
1 
 

Using participatory System Dynamics modelling to quantify 

Indirect Land Use Changes of biofuel projects  

Lorenzo Di Luciaa, Steve Petersonb, Eva Sevigné-Itoiza, Alberto Atzoric, Domenico Usaid, Raphael 

Sladea and Ausilio Bauena 

a Centre for Environmental Policy, Imperial College London, London, SW7 1NE, UK 

b Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA 

c Department of Agriculture, University of Sassari, Sassari, 07100, Italy 

d Regional Agricultural Agency of Sardinia, Cagliari, 09123, Italy 

 

Corresponding author: Lorenzo Di Lucia, l.di-lucia@imperial.ac.uk 

Keywords: ILUC, ILUC PAST, cellulosic ethanol, Sardinia, Giant Reed, validation, credibility, sheep 

sector 

 

ABSTRACT 

The use of biomass to produce transport biofuels can lead to both direct and indirect Land Use Change 

(LUC). While the causes underlying LUCs are complex and change over time their quantification is a 

scientific challenge which hinders decision-making. 

In this paper, we demonstrate the application of participatory modelling in combination with System 

Dynamics techniques to the analysis of the land-change dynamics associated with biofuel supply 

chains. The ambition is to provide decision-makers at project level with useful and credible knowledge 

of direct and indirect LUCs. We illustrate the application of the approach by applying it to a real‐world 

project and case study for the production of cellulosic ethanol in the region of Sardinia (Italy).  

The results show that in the case study the process of land use displacement varies in intensity and 

persistence depending on the crop management regime applied and the future development of the 

regional market of sheep cheese. The results were considered credible by actors with direct 

knowledge of the ‘real’ system and considered useful by decision makers at local level including the 

project developers responsible for planning the biomass supply chains and the public authorities in 

charge of permits and authorisations. 

“This is an Accepted Manuscript of an article published by Taylor & Francis in Land Use 

Science on 06 December 2020, available online: 

http://www.tandfonline.com/doi/full/10.1080/1747423X.2020.1855265.”  

http://www.tandfonline.com/doi/full/10.1080/1747423X.2020.1855265
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1. INTRODUCTION 

The use of biomass to produce transport biofuels can lead to both direct and indirect Land Use 

Changes (LUC), which can have both beneficial and adverse outcomes on, e.g., climate change 

mitigation, food security, water management, protection of natural habitat and soil degradation (Kline 

& Dale, 2008; Dale et al., 2014; Robledo‐Abad et al., 2017; Dimitriou, Berndes, Englund, & Murphy, 

2018). The underlying causes of LUCs are multiple, complex, interlinked and change over time 

(Berndes, Ahlgren, Börjesson, & Cowie, 2013). This makes the quantification of LUC effects of biomass 

production challenging, especially when direct LUCs (DLUC) are associated with Indirect Land Use 

Change (ILUC).  

ILUCs have been defined as the theoretical changes in land use that occur as a consequence of a 

biomass-based project, while being geographically disconnected to it (Berndes et al., 2013). For 

example, food producers displaced by biomass production may re-establish their operations 

elsewhere by converting natural ecosystems to cropland or, due to macroeconomic factors, the 

overall food crop area may expand to compensate for the reduction in food production caused by the 

bio-based project. The scientific literature on ILUC has grown significantly in recent years, with many 

modelling exercises being conducted to quantify the ILUC effects of biofuel production in particular. 

The methodologies employed by these assessments range from complex macro-economic models to 

simplified deterministic models based on historical trends (for an overview see e.g. Geert et al., 2017; 

Prade, Björnsson, Lantz, & Ahlgren, 2017). Despite these efforts, the assessment of ILUC remains a 

scientific challenge. Not only are models generally difficult to access and understand for those not 

involved in their development, but their estimates are highly variable as a result of differing modelling 

approaches, local conditions, input data availability, parameterisation, scenario assumptions and 

regional coverage (Marelli, Mulligan, & Edwards, 2011; Ahlgren & Di Lucia, 2014; Geert et al., 2017). 

This situation has hindered the credibility of ILUC modelling and, thus, the usefulness of model results 

to support decision-making (Plevin, O’Hare, Jones, Torn, & Gibbs, 2010; Valin et al., 2015).  

Credibility, or whether the knowledge, along with the facts, theories and causal explanations invoked 

in the analysis, is considered trustworthy and plausible, is of critical importance for decision making 

in controversial arenas, such as ILUC of biofuel, characterised by large uncertainties and scientific 

disagreement (Clark, Ronald, David, & Frank, 2002; Humalisto & Joronen, 2013). Conventionally, 

confidence in modelling results is established through model validation (Eker, Rovenskaya, 

Obersteiner, & Langan, 2018), which refers to the model accuracy in representing reality (Oreskes, 

Shrader-Frechette, & Belitz, 1994). However, for land-change models developed to support decision-

making in contexts characterised by large uncertainties, model validity is not necessarily sufficient to 
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ensure credibility (van Vliet et al., 2016). In such instances, the social context within which a model is 

implemented (Sterk, van Ittersum, & Leeuwis, 2011), and the transparency, saliency, usability and 

usefulness of the model (Houet, Aguejdad, Doukari, Battaia, & Clarke, 2016; van Vliet et al., 2016) also 

affect users’ confidence in the model and its results. 

Elsewhere we suggested that the credibility of ILUC assessments could be improved by providing more 

transparent and robust causal explanations supported by empirical evidence and knowledge of those 

with direct experience of the real system. In line with this idea, we developed a causal descriptive 

methodology (ILUC Project ASsessment Tool (ILUC PAST)) for analysing the LUCs associated with 

individual biofuel projects (Di Lucia, Sevigné-Itoiz, Peterson, Bauen, & Slade, 2019). ILUC PAST seeks 

to establish a robust cause-and‐effect framework to connect bio-based supply chains with changes of 

land use and management allowing effects to be quantified. It integrates spatial, statistical and market 

data analyses within a participatory System Dynamics (SD) modelling framework. SD modelling was 

selected for the ability to study dynamic behaviours in complex systems (Forrester, 1994; Sterman, 

2001) with emphasis on the relationships among the system’s parts, rather than on the properties of 

the parts themselves (Hjorth & Bagheri, 2006). Furthermore, the engagement of stakeholders in 

modelling with SD has been shown to improve the relevance of the knowledge produced and the 

transparency of the causal mechanisms driving the system behaviours (Costanza & Ruth, 1998; Stave, 

2002; Hovmand, 2014) facilitating consensus building (Stave, 2010; Zimmermann, 2017). 

In this paper, we demonstrate and critically evaluate the application of SD modelling, as part of ILUC 

PAST approach, for the analysis of the land-change dynamics associated with biofuel supply chains. 

The aim is to explore how SD modelling can be applied to provide useful and credible knowledge of 

LUC to support decision-making at project level. We employ the case study presented in Di Lucia et al. 

(2019) to evaluate the merits and weaknesses of SD modelling. The case study refers to a real-world 

project for industrial-scale production of cellulosic ethanol from dedicated energy crops in the region 

of Sardinia (Italy).  

2. ILUC Project Assessment Tool - ILUC PAST 

ILUC PAST is an empirical causal descriptive approach that establishes a robust cause-and-effect 

framework to connect biofuel supply chains with changes of land use and management allowing for 

direct and indirect effects to be quantified. It integrates spatial, statistical and market data analyses 

within a participatory SD modelling framework. The structure of ILUC_PAST is displayed in Fig. 1 and 

briefly illustrated in the reminder of this section (for more details see Di Lucia et al. (2019) and 

supplementary material). 
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Figure 1. Overview of ILUC Project Assessment Tool (ILUC PAST).  

The application of ILUC PAST starts with Step 1 in which the biofuel supply chains are characterised in 

order to define their geographical scope in connection to the origin of the biomass feedstock. Three 

geographical options for the feedstock supply are considered in a stepwise process: (i) area 

surrounding the biofuel plant, i.e. biomass catchment area, (ii) areas geographically disconnected 

from the catchment area, e.g. specific regions or countries, and (iii) undefined locations or global 

commodity markets. Based on the results of Step 1, the analysis moves to either Step 2, 3 or 4 (Fig. 1). 

Step 2 focuses on the assessment of the effects of the supply chains within the biomass catchment 

area. The analysis relies on spatially explicitly and locally relevant data and knowledge collected with 

the engagement of experts and local stakeholders, and on modelling of system behaviours with SD.  

Step 3 addresses the effects, direct or mediated, occurring in specific areas outside the catchment 

area. This analysis compares project demand for land and/or biomass against the area potentials 

estimated as the difference between theoretical potentials and current uses. Step 3 relies largely on 

publicly available data and modelling with SD without the participation of experts and local 

stakeholders. For these reasons, the results of Step 2 should be interpreted in a conservative way 

when drawing conclusions.  

Finally, Step 4 is conducted to quantify effects occurring in areas which cannot be identified. Such 

effects are quantified employing the results of a generalised global models (for an overview see e.g. 

Geert et al., 2017). Model selection should be carefully conducted considering the specific features of 

the supply chains assessed, the type of biomass and land conversion, the time period covered, the 



5 
 

policy scenario considered and other basic assumptions that can significantly affect the model results. 

Notice, however, that ILUC PAST is not a suitable approach to analyse supply chains that generate a 

large share of their LUC effects in unknown locations.  

3. SYSTEM DYNAMICS AND THE MODELLING OF ILUC  

As a methodology for studying and managing complex feedback systems (Forrester, 1994), SD relies 

on discovering and representing the feedback processes, time delays and nonlinearities that 

determine the dynamic behaviours of a system (Sterman, 2001). Initially developed for industrial and 

business systems management, the scope and uses of SD have since been expanded to many other 

areas (Sterman, 2001; Mingers & White, 2010). In the field of biofuels, applications have focused 

primarily on technological diffusion processes (Vimmerstedt, Bush, & Peterson, 2012; Barisa, 

Romagnoli, Blumberga, & Blumberga, 2015; Sanches-Pereira & Gómez, 2015; Horschig, Billig, & Thrän, 

2016), on impacts on commodity markets (Jahara, Sabri, & Kennedy, 2006; Kim, 2009), on GHG 

emissions (Robalino-López, Mena-Nieto, & García-Ramos, 2014) and, more recently, on the (direct) 

LUC of biofuel feedstock production (Warner et al., 2013; Chitawo, Chimphango, & Peterson, 2018; 

Fontes & Freires, 2018)1.  

Similar to other modelling approaches, the credibility of SD models is determined by their validity 

(Eker et al., 2018). However, while correlational models are considered valid if outputs match 

observed data, within some specified range of accuracy, SD models should be considered valid only if 

they generate the ‘right output behaviours for the right reasons’ (Barlas, 1996). Therefore, when 

evaluating the validity of SD models, it is critical to address both the accuracy of the output behaviours 

(behavioural validity) and the representativeness of the model structure (structural validity).  

The methods for assessing structural validity described in the SD literature are largely informal and 

qualitative tests, including for example expert reviews, behaviour replication, structure assessment, 

inspections, walkthroughs, data flow and control flow analyses, consistency checking, etc. (Senge & 

Forrester, 1980; Sterman, 2000; Mirchi, Madani, Watkins, & Ahmad, 2012). Yet, structural evaluation 

remains a challenging task due to the intrinsic difficulties of deciding when a model is close enough to 

the structure of the real system to provide useful insight (Barlas, 1996). Only once structural validity 

is established, can the modelling process focus on the output behaviours. Behavioural validity is 

conventionally assessed by comparing model outputs against historical data. However, in the case of 

systems characterised by large uncertainties, such as the case of ILUCs of biofuel production, 

behavioural validity should also consider the plausibility, consistency and diversity of model outputs 

 
1 Our review of the scientific literature did not find evidence of SD applications to the study of ILUC. 
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(Wiek, Keeler, Schweizer, & Lang, 2013; Eker et al., 2018). The methods suggested for this task in the 

literature include behaviour replication, sensitivity analysis, dimensional consistency and scenario 

analysis (Peterson, Cumming, & Carpenter, 2003; Mirchi et al., 2012).  

In line with the literature of stakeholder engagement in modelling for decision making, the 

engagement of stakeholders in SD modelling has been suggested as a way to improve the connection 

between models and the real needs of decision makers, while providing the modelling process with 

new data and ideas (Videira, Antunes, Santos, & Gamito, 2003; Van den Belt, 2004; Voinov & 

Bousquet, 2010). Participatory SD studies have been conducted on a growing variety of topics in recent 

years including energy transitions (de Gooyert, Rouwette, van Kranenburg, Freeman, & van Breen, 

2016; Ulli-Beer et al., 2017), residential energy efficiency (Elias, 2008), social housing (Eskinasi et al., 

2009), air quality (Stave 2002), tourism (Pizzitutti et al 2017; Videira 2004), and forest management 

(Mendoza & Prabhu, 2006). Among the benefits of involving stakeholders in various phases of the SD 

modelling process is the ability to integrate local and scientific knowledge (Andersen, Vennix, 

Richardson, & Rouwette, 2007), to build shared knowledge and facilitate consensus (Zimmermann, 

2017), and to reduce conflict and build trust (Stave, 2010). These are critical issues for the case of ILUC 

in consideration of the controversy surrounding the quantification of indirect impacts and the large 

uncertainties that are fundamental to complex land systems (Ahlgren & Di Lucia, 2014; van Vliet et al., 

2016). In this study, and with the ambition of providing useful and credible knowledge of ILUCs, we 

applied a participatory approach to model development and validation combining qualitative informal 

tests, quantitative methods and participatory forms of sensitivity analysis (Saltelli & Funtowicz, 2014) 

and scenario analysis (Oteros-Rozas, Ravera, & Palomo, 2015). 

4. ADVANCED ETHANOL PRODUCTION IN SARDINIA, ITALY  

The application of SD modelling to the assessment of ILUC is explored employing the case of large-

scale production of advanced ethanol in Sardinia. The biofuel project consists of a commercial scale 

industrial unit with a capacity of 80,000 tons of cellulosic ethanol per year obtained from the 

conversion of a 342,000 ton (dry matter) of Giant Reed (Arundo Donax). Giant Reed is a perennial 

rhizomatous grass considered among the most promising crops for biomass production in southern 

Europe due to high yields and low input requirements (Angelini, Ceccarini, o Di Nasso, & Bonari, 

2009)2. The location of the biofuel project was determined by the project developer in consideration 

of the support received by the regional government, the existence of suitable transport infrastructure 

and, most importantly, the expected availability of suitable land for Giant Reed cultivation.  

 
2 At the time of writing, the use of Giant Reed in Sardinia was limited to wind protection in agriculture and the 

supply of raw material for artisanal products. 
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Regarding Giant Reed cultivation, the project developer considered suitable areas only those classified 

as pastureland, in order to limit competition with food crop production, and within a maximum 

distance of 75 km from the conversion unit to limit transport costs. We employed these criteria to 

delineate the biomass catchment area of the project (Fig. 2). Notice that the availability of irrigation 

infrastructure was not considered a critical condition in the delineation of the biomass catchment area 

since Giant Reed cultivation in Sardinia is not strictly dependent on supplementary irrigation (Arca, 

2017). Nevertheless, irrigation is an important factor affecting crop yields. To account for this, in 

agreement with the project owner, we developed two alternative feedstock supply chains: irrigated 

and rain fed Giant Reed. For both supply chains, the technical efficiency of the production process is 

assumed to be constant over the simulation period. 

 

Figure 2. Geographical delineation of the case study area.  

5. METHODS 

5.1 Model of the case study 

The SD model developed to analyse the case of Giant Reed ethanol in Sardinia is based on the model 

structure illustrated in Fig. 3. The purpose of the SD model is to simulate the cause-and-effect 

mechanisms that characterise the biofuel supply chain and to quantify the effects in terms of direct 

and indirect LUC.  
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Figure 3. Structure of the System Dynamics model showing the cause and effect mechanisms affected by the 
conversion of pastureland to Giant Reed. 
 

In the model, the cultivation of Giant Reed for biofuel relies on the conversion of pastureland, which 

in Sardinia is traditionally allocated to sheep grazing3. Sheep farming is a primary agricultural activity 

in the region, involving more than 15,000 farms and occupying c. 80% of the agricultural land of the 

island (ISTAT, 2019). A production of c. 300 million litres of milk per year is mainly processed into 

‘Romano’ cheese and traded on the global market for sheep’s cheese of which Sardinia accounts for 

8% (ISMEA, 2016).  

As displayed in Fig. 3, when Giant Reed is introduced in the biomass catchment area two types of 

pastureland can be converted - unutilised, i.e. pasture not grazed because it is located at a distance 

greater than 1.5 km from sheep farms, or utilised which can be sub-categorised into allocated to sheep 

farming, i.e. pasture required to sustain the sheep population at farm level, or unallocated to sheep 

farming, i.e. pasture not required to sustain the sheep population. Notice that the management of 

allocated and unallocated pasture is substantially similar since, traditionally, sheep farmers in Sardinia 

maintain semi-natural grassland as pastureland even if not required to sustain the sheep population 

of the farm.   

As the area of Giant Reed is increased, the model prioritises the conversion of unutilised and then 

unallocated pastureland before converting allocated pasture. Of these LUCs only the conversion of 

 
3 In modelling the land conversion process, we do not account for the level of returns provided by Giant Reed 
compared to sheep grazing. We assume that the returns offered by Giant Reed cultivation are sufficiently 
attractive to convince farmers to convert their pastureland.  
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allocated pasture effectively decreases the capacity of the area to sustain sheep farming. Therefore, 

the sheep population in the model is only reduced if the pasture area is not sufficient to sustain it at 

any time during the simulation period. A reduction in the number of sheep causes a decrease in milk 

deliveries and, thus, cheese production in the area. In those instances, the model accounts for a small 

increase in average milk productivity since farmers tend to remove sheep with lower productivity. In 

this context, however, and due to a rather inelastic demand of Sardinian sheep cheese, lower supply 

of cheese translates into a higher cheese price and, thus, milk price. This is the main (balancing) 

feedback loop which characterises the system. Milk prices emerged in our investigation as a key factor 

influencing farmers’ decision regarding the size of their flocks. In the model, the economic breakeven 

point for milk production of a typical farm in the area (0.75 €/L) is used as tipping point (AGRIS, 2017). 

Milk prices below the tipping point induce farmers to reduce the size of their flock, while prices above 

that value promote an expansion. In addition, the model accounts for a range of social, cultural and 

economic challenges confronted by sheep farmers, including increasing production costs, an ageing 

farmer population and a lack of interest of younger generations.  

The system described here has been largely in balance over the past decades with a moderate but 

constant decline in the number of farms and livestock in the area (ISTAT, 2019) in spite of milk prices 

fluctuating between 0.58 – 0.98 €/L over the same period (ISMEA, 2019). However, additional use of 

pastureland for Giant Reed cultivation can push the system temporarily out of balance. In the event 

of the sheep population exceeding the sustainable sheep population in the catchment area, the model 

displaces the connected sheep farming activities to areas outside the catchment area4. The displaced 

sheep population is then relocated to the rest of the island. This is based on our analysis of the regional 

sheep farming sector which concluded that, under current market and bio-physical conditions and 

considering the regional scale of the sheep sector in Sardinia, the displacement of activities to the rest 

of the island is more likely than the displacement to mainland Italy, other European countries or North 

Africa (for details see Di Lucia et al., 2019). This was confirmed by the local experts and sheep farmers 

engaged in the study.  

Using the model structure of Fig. 3, we created a simulation model in the STELLA Version Architect 

1.8.3 software package (ISEE Systems, Lebanon, US), available in the supplementary material5. The 

model was developed over the course of 12 months based on a review of the scientific and grey 

 
4 The sustainable sheep population is calculated at farm level based on the potential supply of biomass for 

grazing and foraging against the demand of biomass of the sheep population. 
5 STELLA stands for Structural Thinking, Experimental Learning Laboratory with Animation. Software developed 
and licensed by isee systems: https: https://www.iseesystems.com/. 

https://www.iseesystems.com/
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literature and, most importantly, with the engagement of representatives of local actors including 

stakeholders and experts.  

The engagement of local actors was an essential component of the modelling of LUCs with SD. In the 

process, we first identified a list of key groups of local actors, which included the biofuel company, 

local sheep farmers, farmer associations, local sheep cheese producers, regional authorities, the 

Regional Agency for Agriculture Development (LAORE) and local research institutes. Representatives 

of each group were involved in the process of data collection, model co-development and model 

validation (Table 1). Concerning data collection, we interviewed (19) representatives of all key groups 

with the aim of mobilising local and expert knowledge and ensuring that the model input data were 

representative of the real system. The data collected were employed to co-develop a SD model in 

collaboration with (10) experts from LAORE and local research institutes during one focus group. The 

exercise provided us with knowledge of the structure of the model, critical cause and effect 

mechanisms, feedback loops, and a set of future scenarios for the sheep farming sector in Sardinia. 

Finally, the resulting model was validated applying a range of methods with the involvement of local 

actors (see Section 5.3). In particular, we conducted a dedicated workshop in which (38) 

representatives of all key actor groups, except the biofuel company and regional authorities, 

contributed to the assessment of the model by reviewing its structure and causal mechanisms, 

identifying the most sensitive model parameters (employing the user interface of the STELLA 

software) and evaluating the plausibility of the results of the scenario analysis against local knowledge. 

Table 1. Engagement of local stakeholders and experts. 
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5.2 Model calibration  

The SD model was calibrated by comparing the output behaviours of the baseline scenario, i.e. the 

system without Giant Reed, against historical data for the period 2008 – 2015. The goal of the 

calibration process was to make the model representative of the system being modelled by adjusting 

model parameters and structure to achieve a general fit between the model output behaviours and 

observed data. In the calibration process, we adjusted a set of five parameters: (i) elasticity of milk 

prices to changes of cheese inventory, (ii) average milk productivity per sheep, within and outside the 

catchment area, (iii) market demand of sheep cheese from Sardinia, (iv) (un)attractiveness of the 

sheep farming profession accounting for socio-cultural and economic challenges, and (v) milk waste 

and farmers’ self-consumption. Two sets of observed data - sheep population (MoH, 2019) and milk 

prices (ISMEA, 2019), were employed (for details see the supplementary material) 

5.3 Model validation  

The calibrated model was validated accounting for both structural and behavioural validity.  

Structural validity was evaluated in relation to the purpose of the model, i.e. support decision-making, 

applying qualitative tests to assess the validity of key concepts and causal mechanisms (boundary 

adequacy) and the consistency of the structure against local knowledge (structure verification) 

(Qudrat-Ullah & Seong, 2010). For this, we conducted a qualitative, informal exercise during the 

workshop illustrated in Section 5.1. The results of the exercise showed that participants largely 

considered the structure of the model a fair representation of the real system, but also that 

improvements were required to better account for the natural variability that affects agricultural 

systems. These changes were introduced in the model by allowing the annual yields of pasture, forage 

and cereal land to vary within a range of values based on historical trends. 

Behavioural validity was evaluated by assessing the ability of the model to replicate the past, i.e. data-

oriented validation. In the process, we conducted data-oriented validation, based on statistical tests 

and linear regression, to assess the numerical accuracy of the model testing the fit of the model 

outputs against observed data for the period 2016-2018. The test showed an appropriate performance 

of the model in relation to the pattern of behaviour of the reference variables - milk prices and sheep 

population. Aware of the limitations of data-oriented accuracy tests, we also explored the main 

uncertainties affecting the model outputs by conducting sensitivity analysis (Saltelli, Tarantola, 

Campolongo, & Ratto, 2004) and scenario analysis (Peterson et al., 2003; Swart, Raskin, & Robinson, 

2004).  

The sensitivity of the model parameters was assessed in two steps. First, we calculated the numerical 

sensitivity of a set of parameters applying the STELLA software built-in sensitivity tool. The parameters 
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included: (a) acreage of pastureland in the catchment area, (b) average milk productivity of sheep, (c) 

share of milk waste and famers’ self-consumption, (d) attractiveness of sheep farming profession and 

(e) sheep average intake of biomass, against the availability of pastureland in the catchment area 

(main model output). Then, we carried out a participatory sensitivity analysis exercise engaging local 

actors in the workshop presented in Section 5.1. Employing the STELLA interface tool, we conducted 

a simple one-factor-at-a-time sensitivity analysis with the workshop participants (Cariboni, Gatelli, 

Liska, & Saltelli, 2007). Overall, this process allowed us to identify and explore the most meaningful 

uncertainties related to the model input parameters considering not only the numerical relevance, 

but also the views of those with direct experience of the real system.  

The scenario analysis focused on the definition of a set of realistic scenarios for the future of sheep 

farming sector in Sardinia. Although global demand for sheep cheese is expected to increase in the 

coming decades, c. 25% (Pulina et al., 2018), the share of Sardinian producers might change 

significantly depending on their ability to compete on the global market. In collaboration with local 

experts, we developed three scenarios for the period 2020 – 2035 (Table 2). Each scenario is 

characterised by a set of realistic assumptions regarding the demand of sheep cheese and the 

productivity of local producers. The scenarios were employed to explore how the interaction between 

the sheep sector and the land-change dynamics of the biofuel project might evolve in the future. 

Table 2. Future scenarios of the sheep farming sector in Sardinia for the period 2020–2035.  
Notes: rates are totals for the period 2020–2035.

 
 

6. MODEL RESULTS 

We applied the SD model illustrated in Section 5 to simulate the LUCs arising from the biofuel project 

over the period 2018 – 2035. The analysis addressed the effects within the biomass catchment area 

(Step 2 of ILUC PAST), before considering those occurring outside the area (Step 3 and Step 4). The 

results were vetted with the local actors engaged in the study. 
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6.1 Effects within the catchment area 

The model outputs of the LUCs generated by the biofuel supply chain in the catchment area are 

illustrated in Fig. 4. Each panel shows the amount of pastureland - unutilised, unallocated and 

allocated, available in the catchment area throughout the simulation period. Columns illustrate the 

baseline (i.e. no Giant Reed) and two configurations of the biofuel supply chain - irrigated and rain fed 

Giant Reed cultivation. Rows refer to the future scenarios of the sheep farming sector developed with 

local experts (see Table 2). The outputs show that the introduction of Giant Reed in 2018 has a 

noticeable impact on the amount of pastureland available in the area. However, the biofuel project 

generates only direct LUCs in 2018 since only unutilised and unallocated pastureland is converted to 

Giant Reed, while the area of dedicated pasture is not affected. Unallocated pastureland represents 

the primary source of ILUC-free land for Giant Reed cultivation in the case study. The area of 

unallocated pasture remains stable in the period following 2018 in all scenarios, except for the 

Declining production scenario in which a significant contraction of cheese demand in the region results 

in a decline of pasture allocated to sheep grazing.  

 

Figure 4. Pastureland available in the catchment area based on model simulations for the period 2015–2035.  
Notes: Introduction of Giant Reed cultivation is executed in 2018 and maintained until the end of the simulation. 

 

The validity of these results was reviewed with local experts and stakeholders during the workshop 

illustrated in Section 5.1. The workshop participants considered the key concepts, causal mechanisms 

and overall structure of the model largely in line with their knowledge of the real system. However, 
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they also highlighted the uncertainties affecting the model data and, in particular, data of land use. 

This insight emerged from the participatory sensitivity analysis conducted during the workshop and 

was later confirmed by an assessment of the numerical sensitivity of the model parameters which 

showed that the amount of pastureland available at the beginning of the simulation was the most 

sensitive model parameter with a max deviation of 15 % from the curve of the calibrated value (for 

details see supplementary material). The uncertainty affecting the land use dataset originates from 

the EU CAP ‘Refreshment’ exercise conducted in Sardinia in 2015 (AGEA, 2016). The exercise re-

classified as non-agricultural land all pastureland considered not sufficiently managed by farmers, 

resulting in a reduction of more than 500,000 ha of pastureland in the official statistics of the region 

(ISTAT, 2019). However, this change in the official statistics did not affect the ‘real’ use of these areas 

which remained pasture as highlighted by the local actors engaged in the study. We explored the 

implications of this uncertainty by developing a land constrained version of the model in which we 

accounted for the full impact of the EU CAP ‘Refreshment’ by reducing the pastureland in the 

catchment area by 27,600 ha, i.e. all unallocated pasture available in 2015 (Fig. 5). 

 

Figure 5. Pastureland available in the catchment area in the period 2015–2035 based on model simulations 
under constrained land availability.  
Notes: Introduction of Giant Reed cultivation is executed in 2018 and maintained until the end of the simulation. 

 

Fig. 5 shows that under constrained availability of pastureland both Giant Reed supply chains (irrigated 

and rain fed) rely on the conversion of allocated pasture to supply all the biomass required in the 

biofuel project. At the time of land conversion in 2018, the size of such effect on allocated pasture is 
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estimated in c. 8,300 ha (irrigated supply chain) and c. 19,800 ha (rain fed supply chain). The figure 

also shows that competition for land resources between the biofuel project and the sheep farming 

sector evolves over time depending on how the sheep farming scenario develops. Such evolution is 

illustrated graphically by the grey areas ‘Shortage of pasture’ in Fig. 5 6.  

 

Figure 6. Shortage of pastureland in the catchment area in the period 2018–2035 under different combinations 
of supply chain and sheep sector scenario.  

Notes: the width of the bars indicates the size of the shortfall and the length of the bars indicates the number 
of years for which there is a shortfall. Results displayed as average of thousand hectares per year (y axis) over 
time (x axis). 

The levels of pastureland shortage under different combinations of Giant Reed management and 

sheep sector scenarios shown in Fig. 6 provide insights about the intensity and persistency of the 

displacement effects associated with the biofuel project. Here intensity refers to the strength of the 

competition between land uses, while persistency indicates how the competition evolves over time. 

The results show that the displacement effects associated with the biofuel project in the catchment 

area are more intense (nearly three times as high) under rain fed crop management than for irrigated 

management, while they persist longer in the High growth and Stable production scenarios than in the 

Declining production scenario (17 years against 6 and 9 years). 

6.2 Effects outside the catchment area 

 
6 Shortage of pasture is calculated as the number of hectares of pastureland that every year are cultivated with 
Giant Reed to supply the biofuel feedstock, but that would still be required for sheep grazing in the baseline, i.e. 
without the biofuel project. 
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The analysis of the LUCs within the catchment area showed that, under constrained availability of 

pastureland, the cultivation of Giant Reed displaces sheep farming activities from the catchment area. 

The area of pastureland affected is estimated to be between a minimum of c. 8,300 ha for irrigated 

conditions and a maximum of 19,800 ha for rain fed conditions. The foregone production of milk 

connected to such displacement is 4.7 and 11.2 million kg per year respectively.  

Regarding the location of the displacement, our analysis of the regional sheep farming sector in 

Section 5.1 concluded that the displaced milk production is most likely to relocated to the rest of the 

island. The simulation of the process with the SD model showed that by the end of the simulation 

period (2035), the foregone milk production due to Giant Reed cultivation is fully compensated in each 

scenario of the sheep sector, while the LUCs associated with the process differ significantly across 

scenarios and biofuel supply chain configurations. Fig. 7 provides an overview of the (direct and 

indirect) LUCs associated with the biofuel supply chains in 2035. Direct LUCs represent the direct 

substitution of pastureland (unutilised, unallocated and allocated) with Giant Reed, while ILUCs are 

associated to the direct conversion of allocated pasture in the catchment area and materialise as 

substitution of unallocated pasture with allocated pasture in the rest of the island. The figure shows 

that direct LUCs differ only between supply chains, with the irrigated management regime having 

lower impacts, irrespective of the sheep sector scenarios selected. In contrast, ILUCs vary significantly 

and are highly affected by the sheep scenario selected. On the one hand, in the Stable and High growth 

scenarios, the direct conversion of 8,300 ha (irrigated) and 19,800 ha (rain fed) of allocated pasture in 

the catchment area is associated with the conversion of 12,800 ha (irrigated) and 24,200 (rain fed) of 

unallocated pasture in the rest of the island; the lower productivity of the rest of the island (in terms 

of milk per ewe and biomass per hectare of pasture) causes higher LUCs in the rest of the island. On 

the other hand, in the Declining production scenario, the direct conversion of allocated pasture in the 

catchment area is associated with more limited ILUCs (2,600 - 5,800 ha) in the rest of the island due 

to the significant decline of the sheep population in that scenario.  
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Figure 7. Overview of total LUCs associated with biofuel production in Sardinia in 2035 under land constrained 
model conditions. 

Notes: DLUC indicates direct conversion of pastureland to Giant Reed; ILUC refers to the conversion of 
pastureland from unallocated to allocated. 

Finally, the LUCs occurring in the rest of the island are not expected to generate further displacement 

of productive activities since shifting production pattern in the rest of the island are able to fully 

compensate for the foregone milk production in the catchment area in all model configurations and 

scenarios. This is due to the significant amount of unallocated pastureland available for expanding 

sheep farming in the rest of the island, c. 177,000 ha in 2018 (ISTAT, 2019).  

7. DISCUSSION AND CONCLUSIONS 

In this paper, we demonstrate how modelling with SD can be applied to provide decision makers with 

useful and credible knowledge of the direct and indirect LUCs associated with biofuel production at 

project level.  

The analysis of the case study of Giant Reed ethanol in Sardinia showed that biofuel production can 

generate direct and, under certain conditions, also indirect LUCs. Direct LUCs arise from the 

conversion of land for the cultivation of biofuel feedstock. In the case at hand, these LUCs occur in 

2018 and amount to between c. 17,300 and 28,900 ha of pasture converted to Giant Reed. In contrast, 

ILUCs appear when the direct land conversion displaces productive land uses, which relocate 

elsewhere. In the case study, the direct conversion of allocated pastureland in 2018 is between 0 and 

19,800 ha. Such variability is determined, primarily, by the uncertainty affecting the land use data. If 

the data is developed from context specific local knowledge, the model shows no conversion of 
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allocated pasture and, thus, no ILUC. Alternatively if land use data is based on official data from the 

national office of statistics (ISTAT, 2019), the model shows a shortfall of allocated pasture in the range 

of 8,200 – 19,800 ha.  

The consequence of a shortage of pastureland is the relocation of sheep farming activities to the rest 

of the island. This result was considered plausible by representatives of the sheep farming sector who 

explained that cheese factories traditionally collect milk from farmers located in all areas of the region 

and that a shortage of milk deliveries from one area is addressed by stimulating deliveries from all 

other contracted farmers. Fuelled by land competition in the catchment area, the process of 

relocation varies in terms of intensity and persistence depending on how the sheep farming sector 

develops in the period 2020 – 2035. However, due to the availability of unallocated pastureland in the 

rest of the island, the model indicates no shortage of pastureland there and, thus, no further 

relocation of productive activities within or outside the island.   

The knowledge developed in this study, as quantitative estimates of LUCs and understanding of the 

cause-and-effect mechanisms leading to those changes, is relevant to local decision makers including 

project developers responsible for planning the biomass supply chains of the industrial units and 

public authorities responsible for permits and authorisations. For the former group, knowledge of 

ILUCs is critical to prove that the project is not responsible for unwanted impacts on land resources. 

In Sardinia, the minimisation of the land-change implications of the biofuel project was a priority for 

the developers’ decision to exclude cropland from the land considered suitable for Giant Reed 

cultivation. Similarly, knowledge of ILUCs is instrumental for local authorities seeking to steer the 

planning of biofuel projects during the public authorisation process. In Sardinia, Giant Reed cultivation 

potentially threatens key priorities such as local food production, water availability as well as 

biodiversity protection (Di Lucia, Usai, & Woods, 2018). The inclusion of ILUCs in the public assessment 

process for project authorisation would allow local authorities to ensure that the indirect impacts on 

such priorities are accounted for in the project planning. Notably, representatives of the local sheep 

farming sector largely considered knowledge of ILUCs only marginally relevant. For these actors, the 

concept of ILUC was vague and detached from their understanding of the ‘real’ system.  

A key assumption of this study was that the knowledge of ILUCs must be credible in order to support 

decision-making. The strategy applied to achieve this goal was to promote credibility among a broad 

range of local experts and stakeholders. Knowledge of ILUCs is often contested because, while these 

effects are not observable, their assessment is subject to the large uncertainties and scientific 

disagreement that affect the modelling of complex land use systems (van Vliet et al., 2016). We 

actively pursued credibility through an integrated process of model development and validation 
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consisting of quantitative and qualitative methods, and an extensive process of engagement. These 

ideas are in line with the recent literature of stakeholder participation in modelling for environmental 

decision-making (Reed, 2008; Voinov & Bousquet, 2010) in which participation is recommended for 

improving the value of the model in terms of usefulness to decision makers, educational potential for 

the public and credibility within the community. In our study, we applied a broad concept of 

participation which was meant to promote confidence in the model, especially, among those actors 

with direct experience of the real system. Therefore, participation and credibility of local 

representatives of the sheep farming sector was seen as critical to promote the overall credibility of 

the exercise.  

The results of the exercise are useful for project developers seeking to plan supply chains which 

minimise land-change impacts and local authorities interested in including land-based information 

into their planning processes. In the case study, e.g., the irrigation of Giant Reed shows consistently 

lower LUC effects compared to the rain fed crop management. This information, in combination with 

knowledge about the cause-and-effect mechanisms leading to LUCs, can support project developers 

seeking to limit competition with alternative land uses. This could be implemented, for instance, by 

contracting farmers for Giant Reed cultivation in areas characterised by large availability of 

unallocated pastureland7, or in areas featuring low milk productivity. Similarly, local authorities with 

a role in the public process to authorise biofuel projects can apply the knowledge of ILUCs to ensure 

that shortcomings of the cultivation of biofuel feedstock are mediated, while benefits fostered by 

establishing additional requirements on project developers during the authorisation process. In 

Sardinia, where sheep farming is a vital component of the local culture, history and economy, 

authorities can introduce measures to reduce competition for land resources, e.g., by promoting 

investments to fill the gap in pastureland productivity between different areas, or to increase the 

share of forage feed in the sheep diet. 

The case study demonstrated that while the application of SD modelling with the engagement of local 

actors is achievable it is a labour and data intensive approach for assessing the LUCs of biofuel 

production. The cause-and-effect mechanisms to be included the SD model are highly context specific. 

Therefore, if credibility is a priority, the modelling work must rely on context relevant data and 

knowledge. To ensure this, the engagement of local experts and stakeholders is of critical importance. 

However, their effective engagement might also create challenges and require the allocation of 

additional time and resources to the assessment, compared to a purely desk-based modelling 

exercise. Moreover, effective engagement should not be limited to data collection, but should cover 

 
7 This requires the modelling of the livestock carrying capacity of the area. 
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also model development, scenario development and analysis, as well as the validation and 

interpretation of results. However, these ambitions rise important questions concerning e.g. who 

legitimate stakeholders are and what types of knowledge should be included in the analysis. These 

issues should be considered at an early stage of the modelling exercise in future applications of the 

approach. 

In conclusion, this study showed that SD modelling can be used to develop contextual knowledge of 

ILUCs of biofuel production which is useful for decision making at project level. If sufficient resources 

are allocated to the exercise, knowledge of ILUCs can be co-developed with local actors in ways that 

promote its credibility. This study provides some initial evidence from the field of transport biofuel, 

but the modelling approach should receive more attention and be applied to a wider range of land-

based supply chains including food, feed, fibre as well as bio-chemicals and bio-materials. 
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