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Abstract. X-ray CT is increasingly being adopted in manufacturing as a non

destructive inspection tool. Traditionally, industrial workflows follow a two step

procedure of reconstruction followed by segmentation. Such workflows suffer from

two main problems: (1) The reconstruction typically requires thousands of projections

leading to increased data acquisition times. (2) The application of the segmentation

process a posteriori is dependent on the quality of the original reconstruction and

often does not preserve data fidelity. We present a fast iterative X-ray CT method

which simultaneously reconstructs and segments an image from a limited number

of projections called Fourier Null Space Regularization (FNSR). The novelty of the

approach is in the explicit updating of the image null space with values derived from

a regularized image from the previous iteration, thus compensating for any missing

projections and effectively regularizing the reconstruction. The speed of the method

is achieved by directly applying the Fourier Slice Theorem where the Non-Uniform

Fast Fourier Transform (NUFFT) is used to compute the frequency spectrum of the

projections at their positions in the image k-space. At each iteration a segmented image

is computed which is used to populate the null values of the image k-space effectively

steering the reconstruction towards a binary solution. The effectiveness of the method

to generate accurate reconstructions is demonstrated and benchmarked against other

iterative reconstruction techniques using a series of numerical examples. Finally,

FNSR is validated using industrial X-ray CT data where accurate reconstructions were

achieved with 18 or more projections, a significant reduction from the 5000 needed by

filtered back projection.
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1. Introduction1

X-ray CT is becoming an increasingly common method of non destructively assessing2

and quantifying material and dimensional properties of industrial components e.g., [1, 2].3

Traditionally, industrial X-ray CT workflow consists of a reconstruction followed by4

image segmentation [1]. Once a segmented image is generated it can be used to assess5

the specimen for flaws, material properties, quality control and dimensional analysis.6

However, these workflows typically suffer from time consuming acquisition and a final7

segmented image which is dependent on the quality of the original reconstruction.8

Industrial X-ray CT reconstruction is typically computed using filtered back9

projection (FBP) or equivalent [3, 4]. The main advantage of FBP methods are10

its computational speed and low memory requirements. However, FBP methods11

require hundreds or thousands of projections, each evenly distributed for an accurate12

reconstruction [3, 4]. These large datasets lead to increased acquisition times13

particularly in aerospace applications where superalloys are routinely used and long14

exposure times, on the order of seconds, are necessary to achieve adequate signal-15

to-noise ratios (SNR). Inevitably these long acquisition times leads to manufacturing16

bottlenecks which require additional X-ray CT capacity to be purchased or a reduction17

in the exposure times of the individual X-rays projections, degrading image quality.18

Additionally, the workflow suffers from the a posteriori application of the segmentation19

process which is dependent on the quality of the reconstruction and often does not20

preserve X-ray projection fidelity in the final image e.g.,[5].21

An alternative to this two stage workflow is the simultaneous reconstruction22

and segmentation (SRS) of the image for which a number of methods have been23

developed. One such approach is to use prior information as a regularization term in the24

reconstruction [6]. Such priors include sparsity in the gradient of the image which can be25

exploited by Total Variation (TV) regularization [7, 8], or by assignment of pixels to a26

given class, using knowledge about the number of materials present [9, 10]. Alternatively,27

level-set segmentation methods can be incorporated into the reconstruction as shape28

based priors [5, 11, 12]. Typically the SRS methods are applied to datasets acquired29

using a full set of projections, which would not lead to reduced data acquisition times.30

Binary or discrete tomography deals with image reconstruction from a small number31

of projections where the pixels are known to be limited to one or a number of distinct32

values [13, 14]. Unlike conventional tomography where the projections have continuous33

amplitudes that are related to the distance a raypath travels through an object, in34

binary tomography the projections are made up of discrete integer sums where only35

the number of pixels within each material traversed by a raypath is needed. Discrete36

tomographic problems have been shown to be highly ill posed, are highly unstable in37

the presence of noise [15] and difficult and complex to solve exactly [13, 14, 16]. The38

computational difficulty and in particular the highly unstable nature of the problem in39

the presence of noise means discrete tomography methods cannot be applied successfully40

to experimental data. However, a number of discrete tomographic methods have been41
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specifically developed to either provide approximate solutions or to handle experimental42

projection data; examples of such methods include greedy algorithms [17], Monte43

Carlo based optimization methods [18, 19, 20] network flow methods [21] and iterative44

hybrid approaches that alternate between a continuous reconstruction using algebraic45

reconstruction and a discrete reconstruction [22, 23, 24, 25].46

Despite significant improvements in computational power and the increasing47

application of graphics cards to tomographic problems [26], improvements to the48

resolution of the X-ray detectors and subsequent image resolution continue to make49

SRS and discrete tomographic methods computationally expensive. The computational50

expense of these methods renders FBP methods popular due to their speed and small51

computational footprint.52

We introduce a new fast iterative Fourier based CT reconstruction method called53

Fourier Null Space Regularization (FNSR). The novelty of the approach is in its explicit54

inclusion of regularization into the null space to compensate for any missing projections.55

The method achieves its speed by directly applying the Fourier Slice Theorem to56

compute values for the image k-space corresponding to the projection data. A threshold57

image is computed at each iteration which is used to populate the reconstruction k-space58

where no values are available. The population of this null-space is used to regularize59

and steer the reconstruction towards a binary solution. Numerical experiments are60

conducted using different binary phantoms to benchmark the computational speed61

and reconstruction quality of FNSR against other algebraic reconstruction methods62

as a function of the number of projections. Finally, the method is validated using63

experimental X-ray data from a turbine blade.64

2. Fourier Null Space Regularization (FNSR)65

In this section we describe the FNSRmethod which builds upon the Fourier slice theorem66

and uses null space regularization to steer the solution towards a desired reconstruction.67

2.1. Fourier slice theorem and back projection68

The Radon transform relates the X-ray projection data to a line integral through an69

object f(x, y), at an angle θ to the x axis with an offset from the centre of rotation t70

[3, 4]. The Radon transform is defined as71

Rf ≡ p(θ, t) =

∫
(θ,t)

f(x, y)dS

=

∫ ∫
f(x, y)δ(x cos θ + y sin θ − t)dxdy, (1)

where t = x cos θ+ y sin θ and δ is the Dirac delta function. The projection or sinogram72

dataset are subsequently a collection of line integrals taken at different offsets and73

angular rotations [3, 4].74
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The main objective of CT is to recover the image f(x, y) from the sinogram data by75

computing the inverse of the Radon transform (R−1p). A cornerstone in the calculation76

of R−1p is the Fourier slice theorem (FST) which relates the 1D Fourier transform77

of the projection data at an angle θ to the corresponding slice through the 2D Fourier78

transform of the image of interest [3, 4]. Therefore, the recovery of the object is obtained79

by performing a Fourier transform of the sinogram slices which are used to populate the80

corresponding 2D spatial frequency positions. This is then followed by an inverse 2D81

Fourier transform to give the final image in cartesian coordinates.82

The implementation of the FST requires the frequency domain of the projection83

data to be interpolated from a polar to a cartesian grid in order to compute the inverse84

2D transform. Generally the direct implementation of the FST is avoided due to the85

significant errors introduced during the polar to cartesian grid interpolation in the spatial86

frequency domain [3]. An alternative formulation of the CT problem, and by far the87

most widely used is filtered back projection where the sinograms are filtered, then back88

projected (smeared) through the image. This filtering acts to remove the amplification89

of particular spatial frequency components introduced by the back projection stage.90

Provided there are sufficient projections with an even angular sampling the filtered back91

projection method yields an accurate image of the object [3, 4]. Recent development92

of the non-uniform sampled FFT (NUFFT) [27] [28] has allowed for the accurate93

application of the FST with similar computational overheads to the standard 1D and94

2D FFT, with results equal to the back projection methods [29] [30].95

2.2. Null space regularization96

Consider the linear operation L which acts on an image x to generate some data d, which97

may be written as Lx = d. In X-ray CT, the linear operator is L is the Radon transform.98

The goal of an inverse problem is to recover the image thus effectively undoing the99

operator L. In general, L is non invertible, so an iterative approach is required to100

obtain a solution [31] [32]. Additionally, L is typically ill conditioned which means101

that an infinite number of null space images Lxn = 0 exist to which L is effectively102

insensitive to. The insensitivity of the operator L to the null space means that any103

recovered image which matches the data will consist of a combination of the true and104

null space images. Therefore, any solution to the inverse problem is non-unique where105

multiple images exist which match the measured data.106

It is initially assumed that the values of the null space are zero. The addition of107

regularization terms allow for the null space to be updated towards more representative108

values, thus reducing the effects of non-uniqueness on the solution [31] [32]. The type109

and amount of regularization allows for certain preferential solutions to selected based on110

some prior assumptions e.g., smooth or edge preserving solutions [6], [7],[31], [32]. The111

generation of the null space values by regularization may be achieved either implicitly112

or explicitly. In the former both the data and the regularization terms are fitted and113

no consideration is given to the null space terms. In the explicit case the null space114
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and measurable components are separated via some appropriate transform with the115

measurable terms matched with the data whilst the null space components are updated116

based on a regularized reconstruction.117

Deal and Nolet [33] used a ‘null space shuttle’ to seismic tomographic problems118

where a non-linear filter is estimated and applied as a post processing step and only119

modifies components of the null space. Huthwaite et al., [34] and Shi and Huthwaite [35]120

applied an iterative null space regularization method to limited view ultrasonic imaging,121

applying a threshold to the image from the previous iteration. This threshold image is122

used to generate synthetic data for the missing viewing angles which are incorporated123

with the measured data to perform the next iteration of the procedure. In this sense124

the threshold image is focusing the data onto the higher contrast areas of the image,125

attempting to minimise the lower contrast smearing artefacts which appear both in126

subsampled and limited angle of view problems.127

Here, we apply a similar strategy to [34] and [35], but specifically tailored it to128

limited data X-ray CT. Below we review the theory used by [34] and [35] for ultrasonic129

imaging. As stated previously the main objective of any imaging approach is to130

reconstruct an image x, from a set of measurements d by undoing the linear operator131

L. However, L is not invertible in general, since there are multiple sets of x which can132

produce the same data d. We define a corresponding imaging operator I which can133

therefore only generate x′, an approximation of x,134

x′ = I (d) . (2)135

We define an operator R which maps an image into a regularised image136

xreg = R (x) . (3)137

We do not, at this point, make any assumptions other than that I and L are linear.138

The focus of this paper is to generate images when data is limited, which means that d139

is not known in its entirety. We therefore split this into two data sets:140

d =

{
dm
du

}
, (4)141

where dm is the known, measured, data, and du is a hypothetical, unmeasurable data142

set which completes the ideal, full data set. The value of splitting the data in this way143

is that we can target a solution which matches dm while using regularisation to estimate144

du. This is achieved through iteration.145

An initial image is generated by setting the unknown components du to zero, and146

combining these with dm as in (4) to obtain the full-view data set at the first iteration147

d(1) =

{
dm
0

}
. (5)148
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where we use the superscript (k) to indicate the value of a variable at iteration k. The149

image is then approximated from this data set as150

x(1) = I
(
d(1)

)
. (6)151

The point of regularisation is to steer an image towards the true solution, based on152

some prior knowledge; the operator can be applied such that x
(n)
reg should be a better153

representation of the true object than x(n)
154

x(1)
reg = R

(
x(1)

)
. (7)155

This regularisation improvement, encoded within x
(1)
reg, needs to be combined with our156

measured data set dm to provide an improved estimate for the unknown values at the157

next iteration. To do this, we use the forward model to generate a complete data set158

from x
(1)
reg159

d(1)reg = L
(
x(1)
reg

)
. (8)160

As before, the components of d
(1)
reg can be subdivided into two sets depending on161

whether or not they can be measured from the original limited view array162

d(1)reg =

{
d
(1)
reg,m

d
(1)
reg,u

}
. (9)163

This subdivision enables us to identify two components. In general, d
(1)
reg,m ̸= dm,164

i.e. the regularisation will have moved the measured components away from the true165

values. However, we seek a solution where these components do match. The unknown166

components d
(1)
reg,u have also been adjusted from the zero values they were set to before,167

which is caused by the regularisation. We wish to maintain this behaviour. Therefore,168

we seek a solution where the data for the next iteration is169

d(2) =

{
dm

d
(1)
reg,u

}
. (10)170

We have outlined the process for the first iteration; these steps can be repeatedly applied171

until convergence is achieved. As highlighted, the steps up to this point are as given in172

[34].173

In X-ray CT reconstruction, the FST, introduced in Section 2.1, provides the means174

to transform between the image space (in which regularisation can be applied) and the175

data space (in which data can be combined and replaced). It is powerful in that it is fast,176

which is critically important when iterating, and it is invertible, relying only on the 2D177

FFT and its inverse, avoiding the solution drifting from the true data. This is the key178

contribution of the FNSR, and it should be noted that it is general for any regularisation179

approach allowing both binary and non-binary x-ray images to be recovered.180

FNSR is applied as follows and summarised in Figure 1: (1) take the NUFFT of181

the projection data and populate the corresponding 2D k-space locations. The initial182
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image is estimated by taking the inverse 2D FFT. (2) regularisation is applied, (3) the183

2D FFT takes the image into k-space, (4) the measured components are corrected to184

their true components and (5) the latest image is generated by the inverse 2D FFT.185

This is then iterated from point (2).186

NUFFT of projection data 

 and populate 2D k-space

2D IFFT to produce initial reconstruction

False

True

Regularize reconstruction

2D FFT and populate null space 

of the 2D k-space

2D IFFT to produce reonstruction

Maximum iteration  

Final image

Figure 1. Summary workflow of the FNSR algorithm.

2.3. Data k-space stencil187

Fundamental to the FNSR algorithm is the population of the data and null components188

of the image k-space. The FST is used to populate the 2D image k-space using the FFT189

of the projection data [3, 4]. Typically, the direct calculation of the FST is avoided190

due to significant interpolation errors associated with converting the projection data191

from a polar to cartesian grid. However, these interpolation errors are mitigated by192

sampling the 2D image k-space using a series of concentric squares [36], [37] and using193

the NUFFT to obtain exact horizontal or vertical grid point values (Figure. 2). This194

sampling scheme reduces the interpolation to a single dimension with results comparable195

to FBP [36].196

The concentric sampling and data k-space estimation are computed as follows:197

(i) Data are divided in two; sub-horizontal projection θ ∈ [−45◦, 45◦) and sub-vertical198

projection θ ∈ [45◦, 135◦) where θ is the angle of projection taken counter clockwise199

from the horizontal.200
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Nearest horiz. grid point 
Nearest vert. grid point NUFFT sampling points

Polar-square 2D k-space sampling 

Parallel projection

Figure 2. Illustration of the k-space sampling using a polar and concentric square

grid. The the radial lines are the parallel projections the circles show the sampling

positions obtained by Fourier Transforming the projection data. The black dots are the

sampling positions we wish to obtain using the NUFFT. The red and blue dots show

the location of the nearest vertical or horizontal grid point to each NUFFT sample.

(ii) Compute the 1D NUFFT of the projection data using the method of Greengard and201

Lee [28] with a desired output sampling interval of ∆kp = ∆kx
cos θ

for sub-horizontal202

and ∆kp =
∆ky
sin θ

for sub-vertical projections where ∆kx and ∆ky are the horizontal203

and vertical sampling rate of the 2D k-space. These points correspond to the black204

dots along the radial lines in Figure2.205

(iii) 1D linear interpolation of the computed k-space values along vertical lines for sub-206

horizontal projections (θ ∈ [−45◦, 45◦), red dots Figure 2) and along horizontal207

lines for the sub-vertical projections (θ ∈ [45◦, 135◦) blue dots Figure 2).208

This k-space, where the data have been interpolated onto the nearest horizontal209

or vertical grid space (red and blue dots in Figure 2) is called the data k-space Xdata210

and corresponds to dm in (4). Following, that we define a binary k-space stencil Xstencil211

which is used to define the null space of the current system where the jth pixel is defined212

as:213

Xj
stencil =

{
1 | Xj

data |= 0

0 otherwise
. (11)214

By performing a point-by-point multiplication of this stencil with the FFT of the215

regularized image Xreg we eliminate the data component dm in the k-space leaving216
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only components belonging to d
(k)
reg,m. A combined dataset (10) is estimated by adding217

the Xdata to the newly formed regularised k-space.218

3. Binary FNSR algorithm219

In this section we describe regularization scheme when combined with FNSR generates220

binary reconstructions of X-ray CT data. We begin by describing the binary steering221

approach of Censor [22] followed by a brief description on the implementation of the222

algorithm. A summary of the algorithm is given by the pseudo-code in Algorithm 1.223

3.1. Binary regularization224

The binary regularization scheme used is a binary steering approach which incrementally225

steers each iteration towards a discrete image [22]. Any iterative reconstruction may be226

written as227

xk+1 = xk + c(xk, d), (12)228

where x is the image vector, d is the data, c is the correction function which updates229

the image, and k is the iteration number. The binary steering step is applied to the230

kth iterate of the image vector xk and is used as the input to the correction function.231

The method relies on three sequences of real numbers, α = {αk}k≥0 which defines the232

lower segmentation value, β = {βk}k≥0 which defines the upper segmentation value, and233

τ = {τk}k≥0 which defines the final image threshold. The three sequences of numbers234

satisfy the conditions 0 ≤ αk < τk < βk ≤ 1, αk < αk+1 and βk+1 < βk. Typically τ is235

usually fixed at 0.5 with α and β defined as αk = k
K
τ and βk = 1− αk, where K is the236

total number of iterations. At the kth iterate α and β are applied to the jth pixel of the237

image xk to define the binarised image x̃k as [22],238

x̃k
j = B

(
xk
)
=


0 if xk

j ≤ αk

1 if xk
j ≥ βk

xk
j otherwise

, (13)239

However, practically the image pixels values are equal to the radiographic240

attenuation coefficient of the imaged object their values may not binary (i.e, 0 or 1).241

In order to apply the binarisation step the image is normalized between 0 and 1 using242

linear normalization which for the jth pixel is given by:243

x̂k
j = xk

j

1

max (xk)
, (14)244

where max
(
xk
)
is the maximum image pixel amplitude of the kth iteration. The245

normalized image is subsequently binarised using (13).246

Next an intermediary image yk+1 = xk + c(x̃k, d) is computed by applying the247

correction function c to the binarised image x̃k. The intermediate image yk+1 may248

result in the amplitudes of previously binarised pixels xk significantly changing resulting249
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in pixel ‘conflict’ [22] which can lead to the unstable binarisation and reconstructions.250

A pixel is defined as being in conflict when the intermediate image yk+1 crosses the251

image threshold τ i.e., if xk ≤ αk and yk+1 ≥ τ or if xk ≥ βk and yk+1 ≤ τ . To resolve252

pixel conflict and allow for the smooth and stable binarisation of the image a conflict253

resolution function C is defined as:254

xk+1
j = C

(
yk+1, xk

)
=


τ − ϵ if xk

j ≤ αk and yk+1
j ≥ τ

τ + ϵ if xk
j ≥ βk and yk+1

j ≤ τ

yk+1
j otherwise

(15)255

where ϵ is a small constant greater than 0 which ensures that each pixel falls the correct256

side of the threshold value τ .257

3.1.1. Implementation First, a binary image is generated from the previous iteration258

using (13) and (14). Next, the 2D FFT of the binarised image is computed and used259

to regularize the reconstruction. Differences in the amplitudes of the binarised image260

x̃k and the data derived image x must be accounted for prior to regularization. This261

is achieved by computing the modified inverse of 14 where max(xk) is replaced by the262

median of all pixels which were identified with values greater than the threshold β263

(median
(
{xk

j | x̃N
j = 1}

)
). The median was used instead of the maximum to reduce the264

effects of any spuriously large pixel amplitude values on the regularization. Following265

the rescaling the 2D FFT of the image is computed to give the the binarised k-space266

Xb.267

Next, the k-space of the binarised image, Xb is projected on to the null space of the268

current reconstruction by performing element by element multiplication with the stencil269

Xstencil. Following the calculation of the regularized reconstruction yk any conflicts270

associated with changes in pixel assignment are resolved using (15) where the terms271

α, β, τ and ϵ are scaled according to the inverse of (13).272

By binarising the image, information about sharp contrast objects will be273

introduced into the image null space via the FFT. The effect of taking the 2D FFT274

of an image with sharp edges in the image domain is a sinc function centred at 0275

frequency in the k-space. The effect of any spurious ringing on the reconstruction will276

be limited for two main reasons (1) The majority of the information relating to an image277

is contained at low spatial frequencies in the k-space, which is adequately sampled even278

with a few projections due to the polar nature of the sampling geometry – considering279

two points at the same radius separated by a particular angle, the cartesian separation280

distance will be small when the radius is small. Therefore, at low spatial frequency the281

2D k-space is dominated by the data. (2) The Fourier transform is linear and as such282

its inverse will reproduce the original sharp edges of the image.283

Of greater concern to the quality of the reconstruction is the potential presence284

of high frequency noise in the image i.e., single pixel holes in an object. To alleviate285

this the final stage of the algorithm is a smoothing operation which is used to enforce286

coherency between adjacent pixels and further mitigate the mislabeling of pixels from287
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the binarisation phase. From a practical perspective the smoothing is justified by the288

fact that the imaged objects are homogeneous with any flaws or voids expected to be289

made up of more than tens of pixels.290

Algorithm 1 FNSR reconstruction

Input: Acquisition p(θ, t), iterations K, filter type and size F (x), binarisation

parameters (τ, S)

Output: binarised image reconstruction x

1: 1D NUFFT p(θ, t) and populate 2D k-space Xdata

2: x0 ← F−1 (Xdata)

3: Xstencil ← Xdata ▷ Binary k-space stencil (11)

4: for k = 1 to K do

5: αk ← k
K
τ , βk ← (1− αk)

6: binarise normalized image by (13) and compute FFT:

7: x̃← B
(
xk−1

)
, Xb ← F (x̃)

8: Compute regularized k-space and IFFT:

9: Xreg ← Xdata + (Xb ◦Xstencil), y
k ← F−1 (Xreg)

10: Conflict resolution (15)

11: xc ← C
(
yk
)

12: Update reconstruction by filtering

13: xk ← F (xc)

14: x← xk

4. Numerical Examples291

A series of numerical experiments were conducted to assess the capability of the proposed292

algorithm to accurately reconstruct five different phantoms. The tests assess the293

FNSR sensitivity to iteration number, filter size and the convergence behaviour of the294

method. Finally a comparison is made between FNSR and the algebraic reconstruction295

method’s capability to reconstruct an object using a limited number of projections. The296

projections are computed for a parallel beam geometry using (1) with each projection297

spaced evenly between 0 and 180◦.298

The quality of the reconstruction is assessed by comparing the percentage of299

mislabeled pixels and the root mean squared (RMS) of the difference between the300

phantom and reconstruction. The mislabeling of the jth pixel is defined as301

xj
m =

{
1 | xj

t − xj
r |> 0.5,

0 otherwise
. (16)302

where xt is the true image and xr is the reconstruction. Throughout the experiments303

the final segmentation threshold τ = 0.5 and the conflict resolution parameter ϵ = 10−4
304
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(a) (b) (c) (d) (e)

Figure 3. Phantoms used for the numerical simulations. (a) Phantom 1. (b) Phantom

2. (c) Phantom 3. (d) Phantom 4. (e) Phantom 5.

4.1. Phantoms305

The numerical experiments are based on five binary representative phantoms (Figure306

3), where Phantoms 2 and 4 were taken from [25] whilst phantom 5 was generated using307

the XDesign software package [38]. The trivial process of using the same forward model308

in the inversion as used to generate the simulated data is known as an ‘inverse crime’309

and should be avoided [32]. Within CT imaging, inverse crimes are typically avoided by310

using continuous or high resolution phantom data to generate the projections that can311

then be used for the desired reconstruction at a lower resolution. Here, the projection312

data were computed using phantoms with pixel resolutions of 1024×1024 for phantom313

1, 4096×4096 for phantoms 2-4 and 2048×2048 for phantom 5 and a desired image314

reconstruction of 512×512. The projection data were interpolated so that each detector315

pixel corresponded to the length of the pixels in the output image. For comparisons316

with the reconstructed data the phantoms were downsampled to 512 × 512 pixels.317

4.2. Effect of number of iterations318

A key factor of the performance of the FNSR algorithm is the total number of iterations,319

since this controls the rate of binarisation and the null space thresholding. The effect320

of the number of iterations on the quality of reconstruction as a function of the number321

of projections is tested here. For this test no filtering was applied to the results at the322

end of each iteration.323

Figure 4 shows the RMS and the percentage number of mislabeled pixels for324

Phantoms 1 and 3 for different number of iterations. In both examples it can be seen325

that fewer iterations, generally 50 or below, produce results with the lowest number of326

misidentified pixels and RMS error. However, the two phantoms have distinctly different327

error trajectories. In the case of Phantom 1 the optimum number of iterations are328

dependent on the number of available projections; for example at 180 and 36 projections329

10 iterations marginally produce the most accurate reconstructions but for fewer than 36330

projections the image quality rapidly decreases. On average, 50 iterations produces the331

reconstructions with the lowest number of mislabeled pixels and RMS error. However,332

for Phantom 3 the error trajectories are distinct with 10 iterations producing the best333

reconstruction in all cases in Figure 4.334
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The variability in the reconstruction quality as a function of iteration is seen in335

Figure 5. Where an increasing number of iterations are used, leading to a finer set336

of binarisation thresholds, the images exhibit ‘noise’ in the form of mislabeled pixels.337

These mislabeled pixels and associated image noise are particularly prevalent at low338

numbers of projections. The mislabeling of pixels tends to occur during the final set of339

iterations where pixels with amplitudes close to the final segmentation threshold τ are340

set incorrectly.341

Two main factors contribute to the mislabeling of pixels at higher iterations. The342

first is the influence of the null space regularization on the FNSR reconstruction which is343

dependent on the both the shape of the imaged object and relative size of the data and344

null spaces. This explains the variability in error trajectories between both phantoms345

in Fig 4. In general, as the size of the null space increases it exerts a greater influence346

on the solution and, as such, a pixel which has been labeled by the binarisation process347
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Figure 4. Comparison of the effect of different number of iterations on the final RMS

error and misidentified pixels of (a) Phantom 1 and (b) Phantom 3 using a limited

number of projections.
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10 iterations 50 iterations 100 iterations 250 iterations 500 iterationsPhantom

Figure 5. Comparison of the effect of different number of iterations on RMS error

and misidentified pixels of (a) Phantom 1 and (b) Phantom 3 using 18 projections.

tends to remain with this designation in subsequent iterations.348

The second influence on the solution is the conflict resolution phase (15) which349

stabilizes reconstruction by inhibiting significant change in pixel labels particularly close350

to τ . In addition, other non binarised pixels will now exhibit large changes in amplitude351

to compensate for the mislabeling of other pixels thus enhancing the effect. To combat352

these effects the number of iterations should be as low as possible to produce an accurate353

reconstruction whilst also reflecting the expected pixel amplitude variability for each354

iteration. In addition a filtering operation is applied at each iteration to regularize the355

solution, which is discussed next.356

4.3. Filter regularization357

In the previous section it was seen that some regularization was necessary in order to358

prevent the mislabeling of pixels and the generation of noise in the image (Figure 5). We359

select a 2D median filter as a method of regularizing the image and test how the window360

size affects the quality of the reconstruction. The median filter was selected because of361

its ability to minimise ’salt and pepper’ type noise, which is how these errors typically362

manifest themselves, while avoiding blurring edges. All experiments were conducted363

using 50 iterations.364

Figure 6 shows the RMS error and the percentage number of mislabeled pixels of365

Phantom 5 with varying filter size. From the two graphs it can clearly be seen that366

the addition of a small filter improves the reconstruction for a decreasing number of367

projections whilst larger filters degrade the image. The effect of the different filters for368

18 projections is seen in Figure 7. We can see that the 3× 3 filter reduces the number369

mislabeled pixels whilst preserving the edges of the internal features of the object. The370

larger filter windows 7 × 7 and 9 × 9 remove all mislabeled pixels at the expense of371

rounding the edges and removal of the internal features of the object. From both the372
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Figure 6. Comparison of the effects of different median filter lengths on the RMS

error and misidentified pixels of Phantom 5 using a limited number of projections and

FNSR.

graph (Figure 6) and image comparison (Figure 7) the 5× 5 median filter produces the373

best result by removing the noise associated with the mislabeled pixels whilst preserving374

the edges of the internal features of the object.375

The optimal filter size is dependent on the effect of the number of iterations on the376

reconstruction, which itself is a function of the number of projections (Figure 4). In377

general the best results are obtained when the lowest number of iterations and smallest378

filter size are used.379

Phantom No filter 3x3 pixel filter 5x5 pixel filter 7x7 pixel filter 9x9 pixel filter

Figure 7. Comparison of the effects of different median filter lengths on the

reconstruction of Phantom 5 both with 18 projections.

4.4. Evaluation of reconstruction algorithms380

A number of iterative algorithms have been developed over the years to solve the inverse381

problem d = Ax, where d are the data, A is the model or projection matrix which links382

the data to the image x e.g., [3, 4, 31, 32]. Algebraic reconstruction techniques (ART) are383

a family of reconstruction methods which have been routinely applied to X-ray CT and384

efficiently solve the inverse problem in a least squares sense using a series of forward and385

back projections [3, 4, 31, 32]. Here, we test the quality and speed of the proposed FNSR386

algorithm against a number of ART algorithms using a limited number of projections.387
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All tests were performed on a desktop workstation (32 Intel Xeon E502690 processor,388

2.90GHz CPU, 8 cores and 256 GB RAM) using Matlab 15.389

The details of the ART algorithms tested are given below:390

4.4.1. Algebraic Reconstruction Technique (ART) ART is an iterative reconstruction391

algorithm of form (12) where the data correction function is calculated by sweeping392

through each row of the matrix A and projecting the solution onto orthogonal393

hyperplanes e.g., [3, 4, 31]. A single iteration is completed when all rows of A have394

been swept through [3, 4, 31].395

For the numerical experiments we set the total number of iterations to 100 which396

is sufficiently large to ensure that convergence has been achieved. Additionally, pixel397

amplitude positivity following each row iteration of the reconstruction is enforced. The398

inclusion of the positivity constraint yields better results than those without, particularly399

for limited data case e.g., [39].400

4.4.2. ART-TV The TV reconstruction of Sidky et al., was implemented [8]. This401

method is a two step approach which combines the ART algorithms with a TV402

minimization step. The first stage is a single iteration of ART where the positivity403

constraint is subsequently applied as opposed to after each individual row projection404

described above. The second stage of the algorithm is TV minimization using a fixed405

step, γ, and fixed iteration gradient descent approach. It should be noted that the406

gradient of the TV function with respect to each pixel is undefined, so a smooth407

approximation must be used where the amount of smoothing is controlled by the408

parameter δ [8].409

For the experiments a number of parameters must be set which were determined410

using trial and error process. We set δ = 10−8 which is sufficiently small to stabilize the411

TV gradient without smearing any of the edges, the gradient descent has a fixed step412

length γ = 0.05 for 200 iterations whilst the total number of iterations was set to 100413

which was sufficiently large for convergence.414

4.4.3. Discrete Algebraic Reconstruction Technique (DART) DART is a practical415

discrete tomographic approach built upon the results of an ART approach [23]. The416

method relies on prior knowledge of the number of materials and their corresponding417

grey values to discretized an initial ART reconstruction. The method focuses on418

iteratively improving the boundaries between the segmented parts of the reconstruction419

which are known to be poorly resolved particularly when a limited number of projections420

are used [23]. At each iteration the edge pixels are identified along with a randomly421

selected subset of image pixels which are updated using the previous ART method [23].422

One of the major source of errors in the original DART algorithm was that the423

grey values of the pixels must be known a priori. In practice, true pixel grey values424

are affected by a number of factors, including the source energy, the spectrum of the425

source and whether any filters are used, and are therefore difficult to predict. The so426
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called Projection Distance Minimization (PDM) approach was developed to optimize427

the grey values and segmentation threshold at each iteration [24]. PDM is a two428

stage optimization approach which minimizes the least squares difference between the429

measured projections and those calculated using the currently segmented image [24].430

The first stage optimizes the segmentation thresholds followed by the pixel grey values431

using the Nelder-Mead simplex algorithm [24].432

For the numerical examples, the Simultaneous Iterative Reconstruction Technique433

(SIRT) was used for the initial reconstruction with 500 iterations and positivity434

constraints applied at each iteration. A total of 200 iterations were used for DART435

and 100 iterations of SIRT for the edge update phase. At each DART iteration a PDM436

update was computed for the image segmentation.437

4.4.4. FNSR The number of iterations and size of the regularization filter were438

determined following the results of Section 4.2 and Section 4.3. A total of 50 iterations439

was deemed optimal with a regularization filter of 3 × 3 in the case of Phantom 1 and440

5× 5 for all other Phantoms (Figure 3).441
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Figure 8. RMS error and misidentified pixels of the reconstruction methods using a

limited number of projections. (a) Phantom 1. (b) Phantom 2. (c) Phantom 3. (d)

Phantom 4. (e) Phantom 5.

Figure 8 summarizes the RMS error and the percentage of mislabeled pixels as442

a function of projections for all phantoms. The results show that FNSR consistently443

produces more accurate reconstructions than the ART and ART-TV algorithms for all444

projections. In the case of Phantoms 1 and 3 and for 36 projections or more FNSR445

routinely outperforms DART. Table 1 provides an overview of the average ranking of446

the various algorithms relative to one another as a function of the number of projections.447

For 12 or more projections FNSR is ranked either 1st or 2nd within the algorithms tested448

and falling to 3rd for 9 projections. These results suggest that FNSR required at least449

12 projections or more in order to obtain an accurate reconstruction of the object.450
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Table 1. Rankings of the RMS and mislabeled pixels of the reconstructions using a

limited number of projections averaged over all phantoms. The final column overall

ranking of the reconstruction method. A score of 1 has the lowest RMS error/number

of mislabeled pixels and 4 the highest.

RMS ranking

Method 9 Projections 12 Projections 18 Projections 36 Projections 180 Projections Average

ART 4 4 4 4 4 4

ART-TV 1 3 3 1 3 2

DART 2 2 1 3 2 3

FNSR 3 1 2 2 1 1

Mislabeled pixel ranking

Method 9 Projections 12 Projections 18 Projections 36 Projections 180 Projections Average

ART 4 4 4 4 4 4

ART-TV 1 3 3 1 3 3

DART 2 1 1 3 2 1

FNSR 3 1 2 1 1 2

Examples of reconstructions as a function of the number of projections are seen451

in Figure 9. The examples clearly show that the FNSR and DART reconstructions452

produce similar results for Phantoms 1 and 2 with significantly less smearing than seen453

in ART and ART-TV methods. In Phantom 4 some of the image details, particularly454

the ellipsoid shape hole at the center of the image has been overly smoothed by the455

regularizing filter. This smoothing may also bee seen in the rounding of some of the456

edges of Phantom 5. These images reiterate the importance of the trade off between457

iteration number and filter size.458

Figure 10 compares the run time of each algorithm as a function of the number459

of projections for Phantom 3. All four algorithms scale approximately linearly as the460

number of projections increase. In the case of the ART methods the run times increase461

as a function of algorithm complexity. The run time of DART is significantly affected462

by the PDM based segmentation with each iteration spending the majority of time in463

Nelder-Mead simplex optimization [24]. FNSR is at least an order of magnitude faster464

than the other methods with the 180 projection reconstruction having a similar run465

time to an ART reconstruction with 9 projections.466

The main deviation between FNSR and DART occurs at 12 projections or fewer467

(Figure 8 and Table 1). However, the reduction in run time of more than an order468

of magnitude allows the FNSR method to allow for additional projection data to be469

acquired without compromising processing speed, whilst improving the reconstruction470

quality. Relative to DART and ART-TV based methods FNSR produces equivalent or471

better quality reconstructions with a significantly reduced processing time.472
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9 Projections 12 Projections 18 Projections 36 Projections 180 Projections

ART

ART-TV

DART

FNSR

Phantoms

Figure 9. Comparison of reconstructions using a limited number of projections

(columns) for ART (row 2), ART-TV (row 3), DART (row 4) and FNSR (row 5)

4.5. Convergence properties473

The convergence behaviour of iterative methods is important to understand in order474

to assess the quality and computational stability of the method. FNSR is a heuristic475

reconstruction algorithm so a formal proof about the convergence conditions of the476

algorithm cannot be provided. Thus far the numerical experiments have shown that477

FNSR can accurately reconstruct a variety of phantoms with varying number of478

projections (Section 4.4) but the result is dependent on the number of projections479

(Section 4.2) and filter size (Section 4.3).480
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Figure 11. RMS error and mislabeled pixels of FNSR as a function of iteration using

a limited number of projections. (a) Phantom 1. (b) Phantom 2. (c) Phantom 3. (d)

Phantom 4. (e) Phantom 5.

The convergence properties of FNSR were tested using Phantoms 1–5 by comparing481

the RMS error and the number of mislabeled pixels as a function of iteration number for482

a varying number of projections. A total of 50 iterations were used and a 3×3 size median483

filter used for Phantom 1 and 5×5 filter for all other phantoms. As shown in Figure484

11 FNSR generally displays smooth convergence for RMS error and mislabeled pixels485

although absolute convergence cannot be guaranteed. In all cases the RMS error and486

number of mislabeled pixels slightly increased at the final iterations as the binarisation487

sequence is completed. This slight increase is attributed to unlabeled pixels on the edge488

of the object taking definitive values.489

The iteration history of mislabeled pixels for Fig 11 (d) displays a significant490

deviation from other convergence histories. This deviation can be attributed to the491

use of the incorrect number of iterations and filter size for that particular phantom. In492

this particular example the optimum number of iterations are 28 considering mislabeled493

pixels and 33 for RMS error. The results of the incorrect number of iterations and494

filter size can be seen in Figure 9 where the central ellipsoid hole is partially filled and495

image edges have been overly smoothed. This example reiterates the importance of the496
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number of iterations in controlling the convergence of the reconstruction.497

In the case of 180 projections we can see that the convergence history is flat with498

some deviation at the first and last iteration associated with the binarisation process499

(Figure 11). This type of behavior is not unexpected since there is sufficient data500

available to populate the 2D image k-space with the final result being effectively a501

binarised filtered back projection of the data.502

5. Experimental Validation503

Experimental X-ray CT data were acquired using a collimated 140 kV, 225 µA source504

with a 4 mm copper filter and recorded on a linear array of 2048, 0.415mm long pixels505

with exposure times of 1s [39]. A total of 5000 projections with an even angular sampling506

of 0.72◦ through 360◦ were acquired. Using all of 5000 projections, a tomographic slice507

of the turbine blade was obtained using the industry standard FDK method, which was508

post processed to remove any beam hardening artefacts and segmented [39]. This image509

will be used as a reference to compare the FNSR reconstructions against.510

Prior to applying FNSR the fan beam data were preprocessed to remove any beam511

hardening using an empirically defined amplitude correction curve [39]. The current512

implementation of the FNSR is applicable to parallel ray datasets and as such the513

projection data were resampled to generate a limited projection parallel ray datasets.514

The projections correspond to an evenly sampled dataset from 0◦ to 180◦ with the515

number of projections the same as that used in the previous numerical examples (9,516

12, 18, 36 and 180). The fan beam data were subsampled to the desired number517

of projections and rebinned to generate a parallel ray dataset [3]. In the process of518

rebinning only data which correspond to the desired projection angles are retained519

which leads to an uneven sampling of the detector and subsequently the introduction520

of interpolation errors. We note that the NUFFT has been successfully and accurately521

applied to the transformation of fan to parallel beam data [29, 30] and could readily522

applied instead of rebining and interpolation.523

For the experimental reconstructions a total of 10 iterations was selected based524

on the results of the iterations test (Section 4.2) and a 3×3 regularization filter was525

used. Figure 12 shows the reconstruction of the experimental turbine blade dataset.526

It can clearly be seen that FNSR produces accurate images up to 18 projections,527

which is similar to results obtained by Jones and Huthwaite [39], who investigated528

the performance of different ART and TV methods for different industrial CT datasets.529

The RMS error and number of mislabeled pixels in the experimental data (Figure 13)530

are slightly higher than those observed for the numerical experiments on Phantom 1531

using FNSR (Figure 8). For 18 or more projections the errors in the experimental532

reconstructions are comparable with those observed by the ART based reconstruction533

of numerical data (Figure 8). When fewer that 18 projections are used, the FNSR534

experimental based reconstruction and errors significantly deviate from those observed535

in the numerical examples.536
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Figure 12. FNSR reconstruction of experimental turbine blade data as a function of

the number of parallel projections.
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Figure 13. RMS and misidentified pixels between the reference image and FNSR as

a function of the number of parallel projections.

The quality of the FNSR results are dependent on the number of iterations and the537

regularization filter, both of which are affected by noise. Any noise in the projections538

will introduce additional high frequencies into the image k-space thus degrading the539

image. To alleviate this high frequency noise either additional preprocessing of the540

projections are necessary, or an increase in the size of the FNSR regularization filter,541

which will limit the method to accurately reconstruct the small features and object542

edges. Additionally, beam hardening in the projection data can also limit FNSR and543

other binary reconstruction methods in the production of accurate images.544

The number of iterations and the size of the smoothing filter will vary depending545

on the specific type of image regularisation used (Figure 1), the imaged object and the546

SNR. In an environment where similar objects are to be imaged e.g., on a production547

line the parameters would only need to be adjusted once. Based on the presented548

examples where a binary regularisation approach was used (Sections 4.2 and 4.3) we549

suggest setting the default reconstruction parameters to fewer than 50 iterations with a550

median filter of 3×3 or 5×5 pixels.551

6. Conclusions552

We have presented a fast and accurate iterative reconstruction algorithm for X-ray553

CT using a limited number of projections called Fourier Null Space Regularization554

(FNSR). The method uses an innovative approach to regularize the reconstruction and555
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compensate for any missing projections by explicitly updating the image null space556

with values derived from a filtered image from the previous iteration. The speed of the557

method is achieved by directly applying the Fourier Slice Theorem using the NUFFT558

to compute the frequency spectrum of the projection data at their exact positions in559

the corresponding image k-space. Furthermore, the FNSR algorithm permits the use560

of any image regularization allowing both binary and non-binary x-ray images to be561

recovered. In line with many industrial X-ray CT applications we apply FNSR to562

binary tomographic reconstructions where a binary steering regularization method is563

used to drive the solution towards a discrete image.564

The comparison of the reconstruction algorithms tested demonstrated that the565

FNSR method outperformed ART for all projections and produces comparable or566

better results to DART for 12 or more projections. The numerical experiments also567

highlight the significant reduction in computational time of more than an order of568

magnitude achieved by FNSR, relative to the other methods. The significant reduction569

in the computational processing time achieved by FNSR would permit more data to570

be acquired thus improving reconstruction quality without compromising acquisition or571

processing speeds.572

The numerical experiments highlight the key role the number of iterations have in573

the accuracy of the reconstruction; too few and the reconstruction contains smearing574

artefacts from the lack of projections, whilst too many leads to fine ‘noise’ associated575

with the mislabeling of pixels close to the final segmentation threshold. The findings576

of the iteration test suggest that the number of iterations should be as low as possible,577

typically less than 50 and an additional regularizing filter should be included at the end578

of each iteration. A simple median filter with a window size of 3×3 or 5×5 was found to579

produce the best result in removing the noise associated with pixel mislabeling whilst580

preserving the edge and internal features of the object. Improvements to the overall581

FNSR algorithm could be made to the binarisation process by using spatially varying582

thresholding e.g., [40] and a more advanced filtering operation e.g., [41].583

FNSR was validated using an industrial X-ray CT dataset of a turbine blade.584

The data were acquired in a fan beam configuration and resampled to generate a585

series of evenly spaces parallel ray datasetsfrom 0◦ to 180◦. FNSR produced accurate586

reconstructions for 18 or more projections with error estimates which are comparable to587

the numerical examples, confirming the applicability of the algorithm in practice. Future588

improvement for the practical application of the algorithm would be the extension of589

the method to non parallel ray acquisition geometries e.g., fan beam.590
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