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Effective and efficient forecasting relies on identification of the relevant information contained
in past observations – the predictive features – and isolating it from the rest. When the future
of a process bears a strong dependence on its behaviour far into the past, there are many such
features to store, necessitating complex models with extensive memories. Here, we highlight a
family of stochastic processes whose minimal classical models must devote unboundedly many bits
to tracking the past. For this family, we identify quantum models of equal accuracy that can store all
relevant information within a single two-dimensional quantum system (qubit). This represents the
ultimate limit of quantum compression and highlights an immense practical advantage of quantum
technologies for the forecasting and simulation of complex systems.

Predicting the future based on past events is a cor-
nerstone of life. From meteorologists forecasting the
weather, through investors trading on stock markets, to
a predator chasing its prey, the ability to identify causes
and accurately anticipate effects is central to survival and
success. To carry out these essential tasks, models must
be formulated, and information about past observations
must be stored within memory.

In this context, processes with long historical depen-
dence typically require models that store extensive infor-
mation about past observations. This is because a model
must ascribe each set of past causes that can give rise
to distinct future effects to distinct configurations in its
memory. When there are many such causes, the memory
must support many configurations. Classically, the num-
ber of configurations is synonymous with the dimension
of the memory – tracking a process with causes reaching
far into the past typically requires a large memory with
many dimensions.

In contrast, the number of configurations a quantum
memory can take is separate from its dimension. This has
lead to quantum encodings with reduced memory dimen-
sion for several Markovian processes – where each output
is conditional only on its immediate predecessor [1–4].
Here, we demonstrate that not only do these quantum
advantages persist for non-Markovian processes, but that
they become even more pronounced in this regime. We
consider a family of such processes where the memory
dimension required of a faithful classical model diverges
with precision, and identify corresponding quantum mod-
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els that compress all configurations into two dimensions.
This allows for all relevant history to be stored in a single
two-state quantum system (qubit), evincing an extreme
quantum advantage that scales without bound. More-
over, our protocol requires only a single probe qubit to
extract the future statistics. This turns a problem from
the converse scenario – that tracking a finite quantum
system can require infinite classical resources [5–8] – into
a useful tool.

This complements recent advances at the interface
of complexity and quantum science, where it has been
found that quantum models can drastically reduce
the amount of past information – as measured by
information entropy – that must be stored in memory
to replicate the future behaviour of a process [1, 9–
15]. Our work indicates that this advantage (along
with its quantitative scaling divergences) also persists for
the memory dimension. Crucially, this brings practical,
verifiable, and significant quantum memory advantages
within the reach of present technologies.

Framework and tools. A stochastic process X can

be characterised by an observation sequence
←→
X , detail-

ing what happens and when [16]. We can partition this
sequence in two: a past←−x that describes everything that
has happened up to the present; and a future −→x describ-
ing everything yet to come (we use upper case to denote
random variables, and lower case for their correspond-
ing variates). The goal of causal modelling is to use the
past (and only the past) to simulate the future [1, 17–
19]. Specifically, a causal model M stores in its memory
states m ∈ M determined from an encoding function of
the past f : {←−x } →M, such that it can produce futures
−→
X according to P (

−→
X |m = f(←−x )) = P (

−→
X |←−x ).

Two widely-used metrics for a causal model’s memory
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efficiency are [17]:

• CM := −
∑
m∈M P (m) log2[P (m)];

• DM := log2[dim(M)],

where P (m) =
∑
←−x ∈m P (←−x ) is the probability of find-

ing the memory in state m in the process’ steady-state.
These measures respectively characterise the information
stored by the memory and the dimension of the sub-
strate into which it is encoded. Operationally, they rep-
resent the memory required to implement the model in an
asymptotic ensemble (CM) or single-shot (DM) setting.

When
←→
X is a bi-infinite, stationary sequence with dis-

crete events, the ε-machine of computational mechan-
ics [17–19] is the provably most efficient classical causal
model according to both these metrics. The correspond-
ing minimal measures are labelled as Cµ and Dµ, and
referred to as the statistical and topological complex-
ity respectively [17]. The key elements of these mod-
els are causal states s ∈ S, a set of equivalence classes
defined such that if two pasts have identical future
predictions, the (causal state) memory encoding func-
tion fε : {←−x } → S assigns them to the same state:

fε(
←−x ) = fε(

←−x ′)⇔ P (
−→
X |←−x ) = P (

−→
X |←−x ′). Causal states

are in essence a state of knowledge, minimally encapsu-
lating all information relevant to future prediction that
can be obtained from observations of the past; they
closely mirror the belief states of reinforcement learn-
ing [20, 21]. They represent the minimal (classical) suffi-
cient statistic of the past with respect to the future [18].
The ε-machine describes a stochastic transition structure
between causal states, with transitions accompanied by
the output of a symbol; this can be represented by a
hidden Markov model [18]. These complexity measures
have been applied to study structure in systems from
a variety of fields, including neuroscience [22, 23], biol-
ogy [24, 25], economics [26], geophysics [27], meteorol-
ogy [28], and condensed matter physics [29].

These optimality results do not hold within the quan-
tum domain [9]. For quantum causal models [1–4, 9–15,
30–37], each past ←−x is assigned a quantum state |f(←−x )〉
to be stored in the model memory. The efficiency metrics
become Cq := −Tr[ρ log2(ρ)] and Dq := log2[rank(ρ)],
where ρ =

∑
←−x P (←−x )|f(←−x )〉〈f(←−x )|. We refer to these

as the quantum statistical memory and quantum topo-
logical memory of a model respectively; they inherit
the same operational significance in the quantum regime
as the corresponding classical quantities [9]. As with
classical causal models, these quantum memory states
encode information from the past of the process, and
must not contain any information that can only be ob-
tained from its future; the full description of a quantum
model then includes the means by which its memory is
probed to produce a sample of the future statistics given
the observed past, which must similarly be drawn from
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FIG. 1: Tracking dual Poisson processes. Causal models
of dual Poisson processes track the confidence in chosen emis-
sion rate based on the time since last emission; the number of
possible states diverges with refinement of timesteps. Since
all states have different future distributions they each corre-
spond to different causal states – the model depicted is the
ε-machine. The notation x|T indicates that with probability
T the marked transition occurs while symbol x is output.

P (
−→
X |m = |f(←−x )〉) = P (

−→
X |←−x ). For definiteness, we re-

mark that while the model and its associated memory
are quantum, the data (i.e., the modelled stochastic pro-
cess) remains classical.

Current state-of-the-art constructions for quantum
causal models [3] assign memory states directly from
causal states s → |s〉, though the optimal quantum en-
coding strategy is presently unknown for general pro-
cesses [1, 34] – we therefore do not designate these quan-
tum metrics as complexity measures. Nevertheless, it
has been shown that in general there exists a quan-
tum model with Cq ≤ Cµ [9]. This quantum advan-
tage exploits the possibility to store quantum information
in non-orthogonal states [38], enabling efficient isolation
of predictive features. It has recently been shown that
quantum models can also exhibit Dq < Dµ [1–4].
Dual Poisson processes. Consider a system that un-

dergoes a series of Poissonian decay events through one of
two channels with rates γ1 and γ2. After each event, the
decay channel for the next emission is chosen randomly,
with probability p or p̄ = 1 − p respectively. The choice
of channel is hidden internally in the system, such that
an external observer can only see when the decay events
occur. Specifically, we consider an observer operating
on discrete timesteps ∆t, recording a 1 when an event
occurs, and 0 otherwise. We call the resultant stochas-
tic process a dual Poisson process, and it manifests as
a series of 1s separated by strings of 0s. Note that the
probabilistic choice of channel occurs only after events
(1s), and remains unchanged across non-events (0s). The
probability that a contiguous string of 0s (bookended by
1s) is of at least length n is given by the so-called survival
probability Φ(n):

Φ(n) = pΓn1 + p̄Γn2 , (1)

where Γj = exp(−γj∆t). We shall now look at the scal-
ing of the memory metrics of causal models for such pro-
cesses as the temporal precision ∆t is refined – mak-
ing the process increasingly non-Markovian. With ar-
bitrary Φ(n) this framework describes general renewal
processes [39].

Optimal classical causal model. Since the observer
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FIG. 2: Scaling of memory metrics with precision.
Both classical memory metrics diverge with increasing pre-
cision, wherein the interval ∆t is refined. In contrast, the
quantum metrics remain finite, evincing an unbounded ad-
vantage: Cq tends to a bounded value, while Dq remains con-
stant. Plot shown for γ1 = 12, γ2 = 1 and p = 0.9 (the
qualitative features are typical for any non-extremal parame-
ter choice).

is unaware of the choice of decay channel, the information
they must track reflects their confidence in the chosen
rate based on the time since last emission. Let {←−n }
denote clusterings of all pasts with the same number n of
0s since the last 1, and {−→n } cluster futures with the same
number n of 0s until the next 1. Then, a causal model of
a dual Poisson process must track the number of 0s (←−n )
since the last 1 in order to predict how many more 0s
(−→n ) until the next 1 appears; the direction of the arrows
signifies that this is information about observations either
in the past, or in the future. The relevant conditional
future distribution is given by

P
(−→
N = −→n |←−n

)
=

Φ (←−n +−→n )− Φ (←−n +−→n + 1)

Φ (←−n )
. (2)

When γ1 6= γ2 and p 6= 0, 1 this conditional distribution
is different for every ←−n . We can thus treat ←−n as being
synonymous with the causal states; the causal states are
in effect counting the number of 0s since the last event.
The ε-machine of the process is shown in Fig. 1.

From previous studies on the computational mechanics
of renewal processes [40, 41], we can immediately iden-
tify that Cµ and Dµ are infinite in the continuum limit
(∆t → 0), as storing ←−n involves tracking an infinity of
states with non-negligible occupation probabilities; we
can understand this as arising from the increasing lengths
of strings of 0s as timesteps are refined. Moreover, since
Φ(←−n ) remains non-zero for all ←−n , Dµ is also infinite at
any level of discretisation1. However, the differences be-
tween conditional probabilities become increasingly small
for states at large ←−n∆t, and the probability of reaching

1 Note that a continous-variable classical memory must analo-
gously support a distinguishable mode for each ←−n , and so will
exhibit similar divergences.
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FIG. 3: Two-qubit quantum model. Our quantum models
need only two qubits – one for the memory, and one to probe
it. At each timestep a blank probe (red) is interacted with the
memory qubit (blue) according to U , and subsequently mea-
sured (green). The measurement outcome forms the output
of the process, and the memory automatically updates con-
ditional on this outcome (the conditional dependence is not
explicitly depicted here). The dashed boxes delineate the re-
peated fundamental building block of the model, representing
each timestep.

such states is very small. We hence introduce a truncated
form of the model, where after sufficiently large←−n∆t the
causal states are all merged together (see Supplementary
Material [42]) – and study the associated complexities
C̃µ and D̃µ of this model. Their scaling with increasing
precision (i.e. decreasing ∆t) for γ1 = 12, γ2 = 1 and
p = 0.9 is shown in Fig. 2. Note that the qualitative fea-
tures of this plot are typical for any non-extremal choice
of parameters (i.e. P 6= 0, 1 and γ1 6= γ2).

Unbounded quantum compression advantage.
We now show that this scaling divergence is a purely
classical phenomenon, and need not persist in the quan-
tum regime. By constructing quantum causal models of
such processes for which the memory metrics are finite
at any level of precision we show unbounded quantum
advantages in compression, forming our main result.

Main Result: A quantum causal model with Cq ≤ 1 and
Dq ≤ 1 exists for any dual Poisson process at any level
of precision ∆t.

Our models work by encoding the memory into one
qubit, and using another to probe it [Fig. 3]. At each
timestep, a constant2 unitary interaction U acts on
both the memory and probe qubits, after which mea-
surement (in the computational basis {|0〉, |1〉}) of the
probe qubit generates the corresponding output for the
timestep [3, 14, 31]. We define a set of quantum mem-
ory states {|ς(n)〉} corresponding to having observed n

2 That is, the same U is applied at every timestep. Moreover,
U depends only on the parameters defining the particular dual
Poisson process and the precision, and is not conditioned on any
external counter.
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0s since the last 1. We require

U |ς(n)〉|0〉 =

√
Φ(n+ 1)

Φ(n)
|ς(n+ 1)〉|0〉

+

√
1− Φ(n+ 1)

Φ(n)
|ς(0)〉|1〉, (3)

where the first subspace corresponds to the memory and
the second the probe (reset to |0〉 at each timestep). To
understand this criterion, consider the required action of
U – for any quantum memory state |ς(n)〉 it must take the
current memory state and blank probe state (left-hand
side) to a state such that: (i) the measurement statistics
of the probe in the computational basis are correct ac-
cording to Eq. (2) (setting ←−n = n, with −→n = 0 and the
cumulative −→n > 0 to obtain the probability for 1 and
0 respectively); and (ii) the quantum memory state is
updated correctly according to this outcome (|ς(n+ 1)〉
for non-events 0, and reset to |ς(0)〉 for events 1). It
can be seen that this is satisfied by the right-hand side
of the condition, with the weightings corresponding to
the probability (amplitudes) of the desired measurement
statistics. Note that in principle we have the freedom to
add a phase factor to the second term on the right-hand
side; we do not include this here as it is not necessary for
our construction.

In the Supplementary Material [42], we show that for
any dual Poisson process the condition Eq. (3) is satisfied
by the set of quantum memory states given by

|ς(n)〉 =

√
pΓn1 + ig

√
p̄Γn2√

Φ(n)
|0〉+

i
√

(1− g2)p̄Γn2√
Φ(n)

|1〉, (4)

where g is defined in the Supplementary Material, along
with an explicit expression for U . Crucially, Eq. (4)
evinces that the memory states can be encoded into a
single qubit, guaranteeing Cq ≤ 1 and Dq ≤ 1. More-
over, since the process is generically not memoryless, and
a binary system is the smallest possible memory, we can
conclude that our model is (single-shot) minimal and that
Dq = 1 is the quantum topological complexity. In Fig. 2
we compare the scaling of the quantum memory metrics
with those of the minimal classical model. We thus ob-
serve the unbounded scaling of the quantum compression
advantage in both ensemble and single-shot settings.

Relationship to other works. We have shown that
quantum dimensional advantages in causal modelling of
classical stochastic processes can grow without bound.
The highly cross-disciplinary nature of this work nec-
essarily invites comparison with a range of prior and
current research directions, and remarks on these rela-
tionships are in order. Foremost, a number of previous
studies have shown unbounded quantum memory advan-
tages in ensemble settings [12–15], where the advantage
is contingent on an asymptotically-large set of simula-

tors acting in parallel with a shared memory. A scal-
ing advantage in terms of dimension has previously been
found for a Markovian process [1], albeit at the cost of
an unboundedly-large alphabet (and hence output regis-
ter). Thus, while theoretically demonstrating the scal-
ing of quantum memory advantages, these advantages
are not presently experimentally feasible due to the need
to either implement many simulators at once, or assign
an ancilla of unbounded dimension (e.g., a continuous-
variable mode) for the output register. In contrast, our
proposal requires only two qubits to demonstrate its ad-
vantage (and the associated scaling), and so is eminently
more practical to implement; moreover, our proposal is
the smallest possible that could ever demonstrate such
an advantage, in the sense that if either the memory or
output register of a model has fewer than two states then
the process it simulates is trivial and/or memoryless.

The modelling of quantum dynamics with classical
simulators is well-studied; several works approaching this
problem from a variety of angles show that it typically
requires unbounded classical resources to track the dy-
namics of a finite quantum system, due to the continuous
nature of the Hilbert space it occupies [5–8]. Here, by re-
versing the scenario we show that this problem can turn
into an asset – the very properties of (even simple) quan-
tum systems that make them appear complex to classical
systems can turn complex classical problems into simple
quantum ones.

Despite a degeneracy in nomenclature, our framework
is distinct from quantum causal models [43] in the sense
of causal inference [44]. In such works the goal is to
identify causal relationships between variables, e.g., to
determine one variable causes the value of another, or
if both stem from a common cause; on the other hand
we start from the proposition that the past causes the
future, and seek to identify what the information in the
past observations is that gives rise to (i.e., causes) the
future statistics. Finally, we also note a resemblance be-
tween our discretised models using an ancillary system to
interrogate a memory qubit and recent work on models
of quantum clocks [45].

Concluding remarks. The single-shot setting of our
advantage is ideal for current and near-future quantum
technologies. Crucially, such dimensional advantages can
be more readily verified than corresponding entropic ad-
vantages; one need only count the dimension of the mem-
ory system, rather than perform full tomography [4]. The
small-scale quantum systems required for our proposal
are highly amenable to present experimental capabilities;
they could for instance be implemented with current two-
qubit ion trap experiments, where sequential interaction-
measurement-feedback cycles have been realised [46].
Moreover, photonic setups have already been used to ex-
perimentally realise the compression of a process with
three causal states into a two-dimensional quantum mem-
ory [4], as well as quantum stochastic simulation over
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multiple timesteps [47]; together, these form the two
main aspects required for a proof-of-principle demonstra-
tion of our proposal. Consideration of resources in the
experimentally more straightforward single-shot regime
has garnered notable interest in other contexts [48–58].

While we have shown an unbounded dimensional scal-
ing advantage for the dual Poisson process specifically,
there any many other examples that can be found. For
example, the behaviour of a broader range of renewal pro-
cesses can be captured by generalising Eq. (4) to have
different (potentially complex) amplitudes and include
additional states. With the target of compressed simu-
lation of given stochastic processes in mind, our findings
motivate future work on developing the mapping of pro-
cesses with large numbers of causal states into exact and
near-exact quantum models with low-dimensional mem-
ory – for renewal processes and beyond. A further di-
rection would be to extend these techniques for scaling
advantages to other continuous parameters such as spa-
tial co-ordinates [12], or more abstract settings such as
continuous belief spaces [20].

Interestingly, while both our quantum model and the
optimal classical model provide an approximation of the
fully-continuous process for finite timesteps ∆t, in the
quantum case a decrease in timestep size is not accompa-
nied by an increase in memory size. The quantum model
memory size Dq is entirely independent of the timestep,
and does not exhibit the classical scaling of memory with
precision. This indicates that the limiting factor in the
accuracy of quantum models of such processes is not the
available memory, but the accuracy with which it can be
addressed. Our results already in some sense indicate a
robustness of the quantum advantage: errors in the im-
plementation of the quantum model can be accounted for
by limiting the precision ∆t to not exceed that achieve-
able by the experiment – and the problem of noise ex-
ceeding the difference in future statistics for large ←−n is
mitigated by the truncated process. Ultimately, while it
would not be possible to witness the scaling difference all
the way up to the continuum limit, it can still be shown
up to the best achieveable precision. We note that while
errors present in current quantum technologies would not
prevent us from demonstrating that our quantum models
can achieve better precision than any classical model at a
fixed number of (qu)bits, the possibility to address larger
numbers of classical bits with smaller errors than qubits
on quantum computers would presently allow classical
computers to achieve a higher level of precision. Never-
theless, our results suggest compression tasks as a poten-
tial future route for demonstrating absolute superiority
of quantum technologies over classical devices, and as a
critical application of these incipient devices.
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TRUNCATED DUAL POISSON PROCESSES

As noted above, Dµ remains infinite at any level of discretisation, as there is no maximum ←−n that the processes
cannot exceed, and no merging of different ←−n into the same causal state. However, keeping this infinite overhead
of states provides very little additional predictive power at large ←−n∆t, as the probability of the process reaching
these states is small, and the difference in conditional probabilities between ←−n = n and ←−n = n+ 1 is monotonically
decreasing towards zero with increasing n. We therefore introduce a truncated form of the process, where there is a
designated ‘terminal’ state at nterm, such that all states at ←−n = n > nterm are merged down into this state. This
terminal state must have transition probabilities that are a weighted average of all the merged states; when an event
happens the model transitions to ←−n = 0 as before, but now on non-events the system remains in the n = nterm state,
as opposed to advancing further.

There is a level of subjective choice in how nterm is selected. Appropriate methods can be for example based on the
fidelity of the conditional distributions at larger ←−n , or on the probabilities of reaching such states. For concreteness,
we pick a straightforward criterion:

nterm := min
n∈N

n|Φ(n) ≤ δ(1− Φ(1)). (S1)

That is, nterm is the first state for which the probability of reaching said state is less than a fraction δ of the probability
of decay in the first timestep. We here use δ = 0.01.

QUANTUM MODEL CONSTRUCTION

As described in the main text, a unitary U and set of quantum memory states {|ς(n)〉} that satisfy Eq. (3) form a
quantum causal model of the dual Poisson process at a particular set of parameters. Here we show that the memory
states given by Eq. (4) form such a set of states, and give the corresponding U . This will prove our main result.

We begin by postulating a unitary operator U that is stipulated to act in the following manner on two (non-
orthogonal) states {|φ1〉, |φ2〉} that we refer to as ‘generator’ states:

U |φj〉|0〉 =
√

Γj |φj〉|0〉+
√

1− Γj |φR〉|1〉, (S2)

with j ∈ {1, 2}, and we refer to |φR〉 :=
√
p|φ1〉 + i

√
p̄|φ2〉 as the ‘reset’ state. We define the overlap of the two

generator states g := 〈φ1|φ2〉, noting that it depends on the size of the timesteps ∆t. Without loss of generality, we
can enforce that this quantity be both real and positive. Analogous to current systematic approaches for constructing
quantum causal models [S1, S2] we utilise the relation 〈φ1|φ2〉 = 〈φ1|〈0|U†U |φ2〉|0〉, which arises from the properties
of unitary operators. From this, we obtain

g =

√
(1− Γ1) (1− Γ2)

1−
√

Γ1Γ2

. (S3)

Armed with this, we can now express the generator states in the computational basis of a qubit {|0〉, |1〉}. Without
loss of generality, we can assign

|φ1〉 = |0〉

|φ2〉 = g|0〉+
√

1− g2|1〉. (S4)
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We see that after emitting a 1, the memory always transitions to the reset state |φR〉; it defines the ←−n = 0 state to
which the memory returns after the occurence of an event. This thus corresponds to the memory state |ς(0)〉. The
remaining |ς(n)〉 can be obtained by applying the unitary to the reset state n times and post-selecting on the probe
being measured as |0〉 after each application: |ς(n)〉 ∝ (Π0U)n|φR〉|0〉, where Π0 = |0〉〈0| is the projector onto the
non-event subspace of the probe. Accounting for normalisation, we obtain

|ς(n)〉 =

√
pΓn1√
Φ(n)

|φ1〉+
i
√
p̄Γn2√

Φ(n)
|φ2〉. (S5)

By inserting Eq. (S4) into Eq. (S5) we recover the the memory states as prescribed in Eq. (4). We can similarly
express U in the computational basis using Eqs. (S2) and (S4):

U |0〉|0〉 =
√

Γ1|0〉|0〉

+
√

1− Γ1

(√
p+ i

√
p̄g
)
|0〉|1〉

+ i
√

1− Γ1

√
p̄
√

1− g2|1〉|1〉 (S6)

and

U |1〉|0〉 =

(√
Γ2 −

√
Γ1

)
g√

1− g2
|0〉|0〉

+
√

Γ2|1〉|0〉

+
(√

1− Γ2 −
√

1− Γ1g
) √p+ i

√
p̄g√

1− g2
|0〉|1〉

+ i
(√

1− Γ2 −
√

1− Γ1g
)√

p̄|1〉|1〉. (S7)

The remaining two columns describing the action U |0〉|1〉 and U |1〉|1〉 are not uniquely defined by the model, and
remain a free choice provided the unitarity of U is upheld. We can also construct a pair of Kraus operators {E0, E1}
that describe the effective evolution of the memory conditional on the observed output and may be used to update
the memory – albeit only probabilistically – when tracking an external system that behaves according to the process.
These operators are defined according to Ej = 〈j|U |0〉, where the states in this expression belong to the probe
subspace [S3]; they can be readily obtained from Eqs. (S6) and (S7).

Finally, we verify that this model produces the correct survival probability for the process Eq. (1). This is found
from the probability of recovering a contiguous string of n 0s after starting from the reset state:

Φ(n) = 〈φR|〈0|(U†Π0)n(Π0U)n|φR〉|0〉
= pΓn1 + p̄Γn2 . (S8)

Thus, our construction faithfully replicates the process, and may be used to track the dynamics of any dual Poisson
process, at any level of discretisation, thus proving our main result. Notably, our quantum models are free from the
need to introduce a truncation at long times as was done in the classical case.

As would be expected, the quantum memory states Eq. (S5) and U Eqs. (S6) and (S7) depend on the particular
parameters defining the specific dual Poisson process to be modelled. Nevertheless, once initialised in a particular
memory state |ς(n)〉 corresponding to our observed past (which, being a qubit state, can always be prepared with
at most three rotations from {Ry, Rz} – corresponding to rotations of a qubit around the y and z axis of the Bloch
sphere [S4]), the model operates by repeated applications of the same unitary U , each followed by measurement and
reset of the ancilla to simulate the future statistics. Being a two-qubit unitary, U can always be synthesised by at
most fifteen rotations from {Ry, Rz} and three CNOT gates [S4, S5], irrespective of the parameters.

CALCULATING STATISTICAL COMPLEXITY AND QUANTUM STATISTICAL MEMORY

Prior work on the computational mechanics of renewal processes [S6] has established that the steady-state prob-
abilities of the causal states are proportional to their survival probabilities. That is, P (←−n ) = µΦ(←−n ), where
µ−1 :=

∑∞
n=0 Φ(n). For dual Poisson processes,

µ =
(1− Γ1)(1− Γ2)

p(1− Γ2) + p̄(1− Γ1)
. (S9)



S3

FIG. S1: Quantum statistical memory of dual Poisson processes. For much of the dual Poisson process family, the
information stored by our quantum models is significantly less than one bit, highlighting that significant further compression is
possible for ensemble simulators. The information stored is largest when both (i) the emission rates are significantly different,
and (ii) the system is more likely to adopt the faster rate, as the state of confidence is frequently reset. Dq = 1 everywhere
except the lines P =0, 1 and γ=1, where Dq =0.

Thus, we have that Cµ = −
∑∞
n=0 P (n) log2[P (n)] and

C̃µ = −
nterm−1∑
n=0

P (n) log2[P (n)]− P (nterm) log2[P (nterm)], (S10)

where P (nterm) =
∑∞
n=nterm

P (n). Further, using Eq. (4) with ρ =
∑∞
n=0 P (n)|ς(n)〉〈ς(n)| we obtain

ρ = µ


p

1− Γ1
+

g2p̄

1− Γ2

g
√

(1− g2)p̄

1− Γ2
−
i
√

(1− g2)pp̄

1−
√

Γ1Γ2

g
√

(1− g2)p̄

1− Γ2
+
i
√

(1− g2)pp̄

1−
√

Γ1Γ2

(1− g2)p̄

1− Γ2

 , (S11)

which may be straightforwardly diagonalised to find the two eigenvalues {λ1, λ2}, and hence calculate
Cq = −λ1 log2(λ1)− λ2 log2(λ2).

We calculate the quantum statistical memory Cq of our models in the continuum limit (∆t→ 0) for the whole dual
Poisson process family. Due to the timescale invariance of Cq for renewal processes [S7], the entire process family can
be characterised by two parameters: γ = γ1/γ2 and p. Moreover, due to symmetries of the processes, {γ, p} yields the
same model as {γ−1, p̄}. In Fig. S1 we plot the continuum limit Cq for a broad parameter range. Interestingly, we see
that for most choices of parameters Cq � Dq, suggesting yet further significant memory savings can be achieved in
the ensemble regime. We see that Cq is largest when the two rates are significantly different (since the choice of decay
channel has larger impact on the future) and the system predominantly picks the faster rate (since the confidence in
the choice of channel is frequently reset).
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