three standard trials of comparisons of 20 ordered conditions from
small, medium and large ranges

sampling methods. Hence, I consider three scenarios for 20 conditions with scores s sampled
uniformly from: (i) large range [0, 20] (scores far apart); (ii) medium range [0, 5]; (iii) small
range [0, 1] (scores close together). Results for larger numbers of conditions are given in
Section 4.4.3. I run the simulation 100 times for comparisons ranging from 1 to 15 standard
trials. In the simulation, I use P (oi � oj) ∼ Φ(

qi−qj
β

) from Equation 2.6 and β = 1.4826

to draw the outcome of the comparison between conditions oi and oj , which are determined
by each algorithm. Accuracy of scales obtained from comparisons chosen by active-sampling
strategies were computed with respect to the ground-truth quality scores q drawn from a uniform
distribution and the given range.

4.4.1.1 Ablation study

Sampling patterns To better understand which conditions are favored by ASAP, I produce
heatmaps of pairings for conditions sampled from the small, medium, and large ranges. I use
three standard trials. The heatmaps are given in Figure 4.1. For better visualization, conditions
are ordered ascending in their ground truth scores in the consecutive rows and columns. For
conditions sampled from the small range, all pairs of conditions are compared approximately the
same number of times. However, the number of comparisons gradually decreases for conditions
further away in the scale, i.e., further away from the diagonal on the heatmap. For conditions
sampled from the medium and large ranges, most comparisons are selected for conditions close in
the quality scale, i.e., along the diagonal on the heatmap. This is expected, as pairs of conditions
that are far away in the scale are less likely to be confused by observers and are therefore less
informative.

Selective EIG evaluations Figure 4.2a shows the proportion of saved evaluations with selec-
tive EIG computations, where EIG is updated only for the most informative comparisons. Since
I initialize the algorithm with all scores set to 0, all possible pairs have their EIG computed
at first (0 standard trials in the plot), as all conditions are close to each other. As more data
are collected, conditions move away from each other on the scale, and the EIG is computed
for a subset of pairs only. Computational saving is greater for large-range simulations than for
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Figure 4.2: (a) Percentage of saved evaluations with selective EIG evaluations; (b) probability of
EIG evaluation after ten standard trials for medium range; and (c) RMSE and SROCC with and
without selective EIG;

small-range simulations. In small-range simulations, conditions first move away from each other,
as, in the first few iterations, their relative distances are likely to be overestimated, decreasing
the overall number of computations; however, with more measurements, the conditions move
closer, and the proportion of saved evaluations decreases. Figure 4.2b shows the probability of
the EIG being evaluated after 10 standard trials for 20 conditions sampled from the medium
range. For visualization purposes, conditions were ordered ascending in the quality scale. Pairs
of conditions along the diagonal, i.e. close in the scale, have a higher chance of their EIG being
computed. Figure 4.2c shows performance of ASAP with and without selective EIG evaluations.
Since pairs chosen by selective EIG evaluation are likely to be the most informative, the number
of computations is greatly reduced, while maintaining the accuracy. In the following sections, I
only present the results with selective EIG computations.

Minimum spanning tree for the batch mode Figure 4.3 shows the results of ASAP with
and without batch mode for medium-range simulations. Without MST batch mode, the method
is likely to result in an unbalanced sampling pattern, where certain conditions are compared
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Figure 4.3: Simulation with 20 conditions sampled from the medium range with and without
MST. I observe similar pattern for conditions sampled from small and large ranges.

significantly more often than others. This has a detrimental effect on performance, deteriorating
the results with a growing number of comparisons [113]. Below, I only present results with MST
batch mode.

4.4.1.2 Simulation results

Algorithms compared I implement and compare different active sampling strategies using
original authors’ codes where possible: AKG [16], Crowd-BT [15], HR-active [144] and Hybrid-
MST [70]. My own implementation was used for Quicksort [85], Swiss System [106], and
TS-sampling [41].

Figure 4.4a-c shows the results of the simulation for the implemented strategies. At all tested
ranges, EIG-based methods have lower RMSE, and therefore higher accuracy, than the sorting
methods (Quicksort and the Swiss System). While TS-sampling and Crowd-BT have good
accuracy for the large range, these are among the worst methods for the small range. ASAP-
approx exerts performance similar to the methods with the online posterior update. However, it
offers a modest but consistent improvement in accuracy over Hybrid-MST and HR-active. Of all
tested methods, ASAP, employing the full posterior update, is the most accurate by a substantial
margin and across all ranges.

For SROCC, EIG-based methods do not show a clear advantage over sorting methods;
however, it should be noted that EIG-based methods are designed to optimize for RMSE rather
than ranking. Even so, ASAP still performs the best for small and medium range simulations,
and one of the best for large range, reaching SROCC of 0.99 within five standard trials. However,
it should be noted, that the problem of ordering conditions from the large range is trivial, and the
best methods compete at 0.99+ SROCC levels (almost perfect ordering). Figure 4.4d presents
75% confidence interval of the RMSE and SROCC distributions for the top five methods in
SROCC for conditions sampled from the large range. Results for SROCC are noisier than for
RMSE, making it hard to identify the best performing method. In terms of RMSE for a number
of standard trials less than two, ASAP shows similar to others’ performance, however with the
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number of standard trials growing, it significantly outperforms the compared methods. Because
of the poor performance of the sorting-based methods, I do not consider them in the following
experiments.

4.4.2 Real data

I validate the performance of sampling strategies on two real-world datasets: i) Image Quality
Assessment (IQA) LIVE dataset [115], with pairwise comparisons collected by Ye and Doermann
[146]; and ii) Video Quality Assessment (VQA) dataset [143]. Each dataset contains complete
and balanced matrices of pairwise comparisons, with each condition compared to every other
condition the same number of times. The empirical probability of one condition being better
than another is obtained from the measured data following Equation 2.4 and used throughout the
simulation. I compute RMSE and SROCC between scores produced by each method and scores
obtained by scaling the original matrices of all comparisons.

IQA dataset To allow multiple Monte Carlo simulation runs, I randomly select 40 conditions
from the 100 available. In the original matrix, each condition is compared five times with each
other (5 standard trials), yielding 24750 comparisons.

Figure 4.5 shows the results. The performance trends are consistent with the results for the
simulated data for the medium range. ASAP has the best performance both in terms of SROCC
and RMSE. ASAP-approx, Hybrid-MST, and TS-sampling follow it, each having roughly the
same performance in terms of both RMSE and SROCC, with ASAP-approx performing slightly
better in ranking. Crowd-BT and HR-active have the worst performance in terms of both RMSE
and SROCC.

VQA dataset The dataset contains ten reference videos with 16 distortions. Each 16 × 16

matrix contains 3840 pairwise comparisons, i.e., each pair was compared 32 times.
Figure 4.6 shows the results of running simulations. The performance trends are again, in

general, consistent with the results for the simulated data sampled from the medium range, except
that TS-sampling performs substantially worse, and Hybrid-MST outperforms ASAP-approx
for small numbers of trials. ASAP consistently outperforms other methods. The results for the
remaining eight reference videos follow the same trend and are given in Appendix A.4.

4.4.3 Large scale experiments

It is often considered that 15 standard trials are the minimum requirement for FPC to generate
reliable results [127, 11]. However, this is rarely feasible in practice. Real-world, large-scale
datasets barely reach one standard trial. To make experiments with a large number of conditions
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Figure 4.4: (a-c) Simulation results with 20 conditions for the compared sampling strategies. (d)
75% confidence interval of the RMSE and SROCC distributions for 20 conditions sampled from
the large range and five best performing methods in terms of SROCC.
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Figure 4.5: Compared sampling strategies on LIVE dataset.
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Figure 4.6: Compared sampling strategies on VQA dataset.

feasible, individual reference scenes or videos are often measured and scaled independently, miss-
ing important cross-content comparisons. However, the lack of cross-content comparisons yields
less accurate scores [149]. I investigated this problem on the example of the scale of TID2013
dataset in the previous chapter. Active sampling techniques, such as ASAP, should accurately
measure a large number of conditions while saving a substantial amount of experimental effort.
To test such a scenario, I simulate the comparison of 200 conditions with scores distributed in the
medium range. The results, shown in Figure 4.7, demonstrate that even with a small number of
standard trials, ASAP outperforms existing methods; ASAP-approx and Hybrid-MST follow it.
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Figure 4.7: Large scale experiment simulation with 200 conditions sampled from medium range.

4.4.4 Running time and experimental effort

A practical active sampling method must generate new samples in an acceptable amount of time.
Hence, in Figure 4.8a, I plot the time taken by each method as the number of conditions grows.
The reported times are for generating a single pair of conditions, assuming that five standard
trials have been collected. CPU times were measured for MATLAB R2019a code running on
a 2.6GHz Intel Core i5 CPU and 8GB 1600MHz DDR3 RAM. GPU time was measured for
Pytorch 1.4 with CUDA 9.2, running on GeForce GTX1080. I omit sorting methods as they do
not offer sufficient accuracy. Although ASAP is the slowest method when running on a CPU,
it can be effectively parallelized on a GPU and deliver the results in a shorter time than other
methods running on a CPU.

In Figure 4.8b I show the experimental effort required to reach an acceptable level of accuracy
for 20 and 200 conditions, where I define experimental effort as the time required to reach an
RMSE of 0.15. I assume that each comparison takes 5 seconds, which is typical for image
quality assessment experiments [108, 106]. ASAP offers the biggest saving in the experimental
effort for both small and large scale experiments. In an experiment with 200 conditions, ASAP
achieves an accuracy of 0.15 RMSE in 0.355 standard trials. Thus, the total experimental time is
9.8h (7065 comparisons), which is significantly better than the 14.6h (10550 comparisons) for
Hybrid-MST. Similarly, for 20 conditions, the entire experiment would take 40 min for ASAP
and 120 min for Hybrid-MST to reach the same accuracy of score estimates. For experiments
with longer comparison times (e.g., video comparison) or high comparison cost (e.g., medical
images), ASAP’s advantage is even more significant.

4.5 Summary

In this chapter, I showed the importance of choosing the right sampling method when collecting
pairwise comparison data, and proposed a new active sampling strategy for pairwise comparisons
– ASAP. Commonly used sorting methods perform poorly compared to the state-of-the-art
methods based on the EIG, and even EIG-based methods are sub-optimal, as they rely on a
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Figure 4.8: (a) Average time to select the next comparison for a varied number of conditions
and 5 standard trials. (b) Experimental effort (amount of time, assuming 5 second decision time,
required to reach 0.15 RMSE) for experiments with 20 and 200 conditions.

partial update of the posterior distribution. ASAP computes the full posterior distribution, which
is crucial to achieving accurate EIG estimates, and thus the accuracy of active sampling. Fast
computation of the posterior, important for real-time applications, was made possible by using a
fast and accurate factor graph approach, which is new to the active sampling community. Besides,
ASAP only computes the EIG for the most informative pairs, reducing the computational cost of
ASAP by up to 80%, and selects batches using a minimum spanning tree method, allowing to
avoid unbalanced designs.

I recommend ASAP, as it offers the highest accuracy of inferred scores compared to existing
methods in experiments with real and synthetic data. The computational cost of the technique is
higher than for other methods in the CPU implementation. However, it is still in the range that
makes the technique practical, with a substantial saving of experimental effort. For large-scale
experiments, ASAP-GPU offers both accuracy and speed.

ASAP is a useful tool when collecting large-scale pairwise comparison datasets from scratch,
however, many real-world datasets exist, that contain both rating and ranking experiments. For
example one of the largest image quality datasets, TID2013 [106] (3000 images), contains
pairwise comparisons, whereas LIVE image quality dataset [114] contains both ratings and
pairwise comparisons (780 images). This data can be efficiently merged together to a dataset
of 3780 images, without the need for exhaustive large-scale experiments. In the next section I
propose a method, which, with a relatively low experimental effort can combine datasets with
different experimental procedures.

The strength of ASAP is, however, limited to problems where the outcomes of pairwise
comparisons are assumed to be free of errors. Methods with error tolerance or those accounting
for observer accuracy/decency [15, 71] would be preferred for applications where this condition
cannot be ensured or validated with a benchmark test.
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Chapter 5

Unified subjective quality scale

5.1 Introduction

Multiple protocols for data collection, such as rating and ranking, impede using homogeneous
data together. As such, an image rated four on a five-point scale in one experiment could
be rated as two in another experiment because of the participant training procedure. In this
chapter, I propose a probabilistic model and a scaling procedure that can bring qualities from
different subjective experiments to a unified scale. The scores produced by the scaling model
are interpretable and given in the JOD units, with the unit distance between two conditions
corresponding to 75% of observers selecting one condition over another. The proposed method
builds on a well-established psychophysics and sensory evaluation field and scales together the
two most commonly used protocols: rating and pairwise comparisons.

Such scaling can be used to merge existing datasets of subjective nature and for experimental
protocols in which both rating and pairwise comparisons are collected. Existing quality datasets
and newly collected data are used to justify the assumptions made in the model, such as the
linear relation between rating and scaled pairwise comparison data. The utility of the method
is demonstrated by re-scaling three existing datasets: TID2013 IQA dataset [106], LIVE IQA
dataset [115] and the HDR video compression dataset [149].

The side-benefit of the joint scaling is that sensitivity and time effort can be compared and
analyzed for both experimental protocols. Findings from several analyzed real-world datasets
show that the standard deviation of the observer model for rating and pairwise comparisons
depends on the task and the dataset. However, generally for image quality assessment tasks,
observers confuse measured conditions more often in rating experiments. Finally, I demonstrate
in simulations that, given the mean times required to rate and compare image quality and the
standard deviations found for the observer model, pairwise comparisons, on average, provide
better estimates. I also demonstrate that both protocols can be used together to avoid time-
consuming cross-content comparisons, discussed in Chapter 3 and to create larger datasets with
relatively low experimental effort.
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The work in this chapter is based on my publication at IEEE Transactions on Image Processing
[108] and reviewed manuscript at IEEE Transactions on Multimedia [90].

5.2 Related work

It is useful in practice to aggregate quality scores obtained from different quality evaluation
experiments, for example, to create larger annotated datasets. While this aggregation of subjective
quality scores is usually done for rating (i.e., mean opinion scores) [102, 104] or pairwise
comparisons [101, 118] individually, little work has been done to study the fusion of scores
obtained by these two methodologies.

In this regard, Ye and Doermann [146] proposed a unified probabilistic model, aggregating
rating and pairwise comparisons together. The model is extended to an active sampling framework
and uses the information gain for choosing either a pairwise comparison or a rating protocol for
the next measurement. The model allows an observer to rate conditions on a continuous scale,
however, these continuous scores are then converted to categorical values using cutoff values for
these categories. This makes the optimization an iterative two-step alternating procedure, where
in the first step cutoff values are found, and in the second step these are used in an optimization
procedure for finding the score distribution. The method relies on heavy computations and is not
feasible for large scale datasets. Moreover, the authors did not consider the relationship between
both scales, meaning that the final mixed scale could not be interpreted in terms of probabilities.

Authors in [148] proposed a procedure for aligning subjective scales based on the objective
scores. The method takes as input only the resultant scores obtained from scaling pairwise
comparisons or MOS, without considering individual measurements or underlining protocols.
The method assumes that the quality predictions from multiple objective metrics can be used to
transform quality scores from one subjective dataset to another. However, this approach relies on
the objective scores, which might not be available in practice. Furthermore, the accuracy of the
obtained subjective scale depends on the accuracy of objective metrics, which in their turn are
developed based on the subjective scores. I compare my method to the one from [148] in the
next chapter.

Some works have studied the relationship between the psychometric scale obtained from
pairwise comparisons and MOS. As such, Watson [138] studied the correlation between rating
scales and the results of pairwise comparisons in the context of psychometric scaling of pairwise
preference probabilities. He found that the degree of agreement between two scales, for video
compression, is relatively high. The work reports a quadratic relationship between MOS and
scaled pairwise comparisons, with a very small quadratic coefficient (JND = 1.917 + 0.125 ∗
DMOS + 0.0012 ∗ DMOS2 for DMOS ∈ [0; 50]). Similarly, [149] shows a strong linear
relationship between MOS and pairwise comparison scaling results.

The model proposed in this section does not rely on objective metrics, it explicitly models
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the relationship between rating and ranking scores, based on their respective observer models,
and takes into consideration the number of measurements performed for each protocol. The
model is computationally lightweight and can be used for large scale experiments. Although
the model does not allow for a dynamic choice of the protocol, I believe, however, that the
proposed approach can be beneficial when combined with pilot studies. More specifically, since
my scaling method explicitly accounts for the standard deviation of each protocol’s observer
model, after the pilot study the protocol with the smaller standard deviation can be chosen.

5.3 From pairwise comparisons and rating to a unified scale

When the results of both ranking and rating experiments are available for the same contents, it
may be desirable to use all information when constructing the quality scale. In this section, I
propose a simple way of combining both types of measurements.

I assume a linear relationship between a random variable ωi representing quality scores
obtained from a pairwise comparison experiment (Equation 2.2), and the random variables
obtained from a rating experiment πi (Equation 2.1):

ωi = a · πi + b. (5.1)

I could instead assume a more complex relationship between the quality scores, for example,
quadratic [138]. However, I found that a linear assumption is sufficient for large-scale quality
datasets (more details in Section 5.4). Nevertheless, the model can easily be extended to more
complex functional forms, provided that this relation is known. I further assume that the standard
deviation of the observer model may differ between both experimental protocols: people can
confuse two conditions more often in one protocol than the other. Similar to Section 2.2.2 for
every condition oi I set the standard deviation of the observer model βi constant to β∗. This is to
contrast it with the standard deviation β =

√
2β∗
2

of the normal distribution obtained from the
difference of two normal distribution with standard deviation β∗. The relationship can then be
written as:

N (qi, β
2
∗) = a · N (mik, η

2 · β2
∗) + b = N (a ·mik + b, a2 · η2 · β2

∗), (5.2)

where mik is the collected opinion score for the condition i and observer k. qi is the latent
quality score, which I want to recover. a, b and η (accounting for the difference in the variance
of observer models of rating and pairwise comparisons) are the unknown parameters that control
the relationship between the rating and pairwise comparison data. The goal is to find the values
of the latent variables given the observed opinion scores and pairwise comparisons.

Since opinion scores are generally continuous, I express the probability of observing mik
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using the density function of the normal distribution:

p(mik|qi, β∗, a, b, η) =
1√

2πa2η2β2
∗
e
− ((a·mik+b)−qi)

2

2a2η2β2∗ . (5.3)

Assuming independence between observers, the likelihood of observing the whole set of opinion
scores M is:

P (M|q, β∗, a, b, η) =
N∏
i=1

J∏
k=1

f(mik|qi, β∗, a, b, η). (5.4)

Similarly, the likelihood of observing pairwise comparisons P (C|q, β∗) is given in Equation 2.8.
One advantage of this probabilistic formulation is that missing data, for example when observers
rate only a portion of all conditions, can be simply omitted from the above product.

To recover latent quality scores q from both measurements, I use the MAP estimator with
the posterior probability:

q̂ = arg max
q,a,b,c

P (q, a, b, η|C,M, β∗), (5.5)

where

P (q, a, b, η|C,M, β∗) ∝ P (C|q, β∗) · P (M|q, β∗, a, b, η) · P (q), (5.6)

and P (q) is a Gaussian prior included to enforce convexity:

P (q) =
N∏
i=1

1√
2πβ2

∗
e
− (µq−qi)

2

2β2∗ , (5.7)

µq being the mean of quality scores q.
Likelihood functions are scale-invariant, i.e., P (M|q, β∗) = P (M|tq, tβ∗) for a constant

t 6= 0. Thus, without loss of generality, we can fix β∗ to an arbitrary value. As before, since scales
are relative, I set an anchor to q1 = 0. Similar to other chapters, I fix β∗ = 1.0484 (β = 1.4826),
so that a distance of 1 unit between two conditions indicates that 75% of observers can see the
difference between two conditions, allowing the interpretation of distances in the scale.

Note, that to mix different datasets, for example, several datasets for which rating measure-
ments have been collected, one would need to collect pairwise comparisons that link the data and
run the optimization procedure. In this case, different standard deviation of the observer model
and scaling parameters (a, b, and η) should be assumed for different datasets. I show how my
model can be used to mix different datasets in Chapter 6. I made the code for mixing both types
of measurements available online 1.

1https://github.com/gfxdisp/pwcmp_rating_unified
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5.4 Experiments: scaling existing datasets

In this section, I compare the experimental effort and validate the model assumptions on two
real-world image quality assessment datasets: LIVE [115] and TID2013 [106], and one video
compression dataset [149]. I test the linear relationship between subjective quality scores coming
from pairwise comparisons and rating and estimate the time effort and the standard deviation
of the observer model in both measurements. To scale the pairwise comparisons data, I use
psychometric scaling with maximum likelihood estimation using the Thurstone Case V model,
described in Section 2.2.3 and Matlab code from [100].

5.4.1 Datasets

HDR video compression dataset As one of the real-world examples, I use a HDR video
compression dataset [149]. This dataset contains 60 compressed HDR videos. As it was
created to analyze the relationship between rating and pairwise comparison scaling, this dataset
includes rating (DSIS) and pairwise comparison experiments with and without cross-content
pairs. The authors explored the effect of additional cross-content comparisons in pairwise
comparison experiments on the scaling. The results show a strong linear relationship between
MOS and pairwise comparison scaling results, the results also reveal, that, adding cross-content
comparisons is beneficial in two different ways: reducing the content dependency and increasing
the linear relationship between MOS values and pairwise comparison scaling results.

LIVE image quality assessment dataset The original LIVE dataset contained only MOS
values from 20 observers for 779 conditions. Subsequently authors in [146] complimented the
dataset with pairwise comparisons. Here the authors selected 100 conditions and performed full
comparison design, comparing each condition to each other five times. The relationship between
MOS and pairwise comparison scaling for this dataset have not been analyzed before.

TID image quality assessment dataset In my experiments I also consider TID2013 dataset
[106], which I have also discussed in Chapter 3. Since the original dataset contained only
pairwise comparisons, we, in our work at Transactions on Image Processing [108] complemented
it with MOS values, The data was collected by Emin Zerman and the detailed experimental
procedure is described in Appendix A.2. Overall 175 conditions were rated by 21 participants.

5.4.2 Model complexity

In this section, I validate if the linear relationship is indeed sufficient to explain the relationship
between rating and ranking scores.
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Figure 5.1: Polynomial fits into the JOD and MOS scores of the three subjective image and video
quality datasets.

To compare the goodness of fit I report adjusted R2 statistic – R2
adj , which, unlike simple R2

accounts for the number of model parameters in explaining the variance in the data [96]:

R2
adj = 1− (1−R2)

(n− 1)

n− p− 1
, (5.8)

where R2 is defined as:

R2 =

∑n
i (yi − ŷi)2∑n
i (yi − ȳi)2

, (5.9)

and n is the number of data points in the dataset, p is the number of parameters, excluding the
constant term, y and ŷ true and predicted response variables and ȳ is the mean of y.

I fit 1st 2nd and 3rd order polynomials into the JOD and MOS from HDR video quality [149],
TID2013 image quality [106] and LIVE image quality [115] datasets. Figure 5.1 shows the
scatter plot of the scores and fitted polynomials. The model describing the relationship between
JOD and MOS for image quality must be monotonic – an increase/decrease in the quality of
an image should result in the increase/decrease of the scores in both scales. Violation of this
requirement is possible for 2nd and 3rd order fits, which is a problem.

R2
adj statistic is given in Table 5.1. There is only a slight increase in R2

adj for TID2013 and
LIVE datasets for 2nd and 3rd order polynomials, for HDR Video dataset R2

adj stays constant.
Thus, a higher degree relationship is hard to justify, given the need for additional constraints on
the function to be monotonous. Visually, the relation between DMOS and JOD values can be
well explained by a linear function, except a few values at the extreme end of the quality scale.
For those extreme points, the JOD scale predicts stronger quality degradation than the DMOS
scale. This effect can be attributed to the fixed nature of the DMOS scale, where the scale is
constrained within a predefined range, e.g, from one to five. The JOD scale, on the contrary, is
not constrained, and where a poor or very good quality image cannot be assigned a score beyond
the range in the DMOS scale, its’ perceived quality is reflected in the JOD scale.
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Table 5.1: R2
adj statistic for polynomial fits describing the relationship between MOS and JOD.

Dataset 1st order 2nd order 3rd order
HDR Video 0.92 0.92 0.92

LIVE 0.87 0.89 .89
TID2013 0.77 0.79 0.79
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Figure 5.2: Relationship between the scaling with the mixture of MOS and pairwise comparison
data (JOD) and pairwise comparisons (PWC) scale (JOD) of the three subjective image and
video quality datasets.

Table 5.2: Average time per trial for rating and ranking experiments and the value of parameter η
from Equation 5.2, for the three compared datasets.

Dataset Time rating
Time

Pairwise comparisons η

HDR video 6.1 1.2 1.5
LIVE - - 1.02

TID2013 7.7± 0.9 3.4± 1.8 1.24

5.4.3 Experimental effort and observer model

In this section I provide the scaling of three real-world datasets. I also report the response time
as well as the value of the parameter η per dataset. Overall, in the compared datasets rating
scores tend to have little influence on the final scale, while generally having larger variance of
the observer model and also longer decision times.

HDR video compression dataset For the HDR video dataset the value of η > 1 (Table 5.2)
means that the standard deviation of the observer model in rating experiments is 50% higher
for this problem than with pairwise comparisons. The relationship between the JOD scale,
incorporating both rating and ranking, and pairwise comparison JOD with only ranking is shown
in Figure 5.2a. The relation shows that rating data has little influence on the final scale with the
mixture of MOS and pairwise comparison data, which could be explained by the higher standard
deviation of the observer model in the rating data. In rating experiments, on average, observers

77



took five times longer to respond than in pairwise comparison experiments.

LIVE image quality assessment dataset The JOD values obtained from pairwise compar-
isons and scale with the mixture of MOS and ranking data for LIVE dataset have very strong
linear relation (Figure 5.2b). However, unlike the HDR video compression dataset, for which the
parameter η was found to be greater than 1, for LIVE dataset both pairwise comparisons and
mean opinion scores are approximately the same. I do not provide the experimental effort for
LIVE dataset, as these details are not provided in the original studies [115, 146].

TID2013 image quality dataset The value of the parameter η from Equation 5.2, for TID2013
is 1.24. Figure 5.2c shows that adding rating data (JOD from the mixture of pairwise comparison
and rating scale) has little impact on the final scale, as the rating experiment contains much
fewer measurements than the original set of pairwise comparisons. For the TID2013 dataset the
response time for pairwise comparisons is lower than for rating experiments.

5.5 Comparison of quality scales

I show the differences between the JOD, DMOS, and vote count (VC) quality scales in Figure 5.3.
The figure shows three images from the TID2013 dataset and their corresponding quality scores
in each scale. I plot on top of each scale the distribution associated with the observer model as a
solid line and the one associated with the distribution of the estimate of the mean as a filled area.
The observer distribution explains how the quality estimates vary across the population, and it
combines inter- and intra-observer variations. The standard deviation of this distribution is fixed
for the JOD scale so that the difference of 1 unit corresponds to 75% of the population selecting
one condition over another. Since the DMOS scale is approximately linearly related to the JOD
scale (as I show in Figure 5.1), the observer model distribution for DMOS also has approximately
constant standard deviation across all conditions. However, its value is larger than for the JOD
scale (η = 1.24 found for TID2013). This means that the observer model and its distribution
differ between experimental procedures. Observers are more likely to confuse image quality in
rating experiments than in a pairwise comparison experiments. The main difference between
JOD and DMOS scales is that the distances in the JOD scale are well defined and directly related
to the standard deviation of the observer model. In contrast, such distances are arbitrary for
the DMOS scale and vary between experiments. This is because there is no strict definition of
quality ratings, such as “poor” or “excellent” used in those experiments. Their interpretation
depends on the type of distortions that are considered, the training of the participants, and other
factors.

The filled-shape distributions in Figure 5.3 tell how confident we are in the estimate of the
mean quality score associated with the observer model. If we were to run the experiment multiple
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Figure 5.3: The comparison of three quality scales (JOD, DMOS, VC) on the example of
images from the TID2013 dataset, underlying observer model distributions (lines) and estimate
distributions (filled shapes). Colors used in scales correspond to the underlines below each image.
The top row shows reference images, which correspond to (ref) condition on the scale.

times with the same number of observers, the mean quality values across all repetitions would be
distributed according to the filled shapes. Such estimate distribution can be readily calculated
for the DMOS scale as the standard error of the mean. Finding such distribution for the JOD
scale is more complex and can be obtained, for example, by bootstrapping [100] or by Bayesian
optimization as in Section 2.2.3.3. As we collect more data, the standard deviation of that
estimate distribution decreases, while the standard deviation of the observer model converges to
the same constant value of β. The estimation distribution is typically used to determine whether
we have enough data to say that the quality means are different from each other (statistical
significance). The distribution of the observer model (inter- and intra-observer variance) tells us
about the practical significance of the difference between two quality scores: what portion of the
population will make a particular judgment.

Figure 5.3 also shows limitations of vote counts used as a quality measure. Firstly, it does
not have an associated observer model. Secondly, the scale does not have the absolute 0 point
assigned to reference images.
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5.6 Experiments: validation

In this section, I analyze the effect of combining rating and pairwise comparison through a set of
experiments on benchmark datasets and simulations, for which ground truth is available. I use
two measures for performance evaluation: 1) SROCC, which accounts for the ranking, and 2)
RMSE, which takes the distance between conditions into account. For some experiments, I also
report pearson linear correlation coefficient (PLCC).

5.6.1 Berkeley datasets

In order to find the relationship between rating scores and estimations from pairwise comparisons,
Shah et al. [114] conducted seven different experiments for various tasks. The tasks were
estimating areas of circles, age of people from photos, distances between cities, number of
spelling mistakes in text, finding the frequency of piano sounds, rating tag-lines for a product
and rating the relevance of image search results. Some of these datasets (distances, age, piano,
spelling) include ground truth, I use those for the analysis.

The measurements from each dataset were used to estimate scores for a) rating data alone, b)
pairwise comparison data alone using the scaling procedure from Section 2.2.3, and c) mixed
measurements, combining both rating and pairwise comparison data using the scaling method
from Section 5.3. When both protocols were combined, I could also estimate factor η, explaining
by how much observer variance differs between rating and pairwise comparisons (Equation 5.2).
I also include the total time effort spent collecting each type of experimental measurement. Note
that since time effort differs, we cannot directly compare both protocols in terms of accuracy.
However, since the standard error decreases as sample size increases, the estimated parameter η
takes into account both the observer variance and the number of measurements.

I could not scale pairwise comparison results for the Age dataset as it contained disconnected
components. However, I could use pairwise comparisons when the data from both protocols
were combined. This illustrates one of the benefits of mixing both types of data: It allows us
to have disconnected components in the graph of comparisons, as long as conditions from both
components are rated.

Results of scaling all four datasets are shown in Table 5.3, together with the total time needed
to collect the data. Several conclusions can be drawn from these results. Firstly, SROCC and
PLCC are similar for both rating and pairwise comparisons. This indicates that both protocols
are capable of estimating the ranking between conditions correctly. However, with pairwise
comparisons, these ranking results are achieved with less time effort. Secondly, when RMSE is
considered, the performance of both protocols depends on the standard deviation of the observer
model associated with each protocol, as suggested in [114]. Note that if the η parameter is
greater than 1, the rating protocol results in a larger standard deviation of the observer model than
the pairwise comparison protocol. For example, since η is greater than 1 in the Piano dataset,
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Table 5.3: Results obtained by rating, pairwise comparisons, and mixed experiments in four
publicly available datasets. The table shows PLCC, SROCC, and RMSE measures and the fitted
η parameter explaining the relation between the standard deviation of the observer model for
both protocols. Total time for data collection for each type of experiments is also shown.

PLCC SROCC RMSE η Total time (secs.)
Dataset Rating PWC Mix Rating PWC Mix Rating PWC Mix Mix Rating PWC

Distances 0.982 0.951 0.981 0.982 0.977 0.979 0.258 0.304 0.189 0.911 15176 12844
Age 0.886 - 0.913 0.805 - 0.875 0.442 - 0.388 0.762 6462 2790

Piano 0.889 0.944 0.938 0.830 0.927 0.939 0.602 0.316 0.334 1.737 7431 5218
Spelling 0.568 0.481 0.546 0.667 0.667 0.667 0.785 0.953 0.892 0.810 9706 17505

pairwise comparisons result in the smaller RMSE. In the rest of the cases, η was lower than 1,
which meant that the rating had better results. Finally, concerning the mixing of both protocols,
in most cases, this approach has better performance or achieves a good trade-off between both
measures. This is expected, as the total amount of measurements is significantly increased
when mixing both sources. However, the result of mixing strongly depends on the accuracy
of both types of measurement, achieving worse results in cases when one of the protocols was
significantly less accurate than the other (for example, the case of Spelling for RMSE).

5.6.2 Simulations

The goal now is to analyze which measurement is more appropriate given the same time budget.
In this section, I rely on Monte Carlo simulations, which assume ground truth quality scores, and
can be used to easily test a range of experimental strategies. For every method, the simulation
was set to run 100 times. I found this number of Monte Carlo iterations sufficient due to the
stability of the results. The first 30 conditions of TID2013 (i.e., associated with content 1)
were used as underlining true quality scores for the simulation. I use the Thurstone case V
observer model, described in Section 2.2.2, to generate simulated pairwise comparison data.
Swiss system was used to guide the search for the pairs to compare using nine rounds, as done in
TID2013 [106]. This means that each observer of pairwise comparison experiments measured
9 · (N/2) comparisons in total. To generate simulated ratings, I add Gaussian-distributed noise
to ground truth data, i.e., assuming that the same observer model is used for both pairwise
comparisons and ratings. Each observer measured N conditions for rating. In the simulation,
I test how the standard deviation of the observer model for each protocol (related to η in the
model) affects the results.

I simulated pairwise comparison, rating, and mixed experiments with a varying number of
measurements. In the mixed scale case, half of the observers performed a pairwise comparison
experiment, and the other half performed rating. In the simulations, I tested i) η = 0.5 (rating
results in less confusion than pairwise comparisons), ii) η = 1 (both measurements result in the
same confusion), iii) η = 1.24 (the ratio found in TID2013) and iv) η = 2 (rating has double
the standard deviation of pairwise comparisons). The error measures are plotted according
to the total time effort needed in Figure 5.4, where time effort corresponds to the number of
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Table 5.4: Results for the experiment with data missing (DM) and disconnected components
(DC) for RMSE, SROCC and total time effort (in secs).

Obs = 10 Obs = 20 Obs=30
Type of measurement RMSE SROCC Time effort RMSE SROCC Time effort RMSE SROCC Time effort

Rating 0.367 0.926 2310 0.277 0.958 4620 0.220 0.973 6930
Rating with DM 0.415 0.908 1848 0.311 0.947 3696 0.249 0.966 5544

PWC 0.200 0.978 4590 0.143 0.988 9180 0.116 0.991 13770
Mix with DM and DC 0.207 0.976 4677 0.151 0.987 9333 0.126 0.990 13956

measurements multiplied by the average time required per measurement found with TID2013.
From the figures, it can be concluded that the measurement with the lowest standard deviation

of the observer model achieves better performance and is preferred in all scenarios. However,
most measurements converge with enough time effort. When measurement noise is unknown,
scaling with the mixture of MOS and pairwise comparison data represents a suitable approach,
achieving reasonable performance and a trade-off between both experimental protocols. Mixing
also behaves well when data coming from rating is noisier, achieving performance close to
pairwise comparisons. It can also be seen that for the case of η = 1.24 (found with TID2013)
pairwise comparisons are more efficient.

Next, I study disconnected components in the graph of comparisons and missing rating data
when mixing both scales. Here I do not assume the same budget of comparisons but instead,
use a fixed number of observers. The same configuration for the simulation explained at the
beginning of this subsection, is used. Table 5.4 shows the case of four approaches: (i) rating; (ii)
rating with data missing at random (20% of the rating data is missing); (iii) pairwise comparisons
with connected components (PWC); and (iv) mixing with data missing at random (again, same
20%); and disconnected components (here I break the graph of comparisons so that there are
always two disconnected components). I perform 100 runs for each method and test it with 10,
20, and 30 observers. I report RMSE, SROCC, and total time effort. The same standard deviation
of the observer model, as in TID2013 (η=1.24) is assumed. Analyzing these results, it can be
concluded that mixing is possible even when dealing with disconnected components and missing
rating data, showing similar performance to the sole use of pairwise comparisons at a similar
time cost. Being able to handle such experimental designs is a highly desirable feature, given
that this can simplify the pairwise comparison experimental procedure for large-scale datasets or
when mixing different quality assessment datasets, for which missing rating data is common.

Although results presented in terms of RMSE and SROCC provide the means for evaluating
the dataset merging procedure in terms of the ability to recover the ranking and regression
accuracy, the uncertainty in the recovered scores is not accounted for. Furthermore, for the
narrow quality range the reliability of these metrics can be affected by the range effect [87].
Whenever the mapping to the scale is not necessary these shortcomings can be remedied by the
method proposed in [63, 64, 65, 36]. The method was developed for evaluation of objective
quality metrics and is based on their ability for two compared stimuli reliably identity: if the
stimuli are qualitatively different and, if they are, what is their correct ranking.
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Figure 5.4: Simulation of mixed scale for different values of standard deviation of the observer
model (parameter η).
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5.7 Summary

In this chapter, I proposed a probabilistic model that can bring pairwise comparison and rating
experiments into a unified quality scale. The units in that scale, are scaled accordingly to the
combined inter- and intra-observer variations so that 1 unit corresponds to 75% of observers
selecting one condition over another (JOD units). The model can estimate observer variation for
each experimental protocol and bring measurements to the scale determined by the variation in a
side-by-side pairwise comparison experiment.

I test the model on several real datasets and in several simulations. Tests have confirmed the
assumption and further revealed interesting patterns in the two experimental protocols. Given
the same time effort, there is no clear conclusion about what experimental protocol to use. The
decision should rely on the noise of both scales, measured by the parameter η in the model. I
also found that mixing both protocols can be beneficial in several ways: i) to mix datasets that
use either rating or pairwise comparisons, ii) to avoid disconnected components in pairwise
comparison experiments, iii) if cross-content comparisons must be avoided and iv) if both types
of measurements were previously collected. My model is aimed at recovering the relative
relationship between the scores coming from both rating and ranking experiments and does
not explicitly account for subject reliability. Other methods [74, 73, 71] have been proposed to
recover subjective quality scores from noisy opinion score measurements and would be more
suitable for that task.

In the examples above I showed the utility of the proposed method for improving the scores
of a single dataset. In the next chapter I apply the proposed method to combining several
datasets together. I particularly focus on image quality datasets, for which, the features of the
proposed method are particularly useful. Image quality datasets are often fragmented, lacking
cross-content comparisons (Chapter 3), collected with different experimental protocols.
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Chapter 6

Unified photometric image quality dataset

6.1 Introduction

Objective image quality assessment metrics, such as peak signal to noise ratio (PSNR) and
structural similarity index measure (SSIM) are widely used in image compression, reconstruction,
and enhancement [122, 152, 22, 55, 9]. However, most IQA metrics do not account for display
characteristics such as the dynamic range of the display, which can influence the perceived
image quality. For example, compression artifacts are more visible on a HDR display, than on
a dimmed mobile phone [145]. Recent development of HDR displays motivates the need for a
new, photometric IQA model that accounts for absolute image luminances and can operate in
both HDR and SDR images.

The primary limitation to developing such a metric has been the lack of a large-scale
subjective image quality dataset. Although attempts have been made to adapt and verify the
performance of SDR metrics on HDR content [3, 130, 5, 37, 148] those have not been thoroughly
tested due to the lack of a unified dataset. There are methods [63, 133, 36] for metric validation
on disjoint datasets, which do not require mapping to a scale and which also provide the means
of evaluating statistical significance in differences in performance of the tested metrics. These,
however, require access to the raw data, are more suitable for the datasets with large score ranges
and test the discriminative power of the metrics, rather than the ability to recover the exact
scale. The absence of a large unified dataset also prevented the development of metrics based on
machine learning for HDR images, which require large amounts of versatile and heterogeneous
data to train. While current machine-learning-based SDR image quality metrics relied on large
crowd-sourcing studies [107, 151, 44], these are not straightforward to conduct for HDR content
as it requires an HDR display and a controlled viewing environment. Methods overcoming this
shortcoming have been proposed. As such [65] proposed an objective function and an algorithm
for training machine learning methods on disjoint datasets. The method is, however, more
suitable for the applications where the recovery of the exact scale is not necessary.

The available subjective image quality datasets [106, 97, 148, 115, 62, 53, 107, 151, 32],
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are insufficient in isolation, as they are limited in terms of the number of images, diversity of
distortion types, and image sizes. These datasets also cannot be easily combined due to the
use of different experimental protocols and the relative nature of the quality scores. Moreover,
incomparable quality scales across datasets prevent the use of absolute scores as a mean of
benchmarking IQA metrics, forcing to rely on correlation coefficients, such as SROCC or PLCC.
Instead of following a common practice of collecting a dataset from scratch, I argue for the
consolidation of existing datasets and focus on combining SDR and HDR image quality datasets
to create the largest photometric subjective IQA dataset with a unified quality scale. I perform a
set of subjective assessment experiments and construct the largest subjective HDR IQA dataset
to date (Unified Photometric Image Quality (UPIQ)) using the psychometric scaling procedure
from Chapter 5. The dataset contains 3779 SDR and 380 HDR images from four existing IQA
datasets. I show the necessity and advantages of psychometric scaling by comparing it to other
strategies to merge datasets.

The contributions of this chapter can be summarized as follows: (i) I perform a series of
subjective image quality assessment experiments; (ii) using the psychometric scaling described
in the previous chapter construct the largest subjective HDR IQA dataset to date (UPIQ); and
(iii) I show the necessity and advantages of the psychometric scaling by comparing it to other
strategies for merging datasets. The work in this chapter is based on my manuscript submitted to
IEEE Transactions on Multimedia [90].

The rest of the chapter is organized as follows: I first describe existing IQA datasets; I then
talk about the datasets that I have selected for alignment in the new UPIQ dataset; after that,
I talk about the required experiments for accurate alignment of the datasets and experimental
procedure; I then validate the dataset by comparing the produced scaling to the existing re-
alignment technique [148].

6.2 Existing IQA datasets

To train and validate image quality metrics, one requires a dataset where image quality scores
are obtained from human observer judgments. The ideal dataset would contain a large number of
psychometric measurements over a range of image content, spanning all dynamic ranges, along
with a variety of distortions at different levels of impairment.

Although many subjective IQA datasets exist, they are far from ideal. For example, the largest
currently available SDR dataset BAPPS [151] offers only a single distortion type per content
— therefore, machine learning based metrics may struggle to learn how to scale the magnitude
of distortion. Moreover, image quality scores were not measured extensively, with only two
judgments per 64× 64 pixel patches rather than full-sized images. Another recently collected
large-scale SDR dataset [107], contains pairwise preference probability, i.e. the likelihood of
that one image in a pair is more similar to the reference than another. Even though authors
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Figure 6.1: Distribution of log-luminance per dataset.

collected a large number of comparisons per image (> 10), only within-content comparisons
were performed, thus making it impossible to judge relative quality across different contents
[149]. The dataset is not publicly available. Existing HDR IQA datasets [148, 62, 97] are
significantly smaller than SDR datasets, more homogenous in the versatility of their contents
and distortions, and are thus insufficient for the applications outlined in this paper.

Since collecting large amounts of IQA data is time-consuming and expensive, it is preferable
to reuse existing datasets. The idea of combining subjective IQA datasets has been considered
before. Authors in [148] align subjective scores of HDR datasets using objective quality metrics.
The method assumes that the quality predictions from multiple metrics can be used to transform
quality scores from one dataset to another. However, this approach cannot be used to combine
datasets with different dynamic ranges as no metric can reliably predict the quality of both
HDR and SDR images. In this work I propose a different approach to combining IQA datasets.
Instead of using predictions from objective metrics, I conduct a set of subjective experiments to
measure the relative cross-dataset quality and then use psychometric scaling procedure to place
the datasets on a unified quality scale.

6.3 Unified photometric IQA dataset

The goal was to create a large dataset consisting of both SDR and HDR images, with the image
quality scores on a unified quality scale with JOD units. This was achieved by selecting existing
SDR and HDR datasets, collecting additional cross- and within-dataset comparisons, and scaling
all the measurements together. I call the dataset UPIQ (“You Pick”) — Unified Photometric
Image Quality. Before my work, the largest HDR IQA dataset contained only 240 conditions
[62]. My dataset has 4159 images, making it the largest HDR dataset to date. Unlike most IQA
datasets, images in my dataset are provided in absolute photometric units cd/m2, and scores are
given in interpretable JOD units.
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Table 6.1: Characteristics of the chosen IQA datasets

Name
Dynamic

range
Experiment

No.
images

No.
distortions

No.
contents

Image sizes
(h×w pixels)

LIVE [115] SDR MOS 779 5 29 512×768

TID2013 [106] SDR PWC 3000 24 25 348×512

Narwaria [97] HDR MOS 140 2 10 1080×1920

Korshunov [62] HDR MOS 240 3 20 1080×944

6.3.1 Selected datasets

Despite a large number of available IQA datasets, only a few of them meet my criteria and could
be included in UPIQ. Some datasets were constructed for no-reference quality assessment and
do not contain reference images [32]. Other datasets contained a single distortion per content.
Thus they provided no means to scale the magnitude of a distortion [32, 53]. For some datasets,
the image size was too small for a proper judgment of image quality [151]. While I attempted to
scale some datasets, I found their quality scores to be too inconsistent with my measurements
to be included in UPIQ [148]. I selected four existing datasets—two SDR (TID2013 [106] and
LIVE [115]) and two HDR (Korshunov [62] and Narwaria [97]), which I summarize in Table 6.1.
All four datasets span very large dynamic range, as shown in Figure 6.1.

6.3.2 Dataset alignment experiments

Subjective measurements for the four original datasets were collected with different experimental
protocols, scales, observers, and images. This makes quality scores from different datasets
incomparable, ite.g., a score of four may indicate high quality in one dataset, but low in another.

To align quality scores from different datasets, I need to perform several types of pairwise
comparisons, illustrated in Figure 6.2. Comparisons within a single dataset (within-content,
cross-content, and with-reference) are needed to bring the quality values to a common scale
of JOD units. This is especially important for the datasets with only MOS (rating) values, as
these are provided in an arbitrary scale. I need to find the relationship between MOS and JOD
values by estimating the associated parameters (a, b, and η in Equation (5.5)). The cross-dataset
comparisons are necessary to ensure that the quality values are comparable across the datasets.
Because different datasets usually do not share the same content, cross-dataset comparisons
also tend to be cross-content comparisons. Cross-content comparisons have been shown to be
of similar difficulty as within-content comparisons in Chapter 3 and significantly improve the
accuracy of a quality scale [149].

Displays and stimuli The data necessary for alignment were collected on two different dis-
plays. Comparisons of SDR to SDR images were performed on a color-calibrated SDR Samsung
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Figure 6.2: Types of comparisons necessary for dataset alignment. The lines link pairs of images
selected for pairwise comparisons. Within-content comparisons (solid red lines) are most com-
monly used in pairwise comparison experiments. However, such datasets often lack comparisons
with reference (blue dotted lines), which are useful to provide an absolute anchor of quality.
Cross-content comparisons (green dashed lines) are less common, but can substantially improve
the scale [149]. Finally, cross dataset comparisons (black dash-dotted lines) are necessary to
scale the datasets together.

S32D850T display. The comparisons involving HDR images were presented on a custom-built,
color-calibrated 10” HDR display with 2048× 1536 pixels, 15,000 cd/m2peak luminance, and a
black level below 0.01 cd/m2. Because I had no information on the displays used in the SDR
image quality studies, I used the typical parameters of an SDR display in gain-gamma-offset
display model from Equation 2.17. To reproduce SDR images Ioriginal on the HDR display, I used
gamma γ = 2.2, the peak luminance, Lpeak = 100 cd/m2, and the black level, Lblack = 0.5 cd/m2,
and Lrefl = 0. For HDR images, I reproduced the absolute luminance values used in the original
studies. The viewing distance was 90 cm for both the HDR display (164 pixels per degree) and
the SDR display (51 pixels per degree). When the image size exceeded the size of the display, I
provided a simple panning interface in which observers could use a trackball to inspect different
portions of the image.

Experimental procedure and participants In order to produce a meaningful unified quality
scale using pairwise comparisons for a specific single IQA dataset, one needs a) comparisons of
distorted to the pristine quality reference image, b) within-content comparisons to scale different
levels of distortion for the same distortion type, c) cross-content comparisons [149], to connect all
contents and put them on the same quality scale and d) cross-dynamic-range comparisons (which
are also cross-content comparisons), to build a unified scale capturing quality relationships across
all luminance levels. For rating, this would be equivalent to having observers rate across all
distortions and distortion levels during the same session, instead of having separate experiments.
In the case of selected datasets, all of these considerations were taken into account when original
data was collected, i.e., each dataset has a self-contained unified quality scale. To align these
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data, I need to connect disjoint datasets through pairwise comparisons and find the relationship
between rating and pairwise comparison judgments within each of the datasets. This means that
for every disjoint rating dataset, I need to collect within dataset comparisons and link all datasets
with across dataset comparisons.

The observers were presented with two distorted images and asked to select the image of
better quality with respect to the reference. Observers could press and hold a space-bar to view
the reference images. Each participant saw images in a different order. Each selected pair
of images was compared by 6 participants, with each participant completing approximately
300 trials. Overall, 6000 new comparisons were collected from 20 participants. Note that this
required moderate experimental effort as compared to collecting the data from scratch (3000
images in the TID2013 dataset required over 500,000 comparisons). The order of comparisons
in every experiment was randomized. I ensured that ITU recommendations were met and that
the time for performing one experiment did not exceed 30 mins, to prevent observer tiredness
from influencing the experiment outcomes.

Similar to Chapter 3, all participants were research members of the Rainbow group. The
mean age of the participants was 29 years, with the youngest participant being 19 years old and
the oldest 47 years old. 15 male and five female subjects participated. Six participants belonged
to the Asian ethnicity and 14 participants belonged to white ethnic group. All observers were
paid for the participation with 10£ Amazon vouchers per hour. Ethical approval granted by the
ethics committee with the details of the experiment is provided in Appendix A.1.

I extended the data collected in original datasets and follow-up studies for TID2013 [88, 108]
and LIVE [146] datasets with two additional pairwise comparison experiments for all four
datasets. In all cases, comparisons were selected so that the two compared conditions were of
similar quality to improve the information gain of the collected data and to exclude obvious
comparisons [146].

In the first experiment, I collected only comparisons within the dataset, i.e. comparing images
of the same dataset. This is necessary for finding the relationship between rating measurements
and pairwise comparisons. It is only necessary for rating-based datasets, which means I excluded
TID2013 from this experiment since I use previously collected pairwise comparisons and rating
measurements [88]. I ensured that all three types of previously mentioned comparisons were
covered: to reference, within-content, and cross-content. After this first experiment, all the data
could be scaled, since I had comparisons to a common reference for all four datasets.

For the second experiment, I compared conditions exclusively from different datasets, con-
necting every dataset to the rest. Images were chosen to cover the whole quality scale uniformly. I
performed several iterations of the pair selection. This is, after conducting a pairwise comparison
experiment on a small batch of comparisons, I re-scaled the combined dataset and selected the
next batch from the new scale. ASAP algorithm, described in Chapter 4 was not ready at the
time of the experiment, however, it also cannot be used for the rating data.
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Figure 6.3: Original quality scores versus the results of my scaling in JODs (UPIQ dataset)

6.3.3 UPIQ dataset scaling

I combined the newly-collected comparisons with the original data from the four datasets and
from the two follow-up studies on TID2013 [88] and LIVE [146]. In total, the combined dataset
consists of 571,215 individual pairwise comparison and 27,676 rating measurements, which
were input to the scaling procedure from Chapter 5.

Figure 6.3 shows the relationships between the original quality values of each dataset and the
new JOD values from a unified dataset. For all datasets, but for TID2013, the plots show strong
linear relationship between the original scores and re-scaled JOD units. Note that the original
scores of the TID2013 dataset were obtained with vote counts, reliant only on within-content
comparisons. This approach has proven to be less accurate as compared to psychometric scaling
in chapter 3.

6.3.4 Examples of the UPIQ dataset

Figures 6.6 and 6.7 show sample images from the unified dataset at JOD = −1 and −2 and are
intended to be a visual subjective validation of the final scale. These levels were selected to show
images from all four datasets, as images from the HDR datasets (Korshunov and Narwaria) have
quality scores above -2 JOD only. Each figure contains four separated sections, each associated
to a different dataset. Each section has two rows: distorted and reference images. For display
purposes HDR images were converted to SDR with gamma encoding:

ISDR = I
1
2.2
HDR. (6.1)

As the perceived image quality depends on the display luminance, the SDR images in the
figures might be masking or amplifying some image distortions. Thus figures are intended to
be an approximate demonstration of the final image quality scale. Nevertheless, images from
different datasets at the same JOD level have similar distortion severity. Without the unified
photometric image quality dataset (UPIQ) it would be impossible to compare image scores
across datasets. Most of the HDR images are distorted only locally, with the overall image
quality not deteriorating significantly, as opposed to images from SDR datasets that had uniform
distortions applied to them. Narwaria mostly has panorama images, where local distortions are
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Figure 6.4: (a) Scatter plots for five folds (distinguished by colors and shape); difference in
quality scores in the scale constructed with objective quality metrics [148] OMi - OMj versus
empirical probability, pij , of one image i being selected over image j (left); and difference in
quality scores in my scale JODi− JODj versus pij (right). (b) Scatter plot of the two considered
quality scales for the HDR datasets. The plot also shows an example of the data used for one of
the cross-validation folds. Purple lines represent the training comparisons and black lines the
test comparisons (right)

less noticeable due to the size of the image.

6.3.5 UPIQ dataset validation

In the following subsections, I compare my scaling with the metrics-based dataset alignment and
then demonstrate the improvement in pairwise accuracy.

6.3.5.1 Comparison to previous re-scaling work

Multiple IQA datasets can be merged using an iterated nested least-squares (INLS) algorithm
[134]. The algorithm uses existing objective quality metrics to find the relationship between
conditions in different datasets. The assumption made is that a weighted combination of metrics
should have a high correlation with human judgments. The algorithm iteratively finds weights
for the combination of objective quality metrics and aligns subjective quality scores from each of
the datasets until convergence. Since no metric exists that has been exhaustively tested on both
SDR and HDR images, I validate the results using two HDR datasets (Korshunov and Narwaria),
aligned with INLS in the previous work [148]. Figure 6.4b shows that my scaling procedure
and the one from [148] lead to substantially different scores. To determine which alignment is
more consistent with the subjective judgments, I compute the rank-order correlation between
the unprocessed human subjective measurements and scaled values. Since the collected human
judgment data comes in the form of pairwise comparisons, I compute the correlation between the
empirical probability of selecting one condition over another and differences in quality scores.

The method proposed in [134] relies exclusively on quality scores (regardless of the method
used to obtain them) and objective metrics to re-align datasets. At the same time, my approach
uses psychometric scaling, which requires additional pairwise comparisons to build the unified
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Table 6.2: SROCC between scaled quality scores and empirical probabilities, for my and metric-
based scaling. The values are reported for each fold of the cross-validation

Validation Fold 1 2 3 4 5

Psychometric scaling (our) 0.77 0.72 0.62 0.74 0.71

Objective-metric-based [148] 0.67 0.60 0.52 0.52 0.53

Figure 6.5: Accuracy of classifying cross-dataset conditions into better/worse after alignment
with the proposed method. Higher value of Threshold JODs means that more conditions are
excluded from training and testing sets. Shaded region is 95% confidence interval.

quality scale. Thus, to ensure a fair comparison, I perform five-fold cross-validation on the
collected cross-dataset comparisons. I split cross-dataset comparisons into five equal-sized
partitions. In each fold of the cross-validation, I scale the data from four partitions and use
the fifth partition for validation. The cross-validation results are given in Table 6.2. My model
correlates better with the subjective judgments for each fold, with a mean SROCC of 0.71 versus
0.56 for the method from [148]. It should be noted that the correlation values computed in this
manner cannot reach high values because of the measurement noise in the pairwise comparison
data. Here it is important to consider that projecting pairwise comparisons to one unique quality
dimension with perfect precision is often impossible. For example, previous work has shown
how pairwise comparison data could be represented with higher accuracy in higher dimensional
spaces, however, with much reduced interpretability of the scale [129]. Figure 6.4a also shows
that the relationship is closer to the expected cumulative normal function for my method.

Although the scale in my dataset is significantly better than the one constructed with the
method from [148], interpreting correlation coefficients might be challenging. To answer whether
an SROCC of 0.71 is accurate enough, I validate the scale by computing the pairwise ranking
accuracy for comparisons of varying difficulty.
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6.3.5.2 Measuring pairwise accuracy

In this section, I provide an interpretation of the SROCC results from my validation experiment.
I will demonstrate that the scale correctly ranks 97% of the pairs that are at least 1 JOD apart.

I first transform the collected data and the produced scale into pairwise rankings. This is, if
the quality of i is higher than that of j (as measured in the collected pairwise comparison matrix
C) then I set the binary target label tij to +1, otherwise I set the target tij to -1. This represents
the ground truth pairwise rank averaged across the population. I then compare this ground truth
binary label to my predicted binary labels t̂ij , following the same procedure but using the output
of the scaling algorithm instead of probabilities. Having ground truth and predictions, I compute
ranking accuracy. For this, I ran 10-fold cross-validation. In each iteration, I withheld 10% of the
compared cross-dataset pairs of conditions for validation. The remaining 90% of compared pairs
were for scaling. To compute the ranking accuracy, I assume the minimum threshold distance (in
terms of JODs) required for a pair of conditions to be considered, then report the ratio of the
number of correctly ranked considered pairs to the total number of considered pairs.

Figure 6.5 shows the accuracy scores for different thresholds of reliable JOD differences, for
both my scale and that of [134]. For conditions > 0.75 JODs apart (where 63% of observers
agreed on the highest quality image, only 13% more than random choice), my scale has 90%
accuracy. That is, 90% of the pairs, which are more than 0.75 JODs apart, are correctly ranked
by my psychometric scaling. The difference with [134] is very significant, with my scale being
consistently much more accurate across different thresholds. Note that the confidence intervals
decrease with the value of the JOD threshold increasing. For larger thresholds the scaling method
is less likely to make mistakes. Thus, after the threshold value of 1.6 JODs the scaling methods
had 100% accuracy in my set of experiments.

6.4 Summary

A large scale photometric image quality dataset would enable the development of deep learning
based image quality metric. However, existing HDR image quality datasets are small in size
and expensive to collect. I remedy this limitation and increase their size by merging together a
mixture of both HDR and SDR datasets. My merging procedure, presented in the previous chapter,
requires collecting additional data (cross-dataset comparisons), however, the experimental effort
is much smaller compared to collecting the dataset from scratch. The accuracy of the resulting
dataset is much higher than that of alternative procedures [134, 148]. Unified Photometric Image
Quality dataset (UPIQ), is the first large-scale dataset that can be used for training and testing
HDR image quality metrics. Images in my dataset are represented in absolute photometric and
colorimetric units and their quality scores are provided in the interpretable JOD units [100]. In
the next chapter I show the utility of my new dataset by re-training existing quality metrics and
show that the dataset is large enough for training deep architectures.
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Figure 6.6: A selection of images from the four combined datasets at approximately −1 JOD
level. Each dataset has two rows: distorted and reference images. I converted HDR images
to SDR with gamma correction and gamma 2.2. Images from different datasets at the same
JOD level have similar distortion severity. Without a unified dataset it would be impossible to
compare image scores across datasets.
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Figure 6.7: A selection of images from the four combined datasets at approximately −2 JOD
level. Each dataset has two rows: distorted and reference images. I converted HDR images
to SDR with gamma correction and gamma 2.2. Images from different datasets at the same
JOD level have similar distortion severity. Without a unified dataset it would be impossible to
compare image scores across datasets.
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Chapter 7

Photometric objective quality metrics

7.1 Introduction

This chapter shows how the large scale dataset, presented in Chapter 6 can be used to re-train and
benchmark existing HDR image quality metrics. I show that the proposed dataset is sufficiently
large for deep architectures by training a CNN-based full-reference photometric image quality
metric. The advantage of training on the unified dataset is shown in comparison with training on
a single dataset and multi-task learning on disjoint datasets. The utility of training HDR metrics
on the new dataset is shown in an application to image compression. The new dataset, code, and
metrics are available online1. The work presented in this chapter is based on my publication at
IEEE Transactions on Multimedia [90].

The rest of the chapter is organized as follows: first I discuss existing approaches to IQA and
how existing IQA metrics can be adapted to the varied dynamic range of a display; I then show
how the unified dataset can be used to train data-driven metrics; following that I compare the
performance of existing HDR quality metrics; I conclude by showing the importance of a unified
dataset in training data-driven metrics by comparing to a multi-task learning approach.

7.2 Related work

Authors in [3] proposed a simple method to adapt the standard dynamic range metrics to HDR
contents. Where an SDR image quality metric is applied to an image transformed to a perceptually
uniform domain, through either PU or logarithmic transform. I discussed the general pipeline for
that in Section 2.3.4. PU-transform was also used to adapt a no-reference deep SDR IQA metric
to operate on HDR images [54]. Unlike [54], which, due to the absence of a sufficiently large
HDR dataset had to rely on a metric trained on SDR images, my work enables training of a deep
HDR IQA metric on both SDR and HDR images.

1https://www.cl.cam.ac.uk/research/rainbow/projects/upiq/.
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Figure 7.1: The pipeline used to train PU-PieAPP on absolute scores. Images first pass through
the display model and are then fed to the PU transform. The feature extraction network with
shared weights extract representations, which are passed to the score computation network,
producing a score per image.

Another HDR quality metric was proposed in [69], while developing a rendering algorithm
for displaying an HDR image on an SDR display. Two linear HDR image are first transformed to
SDR via inverse gamma encoding. They are then decomposed into frequency channels, using the
Laplacian Pyramid [12]. The resultant decomposition is then normalized by a weighted sum of
the localized element-wise amplitudes. The Lα-norm of the differences between the coefficients
within each frequency channel (that is, the absolute value of each coefficient difference is raised
to the power α, and then summed over the entire channel, an overall sum is then raised to the
poser 1

α
), combined across channels using an Lβ-norm was used as quality predictor.

High dynamic range video quality metric (HDR-VQM) was proposed in [99]. The authors
first transform HDR values, to emitted luminance, assuming a display model. The emitted
luminance values are then transformed to the perceptually uniform space. Log-gabor filters are
then employed in the frequency domain to extract features related to image quality. Features
from the reference and test images are compared. Although the metric is tailored for video
quality it can also be used for image quality assessment.

Authors in [82] proposed a metric based on comprehensive model of an early visual system
(HDR-VDP2). The model accounts for the intra-ocular light scatter, photoreceptor spectral
sensitivities, separate rod and cone pathways, contrast sensitivity across the full range of visible
luminance, intra- and inter-channel contrast masking, and spatial integration. The metric achieves
state-of-the-art performance across the non-deep learning based metrics.

7.3 Training a data-driven HDR metric

UPIQ is sufficiently large to allow us to train from scratch a CNN-based image quality metric
to predict the quality of both SDR and HDR images. The metric combines the ideas behind
PU encoding [3] (Section 2.3.4) and a recently proposed CNN architecture for image quality
assessment (PieAPP) [107]). I will refer to this metric as PU-PieAPP.

Architecture The diagram of the deep metric architecture is shown in Figure 7.1. The metric
takes as input a pair of test and reference images and produces a single quality score sA in
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Figure 7.2: (a) The feature extraction network takes image patches as an input and has two
outputs: one from a patch passing through the whole network and another formed from skip
connection. The network has 11 convolutional layers with 2× 2 max-pooling after every even
layer. (b) The score computation network computes patch-wise weights and scores, the weighted
average produces the final score

JOD units. The input images need to be transformed into the display domain to account for the
dynamic range of the displayed images. This is achieved by a display model from Equation
2.17 for SDR images, or by scaling color values according to the presentation conditions from
the original papers for HDR images. Then, the resulting trichromatic color values (with ITU
Rec. 709 primaries [47]) are converted into approximately perceptually uniform units using
the PU transform (Section 2.3.4), which is applied individually to each color channel. Such
encoded images are fed into the PieAPP architecture, which combines a pair of feature extraction
networks with shared weights with the score computation network, identical to those in [107].

The detailed architecture of the PieAPP network is shown in Figure 7.2. For every input patch
m of reference R and distorted A images, the feature extraction (FE) network has two outputs:
y(m) from the input passing through the whole network and x(m) formed by the concatenation of
the flattened outputs of layers at different depths of the network. The score computation (SC)
network takes two inputs: the difference between x(m)

R − x(m)
A , which is passed through a fully

connected layer, predicting patch-wise error sm and the difference y(m)
R − y(m)

A , which is passed
through another fully connected layer, producing the patch-wise weight w(m). The two outputs
s(m) and w(m), are then used to produce the weighted average of all per patch scores – a quality
score of the entire image sA. Note that passing two reference images through the network will
result in the x(m)

R − x(m)
A = 0, thus the output of the quality estimation function f(A,B), will be

constant, defined by the bias of the score computation network.

Alternative Architectures I experiment with several CNN architectures to find the one that
generalizes the best. Since the CNN-based metric can be trained end-to-end, it could potentially
learn the PU-transform. I replaced the PU transform with a logarithmic function followed
by scaling to the 0-1 range and then trained the network. The prediction error was much
higher for the logarithmic function (RMSE 0.68) compared to the PU transform (RMSE 0.47).
This confirms that the PU is beneficial for quality predictions in SDR/HDR images, even for
CNN-based metrics.
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Training In contrast to the original PieApp implementation [107], I train the network as
regression rather than learning-to-rank. The scaling procedure achieves the same goals as
learning-to-rank, but offers a more accurate observer model and allows us to split the problem
into two separate scaling and learning steps. I train the network from scratch, using Adam
optimizer on 4 NVIDIA P100 GPUs. Every tested architecture was run for 500 epochs and
the model with the best performance on the validation set was saved (using 60-20-20 split into
training, validation and test sets). I train the network on 64 × 64 patches. To densely cover
the whole image, the image is stratified by a uniform grid and patches are sampled at random
positions in each grid cell (jittered sampling). The grid size is selected to give approximately
square cells. In training, I extract 1024 patches per image. I found that 1024 was the largest
number of patches that I could process on my GPU. When testing, I sampled twice the number
of 64× 64 patches needed to cover the image. This number was optimal in terms of the time
versus performance trade-off.

7.4 Benchmark of HDR quality metrics

Although HDR image quality metrics have been compared in many studies [62, 148, 5], none of
them could test the metrics on an extensive dataset such as UPIQ. Therefore, I use UPIQ to test
existing HDR metrics.

Here I consider full-reference metrics, which are either adapted to HDR content using PU-
transform: PU-PSNR, PU-SSIM [137], PU-FSIM [150], or are designed to work with HDR data:
HDR-VQM [99], HDRVDP-2.2 [82, 98] and NLP [69]. I also evaluate no-reference metrics,
adapting them to the HDR content with PU-transform: PU-BRISQUE [93], PU-PIQE [132] and
PU-NIQE [94], due to their widespread use and competitive performance. Finally, I adapted
existing SDR CNN-based metrics to HDR content using the PU-transform: PU-KonCept512
[44] (no-reference) and original PU-PieApp (original) [107] (full-reference). I did not re-train
deep metrics on UPIQ but used weights provided by the authors. For comparison, I also include
full reference PSNR and FSIM metrics, not adapted to the HDR content.

Most objective metrics predict values that are non-linearly related to absolute quality in JOD
units. The scatter plot of the considered metrics predictions versus those of the JOD’s is provided
in Figure 7.3. Since my goal is to predict the absolute quality, I need to map metric predictions
to JODs. I follow a standard approach [115] and fit a logistic function mapping objective quality
o into absolute JOD units q(o):

q(o) =
a1

1 + ea2(o−a3)
+ a4o+ a5, (7.1)

where a1, . . . , a5 are fitted parameters. Fitting a logistic function is necessary for computing
performance measures, RMSE and PLCC, but it also helps to scale objective metric results into
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Figure 7.3: Objective metrics predictions vs. JOD quality values. I separately label distortion 18
from TID2013 (change of color saturation) as it introduces the biggest prediction error for the
metrics that operate on luma/luminance values and ignore color information.

interpretable and comparable units of JODs. For example, while the result of PU-SSIM of 0.98 is
difficult to interpret, the result of -1 JODs tell us that 75% of the population will select reference
condition over the distorted one.

For a fair comparison, I use the same 5-fold split into 80-20% training and testing dataset
when fitting psychometric function for the tested metrics. In each fold, a different portion of the
entire dataset is tested while ensuring that no content is shared between training and testing sets.
I also ensure that each subset (TID2013, LIVE, Narwaria, and Korshunov) was split in the same
80-20 ratio. Note that since PU-PieAPP (re-trained) is trained on the quality scores from the
UPIQ dataset, I do not need to fit the logistic function into its prediction.

Described above training approach is suitable only for the case where training is performed
on a single dataset with unified scores. When there is no access to a unified dataset, a different
approach, proposed in [65] would be suitable for training on multiple disjoint datasets. The
approach builds on the framework developed in [63]. The overall cost function for training
machine learning algorithms is based on the ability of the algorithm to discriminate conditions in
different versus similar and better versus worse scenarios. Furthermore this approach would be
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Figure 7.4: Cross-validation results for all trained metrics, expressed as SROCC, PLCC and
RMSE. Error bars denote 95% confidence intervals.

more suitable for applications where the recovery of the exact scale is not necessary and thus,
would allow to avoid unnecessary mapping.

7.4.1 Cross-validation

Cross-content validation The most common approach to the validation of learning-based
quality metrics is the split into training and testing sets that contain different content but share
distortion types. Note that I took extra care to isolate the same content in LIVE and TID datasets
as those share some of the reference images. The results for the 5-fold cross-validation on such
cross-content splits, shown in Figure 7.4, indicate that PU-PieAPP (re-trained) outperforms
existing hand-crafted metrics. PU-PieAPP shows 30% improvement to the second-best per-
forming metric, PU-FSIM, followed by FSIM without the PU-transform. I later show that the
performance difference between PU-metrics and original metrics is much higher when tested on
HDR datasets (images from SDR datasets dominate UPIQ).

No-reference metrics, based on hand-crafted features, exhibit the worst performance — the
PU-transformation applied to the images distort the statistics that these metrics rely on. Deep
learning-based no-reference metric PU-KonCept512 does not perform well either.

Original PieApp adapted to my dataset with PU-transform, performs reasonably well on
SDR images (SROCC: 0.8764). However, it exhibits poor performance on both HDR datasets
(SROCC: 0.5791). This is expected, as the metric was trained on SDR images, and the range of
PU-transformed HDR images is greater than that of SDR.

Cross-validation schemes To understand what mixture of data is required to train quality
metrics robustly, I experiment with different data partitioning schemes. For this experiment, I
selected 5 best performing metrics from Figure 7.4. Table 7.1 lists the training and test data
combinations I tested and the corresponding results.

PU-PieAPP generalizes well when trained cross-content (C-C), i.e., the training and test set
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Table 7.1: Test RMSE and SROCC for different data partitioning schemes and the best perform-
ing metrics. (C-C – cross-content, C-D – cross-dataset, C-DR – cross-dynamic-range). I remove
the listed test portion of the UPIQ from training and test on it. Test PLCC for different data
partitioning schemes and the best performing metrics. (C-C – cross-content, C-D – cross-dataset,
C-DR – cross-dynamic-range).

Metric C-C
Test:

sel. cont.

C-D
Test:

TID2013

C-D
Test:
LIVE

C-D
Test:

Narwaria

C-D
Test:

Korshunov

C-DR
Test:
HDR

C-DR
Test:
SDR

RMSE
PU-PieAPP 0.47 0.92 0.70 0.68 0.62 0.72 1.29
PU-FSIM 0.66 0.65 0.50 0.26 0.29 0.68 1.39
FSIM 0.70 0.65 0.51 0.45 0.52 1.17 1.61
HDRVDP 0.82 0.88 0.64 0.24 0.21 0.78 1.34
HDRVQM 0.86 1.04 0.68 0.23 0.20 0.39 1.43

SROCC
PU-PieAPP 0.94 0.78 0.87 0.82 0.79 0.74 0.65
PU-FSIM 0.90 0.80 0.96 0.87 0.93 0.71 0.77
FSIM 0.89 0.80 0.96 0.54 0.52 0.45 0.54
HDRVDP 0.84 0.78 0.94 0.94 0.94 0.81 0.82
HDRVQM 0.82 0.71 0.92 0.95 0.95 0.87 0.60

PLCC
PU-PieAPP 0.96 0.78 0.89 0.78 0.75 0.73 0.67
PU-FSIM 0.90 0.89 0.96 0.87 0.90 0.66 0.77
FSIM 0.89 0.89 0.96 0.53 0.66 0.34 0.51
HDRVDP 0.84 0.83 0.93 0.89 0.95 0.72 0.78
HDRVQM 0.82 0.78 0.92 0.89 0.95 0.86 0.62

Table 7.2: SROCC between the difference in quality scores sA − sB , where A and B are images
from different datasets and empirical probability pij for the multitask network.

TID2013
LIVE

Narwaria
Korshunov

TID2013
Narwaria

LIVE
Narwaria

TID2013
Korshunov

LIVE
Korshunov

0.46 0.27 0.33 0.46 0.26 0.10

overlap in distortion types but not in content. However, the performance of this deep-learning
metric drops significantly if one or more datasets are missing from the training set. This, and the
poor performance of no-reference metrics in Figure 7.4, show that learning-based metrics are
prone to overfitting when the training dataset is not sufficiently large.

As expected, SDR metrics exhibit better performance tested on SDR datasets. The same
holds for metrics for HDR content – they perform better on HDR datasets. PU-FSIM and FSIM
have similar performance when tested on SDR datasets. However, tested on HDR, PU-FSIM
performs significantly better than FSIM, clearly demonstrating the need for the PU-transform.

7.5 Value of cross-dataset measurements and a unified scale

Collecting data is time-consuming and expensive. Hence a method capable of learning the
implicit unified quality without the need for additional data is desirable. To verify if the network
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Figure 7.5: Multitask network. The network is trained to predict original scores from individual
datasets. Similar to the scaling procedure the network learns the implicit quality sA and parame-
ters a and b for each dataset. To constraint the scores I set parameters of TID dataset aT = 1,
bT = 0.

can learn this implicit quality and cross-dataset relationship, I train the network using a multi-task
learning approach, where it is assumed that all datasets share the same feature representation for
quality. The architecture of the network is given in Figure 7.5. The f(A,B) part of the network
is the same as PU-PieApp and produces a score sA, which is a unified, underlying quality for
disjoint datasets. Similar to my scaling procedure from Chapter 5, the scores from individual
datasets are linked with the unified sA via a linear relationship. For example, the quality score
sLA for the LIVE dataset would be predicted with aL ∗ sA + bL, where aL and bL are learned
parameters. These parameters from individual datasets are treated and learned as individual tasks.
Since quality scores are relative, I constraint them by setting parameters of the TID2013 dataset
aT = 1 and bT = 0. To allow for faster convergence, I standardized scores from the separate
datasets. The training procedure for the multi-task network was the same as for the PU-PieApp.

Similar to Section 6.3.5 of Chapter 5 I compute the correlation between the difference in
quality scores sA − sB, where A and B are images from different datasets and empirical proba-
bility pij . The detailed results are given in Table 7.2. Neither of the cross-dataset relationships is
well captured by the multitask network, as no information about the relative quality relations
across datasets is provided. This information is however available to the scaling method, which
uses cross-dataset comparisons to link the scales.

7.6 Brightness-adaptive image quality and coding

I investigate how PU-PieAPP and PU-FSIM (the two best-performing metrics) predict the quality
of images shown on displays of different brightness. Figure 7.6a left shows the quality predictions
averaged across all contents for JPEG distortion from the TID2013 dataset as a function of
peak display luminance. Both metrics predict improvement in image quality as the display gets
darker than 100 cd/m2. However, the predictions diverge at luminance levels above 100 cd/m2:
PU-FSIM predicts a decrease in image quality, whereas PU-PieAPP predicts an improvement.
Interestingly, PU-PieAPP’s U-shaped curve is consistent with the recent measurements [142]
of human contrast detection thresholds. I show an example of these measurements in the right
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Figure 7.6: (a) The quality predictions as the function of display peak luminance. The predictions
are shown separately for three distortion levels of JPEG and averaged across contents from the
TID2013 dataset. (b) Contrast threshold function for a varied display brightness. (c) Bits per
pixel for JPEG compression to achieve constant perceived quality at different luminance levels.
Different colors represent different quality levels. Shaded regions are 75% confidence intervals.

plot of Figure 7.6a. It is notable that PU-PieAPP implicitly learned human contrast sensitivity
function across the luminance range.

The ability of PU-PieAPP to learn the human contrast sensitivity across the luminance range
and predict the effect of absolute image brightness on image quality enables novel applications.
Here I control the compression rate of a standard JPEG codec (the ”quality” parameter) to achieve
a distortion at a desirable JOD level. The selected levels signify that about 4% (-0.1 JOD), 16%
(-0.3 JOD), or 25% (-0.5 JOD) of the population will correctly indicate a compressed image
from a test and reference pair (discounting 50% guess rate). Figure 7.6c shows the distribution
of the required bit-rate to compress 200 pristine test images from the LocVis dataset [140] at
the desired JOD level. The vertical bars in the plot denote the peak luminance levels of three
displays, typical for an HDR TV, computer monitor, and a dimmed mobile phone. The plot
shows that the bit-rate could be substantially reduced when images are shown on a dimmed
mobile phone, but it should be increased for HDR TV. Furthermore, the difference is larger for
images encoded with high quality. Such information could be useful, for example, for internet
caches that attempt to reduce the amount of data sent to mobile web browsers. Only photometric
metrics, trained on both SDR and HDR images, can be used for such applications as they can
capture the effect of absolute luminance on image quality. A more detailed validation of such
brightness-adaptive image coding can be found in [145].

7.7 Summary

Using the large scale dataset, presented in Chapter 6, with diversity of content, distortions, and
luminance of the assessed images, I trained and tested existing HDR image quality metrics as
well as a CNN-based image quality metric (PU-PieAPP) capable of predicting quality of both
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HDR and SDR images. My results indicate that the dataset is sufficiently large for PU-PieAPP to
outperform the state-of-the-art HDR quality metrics and generalize across different content and
image distortions. The new dataset and trained metrics could be used to test HDR reconstruction
and coding methods or to control their performance adaptively, as I show on the example of
brightness-adaptive image coding.

In the next chapter I validate the ability of the metrics trained and tested in this chapter to
predict visually lossless threshold (VLT) for display brightness and viewing distance dependent
compression on a new VLT dataset.
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Chapter 8

The effect of display brightness and
viewing distance on image quality

8.1 Introduction

In the previous chapter I have shown that IQA metrics, adjusted to account for display brightness
can enable novel applications. In this chapter I verify the performance of the metrics on the task
of finding a visually lossless threshold for image compression under varied display brightness
and viewing distance.

Finding a threshold at which the human eye cannot perceive changes introduced to an image
can be beneficial for computer vision, computer graphics, and image processing algorithms.
Such a threshold can be used, for example, to adjust the image/video compression level so that
the size of the bit-stream is minimized while the distortions remain mostly invisible. I will refer
to such quantization or quality level of an image/video codec as a visually lossless threshold
(VLT). Such a VLT depends not only on the image content, but will also vary with the viewing
conditions: the viewing distance and display brightness. While all image quality metrics account
for image content, very few of them account for viewing conditions [4, 82, 62, 145]. Such lack of
accountability for viewing conditions makes VLT prediction unreliable across different displays
and different viewing distances.

The goal of this chapter is to provide a dataset that could be used to evaluate quality and
visibility metrics on the task of finding VLTs under different viewing conditions. VLT was
measured at viewing distances corresponding to 30 ppd (pixels per degree) and 60 ppd and two
peak brightness levels: 220 cd/m2, common to computer displays, and 10 cd/m2, replicating the
brightness of a dimmed phone. The dataset was collected for two popular compression methods:
JPEG [135] and WebP [117]. I then benchmark both hand-crafted and data-driven image metrics
on the dataset.

The main contributions of this chapter are: (i) a visually lossless image compression dataset
with varying peak display brightness and viewing distance and (ii) performance evaluation of
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image quality and visibility metrics on the new dataset.
The work in this chapter is based on my manuscript submitted to the Human Vision and

Electronic Imaging conference [89]. I am grateful to my collaborator, Nanyang Ye, who has
designed and conducted the experiment.

8.2 Related work

In this section I will go over the related work on most commonly used methods for image
compression, ways of finding a VLT and talk about existing datasts with VLTs.

8.2.1 Image compression

Image and video compression methods can be divided into three types: lossless, lossy, and
visually lossless. Lossless compression methods preserve all information in the decompressed
image [45]. However, their compression rates are much lower than for lossy compression. Lossy
compression methods allow for much higher compression rates, but they compromise on the
visual image quality, often introducing noticeable artifacts [109, 117]. Two commonly used lossy
image compression standards are JPEG and WebP. Both methods have an adjustable quality
factor (QF). The QF varies between 0 (lowest visual quality and highest compression rate) and
100 (highest visual quality and lowest compression rate). Visually lossless compression methods
introduce distortions but it is ensured that they are unlikely to be noticed [79]. Visually lossless
compression requires finding a VLT — the maximum compression level at which distortions are
invisible to most observers. In this work, I choose the VLT for which at most 25% of observers
can perceive the compression artifacts.

Most image compression algorithms rely on hand-crafted methods with a relatively small
number of adjustable parameters. With the advent of machine learning, deep neural networks,
capable of learning complex relations in an automated manner without the need for explicit
assumptions, have also been used for image compression [81]. Their results, however, rely on
the quality and quantity of training data.

8.2.2 VLT prediction

Several works have focused solely on predicting the VLT. For example, authors in [29] proposed
SUR-Net, a deep Siamese-CNN architecture predicting the satisfied-user-ratio (SUR) curve. For
each compressed image, their model predicts the proportion of the population, which would
not notice the distortion. The authors first pre-trained the network to predict image quality and
then fine-tuned on a smaller dataset to predict SUR. The authors later extended the work to
SUR-FeatNet [75], where the pre-trained Inception-V3-CNN is used to extract the features from
the images, which are then fed into a smaller network trained to predict the SUR curve. Authors
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in [76] took a different approach and trained a deep binary classifier. Which, given the distorted
and undistorted source image, predicts whether the distortion would be noticed or not.

In my work I do not focus on developing a new VLT predictor, but focus on validating
existing approaches. I include image quality and image visibility metrics, discussed in the
previous chapter, for comparison, which can also be used for the purpose of finding a VLT.

8.2.3 Existing datasets

To train and test image metrics to predict VLT, one requires a benchmark dataset where, at varied
quality levels, the visibility of distortions is judged by a group of observers. While several image
quality and visibility datasets are available, they either do not contain VLTs [106, 141, 145],
or present images compressed only with JPEG codec at a single luminance level at a fixed
viewing distance. As such, the authors in [56] collected a subjective dataset, called MCL-JCI,
with visually lossless thresholds for images compressed with JPEG codec. The dataset contains
50 source images, with VLTs identified by 30 observers for each image. Overall the dataset
was collected with 150 observers. Similarly, authors in [78] created a dataset with VLTs for
panoramic images compressed with JPEG codec. Each of the 40 panoramic source images was
inspected by at least 25 observers, using a head-mounted display.

Unlike exisiting datasets, the presented dataset in this work consist of VLTs for images
compressed by not only JPEG but also WebP standard. More importantly, the proposed dataset
includes VTLs based on different viewing distance and display brightness.

8.3 Proposed dataset

The goal was to create a dataset with VLTs for images depicting a varied selection of contents
and compressed with two codecs (JPEG and WebP), which were viewed on monitors of different
peak luminance (10 cd/m2and 220 cd/m2), and at different viewing distance (30 ppd and 60 ppd).
I used 20 captured by Dr. Rafal Mantiuk images with 1920 × 1281 resolution, which were
obtained from DSLR RAW images and stored in a lossless format. Half of the images were
compressed with JPEG (libjpeg1) and the other half with WebP (libwebp2). Since it was more
important to capture the variety of content than to compare both codecs, I did not attempt to
collect VLT for the same contents and both codecs. To ensure that the observers could find the
distortions in a reasonable amount of time, I cropped the stimuli to 512× 512 pixels. Examples
of the images from the dataset are given in Figure 8.3. To uniformly cover the entire range of
compression quality values at a reasonable number of points, I incremented QF from 2 to 100
in steps of 2, where 100 is an image compressed with the highest quality and also the highest
bit-rate.

1https://github.com/LuaDist/libjpeg
2https://github.com/webmproject/libwebp
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(a) VLT experiment stage 1 (b) VLT experiment stage 2

Figure 8.1: Two stages of visually lossless compression experiment. The images were displayed
at the native display resolution without upscaling (images are shown out of scale for better
legibility).

8.3.1 Procedure

To improve the accuracy of the VLT measurements, the method of adjustment and 4-alternative-
forced-choice (4AFC) protocol, controlled by an adaptive procedure were combined.

In the first method-of-adjustment stage, observers were presented with reference and com-
pressed images side-by-side and were asked to adjust the QF of the compressed image until they
could not distinguish it from the reference (Figure 8.1a). A half-a-second blank frame with a
middle-gray background was displayed when changing compression levels to prevent observers
from relying on temporal changes to guide their choice. The compression level found in the first
stage was used as an initial guess for the 4AFC procedure [50], in the second stage. Observers
were shown three copies of an undistorted reference image and one distorted image in a random
quarter, as shown in Figure 8.1b. They were then asked to choose the distorted image by clicking
on the spots where they could see the distortions. The location of those mouse clicks for all
four viewing conditions are shown in Figure 8.3. The next value of the QF parameter for the
distorted image was then selected with the QUEST adaptive procedure [139]. Between 20 and
30 4AFC trials per observer for each image were collected. To find the VLT for each image I
fitted a psychometric function to the collected data.

8.3.1.1 Display

The experiments were conducted in a dim room (∼10 Lux). The screen was positioned to
minimize ambient light reflections. The viewing distance was controlled with a chin-rest.
Observers viewed a 27” Asus PG279Q display (2560×1440) from a distance of 80 cm (angular
resolution: 60 pixels per degree) or of 40 cm (angular resolution: 30 pixels per degree). For the
bright condition, display brightness was set to its maximum value (220 cd/m2). For the dark
condition, a 1.2 neutral density filter (Rosco E-Colour 299) was placed in front of the monitor and

110



adjusted the display brightness so that the effective peak luminance was 10 cd/m2. The display
color calibration conformed with ITU-R recommendations [47] and sRGB transfer function.

8.3.1.2 Observers

The data were collected from 19 observers aged between 20 and 30 years old, with normal or
corrected-to-normal vision. All observers were trained and paid for their participation and were
naı̈ve to the purpose of the experiment.

8.3.2 Data analysis

Before analyzing the data, I removed outliers. For each scene I followed the standard z-score
procedure and removed VLT measurements which were more than two standard deviations away
from the mean.

8.3.2.1 VLT distribution

I estimate VLT distribution across the population assuming it to be normally distributed, similarly
as in [29]. The proportion of the population that can detect the distortion is, thus, described by
the function:

Pdet(l) = 1− Φ(l;µ, σ2) , (8.1)

where l is the JPEG/WebP quality factor and Φ(l;µ, σ) is the cumulative normal distribution
with the estimated mean and variance of VLT distribution for each condition. The plots of those
functions for each image are shown in Figure 8.2.

The plots of probability of detection in Figure 8.2 show a clear pattern, with the brighter
display (220 cd/m2) and shorter viewing distance (30 ppd) requiring the highest quality factor.
The opposite is shown for the darker display (10 cd/m2) seen from a larger distance (60 ppd).
The slope of those curves indicates how the VLT varied between the observers. The slope is
similar for most tested conditions, with a few exceptions. For example, the slope is shallower
for i7webp with 220 cd/m2and 60 ppd (red), indicating a higher variance between the observers.
Figure 8.3 (red dots) shows that for this image, the distortions were spotted in different parts of
the image for different observers (sky, trees, grass, people), which could explain the variability.
Therefore, I opt to use a lower value of Pdet to find a VLT. This way the VLT reflects the results
for the most attentive observers, who could spot the most critical part of an image. Another
interesting case is image i17jpeg, for which the curves are close together and the slopes are
steep (low inter-observer variance). As seen in Figure 8.3, the distortions for that image were
consistently detected by most observers in a large smooth area of the sky.

For each condition the VLT is found by selecting the quality factor l for which Pdet = 0.25

(less than 25% of the population can see the difference). Such population VLT values are shown
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Figure 8.2: Distribution of visually lossless thresholds across the population. The shaded regions
are 99% confidence intervals (due to limited sample size). The dashed red lines denote the
detection threshold used to find the VLT.

in Figure 8.4. Another interesting observation is that some images were less affected by the
display brightness (i3webp, i11jpeg, i17jpeg) than the others (i12jpeg, i16jpeg). As shown in
Figure 8.3, the distortions in less affected images were typically spotted in bright and smooth
regions, for which Weber’s law can compensate for the loss of display brightness. It is also
important to note that the changes in VLTs between the viewing conditions are different for each
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Figure 8.3: The images used in the experiment and the distributions of observer clicks (blue for
10 cd/m2, 60 ppd, green for 10 cd/m2, 30 ppd, black for 220 cd/m2, 30 ppd and red for 220 cd/m2,
60 ppd). Colors are consistent with Figures 8.2 and 8.4.

image, suggesting a strong interaction between image content and viewing conditions.

8.4 Evaluation of image metrics

In this section, I evaluate how accurately image quality and visibility metrics can predict VLTs.
The predicted VLTs then can be used to automatically adjust compression parameters to achieve
a trade-off between image visual quality and bit-rate. I evaluated both hand-crafted image
quality metrics (PSNR, SSIM [137], MS-SSIM [136], FSIM [150], HDRVQM [99]) and a deep
photometric image quality metric, PU-PieApp, trained on UPIQ dataset and presented in the
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Figure 8.4: Visually lossless threshold (VLT) for all four viewing conditions shown in different
colors. Note that the color used are consistent with Figures 8.2 and 8.3.

previous chapter. Additionally, I evaluate two visibility metrics: a high dynamic range visible
difference predictor (HDRVDP3) [82], and a CNN-based deep photometric visibility metric
(DPVM) [145]. Note that for the HDRVDP3, I report the results of both the visibility predictor
(labelled HDRVDP3V) and the quality predictor (labelled HDRVDP3Q). I could not include
metrics intended for VLT prediction in [76] and [29], as I could not access the trained models.
Furthermore, correspondence with the authors revealed that the models were trained on very
small datasets and thus could not generalize well beyond the training data.

8.4.1 Luminance-aware metrics

Similar to the previous chapter, I extend the hand-crafted image quality metrics, PSNR, SSIM,
MS-SSIM and FSIM to account for display luminance, by transforming the image to lumi-
nance emitted from a display assuming a model of that display and then converting it into the
Perceptually Uniform (PU) units [4].

To transform standard-dynamic-range (SDR) images from gamma-encoded sRGB colors to
linear RGB values shown on the high-dynamic-range (HDR) display, I used gain-gamma-offset
display model from Equation 2.17. In the experiments I set the peak luminance of the display
to Lpeak = 10 cd/m2, or Lpeak = 220 cd/m2, and the black level Lblack was set to 0.001Lpeak

(assuming that the contrast of the display was 1000:1 and there were no ambient light reflections)
for both cases. I used PU encoding (Section 2.3.4) to adapt PSNR, SSIM and FSIM to different
luminance conditions. Other metrics (HDRVDP-3, DPVM, HDRVQM and PU-PieApp,) are
photometric by design, and thus do not require the application of the PU-transform.
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8.4.2 Viewing distance-aware metrics

To account for viewing distance in VLT prediction, I followed the procedure in [145]. I re-
sampled images with angular resolution of 30 ppd, to the angular resolution of 60 ppd with
Lanczos filter [126] before passing them to the metrics. 60 ppd is the highest resolution in
the dataset and also a reasonable limit for most visual tasks, since the sensitivity of visual
system drops rapidly below 30 cpd [6]. I did not perform the re-sampling for HDRVDP3, as it
automatically accounts for the viewing distance.

8.4.3 Metrics validation

To validate the metrics, I performed 5-fold cross-validation. The goal was to find a mapping
between the quality score predicted by the metrics and the VLTs for Pdet = 0.25. I experimented
with different threshold Pdet values and obtained similar results (not reported here).

I assume that a metric prediction can be mapped to the predicted probability of detection P̃det
by a monotonic function f :

P̃det = f(M(Tl, R)) , (8.2)

where M is the quality metric, R is the reference image and Tl is the test image encoded at the
quality level l. Therefore, the predicted VLT l̃ can be found as:

l̃ = argmin
l
||f(M(Tl, R))− 0.25||2 ∧ l ∈ 2, 4, .., 100 . (8.3)

Since I am interested in the single value of VLT rather than finding the function f , I instead
estimate the VLT using a single (per metric) value qV LT , corresponding to the metric objective
quality at the true VLT level:

l̃ = argmin
l
||M(Tl, R)− qV LT ||2 ∧ l ∈ 2, 4, .., 100 , (8.4)

which I optimize per metric so that ||l̃ − l||2 is minimized (where l is the measured VLT). The
individual qV LT was found for each fold so that the results are reported for the testing set.

Since HDRVDP3V and DPVM produce a map of detection probabilities, rather than a single
quality value, I consider a percentile value from the probability map to be a prediction. For
DPVM, similar to [141], I search for the optimal percentile that minimizes root-mean-squared-
error (RMSE) between the predicted and measured VLT. The best percentile for DPVM and
HDRVDP3V were 86 and 97 respectively.
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8.4.4 Results and discussion

I first explore how well each of the metrics can account for the viewing distance and the display
brightness. The metrics that use PU transform are prefixed with PU-. For each experiment I fix
one of the viewing conditions and let the metric predict the VLT, while accounting for another
viewing condition (e.g., how well the metric can account for the viewing distance at a fixed
luminance level of 10 cd/m2).

The results of the 5-fold cross-validation are shown in Figure 8.5. Metrics, which were
designed to account for the viewing distance (HDRVDP3Q and DPVM) match the experimental
VLT better across different viewing distances compared to the metrics that used a simple
resampling.

When viewing distance is fixed and metrics are trained to account for the display brightness,
DPVM performs the best among the tested metrics. It is followed by three metrics with compara-
ble performance: PU-FSIM, HDRVDP3Q and PU-PieApp. In general, all metrics better account
for the display luminance changes, compared to changes in viewing distance. In all experiments
the visibility predictor HDRVDP3V performed unexpectedly worse than HDRVDP3Q. This
implies that HDRVDP3V requires fine-tuning for more accurate perfomance.

Figure 8.5e shows the results of the 5-fold cross-validation for all viewing conditions, i.e.,
each metric needed to account for both display brightness and viewing distance. The results show
that DPVM is the best performing metric, followed by five metrics of comparable performance
(verified in the paired ttest): HDRVDP3Q, PU-PieApp, PU-FSIM, HDRVQM and PU-MS-SSIM.
The visibility predictor HDRVDP3V performed worse than its quality counterpart. It is also
worth noting a relatively good performance of PU-FSIM, as this is a hand-crafted metric that has
not been trained on this task. The RMSE of the DPVM is 21.9, which is slightly larger, than the
average variation of the VLT across the population – 15.9 (refer to Figure 8.2). This difference
can be acceptable, and the metric should be robust enough to adaptively encode images displayed
at different luminance levels and at a different viewing distance in a visually lossless manner.

Figure 8.5f shows the RMSE per image for the four best performing metrics. It is worth
noting that while DPVM resulted in substantially smaller RMSE for some images, it was the
worst performing metric for others. The performance of the DPVM did not correlate with the
folds. The hand-crafted metrics with a few trainable parameters, HDRVDP3Q and PU-FSIM,
tend to be more consistent and vary less in RMSE than machine-leaning based metrics, PI-
PieApp and DPVM. Most metrics (except HDRVDP3Q) showed a very large error for images
with large smooth gradient areas (e.g., sky), i3webp,i4webp,i5webp,i13jpeg, i14jpeg and i17jpeg,
suggesting that those metrics could be worse at modeling contrast masking.
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Figure 8.5: (a-d) Five-fold cross-validation results for the compared metrics under varied viewing
conditions. I fix one the viewing conditions and make the metric account for the remaining
condition. In the first row I isolate distance as the component impacting the VLT and test whether
metrics can take it into account under fixed display luminance. Similarly, in the second row, I fix
the distance, and let the metrics account for the display luminance. (e) Five-fold cross-validation
results for the compared metrics. Error bars show the standard deviation. (f) RMSE per image.
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8.5 Summary

I analyzed the carefully collected by Nanayng Ye novel dataset for visually lossless image
compression under varying display brightness and viewing distance conditions and compared
the performance of the state-of-the-art image quality and visibility metrics on this dataset. The
results indicate that the display brightness and the viewing distance can significantly affect
the compression level required for visually lossless coding. I found that, recently proposed
deep photometric visibility metric (DPVM), although, is the best at matching the experimental
thresholds for the collected dataset, its’ results have a substantial room for improvement.
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Chapter 9

Conclusion

With the plethora of modern display types, a metric capable of predicting image quality under
varied viewing conditions is a necessity. Such a metric can enable new and exciting applications.
An ideal metric: (i) has a high correlation with the quality as perceived by human observers; (ii) is
content-driven; (iii) differentiable; (iv) is viewing condition dependent; and (v) has a meaningful
scale. Perfect candidates for an ideal metric are data-driven metrics requiring large amounts
of versatile training data. However, for IQA such data are expensive and time-consuming to
collect. In my work I focused on the methods facilitating data collection, such as active sampling,
scaling and merging image quality assessment data. With the help of these methods I collected
the largest photometric image quality dataset to date and showed that it is sufficient to train deep
image quality assessment metrics. The utility of the dataset and metrics is then shown on visually
lossless image compression under varied image brightness and distance.

9.1 Contributions

In my work I have explored the ways of efficient collection and aggregation for accurate
subjective image quality datasets, I have demonstrated that the accuracy of scores in existing
datasets often can be improved. I have also shown that existing methods for data collection can
be substantially refined and proposed a new method to collect subjective datasets more efficiently.
I also demonstrated how to merge existing datasets to ameliorate the diversity of the content and
ensure that they are large enough for training deep image quality metrics. I have also shown that
many existing image quality datasets do not account for the display brightness. To remedy this
limitation, I have collected a new dataset. Results in my dissertation have been achieved through:

Scaling of one of the largest datasets with pairwise comparisons I have presented in Chap-
ter 3 scaling of the large scale image quality assessment dataset (TID2013 [106]). I showed that
psychometric scaling produces more accurate results than vote counts in a simulated experiment,
especially as the number of conditions in the experiment increases. I also demonstrated that
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the additional set of comparisons and psychometric scaling improve the consistency of quality
scores of the TID2013. I validated that the assumptions of Thurstone Case V are sufficient for
modeling image quality and did not find sufficient evidence for using Thurstone case III.

Active-sampling procedure for pairwise comparisons A new state-of-the-art active sam-
pling algorithm was presented in Chapter 4. Commonly used sorting methods perform poorly
compared to the state-of-the-art methods based on the EIG, and even EIG-based methods are
sub-optimal, as they rely on a partial update of the posterior distribution. ASAP computes the full
posterior distribution, which is crucial to achieving accurate EIG estimates, and thus the accuracy
of active sampling. Fast computation of the posterior, important for real-time applications, was
made possible by using a fast and accurate factor graph approach, which is new to the active
sampling community. Besides, ASAP only computes the EIG for the most informative pairs,
reducing the computational cost of ASAP by up to 80%, and selects batches using a minimum
spanning tree method, allowing to avoid unbalanced designs.

Scaling and data merging for datasets with mean opinion scores and pairwise comparisons
In Chapter 5, I proposed a probabilistic model that can bring pairwise comparison and rating
experiments into a unified quality scale. The units in that scale, are scaled accordingly to the
combined inter- and intra-observer variations so that 1 unit corresponds to 75% of observers
selecting one condition over another (JOD units). The model can also estimate observer variation
for each experimental protocol.

Large scale unified photometric image quality dataset and photometric metrics In Chap-
ter 6, I performed a series of subjective image quality assessment experiments and constructed the
largest subjective HDR IQA dataset to date (UPIQ) using psychometric scaling from Chapter 5.
The dataset contains 3779 SDR and 380 HDR images from four existing IQA datasets. I showed
the necessity and advantages of the psychometric scaling by comparing it to other strategies for
merging datasets. In Chapter 7 I used the new dataset to retrain and benchmark existing HDR
metrics. I showed that the proposed dataset is sufficiently large for deep architectures by training
a CNN-based full-reference photometric image quality metric. The advantage of training on
the unified dataset is shown in comparison with training on a single dataset and performing
multi-task learning on disjoint datasets. The utility of training HDR metrics on the new dataset
is shown in the application to brightness-adaptive image compression.

Dataset and metrics for visually lossless image compression under varied viewing distance
and display brightness I have analyzed a new dataset for viewing distance and display bright-
ness dependent visually lossless compression in Chapter 8. Along with the dataset I have
presented the analysis and validation of the state-of-the-art metrics for finding visually lossless
threshold.

120



9.2 Future work

Although a significant amount of work has been done, this dissertation can be extended in several
ways. First, the dataset merging procedure presented in Chapter 5 presents a maximum likelihood
solution. One of the drawbacks of such a model is inability to predict the distribution, rather
than point estimates. Making the model Bayesian can greatly improve the utility. As such an
active sampling procedure based on such a model would be very useful for many applications.
Secondly, the presented dataset, UPIQ, could be substantially improved by including the distance
dimension, impacting the quality. A larger dataset accounting for viewing distance could enable
the deep metrics also take into account the distance to the display. Finally, the trained metrics,
could be verified as a perceptual loss for image restoration and enhancement algorithms.
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Appendix A

Extra Information

A.1 Ethical Approvals

All experiments involving data collection with human subjects discussed in this dissertation
underwent review of the ethics committee. Figure A.1 shows the ethical approval from the ethics
committee of the University of Cambridge for the pairwise comparison experiment reported in
Chapter 3. Ethical approval for the experiment reported in Chapter 6 is given in Figure A.2.

A.2 TID 2013 rating experimental procedure

In order to obtain mean opinion scores, an experiment was conducted using the absolute category
rating with hidden reference (ACR-HR) methodology [127]. In this experiment, a subset of color
images from TID2013 color image dataset [106] were presented with a mid-grey background on
a standard display in a dark room, following the ITU recommentations [46]. The participants
were seated at the distance equal of 3 display heights (∼1m). The stimuli were shown for 5
seconds and the observers were allowed to confirm their answer either during or after displaying
the stimulus. The participants were then asked to rate the quality of the color image presented on
the display using a continuous scale ([0,100], 100 corresponding to the best quality). ACR-HR
was selected to take also the reference images and some quality enhancements (e.g. increase in
the contrast for ‘contrast change’ distortion type). The participants spent on average 3.9±1.5

seconds on viewing an image and 3.8±2.3 seconds on assigning a score.
In order to avoid fatigue and to keep the experiment under 30 minutes, a subset of images

was used. Two distortion types were selected for each content through random permutation of
the 24 different distortion types. A total of 175 images (25 contents × 2 distortion types × 3
distortion levels + 25 original images) were voted during the experiment. Looking at the quality
values provided with TID2013 color dataset, we notice that some of the distortion types (e.g.
non-eccentricity pattern noise and contrast change) have different behavior compared to the other
compression types. In order to capture the uncommon behavior of these distortion methods,
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(a) Page 1 (b) Page 2

Figure A.1: Ethical approval for the pairwise comparison experiment from Chapter 3.

distortion levels of {2, 4, 5} were used for non-eccentricity pattern noise and contrast change
distortion type, as well as JPEG compression to have a more varying quality values. For the rest
of the distortion types, distortion levels of {1, 3, 5} were selected. To minimize context effects,
the images were ordered randomly for each subject, and consequent images were selected from
different contents.

Before the experiment, participants were screened for visual acuity and correct color vision
using Snellen and Ishihara charts, respectively. A training session was conducted prior to the
experiment to familiarize the subjects with the test procedure and distortion levels. Images used
for training were not used in the experiment. Subjects were asked to rate “the overall quality of
the presented image”. In total, 22 people (4 female and 18 male) with the average age of 30.6
participated in the experiment. After outlier detection [49], 1 of the 22 subjects was removed.
MOS, standard deviation, and confidence intervals are calculated for each stimulus as described
in ITU-T Rec. P.1401 [49].
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Figure A.2: Ethical approval for the pairwise comparison experiment from Chapter 6.

A.3 ASAP Pseudo-code

I provide a detailed description of the ASAP method in Algorithm 1. The algorithm requires as
input a list of comparisons performed so far, y and a matrix with the probabilities of the EIG
being computed —required for the selective evaluations —Q. The algorithm outputs a batch of
pairs to be compared C and an updated probability of being selected for the EIG evaluations, Q̂.

A.4 ASAP additional results

This dataset contains 10 reference videos with 16 distortions applied to them. Each 16 × 16

matrix contains 3840 pairwise comparisons - each pair was compared 32 times. Figure A.3
shows the results for reference videos 3 to 10. Results for the first two reference videos are
presented in the main paper.

Consistent with other tests in the main paper, ASAP shows superior results to other methods.
ASAP-approx. has average, similar to other EIG based methods, results. Hybrid-MST tends to
perform better for small numbers of standard trials.
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Algorithm 1: ASAP
Input: y,Q
Output: C, Q̂
# Calculate the posterior for the given state of the comparison matrix
µ,Σ = approxPosterior(y)
# Iterate over the rows of the expected information gain matrix I
for i← 1 to n do

# Iterate over the columns of the expected information gain matrix I
for j ← 1 to (i− 1) do

# Probability of selecting oi over oj
pij = P (oi � oj|ri, rj) = Φ

(
µi−µj√

2σij

)
# Selective EIG evaluations with roulette
if Qij > U [0, 1] then

# Posterior given all comparisons and assuming oi is selected over oj
µij,Σij = approxPosterior(y; oi � oj)
# Posterior given all comparisons and assuming oj is selected over oi
µji,Σji = approxPosterior(y; oj � oi)
# KL divergence between current distribution and distribution assuming the
two possible outcomes
KLij = KLDivergence(N (µ,Σ),N (µij,Σij))
KLji = KLDivergence(N (µ,Σ),N (µji,Σji))
# Weighted information gain
Iij = pij ×KLij + (1− pij)×KLji

end
# Update the probability of being selected for the comparison
Q̂ij = min(pij, 1− pij)

end
# Scale q per condition
Q̂ij =

Q̂ij

max∀j(Q̂ij)
, ∀j

end
# Make the EIG matrix symmetric and find reciprocal of each entry
I = 1/(I + IT )
# Create the minimum spanning tree from the matrix I
G = minspantree(I)
# Nodes connected by an edge are pairs of conditions to compare
C = getConnectedNodes(G)
# Note if batch mode is not used pairs to compare are selected by C = argmax(Iij)
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Figure A.3: Compared sampling strategies on VQA dataset.
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