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H I G H L I G H T S

• Data-driven subgrouping algorithm was trained by multivariate lipoprotein data.

• Four coherent subgroups were identified in two large-scale population-based cohorts.

• Subgroups had characteristic lipoprotein profiles and risk for CHD.

• Apolipoprotein B quartiles stratified CHD risk better than multivariate subgroups.

• Caution on multivariate data-driven subgrouping in risk assessment is warranted.
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A B S T R A C T

Background and aims: Population subgrouping has been suggested as means to improve coronary heart disease
(CHD) risk assessment. We explored here how unsupervised data-driven metabolic subgrouping, based on
comprehensive lipoprotein subclass data, would work in large-scale population cohorts.
Methods: We applied a self-organizing map (SOM) artificial intelligence methodology to define subgroups based
on detailed lipoprotein profiles in a population-based cohort (n = 5789) and utilised the trained SOM in an
independent cohort (n = 7607). We identified four SOM-based subgroups of individuals with distinct lipoprotein
profiles and CHD risk and compared those to univariate subgrouping by apolipoprotein B quartiles.
Results: The SOM-based subgroup with highest concentrations for non-HDL measures had the highest, and the
subgroup with lowest concentrations, the lowest risk for CHD. However, apolipoprotein B quartiles produced
better resolution of risk than the SOM-based subgroups and also striking dose-response behaviour.
Conclusions: These results suggest that the majority of lipoprotein-mediated CHD risk is explained by apolipo-
protein B-containing lipoprotein particles. Therefore, even advanced multivariate subgrouping, with compre-
hensive data on lipoprotein metabolism, may not advance CHD risk assessment.
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1. Introduction

Increasing amounts of data available in epidemiology and medicine
have generated interest in more detailed stratification of disease risk.
Data-driven subgroup analyses have revealed new metabolic char-
acteristics of complex diseases and uncovered subgroup-specific risk
factors that could potentially improve risk assessment [1]. Recent stu-
dies have investigated this approach in type 1 [2] and type 2 diabetes
[3] as well as in sepsis [4]. Various algorithms can be utilised for
subgrouping [5] but the core principle is the same; to characterise a
heterogeneous population so that individuals with shared metabolic,
genetic and/or clinical characteristics are grouped together. In addition
to identifying subgroup-specific risk, this approach can be useful in
understanding complex multivariate phenotypes and in finding meta-
bolically and maybe also genetically characteristic subgroups of in-
dividuals [1].

Here we applied a statistical artificial intelligence framework – a so-
called self-organizing map (SOM) – that clusters individuals without
explicit boundaries between groups or cut-off values for variables
[5–7]. SOM analyses have a long-term track record in biomedical ap-
plications [1,2,6,7] and recently open-source software, aimed at large-
scale epidemiological data, was published as an R library [5]. Con-
ceptually, the SOM is a projection of multi-dimensional data onto a two-
dimensional map [5,7]. For example, in this study each participant is
assigned a location on the map based on a pre-selected set of lipopro-
tein-related variables: people within the same map area share a similar
overall lipoprotein profile, while people far apart have different pro-
files. Therefore, comparisons between map areas are analogous to
comparisons between subgroups of individuals.

Detailed quantitative molecular data are becoming increasingly
common for large-scale studies in epidemiology via quantitative high-
throughput metabolomics [8,9]. A nuclear magnetic resonance (NMR)
spectroscopy-based platform has been broadly applied in epidemiology
and genetics over the last few years; this platform is particularly ad-
vantageous in detailed lipoprotein profiling [8–12]. These metabolic
data are typically continuous and do not instinctively represent sub-
groups but continuous, heavily overlapping distributions. However,
intuitive thinking would be that elaborate utilisation of extensive
multivariate data would not only lead to better understanding of the
complexities but also to better translational opportunities and improved
disease risk assessment.

We investigated here if unsupervised data-driven metabolic sub-
grouping, with SOM-based artificial intelligence and comprehensive
NMR-based lipoprotein subclass data in large-scale population cohorts,
could provide new insight on coronary heart disease (CHD) risk as-
sessment. We demonstrate the resulting metabolic characteristics of the
SOM-based subgroups and compare their risk assessment abilities to
those of univariate subgroups based on a well-known causal CHD bio-
marker, apolipoprotein B (apoB) [13–16].

2. Materials and methods

2.1. Population cohorts

The Northern Finland Birth Cohort 1966 (NFBC66) was set up in the
two northernmost provinces of Finland to study factors associated with
preterm birth and morbidity during follow-up (www.oulu.fi/nfbc).
Originally, a total of 12,058 children (96% of all births in 1966 in the
region) were born into the cohort. For this study, we utilised data from
46-year sample collection in which a well representative 52% of the
original cohort attended [17]. NMR-based lipoprotein data (96%
fasting samples) were available from 5789 participants.

FINRISK 1997 (FINRISK97) is a nationally representative cohort,
established by the Finnish National Institute for Health and Welfare to
monitor middle-aged population health outcomes and risk factors [18].
Originally 8444 participants aged 25–74 years were recruited and 15-

year follow-up data was available. NMR-based lipoprotein profiling was
from semi-fasted (minimum 4 h of fasting before blood was drawn)
serum samples from 7607 participants (mean age 48 ± 13 years).

2.2. Apolipoprotein, lipid and lipoprotein subclass analyses

An NMR spectroscopy-based methodology that is currently widely
applied in large-scale epidemiology and genetics was applied [8–12].
This platform is powerful in lipoprotein subclass analysis and its large-
scale epidemiological applications have recently been reviewed [9].
Briefly, the method provides apolipoprotein A-I (apoA-I) and B con-
centrations and standard clinical lipids; low-density lipoprotein (LDL)
and high-density lipoprotein (HDL) cholesterol as well as total choles-
terol and triglycerides. In addition, quantitative data on lipoprotein
particle concentrations and their main lipid constituents (phospholi-
pids, triglycerides, cholesteryl esters and free cholesterol molecules) for
14 lipoprotein subclasses are obtained. The lipoprotein subclasses are
characterised by particle size as follows: very-low-density lipoprotein
(VLDL) fraction consists of extremely large (average diameter> 75
nm), very large (64 nm), large (53.6 nm), medium (44.5 nm), small
(36.8 nm) and very small (31.3 nm) particles. Intermediate-density li-
poprotein (IDL) particles are on average 28.6 nm in diameter. LDL
particles are divided into three subclasses; large (25.5 nm), medium
(23.0 nm) and small (18.7 nm). HDL fraction consists of four subclasses;
very large (14.3 nm), large (12.1 nm), medium (10.9 nm) and small
(8.7 nm).

2.3. Univariate subgrouping – apolipoprotein B quartiles

Apolipoprotein B quartiles were calculated and used in the survival
analysis.

2.4. Multivariate subgrouping – self-organizing map analysis

The SOM analyses were undertaken with the Numero software
package [5] in the R environment. Details and practicalities of SOM
analysis are described elsewhere [5]. All analyses here were based on a
total of 44 lipoprotein subclass measures (collectively referred to as
input variables): particle, triglyceride and total cholesterol (cholesteryl
esters and free cholesterol summed together in each subclass particle)
concentration for six VLDL subclasses, IDL, three LDL subclasses, four
HDL subclasses, apoB and apoA-I. Input variables were pre-processed
with previously published tools within the Numero R package [5]
(rank-based transform for men and women separately and normalized
to the range between −1 and 1). The SOM analysis was first performed
in NFBC66 to identify the apparent subgroups based on the extensive
lipoprotein data. The resulted (trained) SOM and the pre-defined sub-
groups were then applied directly to classify the participants in the
FINRISK97 cohort using an identical set of input variables. To visualise
the overall lipid profile in each subgroup, z-scores of log-transformed
measures were calculated as (subgroup mean – all data mean)/all data
SD.

As a sensitivity analysis, fully independent SOM training, sub-
grouping and survival analysis were performed solely on the basis of the
FINRISK97 data; the characteristics of the resulting SOM subgroups as
well as the Kaplan-Meier curves were very similar. Excluding partici-
pants with a prevalent CHD at baseline (n = 199) or not including apoB
as an input variable in the SOM analysis yielded essentially the same
results. The interpretation and conclusions regarding the comparison
between univariate and multivariate subgrouping were identical.

2.5. Survival analyses

Participants in FINRISK97 with prevalent CHD (n = 199) and those
with missing data or outliers (n = 7) were removed. Final analyses for
the 15-year follow-up had 7306 participants with 575 incident CHD
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events (defined as fatal or nonfatal myocardial infraction, cardiac re-
vascularization, or unstable angina). Kaplan-Meier curves for each
SOM-based subgroup were calculated for incident first CHD events.
Identical analyses were performed for the apoB quartiles. Analyses were
performed in R statistical language.

3. Results

3.1. Data-driven population subgrouping – SOM-based analysis

Results from the SOM-based classification of the participants in the
FINRISK97 cohort are illustrated in Fig. 1. All 44 lipoprotein subclass
measures (input variables) were used in the SOM but component planes
(colourings of the SOM for individual variables) are shown only for the
particle concentrations of the 14 lipoprotein subclasses as well as for
apoA-I and apoB. The component planes for total cholesterol and tri-
glyceride concentrations were very similar to the corresponding par-
ticle concentration ones shown. The component planes shown in Fig. 1
demonstrate strong regional patterns, particularly for the apoB-con-
taining lipoprotein fractions (VLDL, IDL and LDL) and are labelled from
I to IV in the ascending order of the subgroup mean apoB concentration.
However, it is important to note that the circulating apoB concentration
distributions overlap between all four subgroups, and heavily between
the adjacent subgroups, as illustrated in Fig. 2.

Subgroup I is characterised by the lowest, and subgroup IV the
highest, mean apoB concentration and the related triglyceride and
cholesterol concentrations. The key separators for the adjacent sub-
groups II and III are VLDL and LDL particle concentrations, respec-
tively. Thus, subgroup II is characterised by elevated triglycerides and
rather low cholesterol; the situation is vice versa for subgroup III. The
lipoprotein subclass particle concentration histograms together with
apoB and apoA-I concentrations for the four subgroups are illustrated in

Fig. 2. The characteristics and behaviour for VLDL, IDL and LDL sub-
classes is systematic however not identical within and between the
subgroups. The HDL subclasses behave in a more heterogeneous
manner, however subgroup I being characterised by the highest and the
subgroup IV with the lowest HDL particle concentrations.

3.2. Risk of coronary heart disease by multivariate and univariate
subgroups

Results from the survival analyses in the FINRISK97 for the SOM-
based population subgroup are presented in Fig. 3A and for the apoB
quartiles in Fig. 3B. The Kaplan-Meier curves based on the quartiles of
circulating apoB concentrations show striking dose-response behaviour
in contradiction to the subgroups from the multivariate SOM analysis.
Despite substantially different lipoprotein subclass concentration pro-
files for SOM-based subgroups II and III (Fig. 2) they have highly
overlapping curves to incident CHD (Fig. 3A).

4. Discussion

In this study, we present a novel application of an artificial in-
telligence algorithm, so-called self-organizing maps, to define sub-
groups based on detailed lipoprotein profiles in large population-based
cohorts. Four distinct subgroups in relation to apolipoprotein B and A-I
as well as to lipoprotein subclasses were characterised and the sub-
group-specific risk for incident coronary heart disease risk evaluated.
An instinctive expectation might be that utilisation of comprehensive
multivariate data on lipoprotein metabolism would lead to better un-
derstanding and also to better estimation of coronary heart disease risk.
However, the results did not fully support this expectation but a uni-
variate analyses, using only apolipoprotein B quartiles, led to a better
and more logical estimation of incident disease risk. In spite of that, the

Fig. 1. Statistical colourings (component
planes) of circulating lipoprotein particle,
apolipoprotein A-I and apolipoprotein B
concentrations on the self-organizing map.
Each component plane shows colouring on
the same SOM. The SOM illustrated is for
the FINRISK97 cohort data for 7607 parti-
cipants using 44 input variables (particle,
triglyceride and total cholesterol con-
centration for 14 lipoprotein subclasses as
well as apoA-I and apoB concentrations).
The SOM organisation and the areas de-
picting the four population subgroups are
from an independent training of the SOM for
5789 participants in the NFBC66. Subgroup
I is characterised by the lowest, and sub-
group IV the highest, mean apoB and related
triglyceride and cholesterol concentrations.
Subgroups II and III have intermediate
concentrations of apoB but have elevated
cholesterol and elevated triglycerides, re-
spectively (see Fig. 2 for further details).
The colour scale indicates deviation from
the population mean with respect to random
fluctuations that could be expected by
chance; red refers to higher and blue for
lower concentrations. The numbers on se-
lected units tell the local mean value for that
particular region in the original measure-
ment unit (the values for VLDL are
10−10 mol/l, for IDL and LDL 10−8 mol/l,

for HDL 10−7 mol/l, and for apoA-I and apoB g/l). The SOM is a two-dimensional organisation of the participants based on multi-dimensional input data, in this case
44 variables describing lipoprotein metabolism. The position on the map is unique and dependent on the input variable profile; thus each individual is always in the
same place on each component plane. The P value below each component plane indicates the probability of observing equivalent regional variability for random
data. Abbreviations: SOM, self-organizing map; VLDL, very-low-density lipoprotein; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; HDL, high-
density lipoprotein; XXL, extremely large; XL, very large; L, large; M, medium; S, small; XS, very small; apoA-I, apolipoprotein A-I; apoB, apolipoprotein B.
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Fig. 2. Characteristics of the lipoprotein subclass
profiles for the SOM-based population subgroups.
Analysis details and abbreviations are as explained
in the caption for Fig. 1. Subgroup I is characterised
by the lowest concentrations of apoB and coherently
low concentrations for all apoB-containing lipopro-
tein subclasses. The opposite is the case for subgroup
IV. Subgroups II and II have intermediate and rather
similar concentrations for apoB. However, subgroup
II is characterised by rather high concentrations of
VLDL subclasses and rather low concentrations of
IDL and LDL subclasses. The situation is opposite for
subgroup III. XS-VLDL subclass shows intermediary
behaviour between VLDL and LDL subclasses in
subgroups II and III. The values shown in the his-
tograms are z-scores of log-transformed measures
((subgroup mean – all data mean)/all data standard
deviation). Note that while the mean apoB con-
centrations differ for the different subgroups, their
distributions are heavily overlapping, particularly
between the adjacent subgroups. The subgroup in-
terpretations therefore are characteristic for the en-
tire group and not necessarily for a single individual
within the group, exactly as anticipated in popula-
tion epidemiology [5–8].

Fig. 3. Survival analysis of multivariate and univariate population subgroups.
In part A the subgroups are based on the SOM analyses illustrated and detailed in Figs. 1 and 2 and in B the subgroups represent apolipoprotein B quartiles. The
Kaplan-Meier curves demonstrate the 15-year cumulative event risk for incident first coronary heart disease events (7306 individuals with 575 events including fatal
or nonfatal myocardial infraction, cardiac revascularization or unstable angina). Individuals with baseline CHD were excluded from the analysis. The apolipoprotein
B quartiles show excellent dose-response behaviour and better description of the overall risk than the participant subgroups from the multivariate SOM analysis.
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data-driven SOM analysis gave invaluable detailed information on how
lipoprotein metabolism, at the subclass level, relates to the risk of CHD.
This kind of information cannot be obtained via univariate analysis and
has biological and potentially translational value, though the results
show that data-driven analysis is not optimal for outcome risk assess-
ment [19].

The subgroup with the highest concentrations for non-HDL particles
(VLDL, IDL and LDL) and for circulating apolipoprotein B represented
the highest risk for CHD. Conversely, the subgroup characterised by the
lowest values for these measures represented the lowest risk. The in-
termediate subgroups with elevated triglycerides and with elevated
cholesterol had substantially different VLDL and LDL subclass profiles,
yet a comparable concentration of apoB and overlapping event curves.
Thus, even though multidimensional and comprehensive data on lipo-
protein subclass profiles were used, the apoB concentrations in the
population subgroups appeared to be directly related to the CHD risk,
even in the presence of major variation in cholesterol and triglyceride
concentrations.

In this context is would be good to note that the circulating apoB
concentrations overlap between all four SOM-based subgroups. This is
obviously in contradiction with the apoB quartiles that by definition are
separate. Our interpretation for the situation is that in the multivariate
SOM analysis, with the equally weighted set of lipoprotein measures,
inclusion of some variables that might not directly (or not as well as
apoB) relate to the incident CHD events, though they markedly vary
between individuals, is likely to diminish the predictive values of the
subgroups. While the multivariate metabolic lipoprotein data on lipo-
protein subclasses is noteworthy in understanding details related to li-
poprotein metabolism, a single good (in this case causal) biomarker is
likely to be more useful from the predictive perspective.

Even though the results regarding the role of apoB as a single pre-
dictive biomarker may not be instinctive from the data analysis point of
view, they are not surprising from the biological perspective and add to
the burgeoning evidence for the fundamental role of apoB-containing
lipoprotein particles in the development of atherosclerosis and in de-
fining the risk for CHD [13–16,20–23].

Particularly Mendelian randomization analyses, using genetic in-
strument in large-scale studies, have played a crucial role in increasing
our knowledge on the key causal molecular players in CHD [24]. A
recent extensive study by Ference at al. [13], comparing the effects of
genetic modification of lowering triglycerides with the lowering of LDL
cholesterol, convincingly showed that the clinical benefit of lowering
triglycerides as well as LDL cholesterol is proportional to the absolute
change in the circulating apoB concentration. Thus, the apoB-con-
taining lipoprotein particles appear to be the key factor, not the lipids
per se transported in these particles. However, the apoB protein mo-
lecule does not circulate without lipids, so if there is an apoB molecule,
there are also lipid molecules, but the apoB seems to the biological
component that defines the way [13–16,20–23].

These results have general implications on data-driven subgrouping
in epidemiology and potential translational applications. SOMs have
been successfully used to identify metabolically different subgroups in
patients with type 1 diabetes and thus to gain deeper understanding of
population diversity and multi-morbidity [1,2,5,6]. However, the risk
prediction for specific clinical endpoints is a separate issue calling for
careful and detailed analysis [19] and should not be conflated with
exploratory studies. Even though individuals can be clustered with
several different methods and on the basis of various metabolic data,
these measures might not be optimal from the risk assessment per-
spective and the subgrouping may thus not provide general clinical
utility. Theoretically, an unsupervised clustering is likely to suffer from
a large number of variables that carry information not related to the
outcome. However, all lipoprotein data used in this work in the SOM
analyses were associated with CHD, and thus we consider this a neg-
ligible phenomenon in this study.

Our results are conceptually consistent with a recent study in which

data-driven cluster analysis was applied in patients with newly diag-
nosed type 2 diabetes [25]. In two type 2 diabetes related trials the
authors applied a previously optimistically presented data-driven po-
pulation subgrouping [3] and compared the clinical utility of this
subgroup-based approach to predicting patient outcomes with an al-
ternative strategy of developing models for each outcome using simple
patient characteristics. Their conclusion was that for the best clinical
utility, approaches using specific phenotypic measures to predict spe-
cific outcomes would most likely perform better than assigning patients
to subgroups [25]. This independent finding supports our results and
interpretation in relation to the data-driven population subgrouping
versus apolipoprotein B in assessing the risk of CHD.

4.1. Conclusion

The results presented here provide evidence to temper some of the
enthusiasm towards multivariable stratification and risk profiling in
epidemiology and potential translational applications. Population sub-
groups with distinct metabolic and risk profiles can be identified but
any incremental clinical utility should be specifically determined by
rigorous testing against the most validated existing markers.
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