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Abstract 

Hydraulic fracturing of the first shale gas well at Preston New Road (PNR), Blackpool, UK in late 

2018 marked the end of a seven-year UK-wide moratorium on fracking. Despite a strict Traffic 

Light System being in place seismic events up to ML2.9 were induced. The ML2.9 event was 

accompanied by reports of damage and was assigned EMS-98 intensity VI by the British Geological 

Survey. The moratorium was subsequently reinstated in late 2019. The study here presents a 

pseudo-probabilistic seismic risk analysis and is applied to the larger of the induced events at PNR, 

in addition to hypothetical larger events. 

Initially, site characterization analysis is undertaken using direct and indirect methods. These 

analyses show low-velocity deposits dominate the region (𝑉𝑠30
̅̅ ̅̅ ̅=227 m/s). We test existing ground 

motion prediction equations using spatially-dependent 𝑉𝑠30 to determine applicability to the 

recorded waveform data and produce a referenced empirical model. Predicting median and 84th-

percentile peak ground velocity fields we subsequently determine macroseismic intensities. 

Epicentral intensities of IV, IV–V and VI–VII are predicted for the observed ML2.9, and hypothetical 

ML3.5 and 4.5 scenarios, respectively.  

A probabilistic analysis of damage is performed for 3500 ground-motion realisations 

(2.1≤ML≤4.5) using the OpenQuake-engine with nonlinear dynamic analysis undertaken to 

define building fragility. Based on these analyses, the onset of cosmetic damage (DS1) in terms of 

median risk is observed for the ML2.9 event. Mean modelled occurrences of DS1 and DS2 (minor 

structural damage), 75 and 10 instances, respectively, are consistent with reported damage 

(DS1:97, DS2:50). Significant occurrences (median≥30 buildings) of DS2, DS3 and DS4 (minor to 

major structural damage) are likely for ML3.5, 4.0 and 4.5 events, respectively. However, by 

comparing reported damage with modelled damage due to the ML2.9 event and considering the 

fact that low macroseismic intensities (EMS-98<4) are often not reported by the public, we 

conclude that the previously assigned intensity of VI is too high, with V being more appropriate.  
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Introduction 

Seismic risk represents one of the biggest challenges when attempting to exploit resources in 

the upper crust. Such activities vary from geothermal energy and carbon capture storage to 

conventional mining and onshore unconventional hydrocarbon extraction. In all cases where 

subsurface stresses are perturbed (e.g. through fluid injection, or material extraction) induced 

seismicity is possible and presents a significant hazard that can result in increased risk to the 

exposed population and building stock. The work presented here demonstrates an approach 

to quantify and, consequently, predict this risk (conditional on specific events), with 

application to an unconventional hydrocarbon site in the north of England at Preston New 

Road (PNR), Blackpool.  

 

The PNR site aimed to extract shale gas through hydraulic fracturing horizontal wells drilled 

into the Bowland Shales (Clarke et al., 2019). The Bowland Shales are present across much of 

northern England with recent studies determining significant, albeit widely variable, ‘gas in-

place’. Central estimates range from 140 trillion (Whitelaw et al., 2019) to 1329 trillion cubic 

feet (Andrews, 2013), depending on approach taken. The PNR site is operated by Cuadrilla 

Resources, who previously undertook hydraulic fracturing at the only other onshore shale gas 

well in the UK, which lies 4 km away at Preese Hall, Blackpool (Clarke et al., 2014). Operations 

at the Preese Hall site in 2011 culminated in a local magnitude (ML) 2.3 earthquake and 

subsequently a seven-year moratorium on hydraulic fracturing in the UK. During this period 

an extensive review into hydraulic fracturing was undertaken. As part of this, Green et al. 

(2012) recommended the introduction of a Traffic Light System (TLS, Bommer et al., 2006) for 

induced seismicity, which has been used at various sites worldwide to different levels of 

success (Deichmann and Giardini 2009; Kwiatek et al., 2019; Baisch et al., 2019). The TLS 

defines three levels: green, amber and red, with ML 0 and 0.5 triggering the amber and red 

levels, respectively. These thresholds were designed to avoid any felt seismicity (with an 

assumed minimum ‘felt’ threshold at ML 1.5), even in the case of a trailing event with potential 

increase of one magnitude unit (Green et al., 2012). In the UK’s TLS, the amber level 

necessitates a higher level of monitoring and analysis, but otherwise no operational 

curtailment. A ‘red light’ leads to a pause of operations for at least 18 hours, during which a 

review of the earthquake is undertaken by the regulator (the Oil and Gas Authority, OGA). If 

satisfied that the seismic activity is under control, the OGA will then authorise a resumption 

of production.  

   

Seismicity relevant to the TLS (i.e. ML > 0) at PNR was monitored using a surface network of 

broadband 3-component seismometers operated by Cuadrilla Resources (the operator), the 

British Geological Survey (BGS) and the University of Liverpool (UoL) (Figure 1). The combined 

TLS network is dense in the epicentral region (with inter-station spacing ~ 0.5 – 2 km) allowing 

for the detection of micro-seismicity, with a magnitude of completeness around ML 0. Data 

from all instruments were streamed in real-time to the BGS who were responsible for event 

detection, location and magnitude characterisation. Routine (STA/LTA) detection algorithms 
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were employed by the BGS to quickly detect seismicity. Earthquake magnitudes were 

assigned by the BGS using a revised ML scale (Luckett et al., 2018), which extended the existing 

national scale’s validity to distances less than 10 – 20 km. 

 

The first shale gas well at Preston New Road was actively fracked for 3-weeks in the period 

between 15th October and 17th December 2018. During the two-month period between the 

onset and cessation of hydraulic fracturing, 57 seismic events were detected and located by 

the BGS (Figure 1). Several months later, during August 2019, a second well, adjacent and 

shallower to the first, was hydraulically fractured. Between 15th August and 6th October, 2019, 

a further 135 events were detected on the TLS network.  The magnitude of detected events 

was small during the first period of activity (-0.8 ≤ ML ≤ 1.5), with the largest (ML 1.1 and 1.5) 

assigned macroseismic intensity (EMS-98) II. Three ‘amber’ and 6 ‘red-light’ events were 

reported by the operator (Cuadrilla Resources 2019a). In total, 17 events during 2018 fell into 

the ‘amber light’ category and 8 the ‘red light’ category (ML ≥ 0.5) in terms of catalogue 

magnitude alone. Note that in terms of regulatory reporting, the definition of ‘amber’ event 

strictly required active pumping, which is not considered here. Furthermore, differences in 

magnitude precision means that reporting is sometimes inconsistent between the BGS (who 

report ML to 1 decimal place) and the operator (who report to 2 decimal places). 

 

During hydraulic fracturing of the second well in 2019 both the quantity (135) and magnitude 

(-1.7 ≤ ML ≤ 2.9) of detected events was larger. The BGS catalogue shows that until the 

evening of 21st August, 67 events were detected, with the largest three events having 

magnitudes of ML = 0.0. Subsequently, at 19:46 a ‘red-light’ ML 1.6 occurred, which led to a 

temporary cessation of operations for 18 hours. In the following days, three further ‘red-light’ 

events were detected at ML 0.9, 1.0 and 1.1, before the two largest events in the sequence 

occurred: ML 2.1 at 22:01 on the 24th and ML 2.9 at 07:30 on the 26th August. Operations were 

permanently suspended by the regulator at this point. However, seismicity continued with 25 

events detected up until 6th October, two of which were ‘red-light’ events that occurred 

within 24 hours of the largest ML 2.9 earthquake. 

 

This paper documents a hazard and risk assessment approach utilising available models and 

data for the prediction of ground motions, macroseismic intensity and seismic risk. First, we 

present both in situ and indirect measurements and interpretation undertaken to 

characterise the ground conditions around PNR. We then present an analysis of seismic 

waveform data recorded on the surface TLS monitoring networks. The performance of 

available ground motion models is assessed and the referenced empirical approach (Bommer 

et al., 2006; Atkinson, 2008) is used to define a PNR-specific ground motion prediction 

equation (GMPE). We then investigate the impacts of various earthquake scenarios, first in 

terms of the ground motions predicted, and then, through a probabilistic scenario-based 

damage analysis, their impact on the built environment.  
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TLS Monitoring and Site Characterisation 

Waveform data were streamed from 26 seismic stations within 25 km of the PNR site. Nine 

stations were operated by the BGS, 9 by UoL and 8 by the operator (Figure 1). All stations 

comprised of a 3-component broadband sensor and 24-bit datalogger. The operator’s 

instruments are all located within approximately 5 km of the well (aimed at lowering the 

detection limit to ML 0), while BGS and UoL operate more disperse networks (with a radius of 

around 20 km).  

 

Shear-Wave Velocity Models and 𝑉𝑠30  

Site amplification effects lead to significant spatial differences in ground motion and are often 

correlated with regions of high ground motion intensity and damage. Shear-wave velocity (Vs) 

of the upper 30 m (𝑉𝑠30) of soil and/or rock is a widely-used proxy for such effects (Boore et 

al., 2014). The strategy for the assessment of site amplification at PNR was to target specific 

superficial geology present in the area with direct measurements of 𝑉𝑠30, followed by a wider 

analysis using indirect measurements at each of the seismometer sites.  

 

Sites L001 (glacial till), L003 (peat) and L009 (blown sand) cover the range of superficial 

geology found across the region. Following Foti et al. (2017), the Multi-channel Analysis of 

Surface Waves approach (MASW, Miller et al., 1999) was used at these sites to determine Vs 

down to 30 m depth. Twenty four vertically oriented 4.5 Hz geophones were used for the 

MASW surveys. The dispersion of seismic surface waves (generated using stacked 5 – 10 m 

offset sledgehammer shots) is first determined using linear f-k analysis. A model for the 

subsurface velocity (Vp and Vs) is subsequently estimated through a Rayleigh-wave based 

neighbourhood-algorithm (Wathelet 2008, Wathelet et al., 2004). In order to constrain the 

inversions for Vs, lithological layer models from the Single Onshore Borehole Index are used. 

To account for lateral heterogenerity, variation in the lithological layer-depths was permitted, 

with up to ±2 m near the surface, increasing to ±4 m at depths greater than 15 m. In addition, 

an increase of Vs with depth was imposed. At site L001 the fundamental and first higher mode 

Rayleigh wave dispersion were jointly inverted, while at L003 and L009 only the fundamental 

mode was observed. The resulting shear-wave velocity profiles are shown in Figure 2. 

 

Using the Vs profiles, the travel time average velocity to depth 𝑥 is calculated: 

 

𝑉𝑠,𝑥 =
𝑥

∑
ℎ𝑖

𝑉𝑠,𝑖

𝑁
𝑖=1

                                     (1) 

 

where N is the number of layers. The ith layer having thickness ℎ𝑖  and shear-wave velocity 

𝑉𝑠,𝑖. An uncertainty on 𝑉𝑠30 is obtained by taking the standard deviation of 𝑉𝑠30 values over 

all possible Vs profiles that fall within a site-specific dispersion-based misfit tolerance 

designed to fully encapsulate the observed dispersion. Since the inverted profiles typically 

have a smooth shape, a wider variety of possible profiles (greater misfit tolerance) is 
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therefore required for more complex observed dispersion. Wathelet et al. (2008) define misfit 

as the root-mean-square of the difference in velocity (data minus modelled), normalised by 

the data uncertainty, over the range of observed dispersion frequencies. For site L001 the 

misfit tolerance was ±0.05; for L007 ±0.07; and for L009 ±0.06. We also determine 𝑉𝑠30 

through the Rayleigh wave phase velocity proxy. Foti et al. (2017) suggest that, at sites with 

shallow groundwater (as found around PNR), 𝑉𝑠30 can be approximated by 𝑉𝑠30 = 𝑉𝑅,40. 

Where 𝑉𝑅,40 is the 40 m wavelength phase velocity. Table 1 summarises the 𝑉𝑠30 values using 

the direct and dispersion-proxy approaches.  

 

In addition to direct (Vs- or dispersion-based) measurements, 𝑉𝑠30 can also be estimated from 

the fundamental resonance frequency of the site (f0) along with bedrock depth 𝐻𝑏 and shear-

wave velocity (𝑉𝑠𝑏), here assumed to be 1500 m/s: 

𝑉𝑠30 = 
30

1

4𝑓0+
max(0,30−𝐻𝑏)

𝑉𝑠𝑏

                                  (2) 

(Hassani and Atkinson, 2016). We determine 𝑓0 at all seismometer sites using the horizontal-

to-vertical (H/V) spectral ratios (HVSR) of ambient seismic noise (Table 2). Bedrock depth is 

taken from the BGS superficial deposits thickness model. Sites with alluvium or blown sand 

superficial geology show low variability in Vs30, and a geometric mean Vs30 = 189 m/s (Figure 

3). Other geology types lead to wider variability, but the majority of sites have 𝑉𝑠30 between 

~150 and 300 m/s. The average Vs30 for peat sites is 248 m/s, while for till sites the average is 

233 m/s, which correspond well to the MASW-based measurements (Table 1). 

 

Induced Events and Ground Motions 

A total of 1482 3-component records from 57 events (-0.8 ≤ ML ≤ 1.5) during hydraulic 

fracturing at PNR-1z (2018) and 3510 3-component records from 135 events (-1.7 ≤ ML ≤ 2.9) 

during the second phase at well PNR-2 (2019) were initially visually screened for use. 758 of 

the PNR-1z records passed the initial inspection, while 947 of the PNR-2 records passed; a 

total of 1705 three-component records. The available dataset is uniform in terms of distance 

coverage between local magnitude -1 and 2.9 and epicentral distances 1 to 23 km (Figure 4). 

The smallest events (ML < -1) tend only to be recorded at very close distances.  

 

Usability of Ground Motion Recordings  

Signal-to-noise ratio (SNR) analysis was undertaken for all 1705 ‘visually acceptable’ records. 

The frequency range (flow to fhigh) where the signal exceeds the noise level by a factor 3 was 

determined by comparing pre- or post-event noise Fourier amplitude spectra (FAS) with the 

signal FAS. For defining the range of usable periods (Tmin to Tmax) for response spectra and 

PGA we adopt the procedure developed for induced seismicity in the Groningen gas field, the 

Netherlands (Ntinalexis et al, 2019). For usable PGV we require Tmax > 0.1 and fhigh/flow > 2.  
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It is notable that the events analysed here are dominated by high-frequency (f > 5 Hz) signals 

owing to their small size (mostly ML < 1.5). The usable period range is therefore limited, with 

significantly less usable data at T > 0.5 s (Figure 5). After usability checks, a total of 1007 high-

quality records were available. For each record an assigned usable frequency and period limit 

is provided, and the record only used within these limits. The number of usable records, as 

used subsequently in our analyses, is reduced to 312 when limiting the magnitude range to 

ML ≥ 0.25 (Figure 4). 

 

The BGS PNR earthquake catalogue defines earthquake size in terms of local magnitude (ML). 

These values must be converted (Dost et al., 2018, 2019) for compatibility with GMPEs 

available for induced seismicity, which use moment magnitude, M. For the smallest events, 

we assume that:  

𝐌 =
2

3
𝑀𝐿 + 0.833  (ML < 1.5)  (Edwards et al., 2015),                          (3) 

 

which is based on analysis of induced geothermal events at St Gallen, Switzerland, and on the 

theoretical model of Deichmann (2017). Equation 3 was found to provide very similar 

predictions to an empirical model developed by the operator (Cuadrilla Resources 2019b), 

who used a selection of the 2018-phase events to show: 
 

𝐌 = 0.655𝑀𝐿 + 0.897 (-0.8 ≤ ML ≤ 1.5)        (4) 
 

 For larger events, we adopt the European model of Grünthal et al. (2009): 
 

𝐌 = 0.0376𝑀𝐿
2 + 0.646𝑀𝐿 + 0.53 (ML ≥ 2.5)                  (5) 

 

with linear interpolation between Equations 3 and 5 from 1.5 ≤ ML ≤ 2.5 to ensure there are 

no sudden jumps in the conversion (Figure 6). We acknowledge that there are uncertainties 

in the conversion equation particularly for small magnitudes, where the consistency between 

M and ML is expected to diverge (Deichmann, 2017). We are aware, for instance, that M 

catalogued by the operator from downhole data (generally ML < 0) are systematically lower 

(by approximately half a magnitude unit) than those at the surface (Mancini et al., 2019). The 

source of these downhole-derived moment magnitudes is a ‘black box’ solution provided by 

a subcontractor to the operator (pers. comm. Cuadrilla Resources). Since there are numerous 

assumptions that are required to compute moment magnitudes from small earthquakes we 

therefore treat these with caution. The use of the selected relationship is justified given the 

fact that our aim is to investigate the motions at the surface, the fact that the M versus. ML is 

consistent with other empirical and theoretical models. Nevertheless, future work may wish 

to consider this epistemic uncertainty. 

 

Assessment of Predictive Models  

Recorded ground motions for events with M > 1 (ML > 0.25) at PNR have been compared to 

the predictions from GMPEs of Atkinson (2015) and Douglas et al. (2013) with the aim of 

selecting a model for subsequent adjustment using the referenced empirical approach 

(Bommer et al, 2006; Atkinson, 2008). An example for PGV is shown for the largest events 
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during the 2018 (ML 1.5) and 2019 (ML 2.9) hydraulic fracturing phases in Figure 7. The reason 

for restricting our analyses to the ‘larger’ (M ≥ 1, or ML > 0.25) of the recorded events is 

because (i) the data at M < 1 are more likely to be biased high (i.e. only the strongest records 

are recorded over the baseline noise); (ii) the functional form of the GMPEs may not be able 

to accommodate a wider range of M (Douglas and Jousset, 2011) and (iii) M < 1 events are 

clearly irrelevant from a seismic risk perspective. Site specific Vs30 is used in the assessment 

with Vs30 = 190 m/s for sites on blown sand deposits, 230 m/s for till, and 250 for alluvium and 

peat. The values are log-averages of Vs30 estimated from measured fundamental frequency of 

resonance and bedrock depth at each of the 26 seismometer sites (Equation 2, Figure 3), 

grouped by superficial geology.  

 

The empirical GMPE of Douglas et al. (2013), developed specifically for geothermal induced 

seismicity, was first tested for its applicability to the PNR dataset. Multiple empirical models 

were proposed by Douglas et al. (2013). We use their ‘Model 1’ that uses a Vs30 = 1100 m/s 

reference site, and modified here for local site-specific Vs30 (as detailed previously) using the 

Boore et al. (2014) site amplification model. The Douglas et al. (2013) model was developed 

using data with M ≥ 1 and R < 30 km and therefore directly applicable to the subset (M ≥ 1) 

of PNR data used here. The model has large aleatory uncertainties, owing to the variety of 

data sources and potentially poor metadata quality. On average, it was found to adequately 

predict (bias within ~ 10 %) 0.03 – 0.5 s PSA across the range of model-valid distance and 

magnitude. On the other hand, PGA, PGV and 0.02 PSA were systematically overpredicted, 

apart from for the largest events (ML 1.5, 2.1, 2.9).  A trend of increasing over-prediction with 

decreasing magnitude was apparent across all ordinates, but particularly for short period 

motions (0.02 s PSA, PGA) and PGV. This leads to significant overprediction at the lower end 

of the model’s validity, and where most of our data lie (i.e. for 1 ≤ M < 1.5) with bias factors 

of 1.9 for PGV and 1.2 for 0.02 s PSA and PGA. This is not particularly surprising given the 

significant regional differences observed by Douglas et al. (2013). The fact that predictions of 

PGA and PGV were poor within the model-valid magnitude and distance range therefore led 

us to rule out this model as a basis for the referenced empirical approach. The justification 

for this is that PGA and PGV play a central role in subsequent estimation of macroseismic 

intensity and risk in this study and, in addition, PGV is typically used in regulation (BSI 1993). 

Furthermore, the functional form of the GMPE includes only linear magnitude scaling and 

does not fully account for magnitude-distance-dependent saturation of ground motions. This 

will present problems when predictions are required for not only the small recorded events, 

but also larger hypothetical (risk-focussed) scenarios. 

 

Notably, our decision not to use the Douglas et al. (2013) model as the basis for calibration of 

a PNR specific GMPE is in contrast to Cremen et al. (2020). Their calibration was based on very 

near-field records from PNR and New Ollerton, UK, at distances less than 6 km. It does not 

consider site-specific or non-linear effects but rather uses the ‘unknown’ (or average) site 

prediction provided by Douglas et al. (2013). Comparing the Cremen et al. (2020) GMPE with 
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the data recorded at PNR (Figure 8) we observe a good fit at short distances and low 

magnitudes (ML < 1; R < 10 km) but increasingly significant underestimation of motions for 

records with magnitudes and distances outside this range (although it is noted that their 

model is strictly only calibrated to 6 km). We believe the underprediction is likely due to the 

overly-simple functional form of the Douglas et al. (2013) GMPE, which, as previously 

discussed, does not include quadratic magnitude-scaling or magnitude-dependence of 

distance-scaling that would make it suitable for predictions over a broad range of magnitude. 

Consequently, the Douglas et al. (2013) model has limited flexibility for calibration to local 

data, particularly while maintaining predictions for motions at larger magnitude (Douglas and 

Jousset, 2011). 

 

The GMPE of Atkinson (2015) was developed for instances of induced seismicity. It is based 

on the NGA-West2 dataset (Ancheta et al., 2014) and comprises of records of M 3 – 6 

earthquakes. The majority of smaller magnitude events in the NGA-West2 dataset are 

Californian tectonic earthquakes and are not necessarily shallow. However, records used by 

Atkinson (2015) were limited to those within 40 km of the hypocentre to focus the model on 

near-source motions. Of some concern is that the lower magnitude limit of data used to 

derive the GMPE is above the magnitude range available in our dataset. However, given the 

limited selection of candidate GMPEs for induced seismicity we evaluate the model to test 

the extrapolation potential of the model beyond its strict validity. Atkinson (2015) proposed 

two alternative models for near-source distance saturation for large magnitude events using 

ℎ𝑒𝑓𝑓 = max(1, 10−1.72+0.43𝑴 ) and ℎ𝑒𝑓𝑓 = max(1, 10−0.28+0.19𝑴 ). We use the latter, as 

suggested by the author in a subsequent study (Atkinson, 2020). The GMPE predictions are 

natively made for a reference 𝑉𝑠30 = 760 m/s, with no 𝑉𝑠30 variable in the predictive equation. 

We therefore use the site response model of Boore et al. (2014) for application to the low 

𝑉𝑠30 (~ 200 - 300 m/s) values observed at PNR. 

 

We find that, despite being applied below the magnitude range used in its derivation, the 

predictions of Atkinson (2015) are generally satisfactory at distances greater than a few km 

and ML > 0.5 (Figure 9). PGA and, to a lesser extent, PGV residuals highlight that the model 

systematically underpredicts mid- to short period motions in the very near-field (R < 5 km), as 

previously shown by Edwards et al. (2019) and Cremen et al. (2020).  In fact, the scatter of 

residuals for PGA and PGV suggests the sigma value in the Atkinson (2015) model is necessary 

to capture the range of motions observed at short distances (Repi < 5 km), but may significantly 

overestimate variability at longer distances (Repi > 5 km). Mid- to long-period motions (T ≥ 0.3 

s) are predicted with minimal average bias across the range of magnitude and distance 

available in the observed data (with no apparent trends) and exhibit a significantly lower 

variability than in the Atkinson (2015) model. It is noted that the choice of ℎ𝑒𝑓𝑓 model for 

Atkinson (2015) does not have an impact at these near-field prediction’s low magnitudes 

(yielding a 0.01 km difference at M 1.5). It could be argued that the rapid decay of near-field 

motions is confined to the majority of small (ML < 1.5) events in the dataset which would then 
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present negligible influence on seismic risk, however, residuals for the larger of the 

earthquakes (ML 2.1 and 2.9) show the same behaviour (Figure 10). 

 

Bommer et al. (2006) and Atkinson (2008) showed that improvements in local ground motion 

prediction can be achieved using the referenced empirical approach. A base GMPE (here 

Atkinson, 2015) is calibrated to recordings made in the region of interest. We undertake the 

calibration of the Atkinson (2015) GMPE using a mixed-effects regression. We initially fit 

‘unadjusted’ residuals (i.e. difference between logarithms of observed and predicted  

motions, as shown in Figure 9) with parametric form as per the original GMPE: 
 

𝑋 = ∆𝑐0 + ∆𝑐1𝐌 + ∆𝑐2𝐌2 + ∆𝑐3 log10 𝑅 + 𝐵𝑒 + 𝑊𝑆.        (6)

    

With 𝑋 the (log10) residual for a given spectral ordinate, 𝐌 the moment magnitude and R, an 

effective distance, as defined in Atkinson (2015) as: 
 

𝑅 = √𝑅ℎ𝑦𝑝
2 + max(1,10−0.28+0.19𝑴)2.                                 (7) 

 

𝐵𝑒 are random effects for the events, with prior belonging to a normal distribution defined by 

𝒩(0, 𝜏) and 𝑊𝑆 are station-specific random effects with prior defined by 𝒩(0, 𝜙). For 

induced seismicity applications, as here, we are constrained by the limited magnitude range 

of events. A constraint is therefore applied that the adjusted GMPE should converge to the 

original for 𝐌 ≥ 4.5 at Rhyp = 20 km, roughly the mid-point of the dataset used in its derivation. 

The adjusted ground motion amplitudes, 𝑌𝐴15𝑐, are given by: 
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log10 𝑌𝐴15𝑐 = 𝑑0 + 𝑑1𝐌 + 𝑑2𝐌2 + 𝑑3 log10 𝑅   𝐌 < 3                 (8) 

log10 𝑌𝐴15𝑐 = 𝑝0 + 𝑝1𝐌 + 𝑝2𝐌2 + 𝑝3 log10 𝑅   3 ≤ 𝐌 < 4.5 

log10 𝑌𝐴15𝑐 = 𝑌𝐴15 = 𝑐0 + 𝑐1𝐌 + 𝑐2𝐌2 + 𝑐3 log10 𝑅  𝐌 ≥ 4.5 
 

With 𝑐𝑖 the original coefficients (Atkinson, 2015), 𝑑𝑖 are the calibrated coefficients (Table 3) 

given by 𝑐𝑖 + ∆𝑐𝑖 (with ∆𝑐𝑖 according to Equation 6, Table 4) and 𝑝𝑖 are linearly interpolated 

with magnitude between the 𝑐𝑖 and 𝑑𝑖 (i.e. 𝑝𝑖 = 𝑐𝑖 +
𝐌−4.5

3−4.5
∆𝑐𝑖). The calibrated model is 

shown along with the original GMPE in Figure 11. The most obvious difference is significantly 

higher near-field short period motions in the calibrated GMPE, a feature already noticed in 

the data (Figures 9, 10). The constraint applied in the regression to limit the modification of 

the GMPE at large magnitudes is evident in Figure 11, with predictions almost identical to the 

original GMPE already by M = 4. 

 

Figure 12 shows the residual misfit of the calibrated GMPE (as Figure 9 for the original). The 

behaviour is greatly improved, with centred residuals across the range of distances (0 to 23 

km) and magnitudes (ML 0.25 to 2.9). A slight trend in residuals may remain (albeit 

significantly reduced) at the shortest distances (R < 2 km), but in order to accommodate this 

a change of functional form would be required, which we consider to be unjustified given the 

uncertainties of extrapolating this behaviour beyond the observed magnitude range. 
 

Ground motion variability observed the PNR data (Table 4) is dominated by within-event 

terms, with between-event variability (𝜏) very small and consistent with the ‘single source’ 

seismicity (Lin et al., 2011; Atkinson , 2006). While the number of events used here is too 

small to robustly determine 𝜏, we can nevertheless use this as justification to reduce the 

between-event variability used in subsequent applications of the GMPE at PNR. Indeed, other 

studies based on single-source datasets (Lin et al., 2011, Rodriguez‐Marek et al., 2013) 

suggest a ~60% reduction in 𝜏. To strike a balance between conservatism and acknowledging 

the unique single-source scenario at PNR we implement variability according to the values 

presented by Atkinson (2015). We reduce 𝜏 by a factor of 0.67 (a 33% reduction), and retain 

the original values of 𝜙 (Table 3). 

 

Assessment of Potential Impact of Future Scenarios 

We define five earthquake scenarios (from ML = 2.5 to 4.5, inclusive) that are considered 

possible (but not necessarily likely) at PNR. In addition, ML 2.1 and 2.9 scenarios are 

investigated, allowing direct comparison with the largest events which have already occurred 

and therefore empirical evidence of macrosesimic effects, such as building damage.  

 

Ground motion fields are calculated using the geology-dependent spatially-variable Vs30, with 

Vs30 = 190 m/s for blown sand deposits, 230 m/s for till, and 250 for alluvium and peat (as 

defined previously for the residual analyses). These average Vs30 values are assigned to the 

risk calculation according to the BGS superficial geology map, which has been discretised 
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according to modal geology-type within a 1 x 1 km gridding interval. The non-linear site 

amplification model of Boore et al. (2014) is implemented to account for the presence of low 

velocity soils. Median levels of macroseismic intensity (equivalent to EMS-98) are calculated 

following Caprio et al. (2015) using predicted median and 84th-percentile values of PGV for 

the ML 2.9 (Figure 13) and hypothetical ML 4.5 events (Figure 14), resulting in epicentral 

intensities of IV and VI to VII, respectively. We note that that equations available for 

determining macroseismic intensity from ground motion intensities (PGA, PGV, etc.) are 

invariably based on tectonic earthquakes. Applying these conversion equations to motions 

from induced seismicity (typically smaller magnitude events, with short-duration high-

frequency acceleration time-histories) may therefore introduce a bias in the conversion 

(Lesueur et al., 2013). Nevertheless, PGV is generally found to be the most reliable ground 

motion metric for predicting macroseismic intensity over a wide range of scenarios (e.g., Wald 

et al., 1999; Worden et al., 2012) owing to it being related to a range of ‘mid-frequency’ 

motions that scale with magnitude. 

 

Caprio et al. (2015) further suggest almost a unit standard deviation on the intensity for a 

given PGV scenario. This means that for the highest levels of motion considered here (84th-

percentile PGV), EMS-98 macroseismic intensity for single localities could feasibly reach V and 

VIII near the epicentre for the ML 2.9 and 4.5 events, respectively. However, we note that only 

16 % of the spatially distributed motions are expected to ever exceed the 84th-percentile 

prediction of PGV, and of these, only 16 % would be considered to potentially reach or exceed 

the +1 unit standard deviation in EMS-98 intensity (a combined probability of 2.6 %). Due to 

the rural nature of the epicentral region around PNR it would be highly unlikely for these 

‘point-localities’ experiencing low-probability PGV and PGV-based intensity to also 

correspond to building locations. 

 

Risk Analysis 

A grid extending 7 km to the west, 6 km to the south and 9 km to both the north and east of 

the PNR well is considered in the following analyses.  The grid consists of 240 cells, each of 1 

km2 (Figure 15). The extent of the grid has been defined based on the boundary of 

macroseismic intensity V in the maps calculated for a ML 4.5 event in a preliminary state of 

this study Edwards et al. (2019) together with the built-up area in the region (Figure 15). 

 

Ground Motion fields  

Using the calibrated GMPE and revised variability model (Table 3), 500 random ground motion 

fields have been calculated for each of the seven individual scenarios: earthquake magnitudes 

(ML 2.5 to 4.5 at 0.5 unit intervals in addition to events with ML 2.1 and 2.9). All scenario 

events are simulated with epicentre at the centroid of the PNR-1z seismic cloud (53.78754N, 

2.96477W) and at 2.35 km depth, as defined by the BGS earthquake catalogue. This location 

is less than 190 m from the centroid of BGS catalogued epicentres at the adjacent well PNR-2 

and only 80 m away from the location of the ML 2.9 event, distances well within the 
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uncertainty of event locations and irrelevant for subsequent hazard and risk calculations. We 

note that there is an uncertainty associated with the location of future events – but the 

analysis performed here is not intended to be fully probabilistic, but rather demonstrate likely 

hypothetical scenarios. Note that for T = 2 s no calibration was undertaken (due to a lack of 

recorded data at T = 2 s), therefore the original predictions of Atkinson (2015) are used. 

Multiple risk calculations are performed for each of these spatially-correlated motions. In 

practice, each scenario event has a between-event term randomly selected (from a lognormal 

distribution with standard deviation  from Table 3). Single-scenario variability is then applied 

through random sampling from a lognormal distribution with standard deviation 𝜙, 

conditioned on the spatial correlation model of Jayaram and Baker (2009). As noted earlier,  

and 𝜙 (Table 3) are both taken from the original model of Atkinson (2015), with  reduced by 

a factor 0.67 to account for the ‘single source zone’ seismicity.  

 

Inventory of Exposed Structures 

Open datasets have been compiled to produce an inventory of the exposed structures and 

population within the region of the PNR site. OpenStreetMap building footprints were used 

to estimate the total number of buildings in each grid cell and the CORINE Land Cover data is 

used to estimate the number of buildings in each grid cell that fall within urban, rural, 

industrial and sports/leisure land use classes. A field survey was undertaken to estimate the 

number and distribution of different building classes across the study area. The buildings fall 

into four distinct classes: detached unreinforced masonry housing, terraced unreinforced 

masonry housing, mobile homes and light steel frame buildings. A judgment-based mapping 

scheme, considering available information from the field survey and online data resources, is 

implemented to assign a percentage of each building type based on the land use class (Table 

5). By combining the mapping scheme with the gridded layer of building numbers in each land 

use class, the number of buildings of each building class in each grid cell is estimated. The 

average age of the buildings across the whole region was taken from the CDRC Dwelling Age 

dataset for building age classification. 

 

We assume that 15% of the brick masonry buildings are constructed pre-1920 based on the 

dwelling age data, and that they all have brick chimneys. The remaining brick masonry 

buildings are considered to be post-1920, with 50% of these assumed to have brick chimneys. 

There are a total of 56,420 buildings in the exposure model of which 31,135 are masonry 

buildings with chimneys (Figure 16). 
 

Risk Calculation 

We use numerical models and corresponding capacity curves for detached and terraced 

masonry houses and light steel frame buildings from Arup (2017; 2019) and Mosayk (2017). 

These models have been developed as part of the probabilistic seismic risk assessment for 

the Groningen gas field (van Elk et al., 2019) and are considered suitable here due to the 

similarity in style and construction to buildings around PNR. The capacity curve for mobile 
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homes is instead taken from HAZUS (FEMA 2004). In order to model chimney damage, the 

data collected from the study of Taig and Pickup (2016) were used. Following an extensive 

review of chimney damage in past earthquakes, they proposed lower and upper bound 

fragility functions for buildings constructed before and after 1920. Subsequently, Taig (2018) 

concluded that the fragility assumptions substantially overstated the likelihood of failures at 

low levels of PGA. In our analyses, the lower bound values are therefore taken as the ‘best 

estimate’ and a lognormal distribution fit to the data points of PGA versus probability of 

failure (giving median PGA values of 0.585 g and 0.765 g with dispersion of 0.62 and 0.52 for 

pre- and post-1920 buildings, respectively). Furthermore, we define a minimum level of PGA 

(0.08 g) below which chimney collapse is not considered. This value has been assumed based 

on the maximum PGA that has been recorded at PNR (0.08 g), together with the fact that no 

chimneys have collapsed to date. 

 

Fragility functions for the buildings are developed following Crowley et al. (2019a). First, 

simplified single-degree-of-freedom (SDOF) structural models with backbone curves based on 

the defined capacity curves are subjected to nonlinear dynamic analysis. Crowley et al. (2019) 

selected acceleration time-histories that were consistent with the levels of induced seismic 

hazard in the Groningen field for 5 levels of ground motion that varied between PGA values 

of 0.03g and 1g. These same ground motions have been used herein. With additional time 

and resources, one would ideally undertake a probabilistic seismic hazard analysis (PSHA) at 

the PNR site and then select records that are consistent with this hazard (following 

disaggregation of the hazard to understand the magnitude, distance, epsilon and duration of 

the events contributing most to the hazard at different levels of intensity) following, for 

example, the methods outlined in Bradley (2010) and Baker and Lee (2018). However, as a 

PSHA is not currently available for the site, the same records from the Groningen gas field 

study have been employed given that they do reflect the characteristics of induced seismicity. 

It is noted that the duration of the employed records is likely to be longer than expected for 

the magnitude of the events considered and there may be differences in the frequency 

content. This may lead to higher estimations of damage than actually expected.  

 

The peak displacement response of each structure is obtained along with a bi-linear model fit 

to the data (Figure 17). The defining spectral ordinate for each structural type is selected as 

that with the lowest dispersion in SA versus SD (i.e. the most efficient), and an implicit 

assumption is taken that this intensity measure is also sufficient given that recent studies have 

shown that the higher the efficiency of the intensity measure, the higher the sufficiency (e.g. 

Bradley et al., 2010). PGV was also considered as an alternative intensity measure but it was 

not found to have a higher efficiency than the other spectral ordinates considered. 

Displacement thresholds for structural damage states in masonry structures (DS1 – 4 

according to the EMS damage scale) have been obtained from the results of experimental 

testing (Graziotti et al., 2019; Borzi et al., 2008) and, for the steel-frame buildings and mobile 

homes, from HAZUS (FEMA 2004). The probability of reaching or exceeding these levels of 
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displacement (Figure 18) is finally determined using the median displacement response 

(Figure 17) for a given SA, together with its aleatory variability. For further details refer to 

Crowley et al. (2017; 2019b). A recent study undertaken by Chase et al. (2019) has 

investigated the issue of damage accumulation for the specific case of sequences of induced 

earthquakes. They show that the fragility of timber-frame buildings was not influenced by 

sequences of low magnitude events, as the damage was typically light enough that it did not 

alter the capacity of the building to withstand the next event in the sequence. It follows that 

this may also apply to the generally stiffer masonry structures that dominate our study region. 

Damage accumulation is therefore not considered in the present study, but more work is 

required on the potential for this due to both prior earthquakes and foundation settlement.  

 

 

The ‘Scenario Damage Calculator’ of the OpenQuake-engine (Silva et al., 2014) has been used 

to calculate the damage distribution for each scenario-based ground-motion field. The spatial 

distribution of the mean and standard deviation of the probability of reaching each damage 

state (DS1, DS2, DS3, DS4 and chimney collapse) for each magnitude scenario and building 

class is then determined (Figures 19, 20, Table 6). Figure 21 compares the box and whisker 

plots showing the total percentage of buildings in each damage state for the scenario events 

with ML = 2.9 and ML = 4.5.  These plots illustrate the large impact of ground motion variability 

on the mean percentage of damaged buildings, in particular for the low magnitude event. 
 

Comparison with Observed Damage 

The only publicly available damage data that is currently available for the ML 2.9 event comes 

from BGS ‘did-you-feel-it?’ data. This consists of self-reported damage from the occupants of 

buildings within the PNR region. A total of 2266 responses were submitted for this event. 

There are significant caveats to consider in using this data: (i) damage reports are not 

provided by structural engineers; (ii) heightened emotions can influence the verity of the 

responses; (iii) multiple damage entries may exist for the same structure.   

 

The ‘did-you-feel-it?’ responses for each building have been mapped to DS0, DS1 and DS2 

using the EMS-98 damage scale (Grünthal et al., 1998). DS1 has been defined where any of 

the following were reported:  small cracks in plaster, small amounts of falling plaster, or falling 

stones. DS2 has been defined for: large cracks in plaster, a large amount of fallen plaster, or 

large cracks in walls. Note that the somewhat ambiguous descriptors are taken directly from 

the ‘did-you-feel-it?’ responses and therefore present the only level of differentiation 

between damage states available to us.  Furthermore, direct mapping of individual ‘damage 

features’ does not account for the extent of damage and is therefore likely to provide 

conservative estimates of the building’s damage state. Noteworthy here is that one report of 

a ‘collapsed wall’ and one of a ‘collapsed house wall’ were received, but from the 

accompanying damage descriptions it was clear that these were not wall collapses and were 

therefore not considered as such. 
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The total number of damage reports indicating DS1 according to the ‘did-you-feel-it?’ data is 

97. A further 50 reports are classified as indicating DS2. No chimneys were reported to have 

collapsed. The modelling results show a good similarity, with a mean of 75 buildings with DS1, 

10 buildings with DS2 and <1 building with chimney collapse (Table 6) only slightly lower than 

the empirical data. For the median values of modelled damage (17 at DS1 and 0 at DS2) the 

difference is more significant, but as shown in Figure 21, this is due to the skewed distribution 

of the numbers of buildings at each damage state. The mean values are more strongly 

influenced by a limited number of high-damage scenarios that lie in the long tails of the 

distribution. We therefore consider the median to be a better representation of the typical 

number of buildings with a given damage state, while the mean better represents the 

influence of outlier scenarios. Furthermore, the somewhat higher reported values of damage 

could be both due to the unreliable self-reporting of damage, possible duplications of reports 

for a single building, and the conservative mapping to the EMS-98 damage scale.  

 

Due to data protection regulations, specific localities were not provided with individual ‘did-

you-feel-it?’ responses. Instead, postcode districts were provided. Each postcode district is 

broadly population based, so larger postcode districts indicate more sparsely populated 

areas. For the purpose of comparison, the damage results have been mapped into these 

postcode districts (Figures 22, 23). It should be noted that this is an inherently unfair 

comparison: the ‘did-you-feel-it?’ reports from a single earthquake are certainly not a 

complete dataset and are also likely biased (as noted previously). The ‘did-you-feel-it?’ 

reports are also not uniformly sampled across the region. Furthermore, the modelled damage 

map represents the mean of a probability density function of the number of damaged 

buildings at a given damage state (Figure 21) within each postcode district. Therefore, 

comparison with the average over many ML 2.9 earthquakes would be a fairer comparison. 

Nevertheless, a comparison of the predicted damage maps with those based on the ‘did-you-

feel-it?’ data is undertaken to provide a first order assessment. The data shows that the 

modelled damage is more concentrated in the built-up areas west of the PNR site, whereas 

the ‘did-you-feel-it?’ data indicates highest damage in the postal district to the south of the 

PNR site. A possible explanation for this could be site amplification effects, since the area to 

the south includes areas lying in the flood plain of the River Ribble, and therefore located on 

alluvial deposits. Our analyses indicated similar Vs30 and HVSR-based f0 in this region to other 

districts, so the exact cause is unclear. Further site investigation using direct-measurements 

(e.g. MASW) in this region may help understand if stronger site effects are present here. 

 

Comparing the modelled damage for larger events with observed damage in past events (see 

Edwards et al., 2019 for further details), we note that events that occurred in Basel, 

Switzerland (2006, M3.2, depth 5 km) and Huizinge, Netherlands (2012, M3.5, depth 3 km) 

both led to a much larger number of buildings with DS1 (approx. 2000) than observed in our 

model. However, there is suggestion that pre-existing DS1 damage was present in these 
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buildings due to lack of maintenance and settlement of foundations (see e.g. Bommer et al., 

2015). Conversely, damage caused by the Darmstadt event (2014, M3.6, depth 5 km) had 

reported levels of DS1-2 and chimney collapse which are slightly lower than the estimates 

made here for the ML 3.5 scenario. The Folkestone (UK) (2007, M4.0, depth 5.3 km) 

earthquake damaged approximately 1000 buildings (DS1-2) and a number of chimneys. A 

larger degree of damage has been estimated for a hypothetical ML 4.0 event at PNR. However, 

this is due at least in part to the significantly greater exposure, with earthquakes being in 

close proximity to the city of Blackpool along with the soft soils present in the coastal region. 

While a comparison that directly accounts for exposure would therefore be highly 

informative, the data for such a comparison are, unfortunately, not uniformly available.  

 

Discussion 

A comprehensive analysis of recorded ground motions, development of a structural inventory 

and site characterisation at PNR has allowed us to model the expected ground motion, 

macroseismic intensity and damage for a range of earthquake scenarios. Initial work by 

Edwards et al. (2019), undertaken prior to the larger events of 2019, was focused on 

theoretical scenarios. The recent ML 2.9 has now provided opportunity to compare 

observations with these models. In terms of damage, the predictions are seen to be consistent 

overall, both in total number and, albeit to a much lesser extent, spatial distribution. This 

supports the usefulness of a pseudo-probabilistic risk assessment, as implemented herein and 

allows decisions to be made on future production with awareness of the associated seismic 

risk. We acknowledge that the approach presented would benefit from extension to a full 

probabilistic hazard and risk assessment and could be implemented within a real-time 

operational forecasting, such as proposed for ‘nuisance felt ground motions’ by Cremen and 

Werner (2020). However, such analyses are significantly more costly. Our proposal would 

therefore be to undertake full probabilistic analysis only after a scenario-based analyses, as 

shown here, presents acceptable risk. 

 

Site amplification clearly plays an important role in seismic hazard and risk, and this is a 

particular issue at PNR given the low velocity superficial geology. The geology-based proxies 

implemented in this study make use of available information: namely surface and bedrock 

geology type and bedrock depth. However, they cannot explain some of the damage 

distribution that may otherwise be caused by local variations in site effects. In order to 

understand the detailed spatial distribution of damage, direct measurements of Vs are 

required on a much larger scale. This information may also be useful in making decisions on 

siting of wells away from regions of very low Vs30 and associated strong site amplification. One 

element that has not been addressed in our analysis is the impact of pre-existing building 

weakness. It has been observed that buildings can behave non-linearly throughout and after 

sequences of repeated dynamic loading (Astorga et al., 2018). On the other hand, for the 

specific case of induced seismicity, Chase et al. (2019) found no evidence of damage 

accumulation to light-frame structures. Nevertheless, we consider that structural settlement 
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due to thick sedimentary deposits of sand and alluvium may have weakened the structural 

resistance of some buildings and may lead to bias in the number of damaged buildings in 

particular areas. 

 

Records of seismicity, at much lower levels than usually used (M > 1) have proved invaluable 

in testing and calibrating GMPEs for use at PNR. Earthquake detection and localization require 

a dense network near to and around the earthquake epicenters. However, calibrating GMPEs 

requires the consideration of ground motion attenuation to distances up to 20 km or even 

more for the largest events. At PNR the more distant records have been provided 

independently by the BGS and UoL, with the operator concentrating on the epicentral region 

to optimise the minimum detection threshold. A similar level of seismic monitoring by the 

operator (or responsible agent) both within and outside the epicentral zone is an important 

feature to maintain for future projects.  

 

The macroseismic intensity of the ML 2.9 event is somewhat contentious. Originally assigned 

as VI by the BGS based on ‘did-you-feel-it?’ reports, this is at the top end of intensities 

observed for such small events. Considering observations and region-wide predictions of PGV 

we expect epicentral intensities of IV for an event of this size, which is consistent with the 

range of intensities assigned to previous shallow ML 2.9 events in the UK (III to V). Caprio et 

al. (2015) define PGV values of 0.54, 2.3 and 5.5 cm/s using their global model (their Equation 

2) for intensity IV, V and VI, respectively. The largest PGV at PNR was 0.9 cm/s, observed very 

close to the epicentre (ML = 2.9; Repi =  1.9 km). Extrapolating PGV using the adjusted GMPE 

(Equation 8) from 1.9 km to zero epicentral distance we would expect a 32 % increase. 

Therefore, the maximum observed PGV could increase to 1.2 cm/s. According to Caprio et al. 

(2015) this would clearly fall short of intensity V, never mind intensity VI. However, the 

authors also propose roughly one-unit for the standard deviation on their predicted 

intensities, which means that there is a small but non-zero (2.2 %) likelihood that an intensity 

of V (at plus 2 sigma) is possible from such an event.  

 

Ultimately, intensity V and VI should be defined by occurrence of physical damage according 

the EMS-98 classification. In our modelling of the ML 2.9 around 1 % buildings within 1 km of 

the epicenter were assigned DS1 damage, far below the EMS-98 definition of ‘many’ buildings 

required to assign intensity VI. Instead, intensity V seems appropriate, if damage is indeed 

verified. Intensity V, while not immediately apparent in the ‘summary descriptions’ of 

intensity, includes ‘few’ (up to ~ 10 – 20 %) buildings with minor cosmetic damage (Grünthal 

et al., 1998). This highlights the disadvantage of intensity assignment based on ‘did-you-feel-

it?’ reports alone. They are inherently positively biased: the public are, understandably, far 

more likely to report ‘felt’ effects than not, and this is exacerbated as the ‘significance’ of the 

felt event increases.  

 

Conclusions 
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A risk analysis associated to induced seismicity has been undertaken for the shale gas site at 

Preston New Road, near Blackpool, UK. We have carefully defined usable ground motion 

records from events (ML > 0.25) that would typically be unused in risk analyses. These records 

have been used to calibrate a GMPE using the referenced empirical approach. Site effects are 

accounted for using a non-linear geology-dependent model that accounts for the very low 

shear wave velocity of near surface sediments around PNR. These sedimentary deposits 

contribute to the higher than normal levels of motion (and subsequently damage) that might 

be expected from moderate earthquakes.  

 

We found that existing GMPEs for induced seismicity (Atkinson, 2015 and Douglas et al., 2013) 

were not unbiased in their published form for predicting ground motions at the PNR site. This 

highlights the necessity to have locally calibrated application-specific models that account for 

observed data, as proposed by Bommer et al. (2016). The approach presented here facilitated 

the calibration of model coefficients such that, to the extent permitted by the functional form, 

the predictions were unbiased in the magnitude and distance range available, while retaining 

the original model predictions at larger magnitudes and distances. We nevertheless find 

refinement to the functional form would be necessary to account for the very steep decay of 

ground motions in the very near field (Repi < 3 km). 

 

The risk analysis, undertaken using multiple realisations of ground motion for several scenario 

events, provides damage estimates (with a mean of 75 buildings at DS1 and 10 as DS2) that 

are comparable to those observed for the ML 2.9 event, although caveats must be considered 

when using ‘did-you-feel-it?’ damage data. An increase in the magnitude of induced events 

beyond the largest experienced to date, even by a relatively moderate degree, will clearly 

lead to an increase the quantity and severity of damaged buildings. Specifically, we estimated 

not insignificant numbers (median ≥ 50) of buildings at DS2 for a ML 3.5 event, DS3 for a ML 

4.0 event and DS4 for a ML 4.5 event, respectively. The soft soils, shallow earthquake focal 

depths and proximity to the city of Blackpool clearly, therefore, exacerbate the effects of what 

may otherwise be considered minor events.  

 

Data and Resources 

Map data copyrighted OpenStreetMap contributors and available from 

https://www.openstreetmap.org (last accessed November 2020). Open source datasets used 

in this project are: CORINE Land Cover (2018) [© European Union, Copernicus Land 

Monitoring Service 2018, European Environment Agency (EEA)]; and CDRC Dwelling Age map 

and dataset (maps.cdrc.ac.uk, last accessed November 2020). Waveform and ‘did-you-feel-it’ 

data are available on request from the British Geological Survey (BGS and operator data) and 

University of Liverpool (UoL data). UK bedrock depth, geology maps and lithological profiles 

from the Single Onshore Borehole Index are available from the BGS at www.bgs.ac.uk (last 

accessed November 2020). OpenQuake is available at www.globalquakemodel.org (last 

accessed November 2020). 

https://www.openstreetmap.org/
http://www.globalquakemodel.org/
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Tables 

Table 1. Direct measurement (MASW based) and indirect (𝑉𝑅,40−45-proxy based) 𝑉𝑠30 at sites L001, L003 and L009. 

Surface 

Deposit 

Lithological 

Depths 

Site 𝑽𝒔𝟑𝟎 from 𝑽𝑹,𝟒𝟎−𝟒𝟓 𝑽𝒔𝟑𝟎 from 

𝑽𝒔(𝒛) 

(median) 

𝑽𝒔𝟑𝟎 from 

𝑽𝒔(𝒛) (16th -

percentile) 

𝑽𝒔𝟑𝟎 from 

𝑽𝒔(𝒛) (84th -

percentile) 

Till Yes L001 269.0 257.1 251.7 264.4 

No   249.7 247.6 252.8 

Alluvium 

/Peat 

Yes L003 244.3 240.0 237.3 244.3 

No   234.0 233.3 235.7 

Sand Yes L009 213.3 205.3 203.3 205.5 

   195.5 194.1 196.0 
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Table 2. HVSR-based fundamental frequencies (f0). Upper and lower estimates are indicated along with alternative Vs30 using combinations of mean/max bedrock depth and f0 and its upper/lower 

estimate. 
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Table 3. Coefficients of the adjusted GMPE for M < 3. Coefficients for M ≥ 3 should be linearly interpolated from the values 

here (valid at M = 3) to the original (Atkinson, 2015) values at M = 4.5 (Equation 8, Table 4). Ground motion variability as 

recommended for implementation is based on the original (Atkinson, 2015) values, using 0.67τ.  

F (Hz) T (s) d0 d1 d2 d3 𝝉 𝝓 𝝈𝑻 

2 0.50 -3.7392 2.0021 -0.0998 -1.7760 0.1340 0.29 0.319 

3.33 0.30 -3.6621 2.2557 -0.1634 -1.4672 0.1273 0.30 0.326 

5 0.20 -3.0950 2.2584 -0.1703 -1.6525 0.1407 0.30 0.331 

10 0.10 -1.9083 2.1025 -0.1627 -2.0590 0.1675 0.29 0.335 

20 0.05 -0.8734 1.6872 -0.0978 -2.5631 0.2010 0.28 0.345 

33 0.03 -1.1299 1.7556 -0.1045 -2.5936 0.1809 0.28 0.333 

 PGA -1.6156 1.7605 -0.1070 -2.2639 0.1608 0.28 0.323 

 PGV -3.6019 1.6791 -0.0716 -2.1651 0.1273 0.27 0.299 

 
 
Table 4. Adjustment coefficients and (absolute values of) ground motion variability in the PNR data from Equation 6. Between-

event (𝜏), within-event (𝜙), site-to-site (𝜙𝑆2𝑆) and total (𝜎𝑇) variability are determined according to the definitions in Al Atik 

et al. (2010). 

F (Hz) T (s) ∆𝒄𝟎 ∆𝒄𝟏 ∆𝒄𝟐 ∆𝒄𝟑 𝝉 𝝓 𝝓𝑺𝟐𝑺 𝝈𝑻 

No. 
Events 

No. 
Records 

2 0.50 
0.1338 -0.0579 0.0214 -0.2320 0.0854 0.2034 0.2049 0.2206 19 144 

3.33 0.30 
-0.8681 0.4037 -0.0556 0.1408 0.0803 0.2318 0.2207 0.2453 23 199 

5 0.20 
-0.8290 0.4734 -0.0642 0.0045 0.0559 0.2366 0.2058 0.2432 23 246 

10 0.10 
0.0457 0.2725 -0.0442 -0.2850 0.0359 0.2684 0.2234 0.2708 23 299 

20 0.05 
1.1446 -0.1388 0.0214 -0.7321 0.0624 0.2619 0.2079 0.2693 23 301 

33 0.03 
1.1531 -0.0864 0.0144 -0.8086 0.0828 0.3789 0.2861 0.3879 23 301 

 PGA 
0.7604 -0.0575 0.0083 -0.5119 0.0640 0.3192 0.2569 0.3255 23 301 

 PGV 
0.5491 -0.0829 0.0235 -0.4961 0.0585 0.3015 0.2178 0.3071 23 299 

 

Table 5. Mapping scheme for the proportion of building class for each land class. 

Building Class Rural Urban Industrial Sports/Leisure 

Brick masonry detached 0.9 0.6 - 0.2 

Brick masonry terraced 0.1 0.4 - - 

Mobile home - - - 0.8 

Light steel frame - - 1.0 - 
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Table 6. Summary of scenario damage. Italic text indicates thresholds for significance occurrence (median of ≥ 30 buildings) 

of a given damage state. 

 

Scenario 

(ML) 

DS1 DS2 DS3 DS4 Chimney failure 

Mean Median Mean Median Mean Median Mean Median Mean Median 

2.1 1 0 0 0 0 0 0 0 0 0 

2.5 7 0 0 0 0 0 0 0 0 0 

2.9 75 17 10 0 2 0 0 0 <1 0 

3 162 39 28 1 10 0 2 0 5 0 

3.5 992 536 301 50 110 3 49 0 65 6 

4 3243 2495 1449 693 709 163 453 19 436 99 

4.5 5835 5606 3257 2290 1824 879 1401 267 1195 456 
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Figure 1. Seismic monitoring stations [triangles, operated by Cuadrilla (sites labelled IO1-7, PNR1-7 and PPV1-7); UoL 

(labelled L001-9); BGS (labelled AQ01-9)]. Detected seismic events during both the 2018 and 2019 injections are shown 

(colours or symbol size indicating their TLS category: red, yellow and green, from large to small circles, respectively). The 

locations of the largest two events (ML 2.1 and 2.9) are indicated by stars. The epicentral region is shown in the inset figures 

(top: Repi < ~0.5 km; bottom: Repi < ~ 5 km). 

 

 

  

Figure 2. Ground profiles (Vs) for site L001, L003 and L009, from left to right, respectively, with all three compared in the 

right panel. Bold lines indicate the ‘best-fit’ models, while the black solid and dotted lines indicate the mean and one standard 

deviation of models within a misfit tolerance that fully encapsulates the observed dispersion curve. 
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Figure 3. Vs30 grouped by surface geology. Empirical Vs30 based on an ‘f0 proxy’ (Hassani and Atkinson, 2016) are shown, 

along with their uncertainty (dashed error bars). Lower- and higher-estimates of f0-based Vs30 (Table 2) define the error bars 

for each of the assumed bedrock depths (‘H_mean’, ‘H_max’ and ‘H=30m’, as indicated in the legend). The ‘measured’ 

(MASW-based) and ‘dispersion proxy’ based 𝑉𝑠30 (Table 1) are also shown. Surface geology class in indicated by the 

horizontal bars, from left to right: alluvium, blown-sand, peat, and till.  

 

 

 

 

Figure 4. Distance vs. magnitude for the usable data. Circles show the data from 57 events during the 2018 injection, while 

squares show the 135 events from the 2019 injection phases. Filled symbols (ML > 0.25) indicate records used in the GMPE 

calibration. 
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Figure 5. Number of usable records vs. period and PGV. Top: all data, bottom: data with M > 1. Circles: data from 57 events 

during the 2018 injection; squares: data from 135 from the 2019 injection; triangles: combined dataset. 

 

 

 

Figure 6. Local to moment magnitude conversions. 

 

PGV 

PGV 
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Figure 7. Geometric mean horizontal PGV (largest 2018 event, ML = 1.5; largest 2019 event, ML = 2.9) compared to  the 

model of Atkinson (2015) (solid line: median; dashed line: plus/minus one sigma) using 𝑉𝑠30 = 240 m/s (a representative field-

average) and the ML to M conversion adopted for this study (Equations 3, 5).   

 

 

Figure 8. Residuals [log-10 difference: observation – Cremen et al. (2020)] for PGV and PGA versus magnitude and distance. 

Diamonds represent the data from 57 events during the 2018 injection, while squares represent the data from 135 events during 

the 2019 injection. The dashed and dotted lines show the one and two sigma levels of the Cremen et al. (2020) model. 
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Figure 9. Residuals [log-10 difference: observation – Atkinson (2015)] for PGV, PGA and 0.5 s PSA versus magnitude and 

distance. Diamonds represent the data from 57 events during the 2018 injection, while squares represent the data from 135 

events from the 2019 injection. The dashed and dotted lines show the one and two sigma levels of the Atkinson (2015) model. 

 

Figure 10. As Figure 7, but showing only residuals for the largest (ML 2.1 and 2.9) events.  
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Figure 11. Predicted PSA for M 1 (bottom) to 4 (top) versus period for the original (dotted lines) and adjusted (solid lines) 

GMPEs. Note, predicted PSA is linearly interpolated in the log-log space between the published periods. 

 

Figure 12. Residuals [log-10 difference: observation – calibrated GMPE] for PGV, PGA and 0.5 s PSA versus magnitude and 

distance. Diamonds represent the data from 57 events during the 2018 injection, while squares represent the data from 135 

events from the 2019 injection. The dashed and dotted lines show the one and two sigma levels of the calibrated model. 
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Figure 13. Macroseismic intensity for the ML 2.9 event (epicentral intensity IV) using median predictions of geometrical mean 

PGV (inset: intensity using 84th percentile PGV). Seismic monitoring stations are indicated by triangles. The black dot and 

dashed circles around it indicate the PNR site itself and 1, 5 and 10 km distances from it. 

 

 

Figure 14. As Fig 13. showing macroseismic intensity for the ML 4.5 (epicentral intensity VI) event based on median PGV 

(inset: intensity using 84th percentile PGV). The black dot and dashed circles around it indicate the PNR site itself and 1, 5 and 

10 km distances from it. 
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Figure 15. Extent of the exposure model. The risk grid (blue) is 16 x 15 km at 1 km intervals. 
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 1 

Figure 16. Distribution of building classes in the exposure model (a) brick masonry detached, (b) brick masonry terraced, (c) light steel frame, (d) mobile home. 2 
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 4 

Figure 17. Response analyses (input spectral acceleration, SA vs. spectral displacement, SD, response) for SDOF models and 5 
corresponding piecewise linear regression: (a) detached, (b) terraced, (c) mobile home and (d) light steel frame. 6 

  7 

 
Figure 17: 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

  
(c) (d) 
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 9 
  

Figure 18. Building fragility functions (probability of exceeding a given damage state) for (a) detached, (b) terraced, (c) mobile 10 
home and (d) light steel frame buildings for various damage states. The discontinuity evident in the DS1 curve for terraced 11 
housing is an artefact of the bilinear regression shown in Figure 17. 12 

 13 
 14 

Figure 18. Building fragility functions (probability of exceeding a given damage state) for (a) 
detached, (b) terraced, (c) mobile home and (d) light steel frame buildings for various 
damage states. The discontinuity evident in the DS1 curve for terraced housing is an artefact 
of the bilinear regression shown in Figure 17. 
 
 

(a) (b) 

  
(c) (d) 
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 15 

Figure 19.  Spatial distribution of the mean number of buildings in DS1 for the scenario event ML = 2.9. Note that every grid 16 

cell has a number of buildings < 1 for all other damage states and chimney collapse.  17 

  18 
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 19 

 20 

Figure 20.  Spatial distribution of the mean percentage of buildings in each damage state for the scenario event ML = 4.5 (a) 21 

DS1, (b) DS2, (c) DS3, (d) DS4, (e) chimney collapse. 22 
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Figure 21. Total percentage of buildings in each damage state for scenario events ML = 2.9 (left) and ML = 4.5 (right). Note 24 

change of scale. The median (50th percentile) is shown by the red line while the box and whisker indicates the 25th and 75-25 

percentiles and full range, respectively. Mean values are shown by the diamonds. 26 
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 29 

Figure 22.  EMS-98 DS1 damage grouped by postcode district for the ML 2.9 event, using the ‘did-you-feel-it?’ data (left) and 30 

the modelled damage (right).  31 
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 33 

Figure 23.  EMS-98 DS2 damage grouped by postcode district for the ML 2.9 event, using the ‘did-you-feel-it?’ data (left) and 34 

the modelled damage (right). 35 
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