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SUPPLEMENTARY METHODS 

S.1. Analytical description of tissue organisation 

With the basic assumptions described in section 3.1 and Fig. 1, yhe 1-neighbourhood of an 

individual cell will contain 6 adjacent cells within the plane and 2 polar cells, one at the top and 

one at the bottom of the reference cell. The 2-neighbourhood will contain 12 cells within the 

plane, 6 cells in the above and bottom layers and two polar cells. The 3-neighbourhood will 

have 18 cells within the plane, 24, 12, 6 and 2 in the other layers. By induction, we infer that 

the k-neighbourhood of an individual cell in such tessellation is made of ks0 cells within the 

plane, the sum of is0 for each of the above and below layers, with i from 1 to k-1, and the two 

polar cells: 

 𝐶𝑘 = 𝑘𝑠0 + 2∑ 𝑖𝑠0
𝑘−1
𝑖=1 + 2 Eq. S1.1 

To simplify, ks0 (s0 here is 6) can be brought within the sum, then allowing to simplify to the 

correspondent triangular number: 

 𝐶𝑘 = −𝑘𝑠0 + 2∑ 𝑖𝑠0
𝑘
𝑖=1 + 2 = 𝑘2𝑠0 + 2 Eq. S1.2 

It should be noted that for intercalated layers, the coordination values can be larger.  

Another example, this time including a significant constraint in topology, is represented by the 

same topology, where only three layers are considered. 

 𝐶1 = 𝑠0 + 2 Eq. S1.3 

 𝐶𝑘>1 = 𝑘𝑠0 + 2(𝑘 − 1)𝑠0 = 𝑠0(3𝑘 − 2) Eq. S1.4 

 

S.2. Probability of initiation (power function) 

Let’s assume the probability of tumour initiation is proportional to a concentration gradient, 

similar to a morphogen, or an oncogenic mitogen/morphogen field decaying as a power 

function: 

 𝑝𝑛𝑘 =
𝑝𝑛0

𝑘𝑙
 Eq. S.2.1 
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Where pn0 indicate the probability of tumour initiation when cells are attached (the 1-

neighbourhood). Therefore, in the case of 3D hexagonal tessellation, we can derive the factor 

Cpn: 

 Ω = ∑
𝑘2𝑠0+2

𝑘𝑙
∞
𝑘=1  Eq. S.2.2 

This sum is carried over an infinite neighbourhood, and the validity of the results will be 

checked numerically (see Section 3.2 and Fig. 2). First, we can expand ptn: 

 Ω = 𝑠0∑ 𝑘2−𝑙∞
𝑘=1 + 2∑ 𝑘−𝑙∞

𝑘=1  Eq. S.2.3 

These series can now be described by Riemann Zeta functions: 

 Ω = 𝑠0𝜁(𝑙 − 2) + 2𝜁(𝑙) Eq. S.2.4 

Let’s now consider the thin 3-layer tissue which tessellation was already discussed. In this 

case, for one cell:  

 Ω = 𝑠0 + 2 + ∑
𝑠0(3𝑘−2)

𝑘𝑙
∞
𝑘=2 = 2 + ∑

𝑠0(3𝑘−2)

𝑘𝑙
∞
𝑘=1   Eq. S.2.5 

Following the same process described before, we can obtain: 

 Ω = 2 − 2𝑠0∑
1

𝑘𝑙
∞
𝑘=1 + 3𝑠0∑

1

𝑘𝑙−1
∞
𝑘=1   Eq. S.2.6 

And,  

 Ω = 18𝜁(𝑙 − 1) − 12𝜁(𝑙) + 2  Eq. S.2.7 

This describe the probability of transformation for a cell in the middle layer. We can 

approximate the result over the tissue equal to this value by N/3 (middle layer) and with half 

contribution for the top and bottom layer resulting in 

 Ω = 12𝜁(𝑙 − 1) − 8𝜁(𝑙) + 4/3  Eq. S.2.8 

 

S.3. Probability of initiation (exponential function) 

Let’s now assume the oncogenic field decays as an exponential function: 

 𝑝𝑛𝑘 = 𝑝𝑛0𝑒
−(𝑘−1)𝑘𝑐

−1
 Eq. S.3.1 

Where kc is a decay constant expressed in terms of k-neighbourhood for simplicity. If two cells 

are in contact, the probability of initiation will be pn0 as per definition of pn0. When cells are at 

a kc+1 distance, this probability is 1/e lower, i.e. ~30% lower. In the case of 3D hexagonal 

tessellation, the factor 𝐶𝑝𝑛 can be now expressed as: 

 Ω = ∑ (𝑘2𝑠0 + 2)𝑒−(𝑘−1)𝑘𝑐
−1∞

𝑘=1  Eq. S.3.2 

Or the sum of the series: 

 Ω = 2∑ 𝑒−(𝑘−1)𝑘𝑐
−1∞

𝑘=1 + 𝑠0∑ 𝑘2𝑒−(𝑘−1)𝑘𝑐
−1∞

𝑘=1  Eq. S.3.3 

The first series converges to: 

 ∑ 𝑒−(𝑘−1)𝑘𝑐
−1∞

𝑘=1 =
𝑒𝑘𝑐

−1

𝑒𝑘𝑐
−1

−1
 Eq. S.3.4 
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The second series can be represented as: 

 ∑ 𝑘2𝑒−(𝑘−1)𝑘𝑐
−1∞

𝑘=1 = 𝑒𝑘𝑐
−1
∑ 𝑘2𝑒−𝑘/𝑘𝑐∞
𝑘=1 =

𝑒2𝑘𝑐
−1

(𝑒𝑘𝑐
−1

+1)

[𝑒𝑘𝑐
−1

−1]
3  Eq. S.3.5 

Therefore,  

 Ω = 𝑒𝑘𝑐
−1 (2+𝑠0)𝑒

2𝑘𝑐
−1

+(4+𝑠0)𝑒
𝑘𝑐
−1

+2

[𝑒𝑘𝑐
−1

−1]
3  Eq. S.3.6 

With s0 = 6, once again to confirm mathematical consistency, lim
𝑘𝑐→0

Ω = 8, as in the case where 

only adjacent cells are important. Shallower decays will again increase this value (see Fig. 2).  

 

S.4 Probability of initiation (generalisation) 

We have characterised the oncogenic field in relation to typical descriptions of morphogenic 

gradients [22]. While relevant for specific cases, steady-state concentration gradients of 

shared resources in space, generated by passive diffusion and linear or non-linear 

degradation, can adopt different shapes. One useful analytical description is represented by 

concentrations that decay as the product of exponential and power-law functions, for instance 

as:  

 𝑝𝑛𝑘 =
𝑝𝑛0

𝑘𝑙
𝑒−(𝑘−1)𝑘𝑐

−1
 Eq. S.4.1 

With the same formalism and strategies described in Sections S.2 and S.3 we can show that, 

for a three-dimensional tissue: 

 Ω = ∑ (𝑘2𝑠0 + 2)𝑘−𝑙𝑒−(𝑘−1)𝑘𝑐
−1∞

𝑘=1  Eq. S.4.2 

This analytical representation of Ω can be expressed as sums of polylogarithm functions:  

 Ω = 𝑒𝑘𝑐
−1
[2𝐿𝑖𝑙(𝑒

−𝑘𝑐
−1
) + 𝑠0𝐿𝑖𝑙−2(𝑒

−𝑘𝑐
−1
)] Eq. S.4.3 

This representation converges to those shown in Sections S.2 and S.3 in the cases where kc 

is very large or where l is very small, respectively, i.e. when the power-law or the exponential 

decay components are negligible. The case l=1 represents an oncogenic field induced by 

continuous point-sources in an unconstrained three-dimensional space in the presence of 

linear degradation. In this geometry: 

 Ω = 𝑒𝑘𝑐
−1
[−2log(1 − 𝑒−𝑘𝑐

−1
) + 𝑠0

𝑒−𝑘𝑐
−1

(1−𝑒−𝑘𝑐
−1

)
2] Eq. S.4.4 

 

S.5. Cell-autonomous time-horizon (discrete-time Markov chain) 

The mutational process illustrated in this work can be modelled as a discrete-time Markov 

process (see also Sup. File ‘firstpassageproblem_v2.nb’ or ‘firstpassageproblem_v2.pdf’ 

in the GitHub repository alesposito/CloE-PE  [50] for the Mathematica Notebook used in this 

work and the peer-review open documentation for related discussion). Each cell is 

described by four states: wild-type (W), mutant X, mutant Y, and double-mutant (XY). At any 

given time, the transition matrix between these states is: 
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 𝑇 = (

1 − (𝑥 + 𝑦)𝜌0 − 𝑥𝑦𝜌0
2 𝑥𝜌0 𝑦𝜌0 𝑥𝑦𝜌0

2

0 1 − 𝑦𝜌0 0 𝑦𝜌0
0 0 1 − 𝑥𝜌0 𝑥𝜌0
0 0 0 1

) Eq. S.5.1 

where the probability of acquiring the mutation X or Y are independent and directly proportional 

to the mutational rate 𝜌0 with proportionality constants x and y, respectively. Initially, the 

system is described by the state vector 𝑆0 = (1 0 0 0), i.e. all cells are wild-type. The 

probability of observing a double-mutant XY at day t (with 𝑡 ∈ ℕ) is: 

 𝑝𝑋𝑌(𝑡) = 1 −
(1−𝑥𝜌0)

𝑡

1+𝑥𝜌0
−

(1−𝑦𝜌0)
𝑡

1+𝑦𝜌0
+

(1−𝑥𝑦𝜌0
2)(1−𝑥𝜌0−𝑦𝜌0−𝑥𝑦𝜌0

2)
𝑡

(1+𝑥𝜌0)(1+𝑦𝜌0)
 Eq. S.5.2 

As 𝜌0 ≪ 1, 𝑝𝑋𝑌(𝑡) can be well-approximated with a second-order (or the order matching the 

number of mutations for Eq. S.5.9) element of a Taylor series: 

 𝑝𝑋𝑌(𝑡) ≈ t2𝑥𝑦𝜌0
2 Eq. S.5.3 

The probability of not observing any XY mutant in a population of N cells will be therefore 

(1 − t2𝑥𝑦𝜌0
2)𝑁, and the probability of observing a double-mutant after t days will be thus: 

 𝑃𝑋𝑌(𝑡) ≈ 1 − (1 − t2𝑥𝑦𝜌0
2)𝑁 ≈ 1 − e−t

2𝑁𝑥𝑦𝜌0
2
 Eq. S.5.4 

The probability 𝑑𝑋𝑌(𝑡) to observe a first XY mutant can be then evaluated by differentiating 

Eq. S.5.4. 

 𝑑𝑋𝑌(𝑡) =
∂𝑃𝑋𝑌

∂t
= 2t𝑁𝑥𝑦𝜌0

2e−t
2𝑁𝑥𝑦𝜌0

2
 Eq. S.5.5 

The expectation for the average latency of the first double-mutant XY can be then evaluated 

as: 

 〈𝑡𝑋𝑌〉 = ∫ 𝑡𝑑𝑋𝑌(𝑡)𝑑𝑡
∞

0
=

1

2𝜌0
√

𝜋

𝑥𝑦𝑁
 Eq. S.5.6 

For a two-hits model, the cell-autonomous time-horizon (ta) and the time at which the first CD 

clone might appear can be then described by Eq. S.5.6 with x=1, and y=1 or y=Ω, respectively. 

 𝑡𝑎 = 〈𝑡𝐴𝐵〉 =
1

2𝜌0
√
𝜋

𝑁
 Eq. S.5.7 

 〈𝑡𝐶𝐷〉 =
1

2𝜌0
√

𝜋

Ω𝑁
= 𝑡𝑎Ω

−0.5 Eq. S.5.8 

We note that the scaling factor Ω−0.5 in Eq. S.5.8 is the factor (xy)-1/2 in Eq. S.5.6 with x=1 and 

y=Ω. In the Mathematica notebook we also show that for three mutations (X, Y, Z) the scaling 

factors is (xyz)-1/3. We infer that if we define an average or apparent oncogenic field effect Ω, 

the scaling factor between the first passage time of a clones cooperating by paracrine effects 

and clone accruing a similar number of mutations within a single cell would be of the form: 

 Ω−𝑑 𝑚⁄  Eq. S.5.9 

in which m is the number of mutations required for transformation and d is the number of 

mutations which effect is mediated through, for example, diffusible molecules.  


