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Abstract

This paper concerns numerical comparisons between five mathematical models capable of modelling the stochastic behaviour of
neutrons in low extraneous (extrinsic or fixed) neutron source applications. These models include analog Monte-Carlo (AMC),
forward probability balance equations (FPB), generating function form of the forward probability balance equations (FGF), gener-
ating function form of the backward probability balance equations (Pál-Bell), and an Itô calculus model using both an explicit and
implicit Euler-Maruyama discretization scheme. Results such as the survival probability, extinction probability, neutron population
mean and standard deviation, and neutron population cumulative distribution function have all been compared. The least computa-
tionally demanding mathematical model has been found to be the use of the Pál-Bell equations which on average take four orders
of magnitude less time to compute than the other methods in this study. The accuracy of the AMC and FPB models have been
found to be strongly linked to the computational efficiency of the models. The computational efficiency of the models decrease
significantly as the maximum allowable neutron population is approached. The Itô calculus methods, utilising explicit and implicit
Euler-Maruyama discretization schemes, have been found to be unsuitable for modelling very low neutron populations. However,
improved results, using the Itô calculus methods, have been achieved for systems containing a greater number of neutrons.
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1. Introduction

The deterministic neutron kinetics equations are the subject of
many studies where the neutron population is large enough such
that the fluctuations of individual neutron chains do not sig-
nificantly contribute to the average behaviour of the system
[1]. While very powerful when modelling large neutron pop-
ulations, there exist applications where deterministic analyses
are insufficient. Stochastic analyses are needed when the neu-
tron population being modelled is low enough that individual
neutron chains significantly impact the results; namely low neu-
tron source sub-critical systems. A comprehensive review of
stochastic neutron transport theory is provided by Pázsit and
Pál [2]. There is a number of industrially important low neu-
tron source problems such as nuclear waste assay, non-invasive
or passive nuclear security interrogation for special nuclear ma-
terials (SNMs), and nuclear power plant start-up (NPP) analysis
and also sub-critical experimental nuclear reactor physics mea-
surements on nuclear reactor cores [3].

The accurate assay of small quantities of various fissile material
samples are required for the safe operation of the nuclear fuel
cycle [4]. Low-level process waste, leached fuel hulls, spent
fuel rods, and separation columns are all examples in which
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spatial identification of their fissile material is required. As
a consequence of the weak radiation signature of these small
samples of radioactive materials it is important to utilise stochas-
tic radiation transport methods for their assay.

Stochastic radiation transport methods can also be utilised in
passive nuclear security interrogation [5, 6]. A 2014 report
from the incident trafficking database, maintained by the Inter-
national Atomic Energy Agency (IAEA), details a list of 2477
incidents involving the improper possession and movement of
nuclear material and radioactive sources between the years 1993
and 2013 [7]. On this matter, two forms of nuclear security in-
terrogation exist: active detection and passive detection, both
of which aim to distinguish the nuclear signature of incoming
materials from background radiation [7]. One form of active
detection consists of inducing fission reactions with either fast
neutrons or high energy photon sources and measuring the sig-
nature of the emitted radiation [8]. Passive detection simply
consists of measuring the natural radiation emissions of the
sample. While active detection produces a stronger radiation
signal, and is easier to distinguish from background radiation,
it is also more hazardous for the surrounding area. Passive de-
tection is more favourable for safety reasons but is technically
challenging. Passive detection needs to distinguish nuclear ma-
terial from the radiation field of primordial isotopes U235, U238,
and Th232 all of which emit alpha and gamma radiation either
directly or through the decay of their daughter products. The
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background radiation is also contributed to by the spontaneous
fission of U238. Cosmic rays also contribute to this natural back-
ground radiation field. Fast protons in the upper atmosphere
undergo a spallation type reaction with the atmosphere and gen-
erate fast neutrons. Once thermalized by elastic collisions with
H1, many cosmogenic radionuclides are produced, for example
Be7, which emits a gamma-ray signature. High fidelity stochas-
tic radiation transport methods are required for this application
such as the backward master equation (Pál-Bell equations) [6].

During nuclear power plant (NPP) start-up, the neutron pop-
ulation behaves stochastically and may deviate from the time
averaged ensemble of the system [9]. Once the neutron pop-
ulation has risen substantially, the mean population becomes
governed by deterministic neutron kinetic equations. Whether
or not the neutron population is appropriately approximated by
these equations depends on the nature (strong or weak) of the
primary neutron start-up sources present [9]. The distinction
between such sources has been discussed in depth by Hansen
[9] who shows that a low extraneous neutron source, such that
stochastic effects are prevalent, obey the Hansen criterion:

ΛS <<
〈ν(ν − 1)〉

2〈ν〉
≈ 1 (1)

where Λ is the neutron generation time, S is the source strength,
and ν is the mean number of neutrons produced per fission. Pri-
mary extraneous neutron start-up sources, such as Cf252 [10],
are positioned in nuclear reactor cores to provide a reliable neu-
tron detector count rate [11, 12]. If there is a low neutron flux,
the count rate in the detector will be low and the control rods
may be withdrawn to raise reactivity and thus the neutron flux.
However, as the control rods are being withdrawn and reactiv-
ity further increased, the neutron flux may suddenly become
very large and the doubling time very small [11, 12]. It is thus
common practice to start-up a nuclear reactor in the presence of
a sufficiently strong primary neutron start-up source such that
the probability of the neutron population exceeding some pre-
determined fiducial level is appreciably small [11, 12]. How-
ever, due economic considerations, and for reducing the radia-
tion dose to nuclear workers, through the handling of neutron
sources, the ability to safely start-up a nuclear reactor without
the use of such neutron sources has become the focus of var-
ious studies [11, 12, 13]. In the presence of a weak source,
there exists a period of time during nuclear reactor start-up in
which the neutron and delayed neutron precursor populations
are low and modelling their statistical fluctuations is vitally im-
portant [14]. A significant amount of research work has been
conducted on NPP start-up since the inception of nuclear power
[15, 16, 17]. However, the focus of this study is the comparison
in accuracy and computational efficiency of different mathemat-
ical methods capable of modelling the stochastic nature preva-
lent in general low neutron source systems. There is a wide
variety of mathematical approaches to analysing low neutron
source sub-critical and super-critical systems such as the analog
Monte Carlo (AMC) method, forward probability balance equa-
tions (FPB), generating function form of the forward probabil-

ity balance equations (FGF), generating function form of the
backward probability balance equations (Pál-Bell), and Itô cal-
culus. The aim of this paper is to assess the accuracy and com-
putational efficiency of the various approaches using a variety
of verification test cases. Currently there is no clearly agreed
upon best approach to modelling such low neutron source sys-
tems. Therefore, the purpose of this study is, for the first time,
to objectively compare such mathematical and computational
models and provide numerical evidence for the accuracy and
computational efficiency of the models in various low neutron
source systems. In addition the validity and numerical limi-
tations of using each mathematical and computational model
will be discussed. Particular attention is focused on the Itô cal-
culus approach and its numerical accuracy and computational
efficiency for low neutron source sub-critical and super-critical
systems.

The AMC method has been utilised in many studies for mod-
elling low neutron populations in nuclear systems. In this method,
individual neutrons and delayed neutron precursors are dealt
with as discrete entities with each neutronic event simulated
through the generation of a pseudo random number. Previous
research work includes calculating the Probability of Initiation
(PoI) [1, 18, 19]; size distribution of the neutron population
along with the Probability of Extinction (PoE) in low neutron
source systems [1, 18]; calculating keff, energy release, peak
power [1]; and the probability distribution of the burst waiting
time of neutron initiation [20]. The stochastic behaviour of low
neutron population systems lends itself to such a mathemati-
cal modelling technique. However, as the neutron population
increases, neutron kinetics and dynamics become more deter-
ministic and the benefits of using the AMC method are reduced
due to excessive computational requirements and the existence
of computationally more efficient deterministic methods such
as the point neutron kinetics approximation, whereby the AMC
method is used during the stochastic regime and automatically
switched to the point neutron kinetic approximation within the
deterministic regime [1, 18].

Instead of modelling individual particle histories using the AMC
method there also exists analytical approaches to stochastic neu-
tron kinetics which are discussed by Hansen [9] and Bell [16,
17]. Particular attention was given to the probability distribu-
tion of obtaining different numbers of neutrons and the conse-
quence of deviating from the deterministic approximation due
to stochastic transients. This analytic approach, namely the
FPB, requires the solution of an infinite set of ordinary differen-
tial equations (ODEs) to conserve the probability of the neutron
population. This infinite set of ODEs may be reduced to a finite
set of partial differential equations (PDEs) with the use of gen-
erating functions and will be referred to as FGF.

The Pál-Bell equations (PB) are a finite set of first order, cou-
pled, non-linear ODEs [21, 22, 23]. Previous research work has
investigated a wide variety of quantities of interest (QoI) using
the Pal-Bell equations such as: the probability density function
(PDF) of the neutron population, the moments of the PDF and
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also the maturity time and source multiplier for low neutron
source startup problems [5, 6, 11, 12, 13].

The final mathematical model to be compared in this study is
an Itô calculus approach. Stochastic fluctuations can be in-
troduced into the deterministic neutron kinetics equations by
adding numerically generated noise into the terms of the equa-
tions. This allows the resultant equations to model stochastic
phenomena [24]. Previously, Itô calculus approaches have been
used to study a linear and discontinuous introduction of reactiv-
ity during nuclear reactor start-up [25], the random behaviour
of neutron density and precursor concentration using explicit fi-
nite difference methods [26, 27], and implicit finite difference
methods [28].

In this study we set out the relevant equations for each math-
ematical model and discuss the numerical comparisons made
between the different approaches. The nuclear and neutron ki-
netics data used in this study is consistent between all mod-
els and is shown in Appendix A. Each distinct mathematical
and computational model has been implemented within a mod-
ern fortran code and used to produce various numerical results
and quantities of interest (QoI) depending on their capabilities.
These numerical results and QoI are the following:

1. Survival Probability: The probability that there is at least
one neutron in the system as a function of time. The ini-
tial condition is a starting neutron population of one and
no external neutron source is present.

2. Extinction Probability: The probability that there are zero
neutrons in the system as a function of time. The initial
condition is a starting neutron population of zero and an
external neutron source is present.

3. Neutron Population Mean: The mean neutron population
as a function of time. The initial condition is a starting
neutron population of zero and an external neutron source
is present.

4. Neutron Population Standard Deviation: The standard
deviation of the neutron population as a function of time.
The initial condition is a starting neutron population of
zero and an external neutron source is present.

5. Cumulative Distribution Function: The cumulative distri-
bution function of the neutron population at a particular
moment in time. The initial condition is a starting neu-
tron population of zero and an external neutron source is
present.

The survival probability, PS , and extinction probability, PE , are
results that have been computed in many studies [13, 18, 29].
It should be noted that these probabilities are typically defined
such that PS = 1 − PE . However, we have defined them slightly
differently in this study in order to offer an extra method of
comparison between the different models.

The ability of a mathematical model to simulate the stochas-
tic behaviour of neutrons in practical low extraneous neutron
source applications is greatly linked to its performance in com-
puting the results detailed above. The survival and extinction

probability offer a fundamental comparison of the models. How-
ever, particular attention will be given to the accuracy and com-
putational efficiency of each model’s ability to compute the
mean, standard deviation, and cumulative distribution function.
These three figures are fundamental for low source applications
[1, 11, 12].

2. Mathematical Development

2.1. The Analog Monte-Carlo (AMC) Approach

In this model, a number of realisations are computed represent-
ing different potential system histories. In each, the number
of prompt neutrons and the number of delayed neutron precur-
sors in their respective groups are tracked as a function of time.
Time is advanced in a number of small increments, with a prob-
ability of different neutronic events occurring in that interval.
Each neutronic event then contributes in changing the popu-
lations at the next time step. The behaviour of the particular
system being modelled can then be simulated from performing
many realisations and the analysis of the population history of
this ensemble of realisations generates extra statistical results.

The implementation of the AMC model closely follows the re-
search work of Cooling et al. [1]. However, a simplification is
made to the possible interactions of the neutrons within the sys-
tem being analysed. The systems under study are assumed to be
infinite in extent, and as such neutron capture and fission are the
only two interactions considered, with the probability of a neu-
tron escaping the system equal to zero. The total macroscopic
neutron cross-section is given by:

Σt = Σa + Σs (2)

Σa = Σc + Σf (3)

where Σa is the macroscopic absorption cross-section, Σc is the
macroscopic capture cross-section, Σf is the macroscopic fis-
sion cross-section, and Σs is the macroscopic scattering cross-
section. The manipulation of these cross-sections facilitate changes
in reactivity.

The probability of a neutron interaction with the atomic nuclei
of the host medium is given by:

pc =

∑
c∑
t

(4)

p f =

∑
f∑
t

(5)

where pc is the probability a neutron is captured by a non-fission
process and p f is the probability that a neutron causes fission.
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Table 1: The probabilities of each possible neutron event and the effect each
has on the system during the time dt.

Event Probability Effect on population
Prompt Group m

Source emission S dt +1 /

Fission producing ν prompt neutrons p′f pν(1 − νβ) +ν − 1 /

Fission producing ν prompt neutrons
and one delayed precursor of group m p′f pννβm +ν − 1 +1

Precursor decay of group m λmdt +1 −1
Neutron capture pc

Λ
dt −1 /

No event 1 − pc+p f

Λ
dt / /

The probability that these interactions occur during a small time
interval dt is then:

p′c =
pc

l
dt (6)

p′f =
p f

l
dt (7)

p′surv = 1 −
pc + p f

l
dt (8)

where p′c, p′f , and p′surv are the probabilities of capture, fission,
and no event within small time interval dt respectively, and l is
the mean neutron life time:

l =
1

v
∑

a
(9)

where v is the neutron speed.

For analyses that consider the effect of delayed neutron pre-
cursors, βm is the fraction of neutrons produced by fission via
the delayed neutron precursors belonging to group m, where
β =

∑
m βm and β � 1. The average number of a delayed neutron

precursor from group m being produced given a fission event is
νβm where ν is the average number of neutrons produced in a
fission event.

For each neutron in the system a pseudo random number is
generated, from a uniform distribution, between zero and one,
which determines if the neutron either survives the time-step,
causes fission, or is captured. If a fission event does occur, the
number of prompt neutrons emitted is ν with a probability pν. is
The same process is performed for each neutron source with a
random number determining whether the source releases a neu-
tron into the system. A random number is also generated for
each delayed neutron precursor to determine whether it decays
adding a neutron to the state of the system at time t + dt or sur-
vives the time-step and adds a precursor to the state at time t+dt.
These fission events are summarised in Table 1.

Once the interactions of all prompt neutrons, delayed neutron
precursors, and sources have been simulated, the process is re-
peated at the new time-step. Following the research work of

Cooling et al. [1], the increment in time, dt, is chosen such
that the probability of a single neutron interacting in multiple
events, p′multi, is sufficiently small (set at 10−4). The value of dt
varies with the state of the system via the following criteria.
Firstly, if the system contains prompt neutrons at time t:

p′multi ≥ (1 − p′surv)
2. (10)

If delayed neutron precursors are present in the system:

p′multi ≥ (p′decay,m)2 (11)

where p′decay,m = λmdt is the probability that a delayed neutron
precursor of group m emits a neutron. If a neutron source is
present in the system:

p′multi ≥ (p′s)
2 (12)

where p′s = S dt is the probability that the neutron source with
strength S (n/s) emits a neutron. The time-step dt is chosen such
that it is the largest possible while adhering to all three criteria.
The different results are readily extracted from the AMC model
as it simulates discrete entities.

The implementation described above results in a reduction in
the computing power required for the simulations. However,
setting a value of p′multi is an approximation and it is possible
to avoid this discretization approximation. A pseudo random
number can be generated to determine the life-time of each par-
ticle in the system as shown by Sutton [18] and Gang [20] which
avoids the use of the approximation above. However, the AMC
model described in this study is simpler to implement and is
capable of producing very accurate results.

2.2. The Forward Probability Balance Equation

Bell [16] formulated an expression for the probability distribu-
tion function of the neutron population by accounting for all
possible neutron events that can occur in the domain. Bell’s ex-
pression facilitated multiple neutron sources. Here we replicate
Bell’s expression while only considering one neutron source
and with a common notation that is used throughout this study:

P(n, ~c, t + dt) =

(
1 −

ndt
l
−

M∑
m=1

cm

τm
dt − S dt

)
P(n, ~c, t)

+

νmax∑
ν=0

(n − ν + 1)
pν,0(t)dt

l
P(n − ν + 1, ~c, t)

+

νmax∑
ν=0

M∑
m=1

(n − ν + 1)
pν,m(t)dt

l
P(n − ν + 1, ~c − ~δm, t)

+

M∑
m=1

cm + 1
τm

dtP(n − 1, ~c + ~δm, t)

+ S dtP(n − 1, ~c, t)

(13)
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where P(n, ~c, t) is the probability that there are n prompt neu-
trons and ~c delayed neutron precursors in the system at time
t, ν is the number of neutrons produced per fission, pν,m is the
probability of ν prompt neutrons and a delayed neutron precur-
sor of group m being produced, and τm = 1/λm is the inverse of
the decay constant of precursor group m. (Eq.13) states that the
probability of having n neutrons and c precursors at time t + dt
is equal to the summation of the following terms:

1. No event - The probability that no neutron events occur
multiplied by the probability that there are n neutrons and
~c precursors at time t;

2. Fission without precursor - The sum over ν of the proba-
bility that a fission event occurs producing ν prompt neu-
trons and zero delayed precursors multiplied by the prob-
ability that there are n− ν+ 1 neutrons and ~c precursors at
time t;

3. Fission with precursor - The sum over ν and m of the
probability that a fission event occurs producing ν prompt
neutrons and one delayed precursor of group m multiplied
by the probability that there are n−ν+1 neutrons and ~c− ~δm

delayed precursors of group m at time t;
4. Precursor decay - The sum over m of the probability that

the decay of a precursor group m occurs multiplied by the
probability that there are n− 1 prompt neutrons and ~c + ~δm

delayed precursors of group m at time t;
5. Source emission - The probability that a neutron source

decays multiplied by the probability that there are n − 1
neutrons in the system at time t.

By subtracting P(n, ~c, t) from both sides and dividing by dt, the
ODE can be formed [16]:

dP(n, ~c, t)
dt

= −

(n
l

)
P(n, ~c, t) +

νmax∑
ν=0

(n − ν + 1)
pν,0(t)

l
P(n − ν + 1, ~c, t)

+

νmax∑
ν=0

M∑
m=1

(n − ν + 1)
pν,m(t)

l
P(n − ν + 1, ~c − ~δm, t)

+

M∑
m=1

[( cm + 1
τm

)
P(n − 1, ~c + ~δm, t) −

( cm

τm

)
P(n, ~c, t)

]
+ S (t)

(
P(n − 1, ~c, t) − P(n, ~c, t)

)
.

(14)

As the method calculates the probability of distinct numbers of
neutrons, the simulation can only model the probability of there
being a number of neutrons and precursors in a finite range:

n = (0, 1, 2, ..., nmax)

cm = (0, 1, 2, ..., cm,max) for m = 1, 2, 3, ...,M.

(Eq.14) computes the time differential of the probability that
there are (n,~c) neutrons at time t. The implementation of this
model requires the initial populations of the prompt neutrons
and delayed neutron precursors to be in the form of a probabil-
ity distribution. From these initial conditions, it is then possible

to populate the above terms and calculate the gradient function
for all (n,~c) combinations in the domain. With the calculated
gradient functions, the probabilities that there are n neutrons
and ~c precursors at the subsequent time-step t + dt is calculated,
and the cycle is repeated across the time domain t = (0, tend). It
is then straight forward to extract the required results.

It is important to note that this method requires approximations
for calculating the probability that there are nmax prompt neu-
trons or cm,max delayed neutron precursors in the system at any
particular moment in time. This is due to the fact that the prob-
ability P(n, ~c, t + dt) of having n prompt neutrons and ~c delayed
precursors in the system at time t + dt, is a function of the prob-
ability P(n + 1, ~c, t) and P(n, ~c + ~δm, t). A similar relationship is
also true for the delayed neutron precursors. As such, (Eq. 14)
was modified to account for a maximum permissible neutron
and precursor population:

dP(n, ~c, t)
dt

= −

(n
l

)
P(n, ~c, t)

+

νmax∑
ν=0

(n − ν + 1)
pν,0(t)

l
P(n − ν + 1, ~c, t)(1 − δn,nmaxδν,0)

+

νmax∑
ν=0

M∑
m=1

(n − ν + 1)
pν,m(t)

l
P(n − ν + 1, ~c − ~δm, t)(1 − δn,nmaxδν,0)

+

M∑
m=1

[( cm + 1
τm

)
P(n − 1, ~c + ~δm, t)(1 − δcm ,cm,max ) −

( cm

τm

)
P(n, ~c, t)

]
+ S (t)

(
P(n − 1, ~c, t) − P(n, ~c, t)

)
(15)

The terms in (Eq. 15) are not included in the summations if they
correspond to a neutron or precursor population that exceed the
limits nmax and cm,max respectively. The exclusive of terms that
exceed nmax and cm,max is necessary as a termination criterion.
The limits, nmax and cm,max were set as user-defined variables in
order to reduce the computation time of specific systems being
analysed. Consequently, the accuracy of the method decreases
as the distribution of the probabilities shift towards the maxi-
mum allowable neutron populations. An example of this de-
crease in accuracy is shown in Appendix B.

The model provides a very accurate solution to the neutron pop-
ulation probability distribution function given that the proba-
bility that the population is equal to the maximum allowable
neutron population is low. The accuracy and computational ef-
ficiency of the model will be compared to the other models.

2.3. The Generating Function Form of the Forward Probability
Balance Equations

Bell [16] continued the forward probability balance model by
introducing the probability generating function F(x, ~y, t) where:

F(x, ~y, t) =

∞∑
n=0

∞∑
c1=0

· · ·

∞∑
cM=0

xnyc1
1 · · · y

cM
M P(n, ~c, t). (16)
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It is possible to then derive a PDE for F by multiplying both
sides of (Eq.14) by xnyc1

1 · · · y
cM
M and summing over n, c1, · · ·, cM

[30]:

∂F(x, ~y, t)
∂t

= g(x, ~y, t)
∂F(x, ~y, t)

∂x
+

M∑
m=1

λm(x − ym)
∂F(x, ~y, t)
∂ym

+ S (x − 1)F(x, ~y, t).

(17)

(Eq. 17) can, after appropriate differentiation with respect to
x and ym, be evaluated at x = ym = 1 to give moments of the
probability distribution. (Eqs. 18-19) presented below are the
first moment equations of the FGF model:

dn̄(t)
dt

= [ν̄(1 − β)λ f (t) − λa]n̄(t) +

M∑
m=1

λmc̄m(t) + S (18)

dc̄m(t)
dt

= −λmc̄m(t) + ν̄βmλ f (t)n̄(t) (19)

where, n̄(t) is the mean neutron population, c̄m(t) is the mean
population for delayed neutron precursor group m, λ f = vΣ f ,
and λa = vΣa. The standard deviation in the neutron population
can then be calculated by:

σ2
N(t) = µNN(t) + n̄(t) − n̄2(t) (20)

where,

dµNN(t)
dt

= 2S n̄(t) + λ f (t)χ̂2n̄(t)

+ 2
M∑

m=1

λmµNm(t) + 2
[
ν̄(1 − β)λ f (t) − λa(t)

]
µNN(t)

(21)

dµNk(t)
dt

= S c̄k(t) +

M∑
m=1

λmµNk(t) − λkµNk(t)

+ ν̄βkλ f (t)µNN(t) + [ν̄(1 − β)λ f (t) − λa(t)]µNk(t)

+ ν̄(1 − β)ν̄βkλ f (t)n̄(t)

(22)

dµmk(t)
dt

= −(λm + λk)µmk(t) + ν̄λ f (t) (βkµNm + βmµNk)

+ ν̄βmν̄βkλ f (t)n̄(t)(1 − δmk)
(23)

The derivation of these equations and definitions of each of the
terms are shown in Appendix C. The FGF model will be used to
generate the mean and standard deviation and serve as a verifi-
cation tool for the other models in this study. The survival prob-
ability, extinction probability, and CDF will not be computed
with this method. This is because there are complex numerical
difficulties associated with the method which are explained in
Appendix D.

However, it can be shown that distributions for highly multi-
plicative systems tend towards a gamma distribution. There-
fore, it is possible to approximate the neutron CDF with the
mean and standard deviation computed by the FGF model by
using the gamma distribution approximation E.1. Williams and
Eaton [11, 12] have shown that the gamma distribution is very
accurate over the most prominent part of the distribution while
the tails of the distribution differ significantly from the true so-
lution. However, they demonstrated that the tails of the distribu-
tion are the most important region of the curve for low neutron
source calculations such as nuclear reactor start-up. The use
of the gamma approximation will be illustrated in Appendix E
to demonstrate its numerical accuracy and computational effi-
ciency.

2.4. The Generating Function Form of the Backward Probabil-
ity Balance Equations

The Pál Bell equation has been used to model low neutron source
problems in many studies [6, 11, 12, 13, 29]. A full mathe-
matical derivation of the Pál-Bell equation is not presented in
this paper. The Pál-Bell equation is rigorously derived and ex-
plained elsewhere within the literature [21, 22, 23]. However,
the spatially-independent, mono-energetic, Pál Bell equation,
implemented in this study, is presented. As only one neutron
emission per extraneous neutron source disintegration has been
considered in the study, the complexity of the Pál-Bell equation
can be further reduced. The Pál Bell equation contains two sets
of generating functions, the first in the absence of an extrane-
ous neutron source G̃(z, t|s) and the second with an extraneous
neutron source G̃S (z, t|s).

(Eqs. 24-29) describe the generating functions, G̃(z, t|s), G̃dm(z, t|s),
and their first and second derivatives with respect to z. These
generating functions correspond to the neutron population dis-
tribution at time t given the injection at earlier time s of a single
neutron (Eqs. 24-26) or a single delayed neutron precursor in
group m (Eqs. 27-29):

−
1
v
∂G̃(z, t|s)

∂s
= −Σa(s)G̃ + Σf(s) − Σf(s)H(G̃, G̃dm) (24)

−
1
v
∂G̃′(z, t|s)

∂s
= −Σa(s)G̃′ − Σf(s)H′(G̃, G̃dm) (25)

−
1
v
∂G̃′′(z, t|s)

∂s
= −Σa(s)G̃′′ − Σf(s)H′′(G̃, G̃dm) (26)

−
∂G̃dm

∂s
= λi(G̃ − G̃dm) (27)

−
∂G̃′dm

∂s
= λi(G̃′ − G̃′dm) (28)
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−
∂G̃′′dm

∂s
= λi(G̃′′ − G̃′′dm) (29)

where:

H(G̃, G̃dm) =

vmax∑
n=0

(−1)n

n!
χnG̃n

M∏
m=1

(1 − ν̄βmG̃dm) (30)

H′(G̃, G̃dm) = −

vmax∑
n=0

(−1)n

n!
χnG̃n

M∑
m=1

ν̄βmG̃′dm

M∏
k=1,k,m

(1 − ν̄βkG̃dk)

+

vmax∑
n=1

(−1)n

n!
χnnG̃n−1G̃′

M∏
m=1

(1 − ν̄βmG̃dm)

(31)

H′′(G̃, G̃dm) =

vmax∑
n=0

(−1)n

n!
χnG̃n

M∑
m=1

(
ν̄βmG̃′dm

M∑
k=1,k,m

ν̄βkG̃′dk

1 − ν̄βkG̃dk

M∏
k=1,k,m

(1 − ν̄βkG̃dk)
)

−

vmax∑
n=0

(−1)n

n!
χnG̃n

M∑
m=1

(
ν̄βmG̃′′dm

M∏
k=1,k,m

(1 − ν̄βkG̃dk)
)

−

vmax∑
n=1

(−1)n

n!
χn2nG̃n−1G̃′

M∑
m=1

(
ν̄βmG̃′′dm

M∏
k=1,k,m

(1 − ν̄βkG̃dk

)

+

vmax∑
n=1

(−1)n

n!
χnnG̃n−1G̃′′

M∏
m=1

(1 − ν̄βmG̃dm)

+

vmax∑
n=2

(−1)n

n!
χnn(n − 1)G̃n−2G̃′2

M∏
m=1

(1 − ν̄βmG̃dm).

(32)

(Eqs. 33-35) are solved for Gs(z, t|s) and its derivatives with re-
spect to z. This is the generating function related to the neutron
population distribution at time t due to the neutrons released by
the neutron source between time s and time t. This system of
equations are solved backwards in time from s = t to s = 0:

∂Gs(z, t|s)
∂s

= S (s)GsG̃n (33)

∂G′s(z, t|s)
∂s

= S (s)
(
G̃G′s + G̃′Gs

)
(34)

∂G′′s (z, t|s)
∂s

= S (s)
(
G̃G′′s + 2G̃′G′s + G̃′′Gs

)
. (35)

(Eqs. 36-44) describe the final conditions for (Eqs. 24-35).

G̃(z, t|t) = 1 − z (36)

G̃′(z, t|t) = −1 (37)

G̃′′(z, t|t) = 0 (38)

G̃dm(z, t|t) = 0 (39)

G̃′dm(z, t|t) = 0 (40)

G̃′′dm(z, t|t) = 0 (41)

G̃S(z, t|t) = 1 (42)

G̃′S(z, t|t) = 0 (43)

G̃′′S (z, t|t) = 0 (44)

2.4.1. The Extinction Probability and Survival Probability
The extinction probability, PE, can be calculated from the gener-
ating function, Gs(z, t|s). This can be derived from the definition
of the generating function:

Gs(z, t|s) =

∞∑
n=0

znP(n, t|s). (45)

Thus,

Gs(t|s)
∣∣∣∣∣
z=0

= P(0, t|s) = PE(t − s). (46)

As discussed earlier, the definition of the survival probability
in this study is the probability that there is at least one neutron
in the system in the absence of an external neutron source. As
such, the survival probability PS can be calculated viz:

1 − G̃(t|s)
∣∣∣∣∣
z=0

= 1 − P(0, t|s) = PS(t − s). (47)

2.4.2. The Mean and Variance
The mean neutron population, N̄S(t|s), and variance, σ2

S(t|s), can
be calculated from the generating function G′s(z, t|s), and G′′s (z, t|s)
viz:

G̃′s(t|s)
∣∣∣∣∣
z=1

= N̄S(t|s) (48)

G̃′′s (t|s)
∣∣∣∣∣
z=1

= 〈N(N − 1)〉s(t|s) (49)

thus,

σ2
S(t|s) = G̃′′s (t|s)

∣∣∣∣∣
z=1

+ G̃′s(t|s)
∣∣∣∣∣
z=1
− G̃′2s (t|s)

∣∣∣∣∣
z=1

(50)

where N̄S and σS are the mean neutron population and standard
deviation when a neutron source is present.
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2.4.3. The Cumulative Distribution Function
The probability, Q(n∗, t|s), that there are fewer than n∗ neutrons
in the system at time t can be calculated by solving the saddle-
point method [11]:

Q(n∗, t|s) =
1

√
2πσ0

Gs(z0, t|s)
zn∗

0 (1 − z0)
(51)

where

σ0 =
n∗

z2
0

+
1

(1 − z0)2 −

(
G′s(z0, t|s)
Gs(z0, t|s)

)2

+
G′′s (z0, t|s)
Gs(z0, t|s)

(52)

where z0 is given as the root of the equation:

n∗

z0
=

1
(1 − z0)

+
G′s(z0, t|s)
Gs(z0, t|s)

. (53)

The neutron population CDF can be constructed by solving the
generating functions backwards in time while varying the input
0 ≤ z < 1. It is known that the saddle-point method tends to
the wrong limit for n∗ >> N̄S; with the saddle-point method
Q(n∗, t|s) tends to e

√
2π

= 1.08444... instead of tending to 1.0 [31].
However, the saddle-point method has been shown to be very
accurate in the probability range that is relevant for low source
startup calculations, namely 10−5 < Q < 10−8, when the mean
neutron population is very large [11].

2.5. The Itô Calculus Model
Stochastic fluctuations can be introduced into the determinis-
tic neutron kinetics equations by adding numerically generated
noise into the terms of the equations. This allows the resultant
equations to model stochastic phenomena. An Itô calculus ap-
proach can be derived from the deterministic neutron kinetics
equations in the following form [26]:

dn̄(t)
dt

= −
[−ρ(t) + 1 − α

l

]
n̄(t) +

[1 − α − β
l

]
n̄(t) +

M∑
m=1

λmc̄m(t) + S

dc̄m(t)
dt

=
βm

l
n̄(t) − λmc̄m(t)

(54)

where ρ(t) is the reactivity as a function of time, α = Σf/(Σak∞),
and k∞ is the infinite multiplication factor.

2.5.1. Derivation of One-Precursor Group Stochastic Neutron
Point Kinetic Model

Following the method by Ray [26], the derivation of the one de-
layed neutron precursor group stochastic neutron kinetic equa-
tions will be shown and then an arbitrary precursor group model
will be shown. The equations shown below have been written
with the same notation as the other models in this study. The de-
terministic neutron kinetics equations for one delayed neutron
precursor group is given by:

dn̄(t)
dt

= −
[−ρ(t) + 1 − α

l

]
n̄(t) +

[1 − α − β
l

]
n̄(t) + λ1c̄1(t) + S

dc̄1(t)
dt

=
β1

l
n̄(t) − λ1c̄1(t)

(55)

Similar to the FPB method (Eq.13), the Itô calculus approach
for modelling the stochastic behaviour of neutrons can be con-
structed by listing all possible neutronic events. Let:

1. E1 be the first event, representing a neutron capture;
2. E2 the second event, representing a fission event;
3. E3 the third event, representing the transformation of a

delayed neutron precursor to a neutron;
4. E4 the fourth event, representing the emission of a neu-

tron from a neutron source.

The change incurred to the population of neutrons n and delayed
precursor c1 for each event is then:

E1

[
dn
dc1

]
1

=

[
−1
0

]

E2

[
dn
dc1

]
2

=

[
−1 + (1 − β1)ν

β1ν

]

E3

[
dn
dc1

]
3

=

[
1
−1

]

E4

[
dn
dc1

]
4

=

[
1
0

]
where Ek[dn dc1]T

j is the expected change in the neutron and
precursor populations due to event j occurring. The probability
of these four events occurring are:

P(E1) = nvΣcdt

P(E2) = nvΣfdt

P(E3) = c1λ1dt

P(E4) = S dt

where the dn is the change in the neutron population and dc1 is
the change in the precursor population. It should be noted that
these events correspond to individual particle histories and not
the mean populations. As such, the changes occur to the neu-
tron population n and not the mean neutron population n̄.

The mean change in a small time interval dt is then:

E
{[

dn
dc1

]}
=

4∑
j=1

P j

[
dn
dc1

]
j

=

[ ρ−β
l n + λ1c1 + S
β1
l n − λ1c1

]
dt

and the variance in a small time dt is

Var
{[

dn
dc1

]}
=

{[
dn
dc1

] [
dn dc1

]}
−

{
E

([
dn
dc1

])}2

=

4∑
j=1

P j

[
dn
dc1

]
j

[
dn dc1

]
j
= B̂dt

where P j = P(E j) and B̂ is a (2 × 2) matrix containing n, c1,
and S . From the central limit theorem, the mean and variance
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of the neutron population can be related to a standard normal
distribution via the random variate:

{ [
dn
dc1

]
− E

( [
dn
dc1

] )}/√
Var

( [
dn
dc1

] )
(56)

The above result generates the following equation:

[
dn
dc1

]
= E

( [
dn
dc1

] )
+

√
Var

( [
dn
dc1

] ) [
ε1

ε2

]
, where ε1, ε2 ∼ N(0, 1)

(57)

Thus producing:[
n(t + dt)
c1(t + dt)

]
=

[
n(t)
c1(t)

]
+

[ ρ−β
l n + λ1c1
β1
l n − λ1c1

]
dt+

[
S
0

]
dt+ B̂1/2

√
dt

[
ε1

ε2

]
(58)

This is the stochastic point neutron kinetics equations with one
group of delayed neutron precursor groups, which can be ex-
tended to include an arbitrary number of precursor groups and
is shown in the following section.

2.5.2. Multiple Precursor Groups
Following a similar procedure as that shown above the follow-
ing result can be derived:

d~x
dt

= A~x + B(t)~x + ~F(t) + B̂1/2 dW
dt

(59)

where:

~x =



n
c1

c2

...

cM


(60)

A =



−β

l λ1 λ2 · · · λM
β1
l −λ1 0 · · · 0

β2
l 0 −λ2

. . .
...

...
...

. . .
. . . 0

βM
l 0 · · · 0 −λM


(61)

B =



ρ(t)
l 0 0 0 0
0 0 0 · · · 0

0 0 0
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 0


(62)

~F(t) =



S (t)
0
0
...

0


(63)

B̂ =



ζ a1 a2 · · · aM

a1 r1 b2,3 · · · b2,M+1

a2 b3,2 r2
. . .

...
...

...
. . .

. . . bM,M+1

aM bM+1,2 · · · bM+1,M rM


(64)

where

ζ = γn +

M∑
m=1

λmcm + S (65)

γ =
−1 − ρ + 2β + (1 − β)2ν

l
(66)

am =
βm

l
[−1 + (1 − β)ν]n − λmcm (67)

bm,k =
βm−1βk−1ν

l
n (68)

and

rm =
β2

mν

l
n + λmcm (69)

The Wiener process term, dW i, is the stochastic term of (Eq.59)
making the expression a SDE rather than an ODE. Applying the
explicit Euler-Maruyama method to (Eq.59), the simplest time
discrete approximation of an Itô calculus process can be written
as [26]:

~xi+1 = ~xi + (A + Bi)~xih + ~F(ti)h + B̂1/2
√

h~εi (70)

where
√

h~εi = d ~Wi, h = ti+1 − ti, and ~εi is a vector whose compo-
nents are random numbers generated from a normal distribution
N(0, 1). (Eq.70) can conceptually be considered a continuous
version of the AMC model, whereby random numbers are gen-
erated to determine the evolution of the system and requires
thousands of realisations to accurately describe the system.

The generation of the different numerical results and quantities
of interest (QoI) from the Itô calculus model require a differ-
ent technique. A running total of x, x2, and x = 0 are taken for
each time increment. Once the total number of realisations have
been performed, E[x], E[x2], E[x = 0] are readily computed al-
lowing for the generation of the mean, standard deviation, and
survival probability. The extinction probability and cumulative
distribution function require the continuous variable, x, to be
discretized. At time t, the variable x is discretized, and +1 is
added to the cell in an array that corresponds to that population
and moment in time. This array is added to across all realisa-
tions which can then be used to calculate the CDF. A separate
array is used for the calculation of the extinction probability
which is explained in Appendix H.
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Suescún-Dı́az [28] has further improved the method by devel-
oping an implicit Euler-Maruyama discretization scheme in the
form of:

P̂i+1 = S −1(P̂i + Q̂i+1h + B1/2
i d ~Wi) (71)

where,

S = (I − Ai+1h) (72)

S −1 = (I − Ai+1h)−1

=



s1,1 s1,2 s1,3 · · · s1,M+1

s2,1 s2,2 s2,3 · · · s2,M+1

s3,1 s3,2 s3,3 · · · s3,M+1

...
...

...
. . .

...

sM+1,1 sM+1,2 sM+1,3 · · · sM+1,M+1


(73)

where,

s1,k =
1
ζi+1

[
1 + (1 − δ1,k)

(
λk−1h

1 + λk−1h
− 1

)]
for k = 1, ...,M+1 (74)

sm,k =
1

1 + λm−1h

(
δm,k +

βm−1h
l

s1,k

)
for m = 2, ...,M + 1

k = 1, ...,M + 1
(75)

where

ζi+1 = 1 −
[
ρ(ti+1) − β

l

]
h −

h2

l

 M∑
m=1

λmβm

1 + λmih

 . (76)

Both the explicit and implicit Euler-Maruyama discretization
schemes have been modelled in this paper.

2.6. Temporal discretization and the Number of Realisations

In total, five models have been developed for comparison:

1. Analog Monte-Carlo (AMC)
2. Forward probability balance equations (FPB)
3. Generating function form of the forward probability bal-

ance equations (FGF)
4. Generating function form of the backward probability bal-

ance equations or Pál-Bell (PB)
5. Itô Calculus

(a) Explicit Euler-Maruyama discretization (EEM)
(b) Implicit Euler-Maruyama discretization (IEM)

The accuracy of certain models developed in this study are de-
pendent on the temporal discretization, number of realisations,
or maximum neutron population allowable in the simulation
Therefore, two methods of numerical comparison are available.
The first option is run each model until it has fully converged
to a solution and compare the accuracy, required temporal dis-
cretization, number or realisations, and maximum population
required. The second option is to select a temporal discretiza-
tion, number of realisations, and maximum neutron population

and compare the accuracy of each model and degree of conver-
gence. The second option has been chosen in this study. Table
2 shows the values chosen for each model.

Table 2: The temporal discretization, number of realisations, and maximum
allowable neutron population used in each of the models developed in this study.

Method ∆t(s) Realisations Max Population
AMC Variable 50,000 1000
FPB ODE solver / 1001

FGF ODE solver / /

PB ODE solver / /

EEM 1.0E-5 50,000 1000
IEM 1.0E-5 50,000 1000

As discussed previously, the discrete or continuous nature of
these models lend themselves to the generation of different nu-
merical results and quantities of interest (QoI). While it it pos-
sible to extract discrete data from the Pál-Bell model, approxi-
mations are required for the Itô-calculus model. The results that
each model has been used to construct is shown in Table 3.

Table 3: The results that each model has been used to construct.

Method Survival Extinction Moments CDF
AMC
FPB
FGF 7 7 7
PB
EEM
IEM 7 7 7

The forward generating function method developed in this study
only contains the moment equations. Therefore, this method
has only been used to calculate the mean and standard devia-
tion. This method has been included as the numerical accu-
racy of the forward probability balance method is limited by
the maximum number of neutrons the model contains.

The Implicit Euler-Maruyama discretization model included in
this study has only been used to calculate the mean and standard
deviation. This is because the discretization scheme appears
to limit the neutron population fluctuations. As a result, the
method is much more accurate at modelling the mean neutron
population but is no longer able to generate results regarding
discrete entities such as the survival or extinction probabilities.

3. Modelling Stochastic Neutron Kinetics in the Absence of
Delayed Neutron Precursors

It is most common to model systems that contain at least one
group of delayed neutron precursors. However, comparing the
numerical accuracy and computational efficiency of the differ-
ent models in the absence of any delayed neutron precursor

1The maximum allowable delayed neutron precursor population for group
m was set to cm,max = nmaxβm/λm rounded up to the nearest integer.
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Table 4: The simulation time (s) for each method to compute the relevant numerical result when modelling zero groups of delayed neutron precursors. The survival
probability simulation times are represented by the columns S = 0 as these simulations do not include an external neutron source. All models, excluding the Pál-Bell
model, computed the extinction probability, moments, and cumulative distribution results at the same time and are represented by the columns S = 5 and S = 5000.

S = 0 S = 5 S = 5000
Method k = 0.9 k = 1.1 k = 0.9 k = 1.1 k = 0.9 k = 1.1
PB 9E-2 8E-2 4E-2 4E-2 4E-2 5E-2
FPB 5E2 5E2 5E2 5E2 6E2 5E2
FGF / / 4E-4 2E-3 9E-4 1E-3
AMC 3E2 3E2 2E2 2E2 3E2 3E2
EEM 1E2 2E2 2E2 2E2 1E2 1E2
IEM / / 3E2 3E2 3E2 3E2

groups provides a relatively simple starting point.

Each mathematical model explained in Section 2 will be used
to compute a range of results for constant reactivity systems
which are either sub-critical (keff = 0.9) or super-critical (keff =

1.1). An external neutron source of either 5 n/s or 5000 n/s will
be present. The simulation time required for each model to
produce the relevant results in Section 3 is shown in Table 4.

3.1. The Survival Probability

The first comparison of the methods was their ability to cal-
culate the survival probability (explained in Section 1). The
results are shown in Figure 1. Good agreement can be seen
across the PB, FPB, and AMC models for both the sub-critical
and super-critical case.

In the case of the sub-critical simulation, the EEM method is
able to approximately calculate the survival probability, while
in the super-critical simulation it is not. The reduced accuracy
of the EEM method is expected at higher reactivities and is il-
lustrated in Appendix F. It is clear from Table 4 that the com-
putational efficiency of the PB model is far superior than the
other three models.

3.2. Extinction Probability

The next set of comparisons are the extinction probability (ex-
plained in Section 1). The results can be seen in Figure 2.

There is good agreement between the PB, FPB, and AMC mod-
els when calculating the extinction probability. The good agree-
ment between these three models for the survival and extinction
probability is to be expected. Both the AMC and FPB models
have an upper-limit of the number of neutrons that they are able
to simulate. This limitation of the models is directly linked to
the computational efficiency of the numerical methods used in
the models. However, as these results are mostly concerned
with the numerical accuracy of the models at simulating low
neutron populations, as long as the probability that the popu-
lation has reached its maximum is small, then the numerical
accuracy of these two models will not be affected significantly.

The extinction probability calculated by the the EEM method
has not been included for the simulation with an external neu-
tron source of 5 n/s. This is because the extinction probability
calculated was too small to offer a meaningful comparison be-
tween the results.

The inaccuracy of the EEM method can be attributed to the con-
tinuous nature of the model. Unlike the AMC and FPB mod-

(a) (b)

Figure 1: The survival probability calculated by each model when including zero neutron precursor groups for the sub-critical case (a) and the super-critical case
(b).
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(a) External neutron source: 5 n/s. (b) External neutron source: 5000 n/s.

(c) External neutron source: 5 n/s. (d) External neutron source: 5000 n/s.

Figure 2: The extinction probability calculated by each model when including zero neutron precursor groups for the sub-critical case (a)(b) and the super-critical
case (c)(d).

els, the EEM method produces a continuous neutron popula-
tion while the result is concerned with an integer population.
Unlike the PB model, there is no way to extract the extinction
probability from its equation. Therefore, the neutron popula-
tions generated by the EEM method require disctretizing. For
example, if the neutron population is 0.25, there exists a few
options for how to deal with this value (rounded to the nearest
integer, rounded down, or a distribution approach). The dif-
ferent disctretization methods tried are explained in Appendix
H. Regardless of the discretization method implemented, the
need for such a method introduces an approximation into the
result. The results presented in this study indicate that the EEM
method is not suitable for calculations of such a discrete nature.
It should be noted that the EEM method produces results with
much less variability for the system modelling an extraneous
neutron source of 5000 n/s, however, good agreement with the
other models is still not achieved. Again, it is clear that the
PB model is the most computationally efficient and is not hin-
dered by the fact the problem involves a low extraneous neutron
source.

3.3. Cumulative Distribution Function (CDF)

The population cumulative density function is compared next.
The results for the system with an extraneous source of 5000 n/s
are shown in Figures 3. These results were extracted along with
the same simulation set as the extinction probability calcula-
tions.

The AMC and FPB models show good agreement which is ex-
pected as they are both discrete methods. However, it can be
seen in Figure 3 that the AMC model computes a marginally
greater probability than the FPB model for low neutron pop-
ulations. The comparison of the Figures 3a-3b indicate that
the difference between the two models increases as the external
neutron source increases. More accurately, this occurs due to
the increasing neutron population. This is to be expected with
the approximation required for the FPB model when modelling
the upper limit of neutron populations.

It can be seen in Figure 3 that the saddle-point method used to
generate the CDF from the PB model is not accurate at such
a low neutron population. Referring to the work of Williams
[11, 12], it is known that the saddle-point approximation be-
comes increasingly more accurate as nprob

n increases. Comparing
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(a) (b)

Figure 3: The cumulative distribution calculated by each model when including zero neutron precursor groups and an external neutron source of 5000 n/s for the
sub-critical case (a) and the super-critical case (b). The CDF is computed at time t = 100 ms.

Figure 3a and 3b shows that as the neutron population increases,
so does the agreement of the saddle-point approximation to the
AMC and FPB models. This result is consistent with the work
of Cooling [1], in which the saddle-point method was not ap-
plied until the maturity time of the system, at which point the
neutron population was relatively large.

The EEM method is able to simulate a much higher neutron
population than either the AMC or FPB model due to its con-
tinuous nature. Therefore, if the cumulative distribution is re-
quired where the mean neutron population is large then it is a
more favourable method than either the AMC or FPB model.
The EEM method shows good agreement with both the AMC
and FPB model for the sub-critical case. Good agreement be-
tween these methods is also seen for the super-critical case once
the neutron population has started to increase. This decrease in
accuracy of the EEM method in modelling the cumulative dis-
tribution at low neutron populations for super-critical systems
illustrates why the method is less accurate when computing the
survival/extinction probability for the super-critical systems.

3.4. Population Mean and Standard Deviation

The mean and standard deviation of the neutron population is
modelled next and the results are shown in Figures 4-5. These
results are the first comparisons that contain all five models de-
scribed in this study and offer the best insight into their differ-
ences.

Excellent agreement between the PB, FPB, and FGF models
can be seen across all results for sub-critical systems. This re-
sult is to be expected as they are all exact models. There is
an approximation required for the FPB model, however, as the
neutron population mean and standard deviation in these sub-
critical systems are very small, the FPB model is still very ac-
curate.

The FPB model decreases in accuracy when modelling super-
critical systems. It can be seen that both the mean and standard
deviation calculated by the FPB model initially agree with re-
sults of the PB and FGF models for the super-critical systems.
However, as the neutron population starts to increase, so does
the numerical error in the model. This can be attributed to the
model having a prescribed maximum allowable number of neu-
trons it can simulate. Effectively, the neutron population can-
not exceed this prescribed maximum allowable number of neu-
trons meaning the higher neutron populations associated with
the super-critical system can not be simulated.

The FGF model shows the importance of generating functions
when modelling large numbers of neutrons. The model effec-
tively condenses an infinite number of ODEs into a finite set
of ODEs and is thus able to model super-critical systems and
neutron populations which the FPB model would not be able to
model with reasonable computational efficiency and numerical
accuracy.

The AMC model shows good agreement with the PB and FGF
models at the start of the simulation. However, as time in-
creases, the differences between the numerical results and quan-
tities of interest (QoI) start to increase. This is especially preva-
lent for the standard deviation. This result is expected because
the variance in the neutron population increases in time. There-
fore, it follows that there will be a greater variability between
realisations as time increases. Thus, in order to maintain the
same numerical accuracy in the result as time increases, an
increasing number of realisations are needed. However, a set
number of realisations was selected in order to illustrate a fair
comparison between all computational models requiring reali-
sations. The relative error of the AMC model is shown to de-
crease as the average number of neutrons in the system at any
one time increases.

It can be seen that the EEM method is less accurate in mod-
elling the mean and standard deviation than the AMC model
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(a) External neutron source: 5 n/s. (b) External neutron source: 5000 n/s.

(c) External neutron source: 5 n/s. (d) External neutron source: 5000 n/s.

Figure 4: The mean neutron population calculated by each model including when zero neutron precursor groups for the sub-critical case (a)(b) and the super-critical
case (c)(d).

when using the same number of realisations. The same decrease
in numerical accuracy with time can be seen in this method as
explained with the AMC model. The EEM method shows poor
agreement with the other models for the sub-critical results with
an external neutron source of 5 n/s. The numerical accuracy of
the method in modelling the mean neutron population increases
when the external neutron source is increased to 5000 n/s or the
system is super-critical. However, the method appears to be
incapable of accurately modelling the standard deviation in all
scenarios.

The IEM method shows a much better agreement with the other
models than the explicit EEM method when modelling the mean
neutron population. However, the increased accuracy of the
IEM method compared to the EEM method appears to come
at the cost of a significant under-estimation of the standard de-
viation.
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(a) External neutron source: 5 n/s. (b) External neutron source: 5000 n/s.

(c) External neutron source: 5 n/s. (d) External neutron source: 5000 n/s.

Figure 5: The standard deviation of the neutron population calculated by each model when including zero neutron precursor groups for the sub-critical case (a)(b)
and the super-critical case (c)(d).
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4. Modelling Stochastic Neutron Kinetics with One Group
of Delayed Neutron Precursors

It is common to see results for neutron kinetics where one group
of delayed neutron precursors have been modelled. Section 4
will serve as a comparison between the different models when
one group of delayed neutron precursors are included. These
comparisons will demonstrate how the computational execution
time of each of model increases as the complexity of the prob-
lem increases. Identical temporal discretization and realisation
counts have been used for the one delayed neutron precursor
group calculations as were used for the zero precursor group
calculations.

The same constant reactivity profiles and external neutron source
strengths have been used for the simulations in this section. Ta-
ble 5 shows the simulation time required for each model to pro-
duce the relevant results.

4.1. The Survival Probability

The survival probability results including one group of delayed
neutron precursor groups are shown in Figure 6. Again, the
AMC, PB, FPB models show good agreement in their results.
The accuracy of the EEM method does not seem to be affected
by the inclusion of one group of delayed neutron precursors. It
can be seen that the simulation time has increased slightly for

both the AMC and FPB model but not significantly.

4.2. The Extinction Probability
The extinction probability results including one group of de-
layed neutron precursor groups are shown in Figure 7. As with
the results of the zero delayed neutron precursor groups, the
AMC model exhibits a natural variation in the results which is
clear in Figures 7a and 7c. However, there is still good agree-
ment between the AMC, PB, and FPB models. The inclusion
of a delayed neutron precursor group has not appeared to have
improved the accuracy of the EEM method. It can, however, be
seen that the computation time has increased more sharply for
the AMC model than the other models.

The reason that the simulation time of the AMC model has in-
creased significantly, in the calculation of the extinction prob-
ability but not the survival probability, is due to the presence
of the external neutron source. As the survival probability has
been calculated in the absence of the source, if the neutron
chain becomes extinct during a particular realisation then the
remainder of the realisation does not require computing. This
is because in the absence of a source no new neutron will be
introduced into the system. The inclusion of delayed neutron
precursor groups does not impact the survival probability sig-
nificantly. Thus, the number of realisations that do not need to
be simulated fully stays roughly the same and the impact of the

Table 5: The simulation time (s) for each method to compute the relevant numerical result when modelling one group of delayed neutron precursors. The survival
probability simulation times are represented by the columns S = 0 as these simulations do not include an external neutron source. All models, excluding the Pál-Bell
model, computed the extinction probability, moments, and cumulative distribution results at the same time and are represented by the columns S = 5 and S = 5000.

S = 0 S = 5 S = 5000
Method k = 0.9 k = 1.1 k = 0.9 k = 1.1 k = 0.9 k = 1.1
PB 8E-2 8E-2 5E-2 4E-2 4E-2 4E-2
FPB 6E2 6E2 6E2 5E2 7E2 6E2
FGF / / 4E-3 3E-3 3E-3 3E-3
AMC 5E2 5E2 4E2 4E2 5E2 5E2
EEM 2E2 2E2 2E2 2E2 2E2 2E2
IEM / / 3E2 3E2 2E2 2E2

(a) (b)

Figure 6: The survival probability calculated by each model when including one neutron precursor group for the sub-critical case (a) and the super-critical case (b).
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(a) External neutron source: 5 n/s. (b) External neutron source: 5000 n/s.

(c) External neutron source: 5 n/s. (d) External neutron source: 5000 n/s.

Figure 7: The extinction probability calculated by each model when including one neutron precursor group for the sub-critical case (a)(b) and the super-critical case
(c)(d).

extra computations required to model the delayed neutron pre-
cursor group is minimised. However, this is only true for the
survival probability results as they are the only results that do
not include an external neutron source.

4.3. Cumulative Distribution Function (CDF)
The cumulative distribution function results including one group
of delayed neutron precursors are shown in Figure 8 and illus-
trate a similar trend to that seen in Section 3. The computational
efficiency of the PB model is far superior to the other three mod-
els but are not as accurate when the mean neutron population is
low. The EEM method is also less computationally demanding
than either the AMC or FPB models but is inaccurate for super-
critical systems.

4.4. Population Mean and Variance
The mean and standard deviation of the neutron population when
including one group of delayed neutron precursors is shown
in Figures 9-10. The inclusion of a delayed neutron precur-
sor group has not appeared to decrease the accuracy of either
Itô calculus method compared to that of the zero precursor re-
sults. However, the computation time of the FPB model has

increased. This can be attributed to the fact that the inclusion
of a delayed neutron precursor group significantly increases the
computing power required and increases the number of approx-
imations that need to be made when approaching the maximum
population of a given entity (prompt population or precursor
group population).
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(a) (b)

Figure 8: The cumulative distribution calculated by each model when including one neutron precursor group and an external source strength of 5000 n/s for the
sub-critical case (a) and the super-critical case (b). The CDF is computed at time t = 100 ms.

(a) External neutron source: 5 n/s. (b) External neutron source: 5000 n/s.

(c) External neutron source: 5 n/s. (d) External neutron source: 5 n/s.

Figure 9: The mean neutron population calculated by each model when including one neutron precursor group for the sub-critical case (a)(b) and the super-critical
case (c)(d).
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(a) External neutron source: 5 n/s. (b) External neutron source: 5000 n/s.

(c) External neutron source: 5 n/s. (d) External neutron source: 5000 n/s.

Figure 10: The standard deviation of the neutron population calculated by each model when including one neutron precursor group for the sub-critical case (a)(b)
and the super-critical case (c)(d).

19



5. Modelling Stochastic Neutron Kinetics with Six Groups
of Delayed Neutron Precursors

It is most common to include six groups of delayed neutron
precursors when modelling neutron kinetics and is essential for
evaluating the probability distribution [11]. This section will
compare the different computational models in their ability to
produce the required numerical results and quantities of inter-
est (QoI) for the the most computational demanding systems
involving six delayed neutron precursor groups. These com-
parisons will highlight the differences in the computational ef-
ficiency and numerical accuracy of each of the computational
models.

The same constant reactivity profiles and external neutron source
strengths have been used for the simulations in this section as
in the previous two sections. Table 6 shows the simulation time
required for each model to produce the relevant result when in-
cluding six groups of delayed neutron precursors.

5.1. The Survival Probability

Figure 11 shows the comparison of the models in their ability
to compute the survival probability when including six groups
of delayed neutron precursors. The FPB model is still show-
ing good agreement with the PB and AMC models. The EEM
method is still not showing an agreement with the other three

models. As seen in the comparisons that modelled fewer de-
layed neutron precursor groups, the EEM method decreases in
accuracy when the reactivity of the system increases.

5.2. The Extinction Probability

The comparison of the extinction probability when modelling
six groups of delayed neutron precursors can be seen in Figure
12. All the models, except the EEM method, are again showing
good agreement. As with the previous models that included
fewer delayed neutron precursor groups, the AMC results have
not converged for the systems with an external neutron source
of 5 n/s. However, the results do fluctuate around the results of
the PB and FPB models. The EEM method is still not showing
good agreement with the other three methods.

5.3. Cumulative Distribution Function (CDF)

The results shown in Figures 13a and 13b show the comparison
of the models in their ability to calculate the neutron popula-
tion distribution when six groups of delayed neutron precur-
sors are included. It is clear that the EEM method shows better
agreement with the AMC and FPB models than the PB model
for smaller reactivity systems. The same trend is seen, as that
shown in Section 4, that the saddle-point method increases in
accuracy as the neutron population increases.

5.4. Population Mean and Variance

Figure 14 and Figure 15 show the comparison of all five models
computation of the mean and standard deviation of the neutron
population respectively. No significant difference in accuracy
can be seen in the results of the AMC, FPB, EM, or IEM models
compared to their respective results when only modelling one
group of delayed neutron precursors. The important thing to
note is the times taken for each of the methods to produce their
results. The PB and FGF models are 4-5 orders of magnitude
more computationally efficient than any of the other models.

Table 6: The simulation time (s) for each method to compute the relevant numerical result when modelling six groups of delayed neutron precursors. The survival
probability simulation times are represented by the columns S = 0 as these simulations do not include an external neutron source. All models, excluding the Pál-Bell
model, computed the extinction probability, moments, and cumulative distribution results at the same time and are represented by the columns S = 5 and S = 5000.

S = 0 S = 5 S = 5000
Method k = 0.9 k = 1.1 k = 0.9 k = 1.1 k = 0.9 k = 1.1
PB 1E-1 1E-1 6E-2 6E-2 6E-2 6E-2
FPB 1E4 1E4 1E4 1E4 1E4 1E4
FGF / / 3E-3 4E-3 4E-3 3E-3
AMC 1E3 2E3 1E3 1E3 1E3 1E3
EEM 2E2 2E2 2E2 2E2 2E2 2E2
IEM / / 3E2 3E2 3E2 3E2
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(a) (b)

Figure 11: The survival probability calculated by each model when including six neutron precursor groups for the sub-critical case (a) and the super-critical case
(b).

(a) External neutron source: 5 n/s. (b) External neutron source: 5000 n/s.

(c) External neutron source: 5 n/s. (d) External neutron source: 5000 n/s.

Figure 12: The extinction probability calculated by each model when including six neutron precursor groups for the sub-critical case (a)(b) and the super-critical
case (c)(d).
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(a) (b)

Figure 13: The cumulative distribution calculated by each model when including six neutron precursor groups and an external source strength of 5000 n/s for the
sub-critical case (a) and the super-critical case (b). The CDF is computed at time t = 100 ms.

(a) External neutron source: 5 n/s. (b) External neutron source: 5000 n/s.

(c) External neutron source: 5 n/s. (d) External neutron source: 5000 n/s.

Figure 14: The mean neutron population calculated by each model when including six neutron precursor groups for the sub-critical case (a)(b) and the super-critical
case (c)(d).
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(a) External neutron source: 5 n/s. (b) External neutron source: 5000 n/s.

(c) External neutron source: 5 n/s. (d) External neutron source: 5000 n/s.

Figure 15: The standard deviation of the neutron population calculated by each model when including six neutron precursor groups for the sub-critical case (a)(b)
and the super-critical case (c)(d).

23



6. Conclusion

In this study, we have developed and implemented five differ-
ent numerical codes for modelling the stochastic populations
of neutrons within low extraneous (external or fixed) neutron
source systems. Each numerical code utilised a different set
of mathematical and computational models. These mathemat-
ical and computational models were: the analog Monte-Carlo
(AMC), the forward probability balance equations (FPB), the
generating function form of the forward probability balance
equations (FGF), the generating function form of the backward
probability balance equation or Pál-Bell (PB), and an Itô cal-
culus model utilising explicit (EEM) and implicit (IEM) Euler-
Maruyama discretization. Each computational model has been
used to generate various numerical results and quantities of in-
terest (QoI) which were used to compare and contrast the nu-
merical accuracy and computational efficiency of the models
against one another. The numerical results and QoI chosen for
the comparisons were: the survival probability, the extinction
probability, the mean and standard deviation in the neutron pop-
ulation, and the cumulative distribution function of the neutron
population.

From the results presented in Sections 3-5, it is clear that the PB
model was the most computationally efficient and numerically
accurate model when simulating low neutron source systems.

The computational efficiency requirement is an important fea-
ture of the numerical models. This is especially important if the
computational models are extended to include energy [32] and
spatial dependence [12, 33]. In these cases the simulation time
will become critically important to the viability of the compu-
tational method [34, 35]. It is also important to note that the
survival probability, extinction probability, mean, and standard
deviation results were directly extracted from the equations of
the mathematical model and that no approximations where re-
quired when calculating the numerical results. It is also possible
to directly extract higher order moments such as skewness and
kurtosis from the PB model. It was also demonstrated that the

accuracy of the saddle-point equations decrease for very small
values of nprob which is consistent with the work of Williams
[11, 12].

The results also highlight that although the AMC and FPB model
produce accurate results for very low neutron populations they
are both computationally less efficient in comparison to the PB
model.

It has also been shown, in this study, that the numerical ac-
curacy of the FPB model starts to decrease significantly when
required to accurately model larger neutron populations. This
issue is more acute when modelling delayed neutron precursor
groups as the number of ODEs that need to be solved increases
and thus the maximum prompt neutrons that can be modelled
must be decreased.

The FGF model has been used as a form of verification for the
other methods while generating the mean and standard devia-
tion results. The computation efficiency of FGF model when
computing the moments was found to be even greater than the
PB model. However, as discussed in Appendix D the extension
of the model to include energy and spatial dependence results
in complex numerical difficulties which the PB model avoids.

It has been shown that while certain simulations are capable
of being modelled by an Itô calculus approach, the model is
unsuited for very low neutron populations. It was found that
the method (regardless of discretization scheme) is much better
suited for sub-critical systems than super-critical. The method
has been used to replicate certain results from the literature (Ap-
pendix H). However, the scenarios in Appendix H have a larger
expected neutron population than the scenarios presented in this
study. It appears that the method is incapable of accurately
modelling such low numbers of neutrons. The results of the
method are dependent upon the temporal discretization, with
respect to the nuclear and neutron kinetics data being used, and
as such careful consideration to all parameters used is required
when constructing such a model.
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Appendix A. Test Cases

A system with an extraneous neutron source of 5 n/s and one
with an extraneous neutron source of 5000 n/s are compared
in this study. The nuclear and neutron kinetics data of both
systems are identical and are presented in Table 7.

Table 7: The variables used to define the data used in the example test case
when modelling zero, one, and six groups of delayed neutron precursors.

Variables Zero Groups One Group Six Groups
Σ f 5.0 5.0 5.0
Σa,k=0.9 13.391779 13.483644 13.483644
Σa,k=1.1 10.956911 11.032072 11.032072
v 2200.0 2200.0 2200.0
Pf,0 0.0319004 0.0319004 0.0319004
Pf,1 0.1725213 0.1725213 0.1725213
Pf,2 0.3361397 0.3361397 0.3361397
Pf,3 0.3038798 0.3038798 0.3038798
Pf,4 0.1266155 0.1266155 0.1266155
Pf,5 0.0261843 0.0261843 0.0261843
Pf,6 0.0026170 0.0026170 0.0026170
Pf,7 0.0001421 0.0001421 0.0001421
β / 0.00681 0.00681
β1 / 0.00681 0.000210
β2 / / 0.001134
β3 / / 0.001107
β4 / / 0.003154
β5 / / 0.000901
β6 / / 0.000307
λ1 / 0.73919 0.01249
λ2 / / 0.03182
λ3 / / 0.10938
λ4 / / 0.31699
λ5 / / 1.3598
λ6 / / 8.63638

Appendix B. Forward Probability Balance Deviations at Large
Populations

The results in Sections 3-5 illustrate the limitations of the FPB
model when simulating large numbers of neutrons. The results
start to significantly deviate from the true solution when the
probability P(n > nmax) that the neutron population is greater
than nmat starts to increase and the approximation used at n =

nmax is required. Figure 16 illustrates this concept.

Figure 16: The deviation of the FPB model from the FGF model while simu-
lating the mean neutron population for ke f f = 1.1 and S = 5000 n/s including
six groups of delayed neutron precursors. The probability P(n > nmax) is also
shown.
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Appendix C. Derivation of the Moment Equations of the
Generating Function Form of the Forward
Probability Balance Equations

The generating function form of the forward probability bal-
ance equation for a point model may be written as [17]:

∂F(x, ~y, t)
∂t

= g(x, ~y, t)
∂F(x, ~y, t)

∂x
+

M∑
m=1

λm(x − ym)
∂F(x, ~y, t)
∂ym

+ S (t)
(
x − 1

)
F(x, ~y, t)

(C.1)

where

g(x, ~y, t) = λc(t)(1 − x) + λ f (t)
(
f (x, ~y) − x

)
(C.2)

f (x, ~y) =

(
1−ν̄(1−β)(1−x)+

1
2
χ̂2(1−x)2+···

) M∏
m=1

(1−ν̄βm(1−ym)) (C.3)

χ̂2 =

νmax∑
ν=2

ν!
(ν − 2)!

pν (C.4)

where pν is the probability that ν neutrons are emitted in a fis-
sion event.

It is now possible to define the following moments associated
with (Eq. C.1):
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(C.5)
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(Eqs. 18-23) are then obtained after differentiating (Eq. C.1)
with respect to the corresponding variable. The following dif-
ferentials will be demonstrated for one group of delayed neu-
tron precursors for simplicity:

∂g(x, y)
∂x

∣∣∣∣∣∣
x=y=1

= −λc − λ f + λ f fx(x, y)

∣∣∣∣∣∣
x=y=1

= λ f ν̄(1 − β) − λa

(C.10)

∂2g(x, y)
∂x2

∣∣∣∣∣∣
x=y=1

= λ f fxx(x, y)

∣∣∣∣∣∣
x=y=1

= χ̂2

(C.11)

∂g(x, y)
∂y

∣∣∣∣∣∣
x=y=1

= λ f fy(x, y)

∣∣∣∣∣∣
x=y=1

= ν̄βλ f

(C.12)

∂2g(x, y)
∂x∂y

∣∣∣∣∣∣
x=y=1

= λ f fxy(x, y)

∣∣∣∣∣∣
x=y=1

= λ f ν̄(1 − β)ν̄β

(C.13)

Appendix D. Hurwitz, MacMillan Equations Including one
Delayed Neutron Group

It is useful to include the forward form of the generating func-
tion equation, as solved numerically by Hurwitz et al [36], and
its associated moments as follows. This will highlight the addi-
tional numerical difficulties in the forward form compared with
those of the backward form.

The traditional equation for the forward generating function is

∂F(x, ~y, t)
∂t

= g(x, ~y, t)
∂F(x, ~y, t)

∂x
+

M∑
m=1

λm(x − ym)
∂F(x, ~y, t)
∂ym

+ S (x − 1)F(x, ~y, t)

(D.1)

with the initial condition F(x, ~y, t) = 1. If we re-write this equa-
tion in the more compact notation for one group of delayed neu-
tron precursors:

∂F(x, y, t)
∂t

+
dx
dt
∂F(x, y, t)

∂x
+

dy
dt
∂F(x, y, t)

∂y
≡

DF(x, y, t)
Dt

= S (x − 1)F(x, y, t)
(D.2)

with

dx
dt

= −g(x, y, t),
dy
dt

= −λ(x − y),
dF
dt

= S (x − 1)F (D.3)

then we may write the equations for the moments required in
the saddle-point equations as

DFx

Dt
= [gx + S (x − 1)]Fx + λFy + S F (D.4)

DFxx

Dt
= [2gx + S (x − 1)]Fxx + 2λFxy + (gxx + 2S )Fx (D.5)

DFy

Dt
= [gy + S (x − 1)]Fx + (S (x − 1) − λ)Fy (D.6)

DFyy

Dt
= [2gy + S (x − 1)]Fxy + gyyFx + (S (x − 1) − 2λ)Fyy (D.7)

DFxy

Dt
= [gx + S (x − 1) − λ]Fxy + λFyy + (gxy + S )Fx

+ (gy + S (x − 1))Fxx + S Fy

(D.8)
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As explained by Williams and Eaton [11, 12] the main chal-
lenge is the numerical evaluation of the total derivative term
DF(x,y,t)

Dt and is the point at which the advantages of the backward
formalism enter. With the backward method we need only solve
a set of first order, coupled, non-linear differential equations and
in addition there is the advantage of including energy and space
dependence in a straightforward way. The forward form, as il-
lustrated above, is not simple to solve numerically as a reading
of the Hurwitz papers [36] will indicate and, moreover, to in-
clude space and energy described by Stacey [37] complicates
the total derivative D/Dt even more. Inclusion of more groups
of delayed neutrons also adds additional terms to D/Dt.

Appendix E. The Gamma Distribution Approximation

Harris [38] illustrated in highly multiplicative systems, the dis-
tribution will tend to the gamma distribution. The gamma prob-
ability density function may be written as:

P(n, t) =
η(t)

n̄(t)Γ(η(t))

(
η(t)n
n̄(t)

)η(t)−1

exp
(
−
η(t)n
n̄(t)

)
(E.1)

where η(t) = n̄2(t)/σ2
N(t). Both n̄ and σN can be calculated with

the FGF model explained in Section 2.3.

Figure 17 shows an example of the CDF generated using the
gamma approximation compared to the other models described
in this study. As shown in Figure 17 the gamma approxima-
tion shows good agreement with the other models in this study.
A significant portion of the gamma distribution matches the
AMC and FPB distributions. The approximation is an effec-
tive method for very accurately calculating the most prominent
region of the CDF. However, it should be noted that the appli-
cability of this method to low external neutron source problems
is limited due to the known deviation from the true solution at
the tails of the distribution [11, 12].

Figure 17: The cumulative distribution calculated by each model (including
the gamma approximation) when including six neutron precursor groups and
an external source strength of 5000 n/s for the super-critical case. The CDF is
computed at time t = 100 ms.

Appendix F. The Relationship between the Exact Proba-
bility Balance Method and Fokker-Plank (Itô)
Method for Neutron Fluctuations

The traditional forward and backward forms of the probability
balance equations for the neutron populations are well-developed
and can deal with a variety of practical problems [11, 12, 13].
Complementary to these methods is that based on the Langevin
technique in which the deterministic form of the problem are
defined and random source terms added to stimulate the solu-
tion. The form these noise sources take have been subject of in-
vestigation for many years. Recently a variant of the Langevin
method has been proposed by Allen [39] who relates it to a type
of stochastic differential equation (SDE) known as Itô equa-
tions. We will consider a simple example, namely the classic
birth and death problem to compare the exact method (proba-
bility balance) with the Itô results which in turn are related to
the Fokker-Plank equation. As a measure of comparison we
choose the extinction problem which calculates the probability
that at a given time the number of neutrons becomes zero.

The Forward generating equation for the one speed point model
is with no delayed neutrons:

F(x, t) =

∞∑
n=0

xnP(n, t) (F.1)

∂F(x, t)
∂t

=
[
λ f ( f (x) − x) + λc(1 − x)

]∂F(x, t)
∂x

(F.2)

where λc = vΣc, f (x) =
∞∑

n=0
xn p(n), and p(n) being the probability

that n neutrons are emitted in a fission event. The initial condi-
tion is F(x, 0) = x, i.e. P(n, 0) = δn,1.

The backward equation for F(x, t) is:

−
∂F(x, t|s)

∂s
= λc − (λc + λ f )F(x, t|s) + λ f f (F(x, t|s)) (F.3)

In this case:

F(x, t|s) =

∞∑
n=0

xnP(n, t|s) (F.4)

where P(n, t|s) is the probability that if one neutron is injected at
time s there will be n neutrons at time t. Because the transition
coefficients, λ, are independant of time, we may write t − s → t
and (Eq. F.3) becomes:

∂F(x, t)
∂t

= λc − (λc + λ f )F(x, t) + λ f f (F(x, t)) (F.5)

Let us note from the definition of the generating function that if
we set x = 0 we find F(0, t) = P(0, t). Similarly if we differentiate
F with respect to x and set x = 0 we find F′(0, t) = P(1, t), etc.
We may also see that:

∂F(x, t)
∂x

=

∞∑
n=0

nxn−1P(n, t) (F.6)
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Then if x = 1:

∂F
∂x

∣∣∣∣∣
x=1

=

∞∑
n=0

nP(n, t) = 〈n(t)〉 (F.7)

Similarly,

∂2F(x, t)
∂x2 =

∞∑
n=0

n(n − 1)xn−2P(n, t); (F.8)

then if x = 1,

∂2F
∂x2

∣∣∣∣∣
x=1

=

∞∑
n=0

n(n − 1)P(n, t) = 〈n(t)2〉 − 〈n(t)〉; (F.9)

From which we may obtain the variance σ2
n(t) = 〈n(t)2〉 − 〈n(t)〉2.

From the backward equation we find by differentiation with re-
spect to x :

∂F′

∂t
= −(λ f + λc)F′ + λ f

d
dx

f (F)

= −(λ f + λc)F′ + λ f F′
d

dF
f (F)

(F.10)

Setting x = 1 and observing that:

d
dF

f (F) =

∞∑
n=0

nFn−1 p(n) (F.11)

for F = 1 this becomes d
dF f (F)|F=1 =

∞∑
n=0

np(n) = ν which is the

mean number of neutrons per fission. The equation for the mean
is then:

d〈n(t)〉
dt

= (νλ f − λa)〈n(t)〉 (F.12)

where λa = λ f + λc.

If we now differentiate the generating function once more with
respect to x we find

∂F′′

dt
= −(λ f + λc)F′′ + λ f

d
dx

(
F′

d
dF

f (F)
)

= −(λ f + λc)F′′ + λ f

(
F′′

d
dF

f (F) + (F′)2 d2

dF2 f (F)
) (F.13)

Setting F = 1 leads, with F′′(1, t) = µ(t), to

dµ(t)
dt

= (νλ f − λa)µ(t) + 〈ν(ν − 1)〉λ f 〈n(t)〉2 (F.14)

with 〈ν(ν − 1)〉 =
∞∑

n=0
n(n − 1)p(n), which is related to the variance

of the number of neutrons emitted per fission. Thus we have
equations for the mean and the variance of the neutron number
density.

Let us now derive similar equations using the forward generat-
ing function. The equation for the mean is the same as before,

d〈n(t)〉
dt

= (νλ f − λa)〈n(t)〉 (F.15)

But that for µ(t) is

dµ(t)
dt

= 2(λ f − λa)µ(t) + λ f 〈ν(ν − 1)〉〈n(t)〉 (F.16)

which looks very different from the backward equation (Eq.
F.14). If we set α = νλ f − λa, we have 〈n(t)〉 = exp{αt}. The
solution for µ(t) from both equations gives

µ(t) =
λ f

α
〈ν(ν − 1)〉eαt(eαt − 1) (F.17)

It is convenient to write equation(F.14) in terms of the variance
to get

dσ2

dt
= 2ασ2 + [〈ν(ν − 1)〉λ f − νλ f + λ f + λc]〈n〉 (F.18)

The square bracket may also be written as

σ2
VV =

[
〈(ν − 1)2〉λ f + λc

]
〈n〉 = β〈n〉, (F.19)

where β must not be mistaken for the delayed neutron fraction.
Allen [39] and Dalfes [40] show this to be the variance of the
fission terms. Dalfes also shows that we can write the Fokker
Planck equation for the probability distribution as

∂P(n, t)
∂t

= −α
∂

∂n
(nP(n, t)) +

1
2
β
∂2

∂n2 (nP(n, t)) (F.20)

where P(n, 0) = 1. The Itô equation associated with the above
Fokker-Planck equation is

dX(t) = αX(t)dt +
√
βX(T )dW(t) (F.21)

with X(0) = 1. (Eq. (F.21) can be used for simulation purposes.
(Eq. F.20) has the solution

P(n, t) =
2α

β(eαt − 1)

( eαt

n

)1/2

exp
(
−

2α(eαt + n)
β(eαt − 1)

)
I1

(4α(neαt)1/2

β(eαt − 1)

)
(F.22)

where I1(x) is the modified Bessel function. Now from this we
may verify that the mean and the variance are

〈n(t)〉 = eαt σ2(t) =
β

α
eαt(eαt − 1) (F.23)

The extinction probability cannot be obtained from P(0,t) in
(Eq. F.22) but we can calculate the total number of neutrons
surviving after time t from

S (t) =

∞∫
0

dnP(n, t) = 1 − exp
(
−

2αeαt

β(eαt − 1)

)
. (F.24)

From which the extinction probability E(t) is given by (in the
Fokker Planck approximation)

E(t) = 1 − S (t) = exp
(
−

2αeαt

β(eαt − 1)

)
(F.25)

We may also calculate the exact value of the extinction proba-
bility from the generating functions (Eq. F.2) or (Eq. F.3). If
we take the backward equation we see that we need

∂E(t)
∂t

= λc − (λc + λ f )E(t) + λ f f (E(t)) (F.26)
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subject to E(0) = 1. This is easily done numerically but by mak-
ing an assumption we may do it analytically. Thus we assume
the simple birth death problem in which two neutrons are emit-
ted per fission, i.e. p(n) = δn,2 or f (x) = x2. We may then write
(Eq. F.26) as

dE
dt

= (1 − E)(λc − λ f E) (F.27)

This equation is readily solved to give

E(t) =
λc(e(λ f −λc)t − 1)
λ f e(λ f −λc)t − λc

(F.28)

This is to be compared with the Fokker Plank result of (Eq.
F.25) with p(n) = δn,2 and leads to

EFP(t) = exp
(
−

2(λ f − λc)e(λ f −λc)t

(λ f + λc)(e(λ f −λc)t − 1)

)
(F.29)

Thus we must compare (Eq. F.28) and (Eq. F.29). We note
that in both cases that if λ f ≤ λc, i.e. sub-critical, the extinction
probability goes to unity; extinction is certain. On the other
hand, if t → ∞, we find

E(∞) =
λc

λ f
and EFP(∞) = exp

(
−

2(λ f − λc)
(λ f + λc)

)
(F.30)

If in the Fokker-Plank case we write λ f = λc + ε and expand to
order ε

EFP(∞) = exp
(
−

(λ f − λc)
λ f

)
≈ 1 −

(λ f − λc)
λ f

=
λc

λ f
(F.31)

That means that in the limit when λc is close to λ f the results
are similar. Clearly this indicated that the Fokker-Plank and, by
association, the Itô method are only valid for large extinction
probabilities.

Let us re-write (Eq. F.28) and (Eq. F.29) by defining r = λc/λ f

and τ = λ f t, then we have

E(τ) =
r(e(1−r)τ − 1)

e(1−r)τ − r
and EFP(τ) = exp

(
−

2(1 − r)e(1−r)τ

(1 + r)(e(1−r)τ − 1)

)
(F.32)

Numerical values of these expressions are shown in Figure 18
for a range of r values. Clearly, as r approaches unity, the
two expressions become closer; physically this means when
the system is only very slightly super-critical. For high super-
criticality the error is significant. These results suggest that for
neutronic problems the Itô calculus is not necessarily adequate.

Figure 18: The extinction probability calculated by the Fokker-Plank equation
compared to the exact solution for a simplified birth-death scenario for a range
of r values.

With an understanding of the expected behaviour of the Itô
calculus method the Pál-Bell, FPB, AMC method, and EEM
method were compared against the exact solution. Figure 19 il-
lustrates two different r values. As expected the AMC, Pál-Bell,
and FPB models showed good agreement while the numerical
accuracy of the Itô model decreased with reactivity.

(a) r = 0.95

(b) r = 0.2

Figure 19: The extinction probability of each method compared to the exact
solution for a simplified birth-death scenario.
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A direct numerical comparison between the models is tabulated
at τ = 10 in Table 8.

Table 8: A comparison between the absolute distance of each method to the
analytical solution for a simple birth-death scenario.

r PB FPB AMC EEM
0.2 6.98E-07 3.27E-07 4.64E-04 4.84E-02
0.95 1.18E-05 1.53E-05 1.08E-03 3.67E-03

Both the AMC and Itô calculus method exhibit natural vari-
ations between realisations as a result of generating random
numbers in their implementation. As such, it is possible to cal-
culate the mean and standard deviation of the binomial distri-
bution and compare it to the results of both models:

x = np and σ =
√

np(1 − p) (F.33)

where x is the mean, σ is the standard deviation, n is the num-
ber of realisations, and p is the extinction probability. Table
9 shows how the AMC method is within one standard devia-
tion of the mean for all values of r, as expected for an exact
method. The Itô calculus method is also less than one standard
deviation from the mean for r = 0.95, however, as the reactiv-
ity increases the error increases significantly which supports the
analysis above and offers more reason to doubt the adequacy of
the method.

Table 9: The number of standard deviations from the expected extinction prob-
ability for the AMC and EEM methods at 10,000 realisations.

r AMC EEM
0.2 0.1 12.1
0.5 0.3 1.4
0.95 0.3 1.1

Appendix G. Wiener Process Verification

The Itô calculus approaches are the only non-exact methods
considered in this paper; therefore, it can be implemented cor-
rectly and produce results that differ from the exact solution. As
such, without separate verification, erroneous results would be
difficult to attribute to the implementation or fundamental dif-
ferences in the underlying mathematics.

Two stochastic differential equations (SDEs) [41] were mod-
elled using the explicit Euler-Maruyama method, described in
section 2.5. The results were compared against the provided
source codes and showed good agreement.

The first system considered was a simplified Duffing-Van der
Pol Oscillator with the following mathematical formulation:

dXt = Yt dt, (G.1)

dYt = (Xt(α − X2
t ) − Yt) dt + σXt dWt (G.2)

where (X0,Y0) = (-2,0), dt = 10−3, α = 1, σ = 0.5, and t ∈ [0, 1000].
100,000 simulations were run with the mean and variance com-
pared at different numbers of realisations. Figure 20 illustrates
a realisation of the two codes. Table 10 shows how both mean
and variance of the test model and source code converge as the
number of realisations increases.

Figure 20: Duffing-Van der Pol Oscillator modelled using source code provided
[41] and using the Euler-Maruyama method.

Table 10: The mean and variance of the X variable evaluated after 1, 000 and
100, 000 realisations.

X1,000 X100,000 µ1,000 µ100,000
Euler-Maruyama -0.039 0.001 0.822 0.851
Source Code 0.025 0.001 0.833 0.850

The second system considered was Geometric Brownian Mo-
tion which can be described as follows:

dXt = µXt dt + σXt dWt (G.3)

with X0 = 1, µ = 1, and σ = 0.2. The Euler-Maruyama was
used to compute (Eq. G.3) and the results were compared to
the exact solution [41]:

Xt = eµt (G.4)

Figure 21 illustrates how the mean, X, converges to the exact so-
lution as the number of realisations increases. The mean value
at a time of 1 second is tabulated for different numbers of reali-
sations in Table 11.

The results from both verification cases show good agreement
and supports the implementation of the method.
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Figure 21: The Euler-Maruyama discretisaton method after an increasing num-
ber of realisations compared to the exact solution of a geometric brownian mo-
tion problem.

Table 11: The mean value computed using the Euler-Maruyama method com-
pared to the exact solution evaluated at 1.0 second.

Exact X1,000 X5,000 X10,000
2.718282 2.706456 2.714437 2.717588

Appendix G.1. Verification of the Itô Calculus Implementations
Against Results from Literature

Three cases studies from literature [26, 28] are shown below
for the verification of the explicit and implicit Euler-Maruyama
implementations in this study.

Case Study 1
Table 12 shows the results of the simulation considering one
group of delayed neutron precursors with the following param-
eters: constant reactivity ρ(t) = −1/3, decay constant λ1 = 0.1 /s,
delayed neutron fraction β1 = 0.05, average neutrons per fission
ν̄ = 2.5, generation time Λ = 2/3 s, external source q = 200 /s,
initial condition X0 = [400, 300]T , and the time domain [0, 2]s
with 40 time-steps. 5000 realisations were computed for each
of the models to match the simulation conditions from litera-
ture.

Table 12: Verification of Euler-Maruyama implementations against Ray [26]
and Suescún-Dı́az [28] for Case Study 1.

[26] [28] EEM IEM
E(n(2)) 412.2 400.0 400.4 400.0
σ(n(2)) 34.4 0.5 31.7 0.9
E(c1(2)) 316.0 299.9 300.1 299.8
σ(c1(2)) 8.3 6.8 8.1 7.8

Case Study 2
Table 13 shows the results of the simulation considering six
groups of delayed neutron precursors with the following pa-

rameters: constant reactivity ρ(t) = 0.003, decay constant λi =

[127, 317, 1150, 3110, 14000, 38700]×10−4 /s, delayed neutron frac-
tion βi = [266, 1491, 1316, 2849, 896, 182]10−6, average neutrons
per fission ν̄ = 2.5, generation time Λ = 2 × 10−5 s, external
source q = 0 /s, initial condition X0 = 100

Λ
[1, β1/λ1, β2/λ2, ..., β6/λ6]T ,

and the time domain [0, 0.1]s with 40 time-steps. 5000 realisa-
tions were computed for each of the models to match the simu-
lation conditions from literature.

Table 13: Verification of Euler-Maruyama implementations against Ray [26]
and Suescún-Dı́az [28] for Case Study 2.

[26] [28] EEM IEM
E(n(0.1)) 208.6 179.9 175.1 180.0
E(c1(0.1)) 4.50E+3 4.49E+3 4.49E+3 4.49E+3
σ(c1(0.1)) 1233.4 60.4 1942.0 45.8

Case Study 3
Table 14 shows the results of the simulation considering six
groups of delayed neutron precursors with the following pa-
rameters: constant reactivity ρ(t) = 0.007, decay constant λi =

[127, 317, 1150, 3110, 14000, 38700]×10−4 /s, delayed neutron frac-
tion βi = [266, 1491, 1316, 2849, 896, 182]10−6, average neutrons
per fission ν̄ = 2.5, generation time Λ = 2 × 10−5 s, external
source q = 0 /s, initial condition X0 = 100

Λ
[1, β1/λ1, β2/λ2, ..., β6/λ6]T ,

and the time domain [0, 0.001]s with 40 time-steps. 5000 real-
isations were computed for each of the models to match the
simulation conditions from literature.

Table 14: Verification of Euler-Maruyama implementations against Ray [26]
and Suescún-Dı́az [28] for Case Study 3.

[26] [28] EEM IEM
E(n(0.001)) 139.6 134.9 136.2 134.9
σ(n(0.001)) 92.0 6.0 93.0 6.0
E(c1(0.001)) 4.46E+3 4.46E+3 4.46E+3 4.46E+3
σ(c1(0.001)) 6.1 6.1 19.0 5.0

Good agreement is found between the explicit Euler-Maruyama
method implemented in this study and the results from Ray
[26]. Good agreement is also found between implicit Euler-
Maruyama method implemented in this study and the results
from Suescún-Dı́az [28].

Appendix H. Itô Calculus discretization Methods for the
Extinction Probability

As the Itô calculus method models the neutron population as
a continuous variable, it is necessary to employ a discretiza-
tion approximation when calculating the extinction probability.
It was found that the significance of the discretization method
used decreased as the extraneous neutron source strength was
increased.

Three methods were employed:
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1. Round down - a neutron population of 0.75 would be
recorded as 0 and +1 would be added to the extinction
probability for that realisation at that moment in time.

2. Round to the nearest integer - a neutron population of
0.55 would be recorded as 1 and +0 would be added to the
extinction probability for that realisation at that moment
in time.

3. Probability distribution - a neutron population of 0.55
would contribute +0.45 to the extinction probability for
that realisation at that moment in time.

A sample result can be seen in Figure 22. As can be seen in
Figure 22, there is a sharp decrease in the extinction probabil-
ity for the first few time-steps. This can be attributed to the
operation of the Itô calculus method. While the AMC method
only has a probability of introducing a neutron into the system
at the first time-step, the Itô calculus method will always do so.
Therefore, without an approximation like one described above
the extinction probability would start at one and instantly de-
crease to zero. It was found that the method of rounding down
the neutron population best alleviated this problem.

Figure 22: The different discretization methods employed in calculating the ex-
tinction probability of the Itô calculus method for a sub-critical system without
delayed neutron precursors and an extraneous neutron source of 5 n/s.

Figure 23 illustrates that a realisation count of the order of
500,000 is necessary to produce a result which does not greatly
fluctuate. However, Figure 23 also shows that increasing the
number of realisations only increases the accuracy of the Itô
calculus method in calculating the extinction probability up to
a point and it does not produce a correct solution.

Figure 23: The extinction probability of the Pál-Bell and Itô calculus method
modelling zero neutron precursor groups for the sub-critical case with an extra-
neous neutron source of 5 neutrons per second. 500,000 realisations were used
for the Itô calculus method.

Appendix I. Itô Calculus discretization Performance

The Itô calculus method is subject to the law of diminishing re-
turns in regards to performance. Taking the results of Pál-Bell
equations to be accurate for calculating the extinction probabil-
ity, the error in the Itô calculus method can be compared for
different discretization refinements. Figure 24 illustrates how
refining the temporal discretization generates simulation times
that increase exponentially for an ever diminishing accuracy.

Figure 24: An example performance indicator for the Itô calculus method for
a system without delayed neutron precursor groups and an extraneous neutron
source of 5 n/s with keff = 0.9.

Appendix J. Itô Calculus Realisation Performance

The results presented in this study illustrate that the Itô calcu-
lus method utilising Euler-Maruyama discretization is unable
to accurately model stochastic neutron behaviour in a variety
of cases; this includes the survival and extinction probabilities,
the mean and variance in very low neutron source cases, and
the CDF in super-critical cases. However, Itô calculus has been
shown to accurately model certain neutronic cases such as repli-
cating experimental GODIVA results [42]. Three results from
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(a) 10 million realisations required for an accurate mean neutron population to be computed
by the Ito-calculus approach.

(b) 10 thousand realisations required for an accurate mean neutron population to be com-
puted by the Ito-calculus approach.

Figure 25: The mean neutron population of the Pál-Bell and Itô calculus method
modelling zero neutron precursor groups for a sub-critical case with an extra-
neous neutron source of 5 n/s (a) and 500 n/s (b).

the literature have also been replicated in this study [26, 28].
Therefore, the purpose of this section is to analyse the threshold
neutron population above which Itô calculus is a viable method
for calculating the mean neutron population.

Figure 25 shows that a large number of realisations are needed
to cause the mean produced by the Itô method to be close to the
correct value. More realisations are needed for a lower source
strength and mean neutron population. For instance, 10 mil-
lion realisations are needed for the case with a source strength
of 5 n/s whilst 10,000 realisations produce a comparable agree-
ment for the case with a source strength of 500 n/s. This means
the lower the neutron population of a case, the more computa-
tional resources are required to provide a useful result.
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