
Efficient computational noise in GLSL

Ian McEwan1, David Sheets1, Stefan Gustavson2 and Mark Richardson1

1Ashima Research, 600 S. Lake Ave., Suite 104, Pasadena CA 91106, USA
2Media and Information Technology, Linköping University, Sweden

Abstract

We present GLSL implementations of Perlin noise and Perlin simplex
noise that run fast enough for practical consideration on current genera-
tion GPU hardware. The key benefits are that the functions are purely
computational, i.e. they use neither textures nor lookup tables, and that
they are implemented in GLSL version 1.20, which means they are com-
patible with all current GLSL-capable platforms, including OpenGL ES
2.0 and WebGL 1.0. Their performance is on par with previously pre-
sented GPU implementations of noise, they are very convenient to use,
and they scale well with increasing parallelism in present and upcoming
GPU architectures.

Figure 1: 2D and 3D simplex noise (S2D, S3D) and 2D and 3D classic noise (C2D,
C3D) on a sphere, and a swirling fire shader using several noise components.

1 Introduction and background

Perlin noise [1, 3] is one of the most useful building blocks of procedural shading
in software. The natural world is largely built on or from stochastic processes,
and manipulation of noise allows a variety of natural materials and environments
to be procedurally created with high flexibility, at minimal labor and at very
modest computational costs. The introduction of Perlin Noise revolutionized
the offline rendering of artificially-created worlds.

Hardware shading has not yet adopted procedural methods to any significant
extent, because of limited GPU performance and strong real time constraints.

1

ar
X

iv
:1

20
4.

14
61

v1
 [

cs
.G

R
]

 6
 A

pr
 2

01
2

McEwan et al: Efficient computational noise in GLSL 2

However, with the recent rapid increase in GPU parallelism and performance,
texture memory bandwidth is often a bottleneck, and procedural patterns are
becoming an attractive alternative and a complement to traditional image-based
textures.

Simplex noise [2] is a variation on classic Perlin noise, with the same general
look but with a different computational structure. The benefits include a lower
computational cost for high dimensional noise fields, a simple analytic derivative,
and an absence of axis-aligned artifacts. Simplex noise is a gradient lattice noise
just like classic Perlin noise and uses the same fundamental building blocks.
Some examples of noise on a sphere are shown in Figure 1.

This presentation assumes the reader is familiar with classic Perlin noise and
Perlin simplex noise. A summary of both is presented in [6]. We will focus on
how our approach differs from software implementations and from the previous
GLSL implementations in [4, 5].

2 Platform constraints

GLSL 1.20 implementations usually do not allow dynamic access of arrays in
fragment shaders, lack support for 3D textures and integer texture lookups, have
no integer logic operations, and don’t optimize conditional code well. Previous
noise implementations rely on many of these features, which limits their use on
these platforms. Integer table lookups implemented by awkward floating point
texture lookups produces unnecessarily slow and complex code and consumes
texture resources. Supporting code outside of the fragment shader is needed to
generate these tables or textures, preventing a concise, encapsulated, reusable
GLSL implementation independent of the application environment. Our solu-
tions to these problems are:

• Replace permutation tables with computed permutation polynomials.

• Use computed points on a cross polytope surface to select gradients.

• Replace conditionals for simplex selection with rank ordering.

These concepts are explained below. The resulting noise functions are com-
pletely self contained, with no references to external data and requiring only a
few registers of temporary storage.

3 Permutation polynomials

Previously published noise implementations have used permutation tables or
bit-twiddling hashes to generate pseudo-random gradient indices. Both of these
approaches are unsuitable for our purposes, but there is another way. A per-
mutation polynomial is a function that uniquely permutes a sequence of inte-
gers under modulo arithmetic, in the same sense that a permutation lookup
table is a function that uniquely permutes a sequence of indices. A more

McEwan et al: Efficient computational noise in GLSL 3

thorough explanation of permutation polynomials can be found in the online
supplementary material to this article. Here, we will only point out that
useful permutations can be constructed using polynomials of the simple form
(Ax2 + Bx) mod M . For example, The integers modulo-9 admit the permuta-
tion polynomial (6x2 + x) mod 9 giving the permutation (0 1 2 3 4 5 6 7 8) 7→
(0 7 8 3 1 2 6 4 5).

The number of possible polynomial permutations is a small subset of all
possible shufflings, but there are more than enough of them for our purposes.
We need only one that creates a good shuffling of a few hundred numbers, and
the particular one we chose for our implementation is (34x2 + x) mod 289.

What is more troublesome is the often inadequate integer support in GLSL
1.20 that effectively forces us to use single precision floats to represent integers.
There are only 24 bits of precision to play with (counting the implicit leading
1), and a floating point multiplication doesn’t drop the highest bits on over-
flow. Instead it loses precision by dropping the low bits that do not fit and
adjusts the exponent. This would be fatal to a permutation algorithm, where
the least significant bit is essential and must not be truncated in any operation.
If the computation of our chosen polynomial is implemented in the straight-
forward manner, truncation occurs when 34x2 + x > 224, or |x| > 702 in the
integer domain. If we instead observe that modulo-M arithmetic is congruent
for modulo-M operation on any operand at any time, we can start by mapping
x to x mod 289 and then compute the polynomial 34x2 +x without any risk for
overflow. By this modification, truncation does not occur for any x that can be
exactly represented as a single precision float, and the noise domain is instead
limited by the remaining fractional part precision for the input coordinates. Any
single precision implementation of Perlin noise, in hardware or software, shares
this limitation.

4 Gradients on N-cross-polytopes

Lattice gradient noise associates pseudo-random gradients with each lattice
point. Previous implementations have used pre-computed lookup tables or bit
manipulations for this purpose. We use a more floating-point friendly way
and make use of geometric relationships between generalized octahedrons in
different numbers of dimensions to map evenly distributed points from an (N -
1)-dimensional cube onto the boundary of the N -dimensional equivalent of an
octahedron, an N -cross polytope. For N = 2, points on a line segment are
mapped to the perimeter of a rotated square, see Figure 2. For N = 3, points
in a square map to an octahedron, see Figure 3, and for N = 4, points in a cube
are mapped to the boundary of a 4-D truncated cross polytope. Equation (1)
presents the mappings for the 2-D, 3-D and 4-D cases.

McEwan et al: Efficient computational noise in GLSL 4

2-D: x0 ∈ [−2, 2], y = 1− |x0| (1)

if y > 0 then x = x0 else x = x0 − sign(x0)

3-D: x0, y0 ∈ [−1, 1], z = 1− |x0| − |y0|
if z > 0 then x = x0, y = y0

else x = x0 − sign(x0), y = y0 − sign(y0)

4-D: x0, y0, z0 ∈ [−1, 1], w = 1.5− |x0| − |y0| − |z0|
if w > 0 then x = x0, y = y0, z = z0

else x = x0 − sign(x0), y = y0 − sign(y0), z = z0 − sign(z0)

The mapping for the 4-D case doesn’t cover the full polytope boundary
– it truncates six of the eight corners slightly. However, the mapping covers
enough of the boundary to yield a visually isotropic noise field, and it is a simple
mapping. The 4-D mapping is difficult both to understand and to visualize, but
it is explained in more detail in the supplementary material.

-2 -1 0 1 2

x

y

Figure 2: Mapping from a 1-D line segment to the boundary of a 2-D diamond shape.

Most implementations of Perlin noise use gradient vectors of equal length,
but the longest and shortest vectors on the surface of an N -dimensional cross
polytope differ in length by a factor of

√
N . This does not cause any strong

artifacts, because the generated pattern is irregular anyway, but for higher di-
mensional noise the pattern becomes less isotropic if the vectors are not ex-
plicitly normalized. Normalization needs only to be performed in an approx-
imate fashion, so we use the linear part of a Taylor expansion for the inverse
square root 1/

√
r in the neighborhood of r = 0.7. The built-in GLSL function

inversesqrt() is likely to be just as fast on most platforms. Normalization
can even be skipped entirely for a slight performance gain.

McEwan et al: Efficient computational noise in GLSL 5

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x0

y0

−1

0

1 −1
0

1

−1

0

1

yx

z

Figure 3: Mapping from a 2-D square to the boundary of a 3-D octahedron. Blue
points in the quadrant x > 0, y > 0 where |x| + |y| < 1 map to the face x, y, z > 0,
while red points where |x| + |y| > 1 map to the opposite face x, y, z < 0.

5 Rank ordering

Simplex noise uses a two step process to determine which simplex contains a
point p. First, the N-simplex grid is transformed to an axis-aligned grid of
N -cubes, each containing N ! simplices. The determination of which cube con-
tains p only requires computing the integer part of the transformed coordinates.
Then, the coordinates relative to the origin of the cube are computed by inverse
transforming the fractional part of the transformed coordinates, and a rank or-
dering is used to determine which simplex contains x. Rank ordering is the
first stage of the unusual but classic rank sorting algorithm, where the values
are first ranked and then rearranged into their sorted order. Rank ordering
can be performed efficiently by pair-wise comparisons of components of p. Two
components can be ranked by a single comparison, three components by three
comparisons and four components can be ranked by six comparisons. In GLSL,
up to four comparisons can be performed in parallel using vector operations.
The ranking can be determined in a reasonably straightforward manner from
the results of these comparisons. The rank ordering approach was used in a
roundabout way in the software 4D noise implementation of [6] and the GLSL
implementation of [5], later improved and generalized by contributions from Bill
Licea-Kane at AMD (then ATI). The 3D noise of [6] and Perlin’s original soft-
ware implementation presented in [2] instead use a decision tree of conditionals.
For details on the rank ordering algorithm used for 3-D and 4-D simplex noise,
which generalizes to N -D, we refer to the supplementary material.

McEwan et al: Efficient computational noise in GLSL 6

6 Performance and source code

The performance of the presented algorithms is good, as presented in Table 1.
With reasonably recent GPU hardware, 2-D noise runs at a speed of several
billion samples per second. 3-D noise attains about half that speed, and 4-D
noise is somewhat slower still, with a clear speed advantage for 3-D and 4-D
simplex noise compared to classic noise. All variants are fast enough to be
considered for practical use on current GPU hardware.

Procedural texturing scales better than traditional texturing with massive
amounts of parallel execution units, because it is not dependent on texture
bandwidth. Looking at recent generations of GPUs, parallelism seems to in-
crease more rapidly in GPUs than texture bandwidth. Also, embedded GPU
architectures designed for OpenGL ES 2.x have limited texture resources and
may benefit from procedural noise despite their relatively low performance.

The full GLSL source code for 2D simplex noise is quite compact, as pre-
sented in Table 3. For the gradient mapping, this particular implementation
wraps the integer range {0 . . . 288} repeatedly to the range {0 . . . 40} by a
modulo-41 operation. 41 has no common prime factors with 289, which im-
proves the shuffling, and 41 is reasonably close to an even divisor of 289, which
creates a good isotropic distribution for the gradients.

Counting vector operations as a single operation, this code amounts to just
six dot operations, three mod, two floor, one each of step, max, fract and abs,
seventeen multiplications and nineteen additions. The supplementary material
contains source code for 2-D, 3-D and 4-D simplex noise, classic Perlin noise and
a periodic version of classic noise with an explicitly specified arbitrary integer pe-
riod, to match the popular and useful pnoise() function in RenderMan SL. The
source code is licensed under the MIT license. Attribution is required where sub-
stantial portions of the work is used, but there are no other limits on commercial
use or modifications. Managed and tracked code and a cross-platform bench-
mark and demo for Linux, MacOS X and Windows can be downloaded from
the public git repository git@github.com:ashima/webgl-noise.git, reach-
able also by:
http://www.github.com/ashima/webgl-noise

7 Old versus new

The described noise implementations are fundamentally different from previ-
ous work, in that they use no lookup tables at all. The advantage is that
they scale very well with massive parallelism and are not dependent on texture
memory bandwidth. The lack of lookup tables makes them suitable for a VLSI
hardware implementation in silicon, and they can be used in vertex shader en-
vironments where texture lookup is not guaranteed to be available, as in the
baseline OpenGL ES 2.0 and WebGL 1.0 profiles.

In terms of performance, this purely computational noise is not quite as
fast on current GPUs as the previous implementation by Gustavson [5], which

McEwan et al: Efficient computational noise in GLSL 7

Const Simplex noise Classic noise
GPU color 2D 3D 4D 2D 3D 4D
Nvidia
GF7600GS 3,399 162 72 39 180 43 16
GTX260 8,438 1,487 784 426 1,477 589 255
GTX480 8,841 3,584 1,902 1,149 3,489 1,508 681
GTX580 13,863 4,676 2,415 1,429 4,675 2,003 906
AMD
HD3650 1,974 370 193 117 320 147 67
HD4850 9,416 2,586 1,320 821 2,142 992 457
HD5870 18,061 4,980 3,062 2,006 4,688 2,211 1,092

Table 1: Performance benchmarks for selected GPUs, in Msamples per second

made heavy use of 2-D texture lookups both for permutations and gradient
generation. Most real time graphics of today is very texture intensive, and
modern GPU architectures are designed to have a high texture bandwidth.
However, it should be noted that noise is mostly just one component of a shader,
and a computational noise algorithm can make good use of unutilised ALU
resources in an otherwise texture intensive shader. Furthermore, we consider
the simplicity that comes from independence of external data to be an advantage
in itself.

A side by side comparison of the new implementation against the previous
implementation is presented in Table 2. The old implementation is roughly
twice as fast as our purely computational version, although the gap appears to
be closing with more recent GPU models with better computing power. It is
worth noting that 4D classic noise needs 16 pseudo-random gradients, which
requires 64 simple quadratic polynomial evaluations and 16 gradient mappings
in our new implementation, and a total of 48 2-D texture lookups in the previous
implementation. The fact that the old version is faster despite its very heavy
use of texture lookups shows that current GPUs are very clearly designed for
streamlining texture memory accesses.

8 Supplementary material

http://www.itn.liu.se/~stegu/jgt2011/supplement.pdf

References

[1] Ken Perlin, An Image Synthesizer. Computer Graphics (Proceedings of
ACM SIGGRAPH 85), Vol. 19, Number 3, pp. 287–296, 1985.

[2] Ken Perlin, Noise Hardware. SIGGRAPH 2001 course notes, Vol. 24 (Real-
Time Shading), Chapter 9, 2001.

McEwan et al: Efficient computational noise in GLSL 8

Const Simplex noise Classic noise
GPU, version color 2D 3D 4D 2D 3D 4D
Nvidia
GTX260 new 8,438 1,487 784 426 1,477 589 255
GTX260 old 2,617 1,607 953 3,367 1,815 921
GTX580 new 13,863 4,676 2,415 1,429 4,675 2,003 906
GTX580 old 7,806 4,481 2,692 8,795 3,508 1,869
AMD
HD3650 new 1,974 370 193 117 320 147 67
HD3650 old 665 413 241 871 333 139
HD4850 new 9,416 2,586 1,320 821 2,142 992 457
HD4850 old 4,615 2,874 1,524 5,654 1,926 956

Table 2: Performance of old vs. new implementation, in Msamples per second.

[3] Ken Perlin, Improving Noise, ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2002) Vol. 21, Number 3, pp 681–682, 2002.

[4] Simon Green, Implementing Improved Perlin Noise. GPU Gems 2, Chapter
26, Addison-Wesley, 2005.

[5] Stefan Gustavson, Perlin noise implementation in GLSL. Post to the GLSL
developer forum at www.opengl.org, November 24, 2004.

[6] Stefan Gustavson, Simplex Noise Demystified. Technical Report, Linköping
University, Sweden, March 22, 2005.
http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf

Ian McEwan, David Sheets and Mark Richardson, Ashima Research, 600 S.
Lake Ave., Suite 104, Pasadena CA 91106, USA
(ijm@ashimaresearch.com, sheets@ashimaresearch.com, mir@ashimaresearch.com)

Stefan Gustavson, Media and Information Technology, ITN, Linköping Univer-
sity, 60174 Norrköping, Sweden
(stefan.gustavson@liu.se)

Received [DATE]; accepted [DATE].

McEwan et al: Efficient computational noise in GLSL 9

// 2D simplex no i s e
#version 120
vec3 permute (vec3 x) {

re turn mod(((x ∗34 .0) +1.0)∗x , 289 .0) ; }
vec3 taylorInvSqrt (vec3 r) {

re turn 1.79284291400159 − 0.85373472095314 ∗ r ; }
f l o a t snoise (vec2 P) {

const vec2 C = vec2 (0 .211324865405187134 , // (3.0− s q r t (3 . 0)) / 6 . 0 ;
0 .366025403784438597) ; // 0 . 5∗ (s q r t (3 . 0) −1.0) ;

// F i r s t corner
vec2 i = f l o o r (P + dot (P , C . yy)) ;
vec2 x0 = P − i + dot (i , C . xx) ;
// Other co rne r s
vec2 i1 ;
i1 . x = step (x0 . y , x0 . x) ; // 1 .0 i f x0 . x > x0 . y , e l s e 0 .0
i1 . y = 1.0 − i1 . x ;
// x1 = x0 − i 1 + 1 .0 ∗ C. xx ; x2 = x0 − 1 .0 + 2 .0 ∗ C. xx ;
vec4 x12 = x0 . xyxy + vec4 (C . xx , C . xx ∗ 2 .0 − 1 . 0) ;
x12 . xy −= i1 ;
// Permutations
i = mod(i , 289 .0) ; // Avoid t runcat i on in polynomial eva lua t i on
vec3 p = permute (permute (i . y + vec3 (0 . 0 , i1 . y , 1 . 0))

+ i . x + vec3 (0 . 0 , i1 . x , 1 . 0)) ;
// C i r cu l a r l y symmetric b lending ke rne l
vec3 m = max(0 . 5 − vec3 (dot (x0 , x0) , dot (x12 . xy , x12 . xy) ,

dot (x12 . zw , x12 . zw)) , 0 . 0) ;
m = m∗m ;
m = m∗m ;
// Gradients from 41 po in t s on a l i n e , mapped onto a diamond
vec3 x = f r a c t (p ∗ (1 . 0 / 41 . 0)) ∗ 2 .0 − 1 .0 ;
vec3 gy = abs (x) − 0 .5 ;
vec3 ox = f l o o r (x + 0 . 5) ; // round (x) i s a GLSL 1.30 f e a tu r e
vec3 gx = x − ox ;
// Normalise g rad i en t s imp l i c i t l y by s c a l i n g m
m ∗= taylorInvSqrt (gx∗gx + gy∗gy) ;
// Compute f i n a l no i s e value at P
vec3 g ;
g . x = gx . x ∗ x0 . x + gy . x ∗ x0 . y ;
g . yz = gx . yz ∗ x12 . xz + gy . yz ∗ x12 . yw ;
// Sca l e output to span range [−1 ,1]
// (s c a l i n g f a c t o r determined by exper iments)
re turn 130 .0 ∗ dot (m , g) ;

}

Table 3: Complete, self-contained source code for 2D simplex noise. Code for 2D, 3D
and 4D versions of classic and simplex noise is in the supplementary material and in
the online repository.

	1 Introduction and background
	2 Platform constraints
	3 Permutation polynomials
	4 Gradients on N-cross-polytopes
	5 Rank ordering
	6 Performance and source code
	7 Old versus new
	8 Supplementary material

