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Abstract

24 Evidence is provided for a conjecture that,/in the continuum limit, the
mean of the causal set action of a causal set sprinkled into a globally
27 hyperbolic Lorentzian spacetime, Mef finite volume equals the Einstein
Hilbert action of M plus the volume of ‘the co-dimension 2 intersection
30 of the future boundary with thespast boundary. We give the heuristic
argument for this conjecture andranalyse some examples in 2 dimensions

33 and one example in 4 dimensions.
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1 The causal set action

One of the major tasks facing the causal set approach to the problem of quantum
gravity is the construction of a quantum dynamics for causal sets. €At the eurrent
stage of development of the theory there are, roughly, two main strategies for tackling
this. One is to construct a quantal version of the classical sequentialsgrowth models
for causal sets [1-4] in which causal sets grow in a process of accretion’of new.elements.
In contrast to this process approach, the other strategy is to construct what might be
called state sum models where a sum over causal sets — usually of afixed cardinality
— is defined using a weight for each causal set given by the ‘exponential of (i times)
an action for the causal set [5-8].

One of the causal set actions that is being used im the state sum approach to
constructing a quantum dynamics for causal sets dsithe Benincasa-Dowker-Glaser
action [9-12]. This is actually a family of actions, S](;%G(C) for a finite causal set,

{C, =}, one action for each natural number d >l

n - 4
1 d
FSiha(@) = cafy + 2 3= G, (1)
=
where ¢, := _ad(é)d_Q, and oy and 3, are d-dependent constants of order 1. lg_Q =

8mGh is the d-dimensional Planck length and [ is the fundamental length scale of
causal set theory so the ratio i is expected to be a dimensionless number of order 1.
N; is the number of inclusive order intervals of cardinality ¢+ 1 in C, where the order
interval I(a,b) between two eausal set elements a and b such that a < b is given by
I(a,b) :={c€Cla=c=2b} nyg:="44]| so for d = 2,3 there are 3 terms in the
sum, for d = 4,5 there are 4 terms’ etc. C’fd) is fixed to be equal to 1 and the other
Ci(d) are rational constants’ of alternating sign. The values of the constants ay, (g,
and C¥ for all d‘are giveniing[12].

The dimension-dependenee of the BDG action suggests that no one of these actions
will turn out to be fundamental: quantum gravity should explain how d = 4 arises,
not put it in-by hand: Nevertheless, one can imagine one or more of the family
of BDG agtions beingirelevant in some intermediate regime of the theory, between
the fundamental and the continuum regimes and/or in some particular historical,
cosmological epoch, and it is important to study the properties of the BDG action.

For each globally hyperbolic, continuum Lorentzian spacetime M of dimension
d and finite volume, the Poisson process of sprinkling at density p := [7¢ and the
causal set action S gives rise to a random variable S,(M) that equals the action S

evaluated on the random causal set that is the outcome of the sprinkling process.!

YOut of the family of actions, it is the one where d equals the dimension of M that is used to
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We call this random variable the random discrete action of M at density p. dtis
conjectured that in the continuum limit of [ — 0 or p — 00, the expected yvalue of
the random discrete action, (S,(M)), tends to (h times) the Einstein-Hilbert action
plus certain boundary contributions [10].?

More precisely, let M be globally hyperbolic and of finite volumie. Then, the
boundary of (the closure of) M is achronal: no two points of the boundary are
timelike related. The boundary of M is the union of ¥_ and >, the past and future
boundaries respectively. 3, (3_) is defined to be the set of points at which future
(past) going timelike curves leave the closure of M. The hypgrsurface ¥ can be null
(for example a causal interval), spacelike (for example aslab’of an'Einstein static

cylinder) or both (for example a “truncated” causal interval with®its top sliced off).

Conjecture 1. Page 44 of [10]:

lim l<S (M)> ld12 /M ddl’\/_ + — ld 5 VOld Q(J) (12)

p—oo fy
Q
where J 1= X_NX,, which we will refer to as the joint, and Voly_o(J) is its volume.

There is some evidence for the conjecture in the literature for the case of flat
spacetime: it holds for flat causal intervals in all dimensions [13,14] and for a null
triangle and for a cylinder spacetime in 2%dimensions [13].

To understand the conjecture, recalbywhere the action comes from. The family
of actions arose from the discovery of scalar d’Alembertian analogues on causal sets,
starting with d = 2 [15] and{d = 4"[9}.and then for all d [11,12]. For a scalar field on

C, ¢ :C — R, for each d >.0, there i§ a retarded d’Alembertian operator B®:

N

B dal) = 4 <ad¢ + Ba Z > (b ) (1.3)

beL;
where a € C and the sums are over levels L, :== {c € C|c¢ < a and |I(a,c)|=1i+1}.
So, for example the first level, L, is the set of elements that precede a and are linked
to a, Lo is/the set of elements ¢ that precede a such that there is one element in the
order strictly/between a and ¢ and so on. Given a spacetime M of dimension d and
a scalar field ¢'on it, for every € M, B and the sprinkling process at density p

give tise to a/tandom variable B,¢(z) which is the value of B@¢(z) evaluated for

construct the random discrete action of M. For that reason, we drop the superscript d on S,(M)
as it is implied by the dimension of M.

2Thetandom discrete action can be defined for spacetimes that satisfy weaker causality conditions
than global hyperbolicity. For example, the random discrete action of the 2 dimensional trousers

spacetime is studied in [13].
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the sprinkled causal set and field induced on it, with an element at x added by hand.
In Minkowski space, in 2 [16] and 4 [17] dimensions, it has been proved that'if ¢lis
of compact support and if x is not on the past boundary of the supportf ¢, the
mean of this random variable, tends in the continuum limit to O¢(z). It shouldsbe
straightforward to extend this Minkowski spacetime result to all dimensions. In 4
dimensional curved spacetime, it has been proved that if the support ef.¢ is a region
that is small compared to any radius of curvature, the continuum limit of the mean
of the random variable is O¢(z) — Z&¢(2) [17]. This result also holds for d = 2

2
but it has not been extended to other dimensions, nor to the “streng gravity” or

“cosmological” case where the size of the region is compazrable'to or/larger than the
radius of curvature. It has, however, been shown that if themmean of the B(®¢(x)

random variable is a local quantity then

lim (B,(x)) = 06(z) <t o(2) (14)

p—>00 2

in every dimension [11,12]. The coefficient —§ of the sealar curvature term is dimen-
sion independent.

This work on the scalar d’Alembertian, then suggests the definition of a dimension
dependent, causal set Ricci scalar curvature analogue, by applying the operator B to
the constant field, -1:

1 1 d
§Rt(:;lzmalset(a’) = _l_2 (ad + de Cz(d)Nz(a)) ) (15)

i=1

where a is an element of the.eausal set and N;(a) is the number of elements of the
causal set in the i-th level preceding a. As before, the sprinkling process at density
p into M of dimension d and the causal set function jozmlset give rise to a random
variable R, (z) for‘each point = of M. It is a conjecture that the continuum limit of
the mean of R,(z) over sprinklings is the value of the scalar curvature of M

Summing {1.5) over the whole causal set, multiplied by p = [~ for the volume
element, and by the €oupling li_d, then gives the causal set action (1.1).

The causal set scalar’d’Alembertian and the scalar curvature analogue have ad-
vanced versionsigotten by reversing the order in (1.3) and (1.5) so the levels summed
over are preceded by a: L; is the set of elements that are preceded by a and linked
to a etc. Ewvery result mentioned above holds, mutatis mutandis, for the advanced
objects. The final action (1.1) is, however, independent of whether the advanced or
the retarded version of the scalar curvature analogue is summed over the causal set
torebtain it.
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The argument for our conjecture 1, then goes as follows. The action is a sum<over
the causal set of (1.5), the retarded scalar curvature estimator. For any point‘z that
is not strictly on the past boundary of M, for p big enough, there will be enough
of M in the past of = for the value of the mean (R,(x)) to be R(z) to,as goodyan
approximation as we like. This is because for large enough p there i§ room. to the
past of x in M for all the levels in the sum to fit below x and to get the necessary
cancellations between the contributions from each level. Roughly: if there are ny
layers in the action and the distance from x to the past boundary is D, then we need
p > (ng/D)4. So we expect only the Einstein Hilbert contribution f#6m any z that
does not lie on the past boundary of M.

However, the action is invariant under order reversal. [t also‘equals a sum over
the causal set elements of the advanced version of (1.5)s So, running the argument
above for this case, when considering the mean of the randem discrete action of M
we expect only the Einstein Hilbert contribution 4rom points'z that do not lie on the
future boundary of M.

Now, the points that are on both the past and futurg boundaries, i.e. the points
of the joint, are not covered by either argument = there is no spacetime to their past
or their future and their contribution to the:mean will not be the Einstein Hilbert
contribution either way you looksat it. Se.we expect a different contribution from
the joint. On dimensional groundspif thistis a local contribution, then it will be a
dimensionless constant times the volumeof the joint because, for finite p, any higher
terms in the derivative expansion will appear multiplied by negative powers of p and
will go away in the limit.?

There may seem to besasgentradiction between the claim that the limit of the
mean of R,(x) equals the Riccisscalar for all z not on the joint and the claim that
the limit of the mean of the ac¢tion equals the Einstein Hilbert term plus an extra
boundary term. The joint is a set of measure zero after all. Where does the extra

term come from? Tonunderstand this, consider the mean of the random discrete

3In the case thatithe region M is not globally hyperbolic and has a timelike boundary, then for
similar reasons as above, we expect a contribution to the mean of the random discrete action from
the timelike boundary ¥.. On'dimensional grounds, if this contribution is local then in the derivative

expansion the first.eouple of terms will be

1 1
alﬁVold_l(Z) + agldj/ \/EK, (16)
P P b))

where a; are dimensionless constants and K is the trace of the extrinsic curvature on Y. The first
term will‘diverge in the continuum limit and for large enough finite p it will dominate all other
terms. There is evidence of this for the case of rectangles in 2d Minkowski spacetime [13]. Further

work on the timelike boundary is ongoing [18].
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action of a spacetime M at density p:

1 o
7 < S,(M) >= (4 { <Ny(M) > +§—Z ZOZ@ <N;,(M) > } : (1.7)

where the random variables in bold, N and N;, are the cardinality of the,sprinkled
causal set and the number of order intervals of cardinality ¢+ 1 in the sprinkled eausal

set, respectively. The means of these random variables are given.by the Poisson

distribution:
1 B (V) B il
& <S,(M) >=G [p/dv + a—qu@pQ // v, dV, (Z,_—yl)!eu”( W (1.8)
M =1 MxM
yeJ T (z)

where V,, is the volume of the causal interval, I(z,y)y betweeniw and y. Consider
doing the y integration over M N J*(x) first and, teremphasisé the puzzle, suppose
M is a portion of Minkowski spacetime so the result ofithe y integral gives zero
in the limit for all x not on the boundary of M. Taking the limit and doing the
second, x integration do not commute, however, hécausesthere are delta function-like
contributions along the boundary of M which eontribute to the limit. We will see

this explicitly in the examples analysed below.

2 The Set Up

Choosing an order in which toyperform the double integral (1.8) is equivalent to a
choice of either the advanced or retarded version of the Ricci curvature analogue. If

we do the y integration first, \we are'choosing the advanced version:

1 1
where L,(z) = —p3 <ad + p B / Vv, Oy e_”V””y> : (2.2)
JF(z)NM
= CZ'(d) i—1 d i—1
and’ Oy := ; G (—d—p) : (2.3)

Introdueing the differential operator Oy makes the formulae simpler to write and also
goes some wagto explaining why such expressions have a hope of giving finite answers
sinee;one.cansshow that O, annihilates certain powers of p that would otherwise make
the expréssion divergent in the limit.

We will test Conjecture 1 by calculating (2.1) in the limit of p — oo for some
examples of regions in a conformally flat spacetime in 2 and 4 dimensions, to first

order in a curvature expansion.
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2.1 Metric

The metric in all examples we will consider is conformally flat,
ds® = ®*(t)n,da"de” = O(t)(—dt* + §;;dx'da’) (2:4)

with a simple conformal factor ®(t) = 1 + bt? where b is a constantdpAt ¢t = 0,'in d

dimensions the Ricci curvature components are

Roo = —2(d — 1)b, (2.5)
Ry = 2b, Y (2.6)
Ry =0, (2.7)

R=4(d—1)b. (2.8)

The height in ¢ of the regions we will consider will be small eompared to b2 and the
curvature components will be approximated asseenstant throughout the region. In
the calculations below we will assume that there are ne'divergences arising from the
higher order curvature terms which aresimply dropped in the calculation whenever
they arise. We will not bother to write “4.%.37 to indicate that higher order curvature
terms have been dropped.

We will need the proper time; 7,, bétween two points  and y in the spacetime

and the volume, V,,, of the causal interval, Z(x,y), between them (z € J~(y)).

2.2 Ty

Let X# and Y* be the coordinates.of points z and y respectively. Let A* = Y# — XH,

The geodesic x*(7) from xz/to y satisfies

dz® ;
=c(1+b?)7? 2.9
L 29)
dt 1
= (1+6t%)2[c* + (1 + bt?)?]2 (2.10)
-
where ¢’ i§ a ¢onstant and ¢? = ||¢!||? and
¢ =yA (2.11)
- 1Y) — (X°)°)
Y = Toay(1 + b§ AT ) (2.12)
Tomy = (A7) = [JAT]*. (2.13)

Page 8 of 23
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v is given to first order in curvature. From this we find

S <1+§<<Y L&D )) (2.14)
= Towy (1 + g((Yo)2 +YOX° + (X°)2)> : (215)

2.3V,

We can either calculate V;, directly or use the formula (74) from [19]. Although the
formula is expressed in Riemann normal coordinates (RNC), theproper time 7, is
a coordinate invariant and the same formula holds in confermally flat coordinates to

first order in curvature. We have
Vi = Qd_gL_dTg 1+ @((Yof +YOX? X0
Y d(d—1) > 3

bd
24(d+1)(d +2)

(67, + 2(d2.— 4)(Y° - X°)2)> ., (2.16)

where Qg 5 is the volume of the (d — 2)=sphere.

3 2 dimensions

We will look at three examples in 2 dimensions: a causal diamond, a slab of a cylinder,

and a null triangle. For d = 2 we have R = 4b and

1 b
Vo = 57y (L5 (~ T, + 80Y0)? 48X +8X7¥0)) (3.1)
and
1
—<S,(M)> = / dV,L,(x), (3.2)
h M
where Ly(x):= 2p<1 —2p / dVy, O e"’vﬂ”y> , (3.3)
TH ()M

and Oy =1 4:2p 6+ %ij—;.

To perform the first y integral, the exponential in the integrand can be expanded

in curvature and terms quadratic and higher in b dropped:

ny = VOwy + 5‘/;331 ) (3-4)
1

‘/Oxy = 5 Ozg;y’ (35)
b

OWVay = 5 Ty (~Toay + 8(Y?) + 8(X)* + 8X°Y?), (3.6)
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and

e—pvgcy — e—PVOIye_p‘SV-’ClI 37

= e Pomu (1 — pdVy,) . (3.8)
The y integral in (3.3) is

/ Py 0,

JH+(z)NM

Ty

24

~

(3.9)

In all three cases we will calculate L,(z) and check that it tends to % = 2b in the
continuum limit for every x that is not on the future boundary of M. As anticipated
above, there will be terms in L,(z) with distributional behaviour in the limit on the
future boundary of M, where by “distributional behaviour” we mean that the term
or sum of terms has a factor that tends to zero at everyge not on the boundary and
behaves in the limit like a delta function or one of its derivatives on the boundary.
Those terms must first be integrated overnM andithen the limit taken to see what
contribution if any they give to the mean, of the action. As described above in the
section on general d, doing the double.integral in the other order, using the retarded
form of the integrand instead of the advanced, would give a limiting L,(y) that is an
Einstein Hilbert term plus terms with distributional behaviour on the past boundary.
This leads to the expectation=that the only boundary contribution actually comes

from the joint.
N

3.1 The interval

Let M be the causalinterval, I(p, q), centred at the origin with endpoints p at ( —%, 0)

and ¢ at (%,0) 4 shown in"Figure 1 — with metric (2.4) for d = 2. The interval has

2=t

Figure 1: The causal interval I(p, q) between p at (—%, 0) and ¢ at (%, 0).

b P
<1 +26(Y°)? = p—7, (= 7o, + 8(Y?)? 4+ 8(X") 1+ 8X0Y0)>e—273zy] ,

Page 10 of 23
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an SY joint with volume equal to 2.

The boundaries of the regions of integration are straightforward because null
geodesics in our conformally flat coordinates are straight lines as in Minkowski space.
For the y integral, it is convenient to change coordinates to null coordinates, v and=o

u+v

centred at point z in terms of which we have Y0 = X0 4 (0% 4pq oy, = 2uv. We

V2
find
72 pr2 2
L,(x)=2b—2be” T oobe T prt—e T PP+ 2e T p

]_ 1 pT
—Ebe_ip ™ — 24be_7p37-6 o
—dbe~ T p 2:2X0% 4 pe= ‘T p 34 x0?

1, o2, T 2 A 5
+§b€_Tp3<§ — Xo) 7'4 — gbe_Tp (E — XO) 7'2

p7'2 T T

—4b6_7p2(§ ~ XO)r2X0 4 he (R Ny XOr1x0, (3.10)

where 77 = (£ — X%)? — (X")? is the square/of the,Mipkowski proper time from z

to q. 7 = 0 if and only if x lies on the future/boundary of M. We see that the
continuum limit of L,(x) is 2b for all z not on thesfitture boundary of M. The first
term 2b in L,(x) will give the Einstein Hilbertiaction when integrated over M. The
other terms have factors that tend'te.delta functions or derivatives of delta functions
on the future boundary of M in the p,— oo limit.
The = integral can be done using nullycoordinates, (u,v) centred, now, at ¢ in
which 72 = 2uv and the result-is
1

1 pT2 pT2
= - — =2 —96by + 24p — 24e "2 p 4 12bpT"
h < SIM) = o (9@ 9Gbe 906by + 24p — 24~ "F p + 12bp

pT? pT? T2
~12be T pT? + be T p?T* — 966 T {0, pT]

— 96b log[pT2/2]> . (3.11)
The limit is
1
lim — < S,(M) >=bT?+2. (3.12)
p—oo f

The Einstein Hilbert action equals % X TTQ = b7, and the volume of the joint equals

2, so this agrees with the conjecture.

3.2 The slab

Now let M be the spacetime with metric (2.4) for d = 2 for 0 < ¢ < T and with (¢, z!)

identified with (¢,z' + L) so space is a circle. T < 2L so there is no wrap-around

10
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20 = ta
T :
\/
aj -
0 L 2t

Figure 2: A slab of a cylinder spacetime. The first, y integral is.over the region in

the slab in the causal future of z.

of causal intervals in M and bT? < 1. There is a spacelike past boundary and a
spacelike future boundary but there is no joint.
We find

L,(z) =2p+ iQp[ —24Qp + 24bX° 4 bQ( ~ 8t p(TQ*(—8 + Q*p)
+24Q(—6+ Q) X0 + 24(—5 + Q%)Xﬁ))}

12f\/_ (Qf) [— 24Qp(—3 + Q2p) + 24bX°

+ bQ=3 FPQ(39 + TQ°p(—9 + Q%))
+240Q06.4 Q°p(—7+ Q%)) X"
$.24(3 + Q%(—6+ Q%) X)) (3.13)

where @ := T—X° and the fmetion /(z) is the Dawson integral, F'(2) = e [ eV dy.

One cannot just read off the'limit as one could for the interval, but L,(x) does have
the correct limit of 2b agfp — ¢ for every x for which @ # 0 i.e. for every x not
on the future boundary of M. In the expression for L,(z) there are individual terms
that have a distgibutional €haracter at ) = 0 in the limit, but integrating L,(x) over
M and taking the limit we find that these all cancel and we get
lim 1 < S,(M) >=2bLT. (3.14)
p—oo fy
The Einstein Hilbert action equals §R x LT = 2bLT to first order in curvature and

there'is no joint so this agrees with the conjecture.

3.3 The triangle

Now let M be the null triangle, or half-interval, shown in Figure 3, with apex p at

the origin, “base” at 2° = T, and two null boundary segments. The joint is an S°.

11
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Figure 3: The null triangle of coordinate height T'i=

The y integral is the same as for the slab, and L,(z) equals {3.13). Integrating

this over the triangle and taking the limit gives,

lim + < S,(M) >= 24+ 2677 (3.15)
p—oo h

The Einstein Hilbert action equals £ x T? = 267" and thé*volume of the joint equals 2,
so this agrees with the conjecture. Onemight naively have expected the contribution
from the joint of the triangle to be less tham, perhaps half of, the contribution from
the joint of the diamond. However, assuming the joint contribution is truly local to
the joint then one can do a local boost 6fithe triangle so that the spacelike boundary
at the joint becomes arbitrarily close to,being null in the boosted coordinates, and

the geometry at the joint pointilooks arbitarily close to the diamond joint.

4 4 dimensionakecausal interval

We take M, to beithe causal interval, the 4-dimensional analogue of Figure 1, upright,
centred on the origin and of coordinate height 7', with past and future endpoints p
and ¢ respectivély. The joint lies in the ¢ = 0 plane by symmetry and the volume of
the joint is thévolume of a 2-sphere of radius T'/2, Voly(J) = 7T%.

In 4 dimensions we have R = 12b and

49 O LtuECs T

YT R A3 0 3 A0 — 75 oy + (Y7 = Xo)z)) (4.1)

i (14 T3 (OO + (P 4. X09%) = (e, + (0 = X)) (42)

94 0=y 15 15
2b
— %Tgw (1 + 1—5(—702% +9(Y°)? +9(X)* + 12X0Y0)> (4.3)

12
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and

% <S> 12 d4 Vv —g(x)L,( (4.4)
— i 2 — 4 _ —pVay
Ly(w) = Zob (1= o0, / o Ve ). (45)

d? 4 d3

d

To perform the first y integral, the exponential in the integrand is expanded in

curvature and terms quadratic and higher in b dropped, as before: ™

[ wou [0 - bt (i, + 90 4 B 2 x0 )]

180 0=

Jt(z)nM

(4.7)

The y integral is over the causal interval between x and ¢ and details of the

calculation are given in Appendix A. The result for Lp(%) is

1
L,(x)=+ 6bErf[—\/E\/_p7'2]
+2 ge 2471'/)7' \/—+ be 247Tp7' \/_T 5 gbe 24 TTPT \/57_

e be 25707 /276

5v/6 * 45\/6

1 /2 4 T 1 T
. g\/;be_;ﬂ” ’/Tp3/2T07'4(§ . TO) . g\/;be—mnm- 7_‘_p3/2 4( 5 i T0)2
N 12860703 1I9/Gbe = 7% 288bTO°Erf[L | /T, /pT?]

be~2a™PT

57‘&'\/—7'4 * 57T\/ﬁ7'4 7Tp7'6
192+/6b 132\/6176—&@74 T20Exf[L | /% /o7 48
57r\/_ 7'2 b\ /pT? Tpr .

where 72 := (£=X)2—]] X?||? is the square of the Minkowski proper time from z to ¢,
and T° := T — XY As"p — oo, for non-zero 7, the first term tends to 6b, the Einstein
Hilbert term, whilst all'other terms tend to zero. 7 = 0 is the future boundary of M
and on'that boundary, many of the terms of L,(x) have a distributional behaviour in

the limit. Integrating L,(x) over M — see Appendix A — and taking the limit we find

lim % < 8,(M) >= = (6 x Vol(M) + 7T?). (4.9)

i &l

60 x Vol(M) is the Einstein Hilbert action and 772 is the area of the joint, in

agreement with the conjecture.

13
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1

2

; 5 Discussion

Z There is much further work to be done on the conjecture. It is not easy to.see from
7 the calculations above that the boundary contribution is concentratéd at the joints
S For the d = 4 interval, the integrand of the second integral L,(x) has many terms
10 that are individually distributional in the limit and the joint volumeidoes not ¢ome
:; from any single one of them. It may be possible to analyse the integrand ef the full
13 double integral over x and y and, without choosing the advanced or retarded order
1‘5‘ of integration, see that there is a distributional character to that integrand that is an
16 appropriate delta function on the joint only. This could help in.proving the conjecture
17 in more generality. In working to first order in curvature we are esséntially assuming
12 that the limit is local and has a derivative expansions, To be rigorous, the higher
20 order terms should be bounded and shown to tend tozero in the limit.

;; One stumbling block is our lack of knowledge about the causal set scalar d’Alembertian
23 away from the low curvature regime. If we knew_ that the result (1.4) held in general, it
;g would greatly strengthen the conjecture at least as far as'the Einstein Hilbert term is
26 concerned. Together with analytic work.on more examples, one could do simulations
;é to gain evidence one way or another. Simmulations would also help us to understand
29 the behaviour of the fluctuations about the meaniof the random discrete action about
30 which we know very little. Fluctuations'of.ithe original causal set d’Alembertian grow
g; with increasing sprinkling density [15] and since the BDG action is built on the causal
33 set d’Alembertian, one might expect that it will also be subject to fluctuations that
;g grow with sprinkling density: This meeds to be tested and the behaviour of the fluc-
36 tuations with p investigated in different dimensions. There exists a generalisation of
;73 the causal set scalar d’Alembertian that depends on a phenomenological nonlocality
39 scale and involves averaging over many layers, like “blocking” on a lattice [15]. This
2(1) averaging or smearing, dampens the fluctuations of the D’Alembertian, which fluctu-
42 ations now die awayras thesprinkling density increases, for fixed blocking scale, and
43 is therefore very useful for simulations. This smeared form of scalar d’Alembertian
2;1 gives rise tora'smeared, more non-local form of the causal set action [10-12]. There
46 is evidence that the fluetuations around the mean of this, more non-local causal set
2; action are well-behaved enough to allow simulations to measure the mean action [10],
49 though the large size of causal sets required for the simulations can make it difficult
g (1) todkmow when the asymptotic regime has been reached.

52 If Conjecture 1 holds, the causal set action of a manifold-like causal set is — up
;31 to fluctuations which we are ignoring — approximately local both in its bulk and
55 boundary terms. Whereas, the action of a non-manifold-like causal set is nonlocal
56

57

58

59
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and, because there is no cancellation between the numbers of order intervals, isdtyp-
ically of the order of N2, that being the order of magnitude of the number of links
in the dominant type of finite order at large N [20]. This paints a heuristic pic-
ture of how a path integral over causal sets could conquer the entropic weight of the
vastly more numerous non-manifold-like causal sets and pick out the ones that have
continuum approximations. In the path sum, we require (i) there‘is a continuum
regime i.e. non-manifold-like causal sets are suppressed and (ii)’non-GRisolutions
are suppressed. For the second requirement, assuming there is a eontinuum regime,
we want the action to pick out the solutions of the Einstein equations-and the causal
set action being close to the Einstein-Hilbert action for a manifeld-like causal set is a
promising sign, though it may be necessary also to add extra boundary terms to the
action [14]. Regarding the first requirement, stationary phase heuristics suggest that
a causal set will be suppressed in the sum if small changes'in the causal set cause
large changes in the action. When the causal setyis non-manifold-like, the action is
huge and so a small change in the causal set willindeed cause a large variation in
the action. Also, in the continuum regime, the dominar?ce of the timelike boundary
term in the random discrete action might act to suppress causal sets with timelike
boundaries and similarly the — albeit much slower, logarithmic — divergent behaviour
of the random discrete action for,the trousers might act to suppress such topology
changes. It is an open question whether ornot these heuristics are a good guide in a
discrete theory like causal set theory, and. it is important to continue to investigate
causal set path sums using the BDG action and other non-local actions.

If Conjecture 1 holds, it/would give the value of the continuum limit of the mean
of the “spacetime mutualdnfermation” (SMI) in the case when the spacetime to the
past of a Cauchy surfage, ¥.41s divided into two by a horizon, H [10,21]. The SMI in
this case equals the sum of the@actions of the interior of the horizon and the exterior
of the horizon minus the action of their union (the whole spacetime). The SMI is
nonzero due tofhe bilecal nature of the action and, if Conjecture 1 holds, then the
Einstein Hilbért terms ¢ancel and the limiting value of the mean of the SMI is equal
to the areafof the intersection of the Cauchy surface and the horizon, in fundamental
units: V‘ﬂd;;—f?”m.

Another, related, consequence of Conjecture 1 is that if the manifold M has no
joint ‘and is divided into M~ and M, the past and future respectively of a Cauchy
surface, Y, that does not intersect the past or future boundary of M, then the limit of
the mean of the discrete random action is additive because it is the Einstein Hilbert
action;for each of M, M~ and M™. Additivity of the action translates into the
so=called folding property of the path integral propagator [22,23]. At finite p there

15
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are contributions to the mean action of M that are bilocal and straddle . but
these become weaker as the sprinkling density becomes larger. The relevance of these
observations to the causal set path sum remains to be explored.

If the conjecture turns out to fail, we can hope it fails in an interesting amnd

comprehensible way.
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Appendix

A Calculations.for d =4

To do the y integration over I(z,q), it is convenient to change to null radial coor-
dinates centred at @and in which I(z,q) is an upright interval. We do this via a
series of coordinate transformations, all Poincare transformations. First translate the
origin to x. Then rotate in space so that the only non-zero spatial coordinate of ¢ is
in the positivel-direction. Finally, boost in the 1-direction so that I(z, q) is upright.
By properties©f translations and boosts, the “coordinate proper time” between the
two endpoints,of the interval does not change, it always equals 79,4, where
2 T 012 if(2

Torg = (5 = X°)7 = [|IX7I7. (A1)

Here and elsewhere we use the notation || X?|| for the Euclidean norm of the vector

with components X*. For the purposes of the y integral, 7., is a constant because
XHW= (X% X) are constants.
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Call the new coordinates in which z is at the origin and I(z,q) is upright {z/}.
The metric is still conformally flat in these coordinates and null geodesics g#emain
straight lines at 45 degrees in the new coordinates.

The coordinate height of the upright interval is 7y,,. The point x'is at the origin
of the z* coordinates and ¢ is at (7o, 0,0, 0).

We need Y and Tozy i the new coordinates:

VO =7+ wz) + X°, (A2)
T(?xy = (20)2 - HZZH27 o (AB)
where
r 0y—1
w:TX(E—X ) (A4)
rx = ||X7], (A5)
v=(1-w?) "z, (A6)
Finally we define null radial coordinates with origin at point z:
1, .
u=—=(z" —||Z)), A7
\/5( 112400 (A7)
10 ,
v=—(2"+ 12|, A8
\/5( Nz (A8)

together with polar angles 6 and ¢. Let ustalso choose the the polar angles so that
2t =112 cos 6.

I(z,q) is given by the ranges

1
V€ [0, —T0x ] s (AQ)
~ v2
u € [0,v] (A10)
and
1
d'y = dvdu 5(’0 — u)?dS)y . (A11)
The y integral.is then
/ d*y Oy [e—f%w (1 +4b(Y")?
I(z,q)
T oy 2 2 012 012 0y/0
P 3Ty (i (YO 4 9(X")? + 12X°Y))| (A12)

TOIq/\ﬁ v iy 2 N ) s
:/ dv/ du/ d@sinG/ d¢%(’)4|:e—p6uv

0 0 0 0

(1 +46(Y")? = pb = (u0)?[—2uv +9(X ) + ()2 + 12X Y] ) |, (A13)

17
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with
VO =79 +wz') + X°, (Al4)
where
+v)
o W : Al15
7 (A15)
2 = (u—v) cos b, A16
N ~ (A16)
w=T"" (T = 73,,)7 (A17)
v = TOTO_;q , (A18)
T
T° = 5 XY, (A19)
Mathematica can perform the y integral and thisigives
L
1/ 9

2 . 1 /2 42,
+ 2\/;6—214’”” N 5\/;be—ﬁﬂﬂT4\/—pT02 + g\/;be‘%”pT4\/ﬁ72 (A21)

1 4 1 4
be~21PT 7Tp3/2T027'4 be~ 317PT ﬂ.p3/27_6

A22
5v6 45v/6 (A22)
1 /2 1 T 1 /2 1 T
-3 gbefﬂﬂpT47_‘_p3/2TOT4(§ _ TO) _ 5\/;b€24ﬂ'p74ﬂ_p3/27_4(5 _ T0)2
N (A23)
128v6bT%  A12y/6be= 377 T0%  288bTO°Exf[L, /T /pr?]
+ - (A24)
Sma/prt S5m/pr? wpT6
1921/6b .132y/6be 277" T2bErf[L, /T /pr?]
- 3 + : (A25)
57./pT> 5m./pT? wpT

where 7 = 75
For the z integral, it\is again convenient to use radial null coordinates, (u,v), this

time centred at g/ Then

% = 2uv, (A26)
T
xo—L_ury (A27)
2 V2
and the integrand does not depend on the polar angles. The range of the integration

variables is 0 < v < \% and 0 < u < v. As the integrand is symmetric under

18
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interchange of u and v, the range of the u integration can be extended to 0 < u < \%
if the integrand is multiplied by %

Term (A20) of the integrand gives the Einstein Hilbert action. Of the other terms,
the first term of (A21) does not depend on b and is multiplied by the confermal factor
(1+4b(X?)?) before integrating. Mathematica is able to analytically integrate.all the
terms of the integrand except for the last three on line (A25). Consider those three

terms — without the factor of b — as a function of s := 72,

_192v6 132/6e~ 217" . T2Exf[3 G/},
5m./ps 5m\/pT? ps> €

and note it is a function of \/ps. Figure Al is a plot of f(s) for p = 1000. As p

fo(s) := (A28)

f
6

FigureAl: /f(s), where s = 72, for p = 1000.

increases the fumetion scalés in s and the peaks tend to the vertical axis without
changing height, so f(s) does not have a distributional character in the limit and will
give a contributiomefzero to the integral in the limit.

Mathematica calculates the x integral of the sum of the remaining 10 terms (not

19
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1

2

3 including the Einstein Hilbert term) to equal

4

5 1 —a77pT"

6 7 T?Erf { \/7\/_T2} 2b 2\/66 4 - 2/6y - 323\//26172

° NG N

8 N 621/6be~ 2" 61/6 bT2 N 2/6be~ 2™ T" T2 12b, /pT? 2\/6'1 (pr4)

9 - - 0g

10 7 p3/2T2 5,/p VP 312712 N/, 24
1 T 2 1 T 2 1 ™ 2

1; N A3bErf [5/F /T2 180bEXf [5/F/pT?]  12Exf [3./F /L")

- P) 7 p2TH T2

14 2 4 .

1 1267 Bxf | 1/5 /6T } VB Ei [~ Lol D

16 32T NG

17 1/4 3/4 1/4 3/4

18 X 3% (2) 7 (pT") "t 5> 3P T 4 34 (2) " (pT) P [%: 2impT"]

19 p3/2T2 03/2T2

o ~ 39VGHT?oFs [§, 5: 3, §: — ol ]

22 5\/p

23 . .

24 + 6\/6bT23F3 [%7%’%7%7%7%’_iﬂ-pT4} , 'S (A29)

25 VP

26

27 which tends to 777 in the limit.
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