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Single-bubble dynamics in nanopores:
Transition between homogeneous and heterogeneous nucleation
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When applying a voltage bias across a thin nanopore, localized Joule heating can lead to single-bubble
nucleation, offering a unique platform for studying nanoscale bubble behavior, which is still poorly understood.
Accordingly, we investigate bubble nucleation and collapse inside solid-state nanopores filled with electrolyte
solutions and find that there exists a clear correlation between homo/heterogeneous bubble nucleation and the
pore diameter. As the pore diameter is increased from 280 to 525 nm, the nucleation regime transitions from
predominantly periodic homogeneous nucleation to a nonperiodic mixture of homogeneous and heterogeneous
nucleation. A transition barrier between the homogeneous and heterogeneous nucleation regimes is defined
by considering the relative free-energy costs of cluster formation. A thermodynamic model considering the
transition barrier and contact-line pinning on curved surfaces is constructed, which determines the possibility of
heterogeneous nucleation. It is shown that the experimental bubble generation behavior is closely captured by our
thermodynamic analysis, providing important information for controlling the periodic homogeneous nucleation
of bubbles in nanopores.
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I. INTRODUCTION

Following Moore’s Law, transistors continue to shrink,
enabling the miniaturization of electronic chips. In the mean-
time, these closely packed electronic components are subject
to significant heat generation in high-performance electronic
devices. In this context, two-phase cooling using microchan-
nel evaporators has emerged as an energy-efficient cooling
solution. In this system, liquid refrigerant enters from one
end of a channel and vaporizes while consuming heat from
the underlying chip. However, this heat transfer method via
flow boiling may cause chip overheating due to flow insta-
bilities originating from spontaneous bubble nucleation on
the channel walls. Although previous studies have shown that
boiling incipience and its associated instabilities could be ef-
fectively eliminated through wall nucleation suppression and
microheater bubble seeding [1–3], controlling the unpinning
and departure dynamics of heterogeneous nucleating bubbles
from the heater surfaces remains challenging. For compact
systems (e.g., 3D chips) comprising sub-100-μm channels,
homogeneous bubble seeds, originating in the bulk phase and
operating on the nanoscale, are needed.
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Homogeneous nanobubble [4,5] generation inside
nanopores can serve as a potential method for bubble
seeding. Through the application of a high-voltage bias
across a solid-state nanopore immersed in a concentrated salt
solution, intense and localized Joule heat is produced inside
the nanopore. After the initial heating, the solution inside
the nanopore becomes metastable, following which a bubble
nucleates homogeneously under a superheating condition.

Golovchenko and coworkers [4,5] showed that homoge-
neous nucleation inside the nanopore leads to periodic and
uniformly sized nanobubbles, making it attractive for gen-
eration of a well-organized succession of bubbly, slug, and
annular flow regimes in microchannels. Not only do these
homogeneous nanopore bubbles hold tremendous potential
for electronic cooling [2], but they could also play a role in
various applications ranging from biomedical imaging [6] to
froth flotation [7]. However, depending on conditions, hetero-
geneous bubble nucleation, which requires a lower nucleation
energy [8,9], can simultaneously occur on the inner walls
of the nanopore, reducing the efficiency of homogeneous
bubble emission. Despite the fact that bubble nucleation on
metallic nanoparticles [9], nanorods [10], and nanodots [11]
has gained significant attention in recent years due to its
potential game-changing applications in photothermal cancer
therapy [12] and solar thermal powerplants [13,14], the exact
mechanisms of homo/heterogeneous nucleation and pinning
or confinement effects are still under debate, and an in-depth
understanding is lacking.

In this paper, we investigate the bubble generation mech-
anism in nanopores due to Joule heating effects to control
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FIG. 1. (a) 3D image of a nanopore (a cylindrical hole on
a silicon nitride thin layer) where the silicon chip is affixed on
a fluidic tank. (b) SEM image of the Dp = 280 nm nanopore.
(c) Schematic (in a cross-sectional view) of the experimental setup.
Bias voltages applied across the nanopore, resulting in localized
Joule heating inside the nanopore. (d) Close-up view of the nanopore
in (c) showing homogeneous and heterogeneous clusters formation at
the pore center and cylindrical pore surface respectively. (e) Uniform
quasiperiodic signals were observed when there was only homo-
geneous nucleation. (f) Periodicity was lost when heterogeneous
nucleation started on the cylindrical pore surface.

the occurrence of homogeneous and heterogeneous bubble nu-
cleation. We study bubble generation in 280-nm and 525-nm
nanopores [Figs. 1(e) and 1(f)] and show that in the smaller
pores, homogeneous nucleation is dominant, giving rise to pe-
riodic bubbles, while the bigger pores yield a combination of
homogeneous and heterogeneous bubbles, eliminating the pe-
riodicity. We introduce a thermodynamic parameter, the tran-
sition barrier (ξ ), to elucidate the transition dynamics between
homogeneous and heterogeneous bubble nucleation. In addi-
tion to ξ , a second parameter of interest, ζ , is established that
captures the effect of nanoconfinement due to limited avail-
able surface area for heterogeneous nucleation on the cylindri-
cal pore surface. Both these parameters influence the contact
angle and the nucleation temperature of the heterogeneous
bubbles. This analysis will shed light on the transition mech-
anism between homogeneous and heterogeneous nucleation.

II. EXPERIMENTAL METHODS

Circular nanopores (as seen in the scanning electron mi-
croscope (SEM) image shown in Fig. 1(b) and Fig. S1.1 of

Ref. [15]) were made on silicon nitride chips (Model No.
4088SN-BA) purchased from Alliance Biosystems Inc., each
comprising a 100-nm-thick silicon nitride (Si3N4) membrane
deposited on a 200-μm-thick silicon substrate with an ap-
proximately square 50 μm × 50 μm opening at the center.
The nanopores were etched at the center of the free-standing
part of the membrane using a focused ion beam (SMI3050:
SII Nanotechnology, a precisely focused “fine” Ga+ beam at
around 10–17 pA). Before performing the experiments, the
nanopore-containing chip was boiled in a piranha solution
to remove organic contaminants. The chip was then glued
between two additively manufactured fluidic tanks such that
the nanopore became the only fluidic connection [Figs. 1(a)
and 1(c)], and these fluidic tanks were filled with 50% ethanol
solution to ensure that there were no air gaps in the nanopore
system. A 3M NaCl electrolyte solution was prepared by
diluting 5M NaCl (Sigma-Aldrich) with deionized (DI) wa-
ter. Before transferring the electrolyte into the fluidic tanks,
they were flushed with DI water multiple times, followed by
flushing with 3M NaCl multiple times to remove any traces
of ethanol or water in the system. After these steps, the flu-
idic tanks were filled with the prepared 3M NaCl solution.
Ag/AgCl electrodes were inserted into the tanks, and square
voltage pulses were applied across the nanopore by means
of a function generator (Tektronix AFG3151C). The circuit
current was determined by measuring the voltage across a
shunt resistor using a high-bandwidth oscilloscope (Tektronix
MDO3052). Downward current spikes were observed when
bubbles were generated, blocking ion transport through the
nanopore. Analysis of the nucleation time and bubble duration
based on current variations revealed the nucleation conditions
and bubble behavior in the nanopore.

During the experiments, collapse of bubbles in the vicinity
of the nanopore can lead to shock or stress wave forma-
tions and nanojets, which may erode the surface and thus
alter the roughness of the pore surface. For example, for the
280-nm diameter pore, we found that the baseline current
increased after prolonged bubble generation experiments, im-
plying an expansion of the pore diameter due to cavitation
erosion. However, homogeneous bubble nucleation scheme
still maintained under specific voltage ranges, highlighting
that the surface roughness on the pore surface may not
be the primary factor behind homo/heterogeneous transition
(Sec. 7 of Ref. [15]). Also, through simulations we considered
nanoscale defects on the pore surface and found their effects
on the temperature variation on pore surface are marginal.
As the transition between homogeneous and heterogeneous
nucleation is primarily governed by the nanopore temperature
distribution, surface roughness effects can be neglected in the
current system.

III. THEORETICAL ANALYSIS

Due to the high magnitude of the bias voltages and the
small thickness of the dielectric membrane, an intense electric
field was generated in the nanopore, which was converted
into remarkable Joule heat (H) following H = J · E. Here,
J = σE is the current density when the advection current is
negligible; E is the local electric field, and σ is the ionic
conductivity. This Joule heat is transferred to the surrounding
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electrolyte as well as to the silicon nitride membrane, resulting
in a sharp thermal gradient in the vicinity of the membrane
wall in the solution. As the nanopore Joule heating progresses,
the pore center temperature, Tc rises at a higher rate than the
wall temperature, Tw, leading to Tc > Tw [Fig. 1(d)]. Prior
to the Joule-heating process, Tc = Tw = T0, where T0 is the
ambient temperature.

Unlike previous studies on microheater bubbles [16–18]
where the bulk temperature is always lower than the surface
temperature, thereby allowing only heterogeneous nucleation,
in nanopore Joule heating, a higher liquid temperature at the
pore center also allows the possibility of homogeneous nu-
cleation. For homogeneous nucleation, a higher superheating
temperature is required to satisfy the kinetic requirement for
cluster formation (Tc > 575 K for water [19]), whereas het-
erogeneous nucleation temperatures largely depend upon the
dimensions of the nanostructures on the nucleating surface,
following the Young–Laplace equation [8] (424 to 474 K for
decreasing nanostructure diameters from 500 to 100 nm).

The cross-pore radial temperature difference, expressed as
�Tp = Tc − Tw, dictates whether nanopore Joule heating will
result in a homogeneous or heterogeneous bubble. �Tp can be
controlled by varying the pore diameter and bias voltage. To
obtain the temperature distribution responsible for the bubble
behavior, numerical simulations were employed to solve the
energy-conservation equation

ρcp
∂T

∂t
= 1

y

∂

∂y

(
κy

∂T

∂y

)
+ ∂

∂z

(
κ

∂T

∂z

)
+ σ | E |2, (1)

where ρ, cp, and κ denote the temperature-dependent water
density, specific heat, and thermal conductivity, respectively
[5,20], and t represents time. On an axisymmetric reference
frame centered at the center of the nanopore, y represents
the radial coordinate and z the axial coordinate. Equation (1)
was solved on a finite-volume mesh with appropriate bound-
ary conditions and numerical discretizations [21] (Sec. 2 of
Ref. [15]).

Figure 2 shows the simulated nanopore cross-sectional
temperature distributions for pores of Dp = 280 nm and
525 nm obtained after 20 μs of Joule heating for bias voltages
of 7 and 9 V. We can draw two major observations: (i) a
higher voltage leads to a higher temperature rise and higher
�Tp; and (ii) for the same voltage, a smaller pore results
in a higher value of �Tp (�Tp280 − �Tp525 is 2.44 K and
1.76 K for Vapp = 7 V and Vapp = 9 V, respectively). We
also simulated the effect of varying membrane thickness (pore
length) [Fig. 1(d)] such that L = {50, 75, 100} nm while Dp

and Vapp are kept constant at 280 nm and 7 V, respectively. We
concluded that decreasing L results in a more rapid temper-
ature rise but �Tp reduces for a given Tw. This is due to the
excess heating near the edge of the cylindrical pore, where
the electric field is higher. This edge effect increases with
increasing the Dp/L ratio.

It should be noted that, for simplicity, we neglected the
effect of temperature on the electrical conductivity in this
section. In the complete Joule-heating model, as explained in
Sec. 1 of Ref. [15], σ increases with T [22–25], following an
empirical relationship established in a previous study [5]. For
our pore and voltage configurations, we tuned this σ–T rela-
tionship to fit the experimentally observed nanopore current in
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FIG. 2. Temperature distributions across pore cross-section for
Dp = 280 and 525 nm after 20 μs of Joule heating under bias
voltages of 7 and 9 V, with T0 = 300.15 K. y denotes the radial
position from the pore centerline, as shown in Fig. 1(d). Rp = Dp/2
is the pore radius. The value of σ in Eq. (1) was defined at T0, which
remained constant during the simulation.

our simulations (Secs. 2 and 3 of Ref. [15]). In future sections,
we incorporate this relationship into the Joule-heating model
to capture the nanopore temperature distributions. As Tc > Tw,
when the σ–T variation is considered, Joule heat intensity
at the pore center would increase by a higher amount than
that near the cylindrical pore surface, resulting in an even
higher �Tp. The transient variations of Tc and Tw for the pore
configurations under study are shown in Sec. 4 of Ref. [15].

The average electric field magnitude inside the nanopore
can be approximately obtained from the nanopore circuit
model [26] as

Ep = Vapp

(L + πDp

4 )
, (2)

Equation (2) shows that when increasing the bias voltage Vapp

and decreasing the pore diameter Dp, the electric field within
the nanopore intensifies, causing more intense Joule heating.
If we consider a uniform electric field within the nanopore and
neglect the temperature dependency of the thermophysical
quantities and diffusion in the z direction, the radial tempera-
ture difference across the nanopore �Tp can be expressed as

�Tp(t ) = DT

∫ t

0

[∇2(Tc − Tw)
]
dt, (3)

where ∇2 = 1
y

∂
∂y (y ∂

∂y ) is the y component of the Laplacian
operator, Tc and Tw denote the nanopore temperatures near
the pore center and cylindrical pore surface, respectively, and
DT = κ/ρcp denotes the thermal diffusivity. In a steady state,
∇2Tc = ∇2Tw, but during the transient heating, 0 > ∇2Tc >

∇2Tw, ensuring that �Tp > 0, and this increases with time.
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Thermodynamics of nucleation

1. Energetics of cluster formation

Due to ionic Joule heating, the liquid confined inside
the nanopore enters a metastable state, and vapor cluster
(or embryo) groups originate at the cylindrical pore surface
and pore center [Fig. 6(a)]. These clusters are aggregates of
vapor molecules that form and shrink spontaneously in the
metastable liquid. Cluster formation from the bulk metastable
liquid requires a minimum (reversible) work W . For a cluster
having a critical radius r∗ and containing a critical number of
molecules n∗, W reaches a maximum value. Clusters having a
larger number of molecules than this cluster will grow spon-
taneously as the free-energy decreases [27]. W (n∗) decreases
as the superheating is increased, making it easier for a critical
cluster to appear. The reversible work needed for the forma-
tion of a spherical vapor cluster of radius r in the bulk liquid
is given by [27]

Who(r, Pv) =
[

4πr2γ − 4

3
πr3(Pv − P)

+4

3
πr3Pvln

Pv

Pv
∗

]
, (4)

in which the superscript ‘∗’ denotes the properties of a critical-
sized cluster. In this equation, P is the atmospheric pressure,
Pv is the vapor pressure inside the bubble, and γ is the sur-
face tension at the cluster interface, which is evaluated at the
cluster temperature Tv.

The vapor pressure of the critical cluster Pv
∗ is

related to the saturation vapor pressure Psat and the
critical cluster temperature Tv

∗ according to Pv
∗ =

Psatexp[(P − Psat )Mw/(NAρkTv
∗)]. Here, Psat and the liquid

density ρ are evaluated at Tv
∗ assuming saturation conditions.

Mw, NA, and k denote the molecular weight of water,
Avogadro’s number, and Boltzmann’s constant, respectively.
Assuming the critical cluster to be in thermal equilibrium
with the liquid surrounding it [28], Tv

∗ is calculated
according to

κ

∫∫
Sb

(T − Tv
∗)

δδ

dS = 0, (5)

where T is the liquid temperature inside the pore obtained
from the Joule heating simulations and interpolated over the
liquid–vapor interface of the bubble, Sb. We assume a linear
temperature gradient across a uniform thermal boundary-layer
thickness, δδ at Sb. Assuming the critical cluster to be in
mechanical equilibrium, Pv

∗ is related to the cluster radius
through the Young–Laplace equation

Pv
∗ = P + γ ∗K, (6)

where K is the curvature of the bubble surface, which for
a spherical homogeneous bubble is given by K = 2/r∗. As
Pv

∗ and γ ∗ are both temperature-dependent properties, we can
express the critical radius r∗ as a function of its temperature,
which is shown by the blue curve in Fig. 3(a). Conversely,
through Eq. (5) we can express the vapor temperature of
clusters of various sizes located at the pore center given the
liquid temperature distribution at any given time [Fig. 3(a)].
The critical points [marked by circles in Fig. 3(a)] where

(b)

(a)

FIG. 3. Variation of cluster temperature with size according to
Laplace equilibrium (solid line) and thermal equilibrium (line with
markers) for (a) homogeneous bubbles having radius r, and (b) het-
erogeneous bubbles having ζ = 1 and 0.8 inside a Dp = 525 nm
pore. The solid and hollow square markers show the variations of
vapor temperature inside bubbles having ζ = 1 and ζ = 0.8, respec-
tively, when they are in thermal equilibrium with the superheated
liquid inside the pore for specific time points [Eq. (5)]. The liquid
temperature distribution was evaluated through Joule-heating sim-
ulations for Vapp = 7.08 V across a Dp = 525 nm pore. The round
hollow markers indicate the points where both Laplace and thermal
equilibrium are satisfied, indicating the size and temperature inside a
critical nucleus.

these two curves intersect give us the solutions for the radius
and temperature of critical clusters where both Laplace and
thermal equilibrium are satisfied. In our model, we assume
that all cluster sizes have the same pressure and temperature
as a critical cluster, i.e., Pv = Pv

∗ and Tv = Tv
∗. This means

that they have the same chemical potential. The free-energy
of a homogeneous cluster can be expressed as

Who(n) = 4πγ ∗
(

3kTv
∗n

4πPv
∗

) 2
3

− nkTv
∗
(

1 − P

Pv
∗

)
, (7)

043400-4



SINGLE-BUBBLE DYNAMICS IN NANOPORES: … PHYSICAL REVIEW RESEARCH 2, 043400 (2020)

where n is the number of molecules inside the cluster, and
according to ideal gas law, this is given by

n = PvVb

kTv
≈ Pv

∗Vb

kTv
∗ , (8)

where Vb is given by

Vb =
{

4
3πr3, for a homogeneous cluster
π
3 r3 f (θ ), for a heterogeneous cluster

, (9)

where f (θ ) = 2 + 3 cos(θ ) − cos3(θ ) and θ represents the
contact angle formed by the heterogeneous bubble at the
vapor–solid interface on the liquid side, as shown in Fig. 1(d).
For heterogeneous bubble nucleation on cylindrical pore
surface, we can express the reversible work for cluster
formation as

Whe(r, θ ) = γ ∗πr2

[
f (θ ) + ε

sin4(θ )

4

]

− π

3
r3(Pv

∗ − P) f (θ ). (10)

Here, the first term corresponds to the surface free-energy
associated with the creation of the bubble and the second term
is associated with the volume contribution. Due to the curva-
ture of the cylindrical pore surface, the shape of the bubble
becomes distorted from the equilibrium shape of a spherical
cap on a flat surface. Here, ε = −r/Rp is the perturbation
parameter associated with the deformed surface. Soleimani
et al. [29] approximately solved for the bubble/drop shape on
a cylindrical surface in the absence of gravity by perturbing
a spherical cap on a flat surface subject to the constraints of
constant volume, uniform interface curvature, and the valid-
ity of the Young–Dupré condition at the contact line. The
added term, ε sin4(θ )

4 in Eq. (10) captures the perturbation in
the surface energy due to the curvature of the nucleating
surface. This term decreases with increasing pore diameter
and vanishes completely for a flat surface, in which case,
Rp → ∞. Although, only the first-order solution with respect
to the perturbation parameter ε was considered, Soleimani
et al. [29] were able to show a good match of interface
surface area and curvature when compared with numerical
solutions, even when | ε |→ 1 for large values of | θ − 90◦ |.
As θ → 90◦, the error increases, particularly for higher values
of | ε |. For example, the error in the perturbation surface free-
energy term was shown to increase to ∼21% at θ = 90◦ when
ε = 0.5 [29].

By substituting ε with −r/Rp and replacing r with
(3nkT ∗

v /π f (θ )P∗
v )1/3 in Eq. (10) according to Eqs. (8) and

(9), we arrive at

Whe(n, θ ) = πγ ∗
(

3kTv
∗√ f (θ )

πPv
∗

) 2
3

n
2
3

−nkTv
∗

Pv
∗

(
Pv

∗ − P + 3γ ∗ sin4(θ )

4Rp f (θ )

)
. (11)

Here, the vapor pressure of a critical heterogeneous cluster,
Pv

∗, is given by Eq. (6), where the mean curvature K is
given by [29]

K = {2 + [3ε sin4(θ )]/[4 f (θ )]}
r∗ . (12)

(b)

(a)

FIG. 4. Solid and dotted curves showing the computed reversible
work for heterogeneous cluster formation during unpinned and
pinned bubble growth according to Eqs. (11) and (14) for ζ = 1
on Dp = 525 nm pore. Inset (a) shows the 3D shape of a ζ = 1
heterogeneous bubble having θ = 135◦ on a Dp = 525 nm pore. Inset
(b) shows the pinned growth of a surface nanobubble after n = n∗.

In this equation, Pv
∗ increases with the vapor temperature Tv

∗,
while γ ∗ deceases with Tv

∗. Interestingly, when we try to find
the critical point by taking ∂Whe/∂r = 0 in Eq. (10), we arrive
at the same Laplace condition given by Eqs. (6) and (12).
Similar to the perturbation surface free energy, the error in
K also increases as θ → 90◦, particularly for high values of
| ε |. For ε = −0.9, an error of ∼18% in K was found with
respect to the numerical simulations for θ = 90◦.

For higher values of K , the required nucleation temperature
Tv

∗ would be higher [Eq. (6)]. Also, as ε < 0 for a concave
surface, the bubble curvature is lower than that for a flat
surface for the same contact angle.

Unlike homogeneous nucleation, heterogeneous nucleation
is constrained by the available nanostructure area [8]. So, for
a given contact angle, let the liquid–vapor interface of the
bubble be given by z1 = z1(a, φ). Here, the bubble surface
is expressed in axisymmetric coordinates about the bubble
axis [shown in Fig. 4, inset (a)]. The parameter a is a radial
coordinate and z1 is the axial distance from the bubble’s center
of curvature while φ is the azimuth angle. Both a and z1

are nondimensionalized with respect to the bubble radius r.
More details about the bubble shape are provided in Sec. 5
of Ref. [15]. Now, for the φ = 90◦ plane, which cuts the pore
surface in a straight line, the radial distance of the intersection
point of the bubble and the pore surface ai is given by impos-
ing the condition z1(ai, φ = 90◦) = cos(θ ). Then, ai becomes
a function of θ , which for a flat surface is given by ai = sin(θ ).

For a given θ , 2air∗ = L is now the maximum coverage
on the cylindrical pore surface along the φ = 90◦ plane that a
heterogeneous bubble can have. In other words, the geometry
of the pore imparts a constraint on the bubble size

ζ (r, θ ) = 2ai(θ )r

L
⇒ ζ � 1, (13)
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where ζ represents the fraction of the pore length covered by
the heterogeneous bubble. As the heterogeneous bubble must
fit on the cylindrical pore surface, ζ should always be less than
or equal to 1.

Subject to mechanical equilibrium according to the
Laplace equation, the nucleation temperature as a function of
contact angle can be deduced as

Pv
∗ = P + γ ∗

(
4ai(θ )

ζL
− 3 sin4(θ )

4Rp f (θ )

)
. (14)

We obtain the size and temperature of the critical nucleus
[marked by hollow circles in Fig. 3(b)] by solving for the roots
of Eqs. (14) and (5). The Laplace equilibrium curve is shown
by the blue and pink lines for ζ = 1 and ζ = 0.8, respectively.
We find that with decreasing ζ , the Laplace equilibrium curve
shifts upwards, while the thermal equilibrium curve shifts
downwards, causing their roots to move away from each other.

At ζ = 1, for a given θ , n∗ is the number of molecules
inside a critical cluster (r = r∗), which is given by solving
Eqs. (8) and (14). For any value of θ , when n < n∗, the
bubble will always satisfy ζ < 1. However, further addition
of molecules to the critical cluster at ζ = 1 results in pinned
growth, during which the contact angle θ should reduce such
that the constraint of ζ = 1 is maintained [as shown in Fig. 4,
inset (b)]. During this stage, the bubble radius varies as

r(θ ) = L

2ai(θ )
. (15)

Thus, unlike the unpinned stage, during the pinned stage, r
and θ are not independent and are related through Eq. (15).
Consequently n and Whe are given by combining Eq. (15) with
Eqs. (8) and (10), respectively. Figure 4 shows the variation
of Whe during unpinned growth from n = 1 to n = n∗ when
θ = θ∗ by solid lines and pinned growth for n > n∗ during
which θ < θ∗ by dotted lines. Here, θ∗ denotes the contact
angle of a critical cluster. During the unpinned stage, a local
maximum of free energy Whe is observed at n = n∗. Whe =
Whe

∗ at n = n∗. The general expression for Whe
∗ is given by

Whe
∗(ζ , θ ) = πγ ∗L2ζ 2 f (θ )

12ai
2

. (16)

As the term f (θ )/ai
2 decreases monotonically with θ , Whe

∗
decreases with increasing θ∗, as shown in Fig. 4. For homo-
geneous nucleation, the free-energy of critical cluster depends
only upon the critical cluster radius, however for heteroge-
neous nucleation, the critical free-energy depends upon two
shape parameters, ζ and θ . Without contact-line pinning, Whe

∗
would have been the net free-energy barrier for heterogeneous
nucleation. However, due to the pinning effect, the reversible
work increases beyond n = n∗ until n = n∗∗, at which point a
second maximum of Whe is observed. Here, the superscript
‘∗∗’ represents the second critical point, which is reached
during pinned growth. Whe = Whe

∗∗ and θ = θ∗∗ at n = n∗∗.
For pinned heterogeneous nucleation on a flat surface, we can
easily solve for θ∗∗ by solving for | dWhe

dθ
|
θ=θ∗∗ = 0, where Whe

(a) (b)

(c) (d)

FIG. 5. Variations of (a) ai and (b) vapor temperature inside a
bubble with θ subject to the Laplace equation for ζ = 1. Variations
of (c) Whe

∗ and (d) Whe
∗∗ with θ∗ for a ζ = 1 heterogeneous bubble.

is given by Eq. (10), such that

πγ ∗L2

[
d

dθ

(
f (θ )

4 sin2 θ
− f (θ ) sin(θ∗)

6 sin3 θ

)]
= 0

⇒ 3 sin5(θ∗∗) + 4 sin(θ∗∗) cos(θ∗∗)

+ 6 sin(θ∗∗) cos2(θ∗∗) − 2 sin(θ∗∗) cos4(θ∗∗)

= 2 sin(θ∗) sin4(θ∗∗) + 4 sin(θ∗) cos(θ∗∗)

+ 6 sin(θ∗) cos2(θ∗∗) − 2 sin(θ∗) cos4(θ∗∗). (17)

Now, for θ much greater than 90◦, θ∗∗ ≈ 180◦ − θ∗ will be
the solution to Eq. (17), as sin5(θ∗) ≈ 0 and can be neglected
compared to the other terms [Fig. 5(c)]. Additionally, for a flat
surface, the Tv

∗ versus θ∗ curve is symmetric about θ = 90◦
[Fig. 5(b)], i.e., Tv

∗(θ∗) = Tv(θ∗∗). So, Laplace equilibrium
is satisfied at both θ = θ∗ and θ = θ∗∗. Also, Whe

∗∗(θ∗) =
Whe

∗(180◦ − θ∗). Thus, for θ1 < θ2, where both angles are
much greater than 90◦, Whe

∗∗(θ2) > Whe
∗∗(θ1) as Whe

∗(180◦ −
θ2) > Whe

∗(180◦ − θ1), as per Eq. (16). In comparison to
a flat surface, for a bubble on a curved surface having θ∗
much greater than 90◦, Tv

∗ is lower due to a reduction in
bubble curvature following Eq. (14) [Fig. 5(b)]. As a result,
the corresponding value of θ∗∗ for which Laplace equilibrium
is re-established during pinned growth would be for θ∗∗ <

180◦ − θ∗, as seen in Fig. 5(c). Furthermore, as Whe
∗ increases

with decreasing θ∗, this indicates that Whe
∗∗ increases with

decreasing pore diameter for a given θ∗, as shown in Fig. 5(d).
This analysis also indicates that the more obtuse the bubble

contact angle at the critical point, the higher the net free-
energy barrier Whe

∗∗. This can be noticed in both Figs. 4 and
5(d). Thus, although a critical nucleus having n∗ molecules
is in Laplace and mechanical equilibrium, it has to over-
come an additional free-energy barrier, Whe

∗∗ − Whe
∗, to reach
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spontaneous growth conditions. Also, for a given value of
θ∗, the additional free-energy barrier is higher for smaller
pores, making heterogeneous bubble growth comparatively
more difficult than for bigger pores. This model indicates that,
due to contact-line pinning, although heterogeneous nucle-
ation is easier at higher contact angles, it also requires a higher
additional free-energy barrier to reach the spontaneous growth
conditions. A similar conclusion was reached in a previous
study [30], where obtuse contact-angled nanobubbles were
shown to form more easily than their acute-angled counter-
parts, although the former were difficult to destabilize for
nucleation. It is likely that in our system, high contact-angle
surface nanobubbles may nucleate on cylindrical pore surface,
but they either fail to or very rarely grow to completely block
the nanopore due to the pinning effect.

2. Cluster-group competition

When the liquid inside a pore is sufficiently superheated,
both homogeneous and heterogeneous clusters will appear,
and, depending upon their relative free-energy requirements,
a competition is expected to originate between these two
cluster groups.

In the literature, Ostwald ripening of bubbles has been
studied, which relates to the evolution of bubble size distri-
butions post-nucleation. When a distribution of bubble sizes
is formed after nucleation in an infinite medium, the larger
bubbles grow at the expense of the smaller bubbles so as to
reduce the total surface free energy [31–35]. In this study, we
employ a similar concept to vapor clusters originating prior to
the nucleation point. During the initial range of superheating,
when the pore liquid is in a metastable state but far from crit-
ical conditions, a competition may occur between the cluster
groups at the cylindrical pore surface and pore center. If we
consider both cluster groups as a single system and assume
reversible work for cluster formation (i.e., work recovered
from the collapse of either cluster group would be utilized
for growth of the other group), growth of the cluster group
requiring a lower W would be favored. To the best of our
knowledge, competition between homogeneous and hetero-
geneous cluster groups has not previously been studied. As
the temperature increases inwards from the cylindrical pore
surface, the free-energy cost of homogeneous clusters can
become comparable to that of heterogeneous cluster forma-
tion. This allows the possibility of such a competition. In the
traditional case of heterogeneous nucleation, where the heat
flows from the surface to the liquid, liquid near the surface
would always have a higher temperature than the bulk and
accordingly heterogeneous clusters would be associated with
a lower free-energy cost.

We hypothesize that the cluster ripening equilibrium
[Fig. 6(a)] would shift towards the cluster group that would
require a lower free-energy work per molecule of addition.
This means that if the group of heterogeneous clusters would
require a higher free-energy work to grow by �N molecules
than the group of homogeneous clusters for the same num-
ber of molecules, then the homogeneous cluster group would
grow at the expense of the loss of molecules from the hetero-
geneous clusters. In such a scenario, there is a possibility that
even if the heterogeneous clusters reach conditions very close

(a)

(b)

FIG. 6. (a) Schematic explanation of vapor cluster formation
inside a nanopore. The temperature contour corresponds to the
temperature distribution at 4.4 μs, which was obtained through a
simulation of Joule heating at 7.08 V and (b) variation of ξ with
�Tp and θ for Dp = 525 nm pore. Here, Tw = 460 K and Tc = Tw +
�Tp. The homogeneous and heterogeneous clusters are at Tc and Tw,
respectively.

to the critical conditions, the equilibrium could shift back to
homogeneous cluster ripening, thereby suppressing heteroge-
neous nucleation. To study this phenomenon quantitatively,
we calculate X , which is defined as the total free-energy of
either cluster group, such that

Xho =
n∗∑

n=1

Mho Who(n) exp

(
−Who(n)

kTv
∗

)

Xhe(θ ) =
n∗∑

n=1

Mhe(θ ) Whe(n, θ )

exp

(
−Whe(n, θ )

kTv
∗

)
, (18)

Here Tv
∗ for homogeneous and heterogeneous clusters are

obtained from the solution of Laplace and thermal equilibrium
curves [Figs. 6(a) and 6(b)]. The total number of molecules in
either group is given by

Nho = Mho

n∗∑
n=1

n exp

(
−Who(n)

kTv
∗

)
,

Nhe(θ ) = Mhe(θ )
n∗∑

n=1

n exp

(
−Whe(n, θ )

kTv
∗

)
. (19)
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Here, Mho and Mhe(θ ) are the total numbers of clusters in
the homogeneous and heterogeneous cluster groups having
contact angle θ , respectively. We assume here that clusters
belonging to either group will follow a Boltzmann distribu-
tion. As the free-energy of the clusters increases with size,
the number of clusters decays exponentially. As a result, the
quantity X depends remarkably upon the free energies of the
smaller cluster sizes belonging to each group. Now, if each
cluster group is provided with �N additional molecules, let
the change in the number of clusters of the homogeneous and
heterogeneous groups be given by M ′

ho and M ′
he(θ ), respec-

tively. It follows that

�N = M ′
ho

n∗∑
n=1

n exp

(
−Who(n)

kTv
∗

)

= M ′
he(θ )

n∗∑
n=1

n exp

(
−Whe(n, θ )

kTv
∗

)
(20)

and the free-energy cost associated with extra cluster forma-
tion is given by

�Xho = M ′
ho

n∗∑
n=1

Who(n) exp

(
−Who(n)

kTv
∗

)
,

�Xhe(θ ) = M ′
he(θ )

n∗∑
n=1

Whe(n, θ )

× exp

(
−Whe(n, θ )

kTv
∗

)
, (21)

The relative specific free-energy cost for cluster population
growth can be expressed as

ξ = �Xho

�N
− �Xhe(θ )

�N
. (22)

When ξ < 0, the specific free-energy cost of heterogeneous
cluster formation is higher than that of homogeneous cluster
formation. As the equilibrium between the two cluster groups
would shift in the direction having a lower specific free-energy
cost, ξ < 0 would indicate that homogeneous clusters would
increase in population while heterogeneous clusters would
shrink back to the liquid phase [Fig. 6(a)]. As the total cluster
population decreases, the number of critically sized clusters
decreases proportionally, reducing the statistical feasibility of
heterogeneous nucleation. The parameter ξ essentially de-
pends upon the vapor temperatures of the clusters in the
homogeneous and heterogeneous groups and also the contact
angle θ of the heterogeneous group.

Figure 6(b) summarizes the impact of θ and �Tp on ξ . The
heterogeneous clusters originating at the cylindrical pore sur-
face are assumed to be at Tw, while the homogeneous clusters
originating at the pore center are assumed to be at Tc. We find
that ξ increases with decreasing �Tp and increasing θ . With
increasing temperature, the free-energy cost for cluster forma-
tion reduces, hence when Tc is greater than Tw, it is possible
that the relative free-energy cost for homogeneous cluster for-
mation can be lower than for heterogeneous cluster formation.
On the other hand, the free-energy barrier for heterogeneous
nucleation decreases with θ [Eq. (16)], which causes ξ to

increase with increasing θ . When �Tp < 0, ξ > 0 for all θ ,
which makes the suppression of heterogeneous nucleation
impossible [Fig. 6(b)]. For �Tp > 0, there exist θ–�Tp ranges
where ξ < 0, thereby signifying possible suppression of het-
erogeneous nucleation. In the previous subsection, we showed
that at a given time point, there are two solutions for the
contact angle for which the Laplace and thermal equilibri-
ums are satisfied [Fig. 3(b)]. For the lower solution value
of θ , although �Tp is lower than �Tp for the higher solu-
tion value of θ , it is still high enough to fall into the ξ < 0
region. As a result, in most cases, it is expected that heteroge-
neous nucleation would be suppressed for the lower solution
value of θ .

IV. RESULTS AND DISCUSSION

We have observed bubble nucleation and subsequent
dynamics inside a nanopore by analyzing bubble-induced
current-blockage signatures. Once Joule heating was started
by triggering a voltage pulse, the liquid temperature inside
the nanopore started rising from the ambient temperature.
After an initial heating period, a bubble nucleated and grew,
blocking the ion flow. During this period, the nucleated bubble
first grew under the limiting effect of inertial forces due to
the high superheating temperature, followed by heat-transfer-
controlled growth where vapor evaporation occurred at the
interface. However, due to the limited sensible heat stored in
the liquid inside the nanopore, the evaporation soon ceased,
and condensation began. This triggered the bubble collapse,
as the vapor pressure was not sufficient to overcome the
Laplace pressure. The entire duration covering bubble nucle-
ation, growth, and collapse constituted one downward current
spike. Following the bubble collapse, both ion flow and Joule
heating resumed until a second bubble nucleated, repeating
the cycle. Successive bubble nucleation and reheating led to
transient current spikes.

A. Early heterogeneous nucleation

Figure 7 shows the bubble generation characteristics of a
Dp = 525 nm pore under bias voltages of (i) 6.36, (ii) 6.45,
and (iii) 7.08 V. Note that the current signals can be non-
identical for each experimental configuration. We examined
the bubble generation repeatedly (Sec. 6 of Ref. [15]), and
this revealed two different waiting times tnuc before the first
bubble was detected. For a majority of the pulses [case (a)],
the first bubble appeared after a long waiting time (47, 33.5,
and 16.3 μs for 6.36, 6.45, and 7.08 V, respectively), while
in rare occurrences [Case (b)] bubble generation started much
earlier (tnuc = 3.1, 9.8, and 4.4 μs for 6.36, 6.45, and 7.08 V,
respectively). Note that for the 6.45-V bias, early hetero-
geneous nucleation was also observed at 6.9 μs, as shown
Fig. S6.2 of Ref. [15]. We estimated the transient variation of
the pore-center temperature Tc and the pore-wall temperature
Tw through Joule-heating simulations for all pore configura-
tions under study (Fig. S4.1 of Ref. [15]). For case (a), the
nucleation happened as long as Tc reached 597–598 K. As the
kinetic limit for homogeneous nucleation (∼575 K) was ex-
ceeded, it can be concluded that the bubble was formed from
the pore center. On the other hand, for case (b), Tc was 451,
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(i)

(iii)

(ii)

(a)

(b)

(a)

(b)

(a)

(b)

FIG. 7. (i) 6.36, (ii) 6.45, and (iii) 7.08 V across a 525-nm pore.
The initial current relaxation between 0 to 6 μs was due to capacitive
charging of the dielectric chip layers upon pulse voltage initiation
[36]. (a) Bubble signal† sequence for the dominant case starting with
a homogeneous nucleation followed by a mixture of homogeneous
and heterogeneous bubble modes. (b) Bubble signal† sequence for
the rare case of early heterogeneous nucleation. (†Current data cap-
tured at 2.5 GS/s, sampled at 250 MHz and filtered at 12.5 MHz
using an eighth-order low-pass Butterworth filter).

517, and 526 K, respectively, for the three voltages [Fig. 7(b)],
much lower than the kinetic limit of homogeneous nucleation.
It is reasonable to infer that they were heterogeneous bubbles
nucleating on the cylindrical pore surface. With regard to
these early heterogeneous nucleation events, two questions
arise: (i) what were the conditions leading to their occurrence
and (ii) why, in most cases, was it suspended? To clarify
this, we calculated ξ [Eq. (22)] and ζ [Eq. (13)], as seen in

(a)

(b)

FIG. 8. Transient variations of ξ (solid lines) and ζ (dotted lines)
for bias voltages of (a) 6.45 and (b) 7.08 V across a 525-nm pore.

Fig. 8. At the early stages of superheating, ξ > 0; however, as
the Joule heating progressed, more Joule heat was liberated
at the pore center, causing �Tp to rise. Consequently, the
specific free-energy for homogeneous cluster group formation
decreased at a higher rate than for the heterogeneous group.
Eventually, homogeneous cluster formation becomes more fa-
vorable, i.e., ξ < 0. For successful heterogeneous nucleation,
the necessary condition of ζ < 1 must be satisfied before the
limit of ξ = 0 is reached. As Joule heating progresses, r∗ is
reduced for a given θ > 90◦ according to Eq. (6), and thus ζ

also decreases [Eq. (13)]. Also, ζ decreases with θ [Eq. (13)],
as ai decreases with θ when θ > 90◦. Meanwhile, ξ increases
with θ , as the minimum work for heterogeneous cluster for-
mation decreases, as per Eq. (16) and Fig. 4. Therefore, only
when θ exceeds a certain value (∼140◦–142◦ in Fig. 8), there
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exists a time period during which the necessary conditions for
heterogeneous nucleation are satisfied (i.e., ξ > 0 and ζ < 1.)

We summarize these valid periods in Fig. 8, which are
marked by arrows. It is shown that the period shrinks with
the decrease of θ . For θ = 135◦, the two conditions are never
satisfied simultaneously. Note that the early heterogeneous
nucleation points, tnuc = 9.8 μs in Fig. 7(ii)(b) and tnuc =
4.4 μs in Fig. 7(iii)(b), agree with the predicted periods at
θ = 140◦ in Fig. 8(a) and θ = 145◦ in Fig. 8(b), respectively.
After four early heterogeneous bubbles in Fig. 7(iii)(b), nucle-
ation ceased until a homogeneous bubble appeared at 16.3 μs,
consistent with our analysis that the heterogeneous cluster for-
mation is suppressed due to the decrease of ξ with time. As the
period for heterogeneous transition enlarges with θ (Fig. 8),
the early heterogeneous nucleation should be able to last much
longer as θ increases. However, spontaneous heterogeneous
bubble growth at high θ is highly unfavorable because the ad-
ditional free-energy barrier Whe

∗∗ due to contact-line pinning
increases. As a result, for θ > 148◦ nanobubbles may nucleate
on the pore surface, but they do not grow and have virtually
no effect on the nanopore current and thus no blockage signals
are registered for them during sensing experiments. Based on
previous studies, the static θ on a piranha-cleaned silicon ni-
tride surface should be in the range 20◦–60◦ [37]. Our results
indicate that when the metastability is sufficiently high, in rare
situations, a heterogeneous nucleus can form at nonequilib-
rium θ . A similar observation was reported in a previous study
[38], where, due to high supersaturation on a geometrically
constrained nanoelectrode, bubble nucleation at an out-of-
equilibrium θ of 150◦ was recorded for a platinum surface.

B. Heterogeneous nucleation during reheating

Intriguingly, after nucleation of the first bubble, subsequent
bubble events were observed, as shown in Fig. 7. However,
neither the blockage duration nor the waiting times separating
two bubbles were uniform (as shown in Fig. 7). To understand
the root cause behind this nonperiodicity, we performed sta-
tistical analysis of these signals. An in-house bubble-signal
analysis package was developed in MATLAB [39] to identify
the blockage duration of each bubble event and the waiting
time preceding it. Figures 9(a) and 9(b) show histograms
of the blockage duration for bubble events recorded at 6.36
and 7.08 V for multiple pulse signals (Figs. S6.1 and S6.3
of Ref. [15]).

Two clear peaks are identified. The smaller peaks in
Figs. 9(a) and 9(b) (orange bars) covers high blockage-
duration bubble events while the larger peak (blue bars)
demonstrates shorter blockage-duration bubbles. From the
scatter plots in Figs. 9(c) and 9(d), we find that the blockage
duration of successive bubbles is proportional to the waiting
time preceding its nucleation. A longer waiting time allowed
more storage of sensible heat in the liquid, enabling the bubble
to grow to a bigger size and thus resulting in a longer current
blockage. It is also shown that the majority of bubbles had a
waiting time less than 1 μs. As there is a strict activation tem-
perature of ∼575 K for homogeneous nucleation, these early
nucleation events during the reheating sequence are suspected
to be heterogeneous bubbles originating from the cylindrical
pore surface. Due to the lower amount of sensible heat in the

(a) (b)

(c)
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FIG. 9. Histograms of bubble blockage duration for bias voltages
of (a) 6.36 and (b) 7.08 V across a 525-nm pore. Two peaks were
identified, implying two modes of bubble generation. The lower peak
covered high blockage-duration homogeneous bubbles (orange bars)
while the higher peak covered short-duration heterogeneous bubbles
(blue bars). (c) and (d) show scatter plots of blockage duration versus
waiting time for successive bubbles formed after the first homoge-
neous bubble for 6.36 and 7.08 V, respectively.

liquid at the nucleation point, these heterogeneous bubbles
were small and collapsed quickly (indicated by the blue bars)
compared with the homogeneous bubbles (indicated by the
orange bars).

The higher prevalence of heterogeneous bubbles during
reheating can be traced back to a lower value of �Tp. After
the bubble collapses, the liquid inside the nanopore retains a
part of the thermal energy and the post-collapse nanopore tem-
perature is higher than the ambient temperature (Fig. S8.1(a)
of Ref. [15]). As a result, the Joule heating rate is higher
during the reheating sequence and the rise of temperature back
to nucleation conditions will be faster. Actually, the average
post-collapse temperature within the pore volume increases
with decreasing pore size. A smaller pore generates smaller
bubbles, which spread out the stored sensible heat in the liquid
prior to nucleation over a smaller area. As a result, the average
temperature inside the pore post-collapse is usually higher for
a smaller pore. According to our simulations, the average pore
temperatures for the first homogeneous bubble post-collapse
for the 525-nm pore under 7.08 V and the 280-nm pore
under 6.84 V were 335 and 353 K, respectively. A higher
collapse temperature implies two outcomes: (i) less Joule
heat is needed to return to nucleation temperature, (ii) the
Joule heating rate is higher as electrical conductivity increases
with temperature, allowing more current to flow through the
nanopore, and the subsequent waiting times are reduced as
a result. For the 107-nm pore used in the previous study by
Golovchenko’s group [4,5], the waiting time observed was
117 ns, while for the 525-nm pore and the 280-nm pore,
the waiting times between the first two successive homoge-
neous bubbles were recorded to be 4.18 μs [Fig. 7(iii)(a)]
and 1.36 μs [Fig. 11(a)], respectively. Due to the reduction
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(b) (c)(a)

FIG. 10. (a), (b), and (c) show the simulated bubble growth
and collapse for the first homogeneous bubble nucleating at tnuc

in Fig. 7(a) for 6.36, 6.45, and 7.08 V, respectively across
a 525-nm pore.

in waiting time, �Tp is reduced during the reheating period
compared to the initial heating period for a given pore and
voltage configuration according to Eq. (3). Consequently, the
probability of heterogeneous nucleation increases.

In most cases, when the first bubble nucleates homoge-
neously after a long initial waiting time, the second bubble

(a)

(b)

FIG. 11. (a) Periodic bubble signals (current data captured at
2.5 GS/s, sampled at 500 MHz and filtered at 25 MHz using an
eighth-order low-pass Butterworth filter). Inset shows simulated bub-
ble growth and collapse for the first homogeneous bubble nucleating
at tnuc = 14.8 μs and (b) transient variation of ξ (solid lines) and ζ

(dotted lines) for Dp = 280 nm under a 6.84-V bias.

also nucleates homogeneously after a much shorter waiting
time. This trend becomes more dominant as the lifetime of
the first bubble increases. For example, in Fig. 7(iii)(a), the
lifetime of the first bubble is 490 ns, while the lifetime of
the second bubble is 448 ns. According to the histograms
in Fig. 9(b), both these bubbles fall within the homogeneous
bubble blockage-duration range. As the second homogeneous
bubble is short lived, the post-collapse temperature would
be higher than that of the first bubble, increasing the prob-
ability of heterogeneous nucleation after the second bubble
as compared to after the first bubble. Furthermore, as the
heterogeneous bubbles are smaller and shorter lived, the
post-collapse temperature is expected to be higher, thereby
lowering the waiting time, and the accumulated �Tp at the
next nucleation point will be lower, which makes the hetero-
geneous transition easier. Thus, once heterogeneous bubbles
start nucleating during reheating, it becomes difficult to re-
vert back to the homogeneous nucleation mode. As a result,
the fraction of bubbles nucleating heterogeneously is con-
siderably higher than the fraction nucleating homogeneously
[Figs. 9(a) and 9(b)].

Compared to the 7.08-V bias, the fraction of homogeneous
bubbles is smaller for the 6.36-V bias, as a lower H enables
a lower value of �Tp. As a result, heterogeneous transition
becomes comparably more predominant during the reheating
sequence. This phenomenon is captured in Figs. 9(a) and 9(b),
where the fraction of heterogeneous bubbles is larger than the
fraction of homogeneous bubbles by a greater margin for the
6.36-V bias than the 7.08-V bias.

Bubble growth and collapse was simulated by solving
the Rayleigh–Plesset equation over a moving-boundary one-
dimensional liquid mesh [40,41]. Details of the governing
equations are provided in Sec. 9 of Ref. [15]. In this method,
we assumed spherical bubble dynamics with temperature
dependent thermophysical properties [5,20,42,43] and the
liquid temperature distribution to be symmetric along the
bubble circumference. Moreover, heat dissipation through the
membrane walls was neglected, which resulted in a slight
overestimation of the sensible heat available in the liquid dur-
ing growth. The bubble lifetime in the simulations therefore
slightly overpredicts the blockage duration seen in the exper-
iments. Figures 10(a), 10(b), and 10(c) show the simulated
bubble growth and collapse for the first homogeneous bubble
in Figs. 7(i)(a), 7(ii)(a), and 7(iii)(a), respectively. Compared
to the experimentally observed blockage durations of 584 ns,
536 ns, and 490 ns, the simulated lifetimes were 588, 542,
and 537 ns, respectively. Compared to the 7.08-V homoge-
neous bubble, the 6.36-V homogeneous bubble grows to a
larger size and survives for a longer time because a lower
heating rate results in a larger waiting time, thus storing more
sensible heat in the liquid. This is the same reason behind
the shift of the homogeneous bubble peak towards the higher
blockage-duration range in the 6.36-V histogram compared
to the 7.08-V histogram. The strong correlations among the
waiting times, available sensible heat, and bubble lifetime
are also demonstrated for heterogeneous bubbles. The early
heterogeneous bubble observed at 3.1 μs in Fig. 7(i)(a) (inset)
has a shorter lifetime (96 ns) than the 260-ns heterogeneous
bubble observed at 9.8 μs in Fig. 7(ii)(a) (inset). Also, com-
pared to this 260-ns bubble, the early heterogeneous bubble at
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4.4 μs in Fig. 7(iii)(a) (inset) has a shorter duration of 200 ns.
In this case, although the Tw is almost similar, the higher
waiting time for the 6.45-V bubble allows more sensible heat
to be stored in the liquid, resulting in longer-duration bubbles.

To validate the simulation results, we refer to the nanobub-
ble collapse time tc model [44]. The original ‘Rayleigh

collapse’ formula [45,46], tc = 0.915(ρRmax
2/[P − Pv])

1
2 is

valid for a macroscopic bubble and was derived through
numerical integration of the Rayleigh–Plesset equation, ne-
glecting thermal, viscous, and capillary effects. Magaletti
et al. [44] modified this formula by adding the Laplace
pressure term to account for the high surface tension depen-
dence during nanobubble collapse dynamics. The modified
formula is

tc = 0.915

(
ρRmax

2

P + 2γ /Rmax − Pv

) 1
2

. (23)

The maximum bubble radius Rmax reached in Fig. 10(c) is
3085 nm. At this point, Ṙ = 0, but the bubble interface
is under a net compressive force as the vapor pressure Pv is
lower than the Laplace pressure, thus triggering the collapse.
The vapor pressure inside the bubble and the surface tension
of the interface were calculated for the interface temperature
of 338 K attained at R = Rmax, which remained almost con-
stant for the majority of the collapse duration. According to
Eq. (23), the estimated collapse time is 256 ns, which is in
good agreement with the simulated collapse time (252 ns).
This validates the numerical scheme of bubble dynamics fol-
lowed in this paper.

C. Quasiperiodic signals for a 280-nm pore

Figure 11(a) shows the bubble signals for a 280-nm
diameter pore under a bias voltage of 6.84 V. For this
voltage, multi-pulse signal analysis reveals that bubble gen-
eration started consistently at 14.8 ± 0.3 μs at Tc = 587 K
(Figs. S6.4 and S4.1(d) of Ref. [15]). As this temperature
is greater than the kinetic limit, it is indicated that the bub-
bles were homogeneous bubbles. The experimental blockage
duration was 118 ns [Fig. 11(a)], while the simulated bub-
ble lifetime at tnuc = 14.8 ± 0.3 μs was within 165 ± 3 ns.
This overestimation may be due to the assumptions made in
the model. Unlike the 525-nm pore, the rare cases of early
heterogeneous nucleation were not observed for the 280-nm
pore under a 6.84-V bias. After the first bubble collapsed,
the reheating continued for 1.36 μs before the nucleation of
the second bubble (homogeneous). The repeating of this cycle
leads to periodic current-blockage signals of uniform duration
and separated by consistent waiting times.

For the multi-pulse bubble signals (Fig. S6.4 of Ref. [15]),
we found that for three out of seven pulses, only periodic
homogeneous bubbles were observed, while for the remain-
ing four pulses, transitions into nonperiodic heterogeneous
bubbles were observed after a few homogeneous bubbles.
However, in general, periodic homogeneous bubbles were
more dominant than heterogeneous bubbles in the 280-nm
pore (in contrast to the 525-nm pore). Through ξ–ζ analysis,
we investigated why the heterogeneous nucleation was largely
suppressed in the 280-nm pore. As seen in Fig. 11(b), which

shows the transient variations of ξ and ζ during the initial
heating period, the favorable time window for heterogeneous
nucleation starts appearing for θ = 148◦, which is higher than
θ = 140◦ for the 525-nm pore. This is caused by the steeper
temperature variation in the smaller pore (i.e., a higher �Tp),
which lowers ξ . As the contact angles of the heterogeneous
nuclei increase, the secondary free-energy barrier Whe

∗∗ also
increases. As shown in Fig. 5(d), even for the same value of
θ , a smaller pore is associated with a higher value of Whe

∗∗.
From Fig. 5(d), we find that Whe

∗∗ for a θ = 148◦ critical
cluster inside the 280-nm pore is nearly two times that of
a θ = 145◦ critical cluster inside the 525-nm pore. Due to
the combined effects of pore curvature and higher �Tp, the
threshold for heterogeneous bubble formation is increased
for a smaller pore, making the occurrence of heterogeneous
bubbles during the experiments significantly lower. However,
it is worth mentioning that even for this small pore size,
oscillating heterogeneous bubbles similar to that reported in
Hou et al. [47] started occurring beyond a critical voltage.
More investigation is needed to explore the mechanism in
detail, which will be conducted in our future research.

V. CONCLUSIONS

In summary, we showed that nanopore bubble generation
is neither always homogeneous nor periodic. The temperature
difference between the pore center and the pore surface, �Tp,
decides the likelihood of heterogeneous bubble nucleation
on the cylindrical pore surface. We show that even if the
pore surface temperature allows the formation of a hetero-
geneous nucleus, nucleation can be suppressed if �Tp > 0.
We demonstrate that this behavior can be captured by a new
thermodynamic parameter, ξ , which considers the relative
free-energy costs of cluster groups originating at the pore cen-
ter and the cylindrical pore surface. When both the necessary
conditions of ξ > 0 and ζ < 1 are met, heterogeneous nucle-
ation may occur. In addition, we found that growth of pinned
heterogeneous nuclei requires overcoming an additional free-
energy barrier to reach spontaneous-growth conditions. This
made heterogeneous bubbles more prevalent during reheating,
when a lower value of �Tp allows low-contact-angle het-
erogeneous nuclei to appear on the cylindrical pore surface,
and these are easy to destabilize. As growth of nucleated
nanobubbles is largely fluctuation driven, it is stochastic by
nature. However, homogeneous nucleation which has a higher
free-energy barrier is kinetically controlled, causing determin-
istic nucleation temperatures and waiting times. To partially
suppress heterogeneous nucleation, we engineered a pore with
a high �Tp by reducing the pore diameter to 280 nm. Ad-
ditionally, it was shown that the secondary energy barrier
increases for smaller diameter pores, making growth of pinned
heterogeneous surface nanobubbles more difficult. As a result,
the 280-nm pore showed quasiuniform and quasiperiodic gen-
eration of homogeneous bubbles.

Given that temperature hotspots within the size range
of nucleating bubbles can be engineered inside nanopores
through Joule heating, this platform provides a unique op-
portunity to study singe nanobubble dynamics. In this study,
we relied on the four parameters obtained from resistive
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pulse sensing experiments namely the (i) baseline current, (ii)
nucleation times, (iii) blockage durations, and (iv) waiting
times to identify the bubble generation schemes (homoge-
neous or heterogeneous). However, to gain an insight into
other nanobubble characteristics, e.g., bubble translocation
[48], bubble oscillations [47] and nanojets formed post bubble
collapse [49], the combination of other experimental tech-
niques such as acoustic sensing [50], light scattering [4,51],
and direct visualization through 4D electron microscope [52]
may prove useful in the future.

ACKNOWLEDGMENTS

This work was supported by the Japan Society for
the Promotion of Science (JSPS) KAKENHI Grant Nos.
20H02081 and 20J22422. A part of this work was con-
ducted at the Advanced Characterization Nanotechnology
Platform of the University of Tokyo, supported by the Nan-
otechnology Platform of the Ministry of Education, Culture,
Sports, Science, and Technology (MEXT), Japan, Grant No.
JPMXP09A19UT0167.

[1] J. R. Thome and V. Dupont, Bubble Generator, US Patent No.
7,261,144 (2007).

[2] G. Liu, J. Xu, and Y. Yang, Seed bubbles trigger boiling heat
transfer in silicon microchannels, Microfluid. Nanofluidics 8,
341 (2010).

[3] J. Xu, G. Liu, W. Zhang, Q. Li, and B. Wang, Seed bubbles
stabilize flow and heat transfer in parallel microchannels, Int. J.
Multiph. Flow 35, 773 (2009).

[4] G. Nagashima, E. V. Levine, D. P. Hoogerheide, M. M. Burns,
and J. A. Golovchenko, Superheating and Homogeneous Single
Bubble Nucleation in a Solid-State Nanopore, Phys. Rev. Lett.
113, 024506 (2014).

[5] E. V. Levine, M. M. Burns, and J. A. Golovchenko, Nanoscale
dynamics of Joule heating and bubble nucleation in a solid-state
nanopore, Phys. Rev. E 93, 013124 (2016).

[6] C. Pellow, D. E. Goertz, and G. Zheng, Breaking free from
vascular confinement: Status and prospects for submicron ul-
trasound contrast agents, Wiley Interdiscip. Rev. Nanomed.
Nanobiotechnol. 10, e1502 (2018).

[7] M. Fan, D. Tao, R. Honaker, and Z. Luo, Nanobubble genera-
tion and its application in froth flotation (Part I): Nanobubble
generation and its effects on properties of microbubble and
millimeter scale bubble solutions, Min. Sci. Tech. 20, 1 (2010).

[8] S. Witharana, B. Phillips, S. Strobel, H. D. Kim, T. McKrell,
J. B. Chang, J. Buongiorno, K. K. Berggren, L. Chen, and Y.
Ding, Bubble nucleation on nano- to micro-size cavities and
posts: An experimental validation of classical theory, J. Appl.
Phys. 112, 064904 (2012).

[9] Y. Wang, M. E. Zaytsev, G. Lajoinie, H. L. The, J. C. T.
Eijkel, A. van den Berg, M. Versluis, B. M. Weckhuysen, X.
Zhang, H. J. W. Zandvliet, and D. Lohse, Giant and explosive
plasmonic bubbles by delayed nucleation, Proc. Natl. Acad. Sci.
USA 115, 7676 (2018).

[10] E. Boulais, R. Lachaine, and M. Meunier, Plasma-mediated
nanocavitation and photothermal effects in ultrafast laser irra-
diation of gold nanorods in water, J. Phys. Chem. C 117, 9386
(2013).

[11] M. T. Carlson, A. J. Green, and H. H. Richardson, Superheating
water by CW excitation of gold nanodots, Nano Lett. 12, 1534
(2012).

[12] E. Y. Lukianova-Hleb, X. Ren, R. R. Sawant, X. Wu, V. P.
Torchilin, and D. O. Lapotko, On-demand intracellular am-
plification of chemoradiation with cancer-specific plasmonic
nanobubbles, Nat. Med. 20, 778 (2014).

[13] S. Baral, A. J. Green, M. Y. Livshits, A. O. Govorov, and
H. H. Richardson, Comparison of vapor formation of water at

the solid/water interface to colloidal solutions using optically
excited gold nanostructures, ACS Nano 8, 1439 (2014).

[14] O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and
N. J. Halas, Solar vapor generation enabled by nanoparticles,
ACS Nano 7, 42 (2012).

[15] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.2.043400 for further information.

[16] D. M. Nguyen, L. Hu, J. Miao, and C.-D. Ohl, Oscillate Boil-
ing from Electrical Microheaters, Phys. Rev. Appl. 10, 044064
(2018).

[17] J. Li, G. Peterson, and P. Cheng, Dynamic characteristics of
transient boiling on a square platinum microheater under mil-
lisecond pulsed heating, Int. J. Heat Mass Transf. 51, 273
(2008).

[18] Z. Yin, A. Prosperetti, and J. Kim, Bubble growth on an impul-
sively powered microheater, Int. J. Heat Mass Transf. 47, 1053
(2004).

[19] C. T. Avedisian, The homogeneous nucleation limits of liquids,
J. Phys. Chem. Ref. Data 14, 695 (1985).

[20] W. Wagner and A. Pruß, The IAPWS formulation 1995 for
the thermodynamic properties of ordinary water substance for
general and scientific use, J. Phys. Chem. Ref. Data 31, 387
(2002).

[21] D. J. E. Harvie, An implicit finite volume method for arbitrary
transport equations, ANZIAM J. 52, 1126 (2012).

[22] A. Rogacs and J. G. Santiago, Temperature effects on elec-
trophoresis, Anal. Chem. 85, 5103 (2013).

[23] S. P. Porras, M.-L. Riekkola, and E. Kenndler, The principles
of migration and dispersion in capillary zone electrophoresis in
nonaqueous solvents, Electrophoresis 24, 1485 (2003).

[24] E. Nightingale Jr, Phenomenological theory of ion solvation.
Effective radii of hydrated ions, J. Phys. Chem. 63, 1381
(1959).

[25] J. E. Bannard, Effect of density on the electrical conductance of
aqueous sodium chloride solutions, J. Appl. Electrochem. 5, 43
(1975).

[26] A. Gadaleta, C. Sempere, S. Gravelle, A. Siria, R. Fulcrand,
C. Ybert, and L. Bocquet, Sub-additive ionic transport across
arrays of solid-state nanopores, Phys. Fluids 26, 12005 (2014).

[27] P. G. Debenedetti, Metastable Liquids: Concepts and Principles
(Princeton University Press, 1996).

[28] D. Wu, Y.-Y. Duan, and Z. Yang, Thermodynamic model for
heterogeneous bubble nucleation in a temperature gradient,
Appl. Phys. Lett. 97, 081911 (2010).

[29] M. Soleimani, R. J. Hill, and T. G. van de Ven, Bubbles and
drops on curved surfaces, Langmuir 29, 14168 (2013).

043400-13

https://doi.org/10.1007/s10404-009-0465-y
https://doi.org/10.1016/j.ijmultiphaseflow.2009.03.008
https://doi.org/10.1103/PhysRevLett.113.024506
https://doi.org/10.1103/PhysRevE.93.013124
https://doi.org/10.1002/wnan.1502
https://doi.org/10.1016/S1674-5264(09)60154-X
https://doi.org/10.1063/1.4752758
https://doi.org/10.1073/pnas.1805912115
https://doi.org/10.1021/jp312475h
https://doi.org/10.1021/nl2043503
https://doi.org/10.1038/nm.3484
https://doi.org/10.1021/nn405267r
https://doi.org/10.1021/nn304948h
http://link.aps.org/supplemental/10.1103/PhysRevResearch.2.043400
https://doi.org/10.1103/PhysRevApplied.10.044064
https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.045
https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.015
https://doi.org/10.1063/1.555734
https://doi.org/10.1063/1.1461829
https://doi.org/10.21914/anziamj.v52i0.3949
https://doi.org/10.1021/ac400447k
https://doi.org/10.1002/elps.200305373
https://doi.org/10.1021/j150579a011
https://doi.org/10.1007/BF00625958
https://doi.org/10.1063/1.4863206
https://doi.org/10.1063/1.3483191
https://doi.org/10.1021/la403088r


SOUMYADEEP PAUL et al. PHYSICAL REVIEW RESEARCH 2, 043400 (2020)

[30] J. Zou, H. Zhang, Z. Guo, Y. Liu, J. Wei, Y. Huang, and
X. Zhang, Surface nanobubbles nucleate liquid boiling,
Langmuir 34, 14096 (2018).

[31] H. Watanabe, M. Suzuki, H. Inaoka, and N. Ito, Ostwald ripen-
ing in multiple-bubble nuclei, J. Chem. Phys. 141, 234703
(2014).

[32] J. Marqusee and J. Ross, Theory of ostwald ripening: Compet-
itive growth and its dependence on volume fraction, J. Chem.
Phys. 80, 536 (1984).

[33] Y. De Smet, L. Deriemaeker, and R. Finsy, A simple computer
simulation of ostwald ripening, Langmuir 13, 6884 (1997).

[34] Y. Tomo, Q. Y. Li, T. Ikuta, Y. Takata, and K. Takahashi,
Unexpected homogeneous bubble nucleation near a solid-liquid
interface, J. Phys. Chem. C 122, 28712 (2018).

[35] E. Tjhung, C. Nardini, and M. E. Cates, Cluster Phases and
Bubbly Phase Separation in Active Fluids: Reversal of the Ost-
wald Process, Phys. Rev. X 8, 031080 (2018).

[36] V. Dimitrov, U. Mirsaidov, D. Wang, T. Sorsch, W. Mansfield,
J. Miner, F. Klemens, R. Cirelli, S. Yemenicioglu, and G.
Timp, Nanopores in solid-state membranes engineered for sin-
gle molecule detection, Nanotechnology 21, 065502 (2010).

[37] L. Barhoumi, A. Baraket, N. M. Nooredeen, M. B. Ali, M. N.
Abbas, J. Bausells, and A. Errachid, Silicon nitride capacitive
chemical sensor for phosphate ion detection based on cop-
per phthalocyanine–acrylate-polymer, Electroanalysis 29, 1586
(2017).

[38] S. R. German, M. A. Edwards, H. Ren, and H. S. White, Critical
nuclei size, rate, and activation energy of H2 gas nucleation,
J. Am. Chem. Soc. 140, 4047 (2018).

[39] MATLAB, 9.6.0.1174912 (R2019a) Update 5 (The MathWorks
Inc., Natick, Massachusetts, 2019), https://in.mathworks.com/
products/matlab.html.

[40] A. J. Robinson and R. L. Judd, The dynamics of spherical
bubble growth, Int. J. Heat Mass Transf. 47, 5101 (2004).

[41] A. J. Robinson and R. L. Judd, Bubble growth in uniform and
spatially distrubuted temperature field, Int. J. of Heat and Mass
Transf. 44, 2699 (2001).

[42] W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC
Press, Boca Raton, FL, 2016).

[43] J. Cooper and R. Dooley, Release of the IAPWS formulation
2008 for the viscosity of ordinary water substance (IAWPS,
2008).

[44] F. Magaletti, L. Marino, and C. M. Casciola, Shock Wave For-
mation in the Collapse of a Vapor Nanobubble, Phys. Rev. Lett.
114, 064501 (2015).

[45] L. Rayleigh, VIII. On the pressure developed in a liquid during
the collapse of a spherical cavity, Philos. Mag. 34, 94 (1917).

[46] C. E. Brennen, Cavitation and Bubble Dynamics (Cambridge
University Press, 2014).

[47] L. Hou, M. Yorulmaz, N. R. Verhart, and M. Orrit, Explosive
formation and dynamics of vapor nanobubbles around a con-
tinuously heated gold nanosphere, New J. Phys. 17, 013050
(2015).

[48] G. Gallino, F. Gallaire, E. Lauga, and S. Michelin, Physics of
bubble-propelled microrockets, Adv. Funct. Mater. 28, 1800686
(2018).

[49] O. Supponen, D. Obreschkow, M. Tinguely, P. Kobel, N.
Dorsaz, and M. Farhat, Scaling laws for jets of single cavitation
bubbles, J. Fluid Mech. 802, 263 (2016).

[50] O. Supponen, D. Obreschkow, P. Kobel, N. Dorsaz, and M.
Farhat, Detailed experiments on weakly deformed cavitation
bubbles, Exp. Fluids 60, 33 (2019).

[51] X. Shi, R. Gao, Y.-L. Ying, W. Si, Y.-F. Chen, and Y.-T. Long,
A scattering nanopore for single nanoentity sensing, ACS Sens.
1, 1086 (2016).

[52] X. Fu, B. Chen, J. Tang, and A. H. Zewail, Photoinduced
nanobubble-driven superfast diffusion of nanoparticles imaged
by 4D electron microscopy, Sci. Adv. 3, e1701160 (2017).

043400-14

https://doi.org/10.1021/acs.langmuir.8b03290
https://doi.org/10.1063/1.4903811
https://doi.org/10.1063/1.446427
https://doi.org/10.1021/la970379b
https://doi.org/10.1021/acs.jpcc.8b09200
https://doi.org/10.1103/PhysRevX.8.031080
https://doi.org/10.1088/0957-4484/21/6/065502
https://doi.org/10.1002/elan.201700005
https://doi.org/10.1021/jacs.7b13457
https://in.mathworks.com/products/matlab.html
https://doi.org/10.1016/j.ijheatmasstransfer.2004.05.023
https://doi.org/10.1016/S0017-9310(00)00294-5
https://doi.org/10.1103/PhysRevLett.114.064501
https://doi.org/10.1080/14786440808635681
https://doi.org/10.1088/1367-2630/17/1/013050
https://doi.org/10.1002/adfm.201800686
https://doi.org/10.1017/jfm.2016.463
https://doi.org/10.1007/s00348-019-2679-4
https://doi.org/10.1021/acssensors.6b00408
https://doi.org/10.1126/sciadv.1701160

