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ABSTRACT   

 

Bridges are critical infrastructure systems connecting different regions and 

providing widespread social and economic benefits. It is therefore essential that they are 

designed, constructed and maintained properly to adapt to changing conditions of use 

and climate-driven events. With the rapid development in capability of collecting bridge 

monitoring data, a data challenge emerges due to insufficient capability in managing, 

processing and interpreting large monitoring datasets to extract useful information 

which is of practical value to the industry. One emerging area of research which focuses 

on addressing this challenge is the creation of ‘digital twins’ for bridges. A digital twin 

serves as a virtual representation of the physical infrastructure (i.e. the physical twin), 

which can be updated in near real time as new data is collected, provide feedback into 

the physical twin and perform ‘what-if’ scenarios for assessing asset risks and predicting 

asset performance.  

This paper presents and broadly discusses two years of exploratory study towards 

creating a digital twin of bridges for structural health monitoring purposes. In particular, 

it has involved an interdisciplinary collaboration between civil engineers at the 

Cambridge Centre for Smart Infrastructure and Construction (CSIC) and statisticians at 

the Alan Turing Institute (ATI), using two monitored railway bridges in Staffordshire, 

UK as a case study. Four areas of research were investigated: (i) real-time data 

management using BIM, (ii) physics-based approaches, (iii) data-driven approaches, 

and (iv) data-centric engineering approaches (i.e. synthesis of physics-based and data-

driven approaches). A framework for creating a digital twin of bridges, particularly for 

structural health monitoring purposes, is proposed and briefly discussed.  
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INTRODUCTION  

 

Many bridges across the world serve crucial roles in connecting different regions 

and improving resilience of their associated transport networks. To adapt to changes in 

the twenty-first century, which can be categorized as technology push (e.g. integrated 

sensing, Industrial Internet of Things) and demand pull (e.g. change of use, climate 

change), virtualizing bridges become important for improving their management and 

sustainability. One emerging field of research is the development of digital twin (DT) 

(e.g. [1]–[3]). A DT can be thought of as a digital representation of a physical asset 

which serves as a ‘living’ digital simulation model and is enabled by the abundance of 

data (e.g. operational data acquired from the bridges) and advanced data processing and 

interpretation routines.  

This paper discusses two years of exploratory study towards creating a digital twin 

for bridges. The case study considered two railway bridges in Staffordshire, UK which 

have pervasive sensor networks installed at the time of construction. The study involves 

an interdisciplinary collaboration between the Cambridge Centre for Smart 

Infrastructure and Construction (CSIC) and the Alan Turing Institute (ATI), combining 

the expertise of bridge monitoring [4], finite element modeling [5], [6], building 

information modeling (BIM) [7], [8] and statistical modeling [9], [10], with the end 

objective of creating a working digital twin for the instrumented Staffordshire bridges.  

 

 

STATE-OF-THE-ART  

 

The complexities of bridge structures and the associated planning, design, 

construction, and operation and maintenance (O&M) require the adoption of systematic 

and well-coordinated approaches to ensure their successful delivery, safety and as-

intended functioning throughout the lifetime of these bridges. There are many issues 

with existing practice in whole-life management of bridges, which include: (i) large and 

heterogeneous datasets are difficult for storage, processing and interpretation; (ii) 

efficiency in query of relevant data is low, as different data resources are stored in 

different management systems; (iii) interoperability across different software packages 

for different stages of a bridge project is low due to incompatible data file formats, and 

there is often a loss of data and information during project handover; (iv) coordination 

and integration in various design and construction iterations (e.g. conceptual design, 

detailed design, quality assurance) is low; and (iv) historical data of past performance is 

not well recorded and learned to improve future projects and practice; etc.  

Meanwhile, the rapid development of sensing technologies has allowed more data 

to be gathered from our built environment than ever before. Middleton et al. [4] 

presented a comprehensive review of existing technologies of bridge monitoring. In 

general, four types of monitoring data can be gathered: (i) response-based, such as 

strain, displacement and inclination; (ii) geometry-based, such as conventional 

surveying and laser scanning; (iii) vision-based, such as image and video; and (iv) 

loading, such as operational and environmental loadings. More recently, the 

technological developments of Wireless Sensor Networks (WSNs) and the Industrial 

Internet of Things (IIoT) have enabled enhancement in integrated sensing and analytics.  

However, despite years of research, the value case for bridge monitoring in industry 

practice has not been satisfactorily made to justify the associated cost and effort. This is  



TABLE I. KEY CAPABILITIES AND LIMITATIONS OF PHYSICS-BASED AND DATA-DRIVEN 

APPROACHES  

 

 Physics-based approach  Data-driven approach  

Key 

capabilities  

Incorporating engineering physics to 

perform:  

• Damage detection  

• Damage criticality evaluation  

• Load capacity assessment  

• Remaining service life prediction  

• ‘What-if’ simulation  

• Identification of underlying trends, patterns 

and correlations within the dataset  

• Anomaly detection  

• Uncertainty quantification  

• Spatial/temporal inference and prediction  

• Dimensionality reduction and data fusion  

Key 

limitations  

• Random noises and systematic errors 

in sensor system response (not the same 

as bridge response) are not taken into 

account    

• Physics-based models often include 

simplifying assumptions (e.g. linearity 

in behavior) that produce biases in 

outputs  

• Difficult to distinguish between changes of 

sensor response and changes of bridge 

response  

• Difficult to distinguish between 

environmental changes and bridge condition 

changes  

• Many parts of the bridge cannot be 

measured, and therefore difficult to assess 

changes of condition in these parts   

 

 

often due to ill-defined end objectives and benefits which require sufficient capabilities 

of (i) turning monitoring data into practical information for decision making; and (ii) 

managing and processing large monitoring datasets. Middleton et al. [4] noted the often 

limited consideration of how SHM data would be interpreted before installation of 

bridge SHM systems. In general, there are two main approaches for processing and 

interpreting bridge monitoring data: a physics-based approach and a data-driven 

approach. A physics-based approach relates sensor measurements with prior physics-

based model predictions (from e.g. first principles, code formulae, finite element 

models, etc.) and explains any discrepancies, thereby inferring real structural condition 

and performance. The current practice typically involves model updating, mostly by 

updating the parameters within the model, to minimize the discrepancies and to create 

an “As-Is” model. A data-driven approach is formulated based on the data alone and 

takes the form of statistical models which are used for identifying trends, patterns and 

correlations within the datasets and quantifying uncertainties of structural condition and 

performance. These approaches are often unsupervised and do not include input based 

on physical intuition. Table I summarizes the key capabilities and limitations of both 

physics-based and data-driven approaches. Thus far, there has been limited research on 

the synthesis of both approaches to best leverage their advantages and capabilities.  

 

 

A DIGITAL TWIN FOR BRIDGES  

 

Currently, there are many definitions of a Digital Twin (DT) under different 

contexts. For example, in the context of Digital Built Britain, a UK government led 

program, a DT is defined as “a realistic digital representation of assets, processes or 

systems in the built or natural environment” [1]. Lu et al. [2] describes DTs as “living 

digital simulation models that are able to learn and update from multiple sources, and 

to represent and predict the current and future conditions of the physical counterparts 

correspondingly and timely” in the context of dynamic DTs at building and city levels. 

As for bridge applications, based on review of existing literature (e.g. [1]–[3]) and  



TABLE II. KEY FEATURES AND CAPABILITIES OF A DIGITAL TWIN FOR BRIDGES  

 

Key features and capabilities of a DT for bridges  

• It is a digital replica of the physical bridge (asset, process and/or system), in terms of geometry and 

many other aspects;  

• Data is the key ingredient of a DT, which includes data about terrain, layout, component, material, 

cost, schedule, inspection, monitoring, energy, carbon emission, etc.;  

• It is connected to the physical bridge in that it can be updated and provide feedback into the bridge 

(e.g. monitoring of current state) in near real time as new data is collected;  

• It spans the whole life cycle of the physical bridge, with data and information flowing through 

various stages of the bridge project, which includes planning, design, construction, operation and 

maintenance, refurbishment, demolition, etc.;  

• It has a common data environment, with all data stored in one model and conditionally accessed and 

modified by various stakeholders of the project;  

• It is a visualization tool which can be used to retrieve data or information in context, aid 

communication and collaboration, etc.;  

• It is a simulation tool (e.g. physics-based, data-driven, or both) which can be used to perform ‘what-

if’ scenarios for assessing asset risks, predicting asset performance, etc.;   

• It can learn from real measurement data to improve future projects and practice.  

 

 

consultation of nine experts (four professors, two directors, one associate professor and 

two assistant professors) in related fields (BIM, digital construction, asset management, 

smart infrastructure and bridge SHM), a number of key features and capabilities of a 

digital twin for bridges are summarized in Table II. In summary, a DT can be used for 

visualization, monitoring, assessment, simulation, prediction, optimization, 

management, etc.  

Integrating large and heterogenous data resources (e.g. various types of SHM data 

mentioned in [4]) and integrating different analytical approaches (e.g. physics-based 

and data-driven approaches) are key to the successful development of a DT for bridges. 

The interdisciplinary collaboration between CSIC and ATI has focused on developing 

a Data-Centric Engineering (DCE) approach, a synthesis of physics-based and data-

driven analytical approaches, for extracting greater value of information from bridge 

monitoring datasets and creating a DT of bridges for SHM purposes.  

 

 

CASE STUDY: STAFFORDSHIRE RAILWAY BRIDGES  

 

Description of Bridges and Monitoring Program  

 

Two newly constructed railway bridges in Staffordshire, UK were instrumented at 

the time of their construction with fibre optic sensor (FOS) networks which included 

discrete Fibre Bragg Grating (FBG) and distributed Brillouin Optical Time Domain 

Reflectometry (BOTDR) sensor systems. These two bridges are Intersection Bridge 5 

(IB5), a steel half-through bridge with composite deck and instrumented with 291 FBG 

sensors, and Underbridge 11 (UB11), a prestressed concrete girder bridge with infill 

concrete deck and instrumented with 220 FBG sensors and 260 m of BOTDR cables. 

The primary objective was to perform early-age behavior assessment to inform long-

term condition monitoring. In this paper, only the results for IB5 are presented.          

Figure 1 shows the completed bridge and its sensor instrumentation arrangement.  

 



 
(a) Completed bridge  

 
(b) Monitoring program  

 

Figure 1. Intersection Bridge 5 (IB5)  

 

 

 
 

Figure 2. BIM model of IB5 incorporating real-time sensor data (adapted from [8])  

  

Real-Time Sensor Data Visualization Using BIM   

 

SHM datasets were incorporated into a dynamic BIM environment for visualizing 

real-time sensor data and associated bridge behavior [7], [8]. Specifically, this can be 

used to help identify anomalies in the data (due to e.g. faulty sensors, anomalous 

behavior, etc.) as well as to visualize strain/stress evolution, strain/stress distribution 

and material utilization. An example dynamic BIM model of IB5 is shown in Figure 2, 

which presents a colormap of strain/stress distribution and the corresponding structural 

utilization of the two main girders, both along their longitudinal axes (i.e. spatial 

variation) and in real time (i.e. temporal change), during a train passage event.  
 

Physics-Based Approach: Finite Element Modeling   

 

The performance of IB5, both during construction and in operation, was investigated 

through numerical (finite element) modeling which was validated using sensor data [5], 

[6]. A 3D FE model was constructed incorporating solid, shell and rebar elements, with 

the consideration of time-dependent concrete properties, staged construction and 

torsional effects due to the skewed bridge geometry. The FE model predictions were 

verified by FOS strain measurements, both spatially (e.g. at different locations along the 

girders) and temporally (e.g. dynamic response during a train passage event), as shown 

in Figure 3. This information can be used to help establish a performance baseline,  



 

 
(a) Spatial verification  

 
(b) Temporal verification  

 

Figure 3. Physics-based approach (adapted from [6])  

 

thereby achieving long-term condition monitoring and data-informed asset management 

as subsequent sensor data are collected throughout the bridge’s operating life.  

 

Data-Driven Approach: Statistical Modeling  

 

Meanwhile, the ATI has focused on the data-driven approach, specifically, real-time 

statistical modeling of sensor data [9], as shown in Figure 4. First, sensor data from a 

network of 80 FBG sensors in the girders were de-trended through a refined moving 

average algorithm to remove both short-term and long-term environmental trends (e.g. 

effects of temperature variations) and to extract individual train-passage events. Linear 

dynamic (statistical) modeling was then used to perform short-term forecasting and to 

detect anomalies in the data. A streaming model was developed which could be updated 

in real time. Specifically, strain from sensor s at time step t is predicted as a linear 

combination of strain measurements from all other sensors at the previous time step          

t – 1. The predictions were verified using real measurements, as shown in Figure 4b.   
 

 

 
(a) Data de-trending  

 
(b) Linear dynamic (statistical) modeling  

 

Figure 4. Data-driven approach (adapted from [9])  



 
 

Figure 5. Whole life bridge monitoring and management  

 

Data-Centric Engineering Approach: Towards Creating a Digital Twin for 

Bridges  

 

Finally, the conceptual framework for a Data-Centric Engineering (DCE) approach, 

by integrating both physics-based and data-driven approaches to best leverage their 

advantages and capabilities, has been developed [3]. A DCE approach models the bridge 

response by integrating and balancing the information from the physics-based model 

(which has simplifying assumptions and modeling errors) with the incoming 

information from various monitoring datasets (which have measurement errors), with 

the objectives of minimizing systematic errors, quantifying underlying uncertainties and 

combining multiple sources of data which are often heterogeneous in nature. For 

example, a Gaussian process (GP) based DCE method has been developed by 

integrating GPs with physics-based models (e.g. FE models) [10]. This work used the 

experimentally tested and field monitored railway sleepers as a case study, with the goal 

of predicting their operational performance over time.  

As recommended future work, a working DT for the Staffordshire bridges may be 

created by integrating SHM data, BIM, FE modeling and statistical modeling to improve 

structural health monitoring and thus to improve whole-life management of the bridge 

structures, as shown in Figure 5.  
 

 

CONCLUSIONS  

 

This paper has presented an overview of the necessary capabilities required to 

develop a digital twin of bridges for structural health monitoring purposes. A case study 

involving the Staffordshire railway bridges which have been instrumented with a dense 

array of fibre optic sensors was introduced. A digital twin can be developed by 

integrating multiple data resources under a unified data structure and integrating 

multiple simulation models to provide more confident predictions. The key benefits of 

a bridge digital twin include: efficient query of relevant data, integrated capabilities of 

data processing and interpretation, collaborative environment for various stages of a 

bridge project, etc. The emerging field of Data-Centric Engineering (DCE), which 

involves a synthesis of physics-based and data-driven analytical approaches, has been 



explored and investigated by civil engineers and statisticians together for extracting 

greater value of information from bridge SHM data. Future work will require 

developing the methodology for integrating various information and simulation models 

as well as heterogeneous datasets into a working digital twin; and improving the level 

of confidence in the integrated simulation model and its predictions.  
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