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1. Summary 
 

Since the Coronavirus disease (COVID-19) outbreak in December 2019, studies have been addressing diverse 

aspects in relation to COVID-19 such as potential symptoms and predictive tools. However, limited work has 

been performed towards the modelling of complex associations between the combined demographic attributes 

and varying nature of the COVID-19 infections across the globe. This study presents an intelligent approach to 

investigate the multi-dimensional associations between demographic attributes and COVID-19 global 

variations. We gather multiple demographic attributes and COVID-19 infection data (by 08 January 2021) from 

reliable sources, which are then processed by intelligent algorithms to identify the significant associations and 

patterns within the data. Statistical results and experts’ reports indicate strong associations between COVID-19 

severity levels across the globe and certain demographic attributes, e.g., female smokers, when combined 

together with other attributes. The outcomes will aid the understanding of the dynamics of disease spread and 

its progression, which in turn may support policy makers, medical specialists and the society, in better 

understanding and effective management of the disease. 

 

 

2. Introduction 
Respiratory viral illnesses are allied with the continuing and serious psychopathological concerns among 

survivors [1]. Coronaviruses are RNA (Ribonucleic acid) viruses that can trigger contamination illnesses, 

including common colds or even serious concerns such as severe acute respiratory conditions [2].  Research 

studies indicated that the exposure to coronavirus has shown to be associated with neuropsychiatric diseases, 

including Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS) and other 

outbreaks [3]. Coronavirus disease (COVID-19) which initially appeared in Wuhan, China in December 2019, is 

triggered by acute respiratory syndrome and is referred to as coronavirus-2 (SARS-CoV-2). In March 2020, the 

classification of COVID-19 was altered from a “public health emergency” to a pandemic by WHO. The COVID-

19 pandemic is the most important global health disaster in modern history and the greatest trial humans 

confronted since World War II, spanning every continent apart from Antarctica. There are more than 90 million 

cases and more than 1.9 million deaths to date (08th January 2021). Studies reported COVID-19 affects people 

who have a weak immune system, such as the elderly and vulnerable people with underlying medical 
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conditions, including diabetes and cardiovascular disease (CVD). On the other hand, the effects of the virus on 

children and young adults are not yet fully understood, since the number infections or/and death rate is 

relatively low [4]. 

Various research studies addressed medical symptoms, personal attributes and demographic characteristics, 

which are highly correlated with the COVID-19 infection. For instance, the Centers for Disease Control and 

Prevention (CDC) indicated that there were 52,166 deaths in 47 US jurisdictions between February 12 to May 

18, 2020 [5]. Amongst the decedents, majority were found to be aged ≥65 years, with higher ratio of males, white 

ethnicity while comparatively lower ratio of black, Hispanic/Latino, and Asian ethnic background. Median 

decedent age was found to be 78 years. Authors reported that a higher percentage of Hispanic and non-white 

decedents were aged <65, compared to lower percentage of white, non-Hispanic decedents.. Studies also 

indicated other clinical attributes, specifically, obesity [6, 7], CVD, and hypertension [6, 8] as important factors 

affecting the COVID-19 infection rate. On the other hand, studies address demographic attributes such as GDP 

ratio of a country, smoking prevalence, and average annual temperature of a country [5, 6, 9, 10], etc., being 

highly correlated with the COVID-19 infection around the world.     

Whilst the aforementioned studies have identified some clinical and economic demographic parameters to 

predict disease spread and its associations, most of the works are either carried out at early stages with 

insufficient amount of data, or using conventional statistical approaches, which are limited to investigate only 

the individual attributes’ associations with COVID-19 infection. An intelligent algorithm is needed to model the 

complex and multidimensional attributes and investigate the combined impact of various demographic 

characteristics over the COVID-19 severity, particularly, at the current stage, where sufficient data is available. 

This would support understanding of the in-depth demographic aspects of this disease, and significantly 

contribute towards effective policy-making and disease management.  

In order to explore COVID-19 severity and its associations to multiple demographical characteristics across the 

globe, this study investigates whether the diversity in COVID-19 infection severity (e.g., variations in death rate) across 

the globe is significantly associated with an individual or combination of demographic attribute/s? 

To answer the underlying research question, the authors have undertaken this study to model the associations 

between multiple demographic attributes, including economic, socio-economic, environmental, and health-

related. The varying nature of COVID-19 infections in the global geographic context is far from clear and 

therefore, adopting an open-minded approach is useful in unravelling such a complex problem. Deploying 

machine intelligence approaches offers an advantage over conventional statistical methods in analysing the 

complex patterns and potential associations between multiple predefined demographic facts and COVID-19 

spread in the world. The major contributions of this study include: 

- Using Class Association Rules (CARs) to investigate the combined demographic attributes that are significantly 

associated to COVID-19 infection severity across the globe. 

- Using Self-Organizing Maps (SOM) for pattern identification within the multi-dimensional demographic and 

COVID-19 related datasets as well as detailed country-level information in the form of two-dimensional visualizations of 

COVID-19 spread across the globe, which is easily understandable and interpretable by humans. 

- Gathering a larger COVID-19 dataset (over a period of one year) and various demographic characteristics from 

reliable public data sources and transforming them into an appropriate form using statistical approaches and medical 

experts’ recommendations, where appropriate.  

The remainder of this paper is organized as follows. Section 3 describes the existing works related to COVID-

19 spread and correlated attributes. Section 4 presents the details of the proposed methodology. Experimental 

results and interpretation of representative rules are reported in section 5, followed by the discussion of the 

findings, and finally, the conclusion and future directions are presented in Section 6. 

 

 

3. Related Work 
Since the COVID-19 outbreak, research studies have been attempting to address diverse aspects of the disease, 

specifically, the predictive symptoms and associated attributes. Various clinical and demographic attributes 

were identified as potentially associated with the COVID-19 spread in different parts of the world. Research 

carried out in [6, 8] indicated that certain male patients aged between 40-60 having underlying medical 

conditions, such as hypertension, cardiovascular disease and chronic lung disease, were in a critical condition 

on admission, and progressed rapidly to death within two to three weeks from contracting COVID-19. Likewise, 

[9] reported that male patients aged over 65 years, who smoke, might face a higher risk of developing critical 

conditions of COVID-19. Obesity and smoking were also associated with increased risk of COVID-19 infection 
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[6]. Study [7] also indicated obesity as an important risk factor for COVID-19 hospital admissions in patients 

younger than 60 years. 

On the other hand, research outcomes from these studies contradict each other, specifically, in terms of 

demographic aspects. For example, the authors in [10] suggested that countries with a higher smoking rate had 

lower frequency of critical cases and deaths, whereas, [6, 9] indicated that high smoking rate is associated with 

increased risk of COVID-19 infection. The outcomes from [6] also reported other indicators, such as gender, 

being influential on the disease spread. Likewise, patients with high lactate dehydrogenase levels require 

thorough observation and early mediation to avoid the possibility of developing severe COVID-19 [11]. Male 

patients with heart injury, hyperglycaemia and high-dose corticosteroid use may have a high risk of death [11].  

The authors in [12] suggested that children of all ages seemed susceptible to COVID-19, irrespective of gender. 

While COVID-19 cases in children were less severe than those of adult patients, young children specifically 

infants, were found to be easily infected [12]. On the other hand, findings in [13] suggested that children may 

be less vulnerable to COVID-19 because children have: 1) a more active immune response, 2) stronger 

respiratory tracts, since they are less exposed to cigarette smoke and air pollution in comparison to adults, and 

3) fewer underlying medical disorders. A similar study reported milder disease progression and better 

prognosis in children as compared to adults, with deaths being extremely rare in children [14]. On the other 

hand, WHO [15] reported that refugee and migrant children, children deprived of liberty, children living 

without parental care or proper shelter, and children with disabilities are most vulnerable to COVID-19. 

In terms of demographic characteristics, research conducted in [10] indicated that countries with high GDP per 

capita had an amplified number of reported severe COVID-19 cases and deaths. This is may be due to more 

widespread testing in the developed countries, superior and transparent case reporting and better surveillance 

systems at national level. Frequent air-travel might be another possible cause of COVID-19 severity in the 

developed countries, as travel was identified as an important factor contributing to international viral spread 

[10]. For instance, [16] reported that the high numbers of COVID-19 cases in Jakarta, Indonesia, were caused 

due to high mobility of the people. 

Likewise, smoking prevalence is also identified as being moderate to high negatively correlated with COVID-

19 infection rates. In [10], the authors surprisingly indicated that countries with a higher smoking rate, had 

lower frequency of critical cases and deaths. In addition, the authors reported a number of other possible 

predictors, which are associated with the total number of reported cases per million including: 1) days to 

lockdown (i.e., partial or full), 2) commonness of obesity, 3) median age of population, 4) number of tests 

performed per million, and 5) days to the closure of borders. The study found a negative relationship between 

the total number of cases per million and the number of days to lockdown, where a lengthier time preceding to 

implementation of any lockdown, was linked with a lower number of detected COVID-19 cases per million. 

Furthermore, countries with high obesity rates among their population, higher median population age and 

longer number of days to border closure had considerably higher caseloads [10]. 

Studies have also indicated the average annual temperature of a country to be correlated with COVID-19 spread 

[16, 17]. For instance, [17] found that the majority of the 10,000 new COVID-19 cases in the USA (10-day interval) 

are correlated with absolute humidity in a range of 4 to 6 g/m3, and temperatures in a range of 4–11 °C, thus 

concluding that low temperature ranges are correlated with higher COVID-19 rates. Another research 

conducted in Brazil [18] found high solar radiation to be the main climatic factor that suppresses the spread of 

COVID-19. High temperatures and wind speed are also potential factors [18] correlated to COVID-19 spread. In 

summary, this work concluded that wind speed, temperature and increased solar radiation are the probable 

climatic factors that may steadily reduce the effects of the COVID-19 pandemic in Rio de Janeiro, Brazil. 

Experimental results from [19] demonstrated that weather factors are more pertinent in predicting mortality 

rates in COVID-19 patients, when compared to other variables such as age, population, and urbanization. The 

outcomes indicated that weather factors are more important as compared to age, population, and urban 

percentage, while considering death rates due to COVID-19. A similar study in [20] proposed that humidity and 

temperature variations may represent significant factors affecting COVID-19 mortality rates.  

Population density has also been reported as one of the relevant demographic attributes. Research outcomes in 

[21] indicated that in high population density cities, it is difficult to enforce suitable distance between people 

coughing and sneezing. In turn, this may result in higher infection rates. [22] stated that it is possible the disease 

will be transmitted to people facing homelessness. In the US, it is reported that more than 500 000 people were 

facing homelessness on any given night over the past decade (2007–19). If cities enforce a lockdown to avoid 

COVID-19 transmission, it is unclear how and where homeless people will be relocated [22]. This can also be 

the one of the potential causes for high infection and mortality rates in the US. Similar work in [23] reported 

that the high COVID-19 infection rates in Iran were positively correlated with population density and intra-
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provincial movement. Another study [24] investigated the morbidity and mortality rates of COVID-19 

pandemic in various regions of Japan. The correlations between the morbidity, mortality rates and population 

density were found to be statistically significant while, lower morbidity and mortality rates were observed in 

regions with higher temperature and absolute humidity. 

Researchers in [25] stated that the lockdown is an effective measure in limiting COVID-19 spread in densely 

populated areas. They also found that COVID-19 spread is negatively correlated with the latitude and altitude 

of the region. The study also found that there is no significant relationship between COVID-19 spread and 

population density, which contradict the findings of [23]. The study also suggested that strict lockdown 

procedures can effectively decrease the human-to-human infection propagation risk, even in densely populated 

regions, as stated in [21].  

Air pollution, in [26], indicated negative correlation with COVID-19 infection rates. However, this contradicts 

the findings of [25]. Wu et al., [27] concluded that even a small increase (i.e., only 1 𝜇g/m3) in long-term exposure 

to PM2.5 results in a large increase (i.e., 8%) in COVID-19 mortality rates based on a US research study. In 

contrast, Zhu et al., [28] found a significant correlation between air pollution and COVID-19 infection rates. 

Positive correlations of PM2.5, PM10, CO, NO2 and O3 with confirmed COVID-19 cases were observed. 

However, the authors found SO2 to be negatively associated with the number of daily confirmed cases of 

COVID-19. In [29], a direct relationship was discovered between air pollution and increased risk of hospital 

admission in Bangkok. It was also found that air pollution plays a significant role for the development of 

respiratory diseases such as pneumonia, asthma, and chronic respiratory disease (CRD) leading to hospital 

admission. Elder people are more fragile against the effect of air pollution and thus more vulnerable to 

respiratory diseases, similar to COVID-19. Phosri et al., [30] supported the argument presented in [29], 

indicating that exposure to air pollution could increase vulnerability and have negative effects on the prognosis 

of patients affected by COVID-19. 

In addition to the aforementioned medical and demographic aspects of COVID-19, machine learning algorithms 

have been used in disease prediction and classification. For instance, Loey et al., [31] used a deep learning model 

and conventional machine learning methods for automated face mask detection. They deployed support vector 

machines, decision trees, and ensemble method for the classification task. They claimed high accuracy results 

for both training and testing, however the application of their system in the online context requires further 

details. Tuli el al., [32] used machine learning and mathematical models to detect the threat of COVID-19 around 

the globe. They claimed that their model outperforms the Gaussian model, however, there is a lack of 

benchmarking with other mathematical models. On the other hand, Yeşilkanat [33] used random forest to 

predict the future number of infected cases in 190 countries around the world, and compared their results to 

actual confirmed cases. RMSE values between 141.76 and 526.18 were reported, however, it would be interesting 

to show more results with other machine learning and statistical models for comparison purposes. 

The aforementioned research studies investigated diverse aspects of COVID-19, specifically, association 

analysis and prediction using various medical and demographic attributes. However, the scope of these works 

is either limited to medical aspects or the analysis of individual association identification, where the outcomes 

indicated potential contradictions with other works. This might be due to several factors such as immature 

data/information about COVID-19 in the early stages, use of conventional statistical approaches, and/or 

limitations in the combined analysis of multiple attributes which is presented in this study. More specifically, 

ongoing waves and variants of COVID-19 further limits the generalisation of existing similar studies conducted 

at earlier stages with immature data. We conduct a comprehensive analysis of complex associations and hidden 

patterns within the multi-dimensional data (gathered over larger period of one year) while utilising the machine 

intelligence to investigate the impact of diverse demographic characteristics over the COVID-19 infection rate 

across the globe. 

 

 

4. Materials and Methods 
Combinations of intelligent algorithms are deployed to analyse the complex patterns and class associations 

between the multi-dimensional demographic attributes and COVID-19 death severity across different regions 

of the world. In the first step, the publically available dataset is compiled from various sources (detailed in the 

following sections), comprising various demographic and COVID-19 related attributes across the globe. In the 

next step, data cleansing algorithms are used to remove outliers, where appropriate, and deal with missing 

records. The cleaned dataset is then normalized and passed on to pattern identification and association learning 

algorithms, to identify significant associations between the combined demographic attributes and the target 
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attribute (i.e., death rate due to COVID-19). The statistical outcomes, associations and patterns are then fused 

together to draw the conclusions, while utilizing existing information and experts’ knowledge in the context of 

the underlying research question. Figure 1 summarizes the major building blocks for the proposed model, which 

are detailed in the following sections. 

 
Figure 1. An overview of the modular framework for identification of significant demographic attributes, which are highly 

associated with COVID-19 death rates across the world. 

 

4.1. Dataset Preparation 
Exceedingly large and progressive data streams are publically available, comprising numerous factors and 

statistics in relation to COVID-19. To investigate the research question set in this study, we used the publically 

available dataset [34] until the 08th January 2021 that comprises deaths per million population (DpM), cases per 

million population (CpM) and tests per million population (TpM) for each country across the globe 

(January2020 to January 2021 in this study). Figure 2 shows the boxplot distributions for the selected attributes. 

Further explanation of the dataset, data capturing procedures and related ethical information is available in [34]. 

 
Figure 2. Boxplot visualization for the death rate (DpM), number of cases (CpM) and number of tests (TpM) across the globe. 

 

As previously discussed, several studies indicated significant relationships of certain demographic attributes 

with COVID-19, specifically, DpM. However, there is a detailed investigation is required to identify the complex 

associations and patterns within the multi-dimensional dataset. To investigate this hypothesis, we compiled 

several open-source demographic datasets [35-39], comprising a comprehensive list of 22 demographic 

attributes for countries around the globe, as shown in Table 1. The parameters are selected based on 

recommendation from clinical domain experts as well as existing studies [6-30] as being potentially correlated 

with COVID-19 severity in different parts of the world. In total, there are 162 instances in the dataset each 

representing a single country. 
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The gathered data is then cleaned by eliminating outliers and missing values, specifically, countries containing 

some invalid entries (e.g., invalid or unnecessary names of countries such as ‘Asian countries’), which were 

removed from the dataset. Figure 2 shows an example of outliers within the TpM attribute that were identified 

and eliminated using the box plot. Next, the cleaned numeric data were standardized using the z-score and 

forwarded to the pattern analysis and CARs algorithms. 

 
Table 1. Demographic attributes names and description 

 

4.2. Pattern Analysis and Rule Mining 
One of the major limitations associated with conventional statistical approaches is the inability to analyse 

complex patterns within a high-dimensional dataset. This study uses various demographic attributes (as listed 

in Table 1) with diverse variation and ranges, which are difficult to be analyzed by human experts or 

conventional statistical approaches, e.g., to draw conclusions from multiple combinations of different attributes. 

One effective means of dealing with multi-dimensional data visualization is SOM, an unsupervised form of 

artificial neural networks, performing a non-linear projection of a high-dimensional space onto a lower-

dimensional (typically, 2-dimensional) map [40]. 

Topological properties of the input space are preserved in SOM, which use competitive learning, as compared 

to error minimization in supervised neural networks. The two-dimensional map representation is useful for 

pattern identification within the high dimensional data such as the ones dealt with in this study. During the 

competitive learning phase, input data samples (e.g., a country’s record in this study) are iteratively mapped to 

SOM, where a winning neuron (also called best matching unit) is identified based on the distance of its weights 

and the input vector. Weight update is performed within the specific neighborhood radius resulting in similar 

samples being mapped closely together using: 

wj(n + 1) = wj(n) + η(n)hji(x)(n)(x(n) − wj(n))  (1) 

Where, η(n) is the learning rate and hji(X)(n) is the neighbourhood function around the winner neuron 𝑖(x). 

Both, η(n) and  hji(X)(n)  are varied dynamically to achieve optimal outcomes. Further details, explanation and 

mathematical formulation of SOM can be found in [41].   

 

Attribute Description Attribute Description 

Lung disease 
Death rate per 100,000 due to lung 

disease  
Poverty ratio 

Poverty headcount ratio at $1.90 a 

day (% of population) 

Hypertension Occurrence rate per 100,000  Employment ratio 
Employment to population ratio, 

15+ years, total (%) 

Population 

density 

People per square kilometer of land 

area  
Smoking females 

Smoking prevalence, females (% of 

adults) 

Female ratio % of females in total population Smoking males 
Smoking prevalence, males (% of 

adults)  

Age_1 
Population ages 0-14 (% of total 

population) 
Air_pollution 

PM2.5 air pollution, mean annual 

exposure (micrograms per cubic 

meter) 

Age_2 
Population ages 15-65 (% of total 

population) 
Mortality rate_AP 

Mortality rate attributed to 

household and ambient air 

pollution, age-standardized (per 

100,000 population) 

Age_3 
Population ages 65 and above (% of 

total population) 
Mortality_Diab_CVD) 

Mortality from CVD, cancer, 

diabetes or CRD between exact 

ages 30 and 70 (%) 

Beds Hospital beds per 1000 people Literacy rate 
Literacy rate, adult total (% of 

people ages 15 and above) 

Forest Area 
(% of land area) land area covered by 

forests 
Physician  

Physicians  per 1000 (include 

generalist and specialist medical 

practitioners) 

Handwash 

People with basic handwashing 

facilities including soap and water (% 

of population) 

Health_ Expenditure 
Current health expenditure (% of 

GDP) 

Obesity  
The percent of a country's obese 

population 
Avg. Temperature 

Average yearly temperature 

(Celsius) 
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Figure 3. SOM distance map. The text color of the country name indicates the ‘Death Severity Level’ in the corresponding 

country, while a darker background represents higher neighboring distance. The node positions start from bottom left (node 

1) and end at top-right (node 64)  
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As the attributes within the COVID-19 dataset (i.e., DpM, CpM, TpM) are in numerical form, we can utilize the 

SOM distance map to visualize these variables in the form of a 2-dimentional plot. Figure 3 shows the mapping 

of countries over the SOM nodes, based on the distribution of three COVID-19 attributes, representing its 

severity levels. The algorithm automatically shapes the map (i.e., position of samples and nodes) using the 

distance metric between the codebook vectors of neurons/nodes. In other words, similar records (i.e., COVID-

19 severity rates across the countries in this case) are mapped close to each other within the same node. Likewise, 

nodes with high similarity (i.e., nodes with smaller neighboring distance) are positioned closely within the map, 

whereas, dissimilar nodes are mapped far from each other. As an example, most of the severely affected 

countries (e.g., USA, UK, Spain, France, Belgium, Italy, etc.) are positioned within the left side and bottom-left 

nodes e.g., nodes 1-4etc.) in Fig. 3, representing the similar behaviour of COVID-19 infection rates in these 

countries. On the other hand, the least affected countries (e.g., Thailand, Sri Lanka, Nepal, etc.) are placed in the 

top-right and right-side nodes (e.g., nodes 53-56, 60-64 etc.) within the map. This distribution clearly indicates 

the distinctive behaviour of COVID-19 severity levels across the globe, which requires further investigation in 

regards to its associations with other demographic characteristics, listed in Table 1. 

 
Figure 4. Heat maps representing the distribution of individual factors across the SOM map. The color intensity (white to 

black) indicates the magnitude of weight (high to low respectively) associated to each attribute corresponding to neurons in 

the SOM map 

 

In addition to the distance plot of Figure 3, SOM provides heat maps, which is a powerful tool to visualize the 

individual behaviour of multiple attributes across the map. Figure 4 shows the distribution of individual factors 

across the SOM heat maps for all countries producing very useful visual information. For instance, ‘Iceland’ 

having ‘low’ DpM, is grouped together with high DpM countries (i.e., ‘Cyprus and ‘Maldives in node 6 of Fig. 

3). However, mapping this information within the same node in Fig. 4 indicates that this grouping is due to the 

TpM in this zone, which is true in the case of Iceland (864659/million in the dataset by January 2021). Secondly, 

the overlapping distributions observed for these attributes in Fig. 4 clearly indicate high positive correlations 

between these factors, which make sense in the case of the COVID-19 outbreak. For example, CpM is increasing 

with the increase in TpM in a country, which is also reported in related works [10, 25]. 

While SOM produces powerful clustering and rich visual information within the numerical data, further 

investigation in relation to associations between multiple combinations of demographic characteristics and 

COVID-19 severity might be helpful to understand the complex patterns and inter-relationships within the 

categorical dataset. For this purpose, we utilize the special case of conventional rule mining known as Class 

Association Rules (CARs) [42], where the consequent of a rule contains the target attribute (i.e., death severity 

in this case). As compared to conventional statistical techniques, CARs has the ability to identify frequently 

occurring patterns within a larger dataset that can be easily interpreted by humans in the form of rules. Let ‘A’ 

be the attributes defined in Table 1, containing O={o1, o2, o3, … oN} observations (i.e., countries’ records) in the 

dataset, where each observation oi contains a subset of attributes A. The X→Y relationship in CARs indicates the 

disjoint item-set, i.e., X∩Y= ∅, occurring in O, as antecedents and consequents respectively. An important property 

of a rule is the corresponding support count () representing the number of observations containing that item-

set (i.e., attribute/s) which can be formulated as: 

(𝑋) = |{𝑜𝑖|𝑋 ⊆𝑜𝑖 , 𝑜𝑖 ∈  𝑂}|   (2) 

The association of a rule (X) is usually controlled by confidence (c) and support (s) metrics where: 

𝑠 (𝑋 ⇒ 𝑌) = ((𝑋 ⋃ 𝑌))/𝑁    (3) 
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In Eq. 3, N represents the total number of countries in this study. The rule confidence measure c is the percentage 

for which attribute Y occurs with the presence of attribute X and is represented as: 

𝑐 (𝑋 ⇒ 𝑌) = (𝑋 ⋃ 𝑌)/(𝑋)    (4) 

To account for the base popularity of both constituent items (i.e., X and Y), a third measure called lift is used 

that measures the correlation between X and Y of a rule, indicating the effect of X on Y, and is calculated as: 

𝑙𝑖𝑓𝑡 (𝑋 ⇒ 𝑌) = (𝑠 (𝑋 ∪  𝑌))/(𝑠(𝑋) ∗  𝑠(𝑌) ) (5) 

A value of lift(X⇒Y) =1 indicates independence between antecedents and consequent, whereas lift(X⇒Y)>1 

indicates positive dependence of X and Y. A detailed explanation about CARs and the Apriori algorithm can be 

found in [42]. 

 
Table 2. Statistical metrics (i.e., quantiles) and clinical domain knowledge-based data transformation (numeric to 

categorical). 

 

To deploy CARs in this study, the numeric dataset was transformed into categorical form using statistical 

information (i.e., quantiles and inter quantile ranges), as well as expert knowledge, where appropriate. Table 2 

summarizes the multi-scale categories for the demographic attributes as transformed using statistical metrics 

and histogram distributions. Similarly, the COVID-19 attributes (e.g., DpM) are also categorized as ‘Mild’ to 

‘Severe’, indicating lowest to highest severity levels, respectively, across the globe. The final categorical data 

representations contain uniform representations of all attributes forming the knowledge base for CARs to learn 

the associations between combinations of multiple attributes and the target DpM in the COVID-19 dataset. 

Figure 5 shows the frequency distributions of the categorical attributes within the transformed dataset. It can be 

noticed that all attributes have uniform categories as low (L), medium (M), and high (H) with the additional 

category of minor (Min) for the COVID-19 attributes.  

 

 

Attribute name 

 

Attribute Categories 

 

Low (L) Moderate (M) High (H) 

Lung Disease Lung Disease  ≤ 10 10 < Lung Disease ≤ 35 Lung Disease  > 35 

Hypertension Hypertension ≤ 5 5 < Hypertension ≤ 19 Hypertension > 19 

Population Density PD ≤ 30 30 < PD ≤ 150 PD > 150 

Female ratio Female ratio ≤ 49 49 < Female ratio ≤ 51 Female ratio> 51 

Age_1 Age_1 ≤ 16 16 < Age_1 ≤ 38 Age_1> 38 

Age_2 Age_2≤ 58 58 < Age_2 ≤ 68 Age_2> 68 

Age_3 Age_3 ≤ 3 3 < Age_3 ≤ 15 Age_3 > 15 

Beds Beds ≤ 0.9 0.9 < Beds ≤ 4 Beds > 4 

Air Pollution Air Pollution ≤ 13 13 < Air Pollution ≤ 40 Air Pollution > 40 

Mortality rate_AP MAP ≤ 29 29 < MAP ≤ 145 MAP > 145 

Poverty ratio Poverty ratio ≤ 0.4 0.4 < Poverty ratio ≤ 20 Poverty ratio > 20 

Employment ratio Emp. ratio ≤ 50 50 < Emp. ratio ≤ 65 Emp. ratio > 65 

Smoking males Smoking ≤ 13 13 < Smoking ≤ 30 Smoking > 30 

Smoking female Smoking ≤ 1.5 1.5 < Smoking ≤ 12 Smoking > 12 

Diabetes prevalence Diabetes  ≤ 5 5 < Diabetes ≤ 10 Diabetes > 10 

Mortality (Diab_CVD) Mortality_CVD ≤ 14 14 < Mortality_CVD ≤ 22 Mortality_CVD > 22 

Literacy rate Literacy rate  ≤ 85 85 < Literacy rate ≤ 95 Literacy rate > 95 

Physician ratio Phys_rate ≤ 0.3 0.3 < Phys_rate ≤ 2.8 Phys_rate > 2.8 

Health Expenditure Health.Exped ≤ 4 4 < Health.Exped ≤ 8 Health.Exped > 8 

Forest Area Forest Area  ≤ 10 10 < Forest Area ≤ 50 Forest Area > 50 

Handwash Handwash ≤ 30 30 < Handwash ≤ 95 Handwash > 95 

Obesity Obesity ≤ 8.5 8.5 < Obesity ≤ 25 Obesity > 25 

Avg. Temperature Avg. Temp ≤ 9 9 < Avg. Temp ≤ 25 Avg. Temp > 25 

DpM (COVID-19) Minor: DpM ≤ 25, Low: 25-100,  Moderate: 100-500, High:  DpM > 500 

CpM (COVID-19) Minor: CpM ≤ 1200, Low: 1200-4600, Moderate: 4600 – 35K, High: CpM > 35K 

TpM (COVID-19) Minor: TpM≤15K, Low: 15K-36K, Moderate: 36K-200K, High:TpM>200K 
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Figure 5. Distribution of the categorized attributes (Table 2) within the dataset representing the world demographics and 

COVID-19 severity. High (H), Low (L), Moderate (M), Minor (Min). 

 

The histograms demonstrate normalized distributions for the demographic attributes indicating categorization 

of the numerical dataset. To find the individual relationships between the DpM and demographic attributes, we 

initially deployed the Chi-square test, which is one of the most commonly used statistical tests of independence 

for categorical data. The Chi-square test between the DpM and CpM provided χ2 = 162.19 with a p-value of 2.2e-

16<<0.05, clearly indicating the rejection of the null hypothesis, thus concluding that DpM is highly dependent 

on CpM in a country that aligns with the existing study [10] as well as SOM-based analysis (Fig. 4). Similarly, 

the Chi-square test between TpM and CpM produced χ2 = 69.46 with a p-value of 1.942e-11<<0.05, also indicating 

the rejection of the null hypothesis. These findings align with the SOM-based outcomes of Fig. 3 and Fig. 4, 

implying that a higher number of tests will produce a high number of cases, which will, ultimately, result in a 

high DpM for the corresponding country. 

 
Table 3. Chi-square test of independence between the demographic attributes and DmP (df = 6) 

 

 

 
 
 
 
 
 

 

Attribute name χ2 p-value Attribute name χ2 p-value 

Lung disease 13.04 0.041 Smoking females 22.53 0.0009 

Hypertension 22.83 0.0008 Smoking males 4.86 0.56 

Population density 3.58 0.73 Diabetes prevalence 6.92 0.32 

Female ratio 8.92 0.17 Mortality (Diab_CVD) 26.25 0.00019 

Age 0-14 (Age_1) 32.87 1.16e-05 Literacy rate 31.46 2.06e-05 

Age 15-65 (Age_2) 29.7 3.97e-05 Physician per 1000 32.72 1.18e-05 

Age 65+ (Age_3) 23.11 0.0004 Health expenditure 33.41 8.72e-06 

Beds.per.1000 25.81 0.0002 Forest area 1.71 0.94 

Air Pollution 15.58 0.016 Basic handwash 33.43 8.63e-06 

Mortality rate_AP 37.75 1.25e-06 Obesity 41.29 2.53e-07 

Poverty ratio 39.42 5.90e-07 Avg. temperature 28.30 8.24e-05 

Employment ratio 16.19 0.011  
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Table 3 indicates the outcomes from the Chi-square test of independence between each demographic attribute 

and DpM. It can be observed that the value of χ2 for certain individual attributes, e.g., Age, Poverty_ratio, 

Obesity, Avg_temperature and Female_smokers, indicates high dependence with the target attribute of DpM 

(i.e., p-value<<0.05). However, it is important to investigate the combined associations of these attributes with 

the varying nature of COVID-19 severity across the globe.  

As mentioned earlier, CARs can produce the desired associations while using the categorised demographic data 

(i.e., Table 2) as antecedents and DpM as the consequent in the rules. One of the limitations of conventional rule 

mining is the generation of a high number of rules, which make them impractical for interpretation by 

traditional approaches or human experts. However, this issue can be resolved using sequential filtration of 

irrelevant rules with varying threshold values for parameters c and s. The selection of optimal values for these 

thresholds entirely depends upon the nature of the problem and the data itself [43]. Based on empirical 

experiments, we performed rule filtration while optimizing several parameters, which included confidence 

(minimum confidence =0.9), minimum length=2, maximum length = 5, thus resulting to the extraction of a 

compact list of highly associated rules. As per the research question in this study, we extracted conditional rules 

based on DpM severity levels (i.e., minor, low, moderate, and high) as consequent, which further limits the 

generation of a larger set of rules. In addition, we utilized redundant rules elimination [44] to filter out repetitive 

rules and therefore, resulting to the list of the most representative ones. 

 

 

5. Results and Discussion 
In order to investigate the potential patterns within the dataset and class associations between the demographic 

attributes and COVID-19 severity, specifically, DpM around the world, experiments were conducted using both 

numeric and categorical representations of the dataset, comprising the demographic and COVID-19 related 

attributes in Tables 1 and 2. The CARs algorithm was used with the parametric configurations and rule filtration 

explained in Section 4.2, while considering the listed attributes as antecedents and target DpM as a consequent of 

CARs. The specific objective of these experiments was to analyze the associations between the extreme levels of 

DpM (i.e., severe and mild) and certain demographic attributes, particularly, the ones associated to health, 

environmental and economic indicators of a country.  

                                                                                                         
(a)           (b) 

Figure 6. a)Visualization of representative rules (red circles) between multiple demographic attributes and high DpM (green 

circles).  A larger sized red circle indicates higher lift value for that rule and vice versa. (b) Antecedents’ histogram within 

CARs (i.e., demographic attributes’ frequency) for the high DpM shown in (a). 

 

Figure 6(a) demonstrates the 11 representative rules (shown as light-pink and red circles) comprising the list of 

attributes (green circles) identified as highly associated with the high DpM across the globe. The size and colour 

intensity (i.e., red colour) of the circles relates to the relative strength of the rule in terms of confidence and lift 

measures, respectively. These non-redundant rules indicate significant associations (with confidence>0.9 and 

lift≥3.64) between the DpM and multiple demographic attributes such as high values for i) Phys_rate, ii) 
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smoking_females, moderate levels of iv) obesity, v) population density, vi) diabetes_prevalence, vii) 

poverty_ratio, while low categories of viii) younger population (i.e. Age_1).  

 
Table 4.  Antecedents in class-rules with high association between demographic attributes and High death-rate 

(Consequent), Lift>3.64, Conf>0.9, Sup>0.065 

 

Diabetes.prevalence=M, Age_1=L, Phys_rate=H 

Smoking.Female=H, Female=H, Age_1=L 

Employment.ratio.=M, Smoking.Female=H, Age_1=L 

Smoking.Male=M, Smoking.Female=H, Age_1=L 

Smoking.Female=H, Diabetes.prevalence=M, Age_1=L 

Smoking.Female=H, Diabetes.prevalence=M, Age_1=L, Phys_rate=H 

Employment.ratio.=M, Smoking.Female=H, Diabetes.prevalence=M, Age_1=L 

Obesity=M, Forest.Area=H, Female=M, Poverty.Ratio=M 

Lung_Disease=M, Obesity=M, Forest.Area=H, Female=M 

Diabetes.prevalence=M, Age_2=M, Poverty.Ratio=M, Phys_rate=H 

Population.Density=M, Smoking.Female=H, Forest.Area=M, Female=H 

 

Despite the elimination of redundant rules and restricted parametric constraints (e.g., lift, confidence), individual 

occurrences of different attributes within the representative rules might be helpful for visual analysis. For this 

purpose, we extracted the frequency histograms within the antecedents of rules as shown in Fig.6 (b). Frequency 

histograms help to visualize a more complex and larger set of rules to further investigate the significance of 

individual factors within the list of representative rules. However, it is important to consider the associations, 

when antecedents are combined with other factors (i.e., how the association varies with varying combinations 

in antecedents) as shown in Fig. 6(a). 

Table 4 further shows the list of antecedents for the rules presented in Fig.6(a). These outcomes clearly indicate 

the significant associations between a high DpM and certain demographic attributes, specifically, low 

poverty_ratio and young population, while high female_smoking and medical facilities (e.g. Phys_rate). The 

outcomes align with existing research, for instance [10], that also reported significant association between the 

economic (GDP) condition of a country and COVID-19 spread. However, the results of our work also consider 

the impact of combined attributes (e.g., smoking_female=H appears with the low Age_1 and high Phys_rate), 

which is an important aspect to be further analysed.  

Table 4 and Fig.6 demonstrate that attribute smoking_female is highly associated with high levels of DpM. 

Recent studies [6, 9] reported a positive correlation between smoking_prevalance and COVID-19 deaths, which 

aligns with our outcomes. On the other hand, research conducted in [10] reported contradictory outcomes, 

indicating negative correlation of smoking prevalance and COVID-19 impacts. We used the gender information 

(i.e., male vs female) in combination with the smoking ratio (male, female), which helps to further investigate 

contradicting outcomes in previous studies [6, 9, 10], while measuring the combined relationship. Our findings 

demonstrate that countries with a higher ratio of female smokers are affected more as compared to that of 

countries with more male smokers. Likewise, [6, 11] reported males being at more risk than females, however 

when smoking ratio is combined together with the gender attribute in our research, it produces contradicting 

outcomes. This can be further validated with Fig. 3 (i.e., SOM map for global distribution of DpM), where most 

of the countries containing high female smokers (e.g., UK, Spain, Chile, Montenegro, France, USA, Luxembourg, 

Bosnia and Herzegovina, etc.,) overlap with countries appearing within the high DpM area of the SOM map 

(i.e., left/bottom-left nodes). The outcome also aligns with a fact sheet [45] issued by the CDC, which states that 

smoking damages the human immune system and can make the body more vulnerable against COVID-19 

attacks. 

Furthermore, in most of the rules shown in Table 4, countries with low-to -moderate poverty_ratio indicated 

significant associations with high DpM, which puts credence on the existing findings [10]. This factor can also 

be validated using the SOM map distribution (Fig. 3), indicating high DpM in most of the high GDP countries 

(i.e., bottom left nodes). The significant association between the poverty_ratio and DpM may also be due to 

several factors such as the limited availability of medical resources in low GDP countries, less travelling (i.e. 

national and international) due to limited GDP and therefore causing less spread of COVID-19, effective 

lockdown policy, and less tourism. Furthermore, the limited number of COVID-19 tests (i.e., low TpM) carried 

out in low GDP countries also significantly reduces DpM as can be seen in Fig. 4, where DpM is high positively 

correlated to TpM.  
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These outcomes demonstrate the significance of combined attribute analysis, producing more reliable outcomes 

and comprehensive insight of inter-relationships. On the other hand, most of the existing studies are reporting 

on these attributes individually while utilising immature datasets, and are therefore insufficient in drawing 

general conclusions about the diversity in DpM distribution across the globe. 

 
(a)                                                                                                 (b) 

Figure 7. (a) Visualization of representative associations between multiple attributes and low death rate. (b) Antecedents’ 

histogram in CARs for the low DpM shown in (a). 

 

Table 5. Antecedents in class-rules with high association between selected factors and Low death-rate (Consequent), Lift>3.5 

 

Smoking.Female=L,Literacy.Rate=M,Mortality.rate_AP=M 

Lung_Disease=H,Employment.ratio.=M,Health.Exped=L  

Diabetes.prevalence=M,Poverty.Ratio=M,Health.Exped=L  

Obesity=L,Diabetes.prevalence=M,Beds=L  

Lung_Disease=H,Population.Density=H,Avg.Temp=H  

Obesity=L,Diabetes.prevalence=M,Age_2=M  

Employment.ratio.=M,Mortality.rate_AP=H,Phys_rate=M  

Employment.ratio.=M,Beds=M,Mortality.rate_AP=H 

Obesity=M,Forest.Area=L,Beds=M 

 
(a)                                                                                                            (b) 

Figure 8. (a) Visualization of representative associations between multiple attributes and minor death rate. (b) Antecedents 

histogram in CARs for minor DpM shown in (a). 

 

In a similar way, Figs. 7 and 8 show the rules comprising the demographic attributes that indicate significant 

associations with the low and minor DpM levels, respectively. The corresponding antecedents are reported in 
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Tables 5 and 6, respectively, which clearly indicate frequent occurrences of low Obesity, Age_2, and high 

Poverty_ratio, Avg_temperature and Employment_ratio. More specifically, Age_2 appeared as low here as 

compared to Age_1, which is comparatively high which means that countries with a high ratio of aged 

population are affected more by COVID-19, compared to those with a high ratio of younger population. This 

also aligns with existing findings, such as [12-14] and WHO reports [15] indicating younger people and, 

specifically, children, are less affected. An example scenario in our findings is Pakistan (with a low ratio of aged 

population, Age_3: 4.3%) vs the United Kingdom (with higher ratio of aged people: Age_3: 18.5%). This outcome 

also aligns with the SOM heat map (Fig. 3), where Pakistan appears in low affected areas in the map (i.e., top-

right nodes), while the UK appears in the bottom left (i.e., severely affected) areas of the map. 

 
Table 6. Antecedents in class-rules with high association between selected factors and Minor death-rate (Consequent), 

Lift>3.42, Conf>0.9 

 

Literacy.Rate=L, Poverty.Ratio=H  

Obesity=L, Age_2=L, Poverty.Ratio=H  

Female=M, Age_2=L, Poverty.Ratio=H  

Employment.ratio.=H, Female=M, Age_2=L  

Employment.ratio.=H, Female=M, Age_1=H  

Employment.ratio.=H, Female=M, Poverty.Ratio=H 

 

Table 6 indicates an important aspect of significant association between the obesity level and DpM severity. The 

antecedents’ histogram (Fig. 8(b)) indicates that low obesity is highly associated with minor DpM, whereas obesity 

is moderate, when DpM is high as shown in Table 4 and Fig. 6. This implies that DpM increases with an increasing 

obesity population ratio, which is consistent with the results of a recent COVID-19 study [7], which shows a 

positive correlation between COVID-19 infections and obesity. However, it is important to note that our results 

indicate that a low obesity appears in combination with high Poverty_ratio and low Age_2, which indirectly 

represents lower GDP countries. In other words, the combination demonstrates strong associations between 

these attributes and minor DpM, while simultaneously, the inter-relationship between these attributes. 

According to [46], most of the low GDP countries (i.e., high poverty ratio in our study) are reported with a high 

global hunger index (GHI), which indirectly validates the combined appearance of low obesity and high poverty 

ratio in the case of minor DpM. Furthermore, these outcomes clearly indicate that the obesity attribute reported 

in existing works, such as [7], is highly dependent upon other demographic characteristics of a region that might 

alter the outcomes, when analyzed in combination with these demographic attributes.     

In summary, the association outcomes in Tables 4-6 indicate that certain demographic attributes, specifically, 

Obesity level, Poverty ratio, Age group, Annual temperature and Smoking prevalance, combined with gender 

information (i.e. smoking_females, males), are highly associated with COVID-19 severity levels (i.e., DpM) 

across different countries. Likewise, several demographic attributes related to medical facilities (e.g., 

Health_expenditure, Physician_ratio, and Beds availability), environmental attributes (e.g., Forest area, 

Handwash facilities, etc.) and economic factors (e.g., Poverty ratio, Employment ratio, etc.) indicated 

comparatively partial associations with the COVID-19 severity distribution across the globe. 

As the demographic and COVID-19 dataset are primarily in numerical form, we can utilize the SOM heat-maps 

to visualize the distribution of all demographic attributes in a two-dimensional plot as shown in Figs 9-10. This 

also helps to simultaneously visualize the inter-relationships between these attributes. For instance, Test_ratio 

and Case_ratio in Fig. 9 show similar patterns across the map indicating a high correlation between them. 

Interestingly, the outcomes in Fig. 9 align with the CARs results (Tables 4-6), indicating the significant 

dependence between DpM and the certain demographic attributes across the world. For instance, heat-maps for 

the Age_1 distribution in Fig. 9 inversely correlate with the heat-map distribution of DpM in Fig. 10, indicating 

higher Age_1 (e.g.., nodes 10, 11, 16-18 in Fig. 9), lower DpM (nodes 10, 11, 16-18 in Fig. 10) and vice versa, which 

is similar to existing findings [9, 12-14]. Similarly, Obesity and Female_smoking levels indicate direct 

correlations with DpM, which also aligns with the CARs outcomes (i.e., categorical data). Likewise, the 

demographic attributes related to medical facilities, environment and economic indicators also indicated 

relationships with DpM similar to CARs associations. Furthermore, the inter-relationships identified between 

Age, Obesity and Poverty_ratio in CARs (Tables 4-6), are also produced by the SOM heat-maps in Fig. 9.   
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Figure 9. Demographic attributes’ distributions across the SOM heat-map. Colour intensity (blue to red) indicates the 

magnitude (low to high, respectively) of the weight associated with each attribute corresponding to neurons in the SOM 

map. 

 
Figure 10. DpM distributions across the SOM heat-map. Colour intensity (blue to red) indicates the magnitude (low to high, 

respectively) of the weight associated to each DpM level corresponding to neurons in the SOM map 

 

It is important to consider the ongoing and dynamic nature of COVID-19 severity levels across the globe. More 

specifically, the continuing COVID-19 waves and variants might affect the generalization and outcomes of the 

existing predictive approaches. Typical examples may include the temperature and population density of a 

country. Some of the existing studies [17-20, 22] reported an inverse relationship between the temperature of a 

country and COVID-19 spread. We carried out SOM analysis to investigate this further which interestingly, 

indicated a moderate negative relationship between the temperature of a country and the corresponding DpM, 
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which is also reported in CARs outcomes (see Table 5, and Fig.  7). Likewise, the Chi-square test of dependence 

produced a p-value of 8.24e-05<<0.05, indicating significance dependence between the DpM and average 

temperature of a country. These statistics and SOM outcomes indicate at-least a partial relationship between the 

DpM and average annual temperature of a country, which also places credence on the aforementioned studies. 

However, as mentioned earlier, the outcomes might vary when analyzed in combination with other 

demographic characteristics and geographical locations. For example, USA, Iraq, and India with comparatively 

high annual average temperatures', are listed as severely affected countries, which contradicts the above 

argument. This implies that while the argument is true in most of the cases, the results in this work as well as 

reported in the existing studies, are insufficient to draw general conclusions about the interdependence of 

COVID-19 severity and annual temperature of a country, specifically in the given circumstances of ongoing 

waves, variants and dynamic spread of COVID-19 across the globe.  

Population density on the other hand, has been considered an important but contradictory factor in existing 

works. For instance, [23, 26] reported dense population areas being positively correlated with COVID-19 cases 

in contrast to [25], which reported that correlation is not significant. The outcomes from SOM and CARs in 

proposed work indicated that population density is irrelevant, which agrees with the research outcomes 

reported in [25]. This indicates that COVID-19 spread in high density population regions can be controlled with 

the effective management, specifically, lockdown policy implementation as reported by the WHO and [21, 25].  

Finally, the Air-pollution indicated high negative association with DpM (Fig. 6b, Fig. 7b), which aligns with the 

outcomes reported in [25, 28]. However, the outcomes contradict the findings reported in [27, 29, 30]. Likewise, 

Hypertension and Lung_disease in Figs. 9-10 show moderate negative relationship with DpM, which aligns 

with CARs outcomes (Fig. 6), but contradicts the findings in [6, 9, 47]. There might be several factors for this 

contradiction specifically, a) the use of conventional statistical analysis of individual associations in existing 

studies, b) the nature of this study, which is based on demographic attributes and not COVID-19 health related 

symptoms, and c) the use of a premature dataset about COVID-19 infections in existing works, which may 

produce variations in results at later stages of the disease.  

 

 

6. Conclusion and Future Directions 
This research proposed a framework of data analytics algorithms to investigate which demographic 

characteristics are highly associated with severe death rates due to COVID-19 in different countries. The study 

performed a comprehensive analysis using well-established clustering and class rule mining algorithms to 

investigate COVID-19 death-rate associations with multiple individual and combinations of demographic 

attributes. Our results demonstrate that certain demographic attributes, specifically, age distribution, poverty 

ratio, female smokers percentage, obesity level, and average annual temperature of a country, are significantly 

associated with COVID-19 death rate distribution. This is potentially an important finding, implying that 

various demographic attributes can be used as markers to identify COVID-19 spread and severity levels, leading 

to various aspects (e.g. social, economic, cultural, healthcare, educational etc.) and a bunch of other related 

conclusions, which may be helpful to policy makers, health professionals, and individuals for the effective 

management and control of the disease. 

The authors believe that the complex associations and patterns within the multi-dimensional demographic 

attributes in this work are more comprehensively studied, when compared to the use of classical statistical 

approaches, reported in most of the existing works. Our findings demonstrate that certain individual attributes 

(e.g., age, gender, GDP ratio), when combined with other demographic characteristics (e.g., smoking ratio, 

obesity), produce varying outcomes in contrast to some of the existing works that use conventional statistical 

techniques with inability to explore the complex patterns within the high dimensional data. It is also vital to 

consider the dynamic and ongoing nature of the COVID-19 spread across the globe that might affect the 

conclusions made in some of the existing studies using insufficient data at premature stages of the disease.. As 

an example, India had fewer (i.e., 25% only) cases in the first five months of the outbreak (i.e., Feb-June 2020), 

however within the following two months only (July and August 2020), 75% of the total number of cases 

appeared. This type of dynamic CpM might influence the outcomes and generalization of existing works carried 

out with insufficient dataset at earlier stages. . Finally, we identified several attributes, including hypertension, 

lung disease, mortality rate (CVD and diabetes) and medical facilities (e.g., beds, physician rate, etc.), which are 

also partially associated to COVID-19 spread and may set a baseline for future investigations. 

 
Ethical Statement 

No ethical approval was required for this study. 



17 

R. Soc. open sci. 

Funding Statement 

Authors have no funding to report for this research. 

 
Data Accessibility 

COVID-19 infection data (deaths, cases, and tests per million population for each country): Worldometer, Reported Cases 

and Deaths by Country, Territory, or Conveyance, https://www.worldometers.info/coronavirus/#countries  

Global demographic attributes: World Bank open data, https://data.worldbank.org  

Hypertension and lung disease: Worldlifeexpectancy, https://www.worldlifeexpectancy.com/cause-of-

death/hypertension/by-country/ 

Smoking ratio: The Tobacco Atals,  https://tobaccoatlas.org/ 

Obesity level: Central Intelligence Agency (The world factbook), https://www.cia.gov/library/publications/the-world-

factbook/rankorder/2228rank.html 

Annual Avg. temperature: WayBackMachine, https://web.archive.org/web/20150905135247/http://lebanese-economy-

forum.com/wdi-gdf-advanced-data-display/show/EN-CLC-AVRT-C/. 

 

Furthermore, the datasets supporting this article have been uploaded as part of the Supplementary Material. 

 

 
Competing Interests 

Authors have no competing interests. 

 

 
Authors' Contributions 

Conceptualization, W.K and A.H.;  

Design, M.A., W.K., A.H.;  

Methodology, W.K, A.H. P.L, and R.N;  

Software, W.K.; S.A.K.; R.N.;  

Validation, W.K., A.H., M.A;  

Dataset collection, W.K., S.A.K.;  

Writing the original draft, W.K.,S.A.K., A.H.,P.L.;  

Editing, P.L.,R.N. 

 
 

 References 

1. K. Bohmwald, N.M.S. Galvez, 

M. Rios, A. M. Kalergis. 2018. Neurologic 

alterations due to respiratory virus infections. 

Front Cell Neurosci, no. 12, pp. 386. (doi: 

10.3389/fncel.2018.00386) 

2. J.S. Peiris, S.T. Lai, L.L. Poon, et al. 

2003. Coronavirus as a possible cause of severe 

acute respiratory syndrome. The Lancet, no. 

361, pp. 1319-1325. (doi: 10.1016/S0140-

6736(03)13077-2) 

3. J.P. Rogers, E. Chesney, D. Oliver, et 

al. 2020. Psychiatric and neuropsychiatric 

presentations associated with severe 

coronavirus infections: a systematic review and 

meta-analysis with comparison to the COVID-19 

pandemic. The Lancet Psychiatry, no. 7, pp. 611-

627, (doi: 10.1016/S2215-0366(20)30203-0) 

4. P. Wadhwa,  Aishwarya, A. Tripathi, 

P. Singh, M. Diwakar, N. Kumar. 2020. 

Predicting the time period of extension of 

lockdown due to increase in rate of COVID-19 

cases in India using machine learning. Materials 

Today, pp. 2214-7853. (doi: 

10.1016/j.matpr.2020.08.509) 

5. J. M. Wortham, J. T. Lee, S. 

Althomsons, et al. 2020. Characteristics of 

persons who died with COVID-19 — United 

States. Centers for Disease Control and 

Prevention, MMWR Morbidity and Mortality 

Weekly Report. (doi: 

10.15585/mmwr.mm6928e1) 

6. R. E. Jordan, P. Adab, K. K. Cheng. 

2020. Covid-19: risk factors for severe disease 

and death. The BMJ. (doi: 10.1136/bmj.m1198). 

7. J. Lighter, M. Phillips, S. Hochman, 

S. Sterling, D. Johnson, F. Francois, A. Stachel. 

2020. Obesity in patients younger than 60 years 

is a risk factor for COVID-19 hospital admission. 

Clinical Infectious Diseases, no. 71. (doi: 

10.1093/cid/ciaa415) 

8. T. Chen,  D. Wu,  H. Chen,  W. Yan, 

et al. 2020. Clinical characteristics of 113 

deceased patients with coronavirus disease 

2019: retrospective study. The BMJ, (doi: 

10.1136/bmj.m1091) 

9. Z. Zheng, F. Peng, B. Xu, J. Zhao, H. 

Liu, J. Peng, et al. 2020. Risk factors of critical & 

mortal COVID-19 cases: A systematic literature 

review and meta-analysis. Journal of Infection, 

no. 81, pp. e16-e25. (doi: 

10.1016/j.jinf.2020.04.021) 

10. R. Chaudhry, G. Dranitsaris, T. 

Mubashir, J. Bartoszko, S. Riazi. 2020. A country 

level analysis measuring the impact of 

government actions, country preparedness and 

socioeconomic factors on COVID-19 mortality 

and related health outcomes. EClinical 

Medicine, The Lancet, no. 25. (doi: 

10.1016/j.eclinm.2020.100464) 

11. X. Li, S. Xu, M. Yu, K. Wang, Y. Tao, 

et al. 2020. Risk factors for severity and 

mortality in adult COVID-19 inpatients in 

Wuhan. Journal of Allergy and Clinical 

Immunology, no. 146, pp. 110-118. (doi: 

10.1016/j.jaci.2020.04.006) 

12. Y. Dong, X. Mo, Y. Hu, X. Qi, F. Jiang, 

Z. Jiang, S. Tong. 2020. Epidemiology of COVID-

19 among children in China. Official Journal of 

The American Academy of Pediatrics, no. 145. 

(doi: 10.1542/peds.2020-0702) 

13. P. I. Lee, Y. L. Hu, P. Y. Chen, Y. C. 

Huang, P. R. Hsuehe. 2020. Are children less 

susceptible to COVID-19? Journal of 

Microbiology, Immunology and Infection, pp. 

371-372. (doi: 10.1016/j.jmii.2020.02.011) 

14. J. F. Ludvigsson. 2020. Systematic 

review of COVID‐19 in children shows milder 

cases and a better prognosis than adults. Acta 

Paediatrica, no. 109, pp. 1088-1095. (doi: 

10.1111/apa.15270) 

15. J. F. Ludvigsson. 2020. Joint Leaders' 

statement - Violence against children: A hidden 

crisis of the COVID-19 pandemic. Available 

online at: https://www.who.int/news-

room/detail/08-04-2020-joint-leader-s-

statement---violence-against-children-a-

https://www.worldometers.info/coronavirus/#countries
https://data.worldbank.org/
https://www.worldlifeexpectancy.com/cause-of-death/hypertension/by-country/
https://www.worldlifeexpectancy.com/cause-of-death/hypertension/by-country/
https://tobaccoatlas.org/
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2228rank.html
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2228rank.html
https://web.archive.org/web/20150905135247/http:/lebanese-economy-forum.com/wdi-gdf-advanced-data-display/show/EN-CLC-AVRT-C/
https://web.archive.org/web/20150905135247/http:/lebanese-economy-forum.com/wdi-gdf-advanced-data-display/show/EN-CLC-AVRT-C/


 

 
R. Soc. open sci.  

hidden-crisis-of-the-covid-19-

pandemic#:~:text=The%20most%20vulnerable

%20children%20%E2%80%93,are%20a%20part

icular%20concern. 

16. R. Tosepu, J. Gunawan, D. S. 

Effendy, L. O. A. I. Ahmad, H. Lestari, H. Bahar, 

P. Asfian. 2020. Correlation between weather 

and Covid-19 pandemic in Jakarta, Indonesia. 

Science of The Total Environment, no. 725. (doi: 

10.1016/j.scitotenv.2020.138436) 

17. S. Gupta, G. S. Raghuwanshi, A. 

Chanda. 2020. Effect of weather on COVID-19 

spread in the US: A prediction model for India in 

2020. Science of The Total Environment, no. 

728. (doi: 10.1016/j.scitotenv.2020.138860) 

18. D. K. A. Rosario, Y. S. Mutz, P. C. 

Bernardes, C. A. Conte-Junior. 2020. 

Relationship between COVID-19 and weather: 

Case study in a tropical country. International 

Journal of Hygiene and Environmental Health, 

no. 229. (doi: 10.1016/j.ijheh.2020.113587) 

19. Z. M. E. S. Atlam, A. E. Hassanien, G. 

Dagnew, M. A. Elhosseini, I. Gad. 2020. 

Association between weather data and COVID-

19 pandemic predicting mortality rate: Machine 

learning approaches. Chaos, Solitons & Fractals, 

no. 138. (doi: 10.1016/j.chaos.2020.110137) 

20. Y. Ma, Y. Zhao, J. Liu, X. He , B. 

Wang, S. Fua, J. Yan, J. Niu, J. Zhou, B. Luo. 2020. 

Effects of temperature variation and humidity 

on the death of COVID-19 in Wuhan, China. 

Science of The Total Environment, no. 724. (doi: 

10.1016/j.scitotenv.2020.138226) 

21. J. Rocklöv, H. Sjödin. 2020. High 

population densities catalyse the spread of 

COVID-19. Journal of Travel Medicine, no. 27. 

(doi: 10.1093/jtm/taaa038) 

22. J. Tsai, M. Wilson. 2020. COVID-19: 

a potential public health problem for homeless 

populations. The Lancet, no. 5. (doi: 

10.1016/S2468-2667(20)30053-0) 

23. M. Ahmadi, A. Sharifi, S. Dorosti, S. 

J. Ghoushchi, N. Ghanbari. 2020. Investigation 

of effective climatology parameters on COVID-

19 outbreak in Iran. Science of The Total 

Environment, no. 729. (doi: 

10.1016/j.scitotenv.2020.138705) 

24. S. Kodera, E. A. Rashed, A. Hirata. 

2020. Correlation between COVID-19 morbidity 

and mortality rates in Japan and local 

population density, temperature, and absolute 

humidity. International Journal of 

Environmental Research and Public Health. (doi: 

10.3390/ijerph17155477) 

25. Z. Sun, H. Zhang, Y. Yang, H. Wan, Y. 

Wang. 2020. Impacts of geographic factors and 

population density on the COVID-19 spreading 

under the lockdown policies of China. Science of 

the Total Environment, no. 746. (doi: 

10.1016/j.scitotenv.2020.141347) 

26. S. Copiello, C. Grillenzoni. 2020. 

Association between short-term exposure to air 

pollution and COVID-19 infection: Evidence 

from China. Science of The Total Environment, 

no. 744. (doi: 10.1016/j.scitotenv.2020.141028) 

27. X. Wu,  R. C. Nethery, B. M. Sabath, 

D. Braun, F. Dominici. 2020. Exposure to air 

pollution and COVID-19 mortality in the United 

States: A nationwide cross-sectional study. 

Preprint: medRxiv. (doi: 

10.1101/2020.04.05.20054502) 

28. Y. Zhu, J. Xie, F. Huang, L. Cao. 2020. 

Association between short-term exposure to air 

pollution and COVID-19 infection: Evidence 

from China. Science of The Total Environment, 

no. 727. (doi: 10.1016/j.scitotenv.2020.138704) 

29. A. Phosri, K. Ueda, V. L. H. Phung, B. 

Tawatsupa, A. Honda, H. Takano. 2019. Effects 

of ambient air pollution on daily hospital 

admissions for respiratory and cardiovascular 

diseases in Bangkok, Thailand. Science of The 

Total Environment, no. 651, pp. 1144-1153. 

(doi: 10.1016/j.scitotenv.2018.09.183) 

30. D. Contini, F. Costabile. 2020. Does 

air pollution influence COVID-19 outbreaks? 

Atmosphere. (doi: 10.3390/atmos11040377) 

31. M. Loey, G. Manogaran, M. H. N. 

Taha, N. E. M. Khalifa. 2020. A hybrid deep 

transfer learning model with machine learning 

methods for face mask detection in the era of 

the COVID-19 pandemic. Measurement, no. 

167. (doi: 

10.1016/j.measurement.2020.108288) 

32. S. Tuli, S. Tuli, R. Tuli, S. S. Gill. 2020. 

Predicting the growth and trend of COVID-19 

pandemic using machine learning and cloud 

computing. Internet of Things, no. 11. (doi: 

10.1016/j.iot.2020.100222) 

33. C. M. Yeşilkanat. 2020. Spatio-

temporal estimation of the daily cases of 

COVID-19 in worldwide using random forest 

machine learning algorithm. Chaos, Solitons & 

Fractals , no. 140. (doi: 

10.1016/j.chaos.2020.110210) 

34. Worldometer, 2020. Reported 

Cases and Deaths by Country, Territory, or 

Conveyance. [Online] Available: 

https://www.worldometers.info/coronavirus/#

countries, Accessed on: Aug. 20, 2020. 

35. The World Bank Group. 2020. 

World Bank open data. [Online] Available: 

https://data.worldbank.org, Accessed on: Aug. 

18, 2020. 

36.  Worldlifeexpectancy,  [Online] 

Available: 

https://www.worldlifeexpectancy.com/cause-

of-death/hypertension/by-country/, Accessed 

on: July. 11, 2020. 

37. D. Jeffrey et al. 2020. The Tobacco 

Atals. [Online] Available: 

https://tobaccoatlas.org/, Accessed on: Aug. 

15, 2020. 

38. Central Intelligence Agency. 2020. 

The world factbook, [Online] Available: 

https://www.cia.gov/library/publications/the-

world-factbook/rankorder/2228rank.html, 

Accessed on: Aug. 19, 2020. 

39. WayBackMachine, 2020. Average 

yearly temperature by country. [Online] 

Available: 

https://web.archive.org/web/2015090513524

7/http://lebanese-economy-forum.com/wdi-

gdf-advanced-data-display/show/EN-CLC-

AVRT-C/, Assessed on: Aug. 02, 2020.  

40. W. Khan, K. Crockett, J. O'Shea, A. Hussain, 

B. Khan. 2020. Deception in the eyes of 

deceiver: A computer vision and machine 

learning based automated deception detection. 

Expert Systems with Applications, Elsevier, 

114341. (doi: 

https://doi.org/10.1016/j.eswa.2020.114341)  

41. T. Kohonen. 1990. The self-

organizing map. Proceedings of the IEEE, no. 78. 

(doi: 10.1109/5.58325) 

41. R. Agrawal, H. Mannila, R. Srikant, 

H. Toivonen, A. I. Verkamo. 1996. Fast discovery 

of association rules. In U. M. Fayyad, G. 

Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy 

(Eds.), Advances in Knowledge Discovery and 

Data Mining, pp. 307-328. 

43. Y. Wang, T. Murata. 2017. 

Association rule mining with data item including 

independency based on enhanced confidence 

factor. In Proceedings of the International 

MultiConference of Engineers and Computer 

Scientists (IMECS), no. 2227, pp. 359-363. 

44. R.J. Bayardo, R. Agrawal, D. 

Gunopulos. 2002. Constraint-based rule mining 

in large, dense databases. In Proceedings 15th 

International Conference on Data Engineering. 

(doi: 10.1109/ICDE.1999.754924) 

45.  Centers for Disease Control and 

Prevention (CDC). 2014. Smoking and 

Respiratory Diseases. Surgeon General's Report: 

The Health Consequences of Smoking—50 Years 

of Progress. [Online] Available: 

https://www.cdc.gov/tobacco/data_statistics/s

gr/50th-

anniversary/pdfs/fs_smoking_respiratory_508.

pdf. 

46. W. Guo , M. Li , Y. Dong et al. 2020. 

Diabetes is a risk factor for the progression and 

prognosis of COVID‐19. Diabetes/Metabolism 

Research and Reviews. (doi: 

10.1002/dmrr.3319) 

47.  Global Hunger Index. 2020. [Online] 

Available: 

https://www.globalhungerindex.org/results.ht

ml, Accessed on: Aug. 13, 2020. 

 

 

 

 

 

 

https://data.worldbank.org/
https://www.worldlifeexpectancy.com/cause-of-death/hypertension/by-country/
https://www.worldlifeexpectancy.com/cause-of-death/hypertension/by-country/
https://tobaccoatlas.org/
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2228rank.html
https://www.cia.gov/library/publications/the-world-factbook/rankorder/2228rank.html
https://web.archive.org/web/20150905135247/http:/lebanese-economy-forum.com/wdi-gdf-advanced-data-display/show/EN-CLC-AVRT-C/
https://web.archive.org/web/20150905135247/http:/lebanese-economy-forum.com/wdi-gdf-advanced-data-display/show/EN-CLC-AVRT-C/
https://web.archive.org/web/20150905135247/http:/lebanese-economy-forum.com/wdi-gdf-advanced-data-display/show/EN-CLC-AVRT-C/
https://web.archive.org/web/20150905135247/http:/lebanese-economy-forum.com/wdi-gdf-advanced-data-display/show/EN-CLC-AVRT-C/
https://doi.org/10.1016/j.eswa.2020.114341

