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Background: In view of the current global coronavirus disease 2019 pandemic, mass drug administration inter-
ventions for neglected tropical diseases, including lymphatic filariasis (LF), have been halted. We used math-
ematical modelling to estimate the impact of delaying or cancelling treatment rounds and explore possible
mitigation strategies.

Methods:We used three established LF transmissionmodels to simulate infection trends in settings with annual
treatment rounds and programme delays in 2020 of 6, 12, 18 or 24 months. We then evaluated the impact of
various mitigation strategies upon resuming activities.

Results: The delay in achieving the elimination goals is on average similar to the number of years the treatment
rounds are missed. Enhanced interventions implemented for as little as 1 y can allow catch-up on the progress
lost and, if maintained throughout the programme, can lead to acceleration of up to 3 y.

Conclusions: In general, a short delay in the programme does not cause a major delay in achieving the goals.
Impact is strongest in high-endemicity areas. Mitigation strategies such as biannual treatment or increased
coverage are key to minimizing the impact of the disruption once the programme resumes and lead to potential
acceleration should these enhanced strategies be maintained.
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Introduction
Lymphatic filariasis (LF), a disease caused by parasitic filarial
worms, was identified as potentially eradicable in 1993.1 It has
been targeted for elimination as a public health problem by the
World Health Organization (WHO), with initial goals set for 2020,
which are now being revised for 2030.2 The main strategy to
achieve elimination as a public health problem is through mass
drug administration (MDA). The most common drugs used by the
LF control and elimination programmes are either a combination
of diethylcarbamazine citrate and albendazole (DA) or ivermectin
and albendazole (IA) in areas where onchocerciasis is endemic.
Geographically this means that IA is used in most of Africa,

while DA is used in other parts of the world, including the Indian
subcontinent. Currently MDA programmes are ongoing in 46
countries.3
MDA campaigns are generally carried out annually, for a min-

imum of 5 y (five rounds), with the aim of achieving at least
65% coverage. Afterwards, a series of transmission assessment
surveys must reveal a low likelihood of current transmission to
achieve elimination as a public health problem. In areas where
Wuchereria bancrofti is endemic, this is generally associated with
reaching a threshold of 1% microfilaria (mf) prevalence or 2%
antigenemia prevalence in areas where the dominant vector for
transmission is Anopheles or Culex. Historically a 0.5%mf thresh-
old was used in areas with Aedes-transmitted LF, now using a 1%
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antigenemia threshold. Areas where Brugia is endemic use a 2%
antibody prevalence.4
The current global coronavirus disease 2019 (COVID-19) pan-

demic has had a huge impact worldwide, with >10 million con-
firmed cases in the first half of 2020 and more than half a mil-
lion deaths. This impact is compounded by its indirect effects
on other diseases and health programmes. In view of the cur-
rent global COVID-19 pandemic, and the need to practice physi-
cal distancing, the WHO issued the recommendation on 1 April
2020 to put all community-based surveys, active case-finding
activities and mass treatment campaigns for neglected trop-
ical diseases on hold until further notice.5 For the LF control
and elimination programmes that had an MDA round planned,
this has meant the stopping of all activities. It thus becomes
important to assess the impact of delays in MDA delivery on
the 2030 goals and to consider strategies to strengthen pro-
grammes after the lockdown to mitigate the negative impact of
disruption.
Strategies that have been considered for accelerating progress

towards the 2020 goals (now 2030) could be used to miti-
gate these delays, such as biannual rounds of treatment or
increased coverage.6–8 Recent clinical trials and mathematical
modelling studies have shown that the combination of all three
drugs, commonly known as the triple drug (IDA), can substan-
tially improve progress towards the goal.7,9–13 The use of IDA
has been recommended by the WHO to accelerate global elim-
ination efforts.14 However, only countries without onchocercia-
sis can deploy IDA in their programmes, due to risks of adverse
events.
A suite of three different mathematical models has recently

been used to compare strategies to accelerate global elimina-
tion of LF,7 as well as to assess the likelihood of resurgence
after reaching the 1% mf prevalence threshold.8 Those same
models are used here to estimate the impact of MDA delays
in the expected progress towards the 1% mf threshold, estab-
lish mitigation strategies that are sufficient to catch up on the
missed/delayed rounds and assess the acceleration provided
from mitigation strategies that can be maintained longer term.
Mitigation and acceleration strategies considered here include
enhancing coverage from 65% to 80%, deploying the treatment
twice per year (biannual treatment) and, for areas using DA, the
benefit of switching to the triple drug.

Materials and methods
Employed mathematical models
Weused three well-described publishedmathematical models of
LF transmission to enhance our understanding of the disruption
caused by COVID-19 to ongoing control and elimination efforts.
We included the following models, developed and applied by
members of theNeglected Tropical DiseaseModeling Consortium:
EPIFIL,15,16 a deterministic population-based model, and LYM-
FASIM17,18 and TRANSFIL,19,20 both stochastic individual-based
models. All models capture the basic processes relevant to the
transmission dynamics of LF, including parasite life cycle, vector
density and biting rate and human exposure to the vectors. The
formulation and parameterization of these models is detailed in

the references (see the supplementary material for an updated
implementation of the three models).

Scenarios considered
Countries may be at different stages in their control programme.
In this analysis we assumed that two annual MDA rounds achiev-
ing 65%coveragewere completed before the interruption caused
by COVID-19 (disruptions at other points in the programme yield
broadly similar results and are discussed in the supplementary
material). Two settings were considered, one relevant for most of
Africa, withAnopheles-driven transmission and annual treatment
with IA, and a second representing India-like populations, with
Culex-driven transmission and treatment with DA. The assump-
tions of drug effectiveness in terms of macro- and microfila-
ricidal effect and sterilization of adult worms was taken from
Stolk et al.7 (see also the supplementary material). Vector con-
trol is commonly recommended to enhance MDA but is gener-
ally outside the control of the LF programmes. To be conserva-
tive, we considered that there was no bed net coverage, although
we acknowledge that bed net coverage is present in many
African areas.21 Additional simulations considering bed nets and
indoor residual spraying (IRS) are shown in the supplementary
materials.
To assess the impact of delayed MDA, we explored four sce-

narios where the MDA rounds are postponed either 6, 12, 18
or 24 months, which causes a gap of 1.5, 2, 2.5 and 3 y,
respectively (Figure 1). A 6-month interruption represents one
postponed round and 12- or 24-month interruptions repre-
sent one or two cancelled rounds, respectively, whereas an 18-
month interruption represents one delayed and one postponed
round.
To manage and minimize the impact of the delay in deliver-

ing the next round of MDA, national programmes could imple-
ment alternative enhanced strategies after resuming activities.
Here we explored the impact of various MDA-based mitigation
strategies: enhanced achieved coverage (up from 65% to 80%);
switching to biannual rounds, treating every 6 months; and, in
areas where appropriate (our India-like setting), the deployment
of the triple drug. In all simulated scenarios, MDA continues until
the 1%mf threshold is achieved, up to 2045 (the end of the sim-
ulation window).

Analysis of simulation results
We generated a large number of simulations (simulation bank)
and extracted uniformly 10 000 runs per scenario for eachmodel
across a wide range of baseline prevalences (assumed to be in
2018) from 1% to 40%. All simulations across the three models
are considered as an ensemble, with equal weighting. We pro-
jected forward from the baseline under the different treatment
regimes in each scenario and extracted the simulated mf preva-
lence in the population each year. We summarized some results
following a general classification of low-, medium- and high-
prevalence areas. These were mapped to the non-contiguous
microfilaria prevalences of 5–10%, 15–20% and 25–30%, respec-
tively. To select the simulations for each prevalence bracket we
extracted 1000 runs from each model uniformly from the simu-
lation bank.
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Figure 1. Timing of the MDA rounds assuming the programme starts in 2018 and the COVID-19 disruption occurs in 2020. Four delay scenarios (6, 12,
18 and 24months) and a no-disruption scenario were considered. A treatment round ismerely postponed if it is delayed for 6months but it is cancelled
if delayed for 12 months (resulting in one cancelled round in the 12- and 18-month delay scenarios and two cancelled rounds in the 24-month delay
scenario).

Figure 2. Example of yearly mf prevalence trends over time. Black line shows a no-disruption scenario (counterfactual), with a baseline prevalence of
15%. Red line shows a no-mitigation scenario, where a 1-y delay takes place in 2020. The yellow line shows a scenario where 80%MDA is implemented
from 2021 onward as a catch-up (and acceleration) strategy. The vertical dotted line indicates the catch-up point (the first year where the yellow line is
below the black line). The horizontal dashed line marks the 1%mf prevalence threshold, which is reached earlier in the acceleration (yellow) scenario.
In this example it takes three rounds of MDA with 80% coverage to catch-up. All three solid lines are an average of 1000 simulations with TRANSFIL,
with a baseline prevalence in 2018 of 14–16%.

We used a counterfactual no-disruption scenario (i.e. the ini-
tial five rounds take place as expected; Figure 1) to assess for how
long the enhanced strategies need to be implemented in order to
catch up with the expected progress of the programme. We cal-
culated the year in which the prevalence in the different interven-
tions is equal to or less than the counterfactual scenario, as that
would indicate that the enhanced strategy managed to mitigate
the disruption caused by the gap in treatment (see Figure 2 for an
illustrative example). After the initial 5-y programme, we assume
that the treatment strategy used after resuming activities is con-
tinued until the 1% mf threshold is met. We can then use these
same runs to quantify the gains should these alternative strate-
gies bemaintained beyond catching up (see Figure 2). To summa-
rize results over the prevalence range, we calculated the moving
averagewith a window size of 4000 simulations (sorted by preva-

lence) and the volatility as the unweighted standard deviation in
the same window size.

Results
The expected delay in reaching the 1% mf threshold is broadly
similar across the baseline prevalence (here considered in 2018;
Figure 3 [top]). Across the full baseline prevalence range explored,
the delay in reaching the 1% goal (and thus the increase in
the length of the programme that needs to be considered) is
estimated to be on average slightly less than the delay of the
MDA round. For example, a 1-y delay in distributing the MDA
round causes on average almost 1-y delay in the Culex DA set-
ting and a bit less than a 1-y delay in the Anopheles IA setting
(Figure 3 [top]). Areas with a prevalence <5% are close to the
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Figure 3. Moving average (window size of 4000) of the delay in reaching 1%mf prevalence (in years [top]) and the proportion missing the 2030 goals
(bottom) for a wide range of baseline prevalences at the start of the current MDA programme in an Anopheles-transmitted setting treating with IA
(left) and a Culex-transmitted setting treating with DA (right). The red and yellow lines illustrate scenarios with 12- or 24-month programme delays,
respectively, after which annual MDA with 65% coverage continues. Shaded areas illustrate the standard deviation (volatility).

goal and thus the disruption is minimal. The proportion miss-
ing the 2030 goal is estimated to increase faster in Anopheles
settings than in Culex settings as baseline prevalence increases
(Figure 3 [bottom]).
A summary of the results across the four delays we consid-

ered for the two settings is shown in Table 1. The focuses here are
the low-, medium- and high-prevalence areas as defined above
(5–10%, 15–20% and 25–30%mf prevalence, respectively). Low-
prevalence areas, irrespective of the delay considered, are on
average likely to reach 1%mf before the 2030 endpoint; however,
delays in the medium- and high-prevalence areas may require
programmes to continue beyond 2030. Across the two settings
and the prevalence brackets considered, a 6-month delay in the
deployment of the MDA will lead on average to the programme
not needing to be extended beyond the originally planned
timelines (Table 1).
Alternative enhanced strategies, such as increasing efforts to

achieve a higher coverage or increasing the treatment frequency,
can help catch up to the time lost due to the COVID-19 disrup-
tion. Biannual rounds of MDA or switching to IDA, where possible,
are on average faster methods to catch up than achieving a high
coverage of 80% (Figure 4). Longer gaps in the programmewould
requiremore rounds of the enhanced campaigns to catch up (see
supplementary materials).
Maintaining the strategies implemented to catch up and miti-

gate the disruption caused by COVID-19 will lead to acceleration

of the programmes, irrespective of the strategy used (Figure 5).
A long disruption causing a 2-y delay (a 3-y gap between treat-
ment rounds) can be caught up by these alternative strategies. All
three strategies considered here (80% coverage achieved, bian-
nual rounds or switching to IDA where possible) lead to qualita-
tively similar gains (Figure 5), which could be as big as reaching
the goal 3 y earlier. The results shown here are for an India-like
setting with Culex as the dominant vector and the deployment of
DA as the drug combination. Results for Anopheles-transmitted
settings, treated with IA, are broadly similar (see supplementary
material).

Discussion
We have estimated the delays in LF elimination efforts due to the
disruption caused by COVID-19 in two broadly defined settings
using three well-established mathematical models of LF trans-
mission.7,8 Moreover, we explored how alternative enhanced
strategies could be used to catch up and recover from the dis-
ruption when programmes resume and potentially accelerate
progress towards the 2030 goals if maintained longer term.
Overall, our simulations suggest that in efforts aiming for LF

elimination as a public health problem, each round missed gen-
erally extends the programme by the same amount (Figure 3),
provided programmes can resume activities achieving similar
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Table 1. Estimated timeline to achieving 1%mf prevalence goal by baseline endemicity and estimated extension of the programmes required
(i.e. delay to reaching 1%mf) for different delays in the deployment of the next MDA. Timeframes over 12 y from the baseline are beyond 2030
and thus are estimated to miss the goal.

Africa-like population: Anopheles transmission,
IA treatment India-like population: Culex transmission, DA treatment

Baseline prevalence (2018)

Low
prevalence
(5–10% mf)

Medium
prevalence
(15–20% mf)

High
prevalence
(25–30% mf)

Low
prevalence
(5–10% mf)

Medium
prevalence
(15–20% mf)

High
prevalence
(25–30% mf)

Time to goal from 2018 if
no interruption
(counterfactual)

5.89 (3–9) 9.51 (7–18) 11.8 (8–21) 5.57 (4–12) 8.54 (6–17) 10.13 (7–19)

6-month delay (1.5-y gap) No extension
(0–2)

No extension
(0–4)

No extension
(0–4)

No extension
(0–2)

No extension
(0–3)

No extension
(0–3)

12-month delay (2-y gap) +0.79 (0–2) +0.81 (0–4) +0.85 (0–5) +0.96 (0–3) +0.95 (0–4) +0.92 (0–4)
18-month delay (2.5-y
gap)

+0.7 (0–2) +0.92 (0–4) +1 (0–5) +0.77 (0–3) +0.97 (0–4) +0.94 (0–4)

24-month delay (3-y gap) +1.63 (0–3) +1.72 (0–5) +1.82 (0–5) +1.92 (0–4) +1.87 (0–5) +1.85 (0–5)

Values presented as mean (95% confidence intervals) in years.

Figure 4. Estimated average number of years of the enhanced interventions needed after a 1-y delay in MDA and resuming activities to catch-up to
the counterfactual no-disruption scenario for the two settings considered.

levels of coverage as before the disruption. As an example, a pro-
gramme that would have reached elimination after five rounds
of treatment and misses one round this year could resume their
MDA campaigns the next year and would on average still need
to do only five rounds in total. In this example the programme
is likely to be only 1 y behind (i.e. delivering the round that it
missed), although in some cases it could lead to longer delays
(Figure 3 and Table 1). Moreover, baseline prevalence has a very
limited effect on the delays, as seen in Figure 3, with the excep-
tion of very low-prevalence areas (<5% mf). However, the esti-
mated time to reach 1% mf prevalence has a larger uncertainty
in high-prevalence areas (Table 1). These results, which are spe-
cific for LF-endemic areas withW. bancrofti, are consistent across
the two settings considered (Anopheles-dominated transmission
with IA-based MDA and Culex-dominated transmission with DA-
based MDA).

Medium- (15–20% mf) and high-prevalence (25–30% mf)
areas are more at risk of missing the 2030 target should the
delays not be mitigated. In low-prevalence areas (5–10% mf in
2018), a 2-y delay (3-y gap between treatment rounds) could
lead in some extreme cases to missing the 2030 goal (Table 1).
However, we expect that on average those areas, or those with
even lower baseline prevalence, will reach the 2030 goals ahead
of time, in spite of the COVID-19 disruption. In the supplementary
materials we show that results for programmes that started their
MDA earlier/later are qualitatively similar.
Encouragingly, interventions that are commonly considered

to accelerate progress towards the goals, such as increased
coverage or frequency of the interventions,7 can also be used to
mitigate the impact of the missed rounds. With a 6-month delay
in the MDA programme, effectively deploying two MDA rounds
6 months apart (see Figure 1) is similar to resuming activities
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Figure 5. Estimated year of achieving the 1% mf threshold relative to the prevalence at baseline (assumed here in 2018) for the setting with Culex
transmission treated with DA. Top-left plot compares the counterfactual to the no-mitigation scenario (after a 12-month delay). The rest of the plots
show the different acceleration strategies (in colour) against the no-mitigation situation (in grey). The horizontal dashed line indicates the year 2030;
areas beyond 2030 are unlikely to reach the goal. The solid line shows the moving average (window size of 4000) and the shaded area is the standard
deviation (volatility).

with a biannual strategy, where 1 y is sufficient to catch up to
the expected progress of the programme in the absence of any
delays (Figure 4). In these simulations, mitigating with IDA has
the largest variation (and thus uncertainty) (Figure 4), possibly
because the drug pressurewith biannual rounds or 80% coverage
is higher. Nevertheless, these results highlight the importance of
implementing the missed round as soon as possible when it is
safe to do so, which would also prevent the expiry of medica-
tion already stocked. Should these enhanced strategies be main-
tained once the programmes resume activities until the 1% mf
threshold is reached, as much as 3 y could be gained (Figure 5).
Our models predict that the extended use of these enhanced
strategieswill ensure that even high-prevalence areaswill be able
to reach the 2030 targets.
Our analysis has a number of assumptions and simplifications

that need to be considered. While we allow parameter uncer-
tainty in the inputs (see supplementary material), and stochas-
tic effects for LYMFASIM and TRANSFIL, we do not account for
sampling of the human population, and thus the mf is the true
value in the population>5 y of age (minimum age to be included
in a survey). Similarly, the deployment of the drug and its effect
takes place within one time step of the model (2 weeks/1 month
depending on the model). This, combined with the assumption
that compliance (the proportion of individuals treated in two

consecutive rounds) is the same between biannual rounds as
between annual rounds, means that our results for biannual
treatment might be slightly optimistic. Predicted timelines to
achieve the 1% mf prevalence threshold depend on assump-
tions surrounding systematic non-compliance (the two stochas-
tic models LYMFASIM and TRANSFIL account for a moderate
amount on non-compliance, in line with recent work7,8 [see sup-
plementary materials]). We conducted a sensitivity analysis for
other simplifications, such as the effect of vector control and dis-
ruption occurring at a different point in the programme (see sup-
plementary materials).
It is important to consider the timelines and flexibility of the

evaluations carried out to assess progress, such as the trans-
mission assessment survey (TAS). These generally take place
6–9 months after the last scheduled round of MDA, which
means that resuming treatment, if needed, could lead to a
1- to 2-y gap. In our simulations we considered continuous
treatment until the 1% mf prevalence threshold is met, which
in medium- and high-prevalence settings is estimated to be
9–12 y on average (Table 1). Therefore, missing the third round
as modelled here means there are 7–10 MDA rounds remain-
ing. Thus a 1-y delay might not be too problematic in terms of
programme duration, but it can still lead to missing the 2030
goals.
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For our analysis we assumed that the programmes can
resume MDA activities with a similar coverage as before the dis-
ruption. On previous occasions when MDA has been interrupted,
programmes have reported good coverage the following years
after resuming activities. In Haiti, following the 2010 earthquake,
there was a reported coverage of MDA of 92% for LF in 2011,
which was calculated from the doses administered and esti-
mated population sizes; a household survey in Port-au-Prince
the same year reported coverage of 71%.22 Similarly, the Sierra
Leone and Liberia LF programmes missed MDAs in 2014 due to
the West Africa Ebola epidemic,23 but both managed to resume
in 2015 and reported>70%coverage.24,25 However, while Guinea
reported 16% coverage achieved during the outbreak, this only
increased to 21% in 2015, but by 2016 coverage was reported
up to 73%.26 Unfortunately there is little information available
on how these interruptions affected program outcomes, as the
majority are still undertaking MDA, but by 2019, 9 of 14 dis-
tricts in Sierra Leone had stopped MDA.27 Some programmes
are resuming activities with all the precautions necessary due to
COVID, which combined with community weariness, can compli-
cate achieving a high effective coverage.
One important aspect to consider, which we currently do not

capture in our models, is that a delay in meeting the 1%mf elim-
ination as a public health threshold could cause higher morbidity
levels while transmission is ongoing. This may lead to new inci-
dent cases of morbidity, especially in areas that have not started
MDA yet or with a relatively recent start. Even when implement-
ing catch-up strategies, the time spent with a higher prevalence
than originally planned will undoubtedly lead to higher mor-
bidity in the affected communities. Moreover, morbidity man-
agement measures to relieve the suffering of those affected by
hydrocele or lymphoedema may also be disrupted. Hydrocele
surgeries will likely be delayed. Management of lymphoedema
could potentially continue, as it is commonly managed at home,
although disruptions might make this more difficult. Therefore
it is not only important to mitigate the disruption, but to do it
quickly.
In summary, progress towards the LF 2030 goals is not going

to be greatly affected by the COVID-19 disruption if the interrup-
tion remains restricted to 6–24 months, especially if mitigation
strategies are put in place. These enhanced strategies that will
allow catching up are not particularly novel and have been dis-
cussed and considered recently for accelerating progress towards
the 2030 goals. An opportunity could be present for programmes
that resumeMDA using one of thesemitigation strategies, partic-
ularly those that recently started, as it will lead to a faster reduc-
tion in mf prevalence, and lower morbidity, should the strategies
be maintained until the 1% mf threshold is met.

Supplementary data
Supplementary data are available at Transactions online.
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